1
|
Kannen V, Olafsen NE, Das S, Giuliana P, Izzati FN, Choksi H, Åhrling SS, Cappello P, Teino I, Maimets T, Jaudzems K, Gulbinas A, Dambrauskas Z, Edgar LJ, Grant DM, Matthews J. Loss of aryl hydrocarbon receptor reduces pancreatic tumor growth by increasing immune cell infiltration. Biochem Pharmacol 2025; 236:116872. [PMID: 40090596 DOI: 10.1016/j.bcp.2025.116872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease which remains poorly understood. Increasing evidence suggests that the aryl hydrocarbon receptor (AHR) plays a role in the pathogenesis of several cancers; however, its role in PDAC is unclear because AHR exhibits both pro- and anti-tumor activities. Here we evaluated the role of AHR in CR705 and K8484 murine PDAC cells in vitro and CR705 cells in vivo. Loss of Ahr did not affect cell proliferation compared with Cas9 control cells and no differences in tumor development between CR705Cas9 and CR705AhrKO cells were observed in immunocompromised mice. Conversely, tumors from CR705AhrKO cells grew more slowly than tumors from CR705Cas9 cells in immune competent mice. RNA sequencing identified 1279 genes upregulated and 586 genes downregulated in CR705AhrKO tumors compared with CR705Cas9 tumors. Pathway analysis identified immunoregulatory interactions, interferon signaling, and chemokine signaling among the top upregulated pathways. Increased infiltration of CD45+ cells and higher numbers of CD8+ T cells and F4/80+ cells were observed in CR705AhrKO tumors. Ahr deficiency in macrophages (LysMCre) or lymphocytes (RorcCre) did not alter tumor development of CR705Cas9 cells compared with Ahrfl/fl mice. CR705AhrKO tumors in RorcCre mice, but not in LysMCre mice had significantly lower tumor weights normalized to body weights compared with CR705AhrKO tumors in WT mice. These findings show that Ahr loss in CR705 pancreatic cancer cells is sufficient to induce proinflammatory gene responses that contribute to increased immune cell infiltration and reduced tumor growth.
Collapse
MESH Headings
- Animals
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/deficiency
- Receptors, Aryl Hydrocarbon/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Mice
- Cell Line, Tumor
- Cell Proliferation/physiology
- Mice, Knockout
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Mice, Inbred C57BL
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Female
- Basic Helix-Loop-Helix Transcription Factors
Collapse
Affiliation(s)
- Vinicius Kannen
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | | | | | - Paolo Giuliana
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | - Fauzia N Izzati
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | - Hani Choksi
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | | | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - Indrek Teino
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Toivo Maimets
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | | | - Antanas Gulbinas
- Surgical Gastroenterology Laboratory, University of Health 6 Sciences, Lithuania
| | - Zilvinas Dambrauskas
- Surgical Gastroenterology Laboratory, University of Health 6 Sciences, Lithuania
| | - Landon J Edgar
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Canada; Department of Nutrition, University of Oslo, Norway.
| |
Collapse
|
2
|
Li F, Du X, Han M, Feng X, Jiang C. Targeting ETHE1 inhibits tumorigenesis in vitro and in vivo by preventing aerobic glycolysis in gastric adenocarcinoma cells. Oncol Lett 2025; 29:286. [PMID: 40264823 PMCID: PMC12012436 DOI: 10.3892/ol.2025.15032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/20/2025] [Indexed: 04/24/2025] Open
Abstract
Gastric adenocarcinoma (GAC) is a prevalent form of cancer that frequently displays abnormal metabolism characterized by increased aerobic glycolysis. Therefore, inhibition of glycolysis may exhibit therapeutic potential for the management of advanced or recurrent gastric cancer. Analysis of ethylmalonic encephalopathy protein 1 (ETHE1) expression levels in 30 pairs of cancerous and paracancerous tissues, and 50 tumor tissue sections collected from patients with GAC revealed that ETHE1 expression was upregulated in cancerous tissues compared with in paracancerous tissues. Advanced tumor stage, lymph node metastasis and Tumor-Node-Metastasis stage were associated with high ETHE1 expression. Knockdown of ETHE1 expression in GAC cells resulted in a significant inhibition of cell proliferation and in cell cycle arrest, accompanied by downregulated levels of cyclin D1 and cyclin-dependent kinase 4. ETHE1 knockdown also resulted in increased apoptosis of GAC cells, and increased caspase-3 and caspase-9 activity. Additionally, the expression levels of proteins associated with aerobic glycolysis were downregulated following ETHE1 knockdown, which may reduce glucose consumption, lactic acid production and ATP levels. In the in vivo experiments, suppressed tumor growth and increased tumor cell apoptosis were observed in the xenograft tumor model in animals injected with ETHE1-knockdown GAC cells. In summary, knockdown of ETHE1 inhibited aerobic glycolysis, promoted apoptosis and inhibited tumor cell proliferation in GAC cells. These results highlight ETHE1 as a promising molecular target for the treatment of GAC potentially using an adjuvant to target it, offering a novel approach in the exploration of targeted therapeutic drugs for GAC.
Collapse
Affiliation(s)
- Fangfei Li
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Xuan Du
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Mei Han
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Xiaoying Feng
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Chunmeng Jiang
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
3
|
Cao Q, Liu L, Ma X, Zhong C, Tang M, Liu M, Qu LB, Wei B, Xu X. 1, 8-Cineole Ameliorated Staphylococcus aureus-Induced Pneumonia through Modulation of TRP-KYN and Arginine-NO Reprogramming. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11670-11683. [PMID: 40314286 DOI: 10.1021/acs.jafc.4c10860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
1, 8-Cineole (Cin), a cyclic monoterpenoid derived from tea trees and eucalyptus species, exhibits diverse pharmacological properties. Yet, its therapeutic impact and underlying mechanism against Staphylococcus aureus (S. aureus) pneumonia remain to be elucidated. In this study, metabolomics based on UPLC-MS/MS was integrated with network pharmacology, molecular biology, and molecular docking to investigate the effects of Cin. The findings demonstrated that Cin markedly reduced mortality and lung bacterial load, lessened pulmonary damage while suppressing the levels of proinflammatory factors, including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the bronchoalveolar lavage fluid (BALF) of infected mice. Additionally, 19 metabolites, primarily involved in tryptophan metabolism and arginine biosynthesis, were notably modified by Cin via suppressing the enzymatic activity of indoleamine 2, 3-dioxygenase 1 (IDO1) and inducible nitric oxide synthase (iNOS), thereby attenuating the inflammatory response. Notably, knockdown of IDO1 or iNOS significantly diminished the anti-inflammation effect of Cin. In conclusion, our study validates the therapeutic potential of Cin against S. aureus pneumonia via anti-inflammation by downregulating IDO1 and iNOS. Our results provide a theoretical basis of natural substances applied in bacterial pneumonia treatment.
Collapse
Affiliation(s)
- Qianwen Cao
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Luyao Liu
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaoge Ma
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Chaomin Zhong
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mengqi Tang
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mengge Liu
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ling-Bo Qu
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bo Wei
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xia Xu
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
4
|
Guo S, Zhang L, Ren J, Lu Z, Ma X, Liu X, Jin H, Li J. The roles of enhancer, especially super-enhancer-driven genes in tumor metabolism and immunity. Int J Biol Macromol 2025; 308:142414. [PMID: 40132720 DOI: 10.1016/j.ijbiomac.2025.142414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Abnormal metabolism is a characteristic of malignant tumors. Numerous factors play roles in the regulation of tumor metabolism. As epigenetic regulators, enhancers, especially the super-enhancers (SEs), serve as platforms for transcription factors that regulate the expression of metabolism-related enzymes or transporters at the gene level. In this study, we review the effects of enhancer/ SE-driven genes on tumor metabolism and immunity. Enhancers/SEs play regulatory roles in glucose metabolism (glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle, pyruvate, and pentose phosphate pathway, lipid metabolism (cholesterol, fatty acid, phosphatide, and sphingolipid), and amino acid metabolism (glutamine, tryptophan, arginine, and cystine). By regulating tumor metabolism, enhancers and SEs can reprogram tumor microenvironment, especially the status of various immune cells. Therefore, interfering enhancers/SEs that regulate the tumor metabolism is likely to enhance the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Songyue Guo
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Lu Zhang
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Jiao Ren
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xiaolin Ma
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xinling Liu
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| | - Hongchuan Jin
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China.
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| |
Collapse
|
5
|
Rong Y, Teng Y, Zhou X. Advances in the Study of Metabolic Reprogramming in Gastric Cancer. Cancer Med 2025; 14:e70948. [PMID: 40365984 PMCID: PMC12076355 DOI: 10.1002/cam4.70948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/18/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Gastric cancer is one of the most prevalent malignancies of the digestive system and is associated with a poor prognosis, particularly in advanced metastatic stages, where the 5-year survival rate is significantly low. METHODS Recent research has demonstrated that metabolic reprogramming-including alterations in glucose, lipid, and amino-acid metabolism-plays a critical role in both the development and progression of this disease. To gain deeper insights into these metabolic shifts, scientists have increasingly employed metabolomics, a non-invasive technique that detects and quantifies small molecules within cancerous tissues, thereby enhancing prognostic assessments. AIM Analyzing the metabolic profiles of gastric-cancer tissues can reveal significant changes in key metabolic pathways, which may open new avenues for targeted therapies and ultimately improve patient outcomes. CONCLUSION This article reviews recent advancements in the study of metabolic reprogramming in gastric cancer, aiming to identify potential therapeutic targets and offer new hope to patients.
Collapse
Affiliation(s)
- Yu Rong
- The First Clinical Medical College, Nanjing Medical UniversityNanjingChina
| | - Yuanyin Teng
- The Second Clinical Medical College, Nanjing Medical UniversityNanjingChina
| | - Xiaoying Zhou
- The First Clinical Medical College, Nanjing Medical UniversityNanjingChina
- Department of GastroenterologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
6
|
Sahoo R, Pattnaik S, Mohanty B, Mir SA, Behera B. Aryl hydrocarbon receptor (AHR) signalling: A double-edged sword guiding both cancer progression and cancer therapy. Biochim Biophys Acta Gen Subj 2025; 1869:130805. [PMID: 40222634 DOI: 10.1016/j.bbagen.2025.130805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025]
Abstract
Aryl Hydrocarbon Receptor (AHR) reported to be associated with major carcinogenic signalling cascades which cause cell proliferations, metastasis and invasion as well as immune imbalance. AHR Participates in cellular processes not only through genomic pathways to cause genomic alterations but also via nongenomic pathways to alter various cytoplasmic proteins. In addition, AHR senses a wide range of ligands that modulate its downstream mechanisms that are intricated in cancer induction and prevention. Thus, AHR functions as a two-sided sword where some AHR ligands contribute to enhance cancer whereas few are useful for cancer treatment. Therefore, AHR represent as a regulatory point in cancer progression and treatment. There is a need to reinvestigate the regulatory role of AHR in major intracellular pathways and to explore the potential of AHR ligand for the design of cancer therapeutics. This review emphasizes the interaction of AHR with pro-carcinogenic signalling pathways that modulate cancer induction and progression. Furthermore, it also discusses about the current discovery of AHR ligands for cancer initiation or inhibition. This information could be useful for development of therapeutic strategies for the management of cancer by targeting AHR.
Collapse
Affiliation(s)
- Rahul Sahoo
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Sriya Pattnaik
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Biswajit Mohanty
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Birendra Behera
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India.
| |
Collapse
|
7
|
Gao Z, Shao S, Xu Z, Nie J, Li C, Du C. IDO1 induced macrophage M1 polarization via ER stress-associated GRP78-XBP1 pathway to promote ulcerative colitis progression. Front Med (Lausanne) 2025; 12:1524952. [PMID: 40370742 PMCID: PMC12075526 DOI: 10.3389/fmed.2025.1524952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/17/2025] [Indexed: 05/16/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disorder distinguished by alternating phases of remission and exacerbation. Restoring immune balance through the modulation of M1 macrophage polarization represents a potentially valuable therapeutic strategy for UC. Indoleamine 2,3-dioxygenase-1 (IDO1) has been shown to contribute to macrophage plasticity, but its role in the pathogenesis of UC via regulating M1 macrophage polarization has not been studied yet. For the clinical component, we analyzed IDO1 expression in UC using bioinformatics analysis of Gene Expression Omnibus (GEO) datasets and validated the result using western blotting of colonic tissues from new recruited UC patients. Colitis was induced in mice via dextran sulfate sodium (DSS) treatment and subsequently treated with oral administration of 1-methyl-DL-tryptophan (1-MT), an inhibitor of IDO1 pathway. The results indicated that IDO1 expression was significantly elevated in UC patients and correlated with M1 macrophage polarization observed in both human data and colitis mice. Furthermore, 1-MT markedly ameliorated DSS-induced weight loss, colonic shortening and disease severity via inhibiting IDO1 expression level, downregulating GRP78-XBP1 pathway and reducing M1 proportion. Notably, in vitro study revealed that overexpressing IDO1 in RAW264.7 cells induced macrophage M1 polarization with increased expression levels of GRP78 and XBP1, which was attenuated by 1-MT treatment. Additionally, the catalytic effect exerted by IDO1 overexpression on M1 polarization was neutralized by employing an inhibitor targeting the endoplasmic reticulum (ER) stress pathway. Thus, our findings suggest that IDO1 may promote UC progression by skewing macrophages towards M1 polarization through ER stress-associated GRP78-XBP1 pathway.
Collapse
Affiliation(s)
- Zijian Gao
- Linyi People’s Hospital, Shandong Second Medical University, Linyi, China
- Department of Gastroenterology, Linyi People’s Hospital, Shandong Second Medical University, Linyi, China
| | - Shuai Shao
- Department of Gastroenterology, Linyi People’s Hospital, Shandong Second Medical University, Linyi, China
| | - Zhen Xu
- Department of Gastroenterology, Linyi People’s Hospital, Shandong Second Medical University, Linyi, China
| | - Jiao Nie
- Department of Gastroenterology, Linyi People’s Hospital, Shandong Second Medical University, Linyi, China
| | - Chenglin Li
- Department of Oncology, Linyi People’s Hospital, Shandong Second Medical University, Linyi, China
| | - Chao Du
- Linyi People’s Hospital, Shandong Second Medical University, Linyi, China
- Department of Gastroenterology, Weihai Municipal Hospital, Shandong University, Weihai, China
| |
Collapse
|
8
|
Tang B, Ouyang H, Zheng S, Yu L, Xiao R, Wu L, Wang Z. Doxorubicin promotes NK cell dysfunction and induces acute liver injury through kynurenine-AhR axis. Int Immunopharmacol 2025; 153:114489. [PMID: 40112597 DOI: 10.1016/j.intimp.2025.114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Drug-induced liver injury (DILI) is one of the significant drug-induced diseases and a major cause of clinically unexplained liver injury and unexplained liver diseases. However, the mechanisms underlying doxorubicin (DOX)-induced DILI remain unclear. In this study, we constructed a mouse model of DOX-induced acute liver injury (ALI) and employed a combination of proteomics, metabolomics, and flow cytometry (FCM) to examine the roles of metabolic processes and innate immune responses. Our findings revealed that DOX treatment altered the metabolic profile and innate immune response signals in mouse livers. Specifically, DOX activated the indoleamine 2,3-dioxygenase 2 (IDO2)-mediated L-Tryptophan/L-Kynurenine metabolic pathway. Further in-depth analysis demonstrated that DOX promoted natural killer (NK) cell dysfunction leading to ALI by activating the kynurenine-aryl hydrocarbon receptor (Kyn-AhR) axis. Importantly, targeting the Kyn-AhR axis could reverse DOX-induced ALI. In summary, this study suggests that targeting the Kyn-AhR axis holds promise as an effective strategy to reverse ALI.
Collapse
Affiliation(s)
- Bohuai Tang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Huan Ouyang
- Department of Cardiovascular, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350004, China
| | - Shuping Zheng
- Public Technology Service Center, Fujian Medical University, Fuzhou, 350122, China
| | - Le Yu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Ruiying Xiao
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Linqing Wu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| | - Zengbin Wang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
9
|
Ożga K, Stepuch P, Maciejewski R, Sadok I. Promising Gastric Cancer Biomarkers-Focus on Tryptophan Metabolism via the Kynurenine Pathway. Int J Mol Sci 2025; 26:3706. [PMID: 40332338 PMCID: PMC12027761 DOI: 10.3390/ijms26083706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Currently, gastric cancer treatment remains an enormous challenge and requires a multidisciplinary approach. Globally, the incidence and prevalence of gastric cancer vary, with the highest rates found in East Asia, Central Europe, and Eastern Europe. Early diagnosis is critical for successful surgical removal of gastric cancer, but the disease often develops asymptomatically. Therefore, many cases are diagnosed at an advanced stage, resulting in poor survival. Metastatic gastric cancer also has a poor prognosis. Therefore, it is urgent to identify reliable molecular disease markers and develop an effective medical treatment for advanced stages of the disease. This review summarizes potential prognostic or predictive markers of gastric cancer. Furthermore, the role of tryptophan metabolites from the kynurenine pathway as prognostic, predictive, and diagnostic factors of gastric cancer is discussed, as this metabolic pathway is associated with tumor immune resistance.
Collapse
Affiliation(s)
- Kinga Ożga
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Paweł Stepuch
- II Department of Oncological Surgery with Subdivision of Minimal Invasive Surgery, Center of Oncology of the Lublin Region St. Jana z Dukli, Jaczewskiego 7, 20-090 Lublin, Poland;
| | - Ryszard Maciejewski
- Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland;
| | - Ilona Sadok
- Department of Biomedical and Analytical Chemistry, Institute of Biological Sciences, Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| |
Collapse
|
10
|
Jiang J, Yan Y, Yang C, Cai H. Immunogenic Cell Death and Metabolic Reprogramming in Cancer: Mechanisms, Synergies, and Innovative Therapeutic Strategies. Biomedicines 2025; 13:950. [PMID: 40299564 PMCID: PMC12024911 DOI: 10.3390/biomedicines13040950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/01/2025] Open
Abstract
Immunogenic cell death (ICD) is a promising cancer therapy where dying tumor cells release damage-associated molecular patterns (DAMPs) to activate immune responses. Recent research highlights the critical role of metabolic reprogramming in tumor cells, including the Warburg effect, oxidative stress, and lipid metabolism, in modulating ICD and shaping the immune microenvironment. These metabolic changes enhance immune activation, making tumors more susceptible to immune surveillance. This review explores the molecular mechanisms linking ICD and metabolism, including mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and ferroptosis. It also discusses innovative therapeutic strategies, such as personalized combination therapies, metabolic inhibitors, and targeted delivery systems, to improve ICD efficacy. The future of cancer immunotherapy lies in integrating metabolic reprogramming and immune activation to overcome tumor immune evasion, with multi-omics approaches and microbiome modulation offering new avenues for enhanced treatment outcomes.
Collapse
Affiliation(s)
| | | | - Chunhui Yang
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China; (J.J.); (Y.Y.)
| | - Hong Cai
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China; (J.J.); (Y.Y.)
| |
Collapse
|
11
|
Gao F, Shah R, Xin G, Wang R. Metabolic Dialogue Shapes Immune Response in the Tumor Microenvironment. Eur J Immunol 2025; 55:e202451102. [PMID: 40223597 PMCID: PMC11995254 DOI: 10.1002/eji.202451102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
The fate of immune cells is fundamentally linked to their metabolic program, which is also influenced by the metabolic landscape of their environment. The tumor microenvironment represents a unique system for intercellular metabolic interactions, where tumor-derived metabolites suppress effector CD8+ T cells and promote tumor-promoting macrophages, reinforcing an immune-suppressive niche. This review will discuss recent advancements in metabolism research, exploring the interplay between various metabolites and their effects on immune cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Fengxia Gao
- Department of Microbial Infection and ImmunityPelotonia Institute for Immuno‐OncologyThe Ohio State UniversityColumbusOhioUSA
| | - Rushil Shah
- Center for Childhood Cancer ResearchHematology/Oncology & BMTAbigail Wexner Research Institute at Nationwide Children's HospitalDepartment of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Gang Xin
- Department of Microbial Infection and ImmunityPelotonia Institute for Immuno‐OncologyThe Ohio State UniversityColumbusOhioUSA
| | - Ruoning Wang
- Center for Childhood Cancer ResearchHematology/Oncology & BMTAbigail Wexner Research Institute at Nationwide Children's HospitalDepartment of PediatricsThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
12
|
Liu C, Wang Y, Sheng L, Zhang Y, Luo G, Ruan XZ, Chen Y, Huang M. 3-Hydroxypropionaldehyde modulates tryptophan metabolism to activate AhR signaling and alleviate ethanol-induced liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156445. [PMID: 39922148 DOI: 10.1016/j.phymed.2025.156445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Although probiotics-based therapies and postbiotics derived from Lactobacillus reuteri (L. reuteri) hold promising potential in mitigating alcohol-associated liver disease (ALD), the role of L. reuteri's metabolite, 3-Hydroxypropionaldehyde (3-HPA, reuterin), remains elusive. PURPOSE The objective of this study is to examine the influence of 3-HPA on the attenuation of alcohol-induced hepatic steatosis and its underlying mechanisms. METHODS The study utilizes network pharmacology to identify potential targets for 3-HPA in treating ALD. Comprehensive analytical methods, including histological and biochemical assessments, coupled with metabolomics techniques, are employed to evaluate the protective mechanisms and actions of 3-HPA in ALD. Additionally, the therapeutic potential of hepatic aryl hydrocarbon receptor (AhR) activation is explored through using both an AhR agonist and inhibitor, in order to assess the potential of 3-HPA as an AhR ligand in treating ALD. RESULTS Chronic alcohol consumption stimulates AhR activation in hepatocytes, both in vivo and in vitro, leading to the disruption of hepatic tryptophan metabolism. Our observations indicate that 3-HPA has the potential to regulate this process by activating AhR signaling through modulating tryptophan metabolism, specifically affecting indole acetaldehyde, indole, and 5‑hydroxy-l-tryptophan (5-HTP) levels. Mechanistically, 3-HPA demonstrates potential as an effective AhR agonist in mitigating ethanol-induced liver injury by regulating AhR-CD36 signaling, thereby exerting protective effects against hepatic steatosis. CONCLUSION Ultimately, the study identifies a previously uncharacterized role of 3-HPA in alleviating alcohol-associated liver injury and hepatic steatosis. It further elucidates that 3-HPA serves as a mediator in tryptophan metabolism, activating the AhR signaling, thereby suggesting its potential as a promising candidate for the treatment of ALD.
Collapse
Affiliation(s)
- Chen Liu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Wang
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Sichuan, 646000, China
| | - Linlin Sheng
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yun Zhang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Gang Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiong Z Ruan
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Yaxi Chen
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Meizhou Huang
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Sichuan, 646000, China.
| |
Collapse
|
13
|
Guo ZY, Wu X, Zhang SJ, Yang JH, Miao H, Zhao YY. Poria cocos: traditional uses, triterpenoid components and their renoprotective pharmacology. Acta Pharmacol Sin 2025; 46:836-851. [PMID: 39482471 PMCID: PMC11950336 DOI: 10.1038/s41401-024-01404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/28/2024] [Indexed: 11/03/2024]
Abstract
Poria cocos and its surface layer of Poria cocos (Schw.) Wolf (Polyporaceae), are used in traditional Chinese medicine for its diuretic and renoprotective effects. Phytochemical studies have shown that lanostane and 3,4-seco-lanostane tetracyclic triterpenoids are the main components of P. cocos and its surface layer. Accumulating evidence shows that triterpenoid components in P. cocos and its surface layer contribute to their renoprotective effect. The surface layer of P. cocos showed a stronger diuretic effect than P. cocos. The ethanol extract of the surface layer and its components improved acute kidney injury, acute kidney injury-to-chronic kidney disease transition and chronic kidney disease such as diabetic kidney disease, nephrotic syndrome and tubulointerstitial nephropathy, and protected against renal fibrosis. It has been elucidated that P. cocos and its surface layer exert a diuretic effect and improve kidney diseases through a variety of molecular mechanisms such as aberrant pathways TGF-β1/Smad, Wnt/β-catenin, IκB/NF-κB and Keap1/Nrf2 signaling as well as the activation of renin-angiotensin system, matrix metalloproteinases, aryl hydrocarbon receptor and endogenous metabolites. These studies further confirm the renoprotective effect of P. cocos and its surface layer and provide a beneficial basis to its clinical use in traditional medicine.
Collapse
Affiliation(s)
- Zhi-Yuan Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xin Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shui-Juan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian-Hua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Clinical Drug Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Hua Miao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ying-Yong Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
14
|
Zhou Y, Tao Q, Luo C, Chen J, Chen G, Sun J. Epacadostat Overcomes Cetuximab Resistance in Colorectal Cancer by Targeting IDO-Mediated Tryptophan Metabolism. Cancer Sci 2025. [PMID: 40103010 DOI: 10.1111/cas.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
Primary or acquired mutations in RAS/RAF genes resulting in cetuximab resistance have limited its clinical application in colorectal cancer (CRC) patients. The mechanism of this resistance remains unclear. RNA sequencing from cetuximab-sensitive and -resistant specimens revealed an activation of the tryptophan pathway and elevation of IDO1 and IDO2 in cetuximab-resistant CRC patients. In vitro, in vivo, and clinical specimens confirmed the upregulation of IDO1and IDO2 and the Kyn/Trp after cetuximab treatment. Additionally, the IDO inhibitor, epacadostat, could effectively inhibit the migration and proliferation of cetuximab-resistant CRC cells while promoting apoptosis. Compared to epacadostat monotherapy, the combination of cetuximab and epacadostat showed a stronger synergistic anti-tumor effect. Furthermore, in vivo experiments confirmed that combination therapy effectively suppressed tumor growth. Mechanistically, KEGG pathway analysis revealed the activation of the IFN-γ pathway in cetuximab-resistant CRC tissues. Luciferase reporter assays confirmed the transcriptional activity of IDO1 following cetuximab treatment. Silencing IFN-γ then suppressed the upregulation induced by cetuximab. Moreover, we observed that the combination reduced the concentration of the tryptophan metabolite kynurenine, promoted the infiltration of CD8+ T lymphocytes, and enhanced the polarization of M1 macrophages within the tumor microenvironment, thereby exerting potent anti-tumor immune effects. Overall, our results confirm the remarkable therapeutic efficacy of combining cetuximab with epacadostat in cetuximab-resistant CRC. Our findings may provide a novel target for overcoming cetuximab resistance in CRC.
Collapse
Affiliation(s)
- Yimin Zhou
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiongyan Tao
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chubin Luo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jinsong Chen
- Department of Clinical Medicine, Shaoguan University, Shaoguan, Guangdong, China
| | - Genwen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianyong Sun
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Wu B, Yang X, Kong N, Liang J, Li S, Wang H. Engineering Modular Peptide Nanoparticles for Ferroptosis-Enhanced Tumor Immunotherapy. Angew Chem Int Ed Engl 2025; 64:e202421703. [PMID: 39721975 DOI: 10.1002/anie.202421703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors are promising for treating tumors but have limited efficacy due to the immunosuppressive tumor microenvironment. In this study, we develop an orchestrated nanoparticle system using modular peptide assemblies, where the co-assembled sequences are designed for the specific binding to the hydrophobic and hydrophilic domains, guiding the assembly process and enabling the customization of nanoparticle properties. We exploit the modularity of this platform to integrate a hydrophobic ferroptosis precursor, an IDO1 inhibitor, and a hydrophilic peptidic PD-L1 antagonist for optimizing therapeutic outcomes through ferroptosis-enhanced tumor immunotherapy. The resulting nanoparticles induce immunogenic ferroptosis, enhance the intratumoral function of T lymphocytes, suppress regulatory T cells, and effectively modulate the immunosuppressive tumor microenvironment, thereby facilitating regression of tumor growth. This work provides a modular peptide-based nanoparticle engineering strategy and holds significant potential for advancing cancer treatment.
Collapse
Affiliation(s)
- Bihan Wu
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Xuejiao Yang
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Nan Kong
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Juan Liang
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Sangshuang Li
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Huaimin Wang
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
16
|
Wu Z, Wang H, Zheng Z, Lin Y, Bian L, Geng H, Huang X, Zhu J, Jing H, Zhang Y, Ji C, Zhai B. IDO1 inhibition enhances CLDN18.2-CAR-T cell therapy in gastrointestinal cancers by overcoming kynurenine-mediated metabolic suppression in the tumor microenvironment. J Transl Med 2025; 23:275. [PMID: 40045363 PMCID: PMC11884131 DOI: 10.1186/s12967-025-06276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy has achieved remarkable success in hematologic malignancies but faces significant limitations in gastrointestinal tumors due to the immunosuppressive tumor microenvironment (TME). Indoleamine 2,3-dioxygenase 1 (IDO1), a key enzyme in the TME, suppresses T cell efficacy by catalyzing tryptophan degradation to kynurenine (Kyn), leading to T cell exhaustion and reduced cytotoxicity. This study investigates the role of IDO1 inhibition in overcoming metabolic suppression by kynurenine and enhancing Claudin18.2 (CLDN18.2) CAR-T cell therapy in gastric and pancreatic adenocarcinoma models. METHODS We evaluated the impact of genetic knockdown and pharmacological inhibition of IDO1 (using epacadostat) on CAR-T cell functionality, including cytokine production and exhaustion marker expression. The effects of fludarabine and cyclophosphamide preconditioning on IDO1 expression, CAR-T cell infiltration, and antitumor activity was also examined. In vivo tumor models of gastric and pancreatic adenocarcinomas were used to assess the efficacy of combining IDO1 inhibition with CLDN18.2-CAR-T therapy. RESULTS IDO1 inhibition significantly enhanced CAR-T cell function by increasing cytokine production, reducing exhaustion markers by decreasing TOX expression and improving tumor cell lysis. Preconditioning with fludarabine and cyclophosphamide further suppressed IDO1 expression in the TME, facilitating enhanced CAR-T cell infiltration. In vivo studies demonstrated that combining IDO1 inhibition with CAR-T therapy led to robust tumor growth suppression and prolonged survival in gastric and pancreatic tumor models. CONCLUSIONS Targeting IDO1 represents a promising strategy to overcome immunosuppressive barriers in gastrointestinal cancers, improving the efficacy of CLDN18.2-CAR-T therapy. These findings highlight the potential for integrating IDO1 inhibition into CAR-T treatment regimens to address resistance in treatment-refractory cancers.
Collapse
Affiliation(s)
- Zhaorong Wu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongye Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhigang Zheng
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Lin
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Linke Bian
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haigang Geng
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | | | - Jiufei Zhu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongshu Jing
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yi Zhang
- Department of Urology, Fujian Renmin Hospital, Fuzhou, 350001, Fujian, China
| | - Chen Ji
- Department of Urology, Fujian Renmin Hospital, Fuzhou, 350001, Fujian, China.
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Mini-Invasive Interventional Therapy Center, Shanghai East Hospital, Tongji University, Shanghai, 200025, China.
| |
Collapse
|
17
|
Huchzermeier R, van der Vorst EPC. Aryl hydrocarbon receptor (AHR) and nuclear factor erythroid-derived 2-like 2 (NRF2): An important crosstalk in the gut-liver axis. Biochem Pharmacol 2025; 233:116785. [PMID: 39890034 DOI: 10.1016/j.bcp.2025.116785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, mainly involved in detoxification. However, in the intestine, metabolites derived from the diet, which are converted by a wide range of bacteria can also activate the AHR. This intestinal AHR activation plays a key role in maintaining the gut barrier by, for example, upregulating antimicrobial peptides and anti-inflammatory cytokines. Since the gut barrier influences the gut-liver axis by regulating the leaking of metabolites, bacteria, and endotoxins into circulation and particularly into the liver, the AHR is a key factor in the gut-liver axis. Vice versa, certain liver pathologies also influence the gut microbiome, thereby altering bacteria-derived activation of the AHR. Additionally, bile acids can impact the gut via the liver and thereby also affect the AHR. The aryl hydrocarbon receptor (AHR) interacts with several molecular factors, one of which is the nuclear factor erythroid-derived 2-like 2 (NRF2), a transcription factor primarily associated with regulating antioxidant stress responses. The interplay between AHR and NRF2 has been investigated in the context of various diseases; this review highlights the significance of this interaction within the framework of the gut-liver axis.
Collapse
Affiliation(s)
- Rosanna Huchzermeier
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany; Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany; Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
| |
Collapse
|
18
|
Lu Z, Zhang C, Zhang J, Su W, Wang G, Wang Z. The Kynurenine Pathway and Indole Pathway in Tryptophan Metabolism Influence Tumor Progression. Cancer Med 2025; 14:e70703. [PMID: 40103267 PMCID: PMC11919716 DOI: 10.1002/cam4.70703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 03/20/2025] Open
Abstract
Tryptophan (Trp), an essential amino acid, is solely acquired through dietary intake. It is vital for protein biosynthesis and acts as a precursor for numerous key bioactive compounds. The Kynurenine Pathway and the Indole Pathway are the main metabolic routes and are extensively involved in the occurrence and progression of diseases in the digestive, nervous, and urinary systems. In the Kynurenine Pathway, enzymes crucial to tryptophan metabolism, indoleamine-2,3-dioxygenase 1 (IDO1), IDO2, and Trp-2,3-dioxygenase (TDO), trigger tumor immune resistance within the tumor microenvironment and nearby lymph nodes by depleting Trp or by activating the Aromatic Hydrocarbon Receptor (AhR) through its metabolites. Furthermore, IDO1 can influence immune responses via non-enzymatic pathways. The Kynurenine Pathway exerts its effects on tumor growth through various mechanisms, including NAD+ regulation, angiogenesis promotion, tumor metastasis enhancement, and the inhibition of tumor ferroptosis. In the Indole Pathway, indole and its related metabolites are involved in gastrointestinal homeostasis, tumor immunity, and drug resistance. The gut microbiota related to indole metabolism plays a critical role in determining the effectiveness of tumor treatment strategies and can influence the efficacy of immunochemotherapy. It is worth noting that there are conflicting effects of the Kynurenine Pathway and the Indole Pathway on the same tumor phenotype. For example, different tryptophan metabolites affect the cell cycle differently, and indole metabolism has inconsistent protective effects on tumors in different regions. These differences may hold potential for enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Zhanhui Lu
- Department of Medical Oncology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Shanghai University of Traditional Chinese MedicineShanghaiChina
- Cancer Institute, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chengcheng Zhang
- Department of Medical Oncology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Shanghai University of Traditional Chinese MedicineShanghaiChina
- Cancer Institute, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jia Zhang
- Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Wan Su
- Department of Medical Oncology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guoying Wang
- Department of Critical Care MedicineThe Second People's Hospital of DongyingDongyingShandongChina
| | - Zhongqi Wang
- Department of Medical Oncology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
19
|
Xiao T, Chen Y, Jiang B, Huang M, Liang Y, Xu Y, Zheng X, Wang W, Chen X, Cai G. Ultrasound-guided renal subcapsular transplantation of mesenchymal stem cells for treatment of acute kidney injury in a minipig model: safety and efficacy evaluation. Stem Cell Res Ther 2025; 16:102. [PMID: 40022148 PMCID: PMC11871648 DOI: 10.1186/s13287-025-04137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/10/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a major global public health concern with limited treatment options. While preclinical studies have suggested the potential of mesenchymal stem cells (MSCs) to repair and protect injured kidneys in AKI, clinical trials using transarterial MSCs transplantation have yielded disappointing results. This study aimed to investigate the feasibility and safety of minimally invasive renal subcapsular transplantation of MSCs for treating AKI in a minipig model, ultimately aiming to facilitate the clinical translation of this approach. METHODS A novel AKI minipig model was established by combining cisplatin with hydration to evaluate the effectiveness of potential therapies. Renal subcapsular catheterization was successfully achieved under ultrasound guidance. Subsequently, the efficacy of renal subcapsular MSCs transplantation was assessed, and the biological role of the tryptophan metabolite kynurenine (Kyn) in AKI was elucidated through both in vivo and in vitro experiments. RESULTS The method of pre-hydration at 4% of body weight, followed by post-cisplatin (3.8 mg/kg) hydration at 2% of body weight, successfully established a cisplatin-induced AKI minipig model with a survival time exceeding 28 days, closely mimicking the clinical characteristics of typical AKI patients. Additionally, we discovered that multiple MSCs transplantations promoted renal function recovery more effectively than single transplantation via the renal subcapsular catheter. Furthermore, elevated levels of Kyn were observed in kidney during AKI, which activated the aryl hydrocarbon receptor (AhR)-mediated NF-κB/NLRP3/IL-1β signaling pathway in tubular epithelial cells, thereby exacerbating inflammatory injury. CONCLUSIONS Ultrasound-guided renal subcapsular transplantation of mesenchymal stem cells is a safe and effective therapeutic approach for AKI, with the potential to bring about significant clinical advancements in the future.
Collapse
Affiliation(s)
- Tuo Xiao
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Bo Jiang
- Department of Ultrasound, First Medical Centre of Chinese PLA General Hospital, Beijing, 100853, China
| | - Mengjie Huang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yanjun Liang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yue Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xumin Zheng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Wenjuan Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
20
|
Wu Y, Lin C, Qian Y, Huang X, Xu Y, Li J, He Y, Xie C, Su H. Identification of immune subtypes associated with CD8+ T cell-related genes providing new treatment strategies of esophageal carcinoma. Front Immunol 2025; 16:1512230. [PMID: 40083549 PMCID: PMC11903738 DOI: 10.3389/fimmu.2025.1512230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Background CD8+ T lymphocytes greatly affect the efficacy of immunotherapy, displaying promising potential in various tumors. Here, we aimed to identify immune subtypes associated with CD8+ T cell-related genes to predict the efficacy of treatment in esophageal cancer (ESCA). Methods We obtained 13 immune cell-related datasets from the Gene Expression Omnibus (GEO) database and removed batch effects. Weighted correlation network analysis (WGCNA) and co-expression analysis were performed to identify highly correlated CD8+ T cell genes. Cox analysis was used to process ESCA clinical information, and the immune clusters (ICs) were constructed through consensus cluster analysis. Furthermore, we constructed an immune risk score model to predict the prognosis of ESCA based on these CD8+ T cell genes. This model was verified using the IMvigor210 dataset, and we functionally validated the immune risk score model in vitro. Results The results revealed significant correlations between CD8+ T cell-related genes and immune-related pathways. Three ICs were identified in ESCA, with IC3 demonstrating the most favorable prognosis. The final 6-gene prognostic risk model exhibited stable predictive performance in datasets across different platforms. Compared with that in normal esophageal epithelial (HEEC cells), CHMP7 in the 6-gene prognostic risk model was upregulated in KYSE150 and TE-1 cells. Si-CHMP7 transfection led to a decrease in tumor cell migration, invasion, and proliferation, accompanied by an accelerated apoptotic process. Conclusions Collectively, we identified the immune subtypes of CD8+ T cell-related genes with different prognostic significance. We designated CHMP7 in the 6-gene prognostic risk model as a potential target to improve tumor cell prognosis. These insights provide a strong basis for improving prognosis and facilitating more personalized and accurate treatment decisions for the immunotherapy of ESCA.
Collapse
Affiliation(s)
- Youyi Wu
- Department Oncology Radiotherapy, The Third Affiliated Hospital of Wenzhou Medical University, Rui’an People Hospital, Ruian, Zhejiang, China
| | - Chen Lin
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuchen Qian
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaowei Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajing Xu
- Department of Radiation Oncology Wenzhou Central Hospital Theorem Hospital Affiliated of Wenzhou Medical University, Wenzhou, China
| | - Jiayi Li
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Youdi He
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congying Xie
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huafang Su
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Gu T, Qi H, Wang J, Sun L, Su Y, Hu H. Identification of T cell dysfunction molecular subtypes and exploration of potential immunotherapy targets in BRAF V600E-mutant colorectal cancer. Discov Oncol 2025; 16:163. [PMID: 39934467 DOI: 10.1007/s12672-025-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Immunotherapy is an effective treatment for BRAF V600E-mutant colorectal cancer, but currently, only a few benefit from it. Therefore, exploring new immunotherapy strategies is essential. METHODS We obtained RNA sequencing data and clinical information of colorectal cancer patients from the TCGA and GEO databases. The impact of the BRAF V600E mutation on tumor microenvironment characteristics, gene expression, and signaling pathways was evaluated using bioinformatics approaches. Weighted gene co-expression network analysis (WGCNA) were used to identify core genes associated with T cell dysfunction. Consensus clustering was applied for subtype construction. Least Absolute Shrinkage and Selection Operator (LASSO) and Random Forest (RF) algorithms were employed to filter potential immunotherapy targets. RESULTS We found that BRAF V600E mutation has a complex impact on the immune profile of colorectal cancer. It increases immune cell infiltration and activates immune-related signaling pathways, yet it also severely restricts T cell function. We subsequently identified 39 core genes associated with T cell dysfunction and constructed subtypes of BRAF V600E colorectal cancer based on their expression profiles. Significant heterogeneity was observed between these subtypes in immune signaling pathway activity, immune infiltration patterns, immune phenotype scores, and mechanisms of resistance to immunotherapy. Ultimately, using machine learning algorithms and bioinformatics validation, we identified IDO1 as a potential immunotherapy targets for BRAF V600E-mutant colorectal cancer. CONCLUSION This study constructed novel T cell dysfunction molecular subtypes for BRAF V600E-mutant colorectal cancer and identified IDO1 as a potential immunotherapy target, providing a new strategy for immunotherapy.
Collapse
Affiliation(s)
- Tiefeng Gu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, China
| | - Haonan Qi
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, China
| | - Jiaqi Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, China
| | - Liangwei Sun
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, China
| | - Yongqi Su
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, China
| | - Hanqing Hu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, China.
| |
Collapse
|
22
|
Arandhara A, Bhuyan P, Das BK. Exploring lung cancer microenvironment: pathways and nanoparticle-based therapies. Discov Oncol 2025; 16:159. [PMID: 39934547 DOI: 10.1007/s12672-025-01902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Lung cancer stands out as a significant global health burden, with staggering incidence and mortality rates primarily linked to smoking and environmental carcinogens. The tumor microenvironment (TME) emerges as a critical determinant of cancer progression and treatment outcomes, comprising a complex interplay of cells, signaling molecules, and extracellular matrix. Through a comprehensive literature review, we elucidate current research trends and therapeutic prospects, aiming to advance our understanding of TME modulation strategies and their clinical implications for lung cancer treatment. Dysregulated immune responses within the TME can facilitate tumor evasion, limiting the efficacy of immune checkpoint inhibitors (ICI). Consequently, TME modulation strategies have become potential avenues to enhance therapeutic responses. However, conventional TME-targeted therapies often face challenges. In contrast, nanoparticle (NP)-based therapies offer promising prospects for improved drug delivery and reduced toxicity, leveraging the enhanced permeability and retention (EPR) effect. Despite NP design and delivery advancements, obstacles like poor tumor cell uptake and off-target effects persist, necessitating further optimization. This review underscores the pivotal role of TME in lung cancer management, emphasizing the synergistic potential of immunotherapy and nano-therapy.
Collapse
Affiliation(s)
- Arunabh Arandhara
- Assam Pharmacy Institute, Titabar, Amgurikhat, Jorhat, Assam, 785632, India
| | - Pallabi Bhuyan
- School of Pharmacy, The Assam Kaziranga University, Koraikhowa, Jorhat, Assam, 785006, India
| | - Bhrigu Kumar Das
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati, Assam, 781017, India.
| |
Collapse
|
23
|
Dong XM, Chen L, Xu YX, Wu P, Xie T, Liu ZQ. Exploring metabolic reprogramming in esophageal cancer: the role of key enzymes in glucose, amino acid, and nucleotide pathways and targeted therapies. Cancer Gene Ther 2025; 32:165-183. [PMID: 39794467 DOI: 10.1038/s41417-024-00858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 01/13/2025]
Abstract
Esophageal cancer (EC) is one of the most common malignancies worldwide with the character of poor prognosis and high mortality. Despite significant advancements have been achieved in elucidating the molecular mechanisms of EC, for example, in the discovery of new biomarkers and metabolic pathways, effective treatment options for patients with advanced EC are still limited. Metabolic heterogeneity in EC is a critical factor contributing to poor clinical outcomes. This heterogeneity arises from the complex interplay between the tumor microenvironment and genetic factors of tumor cells, which drives significant metabolic alterations in EC, a process known as metabolic reprogramming. Understanding the mechanisms of metabolic reprogramming is essential for developing new antitumor therapies and improving treatment outcomes. Targeting the distinct metabolic alterations in EC could enable more precise and effective therapies. In this review, we explore the complex metabolic changes in glucose, amino acid, and nucleotide metabolism during the progression of EC, and how these changes drive unique nutritional demands in cancer cells. We also evaluate potential therapies targeting key metabolic enzymes and their clinical applicability. Our work will contribute to enhancing knowledge of metabolic reprogramming in EC and provide new insights and approaches for the clinical treatment of EC.
Collapse
Affiliation(s)
- Xue-Man Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Pu Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.
| | - Zhao-Qian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
| |
Collapse
|
24
|
Gan G, Zhou X, Zheng Q, Gao X, Chen X, Zhang H, Liu J, Shi Z, Chen F. 3-Hydroxyanthranic acid inhibits growth of oral squamous carcinoma cells through growth arrest and DNA damage inducible alpha. Transl Oncol 2025; 52:102278. [PMID: 39799750 PMCID: PMC11770551 DOI: 10.1016/j.tranon.2025.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/28/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025] Open
Abstract
OBJECTIVES The specific role of 3-hydroxyanthranilic acid(3-HAA) in oral squamous cell carcinoma (OSCC) remains unclear. This study investigated the roles of 3-HAA in OSCC and the underlying mechanism. MATERIALS AND METHODS The effects of 3-HAA on OSCC were examined using CCK-8, colony formation, EdU incorporation assays and xenograft mouse model. The underlying mechanisms were investigated with RNA-seq, apoptosis array and cell cycle array. Short hairpin RNAs (shRNAs) were used to knockdown the expression of growth arrest and DNA damage inducible alpha (GADD45A) in OSCC cells. CCK-8 and xenograft mouse model were employed to elucidate the role of GADD45A. The binding sites between GADD45A and Yin Yang 1(YY1) were determined using luciferase reporter assay. RESULTS 3-HAA was selectively down-regulated in OSCC patients and the decreasing level intensified with pathological progression. Higher expression of kynurenine 3-monooxygenase (KMO) and kynureninase (KYNU), which can increase the content of 3-HAA, was associated with poorer prognosis of OSCC patients. Exogenous 3-HAA hampered growth of OSCC cells both in vitro and in vivo. 3-HAA induced growth arrest, G2/M-phase arrest, and apoptosis of OSCC cells. RNA-seq indicated that 3-HAA significantly increased GADD45A expression. 3-HAA promoted transcription of GADD45A by transcription factor YY1. Knockdown of GADD45A significantly reversed 3-HAA-induced growth inhibition of OSCC cells in vivo and in vitro. DISCUSSION 3-HAA induced apoptosis and cell cycle arrest of OSCC cells via GADD45A, indicating that 3-HAA and GADD45A are potential therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Guifang Gan
- Shanghai Ninth People's Hospital, Department of Clinical Laboratory medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Xinxia Zhou
- Shanghai Ninth People's Hospital, Department of Clinical Laboratory medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Qiaoping Zheng
- Shanghai Ninth People's Hospital, Department of Clinical Laboratory medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Xianfu Gao
- Shanghai Profleader Biotech Co., Ltd., Shanghai 200003, PR China
| | - Xu Chen
- Shanghai Ninth People's Hospital, Department of Clinical Laboratory medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Han Zhang
- Shanghai Ninth People's Hospital, Department of Clinical Laboratory medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Jinghao Liu
- Shanghai Ninth People's Hospital, Department of Clinical Laboratory medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Zhaopeng Shi
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| | - Fuxiang Chen
- Shanghai Ninth People's Hospital, Department of Clinical Laboratory medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
25
|
Khan T, Nagarajan M, Kang I, Wu C, Wangpaichitr M. Targeting Metabolic Vulnerabilities to Combat Drug Resistance in Cancer Therapy. J Pers Med 2025; 15:50. [PMID: 39997327 PMCID: PMC11856717 DOI: 10.3390/jpm15020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Drug resistance remains a significant barrier to effective cancer therapy. Cancer cells evade treatment by reprogramming their metabolism, switching from glycolysis to oxidative phosphorylation (OXPHOS), and relying on alternative carbon sources such as glutamine. These adaptations not only enable tumor survival but also contribute to immune evasion through mechanisms such as reactive oxygen species (ROS) generation and the upregulation of immune checkpoint molecules like PD-L1. This review explores the potential of targeting metabolic weaknesses in drug-resistant cancers to enhance therapeutic efficacy. Key metabolic pathways involved in resistance, including glycolysis, glutamine metabolism, and the kynurenine pathway, are discussed. The combination of metabolic inhibitors with immune checkpoint inhibitors (ICIs), particularly anti-PD-1/PD-L1 therapies, represents a promising approach to overcoming both metabolic and immune evasion mechanisms. Clinical trials combining metabolic and immune therapies have shown early promise, but further research is needed to optimize treatment combinations and identify biomarkers for patient selection. In conclusion, targeting cancer metabolism in combination with immune checkpoint blockade offers a novel approach to overcoming drug resistance, providing a potential pathway to improved outcomes in cancer therapy. Future directions include personalized treatments based on tumor metabolic profiles and expanding research to other tumor types.
Collapse
Affiliation(s)
- Taranatee Khan
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
| | - Manojavan Nagarajan
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Irene Kang
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
- South Florida VA Foundation for Research and Education, Miami, FL 33125, USA
| | - Chunjing Wu
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
| | - Medhi Wangpaichitr
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- South Florida VA Foundation for Research and Education, Miami, FL 33125, USA
- Department of Surgery, Division of Thoracic Surgery, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
26
|
Paranthaman P, Veerappapillai S. Identification of putative Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) dual inhibitors for triple-negative breast cancer therapy. J Biomol Struct Dyn 2025:1-19. [PMID: 39861977 DOI: 10.1080/07391102.2024.2332509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/13/2024] [Indexed: 01/27/2025]
Abstract
Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis. To date, there are no clinically available small-molecule inhibitors that target these enzymes. Navoximod, a reliable dual-specific inhibitor, resulted in poor bioavailability and modest efficacy in clinical trials restricts its utility. This situation urges the development of a potent drug-like candidate against these key enzymes. A total of 1574 natural compounds were proclaimed and subjected to ADME screening. Subsequently, the resultant compounds were attributed to hierarchical molecular docking and MM-GBSA validation. Ultimately, re-scoring with the aid of combined machine learning algorithms resulted six lead compounds. Captivatingly, NPACT00380 exhibited maximum interaction among the lead compounds. In addition, the scaffold analysis also highlighted that the chromanone moiety of the hit compound boasts anti-cancer activity against breast cancer cell lines. The reliability of the results was corroborated through a rigorous 100 ns molecular dynamics simulation using the parameters including RMSD, PCA and FEL analysis. In light of these findings, it is presumed that the proposed compound exhibits significant inhibitory activity. As a result, we speculate that further optimisation of NPACT00380 could be beneficial for the treatment and management of TNBC.
Collapse
Affiliation(s)
- Priyanga Paranthaman
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
27
|
Eom H, Park S, Cho K, Lee J, Kim H, Kim S, Yang J, Han YH, Lee J, Seok C, Lee M, Song W, Steinegger M. Discovery of highly active kynureninases for cancer immunotherapy through protein language model. Nucleic Acids Res 2025; 53:gkae1245. [PMID: 39777462 PMCID: PMC11704957 DOI: 10.1093/nar/gkae1245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/16/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Tailor-made enzymes empower a wide range of versatile applications, although searching for the desirable enzymes often requires high throughput screening and thus poses significant challenges. In this study, we employed homology searches and protein language models to discover and prioritize enzymes by their kinetic parameters. We aimed to discover kynureninases as a potentially versatile therapeutic enzyme, which hydrolyses L-kynurenine, a potent immunosuppressive metabolite, to overcome the immunosuppressive tumor microenvironment in anticancer therapy. Subsequently, we experimentally validated the efficacy of four top-ranked kynureninases under in vitro and in vivo conditions. Our findings revealed a catalytically most active one with a nearly twofold increase in turnover number over the prior best and a 3.4-fold reduction in tumor weight in mouse model comparisons. Consequently, our approach holds promise for the targeted quantitative enzyme discovery and selection suitable for specific applications with higher accuracy, significantly broadening the scope of enzyme utilization. A web-executable version of our workflow is available at seekrank.steineggerlab.com and our code is available as free open-source software at github.com/steineggerlab/SeekRank.
Collapse
Affiliation(s)
- Hyunuk Eom
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sukhwan Park
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kye Soo Cho
- Galux Inc, 1837 Nambusunhwan-ro, Gwanak-gu, Seoul 08738, Republic of Korea
| | - Jihyeon Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyunbin Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Stephanie Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jinsol Yang
- Galux Inc, 1837 Nambusunhwan-ro, Gwanak-gu, Seoul 08738, Republic of Korea
| | - Young-Hyun Han
- Galux Inc, 1837 Nambusunhwan-ro, Gwanak-gu, Seoul 08738, Republic of Korea
| | - Juyong Lee
- Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- School of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Arontier Co., 241 Gangnam-daero, Seocho-gu, Seoul 06735, Republic of Korea
| | - Chaok Seok
- Artificial Intelligence Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Galux Inc, 1837 Nambusunhwan-ro, Gwanak-gu, Seoul 08738, Republic of Korea
| | - Myeong Sup Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
- Galux Inc, 1837 Nambusunhwan-ro, Gwanak-gu, Seoul 08738, Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Artificial Intelligence Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
28
|
Lu F, Yan G, Zhao Z, Zheng Z, Wu Y, Wen L, Liu Y, Zeng Q, Zhang G. TDO2 + cancer-associated fibroblasts mediate cutaneous squamous cell carcinoma immune escape via impeding infiltration of CD8 + T cells. Cancer Immunol Immunother 2025; 74:67. [PMID: 39751882 PMCID: PMC11698999 DOI: 10.1007/s00262-024-03921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer, originating from the malignant proliferation of squamous epithelial cells. However, its pathogenesis remains unclear. To further explore the mechanisms underlying cSCC, we analyzed the data from one single-cell RNA sequencing study and discovered a significant upregulation of tryptophan 2,3-dioxygenase (TDO2) in the cancer-associated fibroblasts (CAFs). Nonetheless, the specific expression and potential biological significance of TDO2 in cSCC have not yet been reported. In this study, we confirmed that TDO2 is highly expressed in CAFs of cSCC. Clinical correlation analysis indicated that high TDO2 expression was significantly associated with poor tumor differentiation. Furthermore, increased TDO2 expression in cSCC correlated with reduced CD8 + T cell infiltration, suggesting its role in modulating immune responses. TDO2 inhibitors significantly reduced the size and number of tumors in mice and effectively increased CD8 + T cell infiltration. RNA sequencing analysis revealed that TDO2 inhibitors modulate immune cell activity and downregulate the PI3K-Akt signaling pathway. In summary, our study demonstrates that TDO2 + CAFs induce immune evasion by inhibiting CD8 + T cell infiltration in cSCC. Inhibiting TDO2 could enhance antitumor immune responses, providing a promising strategy to improve treatment outcomes in cSCC.
Collapse
Affiliation(s)
- Fangqi Lu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Zijun Zhao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Zhe Zheng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Yuhao Wu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Long Wen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Yeqaing Liu
- Department of Pathology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
29
|
Jiang R, Jin B, Sun Y, Chen Z, Wan D, Feng J, Ying L, Peng C, Gu L. SLC7A5 regulates tryptophan uptake and PD‑L1 expression levels via the kynurenine pathway in ovarian cancer. Oncol Lett 2025; 29:26. [PMID: 39512508 PMCID: PMC11542159 DOI: 10.3892/ol.2024.14772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
Ovarian cancer is the third most common gynecological malignancy worldwide and the fifth leading cause of cancer-related death among women. This may be attributed to difficulties in diagnosing early-stage ovarian cancer, as it is typically asymptomatic until metastases, and due to the ineffective management of patients with late-stage ovarian cancer. The aim of the present study was to investigate potential therapeutic targets for the treatment of ovarian cancer. Bioinformatics techniques were used to analyze the expression levels of tryptophan (Trp) metabolism-related genes in tissue samples from patients with ovarian cancer. Additionally, western blots, clonogenic assays, immunohistochemical staining, chromatin immunoprecipitation-quantitative PCR, cell co-culture assays, a xenograft model and high-performance liquid chromatography-tandem mass spectrometry were performed to evaluate the antitumor effects of genes identified from the bioinformatics analysis. Increased expression levels of the amino acid transporter, solute carrier family 7 member 5 (SLC7A5), in tissue samples from patients with ovarian cancer was demonstrated. Inhibition of SLC7A5 reduced ovarian cancer cell proliferation through G2/M cell cycle arrest and blocked intracellular aryl hydrocarbon receptor nucleus entry, which downregulated PD-L1 expression levels. Dysregulation of Trp metabolism in ovarian cancer tissue samples, as well as the upregulation of kynurenine expression levels in the plasma of patients with ovarian cancer, were demonstrated to be unfavorable prognostic factors for the progression-free survival of patients with ovarian cancer. The present study demonstrated that the dysregulation of Trp metabolism could potentially be used as a diagnostic biomarker for ovarian cancer, as well as the potential of targeting SLC7A5 for immunotherapeutic management of patients with ovarian cancer in the future.
Collapse
Affiliation(s)
- Ruibin Jiang
- Experimental Research Center, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Bo Jin
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yuting Sun
- Experimental Research Center, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Zhongjian Chen
- Experimental Research Center, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Danying Wan
- Experimental Research Center, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Jianguo Feng
- Experimental Research Center, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Lisha Ying
- Experimental Research Center, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Chanjuan Peng
- Experimental Research Center, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Linhui Gu
- Experimental Research Center, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
30
|
Abah MO, Ogenyi DO, Zhilenkova AV, Essogmo FE, Ngaha Tchawe YS, Uchendu IK, Pascal AM, Nikitina NM, Rusanov AS, Sanikovich VD, Pirogova YN, Boroda A, Moiseeva AV, Sekacheva MI. Innovative Therapies Targeting Drug-Resistant Biomarkers in Metastatic Clear Cell Renal Cell Carcinoma (ccRCC). Int J Mol Sci 2024; 26:265. [PMID: 39796121 PMCID: PMC11720203 DOI: 10.3390/ijms26010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/13/2025] Open
Abstract
A thorough study of Clear Cell Renal Cell Carcinoma (ccRCC) shows that combining tyrosine kinase inhibitors (TKI) with immune checkpoint inhibitors (ICI) shows promising results in addressing the tumor-promoting influences of abnormal immunological and molecular biomarkers in metastatic Clear Cell Renal Cell Carcinoma (ccRCC). These abnormal biomarkers enhance drug resistance, support tumor growth, and trigger cancer-related genes. Ongoing clinical trials are testing new treatment options that appear more effective than earlier ones. However, more research is needed to confirm their long-term safety use and potential side effects. This study highlights vital molecular and immunological biomarkers associated with drug resistance in Clear Cell Renal Cell Carcinoma (ccRCC). Furthermore, this study identifies a number of promising drug candidates and biomarkers that serve as significant contributors to the enhancement of the overall survival of ccRCC patients. Consequently, this article offers pertinent insights on both recently completed and ongoing clinical trials, recommending further toxicity study for the prolonged use of this treatment strategy for patients with metastatic ccRCC, while equipping researchers with invaluable information for the progression of current treatment strategies.
Collapse
Affiliation(s)
- Moses Owoicho Abah
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
- Department of Cancer Bioinformatics and Molecular Biology, Royal Society of Clinical and Academic Researchers (ROSCAR) International, Abuja 900104, Nigeria
| | - Deborah Oganya Ogenyi
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Angelina V. Zhilenkova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Freddy Elad Essogmo
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Yvan Sinclair Ngaha Tchawe
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Ikenna Kingsley Uchendu
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
- Medical Laboratory Science Department, Faculty of Health Science and Technology, College of Medicine, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Akaye Madu Pascal
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Natalia M. Nikitina
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Alexander S. Rusanov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Varvara D. Sanikovich
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Yuliya N. Pirogova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Alexander Boroda
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Aleksandra V. Moiseeva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Marina I. Sekacheva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| |
Collapse
|
31
|
Xiang H, Kasajima R, Azuma K, Tagami T, Hagiwara A, Nakahara Y, Saito H, Igarashi Y, Wei F, Ban T, Yoshihara M, Nakamura Y, Sato S, Koizume S, Tamura T, Sasada T, Miyagi Y. Multi-omics analysis-based clinical and functional significance of a novel prognostic and immunotherapeutic gene signature derived from amino acid metabolism pathways in lung adenocarcinoma. Front Immunol 2024; 15:1361992. [PMID: 39735553 PMCID: PMC11671776 DOI: 10.3389/fimmu.2024.1361992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/30/2024] [Indexed: 12/31/2024] Open
Abstract
Background Studies have shown that tumor cell amino acid metabolism is closely associated with lung adenocarcinoma (LUAD) development and progression. However, the comprehensive multi-omics features and clinical impact of the expression of genes associated with amino acid metabolism in the LUAD tumor microenvironment (TME) are yet to be fully understood. Methods LUAD patients from The Cancer Genome Atlas (TCGA) database were enrolled in the training cohort. Using least absolute shrinkage and selection operator Cox regression analysis, we developed PTAAMG-Sig, a signature based on the expression of tumor-specific amino acid metabolism genes associated with overall survival (OS) prognosis. We evaluated its predictive performance for OS and thoroughly explored the effects of the PTAAMG-Sig risk score on the TME. The risk score was validated in two Gene Expression Omnibus (GEO) cohorts and further investigated against an original cohort of chemotherapy combined with immune checkpoint inhibitors (ICIs). Somatic mutation, chemotherapy response, immunotherapy response, gene set variation, gene set enrichment, immune infiltration, and plasma-free amino acids (PFAAs) profile analyses were performed to identify the underlying multi-omics features. Results TCGA datasets based PTAAMG-Sig model consisting of nine genes, KYNU, PSPH, PPAT, MIF, GCLC, ACAD8, TYRP1, ALDH2, and HDC, could effectively stratify the OS in LUAD patients. The two other GEO-independent datasets validated the robust predictive power of PTAAMG-Sig. Our differential analysis of somatic mutations in the high- and low-risk groups in TCGA cohort showed that the TP53 mutation rate was significantly higher in the high-risk group and negatively correlated with OS. Prediction from transcriptome data raised the possibility that PTAAMG-Sig could predict the response to chemotherapy and ICIs therapy. Our immunotherapy cohort confirmed the predictive ability of PTAAMG-Sig in the clinical response to ICIs therapy, which correlated with the infiltration of immune cells (e.g., T lymphocytes and nature killer cells). Corresponding to the concentrations of PFAAs, we discovered that the high PTAAMG-Sig risk score patients showed a significantly lower concentration of plasma-free α-aminobutyric acid. Conclusion In patients with LUAD, the PTAAMG-Sig effectively predicted OS, drug sensitivity, and immunotherapy outcomes. These findings are expected to provide new targets and strategies for personalized treatment of LUAD patients.
Collapse
Affiliation(s)
- Huihui Xiang
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Rika Kasajima
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Center for Cancer Genome Medicine, Kanagawa Cancer Center, Yokohama, Japan
| | - Koichi Azuma
- Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tomoyuki Tagami
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., Kanagawa, Japan
| | - Asami Hagiwara
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., Kanagawa, Japan
| | - Yoshiro Nakahara
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Haruhiro Saito
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yuka Igarashi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Feifei Wei
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Tatsuma Ban
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuyo Yoshihara
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yoshiyasu Nakamura
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shinya Sato
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shiro Koizume
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
32
|
Ielpo S, Barberini F, Dabbagh Moghaddam F, Pesce S, Cencioni C, Spallotta F, De Ninno A, Businaro L, Marcenaro E, Bei R, Cifaldi L, Barillari G, Melaiu O. Crosstalk and communication of cancer-associated fibroblasts with natural killer and dendritic cells: New frontiers and unveiled opportunities for cancer immunotherapy. Cancer Treat Rev 2024; 131:102843. [PMID: 39442289 DOI: 10.1016/j.ctrv.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Natural killer (NK) cells and dendritic cells (DCs) are critical mediators of anti-cancer immune responses. In addition to their individual roles, NK cells and DCs are involved in intercellular crosstalk which is essential for the initiation and coordination of adaptive immunity against cancer. However, NK cell and DC activity is often compromised in the tumor microenvironment (TME). Recently, much attention has been paid to one of the major components of the TME, the cancer-associated fibroblasts (CAFs), which not only contribute to extracellular matrix (ECM) deposition and tumor progression but also suppress immune cell functions. It is now well established that CAFs support T cell exclusion from tumor nests and regulate their cytotoxic activity. In contrast, little is currently known about their interaction with NK cells, and DCs. In this review, we describe the interaction of CAFs with NK cells and DCs, by secreting and expressing various mediators in the TME of adult solid tumors. We also provide a detailed overview of ongoing clinical studies evaluating the targeting of stromal factors alone or in combination with immunotherapy based on immune checkpoint inhibitors. Finally, we discuss currently available strategies for the selective depletion of detrimental CAFs and for a better understanding of their interaction with NK cells and DCs.
Collapse
Affiliation(s)
- Simone Ielpo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Barberini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Silvia Pesce
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University, 00185, Rome, Italy; Pasteur Institute Italy-Fondazione Cenci Bolognetti, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
33
|
Geeraerts Z, Ishigami I, Gao Y, Yeh SR. Heme-based dioxygenases: Structure, function and dynamics. J Inorg Biochem 2024; 261:112707. [PMID: 39217822 PMCID: PMC11590650 DOI: 10.1016/j.jinorgbio.2024.112707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Tryptophan dioxygenase (TDO) and indoleamine 2,3 dioxygenase (IDO) belong to a unique class of heme-based enzymes that insert dioxygen into the essential amino acid, L-tryptophan (Trp), to generate N-formylkynurenine (NFK), a critical metabolite in the kynurenine pathway. Recently, the two dioxygenases were recognized as pivotal cancer immunotherapeutic drug targets, which triggered a great deal of drug discovery targeting them. The advancement of the field is however hampered by the poor understanding of the structural properties of the two enzymes and the mechanisms by which the structures dictate their functions. In this review, we summarize recent findings centered on the structure, function, and dynamics of the human isoforms of the two enzymes.
Collapse
Affiliation(s)
- Zachary Geeraerts
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Izumi Ishigami
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Yuan Gao
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Syun-Ru Yeh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
34
|
Taş İ, Varlı M, Pulat S, Sim HB, Kim JJ, Kim H. TDO2 inhibition counters Benzo[a]pyrene-induced immune evasion and suppresses tumorigenesis in lung adenocarcinoma. Cancer Metab 2024; 12:36. [PMID: 39593177 PMCID: PMC11590479 DOI: 10.1186/s40170-024-00365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION Benzo[a]pyrene (BaP) is a toxic polycyclic aromatic hydrocarbon known as an exogenous AhR ligand. This study investigates the role of BaP in inducing immune checkpoint expression in lung adenocarcinoma (LUAD) and the underlying mechanisms involving the aryl hydrocarbon receptor (AhR) and tryptophan (Trp) metabolism. METHODS We assessed the expression of immune checkpoint molecules, including PD-L1 and ICOSL, in lung epithelial cell lines (BEAS-2B and H1975) exposed to BaP. The involvement of AhR in BaP-induced immune checkpoint expression was examined using AhR silencing (siAhR). Additionally, the role of Trp metabolism in BaP-mediated immune evasion was explored through culturing in Trp (-/+) condition media, treatments with the inhibitors of rate-limiting enzymes in Trp metabolism (TDO2 and IDO1) and analyses of Trp-catabolizing enzymes. The therapeutic potential of targeting Trp metabolism, specifically TDO2, was evaluated in vivo using C57BL/6 mice orthotopically inoculated with LUAD cells. RESULTS BaP exposure significantly upregulated the mRNA and surface expression of PD-L1 and ICOSL, with AhR playing a crucial role in this induction. Trp metabolism was found to enhance BaP-mediated immune evasion, as indicated by stronger induction of immune checkpoints in Trp (+) media and the upregulation of Trp-catabolizing enzymes. TDO2 inhibition markedly suppressed the surface expression of PD-L1 and ICOSL, demonstrating the importance of Trp metabolism in BaP-induced immune evasion. Further analysis confirmed the high TDO2 expression in lung adenocarcinoma and its association with poor patient survival. Using an orthotopic implantation mouse model, we demonstrated the inhibitory effect of two different TDO2 inhibitors on tumorigenesis, immune checkpoints, and tryptophan metabolism. CONCLUSIONS This study highlights the key mechanisms behind BaP-induced immune evasion in LUAD, particularly through the TDO2/AhR axis. It reveals how TDO2 inhibitors can counteract immune checkpoint activation and boost anti-tumor immunity, suggesting new paths for targeted lung cancer immunotherapy. The findings significantly improve our understanding of immune evasion in LUAD and underscore the therapeutic promise of TDO2 inhibition.
Collapse
Affiliation(s)
- İsa Taş
- College of Pharmacy, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea.
| | - Mücahit Varlı
- College of Pharmacy, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea
| | - Sultan Pulat
- College of Pharmacy, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea
| | - Hyun Bo Sim
- Department of Biomedical Science, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea
| | - Jong-Jin Kim
- Department of Biomedical Science, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea.
| |
Collapse
|
35
|
Wanninger TG, Saldarriaga OA, Arroyave E, Millian DE, Comer JE, Paessler S, Stevenson HL. Hepatic and pulmonary macrophage activity in a mucosal challenge model of Ebola virus disease. Front Immunol 2024; 15:1439971. [PMID: 39635525 PMCID: PMC11615675 DOI: 10.3389/fimmu.2024.1439971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
Background The inflammatory macrophage response contributes to severe Ebola virus disease, with liver and lung injury in humans. Objective We sought to further define the activation status of hepatic and pulmonary macrophage populations in Ebola virus disease. Methods We compared liver and lung tissue from terminal Ebola virus (EBOV)-infected and uninfected control cynomolgus macaques challenged via the conjunctival route. Gene and protein expression was quantified using the nCounter and GeoMx Digital Spatial Profiling platforms. Macrophage phenotypes were further quantified by digital pathology analysis. Results Hepatic macrophages in the EBOV-infected group demonstrated a mixed inflammatory/non-inflammatory profile, with upregulation of CD163 protein expression, associated with macrophage activation syndrome. Hepatic macrophages also showed differential expression of gene sets related to monocyte/macrophage differentiation, antigen presentation, and T cell activation, which were associated with decreased MHC-II allele expression. Moreover, hepatic macrophages had enriched expression of genes and proteins targetable with known immunomodulatory therapeutics, including S100A9, IDO1, and CTLA-4. No statistically significant differences in M1/M2 gene expression were observed in hepatic macrophages compared to controls. The significant changes that occurred in both the liver and lung were more pronounced in the liver. Conclusion These data demonstrate that hepatic macrophages in terminal conjunctivally challenged cynomolgus macaques may express a unique inflammatory profile compared to other macaque models and that macrophage-related pharmacologically druggable targets are expressed in both the liver and the lung in Ebola virus disease.
Collapse
Affiliation(s)
- Timothy G. Wanninger
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Omar A. Saldarriaga
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Esteban Arroyave
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Daniel E. Millian
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jason E. Comer
- Department of Microbiology and Immunology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Heather L. Stevenson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
36
|
Fan CY, Zheng JS, Hong LL, Ling ZQ. Macrophage crosstalk and therapies: Between tumor cells and immune cells. Int Immunopharmacol 2024; 141:113037. [PMID: 39213868 DOI: 10.1016/j.intimp.2024.113037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In the tumor microenvironment, macrophages exhibit different phenotypes and functions in response to various signals, playing a crucial role in the initiation and progression of tumors. Several studies have indicated that intervention in the functions of different phenotypes of tumor-associated macrophages causes significant changes in the crosstalk between tumor cells and immune-related cells, such as T, NK, and B cells, markedly altering the course of tumor development. However, only a few specific therapeutic strategies targeting macrophages are yet available. This article comprehensively reviews the molecular biology mechanisms through which tumor-associated macrophages mediate the crosstalk between tumor cells and immune-related cells. Also, various treatment methods currently used in clinical practice and those in the clinical trial phase have been summarized, and the novel strategies for targeting tumor-associated macrophages have been categorized accordingly.
Collapse
Affiliation(s)
- Cheng-Yuan Fan
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; The Second School of Clinical Medicine, Wenzhou Medical University, No.109 Xueyuan West Road, Wenzhou, 325027 Zhejiang, China
| | - Jing-Sen Zheng
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Lian-Lian Hong
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
37
|
Raudenská M, Bugajová M, Kalfeřt D, Plzák J, Šubrt A, Tesařová P, Masařík M. The interplay between microbiome and host factors in pathogenesis and therapy of head and neck cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189216. [PMID: 39542383 DOI: 10.1016/j.bbcan.2024.189216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Heterogeneous cancers that lack strong driver mutations with high penetrance, such as head and neck squamous cell carcinoma (HNSCC), present unique challenges to understanding their aetiology due to the complex interactions between genetics and environmental factors. The interplay between lifestyle factors (such as poor oral hygiene, smoking, or alcohol consumption), the oral and gut microbiome, and host genetics appears particularly important in the context of HNSCC. The complex interplay between the gut microbiota and cancer treatment outcomes has also received increasing attention in recent years. This review article describes the bidirectional communication between the host and the oral/gut microbiome, focusing on microbiome-derived metabolites and their impact on systemic immune responses and the modulation of the tumour microenvironment. In addition, we review the role of host lifestyle factors in shaping the composition of the oral/gut microbiota and its impact on cancer progression and therapy. Overall, this review highlights the rationality of considering the oral/gut microbiota as a critical determinant of cancer therapy outcomes and points to therapeutic opportunities offered by targeting the oral/gut microbiota in the management of HNSCC.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, 62500 Brno, Czech Republic
| | - Maria Bugajová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - David Kalfeřt
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Motol, First Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Jan Plzák
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Motol, First Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Adam Šubrt
- Department of Oncology, Institute of Radiation Oncology, First Faculty of Medicine, Charles University and Bulovka University Hospital, Prague, Czech Republic
| | - Petra Tesařová
- Department of Oncology, Institute of Radiation Oncology, First Faculty of Medicine, Charles University and Bulovka University Hospital, Prague, Czech Republic
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Institute of Pathophysiology, First Faculty of Medicine, Charles University, U Nemocnice 5, CZ-128 53 Prague, Czech Republic.
| |
Collapse
|
38
|
Zhang J, Chen M, Yang Y, Liu Z, Guo W, Xiang P, Zeng Z, Wang D, Xiong W. Amino acid metabolic reprogramming in the tumor microenvironment and its implication for cancer therapy. J Cell Physiol 2024; 239:e31349. [PMID: 38946173 DOI: 10.1002/jcp.31349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Amino acids are essential building blocks for proteins, crucial energy sources for cell survival, and key signaling molecules supporting the resistant growth of tumor cells. In tumor cells, amino acid metabolic reprogramming is characterized by the enhanced uptake of amino acids as well as their aberrant synthesis, breakdown, and transport, leading to immune evasion and malignant progression of tumor cells. This article reviews the altered amino acid metabolism in tumor cells and its impact on tumor microenvironment, and also provides an overview of the current clinical applications of amino acid metabolism. Innovative drugs targeting amino acid metabolism hold great promise for precision and personalized cancer therapy.
Collapse
Affiliation(s)
- Jiarong Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yuxin Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ziqi Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wanni Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pingjuan Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
39
|
Jasionowska J, Gałecki P, Kalinka E, Skiba A, Szemraj J, Turska E, Talarowska M. Level of selected exponents of the kynurenine pathway in patients diagnosed with depression and selected cancers. J Psychiatr Res 2024; 179:175-181. [PMID: 39303569 DOI: 10.1016/j.jpsychires.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/01/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Altered immune system activity is one of the common pathomechanisms of depressive disorders and cancer. The aim of this study is to evaluate level of selected elements of the kynurenine pathway in groups of depressed and oncological patients. The study included 156 individuals, aged 19-65 years (M = 43.46, SD = 13.99), divided into three groups, namely depressive disorders (DD), oncology patients (OG), and a comparison group of healthy subjects (CG). A sociodemographic questionnaire and the Hamilton Depression Rating Scale (HDRS) were used in the study to assess the intensity of depressive symptoms. Level of TDO2, L-KYN, HK, AA and QA was significantly higher in patients from OG and DD groups than in the comparison group. TDO2 level in the OG group was positively correlated with the severity of depressive symptoms. When the OG and DD groups were analyzed together, level of TDO2, 3-HKYN, AA, QA correlated positively with the severity of depressive symptoms. Thus, kynurenine pathway might play an integral role in the pathogenesis of depression.
Collapse
Affiliation(s)
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Ewa Kalinka
- Department of Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Aleksandra Skiba
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Turska
- Department of Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Monika Talarowska
- Institute of Psychology, Faculty of Educational Sciences, University of Lodz, Lodz, Poland
| |
Collapse
|
40
|
Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, Li H, Yan D. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer 2024; 23:241. [PMID: 39472902 PMCID: PMC11523861 DOI: 10.1186/s12943-024-02164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxytryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabolism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism therapeutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials underscore the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibitors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the challenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Ye
- Department of Scientific Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjiao Duan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Chaoli Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
41
|
Wang S, Gao S, Lin S, Fang X, Zhang H, Qiu M, Zheng K, Ji Y, Xiao B, Zhang X. Integrated analysis of bulk and single-cell RNA sequencing reveals the impact of nicotinamide and tryptophan metabolism on glioma prognosis and immunotherapy sensitivity. BMC Neurol 2024; 24:419. [PMID: 39468708 PMCID: PMC11514892 DOI: 10.1186/s12883-024-03924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Nicotinamide and tryptophan metabolism play important roles in regulating tumor synthesis metabolism and signal transduction functions. However, their comprehensive impact on the prognosis and the tumor immune microenvironment of glioma is still unclear. The purpose of this study was to investigate the association of nicotinamide and tryptophan metabolism with prognosis and immune status of gliomas and to develop relevant models for predicting prognosis and sensitivity to immunotherapy in gliomas. METHODS Bulk and single-cell transcriptome data from TCGA, CGGA and GSE159416 were obtained for this study. Gliomas were classified based on nicotinamide and tryptophan metabolism, and PPI network associated with differentially expressed genes was established. The core genes were identified and the risk model was established by machine learning techniques, including univariate Cox regression and LASSO regression. Then the risk model was validated with data from the CGGA. Finally, the effects of genes in the risk model on the biological behavior of gliomas were verified by in vitro experiments. RESULTS The high nicotinamide and tryptophan metabolism is associated with poor prognosis and high levels of immune cell infiltration in glioma. Seven of the core genes related to nicotinamide and tryptophan metabolism were used to construct a risk model, and the model has good predictive ability for prognosis, immune microenvironment, and response to immune checkpoint therapy of glioma. We also confirmed that high expression of TGFBI can lead to an increased level of migration, invasion, and EMT of glioma cells, and the aforementioned effect of TGFBI can be reduced by FAK inhibitor PF-573,228. CONCLUSIONS Our study evaluated the effects of nicotinamide and tryptophan metabolism on the prognosis and tumor immune microenvironment of glioma, which can help predict the prognosis and sensitivity to immunotherapy of glioma.
Collapse
Affiliation(s)
- Sen Wang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Shen Gao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shaochong Lin
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaofeng Fang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Haopeng Zhang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Man Qiu
- Department of Neurosurgery, Xinyang Central Hospital, Xinyang, 464000, China
| | - Kai Zheng
- Department of Neurosurgery, Xianyang First People's Hospital, Xianyang, 712000, China
| | - Yupeng Ji
- Department of Cardiovascular Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Baijun Xiao
- Department of Neurosurgery, Pingshan People's Hospital, Shenzhen, 518118, China
| | - Xiangtong Zhang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
42
|
Yang M, Cao M, Zhang X, Fu B, Chen Y, Tan Y, Xuan C, Su Y, Tan D, Hu R. IDO1 inhibitors are synergistic with CXCL10 agonists in inhibiting colon cancer growth. Biomed Pharmacother 2024; 179:117412. [PMID: 39255734 DOI: 10.1016/j.biopha.2024.117412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is an immune checkpoint that degrades L-tryptophan to kynurenine (Kyn) and enhance immunosuppression, which can be an attractive target for treating colon cancer. IDO1 inhibitors have limited efficacy when used as monotherapies, and their combination approach has been shown to provide synergistic benefits. Many studies have shown that targeting chemokines can promote the efficacy of immune checkpoint inhibitors. Therefore, this study explored the use of IDO1 inhibitors with multiple chemokines to develop a new combination regimen for IDO1 inhibitors. We found that IDO1 inhibitors reduce the secretion of C-X-C motif ligand 10(CXCL10) in cancer cells, and CXCL10 supplementation significantly improved the anticancer effect of IDO1 inhibitors. The combination of the IDO1 inhibitor with CXCL10 or its agonist axitinib had a synergistic inhibitory effect on the growth of colon cancer cells and transplanted CT26 tumors. This synergistic effect may be achieved by inhibiting cancer cell proliferation, promoting cancer cell apoptosis, promoting CD8+T cell differentiation and decreasing Tregs. Two downstream pathways of IDO1 affect CXCL10 secretion. One being the Kyn-aryl hydrocarbon receptor (AHR) pathway, the other is the general control nonderepressible 2(GCN2). Our study provides a new reference for combination regimens of IDO1 inhibitors.
Collapse
Affiliation(s)
- Mengdi Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengran Cao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Bin Fu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yaxin Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Tan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chenyuan Xuan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yongren Su
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dashan Tan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Rong Hu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
43
|
Dexheimer TS, Coussens NP, Silvers T, Jones EM, Chen L, Fang J, Morris J, Moscow JA, Doroshow JH, Teicher BA. Combination screen in multi-cell type tumor spheroids reveals interaction between aryl hydrocarbon receptor antagonists and E1 ubiquitin-activating enzyme inhibitor. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100186. [PMID: 39362362 PMCID: PMC11562894 DOI: 10.1016/j.slasd.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates genes of drug transporters and metabolic enzymes to detoxify small molecule xenobiotics. It has a complex role in cancer biology, influencing both the progression and suppression of tumors by modulating malignant properties of tumor cells and anti-tumor immunity, depending on the specific tumor type and developmental stage. This has led to the discovery and development of selective AhR modulators, including BAY 2416964 which is currently in clinical trials. To identify small molecule anticancer agents that might be combined with AhR antagonists for cancer therapy, a high-throughput combination screen was performed using multi-cell type tumor spheroids grown from malignant cells, endothelial cells, and mesenchymal stem cells. The AhR selective antagonists BAY 2416964, GNF351, and CH-223191 were tested individually and in combination with twenty-five small molecule anticancer agents. As single agents, BAY 2416964 and CH-223191 showed minimal activity, whereas GNF351 reduced the viability of some spheroid models at concentrations greater than 1 µM. The activity of most combinations aligned well with the single agent activity of the combined agent, without apparent contributions from the AhR antagonist. All three AhR antagonists sensitized tumor spheroids to TAK-243, an E1 ubiquitin-activating enzyme inhibitor. These combinations were active in spheroids containing bladder, breast, ovary, kidney, pancreas, colon, and lung tumor cell lines. The AhR antagonists also potentiated pevonedistat, a selective inhibitor of the NEDD8-activating enzyme E1 regulatory subunit, in several tumor spheroid models. In contrast, the AhR antagonists did not enhance the cytotoxicity of the proteasome inhibitor bortezomib.
Collapse
Affiliation(s)
- Thomas S Dexheimer
- Target Validation and Screening Laboratory, Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA.
| | - Nathan P Coussens
- Target Validation and Screening Laboratory, Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Thomas Silvers
- Target Validation and Screening Laboratory, Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Eric M Jones
- Target Validation and Screening Laboratory, Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Li Chen
- Molecular Characterization Laboratory, Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jianwen Fang
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel Morris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey A Moscow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
Wang C, Xu Q, Wei C, Hu Q, Xiao Y, Jin Y. Kynurenine Attenuates Ulcerative Colitis Mediated by the Aryl Hydrocarbon Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21000-21012. [PMID: 39271472 DOI: 10.1021/acs.jafc.4c04933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The higher prevalence of ulcerative colitis (UC) and the side effects of its therapeutic agents contribute to finding novel treatments. This study aimed to investigate whether kynurenine (KYN), a tryptophan metabolite, has the possibility of alleviating UC and further clarifying the underlying mechanism. The effect of KYN on treating UC was evaluated by intestinal pathology, inflammatory cytokines, and tight-junction proteins in colitis mice and LPS-stimulated Caco-2 cells. Our results revealed that KYN relieved pathological symptoms of UC, improved intestinal barrier function, enhanced AhR expression, and inhibited NF-κB signaling pathway activation in the colon of colitis mice. Moreover, the improved intestinal barrier function, the decreased inflammasome production, and the inhibited activation of the NF-κB signaling pathway by KYN were dependent on AhR in Caco-2 cells. KYN could trigger AhR activation, inactivate the NF-κB signaling pathway, and inhibit NLRP3 inflammasome production, thus alleviating intestinal epithelial barrier dysfunction and reducing intestinal inflammation. In conclusion, the present study reveals that KYN ameliorates UC by improving the intestinal epithelial barrier and activating the AhR-NF-κB-NLRP3 signaling pathway, and it can be a promising therapeutic agent and dietary supplement for alleviating UC.
Collapse
Affiliation(s)
- Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qihao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | | | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Xianghu Laboratory, Hangzhou 311231, China
| |
Collapse
|
45
|
Ghosh S, Dutta R, Ghatak D, Goswami D, De R. Immunometabolic characteristics of Dendritic Cells and its significant modulation by mitochondria-associated signaling in the tumor microenvironment influence cancer progression. Biochem Biophys Res Commun 2024; 726:150268. [PMID: 38909531 DOI: 10.1016/j.bbrc.2024.150268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Dendritic cells (DCs) mediated T-cell responses is critical to anti-tumor immunity. This study explores immunometabolic attributes of DC, emphasizing on mitochondrial association, in Tumor Microenvironment (TME) that regulate cancer progression. Conventional DC subtypes cross-present tumor-associated antigens to activate lymphocytes. However, plasmacytoid DCs participate in both pro- and anti-tumor signaling where mitochondrial reactive oxygen species (mtROS) play crucial role. CTLA-4, CD-47 and other surface-receptors of DC negatively regulates T-cell. Increased glycolysis-mediated mitochondrial citrate buildup and translocation to cytosol with augmented NADPH, enhances mitochondrial fatty acid synthesis fueling DCs. Different DC subtypes and stages, exhibit variable mitochondrial content, membrane potential, structural dynamics and bioenergetic metabolism regulated by various cytokine stimulation, e.g., GM-CSF, IL-4, etc. CD8α+ cDC1s augmented oxidative phosphorylation (OXPHOS) which diminishes at advance effector stages. Glutaminolysis in mitochondria supplement energy in DCs but production of kynurenine and other oncometabolites leads to immunosuppression. Mitochondria-associated DAMPs cause activation of cGAS-STING pathway and inflammasome oligomerization stimulating DC and T cells. In this study, through a comprehensive survey and critical analysis of the latest literature, the potential of DC metabolism for more effective tumor therapy is highlighted. This underscores the need for future research to explore specific therapeutic targets and potential drug candidates.
Collapse
Affiliation(s)
- Sayak Ghosh
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rittick Dutta
- Swami Vivekananda University, Kolkata, 700121, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Devyani Goswami
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
46
|
Bobrovs R, Terentjeva S, Olafsen NE, Dambrauskas Z, Gulbinas A, Maimets T, Teino I, Jirgensons A, Matthews J, Jaudzems K. Discovery and optimisation of pyrazolo[1,5- a]pyrimidines as aryl hydrocarbon receptor antagonists. RSC Med Chem 2024; 15:3477-3484. [PMID: 39246744 PMCID: PMC11376203 DOI: 10.1039/d4md00266k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/14/2024] [Indexed: 09/10/2024] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a versatile ligand-dependent transcription factor involved in diverse biological processes, from metabolic adaptations to immune system regulation. Recognising its pivotal role in cancer immunology, AHR has become a promising target for cancer therapy. Here we report the discovery and structure-activity relationship studies of novel AHR antagonists. The potential AHR antagonists were identified via homology model-based high-throughput virtual screening and were experimentally verified in a luciferase reporter gene assay. The identified pyrazolo[1,5-a]pyrimidine-based AHR antagonist 7 (IC50 = 650 nM) was systematically optimised to elucidate structure-activity relationships and reach low nanomolar AHR antagonistic potency (7a, IC50 = 31 nM). Overall, the findings presented here provide new starting points for AHR antagonist development and offer insightful information on AHR antagonist structure-activity relationships.
Collapse
Affiliation(s)
- Raitis Bobrovs
- Latvian Institute of Organic Synthesis Aizkraukles 21 Riga LV1006 Latvia
| | | | - Ninni Elise Olafsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo 0317 Oslo Norway
| | - Zilvinas Dambrauskas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences Eiveniu 4 50103 Kaunas Lithuania
| | - Antanas Gulbinas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences Eiveniu 4 50103 Kaunas Lithuania
| | - Toivo Maimets
- Institute of Molecular and Cell Biology, University of Tartu Riia 23 51010 Tartu Estonia
| | - Indrek Teino
- Institute of Molecular and Cell Biology, University of Tartu Riia 23 51010 Tartu Estonia
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis Aizkraukles 21 Riga LV1006 Latvia
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo 0317 Oslo Norway
- Department of Pharmacology and Toxicology, University of Toronto Toronto ON M5S 1A8 Canada
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis Aizkraukles 21 Riga LV1006 Latvia
| |
Collapse
|
47
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
48
|
Khoshkhabar R, Yazdani M, Hoda Alavizadeh S, Saberi Z, Arabi L, Reza Jaafari M. Chemo-immunotherapy by nanoliposomal epacadostat and docetaxel combination to IDO1 inhibition and tumor microenvironment suppression. Int Immunopharmacol 2024; 137:112437. [PMID: 38870880 DOI: 10.1016/j.intimp.2024.112437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
The over-activation of tryptophan (Trp) metabolism to kynurenine (Kyn) catalyzed by Indoleamine 2,3-dioxygenase-1 (IDO1) enzyme, is one of the main metabolic pathways involved in tumor microenvironment (TME) immune escape and cancer treatment failure. The most efficient of IDO1 inhibitors is Epacadostat (EPA). Since monotherapy with single-agent IDO1 inhibitor regimen has led to an insufficient anti-tumor activity, we examined the efficacy of simultaneous treatment by Liposomal epacadostat (Lip-EPA) as a potent IDO inhibitor, in combination with docetaxel (DTX) as a complement immunogenic cell death (ICD) agent against B16F10 model. First, the in vitro combination index (CI) of epacadostat (EPA) and DTX was investigated by using the unified theory. Then, the in vivo efficacy of the combination therapy was assessed. Results indicated the synergestic cytotoxic effect of the combination on B16F10 compared to normal fibroblast cells (NIH). The immune profiling demonstrated a significant increase in the percentage of infiltrated T lymphocytes and IFN-γ release, a significant decrease in the percentage of regulatory T cells (Treg) population and the subsequent low levels of IL-10 generation in mice treated with Lip-EPA + DTX. Further, a significant tumor growth delay (TGD = 69.15 %) and an increased life span (ILS > 47.83 %) was observed with the combination strategy. Histopathology analysis revealed a remarkable increase in the Trp concentration following combination treatment, while Kyn levels significantly decreased. Results showed that the nano-liposomal form of IDO1 inhibitor in combination with chemotherapy could significantly improve the imunity response and dominate the tumor immuno-suppressive micro-environment, which merits further investigations.
Collapse
Affiliation(s)
- Rahimeh Khoshkhabar
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Yazdani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Saberi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Yu G, Corn PG, Mak CSL, Liang X, Zhang M, Troncoso P, Song JH, Lin SC, Song X, Liu J, Zhang J, Logothetis CJ, Melancon MP, Panaretakis T, Wang G, Lin SH. Prostate cancer-induced endothelial-cell-to-osteoblast transition drives immunosuppression in the bone-tumor microenvironment through Wnt pathway-induced M2 macrophage polarization. Proc Natl Acad Sci U S A 2024; 121:e2402903121. [PMID: 39102549 PMCID: PMC11331113 DOI: 10.1073/pnas.2402903121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Immune checkpoint therapy has limited efficacy for patients with bone-metastatic castration-resistant prostate cancer (bmCRPC). To improve immunotherapy for bmCRPC, we aimed to identify the mechanism of bmCRPC-induced changes in the immune microenvironment. Among bmCRPC patients, higher levels of a 32-gene M2-like macrophage signature in bone metastasis samples correlated with shorter overall survival. Immunohistochemistry showed that CD206-positive (CD206+) macrophages were enriched in bmCRPC bone biopsy specimens compared with primary tumors or lymph node metastases. In preclinical osteogenic prostate cancer (Pca) xenograft models, CD206+ macrophages were recruited to areas with tumor-induced bone. RNA sequencing (RNAseq) analysis showed higher expression of an M2-like gene signature, with activated canonical and noncanonical Wnt pathways, in tumor-associated macrophages isolated from osteogenic tumors (bone-TAMs) than in TAMs isolated from nonosteogenic tumors (ctrl-TAMs). Mechanistic studies showed that endothelial cells (ECs) that had undergone EC-to-osteoblast (EC-to-OSB) transition, the precursors of tumor-induced OSBs, produced paracrine factors, including Wnts, CXCL14, and lysyl oxidase, which induced M2 polarization and recruited M2-like TAMs to the bone-tumor microenvironment (bone-TME). Bone-TAMs suppressed CD8+ T cells' proliferation and cytolytic activity, and these effects were partially reversed by treating bone-TAMs with Wnt inhibitors. Genetic or pharmacological inhibition of Pca-induced EC-to-OSB transition reduced the levels of M2-like macrophages in osteogenic tumors. Our study demonstrates that Pca-induced EC-to-OSB transition drives immunosuppression in the bone-TME, suggesting that therapies that reduce Pca-induced bone formation may improve immunotherapeutic outcomes for bmCRPC.
Collapse
Affiliation(s)
- Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Celia Sze Ling Mak
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Xin Liang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Miao Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jingjing Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| |
Collapse
|
50
|
Ma C, Cheng Z, Tan H, Wang Y, Sun S, Zhang M, Wang J. Nanomaterials: leading immunogenic cell death-based cancer therapies. Front Immunol 2024; 15:1447817. [PMID: 39185425 PMCID: PMC11341423 DOI: 10.3389/fimmu.2024.1447817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The field of oncology has transformed in recent years, with treatments shifting from traditional surgical resection and radiation therapy to more diverse and customized approaches, one of which is immunotherapy. ICD (immunogenic cell death) belongs to a class of regulatory cell death modalities that reactivate the immune response by facilitating the interaction between apoptotic cells and immune cells and releasing specific signaling molecules, and DAMPs (damage-associated molecular patterns). The inducers of ICD can elevate the expression of specific proteins to optimize the TME (tumor microenvironment). The use of nanotechnology has shown its unique potential. Nanomaterials, due to their tunability, targeting, and biocompatibility, have become powerful tools for drug delivery, immunomodulators, etc., and have shown significant efficacy in clinical trials. In particular, these nanomaterials can effectively activate the ICD, trigger a potent anti-tumor immune response, and maintain long-term tumor suppression. Different types of nanomaterials, such as biological cell membrane-modified nanoparticles, self-assembled nanostructures, metallic nanoparticles, mesoporous materials, and hydrogels, play their respective roles in ICD induction due to their unique structures and mechanisms of action. Therefore, this review will explore the latest advances in the application of these common nanomaterials in tumor ICD induction and discuss how they can provide new strategies and tools for cancer therapy. By gaining a deeper understanding of the mechanism of action of these nanomaterials, researchers can develop more precise and effective therapeutic approaches to improve the prognosis and quality of life of cancer patients. Moreover, these strategies hold the promise to overcome resistance to conventional therapies, minimize side effects, and lead to more personalized treatment regimens, ultimately benefiting cancer treatment.
Collapse
Affiliation(s)
- Changyu Ma
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Beijing, China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Haotian Tan
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Beijing, China
| | - Yihan Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical College, Peking University Health Science Center, Beijing, China
| | - Shuzhan Sun
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical College, Peking University Health Science Center, Beijing, China
| | - Mingxiao Zhang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Jianfeng Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|