1
|
Sato K, Koyanagi-Aoi M, Uehara K, Yamashita Y, Shinohara M, Lee S, Reinhardt A, Woltjen K, Chiba K, Miyake H, Fujisawa M, Aoi T. Efficient differentiation of human iPSCs into Leydig-like cells capable of long-term stable secretion of testosterone. Stem Cell Reports 2025; 20:102392. [PMID: 39824187 PMCID: PMC11864132 DOI: 10.1016/j.stemcr.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/20/2025] Open
Abstract
Late-onset hypogonadism (LOH) syndrome is characterized by age-related testosterone deficiency and negatively affects the quality of life of older men. A promising therapeutic approach for LOH syndrome is transplantation of testosterone-producing Leydig-like cells (LLCs) derived from human induced pluripotent stem cells (hiPSCs). However, previous studies have encountered obstacles, such as limited cell longevity, insufficient testosterone production, and inefficiency of differentiation. To address these issues, we developed a novel protocol that includes forced NR5A1 expression, a cytokine cocktail promoting mesoderm differentiation, and a transitional shift from 3D to 2D cultures. The resultant cells survived on culture dishes for over 16 weeks, produced 22-fold more testosterone than the conventional method, and constituted a homogeneous population of LLCs with a differentiation efficiency exceeding 99% without purification. Furthermore, these LLCs were successfully engrafted subcutaneously into mice, resulting in increased serum testosterone levels. Our study will facilitate innovative therapeutic strategies for LOH syndrome.
Collapse
Affiliation(s)
- Katsuya Sato
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Division of Urology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan
| | - Keiichiro Uehara
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Department of Diagnostic Pathology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yosuke Yamashita
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Division of Urology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Molecular Epidemiology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Suji Lee
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Anika Reinhardt
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Koji Chiba
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Hideaki Miyake
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Masato Fujisawa
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan; Division of Signal Pathways, Biosignal Research Center, Kobe University, Kobe, Japan.
| |
Collapse
|
2
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2025; 62:46-76. [PMID: 38816676 PMCID: PMC11711580 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
3
|
Hu T, Zhou T, Goit RK, Tam KC, Chan YK, Lam WC, Lo ACY. Bioactive Glial-Derived Neurotrophic Factor from a Safe Injectable Collagen-Alginate Composite Gel Rescues Retinal Photoreceptors from Retinal Degeneration in Rabbits. Mar Drugs 2024; 22:394. [PMID: 39330275 PMCID: PMC11433152 DOI: 10.3390/md22090394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
The management of vision-threatening retinal diseases remains challenging due to the lack of an effective drug delivery system. Encapsulated cell therapy (ECT) offers a promising approach for the continuous delivery of therapeutic agents without the need for immunosuppressants. In this context, an injectable and terminable collagen-alginate composite (CAC) ECT gel, designed with a Tet-on pro-caspase-8 system, was developed as a safe intraocular drug delivery platform for the sustained release of glial-cell-line-derived neurotrophic factor (GDNF) to treat retinal degenerative diseases. This study examined the potential clinical application of the CAC ECT gel, focusing on its safety, performance, and termination through doxycycline (Dox) administration in the eyes of healthy New Zealand White rabbits, as well as its therapeutic efficacy in rabbits with sodium-iodate (SI)-induced retinal degeneration. The findings indicated that the CAC ECT gel can be safely implanted without harming the retina or lens, displaying resistance to degradation, facilitating cell attachment, and secreting bioactive GDNF. Furthermore, the GDNF levels could be modulated by the number of implants. Moreover, Dox administration was effective in terminating gel function without causing retinal damage. Notably, rabbits with retinal degeneration treated with the gels exhibited significant functional recovery in both a-wave and b-wave amplitudes and showed remarkable efficacy in reducing photoreceptor apoptosis. Given its biocompatibility, mechanical stability, controlled drug release, terminability, and therapeutic effectiveness, our CAC ECT gel presents a promising therapeutic strategy for various retinal diseases in a clinical setting, eliminating the need for immunosuppressants.
Collapse
Affiliation(s)
- Tingyu Hu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Ting Zhou
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Rajesh Kumar Goit
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
- Jules Stein Eye Institute, Los Angeles, CA 90095, USA
| | - Ka Cheung Tam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Wai-Ching Lam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| |
Collapse
|
4
|
Pong KCC, Lai YS, Wong RCH, Lee ACK, Chow SCT, Lam JCW, Ho HP, Wong CTT. Automated Uniform Spheroid Generation Platform for High Throughput Drug Screening Process. BIOSENSORS 2024; 14:392. [PMID: 39194621 DOI: 10.3390/bios14080392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Three-dimensional (3D) spheroid models are crucial for cancer research, offering more accurate insights into tumour biology and drug responses than traditional 2D cell cultures. However, inconsistent and low-throughput spheroid production has hindered their application in drug screening. Here, we present an automated high-throughput platform for a spheroid selection, fabrication, and sorting system (SFSS) to produce uniform gelatine-encapsulated spheroids (GESs) with high efficiency. SFSS integrates advanced imaging, analysis, photo-triggered fabrication, and microfluidic sorting to precisely control spheroid size, shape, and viability. Our data demonstrate that our SFSS can produce over 50 GESs with consistent size and circularity in 30 min with over 97% sorting accuracy while maintaining cell viability and structural integrity. We demonstrated that the GESs can be used for drug screening and potentially for various assays. Thus, the SFSS could significantly enhance the efficiency of generating uniform spheroids, facilitating their application in drug development to investigate complex biological systems and drug responses in a more physiologically relevant context.
Collapse
Affiliation(s)
- Kelvin C C Pong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong, China
- BioArchitec Group Limited, Hong Kong, China
| | - Yuen Sze Lai
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Roy Chi Hang Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Alan Chun Kit Lee
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | | | | | - Ho Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Clarence T T Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
5
|
Deng X, Peng D, Yao Y, Huang K, Wang J, Ma Z, Fu J, Xu Y. Optogenetic therapeutic strategies for diabetes mellitus. J Diabetes 2024; 16:e13557. [PMID: 38751366 PMCID: PMC11096815 DOI: 10.1111/1753-0407.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 05/18/2024] Open
Abstract
Diabetes mellitus (DM) is a common chronic disease affecting humans globally. It is characterized by abnormally elevated blood glucose levels due to the failure of insulin production or reduction of insulin sensitivity and functionality. Insulin and glucagon-like peptide (GLP)-1 replenishment or improvement of insulin resistance are the two major strategies to treat diabetes. Recently, optogenetics that uses genetically encoded light-sensitive proteins to precisely control cell functions has been regarded as a novel therapeutic strategy for diabetes. Here, we summarize the latest development of optogenetics and its integration with synthetic biology approaches to produce light-responsive cells for insulin/GLP-1 production, amelioration of insulin resistance and neuromodulation of insulin secretion. In addition, we introduce the development of cell encapsulation and delivery methods and smart bioelectronic devices for the in vivo application of optogenetics-based cell therapy in diabetes. The remaining challenges for optogenetics-based cell therapy in the clinical translational study are also discussed.
Collapse
Affiliation(s)
- Xin Deng
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
| | - Dandan Peng
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Yuanfa Yao
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
| | - Ke Huang
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Jinling Wang
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Zhihao Ma
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
| | - Junfen Fu
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Yingke Xu
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
- Binjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
6
|
Appell MB, Pejavar J, Pasupathy A, Rompicharla SVK, Abbasi S, Malmberg K, Kolodziejski P, Ensign LM. Next generation therapeutics for retinal neurodegenerative diseases. J Control Release 2024; 367:708-736. [PMID: 38295996 PMCID: PMC10960710 DOI: 10.1016/j.jconrel.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/05/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Neurodegenerative diseases affecting the visual system encompass glaucoma, macular degeneration, retinopathies, and inherited genetic disorders such as retinitis pigmentosa. These ocular pathologies pose a serious burden of visual impairment and blindness worldwide. Current treatment modalities include small molecule drugs, biologics, or gene therapies, most of which are administered topically as eye drops or as injectables. However, the topical route of administration faces challenges in effectively reaching the posterior segment and achieving desired concentrations at the target site, while injections and implants risk severe complications, such as retinal detachment and endophthalmitis. This necessitates the development of innovative therapeutic strategies that can prolong drug release, deliver effective concentrations to the back of the eye with minimal systemic exposure, and improve patient compliance and safety. In this review, we introduce retinal degenerative diseases, followed by a discussion of the existing clinical standard of care. We then delve into detail about drug and gene delivery systems currently in preclinical and clinical development, including formulation and delivery advantages/drawbacks, with a special emphasis on potential for clinical translation.
Collapse
Affiliation(s)
- Matthew B Appell
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jahnavi Pejavar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ashwin Pasupathy
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kiersten Malmberg
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Gynecology and Obstetrics, Biomedical Engineering, Oncology, and Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
7
|
Wang X, Jia B, Lee K, Davis B, Wen C, Wang Y, Zheng H, Wang Y. Biomimetic Bacterial Capsule for Enhanced Aptamer Display and Cell Recognition. J Am Chem Soc 2024; 146:868-877. [PMID: 38153404 DOI: 10.1021/jacs.3c11208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Great effort has been made to encapsulate or coat living mammalian cells for a variety of applications ranging from diabetes treatment to three-dimensional printing. However, no study has reported the synthesis of a biomimetic bacterial capsule to display high-affinity aptamers on the cell surface for enhanced cell recognition. Therefore, we synthesized an ultrathin alginate-polylysine coating to display aptamers on the surface of living cells with natural killer (NK) cells as a model. The results show that this coating-mediated aptamer display is more stable than direct cholesterol insertion into the lipid bilayer. The half-life of the aptamer on the cell surface can be increased from less than 1.5 to over 20 h. NK cells coated with the biomimetic bacterial capsule exhibit a high efficiency in recognizing and killing target cells. Therefore, this work has demonstrated a promising cell coating method for the display of aptamers for enhanced cell recognition.
Collapse
Affiliation(s)
- Xuelin Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bei Jia
- Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Kyungsene Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Brandon Davis
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Connie Wen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yixun Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hong Zheng
- Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Sepyani S, Momenzadeh S, Safabakhsh S, Nedaeinia R, Salehi R. Therapeutic approaches for Type 1 Diabetes: Promising cell-based approaches to achieve ultimate success. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:23-33. [PMID: 37977308 DOI: 10.1016/j.slasd.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Type 1 Diabetes mellitus (T1DM) is a chronic metabolic disorder characterized by pancreatic β-cells destruction. Despite substantial advances in T1DM treatment, lifelong exogenous insulin administration is the mainstay of treatments, and constant control of glucose levels is still a challenge. Endogenous insulin production by replacing insulin-producing cells is an alternative, but the lack of suitable donors is accounted as one of the main obstacles to its widespread application. The research and trials overview demonstrates that endogenous production of insulin has started to go beyond the deceased-derived to stem cells-derived insulin-producing cells. Several protocols have been developed over the past couple of years for generating insulin-producing cells (IPCs) from various stem cell types and reprogramming fully differentiated cells. A straightforward and quick method for achieving this goal is to investigate and apply the β-cell specific transcription factors as a direct strategy for IPCs generation. In this review, we emphasize the significance of transcription factors in IPCs development from different non-beta cell sources, and pertinent research underlies the marked progress in the methods for generating insulin-producing cells and application for Type 1 Diabetes treatment.
Collapse
Affiliation(s)
- Sahar Sepyani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sedigheh Momenzadeh
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saied Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU 96910, United States
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Shafiq M, Rafique M, Cui Y, Pan L, Do CW, Ho EA. An insight on ophthalmic drug delivery systems: Focus on polymeric biomaterials-based carriers. J Control Release 2023; 362:446-467. [PMID: 37640109 DOI: 10.1016/j.jconrel.2023.08.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Presently, different types of eye diseases, such as glaucoma, myopia, infection, and dry eyes are treated with topical eye drops. However, due to ocular surface barriers, eye drops require multiple administrations, which may cause several risks, thereby necessitating additional strategies. Some of the key characteristics of an ideal ocular drug delivery system are as follows: (a) good penetration into cornea, (b) high drug retention in the ocular tissues, (c) targetability to the desired regions of the eye, and (d) good bioavailability. It is worthy to note that the corneal epithelial tight junctions hinder the permeation of therapeutics through the cornea. Therefore, it is necessary to design nanocarriers that can overcome these barriers and enhance drug penetration into the inner parts of the eye. Moreover, intelligent multifunctional nanocarriers can be designed to include cavities, which may help encapsulate sufficient amount of the drug. In addition, nanocarriers can be modified with the targeting moieties. Different types of nanocarriers have been developed for ocular drug delivery applications, including emulsions, liposomes, micelles, and nanoparticles. However, these formulations may be rapidly cleared from the eye. The therapeutic use of the nanoparticles (NPs) is also hindered by the non-specific adsorption of proteins on NPs, which may limit their interaction with the cellular moieties or other targeted biological factors. Functional drug delivery systems (DDS), which can offer targeted ocular drug delivery while avoiding the non-specific protein adsorption could exhibit great potential. This could be further realized by the on-demand DDS, which can respond to the stimuli in a spatio-temporal fashion. The cell-mediated DDS offer another valuable platform for ophthalmological drug delivery.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Muhammad Rafique
- Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yingkun Cui
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Li Pan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Chi-Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute of Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong, China; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Emmanuel A Ho
- School of Pharmacy, University of Waterloo, Waterloo, Canada; Waterloo Institute for Nanotechnology, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong.
| |
Collapse
|
11
|
Saimok W, Iyaraganjanakul P, Kreeporn P, Phuanghom W, Sa-ngiamsuntorn K, Hongeng S, Nasongkla N. Co-encapsulation of bFGF-loaded microspheres and hepatocytes in microbeads for prolonging hepatic pre-transplantation. J Drug Deliv Sci Technol 2023; 87:104784. [DOI: 10.1016/j.jddst.2023.104784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
12
|
Grogg J, Vernet R, Charrier E, Urwyler M, Von Rohr O, Saingier V, Courtout F, Lathuiliere A, Gaudenzio N, Engel A, Mach N. Engineering a versatile and retrievable cell macroencapsulation device for the delivery of therapeutic proteins. iScience 2023; 26:107372. [PMID: 37539029 PMCID: PMC10393802 DOI: 10.1016/j.isci.2023.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
Encapsulated cell therapy holds a great potential to deliver sustained levels of highly potent therapeutic proteins to patients and improve chronic disease management. A versatile encapsulation device that is biocompatible, scalable, and easy to administer, retrieve, or replace has yet to be validated for clinical applications. Here, we report on a cargo-agnostic, macroencapsulation device with optimized features for protein delivery. It is compatible with adherent and suspension cells, and can be administered and retrieved without burdensome surgical procedures. We characterized its biocompatibility and showed that different cell lines producing different therapeutic proteins can be combined in the device. We demonstrated the ability of cytokine-secreting cells encapsulated in our device and implanted in human skin to mobilize and activate antigen-presenting cells, which could potentially serve as an effective adjuvant strategy in cancer immunization therapies. We believe that our device may contribute to cell therapies for cancer, metabolic disorders, and protein-deficient diseases.
Collapse
Affiliation(s)
- Julien Grogg
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
- MaxiVAX SA, Geneva, Switzerland
| | - Remi Vernet
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Emily Charrier
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
- MaxiVAX SA, Geneva, Switzerland
| | - Muriel Urwyler
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Olivier Von Rohr
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Valentin Saingier
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Fabien Courtout
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Aurelien Lathuiliere
- Department of Rehabilitation and Geriatrics, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 - CNRS UMR5051 - University Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| | - Adrien Engel
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
- MaxiVAX SA, Geneva, Switzerland
| | - Nicolas Mach
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Lee K, Davis B, Wang X, Mirg S, Wen C, Abune L, Peterson BE, Han L, Chen H, Wang H, Szczesny SE, Lei Y, Kothapalli SR, Wang Y. Nanoparticle-Decorated Biomimetic Extracellular Matrix for Cell Nanoencapsulation and Regulation. Angew Chem Int Ed Engl 2023; 62:e202306583. [PMID: 37277318 PMCID: PMC10526972 DOI: 10.1002/anie.202306583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
Cell encapsulation has been studied for various applications ranging from cell transplantation to biological production. However, current encapsulation technologies focus on cell protection rather than cell regulation that is essential to most if not all cell-based applications. Here we report a method for cell nanoencapsulation and regulation using an ultrathin biomimetic extracellular matrix as a cell nanocapsule to carry nanoparticles (CN2 ). This method allows high-capacity nanoparticle retention at the vicinity of cell surfaces. The encapsulated cells maintain high viability and normal metabolism. When gold nanoparticles (AuNPs) are used as a model to decorate the nanocapsule, light irradiation transiently increases the temperature, leading to the activation of the heat shock protein 70 (HSP70) promoter and the regulation of reporter gene expression. As the biomimetic nanocapsule can be decorated with any or multiple NPs, CN2 is a promising platform for advancing cell-based applications.
Collapse
Affiliation(s)
- Kyungsene Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Brandon Davis
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xuelin Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shubham Mirg
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Connie Wen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lidya Abune
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Benjamin E Peterson
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Li Han
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Spencer E Szczesny
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuguo Lei
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
14
|
Mesfin FM, Manohar K, Shelley WC, Brokaw JP, Liu J, Ma M, Markel TA. Stem cells as a therapeutic avenue for active and long-term complications of Necrotizing Enterocolitis. Semin Pediatr Surg 2023; 32:151311. [PMID: 37276782 PMCID: PMC10330659 DOI: 10.1016/j.sempedsurg.2023.151311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating neonatal intestinal disease associated with significant morbidity and mortality. Although decades of research have been dedicated to understanding the pathogenesis of NEC and developing therapies, it remains the leading cause of death among neonatal gastrointestinal diseases. Mesenchymal stem cells (MSCs) have garnered significant interest recently as potential therapeutic agents for the treatment of NEC. They have been shown to rescue intestinal injury and reduce the incidence and severity of NEC in various preclinical animal studies. MSCs and MSC-derived organoids and tissue engineered small intestine (TESI) have shown potential for the treatment of long-term sequela of NEC such as short bowel syndrome, neurodevelopmental delay, and chronic lung disease. Although the advances made in the use of MSCs are promising, further research is needed prior to the widespread use of these cells for the treatment of NEC.
Collapse
Affiliation(s)
- Fikir M Mesfin
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Krishna Manohar
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - W Christopher Shelley
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John P Brokaw
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianyun Liu
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Troy A Markel
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA.
| |
Collapse
|
15
|
Jerez-Longres C, Gómez-Matos M, Becker J, Hörner M, Wieland FG, Timmer J, Weber W. Engineering a material-genetic interface as safety switch for embedded therapeutic cells. BIOMATERIALS ADVANCES 2023; 150:213422. [PMID: 37084636 DOI: 10.1016/j.bioadv.2023.213422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
Encapsulated cell-based therapies involve the use of genetically-modified cells embedded in a material in order to produce a therapeutic agent in a specific location in the patient's body. This approach has shown great potential in animal model systems for treating diseases such as type I diabetes or cancer, with selected approaches having been tested in clinical trials. Despite the promise shown by encapsulated cell therapy, though, there are safety concerns yet to be addressed, such as the escape of the engineered cells from the encapsulation material and the resulting production of therapeutic agents at uncontrolled sites in the body. For that reason, there is great interest in the implementation of safety switches that protect from those side effects. Here, we develop a material-genetic interface as safety switch for engineered mammalian cells embedded into hydrogels. Our switch allows the therapeutic cells to sense whether they are embedded in the hydrogel by means of a synthetic receptor and signaling cascade that link transgene expression to the presence of an intact embedding material. The system design is highly modular, allowing its flexible adaptation to other cell types and embedding materials. This autonomously acting switch constitutes an advantage over previously described safety switches, which rely on user-triggered signals to modulate activity or survival of the implanted cells. We envision that the concept developed here will advance the safety of cell therapies and facilitate their translation to clinical evaluation.
Collapse
Affiliation(s)
- Carolina Jerez-Longres
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany; SGBM - Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
| | - Marieta Gómez-Matos
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Jan Becker
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Maximilian Hörner
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Franz-Georg Wieland
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany; Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany; Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Ernst-Zermelo-Strasse 1, 79104 Freiburg, Germany
| | - Jens Timmer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany; Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany; Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Ernst-Zermelo-Strasse 1, 79104 Freiburg, Germany
| | - Wilfried Weber
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Department of Materials Science and Materials Engineering, Saarland University, 66123 Saarbrücken, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany; SGBM - Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany.
| |
Collapse
|
16
|
Mesfin FM, Manohar K, Hunter CE, Shelley WC, Brokaw JP, Liu J, Ma M, Markel TA. Stem cell derived therapies to preserve and repair the developing intestine. Semin Perinatol 2023; 47:151727. [PMID: 36964032 PMCID: PMC10133028 DOI: 10.1016/j.semperi.2023.151727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Stem cell research and the use of stem cells in therapy have seen tremendous growth in the last two decades. Neonatal intestinal disorders such as necrotizing enterocolitis, Hirschsprung disease, and gastroschisis have high morbidity and mortality and limited treatment options with varying success rates. Stem cells have been used in several pre-clinical studies to address various neonatal disorders with promising results. Stem cell and patient population selection, timing of therapy, as well as safety and quality control are some of the challenges that must be addressed prior to the widespread clinical application of stem cells. Further research and technological advances such as the use of cell delivery technology can address these challenges and allow for continued progress towards clinical translation.
Collapse
Affiliation(s)
- Fikir M Mesfin
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Krishna Manohar
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Chelsea E Hunter
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - W Christopher Shelley
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - John P Brokaw
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Jianyun Liu
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY
| | - Troy A Markel
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN; Riley Hospital for Children at Indiana University Health, Indianapolis, IN.
| |
Collapse
|
17
|
Nativel F, Smith A, Boulestreau J, Lépine C, Baron J, Marquis M, Vignes C, Le Guennec Y, Veziers J, Lesoeur J, Loll F, Halgand B, Renard D, Abadie J, Legoff B, Blanchard F, Gauthier O, Vinatier C, Rieux AD, Guicheux J, Le Visage C. Micromolding-based encapsulation of mesenchymal stromal cells in alginate for intraarticular injection in osteoarthritis. Mater Today Bio 2023; 19:100581. [PMID: 36896417 PMCID: PMC9988569 DOI: 10.1016/j.mtbio.2023.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Osteoarthritis (OA) is an inflammatory joint disease that affects cartilage, subchondral bone, and joint tissues. Undifferentiated Mesenchymal Stromal Cells are a promising therapeutic option for OA due to their ability to release anti-inflammatory, immuno-modulatory, and pro-regenerative factors. They can be embedded in hydrogels to prevent their tissue engraftment and subsequent differentiation. In this study, human adipose stromal cells are successfully encapsulated in alginate microgels via a micromolding method. Microencapsulated cells retain their in vitro metabolic activity and bioactivity and can sense and respond to inflammatory stimuli, including synovial fluids from OA patients. After intra-articular injection in a rabbit model of post-traumatic OA, a single dose of microencapsulated human cells exhibit properties matching those of non-encapsulated cells. At 6 and 12 weeks post-injection, we evidenced a tendency toward a decreased OA severity, an increased expression of aggrecan, and a reduced expression of aggrecanase-generated catabolic neoepitope. Thus, these findings establish the feasibility, safety, and efficacy of injecting cells encapsulated in microgels, opening the door to a long-term follow-up in canine OA patients.
Collapse
Affiliation(s)
- Fabien Nativel
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Audrey Smith
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.,UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200, Bruxelles, Belgium
| | - Jeremy Boulestreau
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Charles Lépine
- Nantes Université, CHU Nantes, Department of Pathology, F-44000 Nantes, France
| | - Julie Baron
- Nantes Université, CHU Nantes, Department of Pathology, F-44000 Nantes, France
| | - Melanie Marquis
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, F-44300 Nantes, France
| | - Caroline Vignes
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Yoan Le Guennec
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Joelle Veziers
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Julie Lesoeur
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - François Loll
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Boris Halgand
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Denis Renard
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, F-44300 Nantes, France
| | - Jerome Abadie
- LabONIRIS, ONIRIS (Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering), F-44300 Nantes, France
| | - Benoit Legoff
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Frederic Blanchard
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Olivier Gauthier
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.,ONIRIS Nantes-Atlantic College of Veterinary Medicine, Centre de Recherche et D'investigation Préclinique (CRIP), F-44300 Nantes, France
| | - Claire Vinatier
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Anne des Rieux
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200, Bruxelles, Belgium
| | - Jerome Guicheux
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Catherine Le Visage
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| |
Collapse
|
18
|
Wong FSY, Tsang KK, Chan BP, Lo ACY. Both non-coated and polyelectrolytically-coated intraocular collagen-alginate composite gels enhanced photoreceptor survival in retinal degeneration. Biomaterials 2023; 293:121948. [PMID: 36516686 DOI: 10.1016/j.biomaterials.2022.121948] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Treatments of vision-threatening retinal diseases are often hampered by drug delivery difficulties. Polyelectrolytically-coated alginate encapsulated-cell therapy (ECT) systems have shown therapeutic efficacy through prolonged in vivo drug delivery but still face various biocompatibility, viability, drug delivery and mechanical stability issues in clinical trials. Here, novel, injectable alginate-poly-l-lysine (AP)-coated composite alginate-collagen (CAC) ECT gels were developed for sustained ocular drug delivery, and their long-term performance was compared with non-coated CAC ECT gels. All optimised AP-coated gels (AP1- and AP5.5-CAC ECT: 2 mg/ml collagen, 1.5% high molecular weight alginate, 50,000 cells/gel, with 0.01% or 0.05% poly-l-lysine coating for 5 min, followed by 0.15% alginate coating) and non-coated gels showed effective cell proliferation control, cell viability support and continuous delivery of bioactive glial cell-derived neurotrophic factor (GDNF) with no significant gel degradation in vitro and in rat vitreous. Most importantly, intravitreally injected gels demonstrated therapeutic efficacy in Royal College of Surgeons rats with retinal degeneration, resulting in reduced photoreceptor apoptosis and retinal function loss. At 6 months post-implantation, no host-tissue attachment or ingrowth was detected on the retrieved gels. Non-coated gels were mechanically more stable than AP5.5-coated ones under the current cell loading. This study demonstrated that both coated and non-coated ECT gels can serve as well-controlled, sustained drug delivery platforms for treating posterior eye diseases without immunosuppression.
Collapse
Affiliation(s)
- Francisca Siu Yin Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ken Kin Tsang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Barbara Pui Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
19
|
Lathuiliere A, Vernet R, Charrier E, Urwyler M, Von Rohr O, Belkouch MC, Saingier V, Bouvarel T, Guillarme D, Engel A, Salmon P, Laumonier T, Grogg J, Mach N. Immortalized human myoblast cell lines for the delivery of therapeutic proteins using encapsulated cell technology. Mol Ther Methods Clin Dev 2022; 26:441-458. [PMID: 36092361 PMCID: PMC9418741 DOI: 10.1016/j.omtm.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/31/2022] [Indexed: 12/04/2022]
Abstract
Despite many promising results obtained in previous preclinical studies, the clinical development of encapsulated cell technology (ECT) for the delivery of therapeutic proteins from macrocapsules is still limited, mainly due to the lack of an allogeneic cell line compatible with therapeutic application in humans. In our work, we generated an immortalized human myoblast cell line specifically tailored for macroencapsulation. In the present report, we characterized the immortalized myoblasts and described the engineering process required for the delivery of functional therapeutic proteins including a cytokine, monoclonal antibodies and a viral antigen. We observed that, when encapsulated, the novel myoblast cell line can be efficiently frozen, stored, and thawed, which limits the challenge imposed by the manufacture and supply of encapsulated cell-based therapeutic products. Our results suggest that this versatile allogeneic cell line represents the next step toward a broader development and therapeutic use of ECT.
Collapse
Affiliation(s)
- Aurelien Lathuiliere
- Oncology Division, Geneva University Hospital and Medical School, 1211 Geneva, Switzerland
| | - Remi Vernet
- Oncology Division, Geneva University Hospital and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, 1211 Geneva, Switzerland
| | - Emily Charrier
- Oncology Division, Geneva University Hospital and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, 1211 Geneva, Switzerland
- MaxiVAX SA, 1202 Geneva, Switzerland
| | - Muriel Urwyler
- Oncology Division, Geneva University Hospital and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, 1211 Geneva, Switzerland
| | - Olivier Von Rohr
- Oncology Division, Geneva University Hospital and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, 1211 Geneva, Switzerland
| | - Marie-Claude Belkouch
- Oncology Division, Geneva University Hospital and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, 1211 Geneva, Switzerland
| | - Valentin Saingier
- Oncology Division, Geneva University Hospital and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, 1211 Geneva, Switzerland
| | - Thomas Bouvarel
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | | | - Patrick Salmon
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland
| | - Thomas Laumonier
- Cell Therapy and Musculoskeletal Disorders Laboratory, Department of Orthopaedic Surgery, Faculty of Medicine, Geneva University Hospital and University of Geneva, 1211 Geneva, Switzerland
| | | | - Nicolas Mach
- Oncology Division, Geneva University Hospital and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
20
|
Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022; 23:ijms23169035. [PMID: 36012297 PMCID: PMC9409034 DOI: 10.3390/ijms23169035] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and β-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate’s bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate’s remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.
Collapse
|
21
|
Chitosan chemistry review for living organisms encapsulation. Carbohydr Polym 2022; 295:119877. [DOI: 10.1016/j.carbpol.2022.119877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/20/2022]
|
22
|
Xiao Z, Wei T, Ge R, Li Q, Liu B, Ji Z, Chen L, Zhu J, Shen J, Liu Z, Huang Y, Yang Y, Chen Q. Microfluidic Production of Zwitterion Coating Microcapsules with Low Foreign Body Reactions for Improved Islet Transplantation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202596. [PMID: 35733079 DOI: 10.1002/smll.202202596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Islet transplantation is a promising strategy for type 1 diabetes mellitus (T1DM) treatment, whereas implanted-associated foreign body reaction (FBR) usually induces the necrosis of transplanted islets and leads to the failure of glycemic control. Benefiting from the excellent anti-biofouling property of zwitterionic materials and their successful application in macroscopic implanted devices, microcapsules with zwitterionic coatings may be promising candidates for islet encapsulation. Herein, a series of zwitterion-coated core-shell microcapsules is fabricated (including carboxybetaine methacrylate [CBMA]-coated gelatin methacrylate [GelMA] [CBMA-GelMA], sulfobetaine methacrylate [SBMA]-coated GelMA [SBMA-GelMA], and phosphorylcholine methacrylate [MPC]-coated GelMA [MPC-GelMA]) by one-step photopolymerization of inner GelMA and outer zwitterionic monomers via a handmade two-fluid microfluidic device and it is demonstrated that they can effectively prevent protein adsorption, cell adhesion, and inflammation in vitro. Interestingly, the zwitterionic microcapsules successfully resist FBR in C57BL/6 mice after intraperitoneal implantation for up to 4 months. After successfully encapsulating xenogeneic rat islets in the SBMA-GelMA microcapsules, sustained normoglycemia is further validated in streptozotocin (STZ)-induced mice for up to 3 months. The zwitterion-modified microcapsule using a microfluidic device may represent a platform for cell encapsulation treatment for T1DM and other hormone-deficient diseases.
Collapse
Affiliation(s)
- Zhisheng Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Ting Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Ruiliang Ge
- Department of Biliary Surgery I, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qiaofeng Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Bo Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhaoxin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Linfu Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jingjing Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yueye Huang
- Shanghai Center of Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
23
|
Chen SM, Hsu TC, Chew CH, Huang WT, Chen AL, Lin YF, Eddarkaoui S, Buee L, Chen CC. Microtube Array Membrane Encapsulated Cell Therapy: A Novel Platform Technology Solution for Treatment of Alzheimer's Disease. Int J Mol Sci 2022; 23:6855. [PMID: 35743295 PMCID: PMC9224941 DOI: 10.3390/ijms23126855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease is the most frequent form of dementia in aging population and is presently the world's sixth largest cause of mortality. With the advancement of therapies, several solutions have been developed such as passive immunotherapy against these misfolded proteins, thereby resulting in the clearance. Within this segment, encapsulated cell therapy (ECT) solutions that utilize antibody releasing cells have been proposed with a multitude of techniques under development. Hence, in this study, we utilized our novel and patented Microtube Array Membranes (MTAMs) as an encapsulating platform system with anti-pTau antibody-secreting hybridoma cells to study the impact of it on Alzheimer's disease. In vivo results revealed that in the water maze, the mice implanted with hybridoma cell MTAMs intracranially (IN) and subcutaneously (SC) showed improvement in the time spent the goal quadrant and escape latency. In passive avoidance, hybridoma cell loaded MTAMs (IN and SC) performed significantly well in step-through latency. At the end of treatment, animals with hybridoma cell loaded MTAMs had lower phosphorylated tau (pTau) expression than empty MTAMs had. Combining both experimental results unveiled that the clearance of phosphorylated tau might rescue the cognitive impairment associated with AD.
Collapse
Affiliation(s)
- Shu-Mei Chen
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Chin Hsu
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (T.-C.H.); (C.-H.C.); (W.-T.H.)
| | - Chee-Ho Chew
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (T.-C.H.); (C.-H.C.); (W.-T.H.)
| | - Wan-Ting Huang
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (T.-C.H.); (C.-H.C.); (W.-T.H.)
| | - Amanda Lin Chen
- Department of Biology, University of Washington, Seattle, WA 98195, USA;
| | - Yung-Feng Lin
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 11052, Taiwan;
| | - Sabiha Eddarkaoui
- Lille Neuroscience & Cognition, Inserm, CHU-Lille, Université de Lille, 59045 Lille, France; (S.E.); (L.B.)
| | - Luc Buee
- Lille Neuroscience & Cognition, Inserm, CHU-Lille, Université de Lille, 59045 Lille, France; (S.E.); (L.B.)
- NeuroTMU, Lille International Laboratory, Université de Lille, 59000 Lille, France
| | - Chien-Chung Chen
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (T.-C.H.); (C.-H.C.); (W.-T.H.)
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 11052, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
24
|
Li LK, Huang WC, Hsueh YY, Yamauchi K, Olivares N, Davila R, Fang J, Ding X, Zhao W, Soto J, Hasani M, Novitch B, Li S. Intramuscular delivery of neural crest stem cell spheroids enhances neuromuscular regeneration after denervation injury. Stem Cell Res Ther 2022; 13:205. [PMID: 35578348 PMCID: PMC9109326 DOI: 10.1186/s13287-022-02877-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/28/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Muscle denervation from trauma and motor neuron disease causes disabling morbidities. A limiting step in functional recovery is the regeneration of neuromuscular junctions (NMJs) for reinnervation. Stem cells have the potential to promote these regenerative processes, but current approaches have limited success, and the optimal types of stem cells remain to be determined. Neural crest stem cells (NCSCs), as the developmental precursors of the peripheral nervous system, are uniquely advantageous, but the role of NCSCs in neuromuscular regeneration is not clear. Furthermore, a cell delivery approach that can maintain NCSC survival upon transplantation is critical. METHODS We established a streamlined protocol to derive, isolate, and characterize functional p75+ NCSCs from human iPSCs without genome integration of reprogramming factors. To enhance survival rate upon delivery in vivo, NCSCs were centrifuged in microwell plates to form spheroids of desirable size by controlling suspension cell density. Human bone marrow mesenchymal stem cells (MSCs) were also studied for comparison. NCSC or MSC spheroids were injected into the gastrocnemius muscle with denervation injury, and the effects on NMJ formation and functional recovery were investigated. The spheroids were also co-cultured with engineered neuromuscular tissue to assess effects on NMJ formation in vitro. RESULTS NCSCs cultured in spheroids displayed enhanced secretion of soluble factors involved in neuromuscular regeneration. Intramuscular transplantation of spheroids enabled long-term survival and retention of NCSCs, in contrast to the transplantation of single-cell suspensions. Furthermore, NCSC spheroids significantly improved functional recovery after four weeks as shown by gait analysis, electrophysiology, and the rate of NMJ innervation. MSC spheroids, on the other hand, had insignificant effect. In vitro co-culture of NCSC or MSC spheroids with engineered myotubes and motor neurons further evidenced improved innervated NMJ formation with NCSC spheroids. CONCLUSIONS We demonstrate that stem cell type is critical for neuromuscular regeneration and that NCSCs have a distinct advantage and therapeutic potential to promote reinnervation following peripheral nerve injury. Biophysical effects of spheroidal culture, in particular, enable long-term NCSC survival following in vivo delivery. Furthermore, synthetic neuromuscular tissue, or "tissues-on-a-chip," may offer a platform to evaluate stem cells for neuromuscular regeneration.
Collapse
Affiliation(s)
- LeeAnn K Li
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
- David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Wen-Chin Huang
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Yuan-Yu Hsueh
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ken Yamauchi
- Department of Neurobiology, University of California, Los Angeles, USA
| | - Natalie Olivares
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Raul Davila
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Jun Fang
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Xili Ding
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Weikang Zhao
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Jennifer Soto
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Mahdi Hasani
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Bennett Novitch
- Department of Neurobiology, University of California, Los Angeles, USA
| | - Song Li
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
25
|
Adeyemi SA, Choonara YE. Current advances in cell therapeutics: A biomacromolecules application perspective. Expert Opin Drug Deliv 2022; 19:521-538. [PMID: 35395914 DOI: 10.1080/17425247.2022.2064844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Many chronic diseases have evolved and to circumvent the limitations of using conventional drug therapies, smart cell encapsulating delivery systems have been explored to customize the treatment with alignment to disease longevity. Cell therapeutics has advanced in tandem with improvements in biomaterials that can suitably deliver therapeutic cells to achieve targeted therapy. Among the promising biomacromolecules for cell delivery are those that share bio-relevant architecture with the extracellular matrix and display extraordinary compatibility in the presence of therapeutic cells. Interestingly, many biomacromolecules that fulfil these tenets occur naturally and can form hydrogels. AREAS COVERED This review provides a concise incursion into the paradigm shift to cell therapeutics using biomacromolecules. Advances in the design and use of biomacromolecules to assemble smart therapeutic cell carriers is discussed in light of their pivotal role in enhancing cell encapsulation and delivery. In addition, the principles that govern the application of cell therapeutics in diabetes, neuronal disorders, cancers and cardiovascular disease are outlined. EXPERT OPINION Cell therapeutics promises to revolutionize the treatment of various secretory cell dysfunctions. Current and future advances in designing functional biomacromolecules will be critical to ensure that optimal delivery of therapeutic cells is achieved with desired biosafety and potency.
Collapse
Affiliation(s)
- Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
26
|
Davis B, Shi P, Gaddes E, Lai J, Wang Y. Bidirectional Supramolecular Display and Signal Amplification on the Surface of Living Cells. Biomacromolecules 2022; 23:1403-1412. [PMID: 35189058 DOI: 10.1021/acs.biomac.1c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to display exogenous molecules or nanomaterials on the surface of cells holds great potential for biomedical applications such as cell imaging and delivery. Numerous methods have been well established to enhance the display of biomolecules and nanomaterials on the cell surface. However, it is challenging to remove these biomolecules or nanomaterials from the cell surface. The purpose of this study was to investigate the reversible display of supramolecular nanomaterials on the surface of living cells. The data show that DNA initiators could induce the self-assembly of DNA-alginate conjugates to form supramolecular nanomaterials and amplify the fluorescence signals on the cell surface. Complementary DNA (cDNA), DNase, and alginase could all trigger the reversal of the signals from the cell surface. However, these three molecules exhibited different triggering efficiencies in the order cDNA > alginase > DNase. The combination of cDNA and alginase led to the synergistic reversal of nanomaterials and fluorescent signals from the cell surface. Thus, this study has successfully demonstrated a method for the bidirectional display of supramolecular nanomaterials on the surface of living cells. This method may find its application in numerous fields such as intact cell imaging and separation.
Collapse
Affiliation(s)
- Brandon Davis
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Peng Shi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Erin Gaddes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jinping Lai
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
27
|
Abstract
Environmentally friendly alternatives have become sought after upon the development of scientific research and industrial processes. Recent trends suggest biodegradable polymers as the most promising solution for synthetic microcapsule systems. Safety, efficiency, biocompatibility, and biodegradability are some of the properties that biodegradable systems in microencapsulation can provide for a broad spectrum of applications. The controlled release of encapsulated active agents is a research field that, over the years, has been constantly innovating due to the promising applications in the areas of pharmaceutical, cosmetic, textile industry, among others. This article presents an overview of different polymers with potential for microcapsule synthesis, namely, biodegradable polymers. First, natural polymers are discussed, which are divided into two categories: polysaccharide-based polymers (cellulose, starch, chitosan, and alginate) and protein polymers (gelatin). Second, synthetic polymers are described, where biodegradable polymers such as polyesters, polyamides, among others appear as examples. For each polymer, this review presents its origin, relevant properties, applications, and examples found in the literature regarding its use in biodegradable microencapsulation systems.
Collapse
|
28
|
Liu W, Flanders JA, Wang LH, Liu Q, Bowers DT, Wang K, Chiu A, Wang X, Ernst AU, Shariati K, Caserto JS, Parker B, Gao D, Plesser MD, Grunnet LG, Rescan C, Carletto RP, Winkel L, Melero-Martin JM, Ma M. A Safe, Fibrosis-Mitigating, and Scalable Encapsulation Device Supports Long-Term Function of Insulin-Producing Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104899. [PMID: 34897997 PMCID: PMC8881301 DOI: 10.1002/smll.202104899] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Indexed: 06/12/2023]
Abstract
Encapsulation and transplantation of insulin-producing cells offer a promising curative treatment for type 1 diabetes (T1D) without immunosuppression. However, biomaterials used to encapsulate cells often elicit foreign body responses, leading to cellular overgrowth and deposition of fibrotic tissue, which in turn diminishes mass transfer to and from transplanted cells. Meanwhile, the encapsulation device must be safe, scalable, and ideally retrievable to meet clinical requirements. Here, a durable and safe nanofibrous device coated with a thin and uniform, fibrosis-mitigating, zwitterionically modified alginate hydrogel for encapsulation of islets and stem cell-derived beta (SC-β) cells is reported. The device with a configuration that has cells encapsulated within the cylindrical wall, allowing scale-up in both radial and longitudinal directions without sacrificing mass transfer, is designed. Due to its facile mass transfer and low level of fibrotic reactions, the device supports long-term cell engraftment, correcting diabetes in C57BL6/J mice with rat islets for up to 399 days and SCID-beige mice with human SC-β cells for up to 238 days. The scalability and retrievability in dogs are further demonstrated. These results suggest the potential of this new device for cell therapies to treat T1D and other diseases.
Collapse
Affiliation(s)
- Wanjun Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - James A. Flanders
- Department of Clinical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Qingsheng Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daniel T. Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kai Wang
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Alan Chiu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Xi Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Alexander U. Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Julia S. Caserto
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Benjamin Parker
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daqian Gao
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell D. Plesser
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lars G. Grunnet
- Stem Cell Delivery & Pharmacology, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Claude Rescan
- Stem Cell Delivery & Pharmacology, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | | - Louise Winkel
- Stem Cell Delivery & Pharmacology, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Juan M. Melero-Martin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
29
|
Eleftheriadou D, Evans RE, Atkinson E, Abdalla A, Gavins FKH, Boyd AS, Williams GR, Knowles JC, Roberton VH, Phillips JB. An alginate-based encapsulation system for delivery of therapeutic cells to the CNS. RSC Adv 2022; 12:4005-4015. [PMID: 35425456 PMCID: PMC8981497 DOI: 10.1039/d1ra08563h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
Treatment options for neurodegenerative conditions such as Parkinson's disease have included the delivery of cells which release dopamine or neurotrophic factors to the brain. Here, we report the development of a novel approach for protecting cells after implantation into the central nervous system (CNS), by developing dual-layer alginate beads that encapsulate therapeutic cells and release an immunomodulatory compound in a sustained manner. An optimal alginate formulation was selected with a view to providing a sustained physical barrier between engrafted cells and host tissue, enabling exchange of small molecules while blocking components of the host immune response. In addition, a potent immunosuppressant, FK506, was incorporated into the outer layer of alginate beads using electrosprayed poly-ε-caprolactone core–shell nanoparticles with prolonged release profiles. The stiffness, porosity, stability and ability of the alginate beads to support and protect encapsulated SH-SY5Y cells was demonstrated, and the release profile of FK506 and its effect on T-cell proliferation in vitro was characterized. Collectively, our results indicate this multi-layer encapsulation technology has the potential to be suitable for use in CNS cell delivery, to protect implanted cells from host immune responses whilst providing permeability to nutrients and released therapeutic molecules. Novel composite cell encapsulation system: dual-layer, micro-scale beads maintain cell survival while releasing immunomodulatory FK506 in a sustained manner. This biotechnology platform could be applicable for treatment of CNS and other disorders.![]()
Collapse
Affiliation(s)
- Despoina Eleftheriadou
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Rachael E Evans
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Emily Atkinson
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Ahmed Abdalla
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Francesca K H Gavins
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Ashleigh S Boyd
- UCL Institute of Immunity and Transplantation, Royal Free Hospital London UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Jonathan C Knowles
- Biomaterials & Tissue Engineering, UCL Eastman Dental Institute London UK
| | - Victoria H Roberton
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - James B Phillips
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| |
Collapse
|
30
|
Genetic-code-expanded cell-based therapy for treating diabetes in mice. Nat Chem Biol 2022; 18:47-55. [PMID: 34782743 DOI: 10.1038/s41589-021-00899-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Inducer-triggered therapeutic protein expression from designer cells is a promising strategy for disease treatment. However, as most inducer systems harness transcriptional machineries, protein expression timeframes are unsuitable for many therapeutic applications. Here, we engineered a genetic code expansion-based therapeutic system, termed noncanonical amino acids (ncAAs)-triggered therapeutic switch (NATS), to achieve fast therapeutic protein expression in response to cognate ncAAs at the translational level. The NATS system showed response within 2 hours of triggering, whereas no signal was detected in a transcription-machinery-based system. Moreover, NATS system is compatible with transcriptional switches for multi-regulatory-layer control. Diabetic mice with microencapsulated cell implants harboring the NATS system could alleviate hyperglycemia within 90 min on oral delivery of ncAA. We also prepared ncAA-containing 'cookies' and achieved long-term glycemic control in diabetic mice implanted with NATS cells. Our proof-of-concept study demonstrates the use of NATS system for the design of next-generation cell-based therapies to achieve fast orally induced protein expression.
Collapse
|
31
|
Roberton VH, Phillips JB. Considerations for the use of biomaterials to support cell therapy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:191-205. [DOI: 10.1016/bs.irn.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Hui L, Wang D, Liu Z, Zhao Y, Ji Z, Zhang M, Zhu HH, Luo W, Cheng X, Gui L, Gao W. The Cell-Isolation Capsules with Rod-Like Channels Ensure the Survival and Response of Cancer Cells to Their Microenvironment. Adv Healthc Mater 2022; 11:e2101723. [PMID: 34699694 DOI: 10.1002/adhm.202101723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/18/2021] [Indexed: 12/16/2022]
Abstract
Current macrocapsules with semipermeable but immunoprotective polymeric membranes are attractive devices to achieve the purpose of immunoisolation, however, their ability to allow diffusion of essential nutrients and oxygen is limited, which leads to a low survival rate of encapsulated cells. Here, a novel method is reported by taking advantage of thermotropic liquid crystals, sodium laurylsulfonate (SDS) liquid crystals (LCs), and rod-like crystal fragments (LCFs) to develop engineered alginate hydrogels with rod-like channels. This cell-isolation capsule with an engineered alginate hydrogel-wall allows small molecules, large molecules, and bacteria to diffuse out from the capsules freely but immobilizes the encapsulated cells inside and prevents cells in the microenvironment from moving in. The encapsulated cells show a high survival rate with isolation of host immune cells and long-term growth with adequate nutrients and oxygen supply. In addition, by sharing and responding to the normal molecular and vesicular microenvironment (NMV microenvironment), encapsulated cancer cells display a transition from tumorous phenotypes to ductal features of normal epithelial cells. Thus, this device will be potentially useful for clinical application in cell therapy by secreting molecules and for establishment of patient-derived xenograft (PDX) models that are often difficult to achieve for certain types of tumors, such as prostate cancer.
Collapse
Affiliation(s)
- Lanlan Hui
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| | - Deng Wang
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| | - Zhao Liu
- Ping An Life Insurance of China, Ltd Shanghai 200120 China
| | - Yueqi Zhao
- Department of Orthopaedic Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou 310016 China
| | - Zhongzhong Ji
- Shanghai Cancer Institute Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200017 China
| | - Man Zhang
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Department of Urology Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Wenqing Luo
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiaomu Cheng
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| | - Liming Gui
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| | - Wei‐Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| |
Collapse
|
33
|
Li J, Fan L, Li Y, Wei T, Wang C, Li F, Tian H, Sun D. Development of Cell-Carrying Magnetic Microrobots with Bioactive Nanostructured Titanate Surface for Enhanced Cell Adhesion. MICROMACHINES 2021; 12:mi12121572. [PMID: 34945424 PMCID: PMC8707319 DOI: 10.3390/mi12121572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
Cell-carrying magnet-driven microrobots are easily affected by blood flow or body fluids during transportation in the body, and thus cells often fall off from the microrobots. To reduce the loss of loaded cells, we developed a microrobot with a bioactive nanostructured titanate surface (NTS), which enhances cell adhesion. The microrobot was fabricated using 3D laser lithography and coated with nickel for magnetic actuation. Then, the microrobot was coated with titanium for the external generation of an NTS through reactions in NaOH solution. Enhanced cell adhesion may be attributed to the changes in the surface wettability of the microrobot and in the morphology of the loaded cells. An experiment was performed on a microfluidic chip for the simulation of blood flow environment, and result revealed that the cells adhered closely to the microrobot with NTS and were not obviously affected by flow. The cell viability and protein absorption test and alkaline phosphatase activity assay indicated that NTS can provide a regulatory means for improving cell proliferation and early osteogenic differentiation. This research provided a novel microrobotic platform that can positively influence the behaviour of cells loaded on microrobots through surface nanotopography, thereby opening up a new route for microrobot cell delivery.
Collapse
Affiliation(s)
- Junyang Li
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China; (J.L.); (L.F.); (Y.L.); (T.W.)
- Centre for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Science Park, Hong Kong, China
| | - Lei Fan
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China; (J.L.); (L.F.); (Y.L.); (T.W.)
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Science Park, Hong Kong, China
| | - Yanfang Li
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China; (J.L.); (L.F.); (Y.L.); (T.W.)
| | - Tanyong Wei
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China; (J.L.); (L.F.); (Y.L.); (T.W.)
| | - Cheng Wang
- Department of Orthopaedics/Engineering Research Center of Bone and Joint Precision Medicine/Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; (C.W.); (F.L.); (H.T.)
| | - Feng Li
- Department of Orthopaedics/Engineering Research Center of Bone and Joint Precision Medicine/Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; (C.W.); (F.L.); (H.T.)
| | - Hua Tian
- Department of Orthopaedics/Engineering Research Center of Bone and Joint Precision Medicine/Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; (C.W.); (F.L.); (H.T.)
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China; (J.L.); (L.F.); (Y.L.); (T.W.)
- Centre for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Science Park, Hong Kong, China
- Correspondence:
| |
Collapse
|
34
|
Kotliarevski L, Mani KA, Feldbaum RA, Yaakov N, Belausov E, Zelinger E, Ment D, Mechrez G. Single-Conidium Encapsulation in Oil-in-Water Pickering Emulsions at High Encapsulation Yield. Front Chem 2021; 9:726874. [PMID: 34912776 PMCID: PMC8666500 DOI: 10.3389/fchem.2021.726874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
This study presents an individual encapsulation of fungal conidia in an oil-in-water Pickering emulsion at a single-conidium encapsulation yield of 44%. The single-conidium encapsulation yield was characterized by analysis of confocal microscopy micrographs. Mineral oil-in-water emulsions stabilized by amine-functionalized titania dioxide (TiO2-NH2 or titania-NH2) particles were prepared. The structure and the stability of the emulsions were investigated at different compositions by confocal microscopy and a LUMiSizer® respectively. The most stable emulsions with a droplet size suitable for single-conidium encapsulation were further studied for their individual encapsulation capabilities. The yields of individual encapsulation in the emulsions; i.e., the number of conidia that were individually encapsulated out of the total number of conidia, were characterized by confocal microscopy assay. This rapid, easy to use approach to single-conidium encapsulation, which generates a significantly high yield with eco-friendly titania-based emulsions, only requires commonly used emulsification and agitation methods.
Collapse
Affiliation(s)
- Liliya Kotliarevski
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel.,Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel.,Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Reut Amar Feldbaum
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| | - Noga Yaakov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, Institute of Plant Science, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| | - Einat Zelinger
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| |
Collapse
|
35
|
Samal J, Segura T. Injectable biomaterial shuttles for cell therapy in stroke. Brain Res Bull 2021; 176:25-42. [PMID: 34391821 PMCID: PMC8524625 DOI: 10.1016/j.brainresbull.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023]
Abstract
Ischemic stroke (IS) is the leading cause of disability and contributes to a significant socio-economic cost in the western world. Brain repair strategies investigated in the pre-clinical models include the delivery of drug or cell-based therapeutics; which is hindered by the complex anatomy and functional organization of the brain. Biomaterials can be instrumental in alleviating some of these challenges by providing a structural support, localization, immunomodulation and/or modulating cellular cross-talk in the brain. This review addresses the significance of and challenges associated with cell therapy in an ischemic brain. This is followed by a detailed insight into the biomaterial-based delivery systems which have been designed to provide sustained trophic factor delivery for endogenous repair and to support transplanted cell survival and integration. A biomaterial intervention uses a multifaceted approach in enhancing the survival and engraftment of cells during transplantation and this has driven them as potential candidates for the treatment of IS. The biological processes that are activated as a response to the biomaterials and how to modulate them is one of the key factors contributing to the success of the biomaterial-based therapeutic approach. Future perspectives highlight the need of a combinative approach of merging the material design with disease biology to fabricate effective biomaterial-based intervention of stroke.
Collapse
Affiliation(s)
- Juhi Samal
- Department of Biomedical Engineering, 534 Research Drive, Durham, NC 27708, United States
| | - Tatiana Segura
- Department of Biomedical Engineering, 534 Research Drive, Durham, NC 27708, United States.
| |
Collapse
|
36
|
Vieira S, da Silva Morais A, Garet E, Silva-Correia J, Reis RL, González-Fernández Á, Oliveira JM. Methacrylated Gellan Gum/Poly-l-lysine Polyelectrolyte Complex Beads for Cell-Based Therapies. ACS Biomater Sci Eng 2021; 7:4898-4913. [PMID: 34533303 DOI: 10.1021/acsbiomaterials.1c00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell encapsulation strategies using hydrogel beads have been considered as an alternative to immunosuppression in cell-based therapies. They rely on layer-by-layer (LbL) deposition of polymers to tune beads' permeability, creating a physical barrier to the host immune system. However, the LbL approach can also create diffusion barriers, hampering the flow of essential nutrients and therapeutic cell products. In this work, the polyelectrolyte complex (PEC) methodology was used to circumvent the drawbacks of the LbL strategy by inducing hydrogel bead formation through the interaction of anionic methacrylated gellan gum (GG-MA) with cationic poly-l-lysine (PLL). The interfacial complexation between both polymers resulted in beads with a cell-friendly GG-MA hydrogel core surrounded by a PEC semipermeable membrane. The beads showed great in vitro stability over time, a semi-permeable behavior, and supported human adipose-derived stem cell encapsulation. Additionally, and regarding immune recognition, the in vitro and in vivo studies pointed out that the hydrogel beads behave as an immunocompatible system. Overall, the engineered beads showed great potential for hydrogel-mediated cell therapies, when immunoprotection is required, as when treating different metabolic disorders.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Alain da Silva Morais
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Elina Garet
- Immunology, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia. de Investigación Sanitaria Galicia Sur (IIS-GS), Universidad de Vigo, Campus Universitario de Vigo, Vigo 36310, Spain
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - África González-Fernández
- Immunology, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia. de Investigación Sanitaria Galicia Sur (IIS-GS), Universidad de Vigo, Campus Universitario de Vigo, Vigo 36310, Spain
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| |
Collapse
|
37
|
Mesquita C, Charelli L, Baptista L, Naveira-Cotta C, Balbino T. Continuous-mode encapsulation of human stem cell spheroids using droplet-based glass-capillary microfluidic device for 3D bioprinting technology. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Mitra S, Gera R, Linderoth B, Lind G, Wahlberg L, Almqvist P, Behbahani H, Eriksdotter M. A Review of Techniques for Biodelivery of Nerve Growth Factor (NGF) to the Brain in Relation to Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:167-191. [PMID: 34453298 DOI: 10.1007/978-3-030-74046-7_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Age-dependent progressive neurodegeneration and associated cognitive dysfunction represent a serious concern worldwide. Currently, dementia accounts for the fifth highest cause of death, among which Alzheimer's disease (AD) represents more than 60% of the cases. AD is associated with progressive cognitive dysfunction which affects daily life of the affected individual and associated family. The cognitive dysfunctions are at least partially due to the degeneration of a specific set of neurons (cholinergic neurons) whose cell bodies are situated in the basal forebrain region (basal forebrain cholinergic neurons, BFCNs) but innervate wide areas of the brain. It has been explicitly shown that the delivery of the neurotrophic protein nerve growth factor (NGF) can rescue BFCNs and restore cognitive dysfunction, making NGF interesting as a potential therapeutic substance for AD. Unfortunately, NGF cannot pass through the blood-brain barrier (BBB) and thus peripheral administration of NGF protein is not viable therapeutically. NGF must be delivered in a way which will allow its brain penetration and availability to the BFCNs to modulate BFCN activity and viability. Over the past few decades, various methodologies have been developed to deliver NGF to the brain tissue. In this chapter, NGF delivery methods are discussed in the context of AD.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.
| | - Ruchi Gera
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Linderoth
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Göran Lind
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Per Almqvist
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Homira Behbahani
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Karolinska Universitets laboratoriet (LNP5), Karolinska University Hospital, Stockholm, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
39
|
Pössl A, Hartzke D, Schlupp P, Runkel FE. Calculation of Mass Transfer and Cell-Specific Consumption Rates to Improve Cell Viability in Bioink Tissue Constructs. MATERIALS 2021; 14:ma14164387. [PMID: 34442913 PMCID: PMC8401414 DOI: 10.3390/ma14164387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022]
Abstract
Biofabrication methods such as extrusion-based bioprinting allow the manufacture of cell-laden structures for cell therapy, but it is important to provide a sufficient number of embedded cells for the replacement of lost functional tissues. To address this issue, we investigated mass transfer rates across a bioink hydrogel for the essential nutrients glucose and glutamine, their metabolites lactate and ammonia, the electron acceptor oxygen, and the model protein bovine serum albumin. Diffusion coefficients were calculated for these substances at two temperatures. We could confirm that diffusion depends on the molecular volume of the substances if the bioink has a high content of polymers. The analysis of pancreatic 1.1B4 β-cells revealed that the nitrogen source glutamine is a limiting nutrient for homeostasis during cultivation. Taking the consumption rates of 1.1B4 β-cells into account during cultivation, we were able to calculate the cell numbers that can be adequately supplied by the cell culture medium and nutrients in the blood using a model tissue construct. For blood-like conditions, a maximum of ~106 cells·mL−1 was suitable for the cell-laden construct, as a function of the diffused substrate and cell consumption rate for a given geometry. We found that oxygen and glutamine were the limiting nutrients in our model.
Collapse
Affiliation(s)
- Axel Pössl
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen—University of Applied Sciences, Wiesenstrasse 14, 35390 Giessen, Germany; (A.P.); (D.H.)
| | - David Hartzke
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen—University of Applied Sciences, Wiesenstrasse 14, 35390 Giessen, Germany; (A.P.); (D.H.)
| | - Peggy Schlupp
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen—University of Applied Sciences, Wiesenstrasse 14, 35390 Giessen, Germany; (A.P.); (D.H.)
- Correspondence: (P.S.); (F.E.R.)
| | - Frank E. Runkel
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen—University of Applied Sciences, Wiesenstrasse 14, 35390 Giessen, Germany; (A.P.); (D.H.)
- Department of Biology and Chemistry, Justus Liebig University, Ludwigstrasse 23, 35390 Giessen, Germany
- Department of Pharmaceutics and Biopharmaceutics, Philipps University, Robert-Koch-Strasse 4, 35037 Marburg, Germany
- Correspondence: (P.S.); (F.E.R.)
| |
Collapse
|
40
|
Biomaterials for Cell-Surface Engineering and Their Efficacy. J Funct Biomater 2021; 12:jfb12030041. [PMID: 34287337 PMCID: PMC8293134 DOI: 10.3390/jfb12030041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
Literature in the field of stem cell therapy indicates that, when stem cells in a state of single-cell suspension are injected systemically, they show poor in vivo survival, while such cells show robust cell survival and regeneration activity when transplanted in the state of being attached on a biomaterial surface. Although an attachment-deprived state induces anoikis, when cell-surface engineering technology was adopted for stem cells in a single-cell suspension state, cell survival and regenerative activity dramatically improved. The biochemical signal coming from ECM (extracellular matrix) molecules activates the cell survival signal transduction pathway and prevents anoikis. According to the target disease, various therapeutic cells can be engineered to improve their survival and regenerative activity, and there are several types of biomaterials available for cell-surface engineering. In this review, biomaterial types and application strategies for cell-surface engineering are presented along with their expected efficacy.
Collapse
|
41
|
Padovan S, Carrera C, Catanzaro V, Grange C, Koni M, Digilio G. Glycol Chitosan Functionalized with a Gd(III) Chelate as a Redox-responsive Magnetic Resonance Imaging Probe to Label Cell Embedding Alginate Capsules. Chemistry 2021; 27:12289-12293. [PMID: 34160090 DOI: 10.1002/chem.202101657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 12/13/2022]
Abstract
One possibility for the non-invasive imaging of encapsulated cell grafts is to label the lumen of cell embedding capsules with a redox-responsive probe, as an increased extracellular reducing potential can be considered as a marker of hypoxia-induced necrosis. A Gd(III)-HPDO3A-like chelate has been conjugated to glycol-chitosan through a redox-responsive disulphide bond to obtain a contrast agent for Magnetic Resonance Imaging (MRI). Such a compound can be interspersed with fibroblasts within the lumen of alginate-chitosan capsules. Increasing reducing conditions within the extracellular microenvironment lead to the reductive cleavage of the disulphide bond and to the release of gadolinium in the form of a low molecular weight, non-ionic chelate. The efflux of such chelate from capsules is readily detected by a decrease of contrast enhancement in T1 -weighted MR images.
Collapse
Affiliation(s)
- Sergio Padovan
- Institute for Biostructures and Bioimages c/o Molecular Biotechnology Centre CNR, Via Nizza 52, 10126, Torino, Italy
| | - Carla Carrera
- Institute for Biostructures and Bioimages c/o Molecular Biotechnology Centre CNR, Via Nizza 52, 10126, Torino, Italy
| | - Valeria Catanzaro
- Department of Science and Technologic Innovation, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121, Alessandria, Italy.,Technology Transfer and Industrial Liaison Department, Politecnico di Torino, Torino, Italy
| | - Cristina Grange
- Department of Medical Sciences, University of Turin, Via Nizza 52, 10126, Torino, Italy
| | - Malvina Koni
- Department of Medical Sciences, University of Turin, Via Nizza 52, 10126, Torino, Italy
| | - Giuseppe Digilio
- Department of Science and Technologic Innovation, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
42
|
Tissue Engineering Strategies for Improving Beta Cell Transplantation Outcome. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Purpose of Review
Beta cell replacement therapy as a form of islet transplantation is a promising alternative therapy with the possibility to make selected patients with type 1 diabetes (T1D) insulin independent. However, this technique faces challenges such as extensive activation of the host immune system post-transplantation, lifelong need for immunosuppression, and the scarcity of islet donor pancreas. Advancement in tissue engineering strategies can improve these challenges and allow for a more widespread application of this therapy. This review will discuss the recent development and clinical translation of tissue engineering strategies in beta cell replacement therapy.
Recent Findings
Tissue engineering offers innovative solutions for producing unlimited glucose responsive cells and fabrication of appropriate devices/scaffolds for transplantation applications. Generation of pancreatic organoids with supporting cells in biocompatible biomaterials is a powerful technique to improve the function of insulin-producing cell clusters. Fabrication of physical barriers such as encapsulation strategies can protect the cells from the host immune system and allow for graft retrieval, although this strategy still faces major challenges to fully restore physiological glucose regulation.
Summary
The three main components of tissue engineering strategies including the generation of stem cell-derived insulin-producing cells and organoids and the possibilities for therapeutic delivery of cell-seeded devices to extra-hepatic sites need to come together in order to provide safe and functional insulin-producing devices for clinical beta cell replacement therapy.
Collapse
|
43
|
Lopez-Mendez TB, Santos-Vizcaino E, Pedraz JL, Orive G, Hernandez RM. Cell microencapsulation technologies for sustained drug delivery: Latest advances in efficacy and biosafety. J Control Release 2021; 335:619-636. [PMID: 34116135 DOI: 10.1016/j.jconrel.2021.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
The development of cell microencapsulation systems began several decades ago. However, today few systems have been tested in clinical trials. For this reason, in the last years, researchers have directed efforts towards trying to solve some of the key aspects that still limit efficacy and biosafety, the two major criteria that must be satisfied to reach the clinical practice. Regarding the efficacy, which is closely related to biocompatibility, substantial improvements have been made, such as the purification or chemical modification of the alginates that normally form the microspheres. Each of the components that make up the microcapsules has been carefully selected to avoid toxicities that can damage the encapsulated cells or generate an immune response leading to pericapsular fibrosis. As for the biosafety, researchers have developed biological circuits capable of actively responding to the needs of the patients to precisely and accurately release the demanded drug dose. Furthermore, the structure of the devices has been subject of study to adequately protect the encapsulated cells and prevent their spread in the body. The objective of this review is to describe the latest advances made by scientist to improve the efficacy and biosafety of cell microencapsulation systems for sustained drug delivery, also highlighting those points that still need to be optimized.
Collapse
Affiliation(s)
- Tania B Lopez-Mendez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), BTI Biotechnology Institute, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
44
|
Xing Y, Liu J, Guo X, Liu H, Zeng W, Wang Y, Zhang C, Lu Y, He D, Ma S, He Y, Xing XH. Engineering organoid microfluidic system for biomedical and health engineering: A review. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Abstract
Regenerative therapies aim to develop novel treatments to restore tissue function. Several strategies have been investigated including the use of biomedical implants as three-dimensional artificial matrices to fill the defect side, to replace damaged tissues or for drug delivery. Bioactive implants are used to provide growth environments for tissue formation for a variety of applications including nerve, lung, skin and orthopaedic tissues. Implants can either be biodegradable or non-degradable, should be nontoxic and biocompatible, and should not trigger an immunological response. Implants can be designed to provide suitable surface area-to-volume ratios, ranges of porosities, pore interconnectivities and adequate mechanical strengths. Due to their broad range of properties, numerous biomaterials have been used for implant manufacture. To enhance an implant’s bioactivity, materials can be functionalised in several ways, including surface modification using proteins, incorporation of bioactive drugs, growth factors and/or cells. These strategies have been employed to create local bioactive microenvironments to direct cellular responses and to promote tissue regeneration and controlled drug release. This chapter provides an overview of current bioactive biomedical implants, their fabrication and applications, as well as implant materials used in drug delivery and tissue regeneration. Additionally, cell- and drug-based bioactivity, manufacturing considerations and future trends will be discussed.
Collapse
|
46
|
Kong D, Xu H, Chen M, Yu Y, Qian Y, Qin T, Tong Y, Xia Q, Hang H. Co-encapsulation of HNF4α overexpressing UMSCs and human primary hepatocytes ameliorates mouse acute liver failure. Stem Cell Res Ther 2020; 11:449. [PMID: 33097090 PMCID: PMC7583302 DOI: 10.1186/s13287-020-01962-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a complicated condition that is characterized by global hepatocyte death and often requires immediate liver transplantation. However, this therapy is limited by shortage of donor organs. Mesenchymal stem cells (MSCs) and hepatocytes are two attractive sources of cell-based therapies to treat ALF. The combined transplantation of hepatocytes and MSCs is considered to be more effective for the treatment of ALF than single-cell transplantation. We have previously demonstrated that HNF4α-overexpressing human umbilical cord MSCs (HNF4α-UMSCs) promoted the expression of hepatic-specific genes. In addition, microencapsulation allows exchange of nutrients, forming a protective barrier to the transplanted cells. Moreover, encapsulation of hepatocytes improves the viability and synthetic ability of hepatocytes and circumvents immune rejection. This study aimed to investigate the therapeutic effect of microencapsulation of hepatocytes and HNF4α-UMSCs in ALF mice. METHODS Human hepatocytes and UMSCs were obtained separately from liver and umbilical cord, followed by co-encapsulation and transplantation into mice by intraperitoneal injection. LPS/D-gal was used to induce ALF by intraperitoneal injection 24 h after transplantation. In addition, Raw 264.7 cells (a macrophage cell line) were used to elucidate the effect of HNF4α-UMSCs-hepatocyte microcapsules on polarization of macrophages. The protein chip was used to define the important paracrine factors in the conditioned mediums (CMs) of UMSCs and HNF4α-UMSCs and investigate the possible mechanism of HNF4α-UMSCs for the treatment of ALF in mice. RESULTS HNF4α-UMSCs can enhance the function of primary hepatocytes in alginate-poly-L-lysine-alginate (APA) microcapsules. The co-encapsulation of both HNF4α-UMSCs and hepatocytes achieved better therapeutic effects in ALF mice by promoting M2 macrophage polarization and reducing inflammatory response mainly mediated by the paracrine factor HB-EGF secreted by HNF4α-UMSCs. CONCLUSIONS The present study confirms that the co-encapsulation of HNF4α-UMSC and hepatocytes could exert therapeutic effect on ALF mainly by HB-EGF secreted by HNF4α-UMSCs and provides a novel strategy for the treatment of ALF.
Collapse
Affiliation(s)
- Defu Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mo Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yeping Yu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yongbing Qian
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Tian Qin
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Ying Tong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Hualian Hang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
47
|
Paolone G. From the Gut to the Brain and Back: Therapeutic Approaches for the Treatment of Network Dysfunction in Parkinson's Disease. Front Neurol 2020; 11:557928. [PMID: 33117258 PMCID: PMC7575743 DOI: 10.3389/fneur.2020.557928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a complex, multisystem, progressive, degenerative disorder characterized by severe, debilitating motor dysfunction, cognitive impairments, and mood disorders. Although preclinical research has traditionally focused on the motor deficits resulting from the loss of nigrostriatal dopaminergic neurons, up to two thirds of PD patients present separate and distinct behavioral changes. Loss of basal forebrain cholinergic neurons occurs as early as the loss of dopaminergic cells and contributes to the cognitive decline in PD. In addition, attentional deficits can limit posture control and movement efficacy caused by dopaminergic cell loss. Complicating the picture further is intracellular α-synuclein accumulation beginning in the enteric nervous system and diffusing to the substantia nigra through the dorsal motor neurons of the vagus nerve. It seems that α-synuclein's role is that of mediating dopamine synthesis, storage, and release, and its function has not been completely understood. Treating a complex, multistage network disorder, such as PD, likely requires a multipronged approach. Here, we describe a few approaches that could be used alone or perhaps in combination to achieve a greater mosaic of behavioral benefit. These include (1) using encapsulated, genetically modified cells as delivery vehicles for administering neuroprotective trophic factors, such as GDNF, in a direct and sustained means to the brain; (2) immunotherapeutic interventions, such as vaccination or the use of monoclonal antibodies against aggregated, pathological α-synuclein; (3) the continuous infusion of levodopa-carbidopa through an intestinal gel pad to attenuate the loss of dopaminergic function and manage the motor and non-motor complications in PD patients; and (4) specific rehabilitation treatment programs for drug-refractory motor complications.
Collapse
Affiliation(s)
- Giovanna Paolone
- Department of Diagnostic and Public Health - Section of Pharmacology, University of Verona, Verona, Italy
| |
Collapse
|
48
|
Paez-Mayorga J, Capuani S, Hernandez N, Farina M, Chua CYX, Blanchard R, Sizovs A, Liu HC, Fraga DW, Niles JA, Salazar HF, Corradetti B, Sikora AG, Kloc M, Li XC, Gaber AO, Nichols JE, Grattoni A. Neovascularized implantable cell homing encapsulation platform with tunable local immunosuppressant delivery for allogeneic cell transplantation. Biomaterials 2020; 257:120232. [DOI: 10.1016/j.biomaterials.2020.120232] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/10/2023]
|
49
|
Papatheodoridi M, Mazza G, Pinzani M. Regenerative hepatology: In the quest for a modern prometheus? Dig Liver Dis 2020; 52:1106-1114. [PMID: 32868215 DOI: 10.1016/j.dld.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
As liver-related morbidity and mortality is rising worldwide and orthotopic liver transplantation (OLT) remains the only standard-of-care for end-stage liver disease or acute liver failure, shortage of donor organs is becoming more prominent. Importantly, advances in regenerative Hepatology and liver bioengineering are bringing new hope to the possibility of restoring impaired hepatic functionality in the presence of acute or chronic liver failure. Hepatocyte transplantation and artificial liver-support systems were the first strategies used in regenerative hepatology but have presented various types of efficiency limitations restricting their widespread use. In parallel, liver bioengineering has been a rapidly developing field bringing continuously novel advancements in biomaterials, three dimensional (3D) scaffolds, cell sources and relative methodologies for creating bioengineered liver tissue. The current major task in liver bioengineering is to build small implantable liver mass for treating inherited metabolic disorders, bioengineered bile ducts for congenital biliary defects and large bioengineered liver organs for transplantation, as substitutes to donor-organs, in cases of acute or acute-on-chronic liver failure. This review aims to summarize the state-of-the-art and upcoming technologies of regenerative Hepatology that are emerging as promising alternatives to the current standard-of care in liver disease.
Collapse
Affiliation(s)
- Margarita Papatheodoridi
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Giuseppe Mazza
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Massimo Pinzani
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom.
| |
Collapse
|
50
|
Wang Y, Liu H, Zhang M, Wang H, Chen W, Qin J. One-step synthesis of composite hydrogel capsules to support liver organoid generation from hiPSCs. Biomater Sci 2020; 8:5476-5488. [PMID: 32914807 DOI: 10.1039/d0bm01085e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Advances in biomaterials, especially in hydrogels, have offered great opportunities for stem cell organoid engineering with higher controllability and fidelity. Here, we propose a novel strategy for one-step synthesis of composite hydrogel capsules (CHCs) that enable engineering liver organoids from human induced pluripotent stem cells (hiPSCs) in an oil-free droplet microfluidic system. The CHCs composed of a fibrin hydrogel core and an alginate-chitosan composite shell are synthesized by an enzymatic crosslinking reaction and electrostatic complexation within stable aqueous emulsions. The proposed CHCs exhibit high uniformity with biocompatibility, stability and high-throughput properties, as well as defined compositions. Moreover, the established system enables 3D culture, differentiation and self-organized formation of liver organoids in a continuous process by encapsulating hepatocyte-like cells derived from hiPSCs. The encapsulated liver organoids consisting of hepatocyte- and cholangiocyte-like cells show favorable cell viability and growth with consistent size. Furthermore, they maintain proper liver-specific functions including urea synthesis and albumin secretion, replicating the key features of the human liver. By combining stem cell biology, defined hydrogels and the droplet microfluidic technique, the proposed system is easy-to-operate, scalable and stable to engineer stem cell organoids, which may offer a robust platform to advance organoid research and translational applications.
Collapse
Affiliation(s)
- Yaqing Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China.
| | | | | | | | | | | |
Collapse
|