1
|
Yu J, Gao X, Shi H, Zhang L, Nie W, Zhang R, Fang M, Liu Y, Yan Y, Fan B, Wu C, Huang C, Fan S. Activation of Nuclear Receptor CAR: A Pathway to Delay Aging through Enhanced Capacity for Xenobiotic Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416823. [PMID: 39887667 PMCID: PMC11948022 DOI: 10.1002/advs.202416823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Environmental factors are linked to aging and age-related diseases. Emerging evidence suggests that enhancing body's resistance to xenobiotics might be an anti-aging strategy. The constitutive androstane receptor (CAR) regulates drug-metabolizing enzymes and transporters, coordinating metabolism and immune responses to adapt to stress triggered by exogenous exposure. However, the impact of activating CAR on aging remains unknown. In this study, Caenorhabditis elegans (C. elegans), drug-induced premature aging mice, and senescence accelerated P8 (SAMP8) mice are used as models to explore the effects of CAR activation on lifespan and healthspan, along with the underlying mechanisms. The results showed that hCAR agonist CITCO and mCAR agonist TCPOBOP prolonged the lifespan and healthspan in model organism. The longevity effects of CITCO and TCPOBOP were attenuated in CAR homozygous nhr-8/daf-12 mutant C. elegans as well as CAR-/- mice. In C. elegans, CITCO activated both anti-stress and detoxification genes, and increased the resistance to environmental adversities. Additionally, the lifespan-extending and xenobiotic resistant effects of CITCO might be related to the regulation of age-related pathways. Furthermore, CITCO improved age-related neurodegeneration in C. elegans models. Taken together, the results suggest that the longevity effects of CAR agonists may be related to the enhancement of xenobiotic resistance of animals.
Collapse
Affiliation(s)
- Jing Yu
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Xiaoyan Gao
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Hang Shi
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Lijun Zhang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Wenlong Nie
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Ruochen Zhang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Minglv Fang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Ying Liu
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Yingxuan Yan
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Bingbing Fan
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Chengyuan Wu
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Cheng Huang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Shengjie Fan
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
2
|
Gao L, Qiao H, Wei P, Moussian B, Wang Y. Xenobiotic responses in insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21869. [PMID: 35088911 DOI: 10.1002/arch.21869] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Insects have evolved a powerful detoxification system to protect themselves against environmental and anthropogenic xenobiotics including pesticides and nanoparticles. The resulting tolerance to insecticides is an immense problem in agriculture. In this study, we summarize advances in our understanding of insect xenobiotic responses: the detoxification strategies and the regulation mechanisms against xenobiotics including nanoparticles, the problem of response specificity and the potential usefulness of this study field for an elaborate pest management. In particular, we highlight that versatility of the detoxification system relies on the relatively unspecific recognition of a broad range of potential toxic substances that trigger either of various canonical xenobiotic responses signaling pathways, including CncC/Keap1, HR96, AHR/ARNT, GPCR, and MAPK/CREB. However, it has emerged that the actual response to an inducer may nevertheless be specific. There are two nonexclusive possibilities that may explain response specificity: (1) differential cross-talk between the known pathways and (2) additional, yet unidentified regulators and pathways of detoxification. Hence, a deeper and broader understanding of the regulation mechanisms of xenobiotic response in insects in the future might facilitate the development and application of highly efficient and environmentally friendly pest control methods, allowing us to face the challenge of the world population growth.
Collapse
Affiliation(s)
- Lujuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- Université Côte d'Azur, Parc Valrose, Nice, France
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Uehara D, Tojima H, Kakizaki S, Yamazaki Y, Horiguchi N, Takizawa D, Sato K, Yamada M, Uraoka T. Constitutive androstane receptor and pregnane X receptor cooperatively ameliorate DSS-induced colitis. Dig Liver Dis 2019; 51:226-235. [PMID: 30442521 DOI: 10.1016/j.dld.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nuclear receptor pregnane X receptor (PXR) was shown to be protective in case of dextran sulfate sodium (DSS)-induced colitis. Constitutive androstane receptor (CAR) belongs to the same nuclear receptor subfamily with PXR. The roles of both receptors in DSS-induced colitis were evaluated. METHODS Wild-type, Car-null, Pxr-null, and Car/Pxr-null mice were treated with a CAR/PXR agonist or vehicle and administered 2.5% DSS in the drinking water. The typical clinical symptoms, histological scoring, proinflammatory cytokine, and apoptosis were analyzed. RESULTS Mice treated with the PXR agonist pregnenolone-16α-carbonitrile (PCN) were protected from DSS-induced colitis, as in a previous study. Mice treated with the CAR agonist, 4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) were also protected from DSS-induced colitis. Interestingly, the protective effects of PCN in the Car-null mice and those of TCPOBOP in the Pxr-null mice both decreased. PCN or TCPOBOP pretreatment significantly decreased the macrophage and monocyte infiltration in DSS-induced colitis. PXR and CAR agonists reduced the mRNA expression of several proinflammatory cytokines in a PXR- and CAR-dependent manner, respectively. CAR inhibited apoptosis by inducing Gadd45b. PXR inhibited TNF-α and IL-1b and CAR induced Gadd45b in in vitro cell analyses. CONCLUSIONS We showed that CAR and PXR cooperatively ameliorate DSS-induced colitis. PXR and CAR protected against DSS-induced colitis by inhibiting proinflammatory cytokines and apoptosis, respectively.
Collapse
Affiliation(s)
- Daisuke Uehara
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroki Tojima
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Satoru Kakizaki
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Yuichi Yamazaki
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Norio Horiguchi
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Daichi Takizawa
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ken Sato
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Toshio Uraoka
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
4
|
Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer. Oncotarget 2018; 7:42661-42682. [PMID: 26894976 PMCID: PMC5173165 DOI: 10.18632/oncotarget.7410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
Breast-cancer is heterogeneous and consists of various groups with different biological characteristics. Innovative pharmacological approaches accounting for this heterogeneity are needed. The forty eight human Nuclear-Hormone-Receptors are ligand-dependent transcription-factors and are classified into Endocrine-Receptors, Adopted-Orphan-Receptors (Lipid-sensors and Enigmatic-Orphans) and Orphan-receptors. Nuclear-Receptors represent ideal targets for the design/synthesis of pharmacological ligands. We provide an overview of the literature available on the expression and potential role played by Lipid-sensors, Enigmatic-Orphans and Orphan-Receptors in breast-cancer. The data are complemented by an analysis of the expression levels of each selected Nuclear-Receptor in the PAM50 breast-cancer groups, following re-elaboration of the data publicly available. The major aim is to support the idea that some of the Nuclear-Receptors represent largely unexploited therapeutic-targets in breast-cancer treatment/chemo-prevention. On the basis of our analysis, we conclude that the Lipid-Sensors, NR1C3, NR1H2 and NR1H3 are likely to be onco-suppressors in breast-cancer. The Enigmatic-Orphans, NR1F1 NR2A1 and NR3B3 as well as the Orphan-Receptors, NR0B1, NR0B2, NR1D1, NR2F1, NR2F2 and NR4A3 exert a similar action. These Nuclear-Receptors represent candidates for the development of therapeutic strategies aimed at increasing their expression or activating them in tumor cells. The group of Nuclear-Receptors endowed with potential oncogenic properties consists of the Lipid-Sensors, NR1C2 and NR1I2, the Enigmatic-Orphans, NR1F3, NR3B1 and NR5A2, as well as the Orphan-Receptors, NR2E1, NR2E3 and NR6A1. These oncogenic Nuclear-Receptors should be targeted with selective antagonists, reverse-agonists or agents/strategies capable of reducing their expression in breast-cancer cells.
Collapse
|
5
|
Cecropin B Represses CYP3A29 Expression through Activation of the TLR2/4-NF-κB/PXR Signaling Pathway. Sci Rep 2016; 6:27876. [PMID: 27296244 PMCID: PMC4906279 DOI: 10.1038/srep27876] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/25/2016] [Indexed: 12/28/2022] Open
Abstract
Cecropins are peptide antibiotics used as drugs and feed additives. Cecropin B can inhibit the expression of CYP3A29, but the underlying mechanisms remain unclear. The present study was designed to determine the mechanisms responsible for the effects of cecropin B on CYP3A29 expression, focusing on the Toll-like receptors (TLRs) and NF-κB pathways. Our results indicated that the CYP3A29 expression was inhibited by cecropin B, which was regulated by pregnane X receptor (PXR) in a time- and dose-dependent manner. Cecropin B-induced NF-κB activation played a pivotal role in the suppression of CYP3A29 through disrupting the association of the PXR/retinoid X receptor alpha (RXR-α) complex with DNA sequences. NF-κB p65 directly interacted with the DNA-binding domain of PXR, suppressed its expression, and inhibited its transactivation, leading to the downregulation of the PXR-regulated CYP3A29 expression. Furthermore, cecropin B activated pig liver cells by interacting with TLRs 2 and 4, which modulated NF-κB-mediated signaling pathways. In conclusion, cecropin B inhibited the expression of CYP3A29 in a TLR/NF-κB/PXR-dependent manner, which should be considered in future development of cecropins and other antimicrobial peptides.
Collapse
|
6
|
Shang W, Liu J, Chen R, Ning R, Xiong J, Liu W, Mao Z, Hu G, Yang J. Fluoxetine reduces CES1, CES2, and CYP3A4 expression through decreasing PXR and increasing DEC1 in HepG2 cells. Xenobiotica 2015; 46:393-405. [DOI: 10.3109/00498254.2015.1082209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
Inhibition of cytochrome P450 3A in rat liver by the Diorganotin (IV) compound di-n-Butyl-di-(4-chlorobenzo-hydroxamato)tin (IV) and Its Probable Mechanism. Molecules 2012; 17:10994-1009. [PMID: 22971584 PMCID: PMC6268477 DOI: 10.3390/molecules170910994] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/28/2012] [Accepted: 09/03/2012] [Indexed: 11/25/2022] Open
Abstract
The specific aims of this study were to evaluate the inhibition effect on CYP3A of di-n-butyl-di-(4-chlorobenzohydroxamato)tin (IV) (DBDCT), a tin-based complex with high antitumor activity, and the probable mechanism(s) of this action. Adult male SD rats were treated separately with natural saline (NS), lipopolysaccharide (LPS, 5 mg/kg), DBDCT (1.25, 2.5 and 5.0 mg/kg) intraperitoneally for 2 days after induction of CYP3A with dexamethasone (DEX, 100 mg/kg) for 4 days. Western blot analysis and fluorescent quantitation PCR (FQ-PCR) were conducted to determine the changes in expression of CYP3A, PXR, CAR and RXR. The biological accumulation of DBDCT and total Sn were determined by high-performance liquid chromatography (HPLC) and atomic fluorescence spectrometry (AFS). CYP450 content and CYP3A activities were significantly inhibited (p < 0.05) in DBDCT-treated rats compared with the control group, as was the expression of CYP3A (p < 0.05) at both protein and mRNA levels. In DBDCT-treated groups, the expression of PXR protein and mRNA increased, while the expression of CAR decreased. The biological accumulation of DBDCT and Sn in rat livers treated with DBDCT was high. The accumulation of DBDCT and Sn due to the inhibition of CYP3A may be involved in the mechanism of toxicity of DBDCT in rat liver.
Collapse
|
8
|
Tojima H, Kakizaki S, Yamazaki Y, Takizawa D, Horiguchi N, Sato K, Mori M. Ligand dependent hepatic gene expression profiles of nuclear receptors CAR and PXR. Toxicol Lett 2012; 212:288-297. [PMID: 22698814 DOI: 10.1016/j.toxlet.2012.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/01/2012] [Accepted: 06/01/2012] [Indexed: 11/28/2022]
Abstract
Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are key regulators of drug-metabolizing enzymes and transporters. These two receptors are closely associated with each other and also have overlapping functions. This study investigated the overall hepatic gene expression profiles and the regulatory roles of these nuclear receptors using CAR/PXR single and double knockout mice. Basal and ligand-stimulated gene expression profiles were obtained in each mouse using cDNA microarrays and a reverse transcriptase-polymerase chain reaction. Enzymes such as Cyp2b10, Cyp3a11, Cdc20 and Cdk1 displayed both CAR- and PXR-dependent induction. Inversely, enzymes such as Cyp4a10, Fos and Mme displayed both CAR- and PXR-dependent repression. Enzymes such as Cyp1a1, Cyp1a2 and c-Myc represented the group of genes only induced by CAR. Enzymes such as Aacs represented the group of genes induced only by the PXR. CAR and PXR are closely associated and have diverse roles, both as positive and negative regulators of hepatic genes including xenobiotic metabolism, apoptosis, cholesterol biosynthesis, lipid metabolism, and cytokine signaling pathways.
Collapse
Affiliation(s)
- Hiroki Tojima
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Meyer zu Schwabedissen HE, Oswald S, Bresser C, Nassif A, Modess C, Desta Z, Ogburn ET, Marinova M, Lütjohann D, Spielhagen C, Nauck M, Kroemer HK, Siegmund W. Compartment-specific gene regulation of the CAR inducer efavirenz in vivo. Clin Pharmacol Ther 2012; 92:103-11. [PMID: 22588604 DOI: 10.1038/clpt.2012.34] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nuclear receptors such as the constitutive androstane receptor (CAR) are central factors that link drug exposure to the activities of drug metabolism and elimination. In order to determine the in vivo effects of efavirenz, a CAR activator, the expression of target genes was determined in duodenal biopsies obtained from 12 healthy volunteers before treatment and after 10 days of treatment with efavirenz; concomitant administration of the cholesterol inhibitor ezetimibe produced no significant difference. However, in in vitro studies, efavirenz significantly increased CYP2B6 expression in several cell types, suggesting that the drug transactivates CAR. This hypothesis is supported by our findings that there is significant induction of CAR target genes in in vivo peripheral blood mononuclear cells (PBMCs) isolated from healthy volunteers treated with multiple doses of efavirenz. The impact of efavirenz on hepatic metabolism in vivo was confirmed by significant changes in plasma 4β-hydroxycholesterol and bilirubin levels and the area under the curve (AUC) of efavirenz. Induction of CYP2B6 mRNA expression correlated with the decrease in the AUC of efavirenz (r = 0.61; P = 0.036). Taken together, our results provide evidence that efavirenz exerts compartment-specific inductive capacity in vivo.
Collapse
|
10
|
Ayed-Boussema I, Pascussi JM, Maurel P, Bacha H, Hassen W. Effect of aflatoxin B1 on nuclear receptors PXR, CAR, and AhR and their target cytochromes P450 mRNA expression in primary cultures of human hepatocytes. Int J Toxicol 2011; 31:86-93. [PMID: 21994236 DOI: 10.1177/1091581811422453] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aflatoxin B1 (AFB1), one of the most common mycotoxins found in human foods and animal feed, is principally hepatotoxic and hepatocarcinogenic. The aim of the present study was to explore the effect of AFB1 on messenger RNA (mRNA) expression of pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR) and some of their target cytochromes using primary cultures of human hepatocytes. Our results showed that AFB1, at noncytotoxic increasing concentrations, caused a significant upregulation of cytochrome P 2B6 (CYP2B6), CYP3A5, and to a lesser extent CYP3A4 and CYP2C9. Pregnane X receptor and CAR mRNA expression increased in the 3 treated livers. Aflatoxin B1 was found also to induce an overexpression of CYP1A1 and CYP1A2 genes accompanied by an increase in AhR mRNA expression. These findings suggest that AFB1 could activate PXR, CAR, and AhR; however, further investigations are needed to confirm nuclear receptor activation by AFB1.
Collapse
Affiliation(s)
- Imen Ayed-Boussema
- Laboratoire de Recherche sur les Substances Biologiquement Compatibles, (LRSBC), Rue Avicenne, 5019 Monastir, Tunisia
| | | | | | | | | |
Collapse
|
11
|
Smetanina MA, Pakharukova MY, Kurinna SM, Dong B, Hernandez JP, Moore DD, Merkulova TI. Ortho-aminoazotoluene activates mouse constitutive androstane receptor (mCAR) and increases expression of mCAR target genes. Toxicol Appl Pharmacol 2011; 255:76-85. [PMID: 21672546 PMCID: PMC3148291 DOI: 10.1016/j.taap.2011.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 05/15/2011] [Accepted: 05/28/2011] [Indexed: 10/18/2022]
Abstract
2'-3-dimethyl-4-aminoazobenzene (ortho-aminoazotoluene, OAT) is an azo dye and a rodent carcinogen that has been evaluated by the International Agency for Research on Cancer (IARC) as a possible (class 2B) human carcinogen. Its mechanism of action remains unclear. We examined the role of the xenobiotic receptor Constitutive Androstane Receptor (CAR, NR1I3) as a mediator of the effects of OAT. We found that OAT increases mouse CAR (mCAR) transactivation in a dose-dependent manner. This effect is specific because another closely related azo dye, 3'-methyl-4-dimethyl-aminoazobenzene (3'MeDAB), did not activate mCAR. Real-time Q-PCR analysis in wild-type C57BL/6 mice revealed that OAT induces the hepatic mRNA expression of the following CAR target genes: Cyp2b10, Cyp2c29, Cyp3a11, Ugt1a1, Mrp4, Mrp2 and c-Myc. CAR-null (Car(-/-)) mice showed no increased expression of these genes following OAT treatment, demonstrating that CAR is required for their OAT dependent induction. The OAT-induced CAR-dependent increase of Cyp2b10 and c-Myc expression was confirmed by Western blotting. Immunohistochemistry analysis of wild-type and Car(-/-) livers showed that OAT did not acutely induce hepatocyte proliferation, but at much later time points showed an unexpected CAR-dependent proliferative response. These studies demonstrate that mCAR is an OAT xenosensor, and indicate that at least some of the biological effects of this compound are mediated by this nuclear receptor.
Collapse
Affiliation(s)
- Mariya A Smetanina
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ayed-Boussema I, Pascussi JM, Zaied C, Maurel P, Bacha H, Hassen W. Ochratoxin A induces CYP3A4, 2B6, 3A5, 2C9, 1A1, and CYP1A2 gene expression in primary cultured human hepatocytes: a possible activation of nuclear receptors. Drug Chem Toxicol 2011; 35:71-80. [PMID: 21834667 DOI: 10.3109/01480545.2011.589438] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by fungi of two genera: Penicillium and Aspergillus. OTA has been shown to be nephrotoxic, hepatotoxic, teratogenic, and immunotoxic to several species of animals and to cause kidney and liver tumors in mice and rats. Biotransformation of OTA has not been entirely elucidated. Several metabolites have been characterized in vitro and/or in vivo, whereas other metabolites remain to be characterized. At present, data available regarding OTA metabolism and cytochrome inductions concern only rodents or in vitro systems. The aim of the present study was to explore the effect of OTA on mRNA expression of some cytochromes known to be regulated by pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR), using primary cultures of human hepatocytes. Our results showed that OTA reduced hepatocyte viability in a dose-dependent manner. Using quantitative real-time reverse-transcription polymerase chain reaction, our study showed that treatment of primary cultured human hepatocytes with noncytotoxic increasing concentrations of OTA for 24 hours caused a significant upregulation of CYP3A4, CYP2B6, and, to a lesser extent, CYP3A5 and CYP2C9. PXR mRNA expression increased in only 1 treated liver, whereas CAR mRNA expression was not affected. OTA was found also to induce an overexpression of CYP1A1 and CYP1A2 genes accompanied by an increase in AhR mRNA expression. These findings suggest that OTA could activate PXR and AhR; however, further investigations are needed to confirm nuclear-receptor activation by OTA.
Collapse
Affiliation(s)
- Imen Ayed-Boussema
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | | | | | | | | | | |
Collapse
|
13
|
Pregnane X receptor is required for interleukin-6-mediated down-regulation of cytochrome P450 3A4 in human hepatocytes. Toxicol Lett 2010; 197:219-26. [PMID: 20538049 DOI: 10.1016/j.toxlet.2010.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 05/30/2010] [Accepted: 06/01/2010] [Indexed: 12/31/2022]
Abstract
Cytochrome P450 3A4 (CYP3A4) is the most abundant cytochrome P450 enzyme in human liver and metabolizes more than 60% of prescribed drugs in human body. Patients with liver conditions such as cirrhosis show increased secretion of cytokines (e.g., interleukin-6) and decreased capacity of oxidation of many drugs. In this study, we provided molecular evidence that cytokine secretion directly contributed to the decreased capacity of oxidative biotransformation in human liver. After human hepatocytes were treated with IL-6, the expression of CYP3A4 decreased at both mRNA and protein levels, so did the CYP3A4 enzymatic activity. Meanwhile, the repression of CYP3A4 by IL-6 occurred after the decrease of pregnane X receptor (PXR) in human hepatocytes. The PXR-overexpressed cells (transfected with human PXR) increased the CYP3A4 mRNA level, and the repression of CYP3A4 by IL-6 was greater in the PXR-overexpressed cells than in the control cells. Further, PXR knockdown (transfected with siPXR construct) decreased the CYP3A4 mRNA level with less repression by IL-6 than in the control cells transfected with corresponding vector. Collectively, our study suggests that PXR is necessary for IL-6-mediated repression of the CYP3A4 expression in human hepatocytes.
Collapse
|
14
|
Zollner G, Wagner M, Trauner M. Nuclear receptors as drug targets in cholestasis and drug-induced hepatotoxicity. Pharmacol Ther 2010; 126:228-43. [PMID: 20388526 DOI: 10.1016/j.pharmthera.2010.03.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 03/24/2010] [Indexed: 01/04/2023]
Abstract
Nuclear receptors are key regulators of various processes including reproduction, development, and metabolism of xeno- and endobiotics such as bile acids and drugs. Research in the last two decades provided researchers and clinicians with a detailed understanding of the regulation of these processes and, most importantly, also prompted the development of novel drugs specifically targeting nuclear receptors for the treatment of a variety of diseases. Some nuclear receptor agonists are already used in daily clinical practice but many more are currently designed or tested for the treatment of diabetes, dyslipidemia, fatty liver disease, cancer, drug hepatotoxicity and cholestasis. The hydrophilic bile acid ursodeoxycholic acid is currently the only available drug to treat cholestasis but its efficacy is limited. Therefore, development of novel treatments represents a major goal for both pharmaceutical industry and academic researchers. Targeting nuclear receptors in cholestasis is an intriguing approach since these receptors are critically involved in regulation of bile acid homeostasis. This review will discuss the general role of nuclear receptors in regulation of transporters and other enzymes maintaining bile acid homeostasis and will review the role of individual receptors as therapeutic targets. In addition, the central role of nuclear receptors and other transcription factors such as the aryl hydrocarbon receptor (AhR) and the nuclear factor-E2-related factor (Nrf2) in mediating drug disposition and their potential therapeutic role in drug-induced liver disease will be covered.
Collapse
Affiliation(s)
- Gernot Zollner
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | | | | |
Collapse
|
15
|
Beaver LM, Hooven LA, Butcher SM, Krishnan N, Sherman KA, Chow ESY, Giebultowicz JM. Circadian clock regulates response to pesticides in Drosophila via conserved Pdp1 pathway. Toxicol Sci 2010; 115:513-20. [PMID: 20348229 DOI: 10.1093/toxsci/kfq083] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Daily rhythms generated by the circadian clock regulate many life functions, including responses to xenobiotic compounds. In Drosophila melanogaster, the circadian clock consists of positive elements encoded by cycle (cyc) and Clock (Clk) and negative elements encoded by period (per) and timeless (tim) genes. The epsilon-isoform of the PAR-domain protein 1 (Pdp1epsilon) transcription factor is controlled by positive clock elements and regulates daily locomotor activity rhythms. Pdp1 target genes have not been identified, and its involvement in other clock output pathways is not known. Mammalian orthologs of Pdp1 have been implicated in the regulation of xenobiotic metabolism; therefore, we asked whether Pdp1 has a similar role in the fly. Using pesticides as model toxicants, we determined that disruption of Pdp1epsilon increased pesticide-induced mortality in flies. Flies deficient for cyc also showed increased mortality, while disruption of per and tim had no effect. Day/night and Pdp1-dependent differences in the expression of xenobiotic-metabolizing enzymes Cyp6a2, Cyp6g1, and alpha-Esterase-7 were observed and likely contribute to impaired detoxification. DHR96, a homolog of constitutive androstane receptor and pregnane X receptor, is involved in pesticide response, and DHR96 expression decreased when Pdp1 was suppressed. Taken together, our data uncover a pathway from the positive arm of the circadian clock through Pdp1 to detoxification effector genes, demonstrating a conserved role of the circadian system in modulating xenobiotic toxicity.
Collapse
|
16
|
Zollner G, Trauner M. Nuclear receptors as therapeutic targets in cholestatic liver diseases. Br J Pharmacol 2009; 156:7-27. [PMID: 19133988 DOI: 10.1111/j.1476-5381.2008.00030.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cholestasis results in intrahepatic accumulation of cytotoxic bile acids, which cause liver damage ultimately leading to biliary fibrosis and cirrhosis. Cholestatic liver injury is counteracted by a variety of adaptive hepatoprotective mechanisms including alterations in bile acid transport, synthesis and detoxification. The underlying molecular mechanisms are mediated mainly at a transcriptional level via a complex network involving nuclear receptors including the farnesoid X receptor, pregnane X receptor, vitamin D receptor and constitutive androstane receptor, which target overlapping, although not identical, sets of genes. Because the intrinsic adaptive response to bile acids cannot fully prevent liver injury in cholestasis, therapeutic targeting of these receptors via specific and potent agonists may further enhance the hepatic defence against toxic bile acids. Activation of these receptors results in repression of bile acid synthesis, induction of phases I and II bile acid hydroxylation and conjugation and stimulation of alternative bile acid export while limiting hepatocellular bile acid import. Furthermore, the use of nuclear receptor ligands may not only influence bile acid transport and metabolism but may also directly target hepatic fibrogenesis and inflammation. Many drugs already used to treat cholestasis and its complications such as pruritus (e.g. ursodeoxycholic acid, rifampicin, fibrates) may act via activation of nuclear receptors. More specific and potent nuclear receptor ligands are currently being developed. This article will review the current knowledge on nuclear receptors and their potential role in the treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Gernot Zollner
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
17
|
Antiepileptic drugs reduce efficacy of methotrexate chemotherapy by downregulation of Reduced folate carrier transport activity. Leukemia 2009; 23:1087-97. [DOI: 10.1038/leu.2009.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Mottino AD, Catania VA. Hepatic drug transporters and nuclear receptors: Regulation by therapeutic agents. World J Gastroenterol 2008; 14:7068-74. [PMID: 19084913 PMCID: PMC2776836 DOI: 10.3748/wjg.14.7068] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The canalicular membrane represents the excretory pole of hepatocytes. Bile is an important route of elimination of potentially toxic endo- and xenobiotics (including drugs and toxins), mediated by the major canalicular transporters: multidrug resistance protein 1 (MDR1, ABCB1), also known as P-glycoprotein, multidrug resistance-associated protein 2 (MRP2, ABCC2), and the breast cancer resistance protein (BCRP, ABCG2). Their activities depend on regulation of expression and proper localization at the canalicular membrane, as regulated by transcriptional and post-transcriptional events, respectively. At transcriptional level, specific nuclear receptors (NR)s modulated by ligands, co-activators and co-repressors, mediate the physiological requirements of these transporters. This complex system is also responsible for alterations occurring in specific liver pathologies. We briefly describe the major Class II NRs, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), and their role in regulating expression of multidrug resistance proteins. Several therapeutic agents regulate the expression of relevant drug transporters through activation/inactivation of these NRs. We provide some representative examples of the action of therapeutic agents modulating liver drug transporters, which in addition, involve CAR or PXR as mediators.
Collapse
|
19
|
Küblbeck J, Jyrkkärinne J, Poso A, Turpeinen M, Sippl W, Honkakoski P, Windshügel B. Discovery of substituted sulfonamides and thiazolidin-4-one derivatives as agonists of human constitutive androstane receptor. Biochem Pharmacol 2008; 76:1288-97. [PMID: 18786510 DOI: 10.1016/j.bcp.2008.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/11/2008] [Accepted: 08/13/2008] [Indexed: 02/04/2023]
Abstract
The constitutive androstane receptor (CAR; NR1I3) is a nuclear receptor responsible for the recognition of potentially toxic endo- and exogenous compounds whose elimination from the body is accelerated by the CAR-mediated inducible expression of metabolizing enzymes and transporters. Despite the importance of CAR, few human agonists are known so far. Following a sequential virtual screening procedure using a 3D pharmacophore and molecular docking approach, we identified 17 novel agonists that could activate human CAR in vitro and enhance its association with the nuclear receptor co-activator SRC1. Selected agonists also increased the expression of the human CAR target CYP2B6 mRNA in primary hepatocytes. Composed of substituted sulfonamides and thiazolidin-4-one derivatives, these agonists represent two novel chemotypes capable of human CAR activation, thus broadening the agonist spectrum of CAR.
Collapse
Affiliation(s)
- Jenni Küblbeck
- Department of Pharmaceutics, University of Kuopio, Yliopistonranta 1C, FI-70210 Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
20
|
Pascual M, Gómez-Lechón MJ, Castell JV, Jover R. ATF5 is a highly abundant liver-enriched transcription factor that cooperates with constitutive androstane receptor in the transactivation of CYP2B6: implications in hepatic stress responses. Drug Metab Dispos 2008; 36:1063-72. [PMID: 18332083 DOI: 10.1124/dmd.107.019380] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Activating transcription factor (ATF) 5 is a member of the ATF/cAMP response element-binding protein family, which has been associated with differentiation, proliferation, and survival in several tissues and cell types. However, its role in the liver has not yet been investigated. We show herein that ATF5 is a highly abundant liver-enriched transcription factor (LETF) whose expression declines in correlation with the level of dedifferentiation in cultured human hepatocytes and cell lines. Re-expression of ATF5 in human HepG2 cells by adenoviral transduction resulted in a marked selective up-regulation of CYP2B6. Moreover, adenoviral cotransfection of ATF5 and constitutive androstane receptor (CAR) caused an additive increase in CYP2B6 mRNA. These results were confirmed in cultured human hepatocytes, where the cooperation of ATF5 and CAR not only increased CYP2B6 basal expression but also enhanced the induced levels after phenobarbital or 6-(4-chloropheny-l)-imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO). Comparative sequence analysis of ATF5 and ATF4, its closest homolog, showed a large conservation of the mRNA 5'-untranslated region organization, suggesting that ATF5 might be up-regulated by stress responses through a very similar translational mechanism. To investigate this possibility, we induced endoplasmic reticulum stress by means of amino acid limitation or selective chemicals, and assessed the time course response of ATF5 and CYP2B6. We found a post-transcriptional up-regulation of ATF5 and a parallel induction of CYP2B6 mRNA. Our findings uncover a new LETF coupled to the differentiated hepatic phenotype that cooperates with CAR in the regulation of drug-metabolizing CYP2B6 in the liver. Moreover, ATF5 and its target gene CYP2B6 are induced under different stress conditions, suggesting a new potential mechanism to adapt hepatic cytochrome P450 expression to diverse endobiotic/xenobiotic harmful stress.
Collapse
Affiliation(s)
- Maya Pascual
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital Universitario La Fe, Valencia, Spain
| | | | | | | |
Collapse
|
21
|
Kacevska M, Robertson GR, Clarke SJ, Liddle C. Inflammation and CYP3A4-mediated drug metabolism in advanced cancer: impact and implications for chemotherapeutic drug dosing. Expert Opin Drug Metab Toxicol 2008; 4:137-49. [PMID: 18248309 DOI: 10.1517/17425255.4.2.137] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The inability to accurately predict treatment outcomes for cancer patients in terms of tumour response and anticancer drug toxicity is a severe limitation inherent in current approaches to chemotherapy. Many anticancer drugs are metabolically cleared by cytochrome P450 3A4 (CYP3A4), the predominant CYP expressed in liver. CYP3A4 expression exhibits marked interindividual variation and is repressed in acute inflammatory states. OBJECTIVES (1) To review the relevance of CYP3A4 variability to drug metabolism in the setting of cancer and to understand how inflammation associated with malignancy contributes to both this variability and to adverse treatment outcomes. (2) To examine the relationship between tumour-induced inflammation and repression of CYP3A4 and to explore methods of dosing of anticancer drugs in the setting of advanced cancer. METHODS Review of relevant literature covering both human and animal studies as well as in vitro mechanistic studies. RESULTS/CONCLUSIONS Interindividual variability in CYP3A4 expression is a major confounding factor for effective cancer treatment and methods to predict CYP3A4-mediated drug clearance may have clinical utility in this setting. Although acute inflammation has long been recognised to repress drug metabolism, it is now becoming apparent that cancer patients exhibiting clinical and laboratory features of an inflammatory response have reduced expression of CYP3A4 and possibly other genes relevant to anticancer drug disposition.
Collapse
Affiliation(s)
- Marina Kacevska
- University of Sydney, Storr Liver Unit, Westmead Millennium Institute, Westmead Hospital, Westmead, NSW, Australia
| | | | | | | |
Collapse
|
22
|
Pascussi JM, Gerbal-Chaloin S, Duret C, Daujat-Chavanieu M, Vilarem MJ, Maurel P. The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. Annu Rev Pharmacol Toxicol 2008; 48:1-32. [PMID: 17608617 DOI: 10.1146/annurev.pharmtox.47.120505.105349] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The expression of many genes involved in xenobiotic/drug metabolism and transport is regulated by at least three nuclear receptors or xenosensors: aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR). These receptors establish crosstalk with other nuclear receptors or transcription factors controlling signaling pathways that regulate the homeostasis of bile acids, lipids, glucose, inflammation, vitamins, hormones, and others. These crosstalks are expected to modify profoundly our vision of xenobiotic/drug disposition and toxicity. They provide molecular mechanisms to explain how physiopathological stimuli affect xenobiotic/drug disposition, and how xenobiotics/drugs may affect physiological functions and generate toxic responses. In addition, the possibility that xenosensors may control other signaling pathways opens the way to new pharmacological opportunities.
Collapse
|
23
|
Gropp FNC, Greger DL, Morel C, Sauter S, Blum JW. Nuclear receptor and nuclear receptor target gene messenger ribonucleic acid levels at different sites of the gastrointestinal tract and in liver of healthy dogs. J Anim Sci 2008; 84:2684-91. [PMID: 16971569 DOI: 10.2527/jas.2006-174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors (NR) are ligand-activated transcription factors that regulate different metabolic pathways by influencing the expression of target genes. The current study examined mRNA abundance of NR and NR target genes at different sites of the gastrointestinal tract (GIT) and the liver of healthy dogs (Beagles; n = 11). Samples of GIT and liver were collected postmortem and homogenized, total RNA was extracted and reverse transcribed, and gene expression was quantified by real-time reverse-transcription PCR relative to the mean of 3 housekeeping genes (beta-actin, glyceraldehyde-3-phosphate dehydrogenase, and ubi-quitin). Differences were observed (P < or = 0.05) in the mRNA abundance among stomach (St), duodenum (Du), jejunum (Je), ileum (Il), and colon (Col) for NR [pregnane X receptor (Du, Je > Il, Col > St), peroxisome proliferator-associated receptor gamma (St, Du, Col > Je, Il), constitutive androstane receptor (Je, Du > Il, Col), and retinoid x receptor alpha (Du > Il)] and NR target genes [glutathione-S-transferase A3-3 (Du > Je > St, Il; St > Col), phenol-sulfating phenol sulfotransferase 1A1 (Du, Je > Il, St; Col > St), cytochrome P450 3A12 (Du, Je > St, Il, Col), multiple drug resistance gene 1 (Du, Je, Il, Col > St), multiple drug resistance-associated protein 2 (Je, Du > Il > St, Col), multiple drug resistance-associated protein 3 (Col > St > Il; Du > Je, Il; St > Il), NR corepressor 2 (St > Il, Col), and cytochrome P450 reductase (St, Du, Je > Il, Col)], but not for peroxisome proliferator-associated receptor alpha. Differences (P > 0.05) in mRNA abundance in the liver relative to the GIT were also observed. In conclusion, the presence of numerous differences in expression of NR and NR target genes in different parts of the GIT and in liver of healthy dogs may be associated with location-specific functions and regulation of GIT regions.
Collapse
Affiliation(s)
- F N C Gropp
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Bertrand-Thiebault C, Masson C, Siest G, Batt AM, Visvikis-Siest S. Effect of HMGCoA reductase inhibitors on cytochrome P450 expression in endothelial cell line. J Cardiovasc Pharmacol 2007; 49:306-15. [PMID: 17513950 DOI: 10.1097/fjc.0b013e31803e8756] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Endothelial cells and smooth muscle cells are the major cells that constitute blood vessels, and endothelial cells line the lumen of blood vessels. These 2 types of cells also play an integral role in the regional specialization of vascular structure. On the basis of these observations, we designed our study to investigate the effect of various statins on CYP expression in endothelial cells. 3-hydroxymethyl coenzyme A reductase inhibitors play an important role in vascular function. The majority of the statins available on the market show extensive metabolism by cytochrome P450 (CYP) enzymes. Both cell types are involved in the bioconversion of arachidonic acid into vasoactive compounds. The aim of this study was to demonstrate the effect of statins on cytochrome P450 expression in endothelial cells. Our results show that endothelial cells expressed both CYPs involved in epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs) production and the nuclear receptor implicated in cytochrome P450 regulation. Treatment of endothelial cells with lovastatin increased CYP2C9 expression. After 96 hours of treatment, fluvastatin and lovastatin clearly increased CYP2C9 protein level. CAR but not PXR was expressed in endothelial cells, indicating that the upregulating effect of statins on CYP2C9 in endothelial cells could be mediated through CAR only due to the lack of expression of PXR in these cells.
Collapse
MESH Headings
- Analysis of Variance
- Aryl Hydrocarbon Hydroxylases/drug effects
- Aryl Hydrocarbon Hydroxylases/metabolism
- Atorvastatin
- Blotting, Western
- Cell Line
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Constitutive Androstane Receptor
- Cytochrome P-450 CYP2C9
- Cytochrome P-450 Enzyme System/biosynthesis
- Cytochrome P-450 Enzyme System/drug effects
- Endothelial Cells/drug effects
- Endothelial Cells/enzymology
- Endothelium, Vascular/cytology
- Fatty Acids, Monounsaturated/pharmacology
- Fluvastatin
- Gene Expression Regulation, Enzymologic/drug effects
- Heptanoic Acids/pharmacology
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Indoles/pharmacology
- Lovastatin/pharmacology
- Pravastatin/pharmacology
- Pregnane X Receptor
- Pyrroles/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Glucocorticoid/biosynthesis
- Receptors, Glucocorticoid/drug effects
- Receptors, Steroid/biosynthesis
- Receptors, Steroid/drug effects
- Reverse Transcriptase Polymerase Chain Reaction
- Saphenous Vein/cytology
- Transcription Factors/biosynthesis
- Transcription Factors/drug effects
- Up-Regulation/drug effects
Collapse
|
25
|
Cerveny L, Svecova L, Anzenbacherova E, Vrzal R, Staud F, Dvorak Z, Ulrichova J, Anzenbacher P, Pavek P. Valproic acid induces CYP3A4 and MDR1 gene expression by activation of constitutive androstane receptor and pregnane X receptor pathways. Drug Metab Dispos 2007; 35:1032-41. [PMID: 17392393 DOI: 10.1124/dmd.106.014456] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In our study, we tested the hypothesis whether valproic acid (VPA) in therapeutic concentrations has potential to affect expression of CYP3A4 and MDR1 via constitutive androstane receptor (CAR) and pregnane X receptor (PXR) pathways. Interaction of VPA with CAR and PXR nuclear receptors was studied using luciferase reporter assays, real-time reverse transcriptase polymerase chain reaction (RT-PCR), electrophoretic mobility shift assay (EMSA), and analysis of CYP3A4 catalytic activity. Using transient transfection reporter assays in HepG2 cells, VPA was recognized to activate CYP3A4 promoter via CAR and PXR pathways. By contrast, a significant effect of VPA on MDR1 promoter activation was observed only in CAR-cotransfected HepG2 cells. These data well correlated with up-regulation of CYP3A4 and MDR1 mRNAs analyzed by real-time RT-PCR in cells transfected with expression vectors encoding CAR or PXR and treated with VPA. In addition, VPA significantly up-regulated CYP3A4 mRNA in primary hepatocytes and augmented the effect of rifampicin. EMSA experiments showed VPA-mediated augmentation of CAR/retinoid X receptor alpha heterodimer binding to direct repeat 3 (DR3) and DR4 responsive elements of CYP3A4 and MDR1 genes, respectively. Finally, analysis of specific CYP3A4 catalytic activity revealed its significant increase in VPA-treated LS174T cells transfected with PXR. In conclusion, we provide novel insight into the mechanism by which VPA affects gene expression of CYP3A4 and MDR1 genes. Our results demonstrate that VPA has potential to up-regulate CYP3A4 and MDR1 through direct activation of CAR and/or PXR pathways. Furthermore, we suggest that VPA synergistically augments the effect of rifampicin in transactivation of CYP3A4 in primary human hepatocytes.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Anticonvulsants/pharmacology
- Aryl Hydrocarbon Hydroxylases/genetics
- Cell Line, Tumor
- Constitutive Androstane Receptor
- Cytochrome P-450 CYP2B6
- Cytochrome P-450 CYP3A
- Cytochrome P-450 Enzyme System/biosynthesis
- Cytochrome P-450 Enzyme System/genetics
- Drug Synergism
- Electrophoretic Mobility Shift Assay
- Enzyme Induction
- Genes, Reporter
- Hepatocytes/drug effects
- Hepatocytes/enzymology
- Hepatocytes/metabolism
- Humans
- Hydroxylation
- Luciferases
- Oxidoreductases, N-Demethylating/genetics
- Oximes/pharmacology
- Pregnane X Receptor
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/drug effects
- Receptors, Steroid/metabolism
- Retinoid X Receptor alpha/drug effects
- Retinoid X Receptor alpha/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Rifampin/pharmacology
- Testosterone/metabolism
- Thiazoles/pharmacology
- Transcription Factors/drug effects
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transcriptional Activation/drug effects
- Transfection
- Up-Regulation
- Valproic Acid/pharmacology
Collapse
Affiliation(s)
- Lukas Cerveny
- Department of Pharmacology and Toxicology, Charles University in Prague, Hradec Kralove, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pustylnyak VO, Gulyaeva LF, Lyakhovich VV. Induction of cytochrome P4502B: Role of regulatory elements and nuclear receptors. BIOCHEMISTRY (MOSCOW) 2007; 72:608-17. [PMID: 17630905 DOI: 10.1134/s000629790706003x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cytochrome P450 of the 2B subfamily is easily induced by many xenobiotics. In spite of intensive investigations, the molecular mechanisms of regulation of the CYP2B genes are not clear. The nuclear receptor CAR is shown to play a crucial role in the activation of CYP2B genes by xenobiotics, but many problems of CAR activation in different animal species and humans remain unsolved. This review focuses on signaling pathways involved in the control of CYP2B gene expression in mammals.
Collapse
Affiliation(s)
- V O Pustylnyak
- Institute of Molecular Biology and Biophysics, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk 630117, Russia.
| | | | | |
Collapse
|
27
|
Motl S, Zhuang Y, Waters CM, Stewart CF. Pharmacokinetic considerations in the treatment of CNS tumours. Clin Pharmacokinet 2007; 45:871-903. [PMID: 16928151 DOI: 10.2165/00003088-200645090-00002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite aggressive therapy, the majority of primary and metastatic brain tumour patients have a poor prognosis with brief survival periods. This is because of the different pharmacokinetic parameters of systemically administered chemotherapeutic agents between the brain and the rest of the body. Specifically, before systemically administered drugs can distribute into the CNS, they must cross two membrane barriers, the blood-brain barrier (BBB) and blood-cerebrospinal fluid (CSF) barrier (BCB). To some extent, these structures function to exclude xenobiotics, such as anticancer drugs, from the brain. An understanding of these unique barriers is essential to predict when and how systemically administered drugs will be transported to the brain. Specifically, factors such as physiological variables (e.g. blood flow), physicochemical properties of the drug (e.g. molecular weight), as well as influx and efflux transporter expression at the BBB and BCB (e.g. adenosine triphosphate-binding cassette transporters) determine what compounds reach the CNS. A large body of preclinical and clinical research exists regarding brain penetration of anticancer agents. In most cases, a surrogate endpoint (i.e. CSF to plasma area under the concentration-time curve [AUC] ratio) is used to describe how effectively agents can be transported into the CNS. Some agents, such as the topoisomerase I inhibitor, topotecan, have high CSF to plasma AUC ratios, making them valid therapeutic options for primary and metastatic brain tumours. In contrast, other agents like the oral tyrosine kinase inhibitor, imatinib, have a low CSF to plasma AUC ratio. Knowledge of these data can have important clinical implications. For example, it is now known that chronic myelogenous leukaemia patients treated with imatinib might need additional CNS prophylaxis. Since most anticancer agents have limited brain penetration, new pharmacological approaches are needed to enhance delivery into the brain. BBB disruption, regional administration of chemotherapy and transporter modulation are all currently being evaluated in an effort to improve therapeutic outcomes. Additionally, since many chemotherapeutic agents are metabolised by the cytochrome P450 3A enzyme system, minimising drug interactions by avoiding concomitant drug therapies that are also metabolised through this system may potentially enhance outcomes. Specifically, the use of non-enzyme-inducing antiepileptic drugs and curtailing nonessential corticosteroid use may have an impact.
Collapse
Affiliation(s)
- Susannah Motl
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | |
Collapse
|
28
|
Luoma PV. Cytochrome P450--physiological key factor against cholesterol accumulation and the atherosclerotic vascular process. Ann Med 2007; 39:359-70. [PMID: 17701478 DOI: 10.1080/07853890701379767] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the early 1960s liver cytochrome P450 (P450) was known as an enzyme in drug metabolism. By the late 1970s, P450 induction was associated with elevation of plasma high-density lipoprotein cholesterol and apolipoprotein AI indicating a reduced risk of atherosclerotic disease. Later on, 57 human P450 genes have been identified. One P450 enzyme participates in cholesterol synthesis, and several others catabolize it to oxysterols and other metabolites. Oxysterols are physiological ligands specific for liver X receptors (LXRs) in the activation of ATP-binding cassette (ABC) transporter and other cholesterol-lowering genes. Elevation of cholesterol leads to an endogenous induction of P450 and consequently to enhanced generation of oxysterols and activation of genes coding proteins which efflux cholesterol out of cells, transport it to the liver, catabolize and excrete cholesterol into bile, and prevent absorption of cholesterol in the intestine in the processes that maintain cellular cholesterol homeostasis and protect arteries from atherosclerosis. Peroxisome proliferator-activated receptors (PPARs) co-operate with LXRs and ABC transporters in cholesterol regulation. Secretion of oxysterol is a direct pathway for cellular cholesterol elimination. Several compounds induce P450 and other genes regulating cholesterol balance and prevent or regress atherosclerosis, whereas inhibition of P450 blocks oxidative reactions, promotes cholesterol accumulation, and enhances the atherosclerotic vascular process.
Collapse
Affiliation(s)
- Pauli V Luoma
- Institute of Biomedicine, Pharmacology, University of Helsinki, Finland.
| |
Collapse
|
29
|
Guéguen Y, Souidi M, Baudelin C, Dudoignon N, Grison S, Dublineau I, Marquette C, Voisin P, Gourmelon P, Aigueperse J. Short-term hepatic effects of depleted uranium on xenobiotic and bile acid metabolizing cytochrome P450 enzymes in the rat. Arch Toxicol 2006; 80:187-95. [PMID: 16231126 DOI: 10.1007/s00204-005-0027-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 08/23/2005] [Indexed: 12/23/2022]
Abstract
The toxicity of uranium has been demonstrated in different organs, including the kidneys, skeleton, central nervous system, and liver. However, few works have investigated the biological effects of uranium contamination on important metabolic function in the liver. In vivo studies were conducted to evaluate its effects on cytochrome P450 (CYP) enzymes involved in the metabolism of cholesterol and xenobiotics in the rat liver. The effects of depleted uranium (DU) contamination on Sprague-Dawley were measured at 1 and 3 days after exposure. Biochemical indicators characterizing liver and kidney functions were measured in the plasma. The DU affected bile acid CYP activity: 7alpha-hydroxycholesterol plasma level decreased by 52% at day 3 whereas microsomal CYP7A1 activity in the liver did not change significantly and mitochondrial CYP27A1 activity quintupled at day 1. Gene expression of the nuclear receptors related to lipid metabolism (FXR and LXR) also changed, while PPARalpha mRNA levels did not. The increased mRNA levels of the xenobiotic-metabolizing CYP3A enzyme at day 3 may be caused by feedback up-regulation due to the decreased CYP3A activity at day 1. CAR mRNA levels, which tripled on day 1, may be involved in this up-regulation, while mRNA levels of PXR did not change. These results indicate that high levels of depleted uranium, acting through modulation of the CYP enzymes and some of their nuclear receptors, affect the hepatic metabolism of bile acids and xenobiotics.
Collapse
Affiliation(s)
- Y Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de la RadioProtection de l'Homme, Service de Radiobiologie et d'Epidémiologie, IRSN, B.P. No. 17, F 92262 Fontenay-aux-Roses Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
King-Jones K, Horner MA, Lam G, Thummel CS. The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila. Cell Metab 2006; 4:37-48. [PMID: 16814731 DOI: 10.1016/j.cmet.2006.06.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 04/27/2006] [Accepted: 06/08/2006] [Indexed: 12/13/2022]
Abstract
Exposure to xenobiotics such as plant toxins, pollutants, or prescription drugs triggers a defense response, inducing genes that encode key detoxification enzymes. Although xenobiotic responses have been studied in vertebrates, little effort has been made to exploit a simple genetic system for characterizing the molecular basis of this coordinated transcriptional response. We show here that approximately 1000 transcripts are significantly affected by phenobarbital treatment in Drosophila. We also demonstrate that the Drosophila ortholog of the human SXR and CAR xenobiotic receptors, DHR96, plays a role in this response. A DHR96 null mutant displays increased sensitivity to the sedative effects of phenobarbital and the pesticide DDT as well as defects in the expression of many phenobarbital-regulated genes. Metabolic and stress-response genes are also controlled by DHR96, implicating its role in coordinating multiple response pathways. This work establishes a new model system for defining the genetic control of xenobiotic stress responses.
Collapse
Affiliation(s)
- Kirst King-Jones
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E 5100, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
31
|
Chang TKH, Waxman DJ. Synthetic drugs and natural products as modulators of constitutive androstane receptor (CAR) and pregnane X receptor (PXR). Drug Metab Rev 2006; 38:51-73. [PMID: 16684648 DOI: 10.1080/03602530600569828] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are members of the nuclear receptor superfamily. These transcription factors are predominantly expressed in the liver, where they are activated by structurally diverse compounds, including many drugs and endogenous substances. CAR and PXR regulate the expression of a broad range of genes, which contribute to transcellular transport, bioactivation, and detoxification of numerous xenochemicals and endogenous substances. This article discusses the importance of these receptors for pharmacology and toxicology, emphasizing the role of individual drugs and natural products as agonists, indirect activators, inverse agonists, and antagonists of CAR and PXR.
Collapse
Affiliation(s)
- Thomas K H Chang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
32
|
Windshügel B, Jyrkkärinne J, Vanamo J, Poso A, Honkakoski P, Sippl W. Comparison of homology models and X-ray structures of the nuclear receptor CAR: assessing the structural basis of constitutive activity. J Mol Graph Model 2006; 25:644-57. [PMID: 16831563 DOI: 10.1016/j.jmgm.2006.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2005] [Revised: 04/28/2006] [Accepted: 05/02/2006] [Indexed: 12/31/2022]
Abstract
The constitutive androstane receptor (CAR) possesses an intrinsic basal activity whose structural basis has been analysed during the last decade. Recently, we published a homology model of the CAR ligand binding domain (LBD) based on the X-ray structures of the closely related pregnane X (PXR) and vitamin D (VDR) receptor. A detailed analysis of the homology model and molecular dynamics (MD) simulations afforded us to propose a potential mechanism underlying the constitutive activity of CAR. Almost simultaneously, X-ray structures of human and mouse CAR LBD were released. In the present study, a detailed analysis and comparison of homology model and X-ray structures is carried out in order to evaluate the quality and reliability of our homology modelling procedure. The hypothesis of the constitutive activity which we proposed on the basis of our modelling results was tested for consistency with the crystal structures. In addition, the features stated to be essential for the basal activity based on the X-ray data were investigated by means of molecular dynamics simulations. Our results show that the homology modelling procedure was able to predict the CAR LBD structure with high accuracy. Structural features that have been revealed as critical for constitutive activity in the model are also observed in the X-ray structures. Furthermore, the MD simulations of the CAR X-ray structures and a detailed analysis of other NRs clarify the role of distinct structural features that have been assigned an important role for the constitutive activity.
Collapse
Affiliation(s)
- Björn Windshügel
- Institute of Pharmaceutical Chemistry, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Jung D, Mangelsdorf DJ, Meyer UA. Pregnane X receptor is a target of farnesoid X receptor. J Biol Chem 2006; 281:19081-91. [PMID: 16682417 DOI: 10.1074/jbc.m600116200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The pregnane X receptor (PXR) is an essential component of the body's detoxification system. PXR is activated by a broad spectrum of xenobiotics and endobiotics, including bile acids and their precursors. Bile acids in high concentrations are toxic; therefore, their synthesis is tightly regulated by the farnesoid X receptor, and their catabolism involves several enzymes regulated by PXR. Here we demonstrate that the expression of PXR is regulated by farnesoid X receptor. Feeding mice with cholic acid or the synthetic farnesoid X receptor (FXR) agonist GW4064 resulted in a robust PXR induction. This effect was abolished in FXR knock-out mice. Long time bile acid treatment resulted in an increase of PXR target genes in wild type mice. A region containing four FXR binding sites (IR1) was identified in the mouse Pxr gene. This region was able to trigger an 8-fold induction after GW4064 treatment in transactivation studies. Deletion or mutation of single IR1 sites caused a weakened response. The importance of each individual IR1 element was assessed by cloning a triple or a single copy and was tested in transactivation studies. Two elements were able to trigger a strong response, one a moderate response, and one no response to GW4064 treatment. Mobility shift assays demonstrated that the two stronger responding elements were able to bind FXR protein. This result was confirmed by chromatin immunoprecipitation. These results strongly suggest that PXR is regulated by FXR. Bile acids activate FXR, which blocks synthesis of bile acids and also leads to the transcriptional activation of PXR, promoting breakdown of bile acids. The combination of the two mechanisms leads to an efficient protection of the liver against bile acid induced toxicity.
Collapse
Affiliation(s)
- Diana Jung
- Division of Pharmacology and Neurobiology, Biozentrum, University of Basel, CH 4056 Basel, Switzerland.
| | | | | |
Collapse
|
34
|
Gu X, Ke S, Liu D, Sheng T, Thomas PE, Rabson AB, Gallo MA, Xie W, Tian Y. Role of NF-kappaB in regulation of PXR-mediated gene expression: a mechanism for the suppression of cytochrome P-450 3A4 by proinflammatory agents. J Biol Chem 2006; 281:17882-9. [PMID: 16608838 DOI: 10.1074/jbc.m601302200] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
It is a long-standing observation that inflammatory responses and infections decrease drug metabolism capacity in human and experimental animals. Cytochrome P-450 3A4 cyp304 is responsible for the metabolism of over 50% of current prescription drugs, and cyp3a4 expression is transcriptionally regulated by pregnane X receptor (PXR), which is a ligand-dependent transcription factor. In this study, we report that NF-kappaB activation by lipopolysaccharide and tumor necrosis factor-alpha plays a pivotal role in the suppression of cyp3a4 through interactions of NF-kappaB with the PXR.retinoid X receptor (RXR) complex. Inhibition of NF-kappaB by NF-kappaB-specific suppressor SRIkappaBalpha reversed the suppressive effects of lipopolysaccharide and tumor necrosis factor-alpha. Furthermore, we showed that NF-kappaB p65 disrupted the association of the PXR.RXRalpha complex with DNA sequences as determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assays. NF-kappaB p65 directly interacted with the DNA-binding domain of RXRalpha and may prevent its binding to the consensus DNA sequences, thus inhibiting the transactivation by the PXR.RXRalpha complex. This mechanism of suppression by NF-kappaB activation may be extended to other nuclear receptor-regulated systems where RXRalpha is a dimerization partner.
Collapse
Affiliation(s)
- Xinsheng Gu
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Katragadda S, Budda B, Anand BS, Mitra AK. Role of efflux pumps and metabolising enzymes in drug delivery. Expert Opin Drug Deliv 2005; 2:683-705. [PMID: 16296794 DOI: 10.1517/17425247.2.4.683] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The impact of efflux pumps and metabolic enzymes on the therapeutic activity of various drugs has been well established. The presence of efflux pumps on various tissues and tumours has been shown to regulate the intracellular concentration needed to achieve therapeutic activity. The notable members of efflux proteins include P-glycoprotein, multi-drug resistance protein and breast cancer resistance protein. These efflux pumps play a pivotal role not only in extruding xenobiotics but also in maintaining the body's homeostasis by their ubiquitous presence and ability to coordinate among themselves. In this review, the role of efflux pumps in drug delivery and the importance of their tissue distribution is discussed in detail. To improve pharmacokinetic parameters of substrates, various strategies that modulate the activity of efflux proteins are also described. Drug metabolising enzymes mainly include the cytochrome P450 family of enzymes. Extensive drug metabolism due to the this family of enzymes is the leading cause of therapeutic inactivity. Therefore, the role of metabolising enzymes in drug delivery and disposition is extensively discussed in this review. The synergistic relationship between metabolising enzymes and efflux proteins is also described in detail. In summary, this review emphasises the urgent need to make changes in drug discovery and drug delivery as efflux pumps and metabolising enzymes play an important role in drug delivery and disposition.
Collapse
Affiliation(s)
- Suresh Katragadda
- University of Missouri-Kansas City, Division of Pharmaceutical Sciences, School of Pharmacy, 64110-2499, USA
| | | | | | | |
Collapse
|
36
|
Mooijaart SP, Brandt BW, Baldal EA, Pijpe J, Kuningas M, Beekman M, Zwaan BJ, Slagboom PE, Westendorp RGJ, van Heemst D. C. elegans DAF-12, Nuclear Hormone Receptors and human longevity and disease at old age. Ageing Res Rev 2005; 4:351-71. [PMID: 16051528 DOI: 10.1016/j.arr.2005.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/09/2005] [Accepted: 03/11/2005] [Indexed: 01/12/2023]
Abstract
In Caenorhabditis elegans, DAF-12 appears to be a decisive checkpoint for many life history traits including longevity. The daf-12 gene encodes a Nuclear Hormone Receptor (NHR) and is member of a superfamily that is abundantly represented throughout the animal kingdom, including humans. It is, however, unclear which of the human receptor representatives are most similar to DAF-12, and what their role is in determining human longevity and disease at old age. Using a sequence similarity search, we identified human NHRs similar to C. elegans DAF-12 and found that, based on sequence similarity, Liver X Receptor A and B are most similar to C. elegans DAF-12, followed by the Pregnane X Receptor, Vitamin D Receptor, Constitutive Andosteron Receptor and the Farnesoid X Receptor. Their biological functions include, amongst others, detoxification and immunomodulation. Both are processes that are involved in protecting the body from harmful environmental influences. Furthermore, the DAF-12 signalling systems seem to be functionally conserved and all six human NHRs have cholesterol derived compounds as their ligands. We conclude that the DAF-12 signalling system seems to be evolutionary conserved and that NHRs in man are critical for body homeostasis and survival. Genomic variations in these NHRs or their target genes are prime candidates for the regulation of human lifespan and disease at old age.
Collapse
Affiliation(s)
- S P Mooijaart
- Department of Gerontology and Geriatrics, C-2-R, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Löscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 2005; 76:22-76. [PMID: 16011870 DOI: 10.1016/j.pneurobio.2005.04.006] [Citation(s) in RCA: 428] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/23/2005] [Accepted: 04/26/2005] [Indexed: 01/01/2023]
Abstract
The blood-brain barrier (BBB) serves as a protective mechanism for the brain by preventing entry of potentially harmful substances from free access to the central nervous system (CNS). Tight junctions present between the brain microvessel endothelial cells form a diffusion barrier, which selectively excludes most blood-borne substances from entering the brain. Astrocytic end-feet tightly ensheath the vessel wall and appear to be critical for the induction and maintenance of the barrier properties of the brain capillary endothelial cells. Because of these properties, the BBB only allows entry of lipophilic compounds with low molecular weights by passive diffusion. However, many lipophilic drugs show negligible brain uptake. They are substrates for drug efflux transporters such as P-glycoprotein (Pgp), multidrug resistance proteins (MRPs) or organic anion transporting polypeptides (OATPs) that are expressed at brain capillary endothelial cells and/or astrocytic end-feet and are key elements of the molecular machinery that confers the special permeability properties to the BBB. The combined action of these carrier systems results in rapid efflux of xenobiotics from the CNS. The objective of this review is to summarize transporter characteristics (cellular localization, specificity, regulation, and potential inhibition) for drug efflux transport systems identified in the BBB and blood-cerebrospinal fluid (CSF) barrier. A variety of experimental approaches available to ascertain or predict the impact of efflux transport on brain access of therapeutic drugs also are described and critically discussed. The potential impact of efflux transport on the pharmacodynamics of agents acting in the CNS is illustrated. Furthermore, the current knowledge about drug efflux transporters as a major determinant of multidrug resistance of brain diseases such as epilepsy is reviewed. Finally, we summarize strategies for modulating or by-passing drug efflux transporters at the BBB as novel therapeutic approaches to drug-resistant brain diseases.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | | |
Collapse
|
38
|
Handschin C, Meyer UA. Regulatory network of lipid-sensing nuclear receptors: roles for CAR, PXR, LXR, and FXR. Arch Biochem Biophys 2005; 433:387-96. [DOI: 10.1016/j.abb.2004.08.030] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 08/23/2004] [Indexed: 11/28/2022]
|