1
|
Liang X, Li P, Qin Y, Mo Y, Chen D. Beta-adrenergic receptor blockers improve survival in patients with advanced non-small cell lung cancer combined with hypertension undergoing radiotherapy. Sci Rep 2025; 15:10702. [PMID: 40155651 PMCID: PMC11953261 DOI: 10.1038/s41598-025-93205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
Hypertension (HTN) is prevalent in non-small cell lung cancer (NSCLC) patients, yet the cardioprotective and survival benefits of β-adrenergic blockers during radiotherapy (RT) remain underexplored. We analyzed data from a Chinese clinical cohort of 750 patients with stage IIIA to IIIB NSCLC and HTN receiving RT between 2014 and 2018. The findings were further validated using data from the NHANES database. In Chinese clinical cohort, β-adrenergic blockers were associated with improved OS (β-adrenergic blockers: median overall survival (mOS) 17.64 months, 95% CI, 15.95-19.33; no β-adrenergic blockers: mOS 13.16 months, 95% CI, 12.62-13.70; p < 0.0001) and PFS (β-adrenergic blockers: median progression-free survival (mPFS) 7.50 months, 95% CI, 6.50-8.50; without β-adrenergic blockers: mPFS 4.91 months, 95% CI, 4.53-5.31; p < 0.0001). Simultaneously, in the NHANES database, the utilization of β-adrenergic blockers exhibited no discernible impact on OS within the entire tumor population, as evidenced by the Kaplan-Meier curve, which revealed no statistically significant difference between the two groups (p = 0.254). β-adrenergic blockers may improve OS and PFS in patients with HTN and NSCLC undergoing RT. β-adrenergic blockers show potential and warrant further investigation in the context of RT.
Collapse
Affiliation(s)
- Xinyi Liang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261000, Shandong, People's Republic of China
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440, Jiyan Road, Huaiyin District, Jinan, 250000, Shandong, People's Republic of China
| | - Pengwei Li
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440, Jiyan Road, Huaiyin District, Jinan, 250000, Shandong, People's Republic of China
| | - Yiwei Qin
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440, Jiyan Road, Huaiyin District, Jinan, 250000, Shandong, People's Republic of China
- Department of Radiation Oncology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - You Mo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, 515000, Guangdong, People's Republic of China.
| | - Dawei Chen
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440, Jiyan Road, Huaiyin District, Jinan, 250000, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Cavalu S, Saber S, Amer AE, Hamad RS, Abdel-Reheim MA, Elmorsy EA, Abdelhamid AM. The multifaceted role of beta-blockers in overcoming cancer progression and drug resistance: Extending beyond cardiovascular disorders. FASEB J 2024; 38:e23813. [PMID: 38976162 DOI: 10.1096/fj.202400725rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Beta-blockers are commonly used medications that antagonize β-adrenoceptors, reducing sympathetic nervous system activity. Emerging evidence suggests that beta-blockers may also have anticancer effects and help overcome drug resistance in cancer treatment. This review summarizes the contribution of different isoforms of beta-adrenoceptors in cancer progression, the current preclinical and clinical data on associations between beta-blockers use and cancer outcomes, as well as their ability to enhance responses to chemotherapy and other standard therapies. We discuss proposed mechanisms, including effects on angiogenesis, metastasis, cancer stem cells, and apoptotic pathways. Overall, results from epidemiological studies and small clinical trials largely indicate the beneficial effects of beta-blockers on cancer progression and drug resistance. However, larger randomized controlled trials are needed to firmly establish their clinical efficacy and optimal utilization as adjuvant agents in cancer therapy.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ahmed E Amer
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
3
|
Thotamune W, Ubeysinghe S, Shrestha KK, Mostafa ME, Young MC, Karunarathne A. Optical control of cell-surface and endomembrane-exclusive β-adrenergic receptor signaling. J Biol Chem 2024; 300:107481. [PMID: 38901558 PMCID: PMC11304070 DOI: 10.1016/j.jbc.2024.107481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Beta-adrenergic receptors (βARs) are G protein-coupled receptors (GPCRs) that mediate catecholamine hormone-induced stress responses, such as elevation of heart rate. Besides those that are plasma membrane-bound, endomembrane βARs are also signaling competent. Dysregulation of βAR pathways underlies severe pathological conditions. Emerging evidence indicates pathological molecular signatures in deeper endomembrane βARs signaling, likely contributing to conditions such as cardiomyocyte hypertrophy and apoptosis. However, the lack of approaches to control endomembrane β1ARs has impeded linking signaling with pathology. Informed by the β1AR-catecholamine interactions, we engineered an efficient photolabile proligand (OptoIso) to trigger βAR signaling exclusively in endomembrane regions using blue light stimulation. Not only does OptoIso undergo blue light deprotection in seconds, but also efficiently enters cells and allows examination of G protein heterotrimer activation exclusively at endomembranes. OptoIso also allows optical activation of plasma membrane βAR signaling in selected single cells with native fidelity, which can be reversed by terminating blue light. Thus, OptoIso will be a valuable experimental tool to elicit spatial and temporal control of βAR signaling in user-defined endomembrane or plasma membrane regions in unmodified cells with native fidelity.
Collapse
Affiliation(s)
- Waruna Thotamune
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri, USA
| | | | - Kendra K Shrestha
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio, USA
| | | | - Michael C Young
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio, USA.
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri, USA.
| |
Collapse
|
4
|
Biales AD, Bencic DC, Flick RW, Toth GP. Effects of Age and Exposure Duration on the Sensitivity of Early Life Stage Fathead Minnow (Pimephales promelas) to Waterborne Propranolol Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:807-820. [PMID: 38146914 PMCID: PMC11683668 DOI: 10.1002/etc.5814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Propranolol is a heavily prescribed, nonspecific beta-adrenoceptor (bAR) antagonist frequently found in wastewater effluents, prompting concern over its potential to adversely affect exposed organisms. In the present study, the transcriptional responses of 4, 5, and 6 days postfertilization (dpf) ±1 h fathead minnow, exposed for 6, 24, or 48 h to 0.66 or 3.3 mg/L (nominal) propranolol were characterized using RNA sequencing. The number of differentially expressed genes (DEGs) was used as an estimate of sensitivity. A trend toward increased sensitivity with age was observed; fish >7 dpf at the end of exposure were particularly sensitive to propranolol. The DEGs largely overlapped among treatment groups, suggesting a highly consistent response that was independent of age. Cluster analysis was performed using normalized count data for unexposed and propranolol-exposed fish. Control fish clustered tightly by age, with fish ≥7 dpf clustering away from younger fish, reflecting developmental differences. When clustering was conducted using exposed fish, in cases where propranolol induced a minimal or no transcriptional response, the results mirrored those of the control fish and did not appreciably cluster by treatment. In treatment groups that displayed a more robust transcriptional response, the effects of propranolol were evident; however, fish <7 dpf clustered away from older fish, despite having similar numbers of DEGs. Increased sensitivity at 7 dpf coincided with developmental milestones with the potential to alter propranolol pharmacokinetics or pharmacodynamics, such as the onset of exogenous feeding and gill functionality as well as increased systemic expression of bAR. These results may have broader implications because toxicity testing often utilizes fish <4 dpf, prior to the onset of these potentially important developmental milestones, which may result in an underestimation of risk for some chemicals. Environ Toxicol Chem 2024;43:807-820. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Adam D. Biales
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - David C. Bencic
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - Robert W. Flick
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - Gregory P. Toth
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| |
Collapse
|
5
|
Bernard C, Carotenuto AR, Pugno NM, Fraldi M, Deseri L. Modelling lipid rafts formation through chemo-mechanical interplay triggered by receptor-ligand binding. Biomech Model Mechanobiol 2024; 23:485-505. [PMID: 38060155 PMCID: PMC10963483 DOI: 10.1007/s10237-023-01787-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/21/2023] [Indexed: 12/08/2023]
Abstract
Cell membranes, mediator of many biological mechanisms from adhesion and metabolism up to mutation and infection, are highly dynamic and heterogeneous environments exhibiting a strong coupling between biochemical events and structural re-organisation. This involves conformational changes induced, at lower scales, by lipid order transitions and by the micro-mechanical interplay of lipids with transmembrane proteins and molecular diffusion. Particular attention is focused on lipid rafts, ordered lipid microdomains rich of signalling proteins, that co-localise to enhance substance trafficking and activate different intracellular biochemical pathways. In this framework, the theoretical modelling of the dynamic clustering of lipid rafts implies a full multiphysics coupling between the kinetics of phase changes and the mechanical work performed by transmembrane proteins on lipids, involving the bilayer elasticity. This mechanism produces complex interspecific dynamics in which membrane stresses and chemical potentials do compete by determining different morphological arrangements, alteration in diffusive walkways and coalescence phenomena, with a consequent influence on both signalling potential and intracellular processes. Therefore, after identifying the leading chemo-mechanical interactions, the present work investigates from a modelling perspective the spatio-temporal evolution of raft domains to theoretically explain co-localisation and synergy between proteins' activation and raft formation, by coupling diffusive and mechanical phenomena to observe different morphological patterns and clustering of ordered lipids. This could help to gain new insights into the remodelling of cell membranes and could potentially suggest mechanically based strategies to control their selectivity, by orienting intracellular functions and mechanotransduction.
Collapse
Affiliation(s)
- Chiara Bernard
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Angelo Rosario Carotenuto
- Department of Structures for Engineering and Architecture, University of Naples "Federico II", Naples, Italy
- Laboratory of Integrated Mechanics and Imaging for Testing and Simulation (LIMITS), University of Naples "Federico II", Naples, Italy
| | - Nicola Maria Pugno
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials and Mechanics, University of Trento, Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Massimiliano Fraldi
- Department of Structures for Engineering and Architecture, University of Naples "Federico II", Naples, Italy
- Laboratory of Integrated Mechanics and Imaging for Testing and Simulation (LIMITS), University of Naples "Federico II", Naples, Italy
- Département de Physique, LPENS, École Normale Supérieure-PSL, Paris, France
| | - Luca Deseri
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy.
- Department of Mechanical Engineering and Material Sciences, MEMS-SSoE, University of Pittsburgh, Pittsburgh, USA.
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, USA.
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, USA.
| |
Collapse
|
6
|
Thotamune W, Ubeysinghe S, Shrestha KK, Mostafa ME, Young MC, Karunarathne A. Optical Control of Cell-Surface and Endomembrane-Exclusive β-Adrenergic Receptor Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580335. [PMID: 38405895 PMCID: PMC10888897 DOI: 10.1101/2024.02.14.580335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Beta-adrenergic receptors (βARs) are G protein-coupled receptors (GPCRs) that mediate catecholamine-induced stress responses, such as heart rate increase and bronchodilation. In addition to signals from the cell surface, βARs also broadcast non-canonical signaling activities from the cell interior membranes (endomembranes). Dysregulation of these receptor pathways underlies severe pathological conditions. Excessive βAR stimulation is linked to cardiac hypertrophy, leading to heart failure, while impaired stimulation causes compromised fight or flight stress responses and homeostasis. In addition to plasma membrane βAR, emerging evidence indicates potential pathological implications of deeper endomembrane βARs, such as inducing cardiomyocyte hypertrophy and apoptosis, underlying heart failure. However, the lack of approaches to control their signaling in subcellular compartments exclusively has impeded linking endomembrane βAR signaling with pathology. Informed by the β1AR-catecholamine interactions, we engineered an efficiently photo-labile, protected hydroxy β1AR pro-ligand (OptoIso) to trigger βAR signaling at the cell surface, as well as exclusive endomembrane regions upon blue light stimulation. Not only does OptoIso undergo blue light deprotection in seconds, but it also efficiently enters cells and allows examination of G protein heterotrimer activation exclusively at endomembranes. In addition to its application in the optical interrogation of βARs in unmodified cells, given its ability to control deep organelle βAR signaling, OptoIso will be a valuable experimental tool.
Collapse
Affiliation(s)
- Waruna Thotamune
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
| | | | - Kendra K. Shrestha
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH 43606, USA
| | | | - Michael C. Young
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
| |
Collapse
|
7
|
Shiralkar J, Anthony T, McCallum GA, Durand DM. Neural recordings can differentiate between spontaneously metastasizing melanomas and melanomas with low metastatic potential. PLoS One 2024; 19:e0297281. [PMID: 38359031 PMCID: PMC10868782 DOI: 10.1371/journal.pone.0297281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
Multiple studies report that melanomas are innervated tumors with sensory and sympathetic fibers where these neural fibers play crucial functional roles in tumor growth and metastasis with branch specificity. Yet there is no study which reports the direct neural recording and its pattern during in-vivo progression of the cancer. We performed daily neural recordings from male and female mice bearing orthotopic metastasizing- melanomas and melanomas with low metastatic poential, derived from B16-F10 and B16-F1 cells, respectively. Further, to explore the origins of neural activity, 6-Hydroxidopamine mediated chemical sympathectomy was performed followed by daily microneurographic recordings. We also performed the daily bioluminescent imaging to track in vivo growth of primary tumors and distant metastasis to the cranial area. Our results show that metastasizing tumors display high levels of neural activity while tumors with low metastatic potential lack it indicating that the presence of neural activity is linked to the metastasizing potential of the tumors. Moreover, the neural activity is not continuous over the tumor progression and has a sex-specific temporal patterns where males have two peaks of high neural activity while females show a single peak. The neural peak activity originated in peripheral sympathetic nerves as sympathectomy completely eliminated the peak activity in both sexes. Peak activities were highly correlated with the distant metastasis in both sexes. These results show that sympathetic neural activity is crucially involved in tumor metastasis and has sex-specific role in malignancy initiation.
Collapse
Affiliation(s)
- Jay Shiralkar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Tiana Anthony
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Grant A. McCallum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dominique M. Durand
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
8
|
Baker JG, Summers RJ. Adrenoceptors: Receptors, Ligands and Their Clinical Uses, Molecular Pharmacology and Assays. Handb Exp Pharmacol 2024; 285:55-145. [PMID: 38926158 DOI: 10.1007/164_2024_713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The nine G protein-coupled adrenoceptor subtypes are where the endogenous catecholamines adrenaline and noradrenaline interact with cells. Since they are important therapeutic targets, over a century of effort has been put into developing drugs that modify their activity. This chapter provides an outline of how we have arrived at current knowledge of the receptors, their physiological roles and the methods used to develop ligands. Initial studies in vivo and in vitro with isolated organs and tissues progressed to cell-based techniques and the use of cloned adrenoceptor subtypes together with high-throughput assays that allow close examination of receptors and their signalling pathways. The crystal structures of many of the adrenoceptor subtypes have now been determined opening up new possibilities for drug development.
Collapse
Affiliation(s)
- Jillian G Baker
- Cell Signalling, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
9
|
Garramona FT, Cunha TF, Vieira JS, Borges G, Santos G, de Castro G, Ugrinowitsch C, Brum PC. Increased sympathetic nervous system impairs prognosis in lung cancer patients: a scoping review of clinical studies. Lung Cancer Manag 2023; 12:LMT63. [PMID: 38239811 PMCID: PMC10794895 DOI: 10.2217/lmt-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/16/2023] [Indexed: 01/22/2024] Open
Abstract
Aim To summarize current knowledge, gaps, quality of the evidence and show main results related to the role of the autonomic nervous system in lung cancer. Methods Studies were identified through electronic databases (PubMed, Scopus, Embase and Cochrane Library) in October 2023, and a descriptive analysis was performed. Twenty-four studies were included, and most were observational. Results Our data indicated an increased expression of β-2-adrenergic receptors in lung cancer, which was associated with poor prognosis. However, the use of β-blockers as an add-on to standard treatment promoted enhanced overall survival, recurrence-free survival and reduced metastasis occurrence. Conclusion Although the results herein seem promising, future research using high-quality prospective clinical trials is required to draw directions to guide clinical interventions.
Collapse
Affiliation(s)
- Fabrício T Garramona
- University of Sorocaba, Sao Paulo, 18023-000, Brazil
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| | - Telma F Cunha
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
- Paulista University, Sao Paulo, 01533-000, Brazil
| | - Janaína S Vieira
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| | - Gabriela Borges
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| | - Gabriela Santos
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| | - Gilberto de Castro
- Cancer Institute of the State of Sao Paulo (ICESP), Clinical Hospital of Medical College - University of Sao Paulo, Sao Paulo, 01246-000, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| | - Patrícia C Brum
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| |
Collapse
|
10
|
Satilmis H, Verheye E, Vlummens P, Oudaert I, Vandewalle N, Fan R, Knight JM, De Beule N, Ates G, Massie A, Moreaux J, Maes A, De Bruyne E, Vanderkerken K, Menu E, Sloan EK, De Veirman K. Targeting the β 2 -adrenergic receptor increases chemosensitivity in multiple myeloma by induction of apoptosis and modulating cancer cell metabolism. J Pathol 2023; 259:69-80. [PMID: 36245401 PMCID: PMC10953387 DOI: 10.1002/path.6020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/26/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022]
Abstract
While multi-drug combinations and continuous treatment have become standard for multiple myeloma, the disease remains incurable. Repurposing drugs that are currently used for other indications could provide a novel approach to improve the therapeutic efficacy of standard multiple myeloma treatments. Here, we assessed the anti-tumor effects of cardiac drugs called β-blockers as a single agent and in combination with commonly used anti-myeloma therapies. Expression of the β2 -adrenergic receptor correlated with poor survival outcomes in patients with multiple myeloma. Targeting the β2 -adrenergic receptor (β2 AR) using either selective or non-selective β-blockers reduced multiple myeloma cell viability, and induced apoptosis and autophagy. Blockade of the β2 AR modulated cancer cell metabolism by reducing the mitochondrial respiration as well as the glycolytic activity. These effects were not observed by blockade of β1 -adrenergic receptors. Combining β2 AR blockade with the chemotherapy drug melphalan or the proteasome inhibitor bortezomib significantly increased apoptosis in multiple myeloma cells. These data identify the therapeutic potential of β2 AR-blockers as a complementary or additive approach in multiple myeloma treatment and support the future clinical evaluation of non-selective β-blockers in a randomized controlled trial. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hatice Satilmis
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Emma Verheye
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
- Laboratory of Myeloid Cell ImmunologyVIB Center for Inflammation ResearchBrusselsBelgium
- Laboratory of Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | - Philip Vlummens
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
- Department of Clinical HematologyUniversitair Ziekenhuis GentGhentBelgium
| | - Inge Oudaert
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Niels Vandewalle
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Rong Fan
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Jennifer M Knight
- Departments of Psychiatry, Medicine, and Microbiology & ImmunologyMedical College of WisconsinMilwaukeeWIUSA
| | - Nathan De Beule
- Department of Clinical HematologyUniversitair Ziekenhuis Brussel, Vrije Universiteit BrusselBrusselsBelgium
| | - Gamze Ates
- Neuro‐Aging & Viro‐Immunotherapy, Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium
| | - Ann Massie
- Neuro‐Aging & Viro‐Immunotherapy, Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium
| | - Jerome Moreaux
- Institute of Human Genetics, CNRSUniversity of MontpellierMontpellierFrance
- Laboratory for Monitoring Innovative Therapies, Department of Biological HematologyCHU MontpellierMontpellierFrance
- Institut Universitaire de FranceParisFrance
| | - Anke Maes
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology ThemeMonash UniversityParkvilleVICAustralia
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
11
|
Obesity and cancer-extracellular matrix, angiogenesis, and adrenergic signaling as unusual suspects linking the two diseases. Cancer Metastasis Rev 2022; 41:517-547. [PMID: 36074318 PMCID: PMC9470659 DOI: 10.1007/s10555-022-10058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022]
Abstract
Obesity is an established risk factor for several human cancers. Given the association between excess body weight and cancer, the increasing rates of obesity worldwide are worrisome. A variety of obesity-related factors has been implicated in cancer initiation, progression, and response to therapy. These factors include circulating nutritional factors, hormones, and cytokines, causing hyperinsulinemia, inflammation, and adipose tissue dysfunction. The impact of these conditions on cancer development and progression has been the focus of extensive literature. In this review, we concentrate on processes that can link obesity and cancer, and which provide a novel perspective: extracellular matrix remodeling, angiogenesis, and adrenergic signaling. We describe molecular mechanisms involved in these processes, which represent putative targets for intervention. Liver, pancreas, and breast cancers were chosen as exemplary disease models. In view of the expanding epidemic of obesity, a better understanding of the tumorigenic process in obese individuals might lead to more effective treatments and preventive measures.
Collapse
|
12
|
Clanxet J, Teles M, Hernández-Losa J, Rueda MRE, Benitez-Fusté L, Pastor J. Gene expression profiles of beta-adrenergic receptors in canine vascular tumors: a preliminary study. BMC Vet Res 2022; 18:206. [PMID: 35637463 PMCID: PMC9150297 DOI: 10.1186/s12917-022-03317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
Beta adrenergic receptors (β-AR) play a key role in regulating several hallmark pathways of both benign and malignant human and canine tumors. There is scarce information on the expression of β-AR in canine vascular tumors. Therefore, the purpose of the present research work was to study the mRNA expression levels of the three subtypes of the β-AR genes (ADRB1, ADRB2, ADRB3) in hemangiosarcoma (HSA) and hemangioma (HA), as well as in vascular hamartomas (VH) from dogs.Fifty samples (n = 50) were obtained from 38 dogs. Twenty-three animals had HSA, eight animals HA and seven animals VH. HSA were auricular (n = 8), splenic (n = 5), cutaneous (n = 6), auricular and splenic (n = 2), cutaneous-muscular (n = 1) and disseminated (n = 1). There were seven cases of HSA that were divided into primary tumor and secondary (metastatic) tumor. Skin and muscle samples with a normal histological study were used as control group. ADRB gene expression was determinate in all samples by real-time quantitative PCR. Results showed that ADRB1, ADRB2 and ADRB3 were overexpressed in HSA when compared to the control group. ADRB2 was overexpressed in HA when compared to the control group. HSA express higher values of ADBR1 (p = 0.0178) compared to VH. There was a high inter-individual variability in the expression of the three subtypes of ADBR. No statistically significant difference in the expression of ADBR genes were observed between HSA primary when compared to metastatic or in different anatomical locations. In conclusion, canine HSA overexpress the three β-AR subtypes and canine HA β2-AR. High variability was observed in β-AR mRNA levels amongst HSA cases.
Collapse
Affiliation(s)
- Jordi Clanxet
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.,Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Javier Hernández-Losa
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitario Vall d'Hebron, Passeig Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | | | | | - Josep Pastor
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
| |
Collapse
|
13
|
Influence of β2 Adrenergic Receptor Genotype on Longitudinal Measures of Forced Vital Capacity in Patients with Duchenne Muscular Dystrophy. Neuromuscul Disord 2022; 32:150-158. [DOI: 10.1016/j.nmd.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022]
|
14
|
Tian W, Liu Y, Cao C, Zeng Y, Pan Y, Liu X, Peng Y, Wu F. Chronic Stress: Impacts on Tumor Microenvironment and Implications for Anti-Cancer Treatments. Front Cell Dev Biol 2021; 9:777018. [PMID: 34869378 PMCID: PMC8640341 DOI: 10.3389/fcell.2021.777018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is common among cancer patients due to the psychological, operative, or pharmaceutical stressors at the time of diagnosis or during the treatment of cancers. The continuous activations of the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS), as results of chronic stress, have been demonstrated to take part in several cancer-promoting processes, such as tumorigenesis, progression, metastasis, and multi-drug resistance, by altering the tumor microenvironment (TME). Stressed TME is generally characterized by the increased proportion of cancer-promoting cells and cytokines, the reduction and malfunction of immune-supportive cells and cytokines, augmented angiogenesis, enhanced epithelial-mesenchymal transition, and damaged extracellular matrix. For the negative effects that these alterations can cause in terms of the efficacies of anti-cancer treatments and prognosis of patients, supplementary pharmacological or psychotherapeutic strategies targeting HPA, SNS, or psychological stress may be effective in improving the prognosis of cancer patients. Here, we review the characteristics and mechanisms of TME alterations under chronic stress, their influences on anti-cancer therapies, and accessory interventions and therapies for stressed cancer patients.
Collapse
Affiliation(s)
- Wentao Tian
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Liu
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Chenghui Cao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yue Pan
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohan Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yurong Peng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Immunolocalization of Adrenoceptors in the Reproductive Tract of Male Domestic Cats in Comparison to Rats. Animals (Basel) 2021; 11:ani11041049. [PMID: 33917846 PMCID: PMC8068296 DOI: 10.3390/ani11041049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary In cats, semen is collected by pharmacological stimulation. The administration of a drug that stimulates α2-adrenoceptors causes the expulsion of spermatozoa into the urethra. However, as the results are not always satisfactory, this method needs to be improved. There are nine subtypes of adrenoceptors that are involved in the contraction of smooth muscle, including those in the reproductive tract, so adrenoceptors other than the α2-subtype are potential targets in any new, optimized protocol. The aim of this study was to analyze the immunolocalization of the adrenergic receptors in the reproductive tract of the male cat for the first time in this species. The expression of all adrenoceptor subtypes was noted in the peritubular smooth muscle in cats, indicating a potential clinical application for agonists of these receptors for the optimization of the pharmacological semen collection in felids. In a broader context, the development of a new procedure for semen collection in the male cat, using active substances from groups other than those currently used, will support the wider application of reproductive biotechnologies in felids. Abstract Adrenoceptors mediate the action of the sympathetic nervous system, including the contraction of the epididymis and vas deferens. The aim of this study was to immunolocalize the adrenergic receptors in the reproductive tract of the male cat, as this information is not yet available. The epididymis and vas deferens of domestic cats and rats (the biological controls) were analyzed by immunohistochemistry to determine the localization of the α1A-, α1B-, α1D-, α2A-, α2B-, α2C-, β1-, β2-, and β3-adrenoceptors. All the receptors were expressed in the peritubular smooth muscles of the cat, but the α1D-, α2C-, and β1-adrenoceptors were not detected in this tissue in the rat. For the α2A-adrenoceptor, the intensity of immunostaining differed significantly between the caput epididymis (weakest staining) and the vas deferens (strongest staining). The presence of all the types of the receptors was also detected in the cytoplasm of the epithelial cells in all the regions of the reproductive tract. The strong expression of the α2A-adrenoreceptor suggests it has a leading role in the contraction of the reproductive tract in the cat. The presence of other adrenergic receptors in the smooth muscle of the epididymis and vas deferens indicates a potential clinical application for α1-mimetics in the optimization of pharmacological semen collection in felids.
Collapse
|
16
|
Zhang B, Wang Y, Zhao Z, Han B, Yang J, Sun Y, Zhang B, Zang Y, Guan H. Temperature Plays an Essential Regulatory Role in the Tumor Immune Microenvironment. J Biomed Nanotechnol 2021; 17:169-195. [PMID: 33785090 DOI: 10.1166/jbn.2021.3030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, emerging immunotherapy has been included in various malignant tumor treatment standards. Temperature has been considered to affect different pathophysiological reactions such as inflammation and cancer for a long time. However, in tumor immunology research, temperature is still rarely considered a significant variable. In this review, we discuss the effects of room temperature, body temperature, and the local tumor temperature on the tumor immune microenvironment from multiple levels and perspectives, and we discuss changes in the body's local and whole-body temperature under tumor conditions. We analyze the current use of ablation treatment-the reason for the opposite immune effect. We should pay more attention to the therapeutic potential of temperature and create a better antitumor microenvironment that can be combined with immunotherapy.
Collapse
Affiliation(s)
- Bin Zhang
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Youpeng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Ziyin Zhao
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Jinbo Yang
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Yang Sun
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Bingyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Yunjin Zang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Huashi Guan
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| |
Collapse
|
17
|
Cheng YJ, Lin CH, Lane HY. Involvement of Cholinergic, Adrenergic, and Glutamatergic Network Modulation with Cognitive Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:2283. [PMID: 33668976 PMCID: PMC7956475 DOI: 10.3390/ijms22052283] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is a progressive neurodegenerative disease. The number of AD cases has been rapidly growing worldwide. Several the related etiological hypotheses include atypical amyloid β (Aβ) deposition, neurofibrillary tangles of tau proteins inside neurons, disturbed neurotransmission, inflammation, and oxidative stress. During AD progression, aberrations in neurotransmission cause cognitive decline-the main symptom of AD. Here, we review the aberrant neurotransmission systems, including cholinergic, adrenergic, and glutamatergic network, and the interactions among these systems as they pertain to AD. We also discuss the key role of N-methyl-d-aspartate receptor (NMDAR) dysfunction in AD-associated cognitive impairment. Furthermore, we summarize the results of recent studies indicating that increasing glutamatergic neurotransmission through the alteration of NMDARs shows potential for treating cognitive decline in mild cognitive impairment or early stage AD. Future studies on the long-term efficiency of NMDA-enhancing strategies in the treatment of AD are warranted.
Collapse
Affiliation(s)
- Yu-Jung Cheng
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung 40402, Taiwan;
- Department of Rehabilitation, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chieh-Hsin Lin
- Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsien-Yuan Lane
- Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
18
|
Iftikhar A, Islam M, Shepherd S, Jones S, Ellis I. Cancer and Stress: Does It Make a Difference to the Patient When These Two Challenges Collide? Cancers (Basel) 2021; 13:cancers13020163. [PMID: 33418900 PMCID: PMC7825104 DOI: 10.3390/cancers13020163] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Head and neck cancers are the sixth most common cancer in the world. The burden of the disease has remained challenging over recent years despite the advances in treatments of other malignancies. The very use of the word malignancy brings about a stress response in almost all adult patients. Being told you have a tumour is not a word anyone wants to hear. We have embarked on a study which will investigate the effect of stress pathways on head and neck cancer patients and which signalling pathways may be involved. In the future, this will allow clinicians to better manage patients with head and neck cancer and reduce the patients’ stress so that this does not add to their tumour burden. Abstract A single head and neck Cancer (HNC) is a globally growing challenge associated with significant morbidity and mortality. The diagnosis itself can affect the patients profoundly let alone the complex and disfiguring treatment. The highly important functions of structures of the head and neck such as mastication, speech, aesthetics, identity and social interactions make a cancer diagnosis in this region even more psychologically traumatic. The emotional distress engendered as a result of functional and social disruption is certain to negatively affect health-related quality of life (HRQoL). The key biological responses to stressful events are moderated through the combined action of two systems, the hypothalamus–pituitary–adrenal axis (HPA) which releases glucocorticoids and the sympathetic nervous system (SNS) which releases catecholamines. In acute stress, these hormones help the body to regain homeostasis; however, in chronic stress their increased levels and activation of their receptors may aid in the progression of cancer. Despite ample evidence on the existence of stress in patients diagnosed with HNC, studies looking at the effect of stress on the progression of disease are scarce, compared to other cancers. This review summarises the challenges associated with HNC that make it stressful and describes how stress signalling aids in the progression of cancer. Growing evidence on the relationship between stress and HNC makes it paramount to focus future research towards a better understanding of stress and its effect on head and neck cancer.
Collapse
|
19
|
Pini A, Fazi C, Nardini P, Calvani M, Fabbri S, Guerrini A, Forni G, La Marca G, Rosa AC, Filippi L. Effect of Beta 3 Adrenoreceptor Modulation on Patency of the Ductus Arteriosus. Cells 2020; 9:cells9122625. [PMID: 33297453 PMCID: PMC7762377 DOI: 10.3390/cells9122625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 01/09/2023] Open
Abstract
β3-adrenoreceptor (β3-AR), a G-protein coupled receptor, has peculiar regulatory properties in response to oxygen and widespread localization. β3-AR is expressed in the most frequent neoplasms, also occurring in pregnant women, and its blockade reduces tumor growth, indicating β3-AR-blockers as a promising alternative to antineoplastic drugs during pregnancy. However, β3-AR involvement in prenatal morphogenesis and the consequences of its blockade for the fetus remain unknown. In this study, after the demonstrated expression of β3-AR in endothelial and smooth muscle cells of ductus arteriosus (DA), C57BL/6 pregnant mice were acutely treated at 18.5 of gestational day (GD) with indomethacin or with the selective β3-AR antagonist SR59230A, or chronically exposed to SR59230A from 15.5 to 18.5 GD. Six hours after the last treatment, fetuses were collected. Furthermore, newborn mice were treated straight after birth with BRL37344, a β3-AR agonist, and sacrificed after 7 h. SR59230A, at the doses demonstrated effective in reducing cancer progression (10 and 20 mg/kg) in acute and chronic mode, did not induce fetal DA constriction and did not impair the DA ability to close after birth, whereas at the highest dose (40 mg/kg), it was shown to cause DA constriction and preterm-delivery. BRL37344 administered immediately after birth did not alter the physiological DA closure.
Collapse
Affiliation(s)
- Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy;
- Correspondence: (A.P.); (L.F.); Tel.: +39-0552758155 (A.P.); +39-050993677 (L.F)
| | - Camilla Fazi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy;
| | - Maura Calvani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children’s Hospital, 50139 Florence, Italy;
| | - Sergio Fabbri
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy;
| | - Alessandro Guerrini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy;
| | - Giulia Forni
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pediatric Neurosciences, “A. Meyer” University Children’s Hospital, 50139 Florence, Italy; (G.F.); (G.L.M.)
| | - Giancarlo La Marca
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pediatric Neurosciences, “A. Meyer” University Children’s Hospital, 50139 Florence, Italy; (G.F.); (G.L.M.)
| | - Arianna Carolina Rosa
- Department of Scienza e Tecnologia del Farmaco, University of Turin, 10125 Turin, Italy;
| | - Luca Filippi
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence: (A.P.); (L.F.); Tel.: +39-0552758155 (A.P.); +39-050993677 (L.F)
| |
Collapse
|
20
|
Chidambaram H, Chinnathambi S. G-Protein Coupled Receptors and Tau-different Roles in Alzheimer’s Disease. Neuroscience 2020; 438:198-214. [DOI: 10.1016/j.neuroscience.2020.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 01/14/2023]
|
21
|
Chioncel O, Mebazaa A. Microcirculatory Dysfunction in Acute Heart Failure. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
β-Adrenergic Signaling in Lung Cancer: A Potential Role for Beta-Blockers. J Neuroimmune Pharmacol 2019; 15:27-36. [PMID: 31828732 DOI: 10.1007/s11481-019-09891-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022]
Abstract
Lung cancer results in more patient deaths each year than any other cancer type. Additional treatment strategies are needed to improve clinical responses to approved treatment modalities and prevent the emergence of resistant disease. Catecholamines including norepinephrine and epinephrine are elevated as a result of chronic stress and mediate their physiological effects through activation of adrenergic receptors on target tissues. Lung cancer cells express β-adrenergic receptors (β-ARs), and numerous preclinical studies indicate that β2-AR signaling on lung cancer cells facilities cellular programs including proliferation, motility, apoptosis resistance, epithelial-to-mesenchymal transition, metastasis, and the acquisition of an angiogenic and immunosuppressive phenotype. Here, we review the preclinical and clinical evidence supporting a potential role for beta-blockers in improving the clinical outcome of lung cancer patients. Graphical Abstract Catecholamines including norepinephrine and epinephrine act of β-ARs expressed on NSCLC tumor cells and activate pathways regulating tumor progression.
Collapse
|
23
|
Duckett MM, Phung SK, Nguyen L, Khammanivong A, Dickerson E, Dusenbery K, Lawrence J. The adrenergic receptor antagonists propranolol and carvedilol decrease bone sarcoma cell viability and sustained carvedilol reduces clonogenic survival and increases radiosensitivity in canine osteosarcoma cells. Vet Comp Oncol 2019; 18:128-140. [PMID: 31778284 DOI: 10.1111/vco.12560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/28/2019] [Accepted: 11/19/2019] [Indexed: 11/30/2022]
Abstract
Adrenergic receptor (AR) expression has been demonstrated at several sites of primary and metastatic tumour growth and may influence proliferation, survival, metastasis and angiogenesis. AR antagonists like propranolol and carvedilol inhibit proliferation, induce apoptosis and synergize with chemotherapy agents in some cancers. Radiation resistance is mediated in many cells by upregulation of pro-survival pathways, which may be influenced by ARs. Studies evaluating AR antagonists combined with radiation are limited. The purpose of this study was to determine the effect of propranolol and carvedilol on viability and radiosensitivity in sarcoma cell lines. The hypothesis was that propranolol and carvedilol would increase radiosensitivity in four primary bone sarcoma cell lines. Single agent propranolol or carvedilol inhibited cell viability in all cell lines in a concentration-dependent manner. The mean inhibitory concentrations (IC50 ) for carvedilol were approximately 4-fold lower than propranolol and may be clinically relevant in vivo. Immunoblot analysis confirmed AR expression in both human and canine sarcoma cell lines; however, there was no correlation between baseline AR protein expression and radiosensitivity. Short duration treatment with carvedilol and propranolol did not significantly affect clonogenic survival. Prolonged exposure to propranolol and carvedilol significantly decreased the surviving fraction of canine osteosarcoma cells after 3Gy radiation. Based on our results and possible in vivo activity in dogs, further studies investigating the effects of carvedilol on sarcoma are warranted.
Collapse
Affiliation(s)
- Megan M Duckett
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Shee Kwan Phung
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Linh Nguyen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Ali Khammanivong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota.,Masonic Cancer Center, Masonic Cancer Research Building, University of Minnesota, Minneapolis, Minnesota
| | - Erin Dickerson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota.,Masonic Cancer Center, Masonic Cancer Research Building, University of Minnesota, Minneapolis, Minnesota
| | - Kathryn Dusenbery
- Department of Radiation Oncology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota.,Masonic Cancer Center, Masonic Cancer Research Building, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
24
|
Coelho M, Imperatori A, Chiaravalli AM, Franzi F, Castiglioni M, Rasini E, Luini A, Legnaro M, Marino F, Ribeiro L, Cosentino M. Beta1- and Beta2-Adrenoceptors Expression Patterns in Human Non-small Cell Lung Cancer: Relationship with Cancer Histology. J Neuroimmune Pharmacol 2019; 14:697-708. [PMID: 31620969 DOI: 10.1007/s11481-019-09879-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/27/2019] [Indexed: 02/04/2023]
Abstract
Assessment of Beta-AR protein expression on tumour tissues might be a plausible strategy to select cancer patients who can benefit from Beta-blockers therapy. The aim of this study is to evaluate the differences between resected tissue specimens from primary lung cancer (adenocarcinoma (ADC) and squamous cell carcinoma (SCC)) in terms of expression pattern of Beta1- and Beta2-AR in both tumour and adjacent surrounding non-tumour tissue. This retrospective study was based on the analysis of 80 patients with histologically confirmed diagnosis of primary Non-Small Cell Lung Cancer (NSCLC) who received surgical treatment. The cases were carefully selected in order to obtain the most homogeneous sample in terms of histologic subtype (40 ADCs and 40 SCCs) and clinical stage (10 each). Beta1- and Beta2-AR expression was determined by immunohistochemistry and the staining evaluated by semi-quantitative scoring using the H-score method. In our NSCLC series, Beta1- and Beta2-AR are differentially expressed. Beta1-AR expression is present at low levels in both SCC and ADC. Likewise, when compared with the matched surrounding non-tumour tissues, Beta1-AR expression level was significantly lower in both histologic subtypes. Conversely, Beta2-AR is highly expressed in both histologic subtypes, but clearly highly expressed in ADC when compared with SCC and with their matched surrounding non-tumour tissue. Overall, this clinicopathological study highlights the differential expression of Beta1- and Beta2-AR in ADC and SCC. Repurposing non-selective Beta-blockers in oncologic setting might be a suitable therapeutic strategy for lung ADC. Graphical abstract.
Collapse
MESH Headings
- A549 Cells
- Adrenergic beta-1 Receptor Agonists/pharmacology
- Adrenergic beta-2 Receptor Agonists/pharmacology
- Aged
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Dose-Response Relationship, Drug
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Receptors, Adrenergic, beta-1/biosynthesis
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-2/biosynthesis
- Receptors, Adrenergic, beta-2/genetics
- Retrospective Studies
- S Phase/drug effects
- S Phase/physiology
Collapse
Affiliation(s)
- Marisa Coelho
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, s/n, 4200-450, Porto, Portugal.
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal.
- Center of Research in Medical Pharmacology, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy.
| | - Andrea Imperatori
- Center for Thoracic Surgery, Department of Medicine and Surgery, ASST Sette Laghi, University of Insubria, via Guicciardini 9, 21100, Varese, Italy
| | - Anna Maria Chiaravalli
- Unit of Pathology, Department of Medicine and Surgery, ASST Sette Laghi, University of Insubria, via Rossi 9, 21100, Varese, Italy
| | - Francesca Franzi
- Unit of Pathology, Department of Medicine and Surgery, ASST Sette Laghi, University of Insubria, via Rossi 9, 21100, Varese, Italy
| | - Massimo Castiglioni
- Center for Thoracic Surgery, Department of Medicine and Surgery, ASST Sette Laghi, University of Insubria, via Guicciardini 9, 21100, Varese, Italy
| | - Emanuela Rasini
- Center of Research in Medical Pharmacology, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy
| | - Alessandra Luini
- Center of Research in Medical Pharmacology, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy
| | - Massimiliano Legnaro
- Center of Research in Medical Pharmacology, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy
| | - Laura Ribeiro
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, s/n, 4200-450, Porto, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy
| |
Collapse
|
25
|
Kelley EF, Cross TJ, Snyder EM, McDonald CM, Hoffman EP, Bello L. Influence of β 2 adrenergic receptor genotype on risk of nocturnal ventilation in patients with Duchenne muscular dystrophy. Respir Res 2019; 20:221. [PMID: 31619245 PMCID: PMC6796481 DOI: 10.1186/s12931-019-1200-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/25/2019] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease resulting in severe respiratory derangements. As such, DMD patients are at a high risk of nocturnal hypoventilation, thereby requiring nocturnal ventilation (NV). To this end, NV is an important clinical milestone in the management of DMD. Emerging evidence suggests that ß2 adrenergic receptors (ADRB2) may play a role in determining respiratory function, whereby more functional ADRB2 genotype variants (e.g., Gly16) are associated with improved pulmonary function and respiratory muscle strength. These findings suggest that the more functional ADRB2 genotype may help to preserve respiratory function in patients with DMD. The purpose of this study was to identify the influence of ADRB2 genotype on the risk of NV use in DMD. Data from the CINRG Duchenne Natural History Study including 175 DMD patients (3–25 yrs) were analyzed focusing on ADRB2 genotype variants. Time-to-event analyses were used to examine differences in the age at prescription of full-time NV use between genotypes. There were no differences between genotype groups in age, height, weight, corticosteroid use, proportion of ambulatory patients, or age at loss of ambulation. DMD patients expressing the Gly16 polymorphism had a significantly (P < 0.05) lower mean age at NV prescription compared with those patients expressing the Arg16 polymorphism (21.80 ± 0.59 yrs. vs 25.91 ± 1.31 yrs., respectively). In addition, a covariate-adjusted Cox model revealed that the Gly16 variant group possessed a 6.52-fold higher risk of full-time NV use at any given age compared with the Arg16 polymorphism group. These data suggest that genetic variations in the ADRB2 gene may influence the age at which DMD patients are first prescribed NV, whereby patients with the Gly16 polymorphism are more likely to require NV assistance at an earlier age than their Arg16 counterparts.
Collapse
Affiliation(s)
- Eli F Kelley
- Department of Kinesiology, University of Minnesota, Minneapolis, MN, USA. .,Department of Cardiovascular Diseases, Mayo Clinic, RO_GE_MN_10, 1216 2nd Street SW, Rochester, MN, 55902, USA.
| | - Troy J Cross
- Department of Cardiovascular Diseases, Mayo Clinic, RO_GE_MN_10, 1216 2nd Street SW, Rochester, MN, 55902, USA
| | - Eric M Snyder
- Department of Kinesiology, University of Minnesota, Minneapolis, MN, USA
| | - Craig M McDonald
- University of California Davis Medical Center, Sacramento, CA, USA
| | | | - Eric P Hoffman
- Binghamton University - SUNY, Binghamton, NY, USA.,Center for Genetic Medicine, Children's Research Institute, Children's National Health System, Washington, DC, USA
| | - Luca Bello
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
26
|
Wilson C, Zhang X, Buckley C, Heathcote HR, Lee MD, McCarron JG. Increased Vascular Contractility in Hypertension Results From Impaired Endothelial Calcium Signaling. Hypertension 2019; 74:1200-1214. [PMID: 31542964 PMCID: PMC6791503 DOI: 10.1161/hypertensionaha.119.13791] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Endothelial cells line all blood vessels and are critical regulators of vascular tone. In hypertension, disruption of endothelial function alters the release of endothelial-derived vasoactive factors and results in increased vascular tone. Although the release of endothelial-derived vasodilators occurs in a Ca2+-dependent manner, little is known on how Ca2+ signaling is altered in hypertension. A key element to endothelial control of vascular tone is Ca2+ signals at specialized regions (myoendothelial projections) that connect endothelial cells and smooth muscle cells. This work describes disruption in the operation of this key Ca2+ signaling pathway in hypertension. We show that vascular reactivity to phenylephrine is increased in hypertensive (spontaneously hypertensive rat) when compared with normotensive (Wistar Kyoto) rats. Basal endothelial Ca2+ activity limits vascular contraction, but that Ca2+-dependent control is impaired in hypertension. When changes in endothelial Ca2+ levels are buffered, vascular contraction to phenylephrine increased, resulting in similar responses in normotension and hypertension. Local endothelial IP3(inositol trisphosphate)-mediated Ca2+ signals are smaller in amplitude, shorter in duration, occur less frequently, and arise from fewer sites in hypertension. Spatial control of endothelial Ca2+ signaling is also disrupted in hypertension: local Ca2+ signals occur further from myoendothelial projections in hypertension. The results demonstrate that the organization of local Ca2+ signaling circuits occurring at myoendothelial projections is disrupted in hypertension, giving rise to increased contractile responses.
Collapse
Affiliation(s)
- Calum Wilson
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Xun Zhang
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Charlotte Buckley
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Helen R Heathcote
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Matthew D Lee
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - John G McCarron
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
27
|
Cui Y, Wen W, Zheng T, Li H, Gao YT, Cai H, You M, Gao J, Yang G, Zheng W, Xiang YB, Shu XO. Use of Antihypertensive Medications and Survival Rates for Breast, Colorectal, Lung, or Stomach Cancer. Am J Epidemiol 2019; 188:1512-1528. [PMID: 31062847 DOI: 10.1093/aje/kwz106] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
Using time-dependent Cox regression models, we examined associations of common antihypertensive medications with overall cancer survival (OS) and disease-specific survival (DSS), with comprehensive adjustment for potential confounding factors. Participants were from the Shanghai Women's Health Study (1996-2000) and Shanghai Men's Health Study (2002-2006) in Shanghai, China. Included were 2,891 incident breast, colorectal, lung, and stomach cancer cases. Medication use was extracted from electronic medical records. With a median 3.4-year follow-up after diagnosis (interquartile range, 1.0-6.3), we found better outcomes among users of angiotensin II receptor blockers with colorectal cancer (OS: adjusted hazard ratio (HR) = 0.62, 95% confidence interval (CI): 0.44, 0.86; DSS: adjusted HR = 0.61, 95% CI: 0.43, 0.87) and stomach cancer (OS: adjusted HR = 0.62, 95% CI: 0.41, 0.94; DSS: adjusted HR = 0.63, 95% CI: 0.41, 0.98) and among users of β-adrenergic receptor blockers with colorectal cancer (OS: adjusted HR = 0.50, 95% CI: 0.35, 0.72; DSS: adjusted HR = 0.50, 95% CI: 0.34, 0.73). Better survival was also found for calcium channel blockers (DSS: adjusted HR = 0.67, 95% CI: 0.47, 0.97) and diuretics (OS: adjusted HR = 0.66, 95% CI: 0.45, 0.96; DSS: adjusted HR = 0.57, 95% CI: 0.38, 0.85) with stomach cancer. Our findings suggest angiotensin II receptor blockers, β-adrenergic receptor blockers, and calcium channel blockers might be associated with improved survival outcomes of gastrointestinal cancers.
Collapse
Affiliation(s)
- Yong Cui
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tao Zheng
- Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Honglan Li
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Tang Gao
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mingrong You
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jing Gao
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
28
|
Sloan EK, Walker AK. Elucidating the mechanisms of psychosocial influences on cancer using preclinical in vivo models. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2019.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Ventura Spagnolo E, Mondello C, Cardia L, Minutoli L, Puzzolo D, Asmundo A, Macaione V, Alibrandi A, Malta C, Baldino G, Micali A. Post-Mortem Immunohistochemical Evidence of β2-Adrenergic Receptor Expression in the Adrenal Gland. Int J Mol Sci 2019; 20:ijms20123065. [PMID: 31234562 PMCID: PMC6628614 DOI: 10.3390/ijms20123065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
The evidence from post-mortem biochemical studies conducted on cortisol and catecholamines suggest that analysis of the adrenal gland could provide useful information about its role in human pathophysiology and the stress response. Authors designed an immunohistochemical study on the expression of the adrenal β2-adrenergic receptor (β2-AR), a receptor with high-affinity for catecholamines, with the aim to show which zones it is expressed in and how its expression differs in relation to the cause of death. The immunohistochemical study was performed on adrenal glands obtained from 48 forensic autopsies of subjects that died as a result of different pathogenic mechanisms using a mouse monoclonal β2-AR antibody. The results show that immunoreactivity for β2-AR was observed in all adrenal zones. Furthermore, immunoreactivity for β2-AR has shown variation in the localization and intensity of different patterns in relation to the original cause of death. To the best of our knowledge, this is the first study that demonstrates β2-AR expression in the human cortex and provides suggestions on the possible involvement of β2-AR in human cortex hormonal stimulation. In conclusion, the authors provide a possible explanation for the observed differences in expression in relation to the cause of death.
Collapse
Affiliation(s)
- Elvira Ventura Spagnolo
- Legal Medicine Section, Department for Health Promotion and Mother-Child Care, University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy.
| | - Cristina Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Luigi Cardia
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Gazzi, Italy.
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Alessio Asmundo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Vincenzo Macaione
- Department of Clinical and Experimental Medicine, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Via dei Verdi 75, 98122 Messina, Italy.
| | - Consuelo Malta
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Gennaro Baldino
- Legal Medicine Section, Department for Health Promotion and Mother-Child Care, University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy.
| | - Antonio Micali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy.
| |
Collapse
|
30
|
Docherty JR. The pharmacology of α 1-adrenoceptor subtypes. Eur J Pharmacol 2019; 855:305-320. [PMID: 31067439 DOI: 10.1016/j.ejphar.2019.04.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 01/30/2023]
Abstract
This review examines the functions of α1-adrenoceptor subtypes, particularly in terms of contraction of smooth muscle. There are 3 subtypes of α1-adrenoceptor, α1A- α1B- and α1D-adrenoceptors. Evidence is presented that the postulated α1L-adrenoceptor is simply the native α1A-adrenoceptor at which prazosin has low potency. In most isolated tissue studies, smooth muscle contractions to exogenous agonists are mediated particularly by α1A-, with a lesser role for α1D-adrenoceptors, but α1B-adrenoceptors are clearly involved in contractions of some tissues, for example, the spleen. However, nerve-evoked responses are the most crucial physiologically, so that these studies of exogenous agonists may overestimate the importance of α1A-adrenoceptors. The major α1-adrenoceptors involved in blood pressure control by sympathetic nerves are the α1D- and the α1A-adrenoceptors, mediating peripheral vasoconstrictor actions. As noradrenaline has high potency at α1D-adrenceptors, these receptors mediate the fastest response and seem to be targets for neurally released noradrenaline especially to low frequency stimulation, with α1A-adrenoceptors being more important at high frequencies of stimulation. This is true in rodent vas deferens and may be true in vasopressor nerves controlling peripheral resistance and tissue blood flow. The αlA-adrenoceptor may act mainly through Ca2+ entry through L-type channels, whereas the α1D-adrenoceptor may act mainly through T-type channels and exhaustable Ca2+ stores. α1-Adrenoceptors may also act through non-G-protein linked second messenger systems. In many tissues, multiple subtypes of α-adrenoceptor are present, and this may be regarded as the norm rather than exception, although one receptor subtype is usually predominant.
Collapse
Affiliation(s)
- James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
31
|
Everything You Always Wanted to Know about β 3-AR * (* But Were Afraid to Ask). Cells 2019; 8:cells8040357. [PMID: 30995798 PMCID: PMC6523418 DOI: 10.3390/cells8040357] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
The beta-3 adrenergic receptor (β3-AR) is by far the least studied isotype of the beta-adrenergic sub-family. Despite its study being long hampered by the lack of suitable animal and cellular models and inter-species differences, a substantial body of literature on the subject has built up in the last three decades and the physiology of β3-AR is unraveling quickly. As will become evident in this work, β3-AR is emerging as an appealing target for novel pharmacological approaches in several clinical areas involving metabolic, cardiovascular, urinary, and ocular disease. In this review, we will discuss the most recent advances regarding β3-AR signaling and function and summarize how these findings translate, or may do so, into current clinical practice highlighting β3-AR’s great potential as a novel therapeutic target in a wide range of human conditions.
Collapse
|
32
|
Reyes-Corral M, Sørensen NM, Thrasivoulou C, Dasgupta P, Ashmore JF, Ahmed A. Differential Free Intracellular Calcium Release by Class II Antiarrhythmics in Cancer Cell Lines. J Pharmacol Exp Ther 2019; 369:152-162. [PMID: 30655298 DOI: 10.1124/jpet.118.254375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Class II antiarrhythmics or β-blockers are antisympathetic nervous system agents that act by blocking β-adrenoceptors. Despite their common clinical use, little is known about the effects of β-blockers on free intracellular calcium (Ca2+ i), an important cytosolic second messenger and a key regulator of cell function. We investigated the role of four chemical analogs, commonly prescribed β-blockers (atenolol, metoprolol, propranolol, and sotalol), on Ca2+ i release and whole-cell currents in mammalian cancer cells (PC3 prostate cancer and MCF7 breast cancer cell lines). We discovered that only propranolol activated free Ca2+ i release with distinct kinetics, whereas atenolol, metoprolol, and sotalol did not. The propranolol-induced Ca2+ i release was significantly inhibited by the chelation of extracellular calcium with ethylene glycol tetraacetic acid (EGTA) and by dantrolene, an inhibitor of the endoplasmic reticulum (ER) ryanodine receptor channels, and it was completely abolished by 2-aminoethoxydiphenyl borate, an inhibitor of the ER inositol-1,4,5-trisphosphate (IP3) receptor channels. Exhaustion of ER stores with 4-chloro-m-cresol, a ryanodine receptor activator, or thapsigargin, a sarco/ER Ca2+ ATPase inhibitor, precluded the propranolol-induced Ca2+ i release. Finally, preincubation of cells with sotalol or timolol, nonselective blockers of β-adrenoceptors, also reduced the Ca2+ i release activated by propranolol. Our results show that different β-blockers have differential effects on whole-cell currents and free Ca2+ i release and that propranolol activates store-operated Ca2+ i release via a mechanism that involves calcium-induced calcium release and putative downstream transducers such as IP3 The differential action of class II antiarrhythmics on Ca2+ i release may have implications on the pharmacology of these drugs.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Naja M Sørensen
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Christopher Thrasivoulou
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Prokar Dasgupta
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Jonathan F Ashmore
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Aamir Ahmed
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| |
Collapse
|
33
|
Daly CJ. Examining Vascular Structure and Function Using Confocal Microscopy and 3D Imaging Techniques. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1120:97-106. [PMID: 30919297 DOI: 10.1007/978-3-030-06070-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The structure of the blood vessel wall has historically been studied using thin cut sections using standard histological stains. In the mid-80s laser scanning confocal microscopes became available and offered investigators the chance to examine the 3D structure of thicker sections (i.e. ~60 μm depth penetration for a typical vascular wall). Unfortunately, desktop computers lagged far behind in their capacity to process and display large 3D (confocal) data sets. Even extremely highly priced graphics workstations of the early to mid-90s offered little in the way of flexible 3D viewing. Today's gaming PCs provide the kind of processing power that 3D confocal users have been waiting for. Coupled with high end animation software, virtual reality and game design software, we now have the capacity to exploit the huge data sets that modern microscopes can produce. In this chapter, the vascular wall will be used as an example of a biological tissue that can benefit from these developments in imaging hardware and software.
Collapse
Affiliation(s)
- Craig J Daly
- College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
34
|
Differential regulation of β2-adrenoceptor and adenosine A2B receptor signalling by GRK and arrestin proteins in arterial smooth muscle. Cell Signal 2018; 51:86-98. [DOI: 10.1016/j.cellsig.2018.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/13/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
|
35
|
Cellular Receptors of Amyloid β Oligomers (AβOs) in Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19071884. [PMID: 29954063 PMCID: PMC6073792 DOI: 10.3390/ijms19071884] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
It is estimated that Alzheimer’s disease (AD) affects tens of millions of people, comprising not only suffering patients, but also their relatives and caregivers. AD is one of age-related neurodegenerative diseases (NDs) characterized by progressive synaptic damage and neuronal loss, which result in gradual cognitive impairment leading to dementia. The cause of AD remains still unresolved, despite being studied for more than a century. The hallmark pathological features of this disease are senile plaques within patients’ brain composed of amyloid beta (Aβ) and neurofibrillary tangles (NFTs) of Tau protein. However, the roles of Aβ and Tau in AD pathology are being questioned and other causes of AD are postulated. One of the most interesting theories proposed is the causative role of amyloid β oligomers (AβOs) aggregation in the pathogenesis of AD. Moreover, binding of AβOs to cell membranes is probably mediated by certain proteins on the neuronal cell surface acting as AβO receptors. The aim of our paper is to describe alternative hypotheses of AD etiology, including genetic alterations and the role of misfolded proteins, especially Aβ oligomers, in Alzheimer’s disease. Furthermore, in this review we present various putative cellular AβO receptors related to toxic activity of oligomers.
Collapse
|
36
|
Zhang HB, Wang XD, Xu K, Li XG. The progress of prophylactic treatment in retinopathy of prematurity. Int J Ophthalmol 2018; 11:858-873. [PMID: 29862189 DOI: 10.18240/ijo.2018.05.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a retinal vascular disorder frequently found in premature infants. Different therapeutic strategies have been developed to treat ROP. However, there are still many children with ROP suffering by severe limitations in vision or even blindness. Recently, ROP has been suggested to be caused by abnormal development of the retinal vasculature, but not simply resulted by retinal neovascularization which takes about 4 to 6wk after birth in premature infants. Thus, instead of focusing on how to reduce retinal neovascularization, understanding the pathological changes and mechanisms that occur prior to retinal neovascularization is meaningful, which may lead to identify novel target(s) for the development of novel strategy to promote the healthy growth of retinal blood vessels rather than passively waiting for the appearance of retinal neovascularization and removing it by force. In this review, we discussed recent studies about, 1) the pathogenesis prior to retinal neovascularization in oxygen-induced retinopathy (OIR; a ROP in animal model) and in premature infants with ROP; 2) the preclinical and clinical research on preventive treatment of early OIR and ROP. We will not only highlight the importance of the mechanisms and signalling pathways in regulating early stage of ROP but also will provide guidance for actively exploring novel mechanisms and discovering novel treatments for early phase OIR and ROP prior to retinal neovascularization in the future.
Collapse
Affiliation(s)
- Hong-Bing Zhang
- Eye Institute of Shaanxi Province; Xi'an First Hospital, Xi'an 710002, Shaanxi Province, China
| | - Xiao-Dong Wang
- Eye Institute of Shaanxi Province; Xi'an First Hospital, Xi'an 710002, Shaanxi Province, China
| | - Kun Xu
- Eye Institute of Shaanxi Province; Xi'an First Hospital, Xi'an 710002, Shaanxi Province, China
| | - Xiao-Gang Li
- Department of Internal Medicine; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
37
|
β 2-Adrenoceptor signaling in airway epithelial cells promotes eosinophilic inflammation, mucous metaplasia, and airway contractility. Proc Natl Acad Sci U S A 2017; 114:E9163-E9171. [PMID: 29073113 DOI: 10.1073/pnas.1710196114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mostly widely used bronchodilators in asthma therapy are β2-adrenoreceptor (β2AR) agonists, but their chronic use causes paradoxical adverse effects. We have previously determined that β2AR activation is required for expression of the asthma phenotype in mice, but the cell types involved are unknown. We now demonstrate that β2AR signaling in the airway epithelium is sufficient to mediate key features of the asthmatic responses to IL-13 in murine models. Our data show that inhibition of β2AR signaling with an aerosolized antagonist attenuates airway hyperresponsiveness (AHR), eosinophilic inflammation, and mucus-production responses to IL-13, whereas treatment with an aerosolized agonist worsens these phenotypes, suggesting that β2AR signaling on resident lung cells modulates the asthma phenotype. Labeling with a fluorescent β2AR ligand shows the receptors are highly expressed in airway epithelium. In β2AR-/- mice, transgenic expression of β2ARs only in airway epithelium is sufficient to rescue IL-13-induced AHR, inflammation, and mucus production, and transgenic overexpression in WT mice exacerbates these phenotypes. Knockout of β-arrestin-2 (βarr-2-/-) attenuates the asthma phenotype as in β2AR-/- mice. In contrast to eosinophilic inflammation, neutrophilic inflammation was not promoted by β2AR signaling. Together, these results suggest β2ARs on airway epithelial cells promote the asthma phenotype and that the proinflammatory pathway downstream of the β2AR involves βarr-2. These results identify β2AR signaling in the airway epithelium as capable of controlling integrated responses to IL-13 and affecting the function of other cell types such as airway smooth muscle cells.
Collapse
|
38
|
Sinha RA, Singh BK, Yen PM. Reciprocal Crosstalk Between Autophagic and Endocrine Signaling in Metabolic Homeostasis. Endocr Rev 2017; 38:69-102. [PMID: 27901588 DOI: 10.1210/er.2016-1103] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022]
Abstract
Autophagy is a cellular quality control and energy-providing process that is under strict control by intra- and extracellular stimuli. Recently, there has been an exponential increase in autophagy research and its implications for mammalian physiology. Autophagy deregulation is now being implicated in many human diseases, and its modulation has shown promising results in several preclinical studies. However, despite the initial discovery of autophagy as a hormone-regulated process by De Duve in the early 1960s, endocrine regulation of autophagy still remains poorly understood. In this review, we provide a critical summary of our present understanding of the basic mechanism of autophagy, its regulation by endocrine hormones, and its contribution to endocrine and metabolic homeostasis under physiological and pathological settings. Understanding the cross-regulation of hormones and autophagy on endocrine cell signaling and function will provide new insight into mammalian physiology as well as promote the development of new therapeutic strategies involving modulation of autophagy in endocrine and metabolic disorders.
Collapse
Affiliation(s)
- Rohit A Sinha
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| | - Brijesh K Singh
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| | - Paul M Yen
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| |
Collapse
|
39
|
Hu P, He J, Liu S, Wang M, Pan B, Zhang W. β2-adrenergic receptor activation promotes the proliferation of A549 lung cancer cells via the ERK1/2/CREB pathway. Oncol Rep 2016; 36:1757-63. [PMID: 27460700 DOI: 10.3892/or.2016.4966] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/07/2016] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is one of the most common cancers worldwide and accounts for 28% of all cancer-related deaths. The expression of the β2‑adrenergic receptor (β2‑AR), one of the stress‑inducible receptors, has been reported to be closely correlated with malignant tumors. However, the role of β2‑AR activation in human lung epithelial‑derived cancer A549 cells and the underlying mechanisms are not fully understood. In the present study, we found that activation of β2‑AR but not β1‑AR promoted the proliferation of A549 cells. Isoproterenol (ISO) stimulation of β2‑AR induced extracellular signal‑regulated kinase 1/2 (ERK1/2) and cyclic adenosine monophosphate response element‑binding protein (CREB) phosphorylation. Blocking the ERK1/2 pathway by U0126 inhibited CREB phosphorylation and also suppressed A549 cell proliferation. Moreover, ISO treatment enhanced the expression of matrix metalloproteinase (MMP) family proteins such as MMP‑2, MMP‑9, and also vascular endothelial growth factor (VEGF), which were able to be blocked by knockdown of CREB. In conclusion, our data revealed that β2‑AR induced ERK1/2 phosphorylation which in turn activated CREB to promote A549 cell proliferation. These findings elucidate potential therapeutic targets for lung cancer treatment.
Collapse
Affiliation(s)
- Ping Hu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Jingjing He
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Shiling Liu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Meng Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Bingxing Pan
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Wenhua Zhang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| |
Collapse
|
40
|
Abstract
Stress as a modern civilization factor significantly affects our lives. While acute stress might have a positive effect on the organism, chronic stress is usually detrimental and might lead to serious health complications. It is known that stress induced by the physical environment (temperature-induced cold stress) can significantly impair the efficacy of cytotoxic chemotherapies and the anti-tumor immune response. On the other hand, epidemiological evidence has shown that patients taking drugs known as β-adrenergic antagonists ("β-blockers"), which are commonly prescribed to treat arrhythmia, hypertension, and anxiety, have significantly lower rates of several cancers. In this review, we summarize the current knowledge about catecholamines as important stress hormones in tumorigenesis and discuss the use of β-blockers as the potential therapeutic agents.
Collapse
Affiliation(s)
- O Krizanova
- a Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
- b Department of Physiology, Faculty of Medicine , Masaryk University , Brno , Czech Republic
| | - P Babula
- b Department of Physiology, Faculty of Medicine , Masaryk University , Brno , Czech Republic
| | - K Pacak
- c Development, Endocrinology, and Tumor Genetics Affinity Group, Section on Medical Neuroendocrinology , Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
41
|
Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun 2016; 7:10634. [PMID: 26925549 PMCID: PMC4773495 DOI: 10.1038/ncomms10634] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic stress induces signalling from the sympathetic nervous system (SNS) and drives cancer progression, although the pathways of tumour cell dissemination are unclear. Here we show that chronic stress restructures lymphatic networks within and around tumours to provide pathways for tumour cell escape. We show that VEGFC derived from tumour cells is required for stress to induce lymphatic remodelling and that this depends on COX2 inflammatory signalling from macrophages. Pharmacological inhibition of SNS signalling blocks the effect of chronic stress on lymphatic remodelling in vivo and reduces lymphatic metastasis in preclinical cancer models and in patients with breast cancer. These findings reveal unanticipated communication between stress-induced neural signalling and inflammation, which regulates tumour lymphatic architecture and lymphogenous tumour cell dissemination. These findings suggest that limiting the effects of SNS signalling to prevent tumour cell dissemination through lymphatic routes may provide a strategy to improve cancer outcomes. Adverse life events have been associated with reduced survival in cancer patients. Here, the authors explore the mechanism responsible and show that chronic stress in mice activates a signalling cascade in macrophages and tumour cells, which results in restructuring of the tumour lymphatic system, promoting metastasis.
Collapse
|
42
|
Gozal D, Farré R, Nieto FJ. Putative Links Between Sleep Apnea and Cancer: From Hypotheses to Evolving Evidence. Chest 2016; 148:1140-1147. [PMID: 26020135 DOI: 10.1378/chest.15-0634] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In recent years, the potentially adverse role of sleep-disordered breathing in cancer incidence and outcomes has emerged. In parallel, animal models of intermittent hypoxia (IH) and sleep fragmentation (SF) emulating the two major components of OSA have lent support to the notion that OSA may enhance the proliferative and invasive properties of solid tumors. Based on several lines of evidence, we propose that OSA-induced increases in sympathetic outflow and alterations in immune function are critically involved in modifying oncologic processes including angiogenesis. In this context, we suggest that OSA, via IH (and potentially SF), promotes changes in several signaling pathways and transcription factors that coordinate malignant transformation and expansion, disrupts host immunologic surveillance, and consequently leads to increased probability of oncogenesis, accelerated tumor proliferation, and invasion, ultimately resulting in adverse outcomes.
Collapse
Affiliation(s)
- David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL.
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Bunyola, Spain
| | - F Javier Nieto
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI
| |
Collapse
|
43
|
Dickerson EB, Bryan BA. Beta Adrenergic Signaling: A Targetable Regulator of Angiosarcoma and Hemangiosarcoma. Vet Sci 2015; 2:270-292. [PMID: 29061946 PMCID: PMC5644640 DOI: 10.3390/vetsci2030270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/05/2015] [Accepted: 09/08/2015] [Indexed: 01/07/2023] Open
Abstract
Human angiosarcomas and canine hemangiosarcomas are highly aggressive cancers thought to arise from cells of vascular origin. The pathological features, morphological organization, and clinical behavior of canine hemangiosarcomas are virtually indistinct from those of human angiosarcomas. Overall survival with current standard-of-care approaches remains dismal for both humans and dogs, and each is likely to succumb to their disease within a short duration. While angiosarcomas in humans are extremely rare, limiting their study and treatment options, canine hemangiosarcomas occur frequently. Therefore, studies of these sarcomas in dogs can be used to advance treatment approaches for both patient groups. Emerging data suggest that angiosarcomas and hemangiosarcomas utilize beta adrenergic signaling to drive their progression by regulating the tumor cell niche and fine-tuning cellular responses within the tumor microenvironment. These discoveries indicate that inhibition of beta adrenergic signaling could serve as an Achilles heel for these tumors and emphasize the need to design therapeutic strategies that target tumor cell and stromal cell constituents. In this review, we summarize recent discoveries and present new hypotheses regarding the roles of beta adrenergic signaling in angiosarcomas and hemangiosarcomas. Because the use of beta adrenergic receptor antagonists is well established in human and veterinary medicine, beta blockade could provide an immediate adjunct therapy for treatment along with a tangible opportunity to improve upon the outcomes of both humans and dogs with these diseases.
Collapse
Affiliation(s)
- Erin B Dickerson
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA.
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Brad A Bryan
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79912, USA.
| |
Collapse
|
44
|
Moore J, Dyson A, Singer M, Fraser J. Microcirculatory dysfunction and resuscitation: why, when, and how. Br J Anaesth 2015; 115:366-75. [DOI: 10.1093/bja/aev163] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
45
|
Childers WK, Hollenbeak CS, Cheriyath P. β-Blockers Reduce Breast Cancer Recurrence and Breast Cancer Death: A Meta-Analysis. Clin Breast Cancer 2015; 15:426-31. [PMID: 26516037 DOI: 10.1016/j.clbc.2015.07.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/24/2015] [Accepted: 07/05/2015] [Indexed: 10/24/2022]
Abstract
The normal physiologic stress mechanism, mediated by the sympathetic nervous system, causes a release of the neurotransmitters epinephrine and norepinephrine. Preclinical data have demonstrated an effect on tumor progression and metastasis via the sympathetic nervous system mediated primarily through the β-adrenergic receptor (β-AR) pathway. In vitro data have shown an increase in tumor growth, migration, tumor angiogenesis, and metastatic spread in breast cancer through activation of the β-AR. Retrospective cohort studies on the clinical outcomes of β-blockers in breast cancer outcomes showed no clear consensus. The purpose of this study was to perform a systematic review and meta-analysis of the effect of β-blockers on breast cancer outcomes. A systematic review was performed using the Cochrane library and PubMed. Publications between the dates of January 2010 and December 2013 were identified. Available hazard ratios (HRs) were extracted for breast cancer recurrence, breast cancer death, and all-cause mortality and pooled using a random effects meta-analysis. A total of 7 studies contained results for at least 1 of the outcomes of breast cancer recurrence, breast cancer death, or all-cause mortality in breast cancer patients receiving β-blockers. In the 5 studies that contained results for breast cancer recurrence, there was no statistically significant risk reduction (HR, 0.67; 95% confidence interval [CI], 0.39-1.13). Breast cancer death results were contained in 4 studies, which also suggested a significant reduction in risk (HR, 0.50; 95% CI, 0.32-0.80). Among the 4 studies that reported all-cause mortality, there was no significant effect of β-blockers on risk (HR, 1.02; 95% CI, 0.75-1.37). Results of this systematic review and meta-analysis suggest that the use of β-blockers significantly reduced risk of breast cancer death among women with breast cancer.
Collapse
Affiliation(s)
| | | | - Pramil Cheriyath
- Department of Internal Medicine, Pinnacle Health System, Harrisburg, PA.
| |
Collapse
|
46
|
Gozal D, Farré R, Nieto FJ. Obstructive sleep apnea and cancer: Epidemiologic links and theoretical biological constructs. Sleep Med Rev 2015; 27:43-55. [PMID: 26447849 DOI: 10.1016/j.smrv.2015.05.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 12/19/2022]
Abstract
Sleep disorders have emerged as highly prevalent conditions in the last 50-75 y. Along with improved understanding of such disorders, the realization that perturbations in sleep architecture and continuity may initiate, exacerbate or modulate the phenotypic expression of multiple diseases including cancer has gained increased attention. Furthermore, the intermittent hypoxia that is attendant to sleep disordered breathing, has recently been implicated in increased incidence and more adverse prognosis of cancer. The unifying conceptual framework linking these associations proposes that increased sympathetic activity and/or alterations in immune function, particularly affecting innate immune cellular populations, underlie the deleterious effects of sleep disorders on tumor biology. In this review, the epidemiological evidence linking disrupted sleep and intermittent hypoxia to oncological outcomes, and the potential biological underpinnings of such associations as illustrated by experimental murine models will be critically appraised. The overarching conclusion appears supportive in the formulation of an hypothetical framework, in which fragmented sleep and intermittent hypoxia may promote changes in multiple signalosomes and transcription factors that can not only initiate malignant transformation, but will also alter the tumor microenvironment, disrupt immunosurveillance, and thus hasten tumor proliferation and increase local and metastatic invasion. Future bench-based experimental studies as well as carefully conducted and controlled clinical epidemiological studies appear justified for further exploration of these hypotheses.
Collapse
Affiliation(s)
- David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA.
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - F Javier Nieto
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
47
|
McGrath JC. Localization of α-adrenoceptors: JR Vane Medal Lecture. Br J Pharmacol 2015; 172:1179-94. [PMID: 25377869 PMCID: PMC4337695 DOI: 10.1111/bph.13008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/06/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED This review is based on the JR Vane Medal Lecture presented at the BPS Winter Meeting in December 2011 by J.C. McGrath. A recording of the lecture is included as supporting information. It covers his laboratory's work from 1990 to 2010 on the localization of vascular α1 -adrenoceptors in native tissues, mainly arteries. MAIN POINTS (i) α1 -adrenoceptors are present on several cell types in arteries, not only on medial smooth muscle, but also on adventitial, endothelial and nerve cells; (ii) all three receptor subtypes (α1 A , α1 B , α1 D ) are capable of binding ligands at the cell surface, strongly indicating that they are capable of function and not merely expressed. (iii) all of these cell types can take up an antagonist ligand into the intracellular compartments to which endocytosing receptors move; (iv) each individual subtype can exist at the cell surface and intracellularly in the absence of the other subtypes. As functional pharmacological experiments show variations in the involvement of the different subtypes in contractions of different arteries, it is concluded that the presence and disposition of α1 -adrenoceptors in arteries is not a simple guide to their involvement in function. Similar locations of the subtypes, even in different cell types, suggest that differences between the distribution of subtypes in model systems do not directly correlate with those in native tissues. This review includes a historical summary of the alternative terms used for adrenoceptors (adrenergic receptors, adrenoreceptors) and the author's views on the use of colours to illustrate different items, given his partial colour-blindness.
Collapse
Affiliation(s)
- John C McGrath
- School of Life Sciences, University of GlasgowGlasgow, UK
| |
Collapse
|
48
|
Patil KC, McPherson L, Daly CJ. Co-Localization of Alpha1-Adrenoceptors and GPR55: A Novel Prostate Cancer Paradigm? ACTA ACUST UNITED AC 2015. [DOI: 10.4236/pp.2015.64023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 2014; 6:245. [PMID: 25278877 PMCID: PMC4166895 DOI: 10.3389/fnagi.2014.00245] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022] Open
Abstract
Pericytes are perivascular cells that envelop and make intimate connections with adjacent capillary endothelial cells. Recent studies show that they may have a profound impact in skeletal muscle regeneration, innervation, vessel formation, fibrosis, fat accumulation, and ectopic bone formation throughout life. In this review, we summarize and evaluate recent advances in our understanding of pericytes' influence on adult skeletal muscle pathophysiology. We also discuss how further elucidating their biology may offer new approaches to the treatment of conditions characterized by muscle wasting.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Maria L Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
50
|
Yamazaki S, Sakakibara H, Takemura H, Yasuda M, Shimoi K. Quercetin-3-O-glucronide inhibits noradrenaline binding to α2-adrenergic receptor, thus suppressing DNA damage induced by treatment with 4-hydroxyestradiol and noradrenaline in MCF-10A cells. J Steroid Biochem Mol Biol 2014; 143:122-9. [PMID: 24607809 DOI: 10.1016/j.jsbmb.2014.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
Risk factors for breast cancer include estrogens such as 17β-estradiol (E2) and high stress levels. 4-Hydroxyestradiol (4-OHE2), a metabolite of E2 formed preferentially by cytochrome P450 1B1, is oxidized to E2-3,4-quinone, which reacts with DNA to form depurinating adducts that exert genotoxicity and carcinogenicity. Endogenous catecholamines such as adrenaline (A) and noradrenaline (NA) are released from the adrenal gland and sympathetic nervous system during exposure to stress. Here, we found that treatment with 4-OHE2 (3 μM) and NA (3 nM) significantly induced the phosphorylation of histone H2AX (γ-H2AX), one of the earliest indicators of DNA damage, and apurinic (AP) sites via the α2-adrenergic receptor (α2-AR) in human mammary epithelial MCF-10A cells. As an inverse association between a higher intake of flavonoids and breast cancer risk has previously been suggested from epidemiological studies, we investigated the effects of quercetin-3-O-glucuronide (Q3G), a circulating metabolite of quercetin in the blood, on 4-OHE2- and NA-induced γ-H2AX and AP sites. Q3G (0.1 μM) suppressed their induction and inhibited the binding of [(3)H]-NA to α2-AR. These results suggest that Q3G acts as an α2-AR antagonist and that it could be used as a chemopreventive agent for stress-promoted breast cancer.
Collapse
Affiliation(s)
- Shunsuke Yamazaki
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Sakakibara
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Hitomi Takemura
- Faculty of Home Economics, Aichi Gakusen University, 28 Hegoshi-cho Kawakaminari, Okazaki 444-8520, Japan
| | - Michiko Yasuda
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kayoko Shimoi
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|