1
|
Yu Z, Liu W, Wang Z, Chen Y, Yan J, Benet LZ, Zhai S. Is there a possibility that P-glycoprotein reduces reproductive toxicity in males but breast cancer resistance protein does not? Clin Transl Sci 2024; 17:e70027. [PMID: 39356462 PMCID: PMC11446187 DOI: 10.1111/cts.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
In traditional understanding, P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) are regarded as efflux transporters that can decrease the concentration of their substrates in the testis, thereby reducing reproductive toxicity in males (RTM) and protecting spermatogenesis. However, there is currently no direct pharmacological evidence demonstrating that P-gp and BCRP can reduce the occurrence of drug-induced RTM. In this study, we chose small molecule targeted anti-tumor agents as model drugs and systematically retrieved and collected information on the transporters and RTM for these drugs, followed by correlation analysis. The results showed a lower incidence of RTM for P-gp substrate drugs, which aligns with previous knowledge. Surprisingly, BCRP substrate drugs exhibited higher rates of RTM in various dimensions, contradicting previous notions. This discrepancy may be attributed to the differential distribution and transport directions of P-gp and BCRP on the blood-testis barrier (BTB). For the first time, this study may provide clues that BCRP may facilitate the passage of exogenous compounds across the BTB, increasing the occurrence of RTM, rather than protecting spermatogenesis as traditionally believed. Furthermore, this study provides the first direct verification of the role of P-gp in reducing RTM and protecting spermatogenesis.
Collapse
Affiliation(s)
- Zhiheng Yu
- Pharmacy DepartmentPeking University Third HospitalBeijingChina
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Wei Liu
- Pharmacy DepartmentPeking University Third HospitalBeijingChina
| | - Ziyu Wang
- Pharmacy DepartmentPeking University Third HospitalBeijingChina
| | - Yidong Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Jie Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyPeking University Third HospitalBeijingChina
- State Key Laboratory of Female Fertility PromotionBeijingChina
| | - Leslie Z. Benet
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Suodi Zhai
- Pharmacy DepartmentPeking University Third HospitalBeijingChina
| |
Collapse
|
2
|
Lu Y, Ma W, Tang H, Wu X, Yang X, Sun F. 4-methylimidazole exposure impairs sperm mobility by reducing the expression of blood-testis barrier junction protein in mouse testes. Reprod Biol 2024; 24:100928. [PMID: 39083984 DOI: 10.1016/j.repbio.2024.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
4-methylimidazole (4-MI), a derivative of imidazole, is a widely used component in caramel-colored food products such as soy sauce, beer and other soft drinks. The present study is aimed to investigate the effects of 4-MI on the male reproduction. The results revealed that 8 weeks of 4-MI exposure did not significantly alter the body weight and testicular weight of male mice. However, testicular morphology and computer-assisted sperm analysis showed that exposed to 4-MI caused irregular arrangement of spermatogenic cells in the testes and weakened sperm motility. Consistently, we observed the decreased fertilization ability in vivo of 4-MI-treated male mice. We further demonstrated that 4-MI disrupted the blood-testis barrier (BTB) integrity by decreasing the protein expression of BTB-related junction with permeability assay and western blot. In addition, the apoptosis of Sertoli cells (TM4) occurred in 4-MI treated mice, which might be caused by the generation of oxidative stress. Collectively, our findings document that 4-MI exposure damages the sperm mobility via disruption of BTB integrity.
Collapse
Affiliation(s)
- Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China
| | - Wei Ma
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China
| | - Hanyu Tang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China
| | - Xue Wu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China
| | - Xiwen Yang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China.
| |
Collapse
|
3
|
Hu Y, Jiang S, Zhang Q, Zhou W, Liang J, Xu Y, Su W. Protective effect of Cordycepin on blood-testis barrier against pre-puberty polystyrene nanoplastics exposure in male rats. Part Fibre Toxicol 2024; 21:30. [PMID: 39118174 PMCID: PMC11312894 DOI: 10.1186/s12989-024-00590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Plastic pollution is an emerging environmental issue, with microplastics and nanoplastics raising health concerns due to bioaccumulation. This work explored the impact of polystyrene nanoparticle (PS-NPs) exposure during prepuberty on male reproductive function post maturation in rats. Rats were gavaged with PS-NPs (80 nm) at 0, 3, 6, 12 mg/kg/day from postnatal day 21 to 95. PS-NPs accumulated in the testes and reduced sperm quality, serum reproductive hormones, and testicular coefficients. HE staining showed impaired spermatogenesis. PS-NPs disrupted the blood-testis barrier (BTB) by decreasing junction proteins, inducing inflammation and apoptosis. Transcriptomics identified differentially expressed genes related to metabolism, lysosome, apoptosis, and TLR4 signaling. Molecular docking revealed Cordycepin could compete with polystyrene for binding to TLR4. Cordycepin alleviated oxidative stress and improved barrier function in PS-NPs treated Sertoli cells. In conclusion, prepubertal PS-NPs exposure induces long-term reproductive toxicity in male rats, likely by disrupting spermatogenesis through oxidative stress and BTB damage. Cordycepin could potentially antagonize this effect by targeting TLR4 and warrants further study as a protective agent. This study elucidates the mechanisms underlying reproductive toxicity of PS-NPs and explores therapeutic strategies.
Collapse
Affiliation(s)
- Ying Hu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
- National Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Units of Medical Laboratory, The First Hospital of China Medical University, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Shuyi Jiang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Wenjie Zhou
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Jinhong Liang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Ying Xu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China.
| | - Wenhui Su
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China.
| |
Collapse
|
4
|
Li T, Jiang L, Zheng S, Qiu C, Zhao N, Lin X, Ren H, Huang J, Wang H, Qiu L. Organic anion transporting polypeptide 3a1 is a novel influx pump for Perfluorooctane sulfonate in Sertoli cells and contributes to its reproductive toxicity. CHEMOSPHERE 2023; 345:140428. [PMID: 37858765 DOI: 10.1016/j.chemosphere.2023.140428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/10/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Persistent organic pollutant perfluorooctane sulfonate (PFOS) is strongly associated with male reproductive disorders, but the related mechanisms are still not fully understood. In this study, we used in vivo and in vitro models to explore the role of organic anion transporting polypeptide 3a1 (Oatp3a1) on PFOS-induced male reproductive injury. Thirty male C57BL/6 (B6) mice were orally given PFOS (0-10 mg/kg/bw) for 28 days. Body weight, organ index, sperm count, histology, and blood-testis barrier (BTB) integrity were evaluated. Primary Sertoli cells were used to describe the related molecular mechanisms of male reproductive injury caused by PFOS. Our results showed that PFOS induced a decrease in sperm count, morphological damage to testicular Sertoli cells, and disruption of BTB. In the in vitro model, exposure to PFOS significantly increased Oatp3a1 mRNA and protein levels and decreased miR-23a-3p expression in Sertoli cells, accompanied by reduced trans-epithelial electrical resistance (TEER) value. By performing the 14C-PFOS uptake experiment, we showed that 14C-PFOS uptake in HEK293-Oatp3a1 cells was apparently higher than in HEK293-MOCK cells. Meanwhile, treating Sertoli cells with Oatp3a1 siRNA significantly decreased Oatp3a1 expression and rescued PFOS-induced decreases in TEER value. As such, the present study highlights that Oatp3a1 may play an important role in the toxic effect of PFOS on Sertoli cells, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
Collapse
Affiliation(s)
- Ting Li
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianlian Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Shaokai Zheng
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Chong Qiu
- Medical School, Nantong University, 19 Qixiu Rd., Nantong, 226001, PR China
| | - Nannan Zhao
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Xiaojun Lin
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hang Ren
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Jiyan Huang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hongxia Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China.
| |
Collapse
|
5
|
Hau RK, Wright SH, Cherrington NJ. In Vitro and In Vivo Models for Drug Transport Across the Blood-Testis Barrier. Drug Metab Dispos 2023; 51:1157-1168. [PMID: 37258305 PMCID: PMC10449102 DOI: 10.1124/dmd.123.001288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
The blood-testis barrier (BTB) is a selectively permeable membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules of the testes that develops intercellular junctional complexes to protect developing germ cells from external pressures. However, due to this inherent defense mechanism, the seminiferous tubule lumen can act as a pharmacological sanctuary site for latent viruses (e.g., Ebola, Zika) and cancers (e.g., leukemia). Therefore, it is critical to identify and evaluate BTB carrier-mediated drug delivery pathways to successfully treat these viruses and cancers. Many drugs are unable to effectively cross cell membranes without assistance from carrier proteins like transporters because they are large, polar, and often carry a charge at physiologic pH. SCs express transporters that selectively permit endogenous compounds, such as carnitine or nucleosides, across the BTB to support normal physiologic activity, although reproductive toxicants can also use these pathways, thereby circumventing the BTB. Certain xenobiotics, including select cancer therapeutics, antivirals, contraceptives, and environmental toxicants, are known to accumulate within the male genital tract and cause testicular toxicity; however, the transport pathways by which these compounds circumvent the BTB are largely unknown. Consequently, there is a need to identify the clinically relevant BTB transport pathways in in vitro and in vivo BTB models that recapitulate human pharmacokinetics and pharmacodynamics for these xenobiotics. This review summarizes the various in vitro and in vivo models of the BTB reported in the literature and highlights the strengths and weaknesses of certain models for drug disposition studies. SIGNIFICANCE STATEMENT: Drug disposition to the testes is influenced by the physical, physiological, and immunological components of the blood-testis barrier (BTB). But many compounds are known to cross the BTB by transporters, resulting in pharmacological and/or toxicological effects in the testes. Therefore, models that assess drug transport across the human BTB must adequately account for these confounding factors. This review identifies and discusses the benefits and limitations of various in vitro and in vivo BTB models for preclinical drug disposition studies.
Collapse
Affiliation(s)
- Raymond K Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| |
Collapse
|
6
|
Tastet V, Le Vée M, Bruyère A, Fardel O. Interactions of human drug transporters with chemical additives present in plastics: Potential consequences for toxicokinetics and health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121882. [PMID: 37236587 DOI: 10.1016/j.envpol.2023.121882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Human membrane drug transporters are recognized as major actors of pharmacokinetics; they also handle endogenous compounds, including hormones and metabolites. Chemical additives present in plastics interact with human drug transporters, which may have consequences for the toxicokinetics and toxicity of these widely-distributed environmental and/or dietary pollutants, to which humans are highly exposed. The present review summarizes key findings about this topic. In vitro assays have demonstrated that various plastic additives, including bisphenols, phthalates, brominated flame retardants, poly-alkyl phenols and per- and poly-fluoroalkyl substances, can inhibit the activities of solute carrier uptake transporters and/or ATP-binding cassette efflux pumps. Some are substrates for transporters or can regulate their expression. The relatively low human concentration of plastic additives from environmental or dietary exposure is a key parameter to consider to appreciate the in vivo relevance of plasticizer-transporter interactions and their consequences for human toxicokinetics and toxicity of plastic additives, although even low concentrations of pollutants (in the nM range) may have clinical effects. Existing data about interactions of plastic additives with drug transporters remain somewhat sparse and incomplete. A more systematic characterization of plasticizer-transporter relationships is needed. The potential effects of chemical additive mixtures towards transporter activities and the identification of transporter substrates among plasticizers, as well as their interactions with transporters of emerging relevance deserve particular attention. A better understanding of the human toxicokinetics of plastic additives may help to fully integrate the possible contribution of transporters to the absorption, distribution, metabolism and excretion of plastics-related chemicals, as well as to their deleterious effects towards human health.
Collapse
Affiliation(s)
- Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
7
|
Hau RK, Wright SH, Cherrington NJ. Drug Transporters at the Human Blood-Testis Barrier. Drug Metab Dispos 2023; 51:560-571. [PMID: 36732077 PMCID: PMC10158500 DOI: 10.1124/dmd.122.001186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Transporters are involved in the movement of many physiologically important molecules across cell membranes and have a substantial impact on the pharmacological and toxicological effect of xenobiotics. Many transporters have been studied in the context of disposition to, or toxicity in, organs such as the kidney and liver; however, transporters in the testes are increasingly gaining recognition for their role in drug transport across the blood-testis barrier (BTB). The BTB is an epithelial membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules that form intercellular junctional complexes to protect developing germ cells from the external environment. Consequently, many charged or large polar molecules cannot cross this barrier without assistance from a transporter. SCs express a variety of drug uptake and efflux transporters to control the flux of endogenous and exogenous molecules across the BTB. Recent studies have identified several transport pathways in SCs that allow certain drugs to circumvent the human BTB. These pathways may exist in other species, such as rodents and nonhuman primates; however, there is (1) a lack of information on their expression and/or localization in these species, and (2) conflicting reports on localization of some transporters that have been evaluated in rodents compared with humans. This review outlines the current knowledge on the expression and localization of pharmacologically relevant drug transporters in human testes and calls attention to the insufficient and contradictory understanding of testicular transporters in other species that are commonly used in drug disposition and toxicity studies. SIGNIFICANCE STATEMENT: While the expression, localization, and function of many xenobiotic transporters have been studied in organs such as the kidney and liver, the characterization of transporters in the testes is scarce. This review summarizes the expression and localization of common pharmacologically-relevant transporters in human testes that have significant implications for the development of drugs that can cross the blood-testis barrier. Potential expression differences between humans and rodents highlighted here suggest rodents may be inappropriate for some testicular disposition and toxicity studies.
Collapse
Affiliation(s)
- Raymond K Hau
- College of Pharmacy, Department of Pharmacology & Toxicology (R.K.H., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology (R.K.H., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology (R.K.H., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona
| |
Collapse
|
8
|
Tang EI, Cheng CY. MARK2 and MARK4 Regulate Sertoli Cell BTB Dynamics Through Microtubule and Actin Cytoskeletons. Endocrinology 2022; 163:6667645. [PMID: 35971301 PMCID: PMC10147390 DOI: 10.1210/endocr/bqac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/19/2022]
Abstract
Microtubule affinity-regulating kinases (MARKs) are nonreceptor Ser/Thr protein kinases known to regulate cell polarity and microtubule dynamics in Caenorhabditis elegans, Drosophila, invertebrates, vertebrates, and mammals. An earlier study has shown that MARK4 is present at the ectoplasmic specialization and blood-testis barrier (BTB) in the seminiferous epithelium of adult rat testes. Here, we report the function of MARK4 and another isoform MARK2 in Sertoli cells at the BTB. Knockdown of MARK2, MARK4, or MARK2 and MARK4 by RNAi using the corresponding siRNA duplexes without apparent off-target effects was shown to impair tight junction (TJ)-permeability barrier at the Sertoli cell BTB. It also disrupted microtubule (MT)- and actin-based cytoskeletal organization within Sertoli cells. Although MARK2 and MARK4 were shown to share sequence homology, they likely regulated the Sertoli cell BTB and MT cytoskeleton differently. Disruption of the TJ-permeability barrier following knockdown of MARK4 was considerably more severe than loss of MARK2, though both perturbed the barrier. Similarly, loss of MARK2 affected MT organization in a different manner than the loss of MARK4. Knockdown of MARK2 caused MT bundles to be arranged around the cell periphery, whereas knockdown of MARK4 caused MTs to retract from the cell edge. These differences in effects on the TJ-permeability barrier are likely from the unique roles of MARK2 and MARK4 in regulating the MT cytoskeleton of the Sertoli cell.
Collapse
Affiliation(s)
- Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, Rockefeller University, New York, NY 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, Rockefeller University, New York, NY 10065, USA
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
9
|
Meng Z, Liu Y, Zhou J, Zheng B, Lv J. Drug transport across the blood-testis barrier. Am J Transl Res 2022; 14:6412-6423. [PMID: 36247247 PMCID: PMC9556450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
The blood-testis barrier transfers nutrients to spermatogenic tubules to ensure the normal physiological function of the testes. It also restricts the "entry and exit" of biological macromolecules in the testicular lumen and provides a unique microenvironment for spermatogenesis. This makes the testes a safe place for some viruses and tumors, as immune factors cannot function and drugs fail to reach therapeutic concentrations in the testes. This review aimed to describe the factors regulating the structure and physiological function of the blood-testis barrier. By understanding therapeutic mechanisms of action, drugs can be developed to function in the testicles.
Collapse
Affiliation(s)
- Zhixiang Meng
- Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University)Suzhou 215124, China
| | - Yawei Liu
- Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University)Suzhou 215124, China
| | - Jian Zhou
- Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University)Suzhou 215124, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhou 215002, China
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, China
| | - Jinxing Lv
- Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University)Suzhou 215124, China
| |
Collapse
|
10
|
Hau RK, Tash JS, Georg GI, Wright SH, Cherrington NJ. Physiological Characterization of the Transporter-Mediated Uptake of the Reversible Male Contraceptive H2-Gamendazole Across the Blood-Testis Barrier. J Pharmacol Exp Ther 2022; 382:299-312. [PMID: 35779861 PMCID: PMC9426764 DOI: 10.1124/jpet.122.001195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
The blood-testis barrier (BTB) is formed by a tight network of Sertoli cells (SCs) to limit the movement of reproductive toxicants from the blood into the male genital tract. Transporters expressed at the basal membranes of SCs also influence the disposition of drugs across the BTB. The reversible, nonhormonal contraceptive, H2-gamendazole (H2-GMZ), is an indazole carboxylic acid analog that accumulates over 10 times more in the testes compared with other organs. However, the mechanism(s) by which H2-GMZ circumvents the BTB are unknown. This study describes the physiologic characteristics of the carrier-mediated process(es) that permit H2-GMZ and other analogs to penetrate SCs. Uptake studies were performed using an immortalized human SC line (hT-SerC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Uptake of H2-GMZ and four analogs followed Michaelis-Menten transport kinetics (one analog exhibited poor penetration). H2-GMZ uptake was strongly inhibited by indomethacin, diclofenac, MK-571, and several analogs. Moreover, H2-GMZ uptake was stimulated by an acidic extracellular pH, reduced at basic pHs, and independent of extracellular Na+, K+, or Cl- levels, which are intrinsic characteristics of OATP-mediated transport. Therefore, the characteristics of H2-GMZ transport suggest that one or more OATPs may be involved. However, endogenous transporter expression in wild-type Chinese hamster ovary (CHO), Madin-Darby canine kidney (MDCK), and human embryonic kidney-293 (HEK-293) cells limited the utility of heterologous transporter expression to identify a specific OATP transporter. Altogether, characterization of the transporters involved in the flux of H2-GMZ provides insight into the selectivity of drug disposition across the human BTB to understand and overcome the pharmacokinetic and pharmacodynamic difficulties presented by this barrier. SIGNIFICANCE STATEMENT: Despite major advancements in female contraceptives, male alternatives, including vasectomy, condom usage, and physical withdrawal, are antiquated and the widespread availability of nonhormonal, reversible chemical contraceptives is nonexistent. Indazole carboxylic acid analogs such as H2-GMZ are promising new reversible, antispermatogenic drugs that are highly effective in rodents. This study characterizes the carrier-mediated processes that permit H2-GMZ and other drugs to enter Sertoli cells and the observations made here will guide the development of drugs that effectively circumvent the BTB.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Joseph S Tash
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Gunda I Georg
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Stephen H Wright
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| |
Collapse
|
11
|
Kayes T, Crane H, Symonds A, Dumond J, Cottrell M, Di Girolamo J, Manandhar S, Lim TH, Gane E, Kashuba A, Levy MT. Plasma and breast milk pharmacokinetics of tenofovir alafenamide in mothers with chronic hepatitis B infection. Aliment Pharmacol Ther 2022; 56:510-518. [PMID: 35599363 DOI: 10.1111/apt.17040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Antenatal antiviral therapy (AVT) is effective in preventing mother-to-child transmission (MTCT) in chronic hepatitis B (CHB); tenofovir disoproxil fumarate (TDF) is the preferred agent. Tenofovir alafenamide (TAF) is a prodrug of tenofovir (TFV) similar to TDF, with improved bone and renal safety. There are no data on TAF breast milk pharmacokinetics and exposure to breastfeeding infants in CHB. AIM To assess the pharmacokinetics of TAF/TFV in breastfeeding women with CHB on TAF monotherapy. METHODS Pregnant women with CHB requiring AVT commenced TAF 25 mg daily at third trimester or postpartum. Sample collection occurred while breastfeeding and taking TAF for minimum 4 weeks. Maternal blood, breast milk and infant urine samples were collected. Drug concentrations were measured by LCMS/MS analyses using validated methods. Non-compartmental analyses were performed to quantify the pharmacokinetic parameters. RESULTS Eight women provided samples. In breast milk and plasma, median TAF half-life was 0.81 and 0.94 h, respectively, and Cmax 1.69 and 120.5 ng/ml, respectively. Median maternal breast milk to plasma (M/P) ratio of TAF was 0.029; for and TFV it was 2.809. The relative infant dose of TAF was 0.005% of maternal dose, well below safety threshold of 5-10%. TFV was detectable in three out of seven infant urine samples with median steady-state concentration of 5 ng/ml being 300-2500 times less than reported adult steady-state urine concentrations in those taking TAF and TDF, respectively. CONCLUSIONS In this first pharmacokinetic study of TAF monotherapy in breastfeeding women with CHB, concentrations of TAF and TFV were low in breast milk with negligible infant exposure, supporting the use of TAF to prevent MTCT.
Collapse
Affiliation(s)
- Tahrima Kayes
- Department of Gastroenterology and Hepatology, Liverpool Hospital, Sydney, New South Wales, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales, Australia
| | - Harry Crane
- Department of Gastroenterology and Hepatology, Liverpool Hospital, Sydney, New South Wales, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales, Australia
| | - Allison Symonds
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Julie Dumond
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Mackenzie Cottrell
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Julia Di Girolamo
- Department of Gastroenterology and Hepatology, Liverpool Hospital, Sydney, New South Wales, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales, Australia
| | - Sicha Manandhar
- Department of Gastroenterology and Hepatology, Liverpool Hospital, Sydney, New South Wales, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales, Australia
| | - Tien Huey Lim
- Department of Gastroenterology and Hepatology, Middlemore Hospital, Auckland, New Zealand
| | - Edward Gane
- Faculty of Medicine, University of Auckland, Auckland, New Zealand
| | - Angela Kashuba
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Miriam T Levy
- Department of Gastroenterology and Hepatology, Liverpool Hospital, Sydney, New South Wales, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales, Australia.,South Western Sydney Clinical School, University of New South Wales Sydney, Liverpool, New South Wales, Australia
| |
Collapse
|
12
|
Hau RK, Klein RR, Wright SH, Cherrington NJ. Localization of Xenobiotic Transporters Expressed at the Human Blood-Testis Barrier. Drug Metab Dispos 2022; 50:770-780. [PMID: 35307651 PMCID: PMC9190233 DOI: 10.1124/dmd.121.000748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 10/21/2023] Open
Abstract
The blood-testis barrier (BTB) is formed by basal tight junctions between adjacent Sertoli cells (SCs) of the seminiferous tubules and acts as a physical barrier to protect developing germ cells in the adluminal compartment from reproductive toxicants. Xenobiotics, including antivirals, male contraceptives, and cancer chemotherapeutics, are known to cross the BTB, although the mechanisms that permit barrier circumvention are generally unknown. This study used immunohistological staining of human testicular tissue to determine the site of expression for xenobiotic transporters that facilitate transport across the BTB. Organic anion transporter (OAT) 1, OAT2, and organic cation transporter, novel (OCTN) 1 primarily localized to the basal membrane of SCs, whereas OCTN2, multidrug resistance protein (MRP) 3, MRP6, and MRP7 localized to SC basal membranes and peritubular myoid cells (PMCs) surrounding the seminiferous tubules. Concentrative nucleoside transporter (CNT) 2 localized to Leydig cells (LCs), PMCs, and SC apicolateral membranes. Organic cation transporter (OCT) 1, OCT2, and OCT3 mostly localized to PMCs and LCs, although there was minor staining in developing germ cells for OCT3. Organic anion transporting polypeptide (OATP) 1A2, OATP1B1, OATP1B3, OATP2A1, OATP2B1, and OATP3A1-v2 localized to SC basal membranes with diffuse staining for some transporters. Notably, OATP1C1 and OATP4A1 primarily localized to LCs. Positive staining for multidrug and toxin extrusion protein (MATE) 1 was only observed throughout the adluminal compartment. Definitive staining for CNT1, OAT3, MATE2, and OATP6A1 was not observed. The location of these transporters is consistent with their involvement in the movement of xenobiotics across the BTB. Altogether, the localization of these transporters provides insight into the mechanisms of drug disposition across the BTB and will be useful in developing tools to overcome the pharmacokinetic and pharmacodynamic difficulties presented by the BTB. SIGNIFICANCE STATEMENT: Although the total mRNA and protein expression of drug transporters in the testes has been explored, the localization of many transporters at the blood-testis barrier (BTB) has not been determined. This study applied immunohistological staining in human testicular tissues to identify the cellular localization of drug transporters in the testes. The observations made in this study have implications for the development of drugs that can effectively use transporters expressed at the basal membranes of Sertoli cells to bypass the BTB.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Robert R Klein
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
13
|
Karacaoğlu E. Flusilazole-induced damage to SerW3 cells via cytotoxicity, oxidative stress and lipid metabolism: An in vitro study. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:104998. [PMID: 34955182 DOI: 10.1016/j.pestbp.2021.104998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Flusilazole (C16H15F2N3Si) is a triazole fungicide and it is being used widely in recent years to control fungal infections in various fruits and vegetables. This study aims to evaluate the impact of flusilazole on cytotoxicity, ATP-dependent cassette transporter proteins (ABC transporter proteins) in SerW3 cells. In this study, SerW3 cells have administrated with 25, 100, and 200 μM flusilazole, cell viability was performed. The quantity of the cellular lipids was evaluated spectrophotometrically. Moreover, the expression of the ABCA1 and ABCB1 proteins determined by immunofluorescence microscopy. Furtherly, evaluation of the cell death type and measurement of the activity of the antioxidant enzymes was performed. According to the results, flusilazole treatment gave rise to inhibition in cell viability, increase in apoptotic cell number, reduction in cellular lipids, and inhibition in the expression of ABCA1 and ABCB1 proteins. Furthermore, it caused decreases in antioxidant enzyme activities. It may be concluded that flusilazole administration may cause infertility/subfertility. The mechanism of action can be due to cytotoxicity, impairment of the detoxification mechanisms, lipid metabolism, and dysregulation of cell functions.
Collapse
Affiliation(s)
- Elif Karacaoğlu
- Hacettepe University, Faculty of Science, Department of Biology, 06800, Beytepe, Ankara, Turkey.
| |
Collapse
|
14
|
Miller SR, McGrath ME, Zorn KM, Ekins S, Wright SH, Cherrington NJ. Remdesivir and EIDD-1931 Interact with Human Equilibrative Nucleoside Transporters 1 and 2: Implications for Reaching SARS-CoV-2 Viral Sanctuary Sites. Mol Pharmacol 2021; 100:548-557. [PMID: 34503974 PMCID: PMC8626781 DOI: 10.1124/molpharm.121.000333] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) are present at the blood-testis barrier (BTB), where they can facilitate antiviral drug disposition to eliminate a sanctuary site for viruses detectable in semen. The purpose of this study was to investigate ENT-drug interactions with three nucleoside analogs, remdesivir, molnupiravir, and molnupiravir's active metabolite, β-d-N4-hydroxycytidine (EIDD-1931), and four non-nucleoside molecules repurposed as antivirals for coronavirus disease 2019 (COVID-19). The study used three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors and Bayesian machine learning models to identify potential interactions with these transporters. In vitro transport experiments demonstrated that remdesivir was the most potent inhibitor of ENT-mediated [3H]uridine uptake (ENT1 IC50: 39 μM; ENT2 IC50: 77 μM), followed by EIDD-1931 (ENT1 IC50: 259 μM; ENT2 IC50: 467 μM), whereas molnupiravir was a modest inhibitor (ENT1 IC50: 701 μM; ENT2 IC50: 851 μM). Other proposed antivirals failed to inhibit ENT-mediated [3H]uridine uptake below 1 mM. Remdesivir accumulation decreased in the presence of 6-S-[(4-nitrophenyl)methyl]-6-thioinosine (NBMPR) by 30% in ENT1 cells (P = 0.0248) and 27% in ENT2 cells (P = 0.0054). EIDD-1931 accumulation decreased in the presence of NBMPR by 77% in ENT1 cells (P = 0.0463) and by 64% in ENT2 cells (P = 0.0132), which supported computational predictions that both are ENT substrates that may be important for efficacy against COVID-19. NBMPR failed to decrease molnupiravir uptake, suggesting that ENT interaction is likely inhibitory. Our combined computational and in vitro data can be used to identify additional ENT-drug interactions to improve our understanding of drugs that can circumvent the BTB. SIGNIFICANCE STATEMENT: This study identified remdesivir and EIDD-1931 as substrates of equilibrative nucleoside transporters 1 and 2. This provides a potential mechanism for uptake of these drugs into cells and may be important for antiviral potential in the testes and other tissues expressing these transporters.
Collapse
Affiliation(s)
- Siennah R Miller
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Meghan E McGrath
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Kimberley M Zorn
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Sean Ekins
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| |
Collapse
|
15
|
Kukal S, Guin D, Rawat C, Bora S, Mishra MK, Sharma P, Paul PR, Kanojia N, Grewal GK, Kukreti S, Saso L, Kukreti R. Multidrug efflux transporter ABCG2: expression and regulation. Cell Mol Life Sci 2021; 78:6887-6939. [PMID: 34586444 PMCID: PMC11072723 DOI: 10.1007/s00018-021-03901-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
The adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) was originally discovered in a multidrug-resistant breast cancer cell line. Studies in the past have expanded the understanding of its role in physiology, disease pathology and drug resistance. With a widely distributed expression across different cell types, ABCG2 plays a central role in ATP-dependent efflux of a vast range of endogenous and exogenous molecules, thereby maintaining cellular homeostasis and providing tissue protection against xenobiotic insults. However, ABCG2 expression is subjected to alterations under various pathophysiological conditions such as inflammation, infection, tissue injury, disease pathology and in response to xenobiotics and endobiotics. These changes may interfere with the bioavailability of therapeutic substrate drugs conferring drug resistance and in certain cases worsen the pathophysiological state aggravating its severity. Considering the crucial role of ABCG2 in normal physiology, therapeutic interventions directly targeting the transporter function may produce serious side effects. Therefore, modulation of transporter regulation instead of inhibiting the transporter itself will allow subtle changes in ABCG2 activity. This requires a thorough comprehension of diverse factors and complex signaling pathways (Kinases, Wnt/β-catenin, Sonic hedgehog) operating at multiple regulatory levels dictating ABCG2 expression and activity. This review features a background on the physiological role of transporter, factors that modulate ABCG2 levels and highlights various signaling pathways, molecular mechanisms and genetic polymorphisms in ABCG2 regulation. This understanding will aid in identifying potential molecular targets for therapeutic interventions to overcome ABCG2-mediated multidrug resistance (MDR) and to manage ABCG2-related pathophysiology.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Priya Sharma
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gurpreet Kaur Grewal
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, 144004, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, 110007, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Miller SR, Jilek JL, McGrath ME, Hau RK, Jennings EQ, Galligan JJ, Wright SH, Cherrington NJ. Testicular disposition of clofarabine in rats is dependent on equilibrative nucleoside transporters. Pharmacol Res Perspect 2021; 9:e00831. [PMID: 34288585 PMCID: PMC8292784 DOI: 10.1002/prp2.831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 01/13/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children and adolescents. Although the 5-year survival rate is high, some patients respond poorly to chemotherapy or have recurrence in locations such as the testis. The blood-testis barrier (BTB) can prevent complete eradication by limiting chemotherapeutic access and lead to testicular relapse unless a chemotherapeutic is a substrate of drug transporters present at this barrier. Equilibrative nucleoside transporter (ENT) 1 and ENT2 facilitate the movement of substrates across the BTB. Clofarabine is a nucleoside analog used to treat relapsed or refractory ALL. This study investigated the role of ENTs in the testicular disposition of clofarabine. Pharmacological inhibition of the ENTs by 6-nitrobenzylthioinosine (NBMPR) was used to determine ENT contribution to clofarabine transport in primary rat Sertoli cells, in human Sertoli cells, and across the rat BTB. The presence of NBMPR decreased clofarabine uptake by 40% in primary rat Sertoli cells (p = .0329) and by 53% in a human Sertoli cell line (p = .0899). Rats treated with 10 mg/kg intraperitoneal (IP) injection of the NBMPR prodrug, 6-nitrobenzylthioinosine 5'-monophosphate (NBMPR-P), or vehicle, followed by an intravenous (IV) bolus 10 mg/kg dose of clofarabine, showed a trend toward a lower testis concentration of clofarabine than vehicle (1.81 ± 0.59 vs. 2.65 ± 0.92 ng/mg tissue; p = .1160). This suggests that ENTs could be important for clofarabine disposition. Clofarabine may be capable of crossing the human BTB, and its potential use as a first-line treatment to avoid testicular relapse should be considered.
Collapse
Affiliation(s)
- Siennah R. Miller
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Joseph L. Jilek
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Meghan E. McGrath
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Raymond K. Hau
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Erin Q. Jennings
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - James J. Galligan
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Stephen H. Wright
- College of MedicineDepartment of PhysiologyUniversity of ArizonaTucsonAZUSA
| | - Nathan J. Cherrington
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| |
Collapse
|
17
|
Miller SR, Lane TR, Zorn KM, Ekins S, Wright SH, Cherrington NJ. Multiple Computational Approaches for Predicting Drug Interactions with Human Equilibrative Nucleoside Transporter 1. Drug Metab Dispos 2021; 49:479-489. [PMID: 33980604 PMCID: PMC8313052 DOI: 10.1124/dmd.121.000423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022] Open
Abstract
Equilibrativenucleoside transporters (ENTs) participate in the pharmacokinetics and disposition of nucleoside analog drugs. Understanding drug interactions with the ENTs may inform and facilitate the development of new drugs, including chemotherapeutics and antivirals that require access to sanctuary sites such as the male genital tract. This study created three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors using Kt and IC50 data curated from the literature. Substrate pharmacophores for ENT1 and ENT2 are distinct, with partial overlap of hydrogen bond donors, whereas the inhibitor pharmacophores predominantly feature hydrogen bond acceptors. Mizoribine and ribavirin mapped to the ENT1 substrate pharmacophore and proved to be substrates of the ENTs. The presence of the ENT-specific inhibitor 6-S-[(4-nitrophenyl)methyl]-6-thioinosine (NBMPR) decreased mizoribine accumulation in ENT1 and ENT2 cells (ENT1, ∼70% decrease, P = 0.0046; ENT2, ∼50% decrease, P = 0.0012). NBMPR also decreased ribavirin accumulation in ENT1 and ENT2 cells (ENT1: ∼50% decrease, P = 0.0498; ENT2: ∼30% decrease, P = 0.0125). Darunavir mapped to the ENT1 inhibitor pharmacophore and NBMPR did not significantly influence darunavir accumulation in either ENT1 or ENT2 cells (ENT1: P = 0.28; ENT2: P = 0.53), indicating that darunavir's interaction with the ENTs is limited to inhibition. These computational and in vitro models can inform compound selection in the drug discovery and development process, thereby reducing time and expense of identification and optimization of ENT-interacting compounds. SIGNIFICANCE STATEMENT: This study developed computational models of human equilibrative nucleoside transporters (ENTs) to predict drug interactions and validated these models with two compounds in vitro. Identification and prediction of ENT1 and ENT2 substrates allows for the determination of drugs that can penetrate tissues expressing these transporters.
Collapse
Affiliation(s)
- Siennah R Miller
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Thomas R Lane
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Kimberley M Zorn
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Sean Ekins
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| |
Collapse
|
18
|
Peña-Corona SI, Vásquez Aguire WS, Vargas D, Juárez I, Mendoza-Rodríguez CA. Effects of bisphenols on Blood-Testis Barrier protein expression in vitro: A systematic review and meta-analysis. Reprod Toxicol 2021; 103:139-148. [PMID: 34146661 DOI: 10.1016/j.reprotox.2021.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/04/2021] [Accepted: 06/13/2021] [Indexed: 12/16/2022]
Abstract
Bisphenols are a group of environmental endocrine-disrupting chemicals that produce alterations in the expression of intercellular junction proteins of the Blood-Testis Barrier (BTB) involved in spermatogenesis. The association between bisphenol exposure and BTB protein expression is controversial. Therefore, we performed this systematic review and meta-analysis to clarify bisphenol effects on Sertoli cell BTB protein expression in vitro. The Standardized Mean Difference (SMD) with a 95 % confidence interval (95 % CI) was used to evaluate the association between alterations in the BTB protein expression and bisphenol exposure in vitro. Six articles were included in the meta-analysis. Bisphenol-A (BPA) exposure at 200 μM was associated with significant decrease in BTB protein expression (SMD = -2.70, 95 %CI: -3.59, -1.80, p het = 0.46, p = <0.00001). In the moderate (40-50 μM) and low dose (<25 μM), no significant associations were obtained. We also found a non-monotonic dose-response curve of bisphenol effect in ZO-1 protein expression; low and high doses presented a significant decrease compared to control, while moderate dose presented no change. The current temporary Tolerable Daily Intake (tTDI) of BPA is 4 μg/kg bw/day. The 5-25 μM doses of BPA are equivalent to ∼1-5 mg/kg bw, respectively. Although the low dose group (<25 μM) assessed doses below the previous NOAEL value, these doses are above the current tTDI. Thus, it is necessary to conduct more studies with lower bisphenol concentrations to avoid underestimating the potential adverse effects of bisphenols at doses below tTDI.
Collapse
Affiliation(s)
- Sheila Irais Peña-Corona
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Walker Sixto Vásquez Aguire
- Facultad de Ciencias Matemáticas, Escuela Académica de Estadística, Universidad Nacional Mayor de San Marcos 15081, Lima, Peru
| | - Dinorah Vargas
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Fisiología y Farmacología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ivan Juárez
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Medicina Preventiva y Salud Pública, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C Adriana Mendoza-Rodríguez
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
19
|
Delshadi R, Bahrami A, McClements DJ, Moore MD, Williams L. Development of nanoparticle-delivery systems for antiviral agents: A review. J Control Release 2021; 331:30-44. [PMID: 33450319 PMCID: PMC7803629 DOI: 10.1016/j.jconrel.2021.01.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic has resulted in unprecedented increases in sickness, death, economic disruption, and social disturbances globally. However, the virus (SARS-CoV-2) that caused this pandemic is only one of many viruses threatening public health. Consequently, it is important to have effective means of preventing viral transmission and reducing its devastating effects on human and animal health. Although many antivirals are already available, their efficacy is often limited because of factors such as poor solubility, low permeability, poor bioavailability, un-targeted release, adverse side effects, and antiviral resistance. Many of these problems can be overcome using advanced antiviral delivery systems constructed using nanotechnology principles. These delivery systems consist of antivirals loaded into nanoparticles, which may be fabricated from either synthetic or natural materials. Nevertheless, there is increasing emphasis on the development of antiviral delivery systems from natural substances, such as lipids, phospholipids, surfactants, proteins, and polysaccharides, due to health and environmental issues. The composition, morphology, dimensions, and interfacial characteristics of nanoparticles can be manipulated to improve the handling, stability, and potency of antivirals. This article outlines the major classes of antivirals, summarizes the challenges currently limiting their efficacy, and highlights how nanoparticles can be used to overcome these challenges. Recent studies on the application of antiviral nanoparticle-based delivery systems are reviewed and future directions are described.
Collapse
Affiliation(s)
- Rana Delshadi
- Food Science and Technology Graduate, Menomonie, WI, USA
| | - Akbar Bahrami
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | | | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Leonard Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| |
Collapse
|
20
|
Miller SR, Zhang X, Hau RK, Jilek JL, Jennings EQ, Galligan JJ, Foil DH, Zorn KM, Ekins S, Wright SH, Cherrington NJ. Predicting Drug Interactions with Human Equilibrative Nucleoside Transporters 1 and 2 Using Functional Knockout Cell Lines and Bayesian Modeling. Mol Pharmacol 2021; 99:147-162. [PMID: 33262250 PMCID: PMC7816041 DOI: 10.1124/molpharm.120.000169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) 1 and 2 facilitate nucleoside transport across the blood-testis barrier (BTB). Improving drug entry into the testes with drugs that use endogenous transport pathways may lead to more effective treatments for diseases within the reproductive tract. In this study, CRISPR/CRISPR-associated protein 9 was used to generate HeLa cell lines in which ENT expression was limited to ENT1 or ENT2. We characterized uridine transport in these cell lines and generated Bayesian models to predict interactions with the ENTs. Quantification of [3H]uridine uptake in the presence of the ENT-specific inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBMPR) demonstrated functional loss of each transporter. Nine nucleoside reverse-transcriptase inhibitors and 37 nucleoside/heterocycle analogs were evaluated to identify ENT interactions. Twenty-one compounds inhibited uridine uptake and abacavir, nevirapine, ticagrelor, and uridine triacetate had different IC50 values for ENT1 and ENT2. Total accumulation of four identified inhibitors was measured with and without NBMPR to determine whether there was ENT-mediated transport. Clofarabine and cladribine were ENT1 and ENT2 substrates, whereas nevirapine and lexibulin were ENT1 and ENT2 nontransported inhibitors. Bayesian models generated using Assay Central machine learning software yielded reasonably high internal validation performance (receiver operator characteristic > 0.7). ENT1 IC50-based models were generated from ChEMBL; subvalidations using this training data set correctly predicted 58% of inhibitors when analyzing activity by percent uptake and 63% when using estimated-IC50 values. Determining drug interactions with these transporters can be useful in identifying and predicting compounds that are ENT1 and ENT2 substrates and can thereby circumvent the BTB through this transepithelial transport pathway in Sertoli cells. SIGNIFICANCE STATEMENT: This study is the first to predict drug interactions with equilibrative nucleoside transporter (ENT) 1 and ENT2 using Bayesian modeling. Novel CRISPR/CRISPR-associated protein 9 functional knockouts of ENT1 and ENT2 in HeLa S3 cells were generated and characterized. Determining drug interactions with these transporters can be useful in identifying and predicting compounds that are ENT1 and ENT2 substrates and can circumvent the blood-testis barrier through this transepithelial transport pathway in Sertoli cells.
Collapse
Affiliation(s)
- Siennah R Miller
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Xiaohong Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Raymond K Hau
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Joseph L Jilek
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Erin Q Jennings
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Daniel H Foil
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Kimberley M Zorn
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Sean Ekins
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Stephen H Wright
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| |
Collapse
|
21
|
Nicklisch SC, Hamdoun A. Disruption of small molecule transporter systems by Transporter-Interfering Chemicals (TICs). FEBS Lett 2020; 594:4158-4185. [PMID: 33222203 PMCID: PMC8112642 DOI: 10.1002/1873-3468.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.
Collapse
Affiliation(s)
- Sascha C.T. Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202
| |
Collapse
|
22
|
Olaniyan OT, Dare A, Okotie GE, Adetunji CO, Ibitoye BO, Bamidele OJ, Eweoya OO. Testis and blood-testis barrier in Covid-19 infestation: role of angiotensin-converting enzyme 2 in male infertility. J Basic Clin Physiol Pharmacol 2020; 31:jbcpp-2020-0156. [PMID: 33006953 DOI: 10.1515/jbcpp-2020-0156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) that causes COVID-19 infections penetrates body cells by binding to angiotensin-converting enzyme-2 (ACE2) receptors. Evidence shows that SARS-CoV-2 can also affect the urogenital tract. Hence, it should be given serious attention when treating COVID-19-infected male patients of reproductive age group. Other viruses like HIV, mumps, papilloma and Epstein-Barr can induce viral orchitis, germ cell apoptosis, inflammation and germ cell destruction with attending infertility and tumors. The blood-testis barrier (BTB) and blood-epididymis barrier (BEB) are essential physical barricades in the male reproductive tract located between the blood vessel and seminiferous tubules in the testes. Despite the significant role of these barriers in male reproductive function, studies have shown that a wide range of viruses can still penetrate the barriers and induce testicular dysfunctions. Therefore, this mini-review highlights the role of ACE2 receptors in promoting SARS-CoV-2-induced blood-testis/epididymal barrier infiltration and testicular dysfunction.
Collapse
Affiliation(s)
- Olugbemi T Olaniyan
- Laboratory for Reproductive Biology and Developmental Programming, Department of Physiology, Edo University Iyamho, Iyamho, Nigeria
| | - Ayobami Dare
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa
| | - Gloria E Okotie
- Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - Charles O Adetunji
- Applied Microbiology, Department of Microbiology, Biotechnology and Nanotechnology Laboratory, Edo University Iyamho, Iyamho, Edo State, Nigeria
| | | | - Okoli J Bamidele
- Institute of Chemical and Biotechnology, Faculty of Computer and Applied Sciences, Vaal University of Technology, Southern Gauteng Science and Technology Park, Department of Chemistry, Vanderbijlpark, South Africa
| | - Olugbenga O Eweoya
- Department of Anatomical Sciences, School of Medicine and Allied Health Sciences, University of the Gambia, Banjul, The Gambia
| |
Collapse
|
23
|
Modulating the Blood–Testis Barrier Towards Increasing Drug Delivery. Trends Pharmacol Sci 2020; 41:690-700. [DOI: 10.1016/j.tips.2020.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
|
24
|
Morsy MA, Abdel-Aziz AM, Abdel-Hafez SMN, Venugopala KN, Nair AB, Abdel-Gaber SA. The Possible Contribution of P-Glycoprotein in the Protective Effect of Paeonol against Methotrexate-Induced Testicular Injury in Rats. Pharmaceuticals (Basel) 2020; 13:ph13090223. [PMID: 32872504 PMCID: PMC7558391 DOI: 10.3390/ph13090223] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Paeonol, a phenolic ingredient in the genus Paeonia, possesses antioxidant and anti-inflammatory effects. Methotrexate (MTX) is a commonly used chemotherapeutic agent; however, its germ cell damage is a critical problem. P-glycoprotein (P-gp), an efflux transporter, is a member of the blood–testis barrier. The present study evaluated the protective effect of paeonol on MTX-induced testicular injury in rats with the exploration of its mechanism and the possible contribution of P-gp in such protection. Testicular weight, serum testosterone, and testicular P-gp levels were measured. Testicular oxidant/antioxidant status was evaluated via determining the levels of malondialdehyde, total nitrite, reduced glutathione, and superoxide dismutase activity. The inflammatory cytokine tumor necrosis factor-alpha (TNF-α) and the apoptotic marker caspase 3 were estimated immunohistochemically. Testicular histopathology and spermatogenesis scores were also examined. MTX caused histopathologically evident testicular damage with decreased testicular weight, testosterone level, and spermatogenesis score, as well as significant increases in oxidative, inflammatory, and apoptotic responses. Paeonol significantly restored testicular weight, testosterone level, spermatogenesis score, and oxidant/antioxidant balance. Moreover, paeonol increased the testicular P-gp level and significantly decreased TNF-α and caspase 3 immunostaining. In conclusion, paeonol offered a protective effect against MTX-induced testicular injury through its antioxidant, anti-inflammatory, and antiapoptotic effects, as well as by increasing testicular P-gp level.
Collapse
Affiliation(s)
- Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (K.N.V.); (A.B.N.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt; (A.M.A.-A.); (S.A.A.-G.)
- Correspondence: ; Tel.: +966-5496-72245
| | - Asmaa M. Abdel-Aziz
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt; (A.M.A.-A.); (S.A.A.-G.)
| | - Sara M. N. Abdel-Hafez
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt;
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (K.N.V.); (A.B.N.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (K.N.V.); (A.B.N.)
| | - Seham A. Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt; (A.M.A.-A.); (S.A.A.-G.)
| |
Collapse
|
25
|
Bicker J, Alves G, Falcão A, Fortuna A. Timing in drug absorption and disposition: The past, present, and future of chronopharmacokinetics. Br J Pharmacol 2020; 177:2215-2239. [PMID: 32056195 DOI: 10.1111/bph.15017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/05/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
The importance of drug dosing time in pharmacokinetics, pharmacodynamics, and toxicity is receiving increasing attention from the scientific community. In spite of mounting evidence that circadian oscillations affect drug absorption, distribution, metabolism, and excretion (ADME), there remain many unanswered questions in this field and, occasionally, conflicting experimental results. Such data arise not only from translational difficulties caused by interspecies differences but also from variability in study design and a lack of understanding of how the circadian clock affects physiological factors that strongly influence ADME, namely, the expression and activity of drug transporters. Hence, the main goal of this review is to provide an updated analysis of the role of the circadian rhythm in drug absorption, distribution across blood-tissue barriers, metabolism in hepatic and extra-hepatic tissues, and hepatobiliary and renal excretion. It is expected that the research suggestions proposed here will contribute to a tissue-targeted and time-targeted pharmacotherapy.
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
26
|
New uracil analogs as downregulators of ABC transporters in 5-fluorouracil-resistant human leukemia HL-60 cell line. Mol Biol Rep 2019; 46:5831-5839. [DOI: 10.1007/s11033-019-05017-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022]
Abstract
AbstractOverexpression of ATP-binding cassette (ABC) transporters causing multidrug resistance (MDR) in cancer cells is one of the major obstacles in cancer chemotherapy. The 5-FU resistant subclone (HL-60/5FU) of the human HL-60 promyelocytic leukemia cell line was selected by the conventional method of continuous exposure of the cells to the drug up to 0.08 mmol/L concentration. HL-60/5FU cells exhibited six-fold enhanced resistance to 5-FU than HL-60 cells. RT-PCR and ELISA assay showed significant overexpression of MDR-related ABC transporters, ABCB1, ABCG2 but especially ABCC1 in the HL-60/5FU as compared with the parental cell line. Three novel synthetic 5-methylidenedihydrouracil analogs, U-236, U-332 and U-359, selected as highly cytotoxic for HL-60 cells in MTT test, showed similar cytotoxicity in the resistant cell line. When co-incubated with 5-FU, these analogs were found to down-regulate the expression of all three transporters. However, the most pronounced effect was caused by U-332 which almost completely abolished ABCC1 expression in the resistant HL-60/5FU cells. Additionally, U-332 inhibited the activity of ATPase, an enzyme which catalyzes hydrolysis of ATP, providing energy to efflux drugs from the cells through the cellular membranes. Taken together, the obtained data suggest that acquired 5-FU resistance in HL-60/5FU cells results from overexpression of ABCC1 and that targeting ABCC1 expression could be a potential approach to re-sensitize resistant leukemia cells to 5-FU. The synthetic uracil analog U-332, which can potently down-regulate ABC transporter expression and therefore disturb drug efflux, can be considered an efficient ABCC1 regulator in cancer cells.
Collapse
|
27
|
Domínguez‐Salazar E, Hurtado‐Alvarado G, Medina‐Flores F, Dorantes J, González‐Flores O, Contis‐Montes de Oca A, Velázquez‐Moctezuma J, Gómez‐González B. Chronic sleep loss disrupts blood–testis and blood–epididymis barriers, and reduces male fertility. J Sleep Res 2019; 29:e12907. [DOI: 10.1111/jsr.12907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Emilio Domínguez‐Salazar
- Department of Biology of Reproduction Area of Neurosciences CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa Mexico City Mexico
| | - Gabriela Hurtado‐Alvarado
- Department of Biology of Reproduction Area of Neurosciences CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa Mexico City Mexico
| | - Fernanda Medina‐Flores
- Department of Biology of Reproduction Area of Neurosciences CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa Mexico City Mexico
| | - Javik Dorantes
- Department of Biology of Reproduction Area of Neurosciences CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa Mexico City Mexico
| | - Oscar González‐Flores
- Universidad Autónoma de Tlaxcala‐Centro de Investigación en Reproducción Animal (CIRA‐CINVESTAV) Mexico City Mexico
| | - Arturo Contis‐Montes de Oca
- Optometría Facultad de Estudios Superiores (FES) Iztacala Universidad Nacional Autónoma de México (UNAM) Mexico City Mexico
| | - Javier Velázquez‐Moctezuma
- Department of Biology of Reproduction Area of Neurosciences CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa Mexico City Mexico
| | - Beatriz Gómez‐González
- Department of Biology of Reproduction Area of Neurosciences CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa Mexico City Mexico
| |
Collapse
|
28
|
Mao B, Li L, Yan M, Wong CKC, Silvestrini B, Li C, Ge R, Lian Q, Cheng CY. F5-Peptide and mTORC1/rpS6 Effectively Enhance BTB Transport Function in the Testis-Lesson From the Adjudin Model. Endocrinology 2019; 160:1832-1853. [PMID: 31157869 PMCID: PMC6637795 DOI: 10.1210/en.2019-00308] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/26/2019] [Indexed: 01/04/2023]
Abstract
During spermatogenesis, the blood-testis barrier (BTB) undergoes cyclic remodeling that is crucial to support the transport of preleptotene spermatocytes across the immunological barrier at stage VIII to IX of the epithelial cycle. Studies have shown that this timely remodeling of the BTB is supported by several endogenously produced barrier modifiers across the seminiferous epithelium, which include the F5-peptide and the ribosomal protein S6 [rpS6; a downstream signaling molecule of the mammalian target of rapamycin complex 1 (mTORC1)] signaling protein. Herein, F5-peptide and a quadruple phosphomimetic (and constitutively active) mutant of rpS6 [i.e., phosphorylated (p-)rpS6-MT] that are capable of inducing reversible immunological barrier remodeling, by making the barrier "leaky" transiently, were used for their overexpression in the testis to induce BTB opening. We sought to examine whether this facilitated the crossing of the nonhormonal male contraceptive adjudin at the BTB when administered by oral gavage, thereby effectively improving its BTB transport to induce germ cell adhesion and aspermatogenesis. Indeed, it was shown that combined overexpression of F5-peptide and p-rpS6-MT and a low dose of adjudin, which by itself had no noticeable effects on spermatogenesis, was capable of perturbing the organization of actin- and microtubule (MT)-based cytoskeletons through changes in the spatial expression of actin- and MT-binding/regulatory proteins to the corresponding cytoskeleton. These findings thus illustrate the possibility of delivering drugs to any target organ behind a blood-tissue barrier by modifying the tight junction permeability barrier using endogenously produced barrier modifiers based on findings from this adjudin animal model.
Collapse
Affiliation(s)
- Baiping Mao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linxi Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Yan
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | | | - Chao Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingquan Lian
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Correspondence: C. Yan Cheng, PhD, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065. E-mail:
| |
Collapse
|
29
|
F5-peptide enhances the efficacy of the non-hormonal male contraceptive adjudin. Contraception 2019; 99:350-356. [PMID: 30763581 DOI: 10.1016/j.contraception.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/07/2019] [Accepted: 01/19/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The bioavailability of the non-hormonal male contraceptive adjudin is low in rats due to the blood-testis barrier (BTB). This study was designed to examine if F5-peptide, an endogenously produced reversible BTB modifier, could enhance the bioavailability of adjudin to affect spermatogenesis and provide a contraceptive effect in rats while reducing systemic toxicity. STUDY DESIGN We overexpressed F5-peptide in adult male rats (n=10 rats; with 3 or 4 rats for each of the three different experiments noted in the three regimens) by intratesticular injection of a mammalian expression vector pCI-neo (pCI-neo/F5-peptide) vs. empty vector alone (pCI-neo/Ctrl) to be followed by treatment with adjudin by oral gavage at a dose of 10 or 20 mg/kg. The status of spermatogenesis was assessed by histological analysis and dual-labeled immunofluorescence analysis on Day 16. To assess fertility, we allowed treated males (n=3-4 rats) to mate with mature female rats (n=3-4) individually, and assessed the number of pups on Days 23, 36 and 82 to assess fertility and reversibility. RESULTS All 4 treated rats overexpressed with F5-peptide and low-dose adjudin were infertile by Day 36, and half of these rats were fertile by Day 82, illustrating reversibility. However, overexpression of F5-peptide alone (or low-dose adjudin alone) had no effects on fertility in n=3 rats. These findings were consistent with the histology data that illustrated the BTB modifier F5-peptide promoted the action of adjudin to induce germ cell exfoliation, mediated by changes in cytoskeletal organization of F-actin and microtubules across the epithelium, thereby reducing the systemic toxicity of adjudin. CONCLUSION In this proof-of-concept study, it was shown that overexpression of the F5-peptide prior to administration of adjudin to rats at a low (and ineffective dose by itself) was found to induce reversible male infertility. IMPLICATIONS Overexpression of F5-peptide, an endogenously produced biomolecule in the testis known to induce BTB remodeling, enhanced the contraceptive effect of adjudin in rats, supporting proof of concept studies of BTB disrupters in men.
Collapse
|
30
|
Miller SR, Cherrington NJ. Transepithelial transport across the blood-testis barrier. Reproduction 2018; 156:R187-R194. [PMID: 30328342 PMCID: PMC6437009 DOI: 10.1530/rep-18-0338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022]
Abstract
The blood-testis barrier protects developing germ cells by limiting the entry of xenobiotics into the adluminal compartment. There is strong evidence that the male genital tract can serve as a sanctuary site, an area of the body where tumors or viruses are able to survive treatments because most drugs are unable to reach therapeutic concentrations. Recent work has classified the expression and localization of endogenous transporters in the male genital tract as well as the discovery of a transepithelial transport pathway as the molecular mechanism by which nucleoside analogs may be able to circumvent the blood-testis barrier. Designing drug therapies that utilize transepithelial transport pathways may improve drug disposition to this sanctuary site. Strategies that improve disposition into the male genital tract could reduce the rate of testicular relapse, decrease viral load in semen, and improve therapeutic strategies for male fertility.
Collapse
Affiliation(s)
- Siennah R Miller
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
31
|
Yamasaki Y, Kobayashi K, Okuya F, Kajitani N, Kazuki K, Abe S, Takehara S, Ito S, Ogata S, Uemura T, Ohtsuki S, Minegishi G, Akita H, Chiba K, Oshimura M, Kazuki Y. Characterization of P-Glycoprotein Humanized Mice Generated by Chromosome Engineering Technology: Its Utility for Prediction of Drug Distribution to the Brain in Humans. Drug Metab Dispos 2018; 46:1756-1766. [PMID: 29777024 DOI: 10.1124/dmd.118.081216] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/16/2018] [Indexed: 12/31/2022] Open
Abstract
P-glycoprotein (P-gp), encoded by the MDR1 gene in humans and by the Mdr1a/1b genes in rodents, is expressed in numerous tissues and performs as an efflux pump to limit the distribution and absorption of many drugs. Owing to species differences of P-gp between humans and rodents, it is difficult to predict the impact of P-gp on pharmacokinetics and the tissue distribution of P-gp substrates in humans from the results of animal experiments. Therefore, we generated a novel P-gp humanized mouse model by using a mouse artificial chromosome (MAC) vector [designated human MDR1-MAC (hMDR1-MAC) mice]. The results showed that hMDR1 mRNA was expressed in various tissues of hMDR1-MAC mice. Furthermore, the expression of human P-gp was detected in the brain capillary fraction and plasma membrane fraction of intestinal epithelial cells isolated from hMDR1-MAC mice, although the expression levels of intestinal P-gp were extremely low. Thus, we evaluated the function of human P-gp at the blood-brain barrier of hMDR1-MAC mice. The brain-to-plasma ratios of P-gp substrates in hMDR1-MAC mice were much lower than those in Mdr1a/1b-knockout mice, and the brain-to-plasma ratio of paclitaxel was significantly increased by pretreatment with a P-gp inhibitor in hMDR1-MAC mice. These results indicated that the hMDR1-MAC mice are the first P-gp humanized mice expressing functional human P-gp at the blood-brain barrier. This mouse is a promising model with which to evaluate species differences of P-gp between humans and mice in vivo and to estimate the brain distribution of drugs in humans while taking into account species differences of P-gp.
Collapse
Affiliation(s)
- Yuki Yamasaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Kaoru Kobayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Fuka Okuya
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Naoyo Kajitani
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Kanako Kazuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Satoshi Abe
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Shoko Takehara
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Shingo Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Seiryo Ogata
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Tatsuki Uemura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Sumio Ohtsuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Genki Minegishi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Hidetaka Akita
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Kan Chiba
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Mitsuo Oshimura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Yasuhiro Kazuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| |
Collapse
|
32
|
Wen Q, Tang EI, Gao Y, Jesus TT, Chu DS, Lee WM, Wong CKC, Liu YX, Xiao X, Silvestrini B, Cheng CY. Signaling pathways regulating blood-tissue barriers - Lesson from the testis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:141-153. [PMID: 28450047 DOI: 10.1016/j.bbamem.2017.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
Signaling pathways that regulate blood-tissue barriers are important for studying the biology of various blood-tissue barriers. This information, if deciphered and better understood, will provide better therapeutic management of diseases particularly in organs that are sealed by the corresponding blood-tissue barriers from systemic circulation, such as the brain and the testis. These barriers block the access of antibiotics and/or chemotherapeutical agents across the corresponding barriers. Studies in the last decade using the blood-testis barrier (BTB) in rats have demonstrated the presence of several signaling pathways that are crucial to modulate BTB function. Herein, we critically evaluate these findings and provide hypothetical models regarding the underlying mechanisms by which these signaling molecules/pathways modulate BTB dynamics. This information should be carefully evaluated to examine their applicability in other tissue barriers which shall benefit future functional studies in the field. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Qing Wen
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Elizabeth I Tang
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Ying Gao
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Tito T Jesus
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Darren S Chu
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, China
| | | | - C Yan Cheng
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
33
|
Dabaghi M, Rahgozar S, Moshtaghian J, Moafi A, Abedi M, Pourabutaleb E. Overexpression of SORCIN is a Prognostic Biomarker for Multidrug-Resistant Pediatric Acute Lymphoblastic Leukemia and Correlates with Upregulated MDR1/P-gp. Genet Test Mol Biomarkers 2016; 20:516-21. [PMID: 27382961 DOI: 10.1089/gtmb.2016.0031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Multidrug resistance is one of the major causes of treatment failure in pediatric acute lymphoblastic leukemia (ALL), and SORCIN is an intracellular calcium modulator protein. The current study was designed to investigate the in vitro and in vivo relationships between the expression levels of SORCIN: in tumor cell lines and children with ALL; its possible correlation with MDR1/P-glycoprotein (P-gp), a multidrug resistance-related gene; and response to therapy. MATERIALS AND METHODS Childhood T-lymphoblastic leukemia (CCRF-CEM) cell lines resistant to methotrexate (MTX) were developed. Patient studies were performed by including 30 children with ALL at diagnosis, 3 children with bone marrow relapse, and 15 children with no symptoms of cancer. The mRNA expression profiles of SORCIN and MDR1/P-gp was assessed using quantitative polymerase chain reaction (qPCR). Minimal residual disease (MRD) was measured in the patient population, a year following the initial therapy using qPCR. RESULTS Cell line data analyses showed a positive correlation between SORCIN mRNA levels and resistance to MTX. The difference between patient and control groups for SORCIN expression levels was not significant. However, patients with a negative response to therapy showed an increase in SORCIN mRNA levels (up to 6.8-fold) compared with those with negative MRD. In addition, the results demonstrated a significant positive correlation between SORCIN and MDR1/P-gp gene expression levels. CONCLUSION The current study introduces, for the first time, a possible prognostic value of SORCIN in childhood ALL, which may be correlated with MDR1/P-gp gene expression in these patients.
Collapse
Affiliation(s)
- Mohammad Dabaghi
- 1 Department of Biology, Faculty of Science, University of Isfahan , Isfahan, Iran
| | - Soheila Rahgozar
- 1 Department of Biology, Faculty of Science, University of Isfahan , Isfahan, Iran
| | - Jamal Moshtaghian
- 1 Department of Biology, Faculty of Science, University of Isfahan , Isfahan, Iran
| | - Alireza Moafi
- 2 Department of Pediatric-Hematology-Oncology, Sayed-ol-Shohada Hospital, Isfahan University of Medical Sciences , Isfahan, Iran
| | - Marjan Abedi
- 1 Department of Biology, Faculty of Science, University of Isfahan , Isfahan, Iran
| | - Elnaz Pourabutaleb
- 1 Department of Biology, Faculty of Science, University of Isfahan , Isfahan, Iran
| |
Collapse
|
34
|
Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol 2016; 59:10-26. [PMID: 27143445 DOI: 10.1016/j.semcdb.2016.04.009] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/13/2022]
Abstract
Spermatogenesis is an extraordinary complex process. The differentiation of spermatogonia into spermatozoa requires the participation of several cell types, hormones, paracrine factors, genes and epigenetic regulators. Recent researches in animals and humans have furthered our understanding of the male gamete differentiation, and led to clinical tools for the better management of male infertility. There is still much to be learned about this intricate process. In this review, the critical steps of human spermatogenesis are discussed together with its main affecting factors.
Collapse
|
35
|
Chung SSW, Wang X, Wolgemuth DJ. Prolonged Oral Administration of a Pan-Retinoic Acid Receptor Antagonist Inhibits Spermatogenesis in Mice With a Rapid Recovery and Changes in the Expression of Influx and Efflux Transporters. Endocrinology 2016; 157:1601-12. [PMID: 26812157 PMCID: PMC4816726 DOI: 10.1210/en.2015-1675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have previously shown that oral administration of a pan-retinoic acid receptor antagonist in mice daily at 2.5 mg/kg for 4 weeks reversibly inhibited spermatogenesis, with no detectable side effects. To elucidate the lowest dose and the longest dosing regimen that inhibits spermatogenesis but results in complete restoration of fertility upon cessation of administration of the drug, we examined the effects of daily doses as low as 1.0 mg/kg with dosing periods of 4, 8, and 16 weeks. We observed 100% sterility in all regimens, with restoration of fertility upon cessation of the drug treatment even for as long as 16 weeks. There was no change in testosterone levels in these males and the progeny examined from 2 of the recovered males were healthy and fertile, with normal testicular weight and testicular histology. Strikingly, a more rapid recovery, as assessed by mating studies, was observed at the lower dose and longer dosing periods. Insight into possible mechanisms underlying this rapid recovery was obtained at 2 levels. First, histological examination revealed that spermatogenesis was not as severely disrupted at the lower dose and with the longer treatment regimens. Second, gene expression analysis revealed that the more rapid recovery may involve the interplay of ATP-binding cassette efflux and solute carrier influx transporters in the testes.
Collapse
Affiliation(s)
- Sanny S W Chung
- Departments of Genetics and Development (S.S.W.C., X.W., D.J.W.) and Obstetrics and Gynecology (D.J.W.), The Institute of Human Nutrition (D.J.W.), and The Herbert Irving Comprehensive Cancer Center (D.J.W.), Columbia University Medical Center, New York, New York 10032
| | - Xiangyuan Wang
- Departments of Genetics and Development (S.S.W.C., X.W., D.J.W.) and Obstetrics and Gynecology (D.J.W.), The Institute of Human Nutrition (D.J.W.), and The Herbert Irving Comprehensive Cancer Center (D.J.W.), Columbia University Medical Center, New York, New York 10032
| | - Debra J Wolgemuth
- Departments of Genetics and Development (S.S.W.C., X.W., D.J.W.) and Obstetrics and Gynecology (D.J.W.), The Institute of Human Nutrition (D.J.W.), and The Herbert Irving Comprehensive Cancer Center (D.J.W.), Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
36
|
Chen H, Mruk DD, Xia W, Bonanomi M, Silvestrini B, Cheng CY. Effective Delivery of Male Contraceptives Behind the Blood-Testis Barrier (BTB) - Lesson from Adjudin. Curr Med Chem 2016; 23:701-13. [PMID: 26758796 PMCID: PMC4845722 DOI: 10.2174/0929867323666160112122724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/18/2014] [Accepted: 01/11/2016] [Indexed: 12/15/2022]
Abstract
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium of the seminiferous tubule, the functional unit of the testis, where spermatogenesis takes place, into the basal and the adluminal (apical) compartments. Functionally, the BTB provides a unique microenvironment for meiosis I/II and post-meiotic spermatid development which take place exclusively in the apical compartment, away from the host immune system, and it contributes to the immune privilege status of testis. However, the BTB also poses major obstacles in developing male contraceptives (e.g., adjudin) that exert their effects on germ cells in the apical compartment, such as by disrupting spermatid adhesion to the Sertoli cell, causing germ cell exfoliation from the testis. Besides the tight junction (TJ) between adjacent Sertoli cells at the BTB that restricts the entry of contraceptives from the microvessels in the interstitium to the adluminal compartment, drug transporters, such as P-glycoprotein and multidrug resistance-associated protein 1 (MRP1), are also present that actively pump drugs out of the testis, limiting drug bioavailability. Recent advances in drug formulations, such as drug particle micronization (<50 μm) and co-grinding of drug particles with ß-cyclodextrin have improved bioavailability of contraceptives via considerable increase in solubility. Herein, we discuss development in drug formulations using adjudin as an example. We also put emphasis on the possible use of nanotechnology to deliver adjudin to the apical compartment with multidrug magnetic mesoporous silica nanoparticles. These advances in technology will significantly enhance our ability to develop effective non-hormonal male contraceptives for men.
Collapse
Affiliation(s)
| | | | | | | | | | - Chuen-Yan Cheng
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York 10065, USA..
| |
Collapse
|
37
|
Li N, Tang EI, Cheng CY. Regulation of blood-testis barrier by actin binding proteins and protein kinases. Reproduction 2015; 151:R29-41. [PMID: 26628556 DOI: 10.1530/rep-15-0463] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
The blood-testis barrier (BTB) is an important ultrastructure in the testis, since the onset of meiosis and spermiogenesis coincides with the establishment of a functional barrier in rodents and humans. It is also noted that a delay in the assembly of a functional BTB following treatment of neonatal rats with drugs such as diethylstilbestrol or adjudin also delays the first wave of spermiation. While the BTB is one of the tightest blood-tissue barriers, it undergoes extensive remodeling, in particular, at stage VIII of the epithelial cycle to facilitate the transport of preleptotene spermatocytes connected in clones across the immunological barrier. Without this timely transport of preleptotene spermatocytes derived from type B spermatogonia, meiosis will be arrested, causing aspermatogenesis. Yet the biology and regulation of the BTB remains largely unexplored since the morphological studies in the 1970s. Recent studies, however, have shed new light on the biology of the BTB. Herein, we critically evaluate some of these findings, illustrating that the Sertoli cell BTB is regulated by actin-binding proteins (ABPs), likely supported by non-receptor protein kinases, to modulate the organization of actin microfilament bundles at the site. Furthermore, microtubule-based cytoskeleton is also working in concert with the actin-based cytoskeleton to confer BTB dynamics. This timely review provides an update on the unique biology and regulation of the BTB based on the latest findings in the field, focusing on the role of ABPs and non-receptor protein kinases.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | - Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
38
|
Cheng YH, Jenardhanan P, Mathur PP, Qian X, Xia W, Silvestrini B, Cheng CY. Interaction of oligomeric breast cancer resistant protein (BCRP) with adjudin: a male contraceptive with anti-cancer activity. Curr Mol Pharmacol 2015; 7:147-53. [PMID: 25620224 DOI: 10.2174/1874467208666150126154049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/14/2014] [Accepted: 12/19/2014] [Indexed: 01/16/2023]
Abstract
Breast cancer resistant protein (BCRP, ABCG2) is an ATP-binding cassette (ABC) transporter, which together with two other ABC efflux drug pumps, namely P-glycoprotein (P-gp, ABCB1) and multidrug resistance-related protein 1 (MRP1, ABCC1) is the most important multidrug resistance protein foun d in eukaryotic cells including cells in the testis. However, unlike P-gp and MRP1, which are components of the Sertoli cell blood-testis barrier (BTB), BCRP is not expressed at the BTB in rodents and human testes. Instead, BCRP is expressed by peritubular myoid cells and endothelial cells of the lymphatic vessel in the tunica propria, residing outside the BTB. As such, the testis is equipped with two levels of defense against xenobiotics or drugs, preventing these harmful substances from entering the adluminal compartment to perturb meiosis and post-meiotic spermatid development: one at the level of the BTB conferred by P-gp and MRP1 and one at the tunica propria conferred by BCRP. The presence of drug transporters at the tunica propria as well as at the Sertoli cell BTB thus poses significant obstacles in developing non-hormonal contraceptives if these drugs (e.g., adjudin) exert their effects in germ cells behind the BTB, such as in the adluminal (apical) compartment of the seminiferous epithelium. Herein, we summarize recent findings pertinent to adjudin, a non-hormonal male contraceptive, and molecular interactions of adjudin with BCRP so that this information can be helpful to devise delivery strategies to evade BCRP in the tunica propria to improve its bioavailability in the testis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chuen Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York 10065, USA.
| |
Collapse
|
39
|
Rodríguez-Castillo JA, Arce-Mendoza AY, Quintanilla-Siller A, Rendon A, Salinas-Carmona MC, Rosas-Taraco AG. Possible association of rare polymorphism in the ABCB1 gene with rifampin and ethambutol drug-resistant tuberculosis. Tuberculosis (Edinb) 2015; 95:532-7. [PMID: 26067842 DOI: 10.1016/j.tube.2015.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 01/13/2023]
Abstract
Human P-glycoprotein (P-gp) is a membrane transporter encoded by ABCB1 (also known as MDR1) that plays a critical role in pharmacokinetics of many unrelated drugs. Rifampin (RMP) and ethambutol (ETB), two anti-tubercular agents, are substrates of P-gp. Single nucleotide polymorphisms (SNPs) in ABCB1 have been associated with resistance to several drugs; however, their association with RMP and ETB resistance in tuberculosis patients has not yet been studied. Genotype/allele frequencies in C1236T, G2677T/A and C3435T SNPs of ABCB1 were obtained from 99 tuberculosis patients susceptible or resistant to RMP and ETB (NoRER or RER). 2677G>A allele prevalence was found to be significantly higher in the RER group compared to NoRER (5 resistant vs 2 non-resistant patients, P < 0.01; OR, 11.0; 95% CI, 2.00-56.00). No differences were found in genotype/allele frequencies in C1236T and C3435T SNPs of ABCB1 and resistance to RMP and ETB in tuberculosis patients (P > 0.05). The present study suggests the 2677G>A allele of ABCB1 could be associated with simultaneous resistance to RMP and ETB in pulmonary tuberculosis patients. Further studies with larger sample sizes are needed to confirm this association and explore its nature.
Collapse
Affiliation(s)
- José Alberto Rodríguez-Castillo
- Departamento de Inmunología, Facultad de Medicina y Hospital Universitario, Universidad Autonoma de Nuevo León, Monterrey 64460, Mexico
| | - Alma Y Arce-Mendoza
- Departamento de Inmunología, Facultad de Medicina y Hospital Universitario, Universidad Autonoma de Nuevo León, Monterrey 64460, Mexico
| | - Armando Quintanilla-Siller
- Departamento de Inmunología, Facultad de Medicina y Hospital Universitario, Universidad Autonoma de Nuevo León, Monterrey 64460, Mexico
| | - Adrian Rendon
- CIPTIR (Centro de Investigación, Prevención y Tratamiento de Infecciones Respiratorias) Hospital Universitario, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico
| | - Mario C Salinas-Carmona
- Departamento de Inmunología, Facultad de Medicina y Hospital Universitario, Universidad Autonoma de Nuevo León, Monterrey 64460, Mexico
| | - Adrian G Rosas-Taraco
- Departamento de Inmunología, Facultad de Medicina y Hospital Universitario, Universidad Autonoma de Nuevo León, Monterrey 64460, Mexico.
| |
Collapse
|
40
|
Gao Y, Mruk DD, Cheng CY. Sertoli cells are the target of environmental toxicants in the testis - a mechanistic and therapeutic insight. Expert Opin Ther Targets 2015; 19:1073-90. [PMID: 25913180 DOI: 10.1517/14728222.2015.1039513] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Sertoli cells support germ cell development in the testis via an elaborate network of cell junctions that confers structural, communicating, and signaling support. However, Sertoli cell junctions and cytoskeletons are the target of environmental toxicants. Because germ cells rely on Sertoli cells for the provision of structural/functional/nutritional support, exposure of males to toxicants leads to germ cell exfoliation due to Sertoli cell injuries. Interestingly, the molecular mechanism(s) by which toxicants induce cytoskeletal disruption that leads to germ cell exfoliation is unclear, until recent years, which are discussed herein. This information can possibly be used to therapeutically manage toxicant-induced infertility/subfertility in human males. AREAS COVERED In this review, we provide a brief update on the use of Sertoli cell system developed for rodents and humans in vitro, which can be deployed in any research laboratory with minimal upfront setup costs. These systems can be used to collect reliable data applicable to studies in vivo. We also discuss the latest findings on the mechanisms by which toxicants induce Sertoli cell injury, in particular cytoskeletal disruption. We also identify candidate molecules that are likely targets of toxicants. EXPERT OPINION We provide two hypothetical models delineating the mechanism by which toxicants induce germ cell exfoliation and blood-testis barrier disruption. We also discuss molecules that are the targets of toxicants as therapeutic candidates.
Collapse
Affiliation(s)
- Ying Gao
- Population Council, Center for Biomedical Research , 1230 York Ave, New York, NY, 10065 , USA
| | | | | |
Collapse
|
41
|
Pulicherla KK, Verma MK. Targeting therapeutics across the blood brain barrier (BBB), prerequisite towards thrombolytic therapy for cerebrovascular disorders-an overview and advancements. AAPS PharmSciTech 2015; 16:223-33. [PMID: 25613561 PMCID: PMC4370956 DOI: 10.1208/s12249-015-0287-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/22/2014] [Indexed: 01/23/2023] Open
Abstract
Cerebral tissues possess highly selective and dynamic protection known as blood brain barrier (BBB) that regulates brain homeostasis and provides protection against invading pathogens and various chemicals including drug molecules. Such natural protection strictly monitors entry of drug molecules often required for the management of several diseases and disorders including cerebral vascular and neurological disorders. However, in recent times, the ischemic cerebrovascular disease and clinical manifestation of acute arterial thrombosis are the most common causes of mortality and morbidity worldwide. The management of cerebral Ischemia requires immediate infusion of external thrombolytic into systemic circulation and must cross the blood brain barrier. The major challenge with available thrombolytic is their poor affinity towards the blood brain barrier and cerebral tissue subsequently. In the clinical practice, a high dose of thrombolytic often prescribed to deliver drugs across the blood brain barrier which results in drug dependent toxicity leading to damage of neuronal tissues. In recent times, more emphasis was given to utilize blood brain barrier transport mechanism to deliver drugs in neuronal tissue. The blood brain barrier expresses a series of receptor on membrane became an ideal target for selective drug delivery. In this review, the author has given more emphasis molecular biology of receptor on blood brain barrier and their potential as a carrier for drug molecules to cerebral tissues. Further, the use of nanoscale design and real-time monitoring for developed therapeutic to encounter drug dependent toxicity has been reviewed in this study.
Collapse
Affiliation(s)
- K K Pulicherla
- Center for Bioseparation Technology, VIT University, Vellore, Tamilnadu, India,
| | | |
Collapse
|
42
|
Li Z, Wang H, Huang S, Zhou L, Wang L, Du C, Wang C. Establishment of stable MRP1 knockdown by lentivirus-delivered shRNA in the mouse testis Sertoli TM4 cell line. Toxicol Mech Methods 2015; 25:81-90. [DOI: 10.3109/15376516.2014.989350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Reis MMS, Moreira AC, Sousa M, Mathur PP, Oliveira PF, Alves MG. Sertoli cell as a model in male reproductive toxicology: Advantages and disadvantages. J Appl Toxicol 2015; 35:870-83. [DOI: 10.1002/jat.3122] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/21/2014] [Accepted: 12/26/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Mariana M. S. Reis
- Department of Microscopy, Laboratory of Cell Biology, UMIB-FCT, Institute of Biomedical Sciences Abel Salazar (ICBAS); University of Porto; Porto Portugal
| | - Ana C. Moreira
- Department of Microscopy, Laboratory of Cell Biology, UMIB-FCT, Institute of Biomedical Sciences Abel Salazar (ICBAS); University of Porto; Porto Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, UMIB-FCT, Institute of Biomedical Sciences Abel Salazar (ICBAS); University of Porto; Porto Portugal
| | - Premendu P. Mathur
- Department of Biochemistry and Molecular Biology, School of Life Sciences; Pondicherry University, Pondicherry, India & KIIT University; Bhubaneswar India
| | - Pedro F. Oliveira
- CICS - UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - Marco G. Alves
- CICS - UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| |
Collapse
|
44
|
Campion SN, Marcek JM, Kumpf SW, Chapin RE, Houle C, Cappon GD. Age-related testicular toxicity of mGluR5 negative allosteric modulators appears to be unrelated to testis drug transporter maturity. Reprod Toxicol 2015; 52:7-17. [PMID: 25678300 DOI: 10.1016/j.reprotox.2015.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/23/2015] [Accepted: 02/02/2015] [Indexed: 02/06/2023]
Abstract
Testicular degeneration was observed in exploratory toxicity studies in Wistar rats treated with several mGluR5 negative allosteric modulators. To determine if these testis effects were influenced by animal age, these compounds were administered to male Wistar rats of different ages (8, 10, and 12 weeks old) for 2 weeks followed by evaluation of male reproductive organ weights, testis histopathology, and inhibin B levels. Overall, seminiferous tubule degeneration was observed in 2/15, 5/15, and 0/15 compound treated rats from the 8, 10, and 12 week old cohorts and inhibin B was decreased in 8 and 10 week old animals, but not in 12 week old rats, suggesting that there is an age-related component to this testis toxicity. The gene expression profiles of drug transporters in the testis of rats aged PND 38 through PND 91 were very similar, indicating that immaturity of these transporters is an unlikely factor contributing to the age-related toxicity.
Collapse
Affiliation(s)
- Sarah N Campion
- Drug Safety Research and Development, Pfizer Worldwide Research & Development, Groton, CT, United States.
| | - John M Marcek
- Drug Safety Research and Development, Pfizer Worldwide Research & Development, Groton, CT, United States
| | - Steven W Kumpf
- Drug Safety Research and Development, Pfizer Worldwide Research & Development, Groton, CT, United States
| | - Robert E Chapin
- Drug Safety Research and Development, Pfizer Worldwide Research & Development, Groton, CT, United States
| | - Christopher Houle
- Drug Safety Research and Development, Pfizer Worldwide Research & Development, Groton, CT, United States
| | - Gregg D Cappon
- Drug Safety Research and Development, Pfizer Worldwide Research & Development, Groton, CT, United States
| |
Collapse
|
45
|
Li C, Xing G, Maeda K, Wu C, Gong L, Sugiyama Y, Qi X, Ren J, Wang G. The role of breast cancer resistance protein (Bcrp/Abcg2) in triptolide-induced testis toxicity. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00058k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Triptolide possesses unique immunosuppressive and anti-tumor activities. However, its clinical use is limited by the cumulative toxicity in the testis and the mechanisms are poorly understood.
Collapse
Affiliation(s)
- Chunzhu Li
- State Key Laboratory of Natural Medicines
- Key Lab of Drug Metabolism and Pharmacokinetics
- China Pharmaceutical University
- China
| | - Guozhen Xing
- Center for Drug Safety Evaluation and Research
- State Key Laboratory of New Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| | - Kazuya Maeda
- Graduate School of Pharmaceutical Sciences
- the University of Tokyo
- Tokyo
- Japan
| | - Chunyong Wu
- Department of Pharmaceutical Analysis
- School of Pharmacy
- China Pharmaceutical University
- China
| | - Likun Gong
- Center for Drug Safety Evaluation and Research
- State Key Laboratory of New Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| | - Yuichi Sugiyama
- Graduate School of Pharmaceutical Sciences
- the University of Tokyo
- Tokyo
- Japan
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research
- State Key Laboratory of New Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research
- State Key Laboratory of New Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines
- Key Lab of Drug Metabolism and Pharmacokinetics
- China Pharmaceutical University
- China
| |
Collapse
|
46
|
Kell DB. What would be the observable consequences if phospholipid bilayer diffusion of drugs into cells is negligible? Trends Pharmacol Sci 2014; 36:15-21. [PMID: 25458537 DOI: 10.1016/j.tips.2014.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 10/11/2014] [Accepted: 10/14/2014] [Indexed: 12/27/2022]
Abstract
For drug transport across (i.e., through) an intact biological membrane, two main routes are possible: drugs may cross (i) through the phospholipid bilayer portion of the membrane, and/or (ii) via proteinaceous pores or transporters. Perhaps surprisingly, there is in fact no direct scientific evidence that the first of these takes place at any significant rate because, in the experiments performed to date, it has neither been varied as an independent variable nor measured directly as a dependent variable. Using a standard hypothetico-deductive framework, I assess the intellectual and observable consequences of assuming that, for drugs, phospholipid bilayer diffusion is negligible - 'PBIN' - (i.e., may be neglected, relative to transporter-mediated transmembrane fluxes). Predictions and postdictions of the PBIN hypothesis are not refuted by available experimental evidence.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
47
|
Kell DB, Oliver SG. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front Pharmacol 2014; 5:231. [PMID: 25400580 PMCID: PMC4215795 DOI: 10.3389/fphar.2014.00231] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022] Open
Abstract
One approach to experimental science involves creating hypotheses, then testing them by varying one or more independent variables, and assessing the effects of this variation on the processes of interest. We use this strategy to compare the intellectual status and available evidence for two models or views of mechanisms of transmembrane drug transport into intact biological cells. One (BDII) asserts that lipoidal phospholipid Bilayer Diffusion Is Important, while a second (PBIN) proposes that in normal intact cells Phospholipid Bilayer diffusion Is Negligible (i.e., may be neglected quantitatively), because evolution selected against it, and with transmembrane drug transport being effected by genetically encoded proteinaceous carriers or pores, whose “natural” biological roles, and substrates are based in intermediary metabolism. Despite a recent review elsewhere, we can find no evidence able to support BDII as we can find no experiments in intact cells in which phospholipid bilayer diffusion was either varied independently or measured directly (although there are many papers where it was inferred by seeing a covariation of other dependent variables). By contrast, we find an abundance of evidence showing cases in which changes in the activities of named and genetically identified transporters led to measurable changes in the rate or extent of drug uptake. PBIN also has considerable predictive power, and accounts readily for the large differences in drug uptake between tissues, cells and species, in accounting for the metabolite-likeness of marketed drugs, in pharmacogenomics, and in providing a straightforward explanation for the late-stage appearance of toxicity and of lack of efficacy during drug discovery programmes despite macroscopically adequate pharmacokinetics. Consequently, the view that Phospholipid Bilayer diffusion Is Negligible (PBIN) provides a starting hypothesis for assessing cellular drug uptake that is much better supported by the available evidence, and is both more productive and more predictive.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester Manchester, UK ; Manchester Institute of Biotechnology, The University of Manchester Manchester, UK
| | - Stephen G Oliver
- Department of Biochemistry, University of Cambridge Cambridge, UK ; Cambridge Systems Biology Centre, University of Cambridge Cambridge, UK
| |
Collapse
|
48
|
Mruk DD, Cheng CY. Drug transporters in spermatogenesis: A re-evaluation of recent data on P-glycoprotein. SPERMATOGENESIS 2014; 2:70-72. [PMID: 22670215 PMCID: PMC3364793 DOI: 10.4161/spmg.20507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug transporters are integral membrane proteins expressed by a variety of organs, including the liver, kidney, small intestine and testis, and they are generally known to mediate drug or xenobiotic transport into and out of cells. Previous studies have also reported the presence of several drug transporters at blood-tissue barriers where they are thought to protect organs from harmful agents. In this editorial, we briefly discuss and re-evaluate recent findings that show P-glycoprotein, an efflux pump, to function at the blood-testis barrier. We also put forth a mechanistic model, hoping this information will form a strong basis for future studies.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research; The Population Council; New York, NY USA
| | | |
Collapse
|
49
|
Su L, Mruk DD, Cheng CY. Regulation of drug transporters in the testis by environmental toxicant cadmium, steroids and cytokines. SPERMATOGENESIS 2014; 2:285-293. [PMID: 23248770 PMCID: PMC3521751 DOI: 10.4161/spmg.22536] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The blood-testis barrier (BTB) provides an efficient barrier to restrict paracellular and transcellular transport of substances, such as toxicants and drugs, limiting their entry to the testis to cause injury. This is achieved by the coordinated actions of efflux and influx transporters at the BTB, which are integral membrane proteins that interact with their substrates, such as drugs and toxicants. An efflux transporter (e.g., P-glycoprotein) can either restrict the entry of drugs/toxicants into the testis or actively pump drugs/toxicants out of Sertoli and/or germ cells if they have entered the seminiferous epithelium via influx pumps. This thus provides an effective mechanism to safeguard spermatogenesis. Using Sertoli cells cultured in vitro with an established tight junction (TJ)-permeability barrier which mimicked the BTB in vivo and treated with cadmium chloride (CdCl2), and also in adult rats (~300 g b.w.) treated with CdCl2 (3 mg/kg b.w., via i.p.) to induce testicular injury, cadmium was found to significantly downregulate the expression of efflux (e.g., P-glycoprotein, Mrp1, Abcg1) and influx (e.g., Oatp3, Slc15a1, Scl39a8) transporters. For instance, treatment of Sertoli cells with cadmium induced significant loss of P-glycoprotein and Oatp-3 at the cell-cell interface, which likely facilitated cadmium entry into the Sertoli cell. These findings illustrate that one of the mechanisms by which cadmium enters the testis is mediated by downregulating the expression of drug transporters at the BTB. Furthermore, cytokines and steroids were found to have differential effects in regulating the expression of drug transporters. Summary, the expression of drug transporters in the testis is regulated by toxicants, steroids and cytokines.
Collapse
Affiliation(s)
- Linlin Su
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council; New York, NY USA
| | | | | |
Collapse
|
50
|
Luckenbach T, Fischer S, Sturm A. Current advances on ABC drug transporters in fish. Comp Biochem Physiol C Toxicol Pharmacol 2014; 165:28-52. [PMID: 24858718 DOI: 10.1016/j.cbpc.2014.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 01/14/2023]
Abstract
Most members of the large ATP-binding cassette (ABC) gene family are transporters involved in substrate translocation across biological membranes. In eukaryotes, ABC proteins functioning as drug transporters are located in the plasma membrane and mediate the cellular efflux of a wide range of organic chemicals, with some transporters also transporting certain metals. As the enhanced expression of ABC drug transporters can confer multidrug resistance (MDR) to cancers and multixenobiotic resistance (MXR) to organisms from polluted habitats, these ABC family members are also referred to as MDR or MXR proteins. In mammals, ABC drug transporters show predominant expression in tissues involved in excretion or constituting internal or external body boundaries, where they facilitate the excretion of chemicals and their metabolites, and limit chemical uptake and penetration into "sanctuary" sites of the body. Available knowledge about ABC proteins is still limited in teleost fish, a large vertebrate group of high ecological and economic importance. Using transport activity measurements and immunochemical approaches, early studies demonstrated similarities in the tissue distribution of ABC drug transporters between teleosts and mammals, suggesting conserved roles of the transporters in the biochemical defence against toxicants. Recently, the availability of teleost genome assemblies has stimulated studies of the ABC family in this taxon. This review summarises the current knowledge regarding the genetics, functional properties, physiological function, and ecotoxicological relevance of teleostean ABC transporters. The available literature is reviewed with emphasis on recent studies addressing the tissue distribution, substrate spectrum, regulation, physiological function and phylogenetic origin of teleostean ABC transporters.
Collapse
Affiliation(s)
- Till Luckenbach
- Department of Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Stephan Fischer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Department of Environmental Systems Sciences, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Armin Sturm
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|