1
|
Liu H, Xu Y, Sun Y, Wu H, Hou J. Tissue-specific toxic effects of nano-copper on zebrafish. ENVIRONMENTAL RESEARCH 2024; 242:117717. [PMID: 37993046 DOI: 10.1016/j.envres.2023.117717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/23/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Understanding the behavior and potential toxicity of copper nanoparticles (nano-Cu) in the aquatic environment is a primary way to assess their environmental risks. In this study, RNA-seq was performed on three different tissues (gills, intestines, and muscles) of zebrafish exposed to nano-Cu, to explore the potential toxic mechanism of nano-Cu on zebrafish. The results indicated that the toxic mechanism of nano-Cu on zebrafish was tissue-specific. Nano-Cu enables the CB1 receptor of the presynaptic membrane of gill cells to affect short-term synaptic plasticity or long-term synaptic changes (ECB-LTD) through DSI and DSE, causing dysfunction of intercellular signal transmission. Imbalance of de novo synthesis of UMP in intestinal cells and its transformation to UDP, UTP, uridine, and uracil, resulted in many functions involved in the pyrimidine metabolic pathway being blocked. Meanwhile, the toxicity of nano-Cu caused abnormal expression of RAD51 gene in muscle cells, which affects the repair of damaged DNA through Fanconi anemia and homologous recombination pathway, thus causing cell cycle disorder. These results provide insights for us to better understand the differences in toxicity of nano-Cu on zebrafish tissues and are helpful for a comprehensive assessment of nano-Cu's effects on aquatic organisms.
Collapse
Affiliation(s)
- Haiqiang Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
| | - Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yuqiong Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Haodi Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
2
|
Zhang L, Fu JM, Song LB, Cheng K, Zhang F, Tan WH, Fan JX, Zhao YD. Ultrasmall Bi/Cu Coordination Polymer Combined with Glucose Oxidase for Tumor Enhanced Chemodynamic Therapy by Starvation and Photothermal Treatment. Adv Healthc Mater 2024; 13:e2302264. [PMID: 37812564 DOI: 10.1002/adhm.202302264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Multi-modal combination therapy for tumor is expected to have superior therapeutic effect compared with monotherapy. In this study, a super-small bismuth/copper-gallic acid coordination polymer nanoparticle (BCN) protected by polyvinylpyrrolidone is designed, which is co-encapsulated with glucose oxidase (GOX) by phospholipid to obtain nanoprobe BCGN@L. It shows that BCN has an average size of 1.8 ± 0.7 nm, and photothermal conversion of BCGN@L is 31.35% for photothermal imaging and photothermal therapy (PTT). During the treatment process of 4T1 tumor-bearing nude mice, GOX catalyzes glucose in the tumor to generate gluconic acid and hydrogen peroxide (H2 O2 ), which reacts with copper ions (Cu2+ ) to produce toxic hydroxyl radicals (•OH) for chemodynamic therapy (CDT) and new fresh oxygen (O2 ) to supply to GOX for further catalysis, preventing tumor hypoxia. These reactions increase glucose depletion for starvation therapy , decrease heat shock protein expression, and enhance tumor sensitivity to low-temperature PTT. The in vitro and in vivo results demonstrate that the combination of CDT with other treatments produces excellent tumor growth inhibition. Blood biochemistry and histology analysis suggests that the nanoprobe has negligible toxicity. All the positive results reveal that the nanoprobe can be a promising approach for incorporation into multi-modal anticancer therapy.
Collapse
Affiliation(s)
- Lin Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Physical Education, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Jin-Mei Fu
- Jiangxi Sports Science and Medical Center, Nanchang, Jiangxi, 330000, P. R. China
| | - Lai-Bo Song
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Wen-Hui Tan
- School of Physical Education, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
3
|
Marinaro C, Lettieri G, Chianese T, Bianchi AR, Zarrelli A, Palatucci D, Scudiero R, Rosati L, De Maio A, Piscopo M. Exploring the molecular and toxicological mechanism associated with interactions between heavy metals and the reproductive system of Mytilus galloprovincialis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 275:109778. [PMID: 37866452 DOI: 10.1016/j.cbpc.2023.109778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
A large number of heavy metals resulted toxic to the reproductive system, but invertebrate infertility has been poorly explored, and above all, there are limited molecular, cellular and toxicological studies. In the present work, we exposed Mytilus galloprovincialis to three individual metal chlorides (CuCl2 15 μM, CdCl2 1.5 μM, NiCl2 15 μM) and their mixture for 24 h, to evaluate the effects on the protamine-like proteins (PLs), sperm DNA and on their interaction in the formation of sperm chromatin. Under all exposure conditions, but particularly after exposure to the metals mix, relevant changes in the electrophoretic pattern, by AU-PAGE and SDS-PAGE, and in fluorescence spectroscopy measurements of PLs were shown. In addition, alterations in DNA binding of these proteins were observed by Electrophoretic Mobility Shift Assay (EMSA) and through their release from sperm nuclei. Moreover, there was evidence of increased accessibility of micrococcal nuclease to sperm chromatin, which was also confirmed by toluidine blue staining. Furthermore, morphological analyses indicated severe gonadal impairments which was also corroborated by increased PARP expression, by Western blotting, and sperm DNA fragmentation, by comet assay. Finally, we investigated the expression of stress genes, gst, hsp70 and mt10, in gonadal tissue. The latter investigations also showed that exposure to this metals mix was more harmful than exposure to the individual metals tested. The present results suggest that these metals and in particular their mixture could have a negative impact on the reproductive fitness of M. galloprovincialis. Based on these evidences, we propose a molecular mechanism.
Collapse
Affiliation(s)
- Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Teresa Chianese
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Anna Rita Bianchi
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Domenico Palatucci
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Rosaria Scudiero
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy.
| |
Collapse
|
4
|
Chen Z, Li YY, Liu X. Copper homeostasis and copper-induced cell death: Novel targeting for intervention in the pathogenesis of vascular aging. Biomed Pharmacother 2023; 169:115839. [PMID: 37976889 DOI: 10.1016/j.biopha.2023.115839] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Copper-induced cell death, also known as cuproptosis, is distinct from other types of cell death such as apoptosis, necrosis, and ferroptosis. It can trigger the accumulation of lethal reactive oxygen species, leading to the onset and progression of aging. The significant increases in copper ion levels in the aging populations confirm a close relationship between copper homeostasis and vascular aging. On the other hand, vascular aging is also closely related to the occurrence of various cardiovascular diseases throughout the aging process. However, the specific causes of vascular aging are not clear, and different living environments and stress patterns can lead to individualized vascular aging. By exploring the correlations between copper-induced cell death and vascular aging, we can gain a novel perspective on the pathogenesis of vascular aging and enhance the prognosis of atherosclerosis. This article aims to provide a comprehensive review of the impacts of copper homeostasis on vascular aging, including their effects on endothelial cells, smooth muscle cells, oxidative stress, ferroptosis, intestinal flora, and other related factors. Furthermore, we intend to discuss potential strategies involving cuproptosis and provide new insights for copper-related vascular aging.
Collapse
Affiliation(s)
- Zhuoying Chen
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Yuan-Yuan Li
- Department of Nursing, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| |
Collapse
|
5
|
Wang Q, Sun J, Chen T, Song S, Hou Y, Feng L, Fan C, Li M. Ferroptosis, Pyroptosis, and Cuproptosis in Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3564-3587. [PMID: 37703318 DOI: 10.1021/acschemneuro.3c00343] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia, is a neurodegenerative disorder characterized by progressive cognitive dysfunction. Epidemiological investigation has demonstrated that, after cardiovascular and cerebrovascular diseases, tumors, and other causes, AD has become a major health issue affecting elderly individuals, with its mortality rate acutely increasing each year. Regulatory cell death is the active and orderly death of genetically determined cells, which is ubiquitous in the development of living organisms and is crucial to the regulation of life homeostasis. With extensive research on regulatory cell death in AD, increasing evidence has revealed that ferroptosis, pyroptosis, and cuproptosis are closely related to the occurrence, development, and prognosis of AD. This paper will review the molecular mechanisms of ferroptosis, pyroptosis, and cuproptosis and their regulatory roles in AD to explore potential therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Qi Wang
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Jingyi Sun
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Tian Chen
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Siyu Song
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Yajun Hou
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Lina Feng
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Cundong Fan
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Mingquan Li
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
- Department of Neurology, The Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| |
Collapse
|
6
|
León-Mejía G, Vargas JE, Quintana-Sosa M, Rueda RA, Pérez JP, Miranda-Guevara A, Moreno OF, Trindade C, Acosta-Hoyos A, Dias J, da Silva J, Pêgas Henriques JA. Exposure to coal mining can lead to imbalanced levels of inorganic elements and DNA damage in individuals living near open-pit mining sites. ENVIRONMENTAL RESEARCH 2023; 227:115773. [PMID: 36966995 DOI: 10.1016/j.envres.2023.115773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/08/2023]
Abstract
Coal mining activities are considered harmful to living organisms. These activities release compounds to the environment, such as polycyclic aromatic hydrocarbons (PAHs), metals, and oxides, which can cause oxidative damage to DNA. In this study, we compared the DNA damage and the chemical composition of peripherical blood of 150 individuals exposed to coal mining residues and 120 non-exposed individuals. Analysis of coal particles revealed the presence of elements such as copper (Cu), aluminum (Al), chrome (Cr), silicon (Si) and iron (Fe). The exposed individuals in our study had significant concentrations of Al, sulfur (S), Cr, Fe, and Cu in their blood, as well as hypokalemia. Results from the enzyme-modified comet assay (FPG enzyme) suggest that exposure to coal mining residues caused oxidative DNA damage, particularly purine damage. Furthermore, particles with a diameter of <2.5 μm indicate that direct inhalation could promote these physiological alterations. Finally, a systems biology analysis was performed to investigate the effects of these elements on DNA damage and oxidative stress pathways. Interestingly, Cu, Cr, Fe, and K are key nodes that intensely modulate these pathways. Our results suggest that understanding the imbalance of inorganic elements caused by exposure to coal mining residues is crucial to understanding their effect on human health.
Collapse
Affiliation(s)
- Grethel León-Mejía
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Barranquilla, 080002, Colombia.
| | - Jose Eduardo Vargas
- Departamento de Biologia Celular. Universidade Federal de Paraná, Curitiba, Brazil
| | - Milton Quintana-Sosa
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Barranquilla, 080002, Colombia
| | - Robinson Alvarez Rueda
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Barranquilla, 080002, Colombia
| | - Jose Pérez Pérez
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Barranquilla, 080002, Colombia
| | - Alvaro Miranda-Guevara
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Barranquilla, 080002, Colombia
| | - Ornella Fiorillo Moreno
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Barranquilla, 080002, Colombia
| | - Cristiano Trindade
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Barranquilla, 080002, Colombia
| | - Antonio Acosta-Hoyos
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Barranquilla, 080002, Colombia
| | - Johnny Dias
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Juliana da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana Do Brasil (ULBRA)& Universidade La Salle (UniaSalle), Canoas, RS, Brazil
| | - João Antonio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Biotecnologia e Em Ciências Médicas, Universidade Do Vale Do Taquari - UNIVATES, Lajeado, RS, Brazil
| |
Collapse
|
7
|
Song J, An Z, Zhu J, Li J, Qu R, Tian G, Wang G, Zhang Y, Li H, Jiang J, Wu H, Wang Y, Wu W. Subclinical cardiovascular outcomes of acute exposure to fine particulate matter and its constituents: A glutathione S-transferase polymorphism-based longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157469. [PMID: 35868381 DOI: 10.1016/j.scitotenv.2022.157469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
To explore the acute subclinical cardiovascular effects of fine particulate matter (PM2.5) and its constituents, a longitudinal study with 61 healthy young volunteers was conducted in Xinxiang, China. Linear mixed-effect models were used to analyze the association of PM2.5 and its constituents with cardiovascular outcomes, respectively, including blood pressure (BP), heart rate (HR), serum levels of high-sensitivity C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), tissue-type plasminogen activator (t-PA), and platelet-monocyte aggregation (PMA). Additionally, the modifying effects of glutathione S-transferase mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) polymorphisms were examined. A 10 μg/m3 increase in PM2.5 was associated with -1.04 (95 % CI: -1.86 to -0.22) mmHg and -0.90 (95 % CI: -1.69 to -0.11) mmHg decreases in diastolic BP (DBP) and mean arterial BP (MABP) along with 1.83 % (95 % CI: 0.59-3.08 %), 5.93 % (95 % CI: 0.70-11.16 %) increases in 8-OHdG and hs-CRP, respectively. Ni content was positively associated with the 8-OHdG levels whereas several other metals presented negative association with 8-OHdG and HR. Intriguingly, GSTT1+/GSTTM1+ subjects showed higher susceptibility to PM2.5-induced alterations of DBP and PMA, and GSTT1-/GSTM1+ subjects showed higher alteration on t-PA. Taken together, our findings indicated that short-term PM2.5 exposure induced oxidative stress, systemic inflammation, autonomic alterations, and fibrinolysis in healthy young subjects. Among multiple examined metal components Ni appeared to positively associated with systematic oxidative stress. In addition, GST-sufficient subjects might be more prone to PM2.5-induced autonomic alterations.
Collapse
Affiliation(s)
- Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jingfang Zhu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Rongrong Qu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Ge Tian
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Gui Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yange Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yinbiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
8
|
Artificial Digestion of Polydisperse Copper Oxide Nanoparticles: Investigation of Effects on the Human In Vitro Intestinal Co-Culture Model Caco-2/HT29-MTX. TOXICS 2022; 10:toxics10030130. [PMID: 35324755 PMCID: PMC8955801 DOI: 10.3390/toxics10030130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023]
Abstract
Copper oxide nanoparticles (CuO-NP) are increasingly used in consumer-related products, which may result in increased oral ingestion. Digestion of particles can change their physicochemical properties and toxicity. Therefore, our aim was to simulate the gastrointestinal tract using a static in vitro digestion model. Toxic properties of digested and undigested CuO-NP were compared using an epithelial mono-culture (Caco-2) and a mucus-secreting co-culture model (Caco-2/HT29-MTX). Effects on intestinal barrier integrity, permeability, cell viability and apoptosis were analyzed. CuO-NP concentrations of 1, 10 and 100 µg mL−1 were used. Particle characterization by dynamic light scattering and transmission electron microscopy showed similar mean particle sizes before and after digestion, resulting in comparable delivered particle doses in vitro. Only slight effects on barrier integrity and cell viability were detected for 100 µg mL−1 CuO-NP, while the ion control CuCl2 always caused significantly higher adverse effects. The utilized cell models were not significantly different. In summary, undigested and digested CuO-NP show comparable effects on the mono-/co-cultures, which are weaker than those of copper ions. Only in the highest concentration, CuO-NP showed weak effects on barrier integrity and cell viability. Nevertheless, a slightly increased apoptosis rate indicates existing cellular stress, which gives reason for further investigations.
Collapse
|
9
|
Balkrishna A, Kumar A, Arya V, Rohela A, Verma R, Nepovimova E, Krejcar O, Kumar D, Thakur N, Kuca K. Phytoantioxidant Functionalized Nanoparticles: A Green Approach to Combat Nanoparticle-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3155962. [PMID: 34737844 PMCID: PMC8563134 DOI: 10.1155/2021/3155962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Nanotechnology is gaining significant attention, with numerous biomedical applications. Silver in wound dressings, copper oxide and silver in antibacterial preparations, and zinc oxide nanoparticles as a food and cosmetic ingredient are common examples. However, adverse effects of nanoparticles in humans and the environment from extended exposure at varied concentrations have yet to be established. One of the drawbacks of employing nanoparticles is their tendency to cause oxidative stress, a significant public health concern with life-threatening consequences. Cardiovascular, renal, and respiratory problems and diabetes are among the oxidative stress-related disorders. In this context, phytoantioxidant functionalized nanoparticles could be a novel and effective alternative. In addition to performing their intended function, they can protect against oxidative damage. This review was designed by searching through various websites, books, and articles found in PubMed, Science Direct, and Google Scholar. To begin with, oxidative stress, its related diseases, and the mechanistic basis of oxidative damage caused by nanoparticles are discussed. One of the main mechanisms of action of nanoparticles was unearthed to be oxidative stress, which limits their use in humans. Secondly, the role of phytoantioxidant functionalized nanoparticles in oxidative damage prevention is critically discussed. The parameters for the characterization of nanoparticles were also discussed. The majority of silver, gold, iron, zinc oxide, and copper nanoparticles produced utilizing various plant extracts were active free radical scavengers. This potential is linked to several surface fabricated phytoconstituents, such as flavonoids and phenols. These phytoantioxidant functionalized nanoparticles could be a better alternative to nanoparticles prepared by other existing approaches.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India
- Department of Allied Sciences, University of Patanjali, Haridwar 249405, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India
- Department of Allied Sciences, University of Patanjali, Haridwar 249405, India
| | - Akansha Rohela
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Ondrej Krejcar
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Malaysia Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Naveen Thakur
- Department of Physics, Career Point University, Hamirpur 177001, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
- Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| |
Collapse
|
10
|
Influence of chromium (III), cobalt (II) and their mixtures on cell metabolic activity. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2021. [DOI: 10.2478/cipms-2021-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Chromium (III) and cobalt (II) are necessary elements required for the proper functioning of the organism, but their excess can cause toxic effects. They are the basic components of implants and are also commonly used in medicine as components of dietary supplements, vitamin and mineral products and energy drinks. The aim of this study was to investigate the effect of cobalt (II) and chromium (III) and their combination on BJ cells. In the study, BJ cells were exposed to CoCl2 or CrCl3 at concentrations ranging from 100 to 1400 µM, and the cytotoxicity of chromium (III) and cobalt (II) and their mixtures was assessed by MTT reduction, LDH release and NRU assays. The outcome of this work reveals the cytotoxic effects of chromium (III) and cobalt (II) and their mixtures on BJ cells. In the cytotoxicity assays, at low concentrations of CoCl2 and CrCl3, stimulation of cell proliferation was observed. In higher concentrations, the cell viability decreased for the tested line in all the assays. During the simultaneous incubation of fibroblasts with 200 µM of CrCl3 and 1000 µM of CoCl2, antagonism was observed: chromium (III) at the concentration of 200 µM induced protection from cobalt (II) toxicity; in the case of interaction of chromium chloride at 1000 µm and cobalt chloride at 200 µM, the protective effect of CrCl3 on CoCl2 was not observed. In the latter case, synergism between these elements was noted. Our work indicates that cobalt (II) and chromium (III) show cytotoxic properties. These metals have a destructive effect on the cell membrane, lysosomes and mitochondria, which leads to disorders of cell metabolism.
Collapse
|
11
|
Malekirad AA, Hassani S, Abdollahi M. Oxidative stress and copper smelter workers. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Afzal A, Qayyum MA, Shah MH. Study of Trace Metal Imbalances in the Scalp Hair of Stomach Cancer Patients with Different Types and Stages. Biol Trace Elem Res 2020; 196:365-374. [PMID: 31659649 DOI: 10.1007/s12011-019-01926-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
Abstract
Stomach cancer is among the most common forms of cancers, and diet and environmental factors play important roles in its malignancy. This study was conducted to evaluate the trace metal contents in the scalp hair of stomach cancer patients and healthy donors to investigate probable relationship between metal imbalances and cancer. The samples were digested in HNO3-HClO4 mixture and the metals were quantified by flame atomic absorption spectrophotometry. Median level of Cr was found to be significantly higher in the patients than in the controls, while median levels of Fe, Mn and Cd were considerably reduced. The correlation pattern of metals in the patients manifested significantly divergent mutual relationships compared with the controls. Multivariate analyses showed appreciably diverse apportionment of the metals in the patients and healthy donors. Variations in the metal levels were also observed for various types (adenocarcinoma and gastrointestinal stromal tumour) as well as stages (I, II, III and IV) of stomach cancer patients. Most of the metals revealed noticeable disparities in their levels based on gender, habitat, dietary habit and smoking habit of patients and controls. Accordingly, the essential/toxic metals exhibited significant imbalance due to pathogenesis of stomach among the patients.
Collapse
Affiliation(s)
- Annum Afzal
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Abdul Qayyum
- Department of Chemistry, University of Education Lahore, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Munir H Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
13
|
Zhang Y, Li Y, Feng Q, Shao M, Yuan F, Liu F. Polydatin attenuates cadmium-induced oxidative stress via stimulating SOD activity and regulating mitochondrial function in Musca domestica larvae. CHEMOSPHERE 2020; 248:126009. [PMID: 32000039 DOI: 10.1016/j.chemosphere.2020.126009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a widespread environment contaminant due to the development of electroplating and metallurgical industry. Cd can be enriched by organisms via food chain, causing the enlarged environmental problems and posing threats to the health of humans. Polydatin (PD), a natural stilbenoid compound derived from Polygonum cuspidatum, shows pronouncedly curative effect on oxidative damage. In this work, the protective effects of PD on oxidative damage induced by Cd in Musca domestica (housefly) larvae were evaluated. The larvae were exposed to Cd and/or PD, subsequently, the oxidative stress status, mitochondria activity, oxidative phosphorylation efficiency, and survival rate were assessed. Cd exposure generated significant increases of malondialdehyde (MDA), reactive oxygen species (ROS) and 8-hydroxy-2-deoxyguanosine (8-oxoG) in the housefly larvae, causing mitochondrial dysfunction and survival rate decline. Interestingly, pretreatment with PD exhibited obviously mitochondrial protective effects in the Cd-exposed larvae, as evidenced by reduced MDA, ROS and 8-oxoG levels, and increased activities of superoxide dismutase (SOD), mitochondrial electron transfer chain, and mitochondrial membrane potential, as well as respiratory control ratio. These results suggested that PD could attenuate Cd-induced damage via maintaining redox balance, stimulating SOD activity, and regulating mitochondria activity in housefly larvae. As a natural polyphenolic chemical, PD can act as a potential candidate compounds to relieve Cd injury.
Collapse
Affiliation(s)
- Yuming Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yajing Li
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Qin Feng
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Menghua Shao
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fengyu Yuan
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fengsong Liu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|
14
|
Giachino A, Waldron KJ. Copper tolerance in bacteria requires the activation of multiple accessory pathways. Mol Microbiol 2020; 114:377-390. [DOI: 10.1111/mmi.14522] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Andrea Giachino
- Biosciences Institute Faculty of Medical Sciences Newcastle University Newcastle upon Tyne UK
| | - Kevin J. Waldron
- Biosciences Institute Faculty of Medical Sciences Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
15
|
Zhong L, Dong A, Feng Y, Wang X, Gao Y, Xiao Y, Zhang J, He D, Cao J, Zhu W, Zhang S. Alteration of Metal Elements in Radiation Injury: Radiation-Induced Copper Accumulation Aggravates Intestinal Damage. Dose Response 2020. [PMID: 32110169 PMCID: PMC7000859 DOI: 10.1177/1559325820904547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ionizing radiation causes damage to a variety of tissues, especially radiation-sensitive tissues, such as the small intestine. Radiation-induced damage is caused primarily by increased oxidative stress in the body. Studies have shown that trace metal elements play an irreplaceable role in oxidative stress in humans, which may be associated with radiation-induced tissue damage. However, the alteration and functional significance of trace metal elements in radiation-induced injury is not clear. In this study, we explored the association between radiation-induced damage and 7 trace metal elements in mouse models. We found that the concentration of zinc and copper in mice serum was decreased significantly after irradiation, whereas that of nickel, manganese, vanadium, cobalt, and stannum was not changed by inductively coupled plasma mass spectrometry. The role of copper in radiation-induced intestines was characterized in detail. The concentration of copper was increased in irradiated intestine but reduced in irradiated heart. Immunohistochemistry staining showed that copper transporter protein copper transport 1 expression was upregulated in irradiated mouse intestine, suggesting its potential involvement in radiation-induced copper accumulation. At the cellular level, the addition of CuCl2potentiated radiation-induced reactive oxygen species in intestine-derived human intestinal epithelial cell and IEC-6 cells. Moreover, the level of copper in damaged cells may be related to the severity of radiation-induced damage as evidenced by a cell viability assay. These results indicate that copper may be involved in the progression of radiation-induced tissue damage and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Li Zhong
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Aijing Dong
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yang Feng
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xi Wang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yiying Gao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- Sichuan Center for Disease Control and Prevention, Sichuan, China
| | - Yuji Xiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Ji Zhang
- Soochow University Affiliated Second Hospital, Soochow University, Suzhou, China
| | - Dan He
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Shuyu Zhang
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Qiao R, Lu K, Deng Y, Ren H, Zhang Y. Combined effects of polystyrene microplastics and natural organic matter on the accumulation and toxicity of copper in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:128-137. [PMID: 31117014 DOI: 10.1016/j.scitotenv.2019.05.163] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/12/2019] [Accepted: 05/12/2019] [Indexed: 05/22/2023]
Abstract
As emerging contaminants, microplastics (MPs) are predicted to act as vectors for other contaminants and their combined effects are largely unknown. In this study, the combined effects of MPs and natural organic matter (NOM) on the accumulation and toxicity of copper (Cu) in zebrafish (Danio rerio) were investigated. As a result, small-size MPs could absorb more Cu than large-size MPs. The presence of NOM promoted Cu adsorption on MPs in the pH range of 6-8. Our results demonstrate that the combination of MPs and NOM increased Cu accumulation in the livers and guts in a size-depended manner. Correspondingly, the results of biochemical test showed that MPs and NOM could aggravate Cu-toxicity in the livers and guts, which is manifested in the increased levels of malonaldehyde (MDA) and metallothionein (MT) and decreased levels of superoxide dismutase (SOD). Furthermore, the results of transcriptomic analysis suggested that such aggravation of toxicity was mainly attributed to the inhibition of Cu-ion transport and the enhanced oxidative stress. Since the co-existence of MPs and NOM in the environment is inevitable, their enhancement effects on the bioaccumulation and toxicity of other pollutants such as heavy metals deserve more attention.
Collapse
Affiliation(s)
- Ruxia Qiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kai Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yongfeng Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
17
|
Terpilowska S, Siwicki AK. Cell cycle and transmembrane mitochondrial potential analysis after treatment with chromium(iii), iron(iii), molybdenum(iii) or nickel(ii) and their mixtures. Toxicol Res (Camb) 2019; 8:188-195. [PMID: 30931100 PMCID: PMC6404159 DOI: 10.1039/c8tx00233a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/12/2018] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to examine the effect of chromium(iii), iron(iii), molybdenum(iii) and nickel(ii) and their combinations on the cell cycle and mitochondrial transmembrane potential (MTP) in BALB/3T3 and HepG2 cells. A statistically significant dose related decrease of the percentage of cells in the G0/G1 and S phases was observed. However, a statistically significant dose related increase of the percentage of cells in the G2/M phase after exposure to chromium(iii), nickel(ii) or molybdenum(iii) at 200-1000 μM concentrations in both cell lines was observed. Moreover, an increase of the percentage of cells in the subG1 phase was observed. In both cell lines a statistically significant dose related decrease of the percentage of cells in the G2/M phase after exposure to iron(iii) at 200-1000 μM concentrations was observed. However, a statistically significant dose related increase of the percentage of cells in the G0/G1 phase after exposure to iron(iii) at 200-1000 μM concentrations was observed. A concentration dependent statistically significant decrease in the level of the MTP was observed in both cell lines after exposure to chromium(iii), iron(iii), nickel(ii) and molybdenum(iii). The results obtained from both cell lines show that HepG2 cells are more sensitive when compared to BALB/3T3 cells. Additions of Cr(iii) at 200 μM plus Fe(iii) at 1000 μM showed a synergistic effect on the cell cycle and MTP. In the case of Cr(iii) at 200 μM plus Mo(iii) at 1000 μM, an antagonistic effect was observed in both analyses. In the case of Cr(iii) at 1000 μM plus Mo(iii), Ni(ii) and Fe(iii) at 200 μM, no changes in the percentage of cells in all phases were observed in both cell lines in both analyses.
Collapse
Affiliation(s)
- Sylwia Terpilowska
- Laboratory of Environmental Biology , Institute of Environmental Engineering , The John Paul II Catholic University of Lublin , Raclawickie 14 Av. , 20-950 Lublin , Poland .
| | - Andrzej K Siwicki
- Department of Microbiology and Clinical Immunology , Faculty of Veterinary Medicine , University of Warmia and Mazury in Olsztyn , Oczapowskiego 13 Str. , 10-957 Olsztyn , Poland .
| |
Collapse
|
18
|
Hu LX, Hu SF, Rao M, Yang J, Lei H, Duan Z, Xia W, Zhu C. Studies of acute and subchronic systemic toxicity associated with a copper/low-density polyethylene nanocomposite intrauterine device. Int J Nanomedicine 2018; 13:4913-4926. [PMID: 30214197 PMCID: PMC6124463 DOI: 10.2147/ijn.s169114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction The physiologic safety of devices and materials intended for clinical implantation should be evaluated. This study, a logical extension of our previous work, aimed to investigate the safety of a novel contraceptive device, the copper/low-density polyethylene nanocomposite intrauterine device (nano-Cu/LDPE IUD), through studies of its potential toxicity after acute and subchronic administration in mice and rats. Methods For the acute toxicity study, single 50 mL/kg doses of nano-Cu/LDPE IUD extracts were administered to mice via intravenous or intraperitoneal injection. General behavioral adverse effects, mortality, and body weights were evaluated for up to 72 hours. In the 13-week subchronic toxicity study, the nano-Cu/LDPE composite with 10-fold higher than the standard clinical dose was implanted subcutaneously into the dorsal skin of Wistar rats. The control group underwent a sham procedure without material insertion. Results During all acute study observation times, the biologic reactions of the mice in the nano-Cu/LDPE group did not differ from those observed in the control group. The groups did not differ statistically in terms of body weight gain, and no macroscopic changes were observed in any organs. In the subchronic study, no clinical signs of toxicity or mortality were observed in either the nano-Cu/LDPE or control group during the 13-week period. The nano-Cu/LDPE composite did not cause any alterations in body weight, food consumption, hematologic and biochemical parameters, or organ weight relative to the control for any observed sample group. Histopathologic examinations of the organs revealed normal architecture, indicating that the inserted material did not cause morphologic disturbances in the rats. Conclusion Overall, the results indicate that the nano-Cu/LDPE IUD did not induce systemic toxicity under experimental conditions of the recommended standard practices, suggesting that the novel material IUD is safe and feasible for future contraceptive applications.
Collapse
Affiliation(s)
- Li-Xia Hu
- Department of Histology and Embryology, Preclinical Medicine College, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Shi-Fu Hu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China, ;
| | - Meng Rao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China, ; .,Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Jing Yang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China, ; .,Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hui Lei
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China, ; .,Department of Gynaecology and Obstetrics, Taikang Tongji Hospital, Wuhan, Hubei, People's Republic of China
| | - Zhuo Duan
- Dayu Medical Devices Co., Ltd., Jingzhou, Hubei, People's Republic of China
| | - Wei Xia
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China, ; .,Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China, ;
| | - Changhong Zhu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China, ; .,Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China, ;
| |
Collapse
|
19
|
Tang H, Xu M, Shi F, Ye G, Lv C, Luo J, Zhao L, Li Y. Effects and Mechanism of Nano-Copper Exposure on Hepatic Cytochrome P450 Enzymes in Rats. Int J Mol Sci 2018; 19:2140. [PMID: 30041454 PMCID: PMC6073330 DOI: 10.3390/ijms19072140] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/04/2018] [Accepted: 07/15/2018] [Indexed: 12/14/2022] Open
Abstract
Although nano-copper is currently used extensively, the adverse effects on liver cytochrome P450 (CYP450) enzymes after oral exposure are not clear. In this study, we determined the effects and mechanisms of action of nano- and micro-copper on the expression and activity of CYP450 enzymes in rat liver. Rats were orally exposed to micro-copper (400 mg/kg), Cu ion (100 mg/kg), or nano-copper (100, 200 and 400 mg/kg) daily for seven consecutive days. Histopathological, inflammatory and oxidative stress were measured in the livers of all rats. The mRNA levels and activity of CYP450 enzymes, as well as the mRNA levels of select nuclear receptors, were determined. Exposure to nano-copper (400 mg/kg) induced significant oxidative stress and inflammation relative to the controls, indicated by increased levels of interleukin (IL)-2, IL-6, interferon (IFN)-γ, macrophage inflammatory protein (MIP-1), total antioxidant capacity (T-AOC), malondialdehyde (MDA), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) after exposure. The levels of mRNA expression of pregnane X receptor (PXR), constitutive androstane receptor (CAR) and aryl hydrocarbon receptor (AHR) were significantly decreased in 400 mg/kg nano-copper treated rats. Nano-copper activated the expression of the NF-kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT)3 signaling pathways. Nano-copper decreased the mRNA expression and activity of CYP 1A2, 2C11, 2D6, 2E1 and 3A4 in a dose-dependent manner. The adverse effects of micro-copper are less severe than those of nano-copper on the CYP450 enzymes of rats after oral exposure. Ingestion of large amounts of nano-copper in animals severely affects the drug metabolism of the liver by inhibiting the expression of various CYP450 enzymes, which increases the risk of drug-drug interactions in animals.
Collapse
Affiliation(s)
- Huaqiao Tang
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Min Xu
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Fei Shi
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Gang Ye
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Cheng Lv
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jie Luo
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China.
- School of Medicine, Tongren Polytechnic College, Guizhou 554300, China.
| | - Ling Zhao
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yinglun Li
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
20
|
Terpilowska S, Siwicki AK. Interactions between chromium(III) and iron(III), molybdenum(III) or nickel(II): Cytotoxicity, genotoxicity and mutagenicity studies. CHEMOSPHERE 2018; 201:780-789. [PMID: 29550572 DOI: 10.1016/j.chemosphere.2018.03.062] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/02/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to examine the effect of chromium(III) and iron(III) and molybdenum(III) and nickel(II) and their combinations on cyto-, genotoxicity and mutagenicity in BALB/3T3 and HepG2 cells. The results obtained from cytotoxicity assays indicate that there are differences between BALB/3T3 and HepG2 cell lines in their sensitivity to chromium chloride, iron chloride, molybdenum trioxide and nickel chloride. The statistically significant increase of DNA damage of all used microelements in both cell lines was observed. The micronucleus assay performed with the use of all concentrations shows statistically significant induction of chromosomal aberrations in all tested microelements in both cell lines. Moreover, treated cells display characteristic apoptosis in comparison to control cells. In all tested microelements, the increase of number of reverse mutations was observed with and without metabolic activation. Additions of Cr(III) at 200 μM plus Fe(III) at 1000 μM showed synergistic effect in decrease of cell viability and increase of comets, micronuclei and number of revertants in both cell lines. In case of Cr(III) at 200 μM plus Mo(III) at 1000 μM, a protective effect of chromium against molybdenum at 1000 μM toxicity in both cell lines (assessed by MTT, LDH and NRU, comet, micronucleus and Ames assays) was observed. The protective effect of Cr(III) in decrease of cell viability was observed in pair of Cr(III) at 200 μM and Ni(II) at 1000 μM in BALB/3T3 and HepG2 cell lines assessed by MTT, LDH and NRU, comet, micronucleus and Ames assays.
Collapse
Affiliation(s)
- Sylwia Terpilowska
- Laboratory of Environmental Biology, Institute of Environmental Engineering, The John Paul II Catholic University of Lublin, Raclawickie 14 Av., 20-950 Lublin, Poland.
| | - Andrzej Krzysztof Siwicki
- Department of Microbiology and Clinical Immunology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 Str., 10-957 Olsztyn, Poland.
| |
Collapse
|
21
|
Hernández-Aquino E, Muriel P. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World J Gastroenterol 2018; 24:1679-1707. [PMID: 29713125 PMCID: PMC5922990 DOI: 10.3748/wjg.v24.i16.1679] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/04/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are caused by different etiological agents, mainly alcohol consumption, viruses, drug intoxication or malnutrition. Frequently, liver diseases are initiated by oxidative stress and inflammation that lead to the excessive production of extracellular matrix (ECM), followed by a progression to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). It has been reported that some natural products display hepatoprotective properties. Naringenin is a flavonoid with antioxidant, antifibrogenic, anti-inflammatory and anticancer properties that is capable of preventing liver damage caused by different agents. The main protective effects of naringenin in liver diseases are the inhibition of oxidative stress, transforming growth factor (TGF-β) pathway and the prevention of the transdifferentiation of hepatic stellate cells (HSC), leading to decreased collagen synthesis. Other effects include the inhibition of the mitogen activated protein kinase (MAPK), toll-like receptor (TLR) and TGF-β non-canonical pathways, the inhibition of which further results in a strong reduction in ECM synthesis and deposition. In addition, naringenin has shown beneficial effects on nonalcoholic fatty liver disease (NAFLD) through the regulation of lipid metabolism, modulating the synthesis and oxidation of lipids and cholesterol. Moreover, naringenin protects from HCC, since it inhibits growth factors such as TGF-β and vascular endothelial growth factor (VEGF), inducing apoptosis and regulating MAPK pathways. Naringenin is safe and acts by targeting multiple proteins. However, it possesses low bioavailability and high intestinal metabolism. In this regard, formulations, such as nanoparticles or liposomes, have been developed to improve naringenin bioavailability. We conclude that naringenin should be considered in the future as an important candidate in the treatment of different liver diseases.
Collapse
Affiliation(s)
- Erika Hernández-Aquino
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 07000, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 07000, Mexico
| |
Collapse
|
22
|
Rajeshkumar S, Liu Y, Ma J, Duan HY, Li X. Effects of exposure to multiple heavy metals on biochemical and histopathological alterations in common carp, Cyprinus carpio L. FISH & SHELLFISH IMMUNOLOGY 2017; 70:461-472. [PMID: 28826748 DOI: 10.1016/j.fsi.2017.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/26/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Heavy metals are frequently encountered as mixtures of essential and non-essential elements. Therefore, evaluation of their toxic effects individually does not offer a realistic estimate of their impact on biological processes. We studied effects of exposure to mixtures of essential and toxic metals (Cr, Cd and Pb) on biochemical, immunotoxicity level and morphological characteristics of the various tissues of a biomarker freshwater fish common carp using environmentally relevant concentrations. Fish were exposed to metal mixture through tank water for 7, 15 and 30 days, under controlled laboratory conditions. Tissue accumulation of the metals was measured using Atomic Absorption Spectrophotometric techniques. Chromium, cadmium and lead accumulation in muscle, gills, liver, kidney and intestine, tissue of common carp exposed to mixture metals for 30 days increased significant compared with control group (p < 0.001). However, the activity of antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) levels was significant altered in various tissues of exposed fish. Besides, the lipid peroxidation (LPO) was significant (p < 0.001) increased. Moreover, the tumor necrosis factor - α (TNF-α), interleukin (IL-6), and interferon-γ (IFN-γ) contents in tissues of muscle, gills, liver, kidney and intestine were increased significant compared with control fish (p < 0.001). In addition, microscopic examination of the main alterations in general morphology of fish gills included spiking and fusion of secondary lamellae, formation of club-shaped filaments epithelium in the interlamellar regions and hepatocytes showed damage of central vein and rupture of irregular hepatic plate with more number of vacuoles in the fish exposed to metal mixture for a longer duration (30 days). These results of this study clearly demonstrate that concentration individual and mixtures of metals in aquatic systems will greatly influence the cytokine alterations may result in an immune suppression or excessive activation in the treated common carp as well as may cause immune dysfunction or reduced immunity. In conclusion, toxicity of multiple metal mixtures of Cr, Cd and Pb has antioxidant and immunotoxic effects on C. carpio.
Collapse
Affiliation(s)
| | - Yang Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hong Ying Duan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
23
|
Abstract
Alzheimer's disease (AD) is the most common form of adult neurode-generation and is characterised by progressive loss of cognitive function leading to death. The neuropathological hallmarks include extracellular amyloid plaque accumulation in affected regions of the brain, formation of intraneuronal neurofibrillary tangles, chronic neuroinflammation, oxidative stress, and abnormal biometal homeostasis. Of the latter, major changes in copper (Cu) levels and localisation have been identified in AD brain, with accumulation of Cu in amyloid deposits, together with deficiency of Cu in some brain regions. The amyloid precursor protein (APP) and the amyloid beta (Aβ) peptide both have Cu binding sites, and interaction with Cu can lead to potentially neurotoxic outcomes through generation of reactive oxygen species. In addition, AD patients have systemic changes to Cu metabolism, and altered Cu may also affect neuroinflammatory outcomes in AD. Although we still have much to learn about Cu homeostasis in AD patients and its role in disease aetiopathology, therapeutic approaches for regulating Cu levels and interactions with Cu-binding proteins in the brain are currently being developed. This review will examine how Cu is associated with pathological changes in the AD brain and how these may be targeted for therapeutic intervention.
Collapse
|
24
|
Mandil R, Rahal A, Prakash A, Garg SK, Gangwar NK, Swain DK. Ameliorative potential of α-tocopherol against flubendiamide and copper-induced testicular-insult in Wistar rats. Chem Biol Interact 2016; 260:91-101. [PMID: 27823922 DOI: 10.1016/j.cbi.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/15/2016] [Accepted: 11/02/2016] [Indexed: 12/20/2022]
Abstract
Study was undertaken to evaluate ameliorative potential of α-tocopherol against copper sulphate and flubendiamide alone and in combination-induced toxicity in rats following 90 days exposure. Absolute and relative organ weights did not differ between treatments groups. Increase of LPO in copper and flubendiamide intoxicated rats but modest increase in copper + flubendiamide group. GSH and activities of SOD, GPx and GST showed moderate decrease in intoxicated groups. Reduced CAT activity in alone exposed groups was observed. ACP, ALP and SDH remain unaltered. Increase in LDH, γ-GT, abnormal sperm and reduced 17β-HSD, percent live and HOST +ve sperms and testosterone level was observed in all three exposed groups. Xenobiotics alone and in combination exhibited degenerative germinal epithelium, necrotic germ cells, loss of spermatozoa and spermatids. Treatment with α-tocopherol, reparative potential was observed as values of most of the parameters including testicular histoarchitecture were restored.
Collapse
Affiliation(s)
- Rajesh Mandil
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India.
| | - Anu Rahal
- Central Institute for Research on Goat (CIRG), Makhdoom, Farah, Mathura, Uttar Pradesh, 281122, India
| | - Atul Prakash
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Satish K Garg
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Neeraj K Gangwar
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Dilip K Swain
- Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| |
Collapse
|
25
|
Pradhan A, Silva CO, Silva C, Pascoal C, Cássio F. Enzymatic biomarkers can portray nanoCuO-induced oxidative and neuronal stress in freshwater shredders. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:227-235. [PMID: 27744167 DOI: 10.1016/j.aquatox.2016.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/14/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
Commercial applications of nanometal oxides have increased concern about their release into natural waters and consequent risks to aquatic biota and the processes they drive. In forest streams, the invertebrate shredder Allogamus ligonifer plays a key role in detritus food webs by transferring carbon and energy from plant litter to higher trophic levels. We assessed the response profiles of oxidative and neuronal stress enzymatic biomarkers in A. ligonifer after 96h exposure to nanoCuO at concentration ranges <LC30. To better understand the contribution of ionic form in nanoCuO-induced stress, Cu2+ released from nanoCuO was quantified and the enzymatic responses to Cu2+ exposure at similar effective concentrations were compared. The highest activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) were observed at concentrations <LC5. The enzymatic activities decreased at effective concentrations between LC10 and LC30. GR activity remained higher than in control at all concentrations. The activity of glutathione S-transferase (GST) increased whereas that of catalase (CAT) decreased at concentrations between LC10 and LC30. The response patterns suggested that antioxidant enzymes could prevent oxidative stress at low concentrations (<LC10) of nanoCuO, thereby contributing to the survival of A. ligonifer. At concentrations between LC10 and LC30, effects of nanoparticulate or released ionic copper on enzyme activities were concentration-dependent, and led to oxidative stress and even to animal death. The activity of acetylcholinesterase (AChE) was strongly inhibited even at concentrations <LC10, suggesting neuronal stress in A. ligonifer.
Collapse
Affiliation(s)
- Arunava Pradhan
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Carla O Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Carlos Silva
- Centre of Chemistry, Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Cláudia Pascoal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Fernanda Cássio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
26
|
Wang J, Chen J, Tang Z, Li Y, Hu L, Pan J. The Effects of Copper on Brain Microvascular Endothelial Cells and Claudin Via Apoptosis and Oxidative Stress. Biol Trace Elem Res 2016; 174:132-141. [PMID: 27038183 DOI: 10.1007/s12011-016-0685-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
Abstract
Many neurodegenerative diseases are related to copper although the effects on brain microvascular endothelial cells (BMECs) are poorly understood. In the present study, a primary BMEC culture model was established to evaluate the effects of copper on brain microvascular endothelial cells and whether claudin-1, claudin-3, claudin-5, and claudin-12 isoforms contribute to apoptosis and intrinsic antioxidant activity. Our results showed that copper ions had dual effects on BMECs by regulating intracellular reactive oxygen species (ROS) levels. Copper levels between 30 and 120 μM could enhance viability and promote proliferation. On the other hand, copper cytotoxicity was a result of apoptosis indicating a redox-independent manner of cell death. Expression levels of claudins were also regulated by copper in a concentration-dependent manner. We identified four claudin isoforms (1, 3, 5, and 12) and showed that their expression levels were regulated as a group by copper. Antioxidant activity of BMECs was also copper regulated, and superoxide dismutase and catalase were the main contributors to BMEC antioxidant functions. Together, our results indicated that copper had dual effects on BMEC growth and intrinsic antioxidant activities played a crucial role in BMEC survival and tight junction.
Collapse
Affiliation(s)
- Jian Wang
- College of Veterinary Medicine, South China Agriculture University, WuShan Road 483, Guangzhou, 510642, China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, 510642, China
| | - Junquan Chen
- College of Veterinary Medicine, South China Agriculture University, WuShan Road 483, Guangzhou, 510642, China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agriculture University, WuShan Road 483, Guangzhou, 510642, China.
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, 510642, China.
- Key Laboratory of Biotechnology and Bioproducts Development for Animal Epidemic Prevention, Ministry of Agriculture, Zhaoqing, 526238, China.
| | - Ying Li
- College of Veterinary Medicine, South China Agriculture University, WuShan Road 483, Guangzhou, 510642, China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agriculture University, WuShan Road 483, Guangzhou, 510642, China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agriculture University, WuShan Road 483, Guangzhou, 510642, China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, 510642, China
| |
Collapse
|
27
|
Shah KM, Wilkinson JM, Gartland A. Cobalt and chromium exposure affects osteoblast function and impairs the mineralization of prosthesis surfaces in vitro. J Orthop Res 2015; 33:1663-70. [PMID: 25929464 DOI: 10.1002/jor.22932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/24/2015] [Indexed: 02/04/2023]
Abstract
Cobalt (Co) and chromium (Cr) ions and nanoparticles equivalent to those released through tribo-corrosion of prosthetic metal-on-metal (MOM) bearings and taper junctions are detrimental to osteoblast activity and function in vitro when examined as individual species. Here we examined the effects of Co(2+):Cr(3+) and Co(2+):Cr(6+) combinations on osteoblast-like SaOS-2 cellular activity, alkaline phosphatase (ALP) activity and mineralization to better reflect clinical exposure conditions in vivo. We also assessed the effect of Co(2+):Cr(3+) combinations and Co:Cr nanoparticles on SaOS-2 cell osteogenic responses on grit-blasted, plasma-sprayed titanium-coated, and hydroxyapatite-coated prosthesis surfaces. Cellular activity and ALP activity were reduced to a greater extent with combination treatments compared to individual ions. Co(2+) and Cr(3+) interacted additively and synergistically to reduce cellular activity and ALP activity, respectively, while the Co(2+) with Cr(6+) combination was dominated by the effect of Cr(6+) alone. Mineralization by osteoblasts was greater on hydroxyapatite-coated surfaces compared to grit-blasted and plasma-sprayed titanium-coated surfaces. Treatments with Co(2+):Cr(3+) ions and Co:Cr nanoparticles reduced the percentage mineralization on all surfaces, with hydroxyapatite-coated surfaces having the least reduction. In conclusion, our data suggests that previous studies investigating individual metal ions underestimate their potential clinical effects on osteoblast activity. Furthermore, the data suggests that hydroxyapatite-coated surfaces may modulate osteoblast responses to metal debris.
Collapse
Affiliation(s)
- Karan M Shah
- Department of Human Metabolism, The Mellanby Centre for Bone Research, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Jeremy Mark Wilkinson
- Department of Human Metabolism, The Mellanby Centre for Bone Research, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Alison Gartland
- Department of Human Metabolism, The Mellanby Centre for Bone Research, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| |
Collapse
|
28
|
da Silva CR, Almeida GS, Caldeira-de-Araújo A, Leitão AC, de Pádula M. Influence of Ogg1 repair on the genetic stability of ccc2 mutant of Saccharomyces cerevisiae chemically challenged with 4-nitroquinoline-1-oxide (4-NQO). Mutagenesis 2015; 31:107-14. [PMID: 26275420 DOI: 10.1093/mutage/gev062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In Saccharomyces cerevisiae, disruption of genes by deletion allowed elucidation of the molecular mechanisms of a series of human diseases, such as in Wilson disease (WD). WD is a disorder of copper metabolism, due to inherited mutations in human copper-transporting ATPase (ATP7B). An orthologous gene is present in S. cerevisiae, CCC2 gene. Copper is required as a cofactor for a number of enzymes. In excess, however, it is toxic, potentially carcinogenic, leading to many pathological conditions via oxidatively generated DNA damage. Deficiency in ATP7B (human) or Ccc2 (yeast) causes accumulation of intracellular copper, favouring the generation of reactive oxygen species. Thus, it becomes important to study the relative importance of proteins involved in the repair of these lesions, such as Ogg1. Herein, we addressed the influence Ogg1 repair in a ccc2 deficient strain of S. cerevisiae. We constructed ccc2-disrupted strains from S. cerevisiae (ogg1ccc2 and ccc2), which were analysed in terms of viability and spontaneous mutator phenotype. We also investigated the impact of 4-nitroquinoline-1-oxide (4-NQO) on nuclear DNA damage and on the stability of mitochondrial DNA. The results indicated a synergistic effect on spontaneous mutagenesis upon OGG1 and CCC2 double inactivation, placing 8-oxoguanine as a strong lesion-candidate at the origin of spontaneous mutations. The ccc2 mutant was more sensitive to cell killing and to mutagenesis upon 4-NQO challenge than the other studied strains. However, Ogg1 repair of exogenous-induced DNA damage revealed to be toxic and mutagenic to ccc2 deficient cells, which can be due to a detrimental action of Ogg1 on DNA lesions induced in ccc2 cells. Altogether, our results point to a critical and ambivalent role of BER mediated by Ogg1 in the maintenance of genomic stability in eukaryotes deficient in CCC2 gene.
Collapse
Affiliation(s)
- Claudia R da Silva
- Laboratório de Radio e Fotobiologia, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, UERJ, Rio de Janeiro CEP 20551-030, Brasil, Laboratório de Radiobiologia Molecular; Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro CEP 21.941-902, Brasil and
| | - Gabriella S Almeida
- Laboratório de Radio e Fotobiologia, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, UERJ, Rio de Janeiro CEP 20551-030, Brasil, Laboratório de Radiobiologia Molecular; Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro CEP 21.941-902, Brasil and Laboratório de Microbiologia e Avaliação Genotóxica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, UFRJ, Rio de Janeiro CEP 21.941-902, Brasil
| | - Adriano Caldeira-de-Araújo
- Laboratório de Radio e Fotobiologia, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, UERJ, Rio de Janeiro CEP 20551-030, Brasil
| | - Alvaro C Leitão
- Laboratório de Radiobiologia Molecular; Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro CEP 21.941-902, Brasil and
| | - Marcelo de Pádula
- Laboratório de Radiobiologia Molecular; Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro CEP 21.941-902, Brasil and Laboratório de Microbiologia e Avaliação Genotóxica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, UFRJ, Rio de Janeiro CEP 21.941-902, Brasil
| |
Collapse
|
29
|
Liu X, Wang J, Lu C, Zhu C, Qian B, Li Z, Liu C, Shao J, Yan J. The role of lysosomes in BDE 47-mediated activation of mitochondrial apoptotic pathway in HepG2 cells. CHEMOSPHERE 2015; 124:10-21. [PMID: 25479806 DOI: 10.1016/j.chemosphere.2014.10.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/11/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of widely used flame retardants. The rising presence of PBDEs in human tissues has received considerable concerns with regard to potential health risks. While the mitochondrial-apoptotic pathway has been suggested in PBDEs-induced apoptosis, the role of lysosomes is yet to be understood. In the present study, HepG2 cells were exposed to BDE 47 at various concentrations and durations to establish the causal and temporal relationships among various cellular events, such as cell viability, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), apoptosis, and expression of cytochrome C and caspase 3. The involvement of lysosomes was simultaneously studied by evaluating lysosomal membrane permeability (LMP) and changes in the expression of cathepsin B, a lysosome hydrolase. In addition, a cathepsin B inhibitor (10 μM CA-074) was used to determine the involvement of lysosomes and potential interactions between lysosomes and mitochondria. Our results showed that ROS production was an initial response of HepG2 to BDE 47 exposure, followed by a decreased MMP; a loss of MMP caused additional ROS generation which acted to induce LMP; an increased LMP resulted in a release of cathepsin B which aggravated the loss of MMP leading to release of cytochrome C and caspase 3 and subsequent apoptosis. Pretreatment with CA-074 did not abolish the initial ROS generation, however, all downstream events were dramatically alleviated. Taken together, our data indicate that lysosomes might be involved in BDE 47-mediated mitochondrial-apoptotic pathway in HepG2 cells, possibly through feedback interactions between mitochondria and lysosomes.
Collapse
Affiliation(s)
- Xiaohui Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Jian Wang
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Chengquan Lu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Chunyan Zhu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Bo Qian
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Zhenwei Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Chang Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Jing Shao
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory of Hematology, Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Institute of Stem Cell Transplantation of Dalian Medical University, Dalian 116027, China.
| | - Jinsong Yan
- Dalian Key Laboratory of Hematology, Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Institute of Stem Cell Transplantation of Dalian Medical University, Dalian 116027, China.
| |
Collapse
|
30
|
Ahuja A, Dev K, Tanwar RS, Selwal KK, Tyagi PK. Copper mediated neurological disorder: visions into amyotrophic lateral sclerosis, Alzheimer and Menkes disease. J Trace Elem Med Biol 2015; 29:11-23. [PMID: 24975171 DOI: 10.1016/j.jtemb.2014.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/16/2014] [Accepted: 05/08/2014] [Indexed: 12/31/2022]
Abstract
Copper (Cu) is a vital redox dynamic metal that is possibly poisonous in superfluous. Metals can traditionally or intricately cause propagation in reactive oxygen species (ROS) accretion in cells and this may effect in programmed cell death. Accumulation of Cu causes necrosis that looks to be facilitated by DNA damage, followed by activation of P53. Cu dyshomeostasis has also been concerned in neurodegenerative disorders such as Alzheimer, Amyotrophic lateral sclerosis (ALS) or Menkes disease and is directly related to neurodegenerative syndrome that usually produces senile dementia. These mortal syndromes are closely related with an immense damage of neurons and synaptic failure in the brain. This review focuses on copper mediated neurological disorders with insights into amyotrophic lateral sclerosis, Alzheimer and Menkes disease.
Collapse
Affiliation(s)
- Anami Ahuja
- Department of Biotechnology, NIMS University, Jaipur, India.
| | - Kapil Dev
- Faculty of Medicine in Hradec Kralove, University of Charles, Prague, Czech Republic
| | - Ranjeet S Tanwar
- Department of Biotechnology, N.C. College of Engineering, Israna, India
| | - Krishan K Selwal
- Department of Biotechnology, Deenbandhu Chotu Ram University of Science and Technology, Murthal, India
| | - Pankaj K Tyagi
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut, India
| |
Collapse
|
31
|
da Cruz AL, Prado TM, Maciel LADS, Couto RD. Environmental effects on the gills and blood of Oreochromis niloticus exposed to rivers of Bahia, Brazil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 111:23-31. [PMID: 25450911 DOI: 10.1016/j.ecoenv.2014.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 09/14/2014] [Accepted: 09/23/2014] [Indexed: 06/04/2023]
Abstract
Through the integration of chemical, biochemical and morphological analyses, this study investigated the effects of multiple pollutants on environmental biomarkers, such as gill histopathological changes and hematological and biochemical parameters, in Oreochromis niloticus exposed to four sites in the Jacuipe and Subaé rivers over seven days. Sediment analyses identified Sapelba as the most contaminated site, followed by Oliveira de Campinhos, Santo Amaro and Jacuípe. Water analyses revealed aluminum, iron and manganese at all sites. Aluminum and other metal were also detected in the gills of fishes. Fish exposed to the Sapelba site exhibited significant necrosis formation, as well as higher hematological parameters and trend to increase of cortisol levels. However, filament epithelium proliferation was higher at the Oliveira de Campinhos and Santo Amaro sites, at which the lowest levels of the hematological variables were observed. Multivariate analysis grouped some gill histopathological changes together, such as epithelial detachment with edema and lamellar epithelial proliferation with the lamellar fusion of adjacent filaments, revealing relationships among them. Positive associations were identified between sediment contamination and necrosis and cortisol, while water contamination was related with filament epithelium proliferation, aneurism, lamellar fusion and several hematological parameters. Furthermore, relationships between blood parameters and gill histopathological changes demonstrated a joint physiological response that may have resulted from environmental variables such as dissolved oxygen. The results exhibited the direct influence of xenobiotics on these biomarkers but also highlighted the need to consider the complexity of environmental factors to optimize the adoption of these environmental predictive tools.
Collapse
Affiliation(s)
- André Luis da Cruz
- Federal University of Bahia, Rua Barão de Geremoabo s/n, Campus de Ondina, 40170-970 Salvador, BA, Brazil.
| | - Thiago Matos Prado
- Federal University of Bahia, Rua Barão de Geremoabo s/n, Campus de Ondina, 40170-970 Salvador, BA, Brazil.
| | | | - Ricardo David Couto
- Federal University of Bahia, Rua Barão de Geremoabo s/n, Campus de Ondina, 40170-970 Salvador, BA, Brazil.
| |
Collapse
|
32
|
Aitken R, Finnie J, Muscio L, Whiting S, Connaughton H, Kuczera L, Rothkirch T, De Iuliis G. Potential importance of transition metals in the induction of DNA damage by sperm preparation media. Hum Reprod 2014; 29:2136-47. [DOI: 10.1093/humrep/deu204] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
33
|
Faè M, Balestrazzi A, Confalonieri M, Donà M, Macovei A, Valassi A, Giraffa G, Carbonera D. Copper-mediated genotoxic stress is attenuated by the overexpression of the DNA repair gene MtTdp2α (tyrosyl-DNA phosphodiesterase 2) in Medicago truncatula plants. PLANT CELL REPORTS 2014; 33:1071-80. [PMID: 24638978 DOI: 10.1007/s00299-014-1595-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/13/2014] [Accepted: 02/26/2014] [Indexed: 05/22/2023]
Abstract
Our study highlights the use of the DNA repair gene MtTdp2α as a tool for improving the plant response to heavy metal stress. Tyrosyl-DNA phosphodiesterase 2 (Tdp2), involved in the removal of DNA topoisomerase II-mediated DNA damage and cell proliferation/differentiation signalling in animal cells, is still poorly characterised in plants. The Medicago truncatula lines Tdp2α-13c and Tdp2α-28 overexpressing the MtTdp2α gene and control (CTRL) line were exposed to 0.2 mM CuCl2. The DNA diffusion assay revealed a significant reduction in the percentage of necrosis caused by copper in the aerial parts of the Tdp2α-13c and Tdp2α-28 plants while neutral single cell gel electrophoresis highlighted a significant decrease in double strand breaks (DSBs), compared to CTRL. In the copper-treated Tdp2α-13c and Tdp2α-28 lines there was up-regulation (up to 4.0-fold) of genes encoding the α and β isoforms of Tyrosyl-DNA phosphodiesterase 1, indicating the requirement for Tdp1 function in the response to heavy metals. As for DSB sensing, the MtMRE11, MtRAD50 and MtNBS1 genes were also significantly up-regulated (up to 2.3-fold) in the MtTdp2α-overexpressing plants grown under physiological conditions, compared to CTRL line, and then further stimulated in response to copper. The basal antioxidant machinery was always activated in all the tested lines, as indicated by the concomitant up-regulation of MtcytSOD and MtcpSOD genes (cytosolic and chloroplastic Superoxide Dismutase), and MtMT2 (type 2 metallothionein) gene. The role of MtTdp2α gene in enhancing the plant response to genotoxic injury under heavy metal stress is discussed.
Collapse
Affiliation(s)
- Matteo Faè
- Dipartimento di Biologia e Biotecnologie 'L. Spallanzani', Via Ferrata 9, 27100, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Qayyum MA, Shah MH. Comparative assessment of selected metals in the scalp hair and nails of lung cancer patients and controls. Biol Trace Elem Res 2014; 158:305-22. [PMID: 24671620 DOI: 10.1007/s12011-014-9942-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/11/2014] [Indexed: 12/27/2022]
Abstract
Lung cancer is seriously threatening human health and exposure to trace metals is the most important aetiology for lung cancer. Selected essential/toxic metals (Ca, Mg, Na, K, Fe, Zn, Cu, Sr, Li, Co, Mn, Ni, Cr, Cd and Pb) are measured in the scalp hair and nails of lung cancer patients and controls by atomic absorption spectrophotometric method employing nitric acid-perchloric acid-based wet digestion. Average concentrations of Pb, Cd, Mn, Co and Cu are found to be significantly higher (p < 0.05) in the scalp hair and nails of lung cancer patients compared with the controls, however, appreciably higher concentrations of Zn, Ca, Na, Mg and Cr are noted in the scalp hair of the controls. Most of the metal levels reveal higher dispersion and asymmetry in the scalp hair/nails of the patients compared with the controls. Average metal levels are also compared to investigate probable differences based on sex, abode, food and smoking habits. The correlation study shows significantly diverse mutual variations of the metals in the scalp hair and nails of the patients and controls. Considerable variations in the metal levels are also noted for various stages and types of lung cancer (adenocarcinoma, squamous cell carcinoma, large cell carcinoma and small cell lung cancer). Multivariate apportionment of the metals in the scalp hair and nails of the patients and controls are also significantly diverse. The study reveals considerably divergent variations in the metal levels in lung cancer patients in comparison with healthy subjects.
Collapse
|
35
|
Hu LX, Wang H, Rao M, Zhao XL, Yang J, Hu SF, He J, Xia W, Liu H, Zhen B, Di H, Xie C, Xia X, Zhu C. Alterations in the endometrium of rats, rabbits, and Macaca mulatta that received an implantation of copper/low-density polyethylene nanocomposite. Int J Nanomedicine 2014; 9:1127-38. [PMID: 24596465 PMCID: PMC3940689 DOI: 10.2147/ijn.s56756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A copper/low-density polyethylene nanocomposite (nano-Cu/LDPE), a potential intrauterine device component material, has been developed from our research. A logical extension of our previous work, this study was conducted to investigate the expression of plasminogen activator inhibitor 1 (PAI-1), substance P (SP), and substance P receptor (SP-R) in the endometrium of Sprague Dawley rats, New Zealand White rabbits, and Macaca mulatta implanted with nano-Cu/LDPE composite. The influence of the nano-Cu/LDPE composite on the morphology of the endometrium was also investigated. Animals were randomly divided into five groups: the sham-operated control group (SO group), bulk copper group (Cu group), LDPE group, and nano-Cu/LDPE groups I and II. An expression of PAI-1, SP, and SP-R in the endometrial tissues was examined by immunohistochemistry at day 30, 60, 90, and 180 postimplantation. The significant difference for PAI-1, SP, and SP-R between the nano-Cu/LDPE groups and the SO group (P<0.05) was identified when the observation period was terminated, and the changes of nano-Cu/LDPE on these parameters were less remarkable than those of the Cu group (P<0.05). The damage to the endometrial morphology caused by the nano-Cu/LDPE composite was much less than that caused by bulk copper. The nano-Cu/LDPE composite might be a potential substitute for conventional materials for intrauterine devices in the future because of its decreased adverse effects on the endometrial microenvironment.
Collapse
Affiliation(s)
- Li-Xia Hu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hong Wang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Meng Rao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xiao-Ling Zhao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jing Yang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shi-Fu Hu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jing He
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Central Hospital of Wuhan, Wuhan, People’s Republic of China
| | - Wei Xia
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hefang Liu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Bo Zhen
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Haihong Di
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Changsheng Xie
- Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xianping Xia
- Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Changhong Zhu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
36
|
Matos RC, Bessa M, Oliveira H, Gonçalves F, de Lourdes Pereira M, Nunes B. Mechanisms of kidney toxicity for chromium- and arsenic-based preservatives: potential involvement of a pro-oxidative pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:929-936. [PMID: 24025636 DOI: 10.1016/j.etap.2013.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
Metals have been extensively used for the preservation of wood. Among metallic conservatives, mixtures of chromated copper arsenate (CCA) were thoroughly used. However, the release and consequent mobilization of such compounds by biota, may culminate in the exertion of toxic chemical effects. The present study intended to show the toxicological effects caused by arsenic (7.2 mg/kg body weight), chromium (10.2 mg/kg Cr body weight) and the commercial mixture CCA (7.2 mg/kg As body weight and 10.2 mg/kg Cr body weight) in mice, namely the oxidative stress response (catalase - CAT, glutathione peroxidase - GPx, and glutathione-S-transferases - GSTs), in kidney tissues. The determination of the tested parameters was performed after exposure; organisms were exposed, and then sacrificed at two distinct periods, namely 14 and 96 h after the administration of toxicants. Exposure to chromium and arsenic induced significant modifications in the redox state of the test organisms, evidenced by significant alterations in GSTs and GPx activities. No alterations were found concerning the activity of catalase. These findings showed that the chemical mixture used as household product may exert significant toxicological outcomes in exposed animals, such as rodents, conditioning their redox homeostasis and antioxidant response.
Collapse
Affiliation(s)
- Rita Cerejeira Matos
- Department of Biology, University of Aveiro, Campus Santiago, 3810-193 Aveiro, Portugal; CICECO, University of Aveiro, Campus Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
37
|
Wu H, Min T, Li X, Li L, Lai F, Tang Y, Yang X. Physicochemical properties and antioxidant activities of acidic polysaccharides from wampee seeds. Int J Biol Macromol 2013; 59:90-5. [DOI: 10.1016/j.ijbiomac.2013.04.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/20/2013] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
|
38
|
Hayes J, Kirf D, Garvey M, Rowan N. Disinfection and toxicological assessments of pulsed UV and pulsed-plasma gas-discharge treated-water containing the waterborne protozoan enteroparasite Cryptosporidium parvum. J Microbiol Methods 2013; 94:325-37. [PMID: 23892042 DOI: 10.1016/j.mimet.2013.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
We report for the first time on the comparative use of pulsed-plasma gas-discharge (PPGD) and pulsed UV light (PUV) for the novel destruction of the waterborne enteroparasite Cryptosporidium parvum. It also describes the first cyto-, geno- and ecotoxicological assays undertaken to assess the safety of water decontaminated using PPGD and PUV. During PPGD treatments, the application of high voltage pulses (16 kV, 10 pps) to gas-injected water (N2 or O2, flow rate 2.5L/min) resulted in the formation of a plasma that generated free radicals, ultraviolet light, acoustic shock waves and electric fields that killed ca. 4 log C. parvum oocysts in 32 min exposure. Findings showed that PPGD-treated water produced significant cytotoxic properties (as determined by MTT and neutral red assays), genotoxic properties (as determined by comet and Ames assays), and ecotoxic properties (as determined by Microtox™, Thamnotox™ and Daphnotox™ assays) that are representative of different trophic levels in aquatic environment (p<0.05). Depending in part on the type of injected gas used, PPGD-treated water became either alkaline (pH ≤ 8.58, using O2) or acidic (pH ≥ 3.21, using N2) and contained varying levels of reactive free radicals such as ozone (0.8 mg/L) and/or dissociated nitric and nitrous acid that contributed to the observed disinfection and toxicity. Chemical analysis of PPGD-treated water revealed increasing levels of electrode metals that were present at ≤ 30 times the tolerated respective values for EU drinking water. PUV-treated water did not exhibit any toxicity and was shown to be far superior to that of PPGD for killing C. parvum oocysts taking only 90 s of pulsing [UV dose of 6.29 μJ/cm(2)] to produce a 4-log reduction compared to a similar reduction level achieved after 32min PPGD treatment as determined by combined in vitro CaCo-2 cell culture-qPCR.
Collapse
Affiliation(s)
- Jennifer Hayes
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Ireland
| | | | | | | |
Collapse
|
39
|
Meng Q, Richmond-Bryant J, Lu SE, Buckley B, Welsh WJ, Whitsel EA, Hanna A, Yeatts KB, Warren J, Herring AH, Xiu A. Cardiovascular outcomes and the physical and chemical properties of metal ions found in particulate matter air pollution: a QICAR study. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:558-64. [PMID: 23462649 PMCID: PMC3673192 DOI: 10.1289/ehp.1205793] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 03/04/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND This paper presents an application of quantitative ion character-activity relationships (QICAR) to estimate associations of human cardiovascular (CV) diseases (CVDs) with a set of metal ion properties commonly observed in ambient air pollutants. QICAR has previously been used to predict ecotoxicity of inorganic metal ions based on ion properties. OBJECTIVES The objective of this work was to examine potential associations of biological end points with a set of physical and chemical properties describing inorganic metal ions present in exposures using QICAR. METHODS Chemical and physical properties of 17 metal ions were obtained from peer-reviewed publications. Associations of cardiac arrhythmia, myocardial ischemia, myocardial infarction, stroke, and thrombosis with exposures to metal ions (measured as inference scores) were obtained from the Comparative Toxicogenomics Database (CTD). Robust regressions were applied to estimate the associations of CVDs with ion properties. RESULTS CVD was statistically significantly associated (Bonferroni-adjusted significance level of 0.003) with many ion properties reflecting ion size, solubility, oxidation potential, and abilities to form covalent and ionic bonds. The properties are relevant for reactive oxygen species (ROS) generation, which has been identified as a possible mechanism leading to CVDs. CONCLUSION QICAR has the potential to complement existing epidemiologic methods for estimating associations between CVDs and air pollutant exposures by providing clues about the underlying mechanisms that may explain these associations.
Collapse
Affiliation(s)
- Qingyu Meng
- School of Public Health, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Grillo CA, Morales ML, Mirífico MV, Fernández Lorenzo de Mele MA. Synergistic cytotoxic effects of ions released by zinc–aluminum bronze and the metallic salts on osteoblastic cells. J Biomed Mater Res A 2013; 101:2129-40. [DOI: 10.1002/jbm.a.34503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 10/11/2012] [Accepted: 10/17/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Claudia A. Grillo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CCT La Plata‐CONICET), Facultad de Ciencias Exactas, Departamento de Química, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina
| | - María L. Morales
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CCT La Plata‐CONICET), Facultad de Ciencias Exactas, Departamento de Química, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina
| | - María V. Mirífico
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CCT La Plata‐CONICET), Facultad de Ciencias Exactas, Departamento de Química, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina
- Facultad de Ingeniería, Áreas Departamentales Ingeniería Química y Mecánica, Universidad Nacional de La Plata, Calle 1 esq. 47, 1900 La Plata, Argentina
| | - Mónica A. Fernández Lorenzo de Mele
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CCT La Plata‐CONICET), Facultad de Ciencias Exactas, Departamento de Química, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina
- Facultad de Ingeniería, Áreas Departamentales Ingeniería Química y Mecánica, Universidad Nacional de La Plata, Calle 1 esq. 47, 1900 La Plata, Argentina
| |
Collapse
|
41
|
Spiazzi CC, Manfredini V, Barcellos da Silva FE, Flores EMM, Izaguirry AP, Vargas LM, Soares MB, Santos FW. γ-Oryzanol protects against acute cadmium-induced oxidative damage in mice testes. Food Chem Toxicol 2013; 55:526-32. [PMID: 23395783 DOI: 10.1016/j.fct.2013.01.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/16/2013] [Accepted: 01/20/2013] [Indexed: 11/26/2022]
Abstract
Cadmium is a non-essential heavy metal that is present at low levels mainly in food and water and also in cigar smoke. The present study evaluated the testicular damage caused by acute cadmium exposure and verified the protective role of γ-oryzanol (ORY). Mice were administrated with a single dose of 2.5mg/kg of CdCl2, and then treated with ORY (50mM in canola oil, 5mL/kg). Testes were removed after 24h and tested for lipid peroxidation (TBARS), protein carbonylation, DNA breakage, ascorbic acid, cadmium and non-proteic thiols contents, and for the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and δ-aminolevulic acid dehydratase (δ-ALA-D). Cadmium presented a significant alteration in all parameters, except GPx and CAT activities. Therapy reduced in a slight degree cadmium concentration in testes (around 23%). ORY restored SOD and GST activities as well as TBARS production to the control levels. Furthermore, ORY partially recovered δ-ALA-D activity inhibited by cadmium. This study provides the first evidence on the therapeutic properties of ORY in protecting against cadmium-induced testicular toxicity.
Collapse
Affiliation(s)
- Cristiano C Spiazzi
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), CEP 97500-970 Uruguaiana, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mendieta-Wejebe JE, Miliar-García Á, Correa-Basurto J, Sánchez-Rico C, Ramírez-Rosales D, Trujillo-Ferrara J, Rosales-Hernández MC. Comparison of the effect of chronic cadmium exposure on the antioxidant defense systems of kidney and brain in rat. Toxicol Mech Methods 2013; 23:329-36. [DOI: 10.3109/15376516.2012.757687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Banu L, Blagojevic V, Bohme DK. Lead(II)-Catalyzed Oxidation of Guanine in Solution Studied with Electrospray Ionization Mass Spectrometry. J Phys Chem B 2012; 116:11791-7. [DOI: 10.1021/jp302720z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Laura Banu
- Department
of Chemistry and Centre for Research in
Mass Spectrometry, York University, Toronto,
ON, Canada M3J 1P3
| | - Voislav Blagojevic
- Department
of Chemistry and Centre for Research in
Mass Spectrometry, York University, Toronto,
ON, Canada M3J 1P3
| | - Diethard K. Bohme
- Department
of Chemistry and Centre for Research in
Mass Spectrometry, York University, Toronto,
ON, Canada M3J 1P3
| |
Collapse
|
44
|
Lee JC, Son YO, Pratheeshkumar P, Shi X. Oxidative stress and metal carcinogenesis. Free Radic Biol Med 2012; 53:742-57. [PMID: 22705365 DOI: 10.1016/j.freeradbiomed.2012.06.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 01/18/2023]
Abstract
Occupational and environmental exposures to metals are closely associated with an increased risk of various cancers. Although carcinogenesis caused by metals has been intensively investigated, the exact mechanisms of action are still unclear. Accumulating evidence indicates that reactive oxygen species (ROS) generated by metals play important roles in the etiology of degenerative and chronic diseases. This review covers recent advances in (1) metal-induced generation of ROS and the related mechanisms; (2) the relationship between metal-mediated ROS generation and carcinogenesis; and (3) the signaling proteins involved in metal-induced carcinogenesis, especially intracellular reduction-oxidation-sensitive molecules.
Collapse
Affiliation(s)
- Jeong-Chae Lee
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
45
|
Lin TS, Wu CC, Wu JD, Wei CH. Oxidative DNA damage estimated by urinary 8-hydroxy-2'-deoxyguanosine and arsenic in glass production workers. Toxicol Ind Health 2011; 28:513-21. [PMID: 22033425 DOI: 10.1177/0748233711416945] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A total of 130 male glass workers, including 33 administrative workers, 18 batch house workers, 42 craftsmen, and 37 melting process workers, were recruited to investigate the potential DNA damage resulting from toxic element exposure. The occupational exposure to trace elements, including arsenic (As), cadmium (Cd), manganese (Mn), nickel (Ni), lead (Pb), and selenium (Se), was estimated by their urinary levels as internal doses. In addition, all participants filled a self-filled questionnaire indicating their individual information. The average levels of urinary As, Cd, Mn, Ni, Pb, Se, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were 282.3 ± 464.6, 3.07 ± 5.39, 3.81 ± 11.43, 81.48 ± 138.9, 18.23 ± 49.61, 165.2 ± 224.9, and 17.21 ± 26.34 μg/g creatinine, respectively. The urinary levels of 8-OHdG and toxic elements were strongly associated with the work nature of the worker, with an exception of Mn and Pb. In contrast, the levels of toxic element were not influenced by age, smoking behavior, and alcohol consumption. The urinary 8-OHdG was found significantly higher in higher internal exposure groups of As, Cd, Ni, and Se. However, the stepwise multiple regression models showed that urinary 8-OHdG was only associated with urinary As and heat stress but inversely with age.
Collapse
Affiliation(s)
- Tser-Sheng Lin
- Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan.
| | | | | | | |
Collapse
|
46
|
Al-Shami SA, Rawi CSM, Ahmad AH, Nor SAM. Genotoxicity of heavy metals to the larvae of Chironomuskiiensis Tokunaga after short-term exposure. Toxicol Ind Health 2011; 28:734-9. [DOI: 10.1177/0748233711422729] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The genotoxic effects of increasing concentrations (below lethal concentration [LC50]) of cadmium ([Cd] 0.1, 1 and 10 mg/L), copper ([Cu] 0.2, 2 and 20 mg/L) and zinc ([Zn] 0.5, 5 and 50 mg/L) on Chironomus kiiensis were evaluated using alkaline comet assay after exposure for 24 h. Both the tail moment and the olive tail moment showed significant differences between the control and different concentrations of Cd, Cu and Zn (Kruskal–Wallis, p < 0.05). The highest concentration of Cd was associated with higher DNA damage to C. kiiensis larvae compared with Cu and Zn. The potential genotoxicity of these metals to C. kiiensis was Cd > Cu > Zn.
Collapse
Affiliation(s)
- Salman A Al-Shami
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang, Malaysia
| | - Che Salmah Md Rawi
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang, Malaysia
| | - Abu Hassan Ahmad
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang, Malaysia
| | - Siti Azizah Mohd Nor
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang, Malaysia
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia (USM), Penang, Malaysia
| |
Collapse
|
47
|
Xu S, Lu C, Shao J, Li Q, Li H, Li W. DNA oxidation mediated by [Ru(bpy)2tatp]2+ upon incorporation of [Co(phen)3]3+. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2011.07.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Riger CJ, Fernandes PN, Vilela LF, Mielniczki-Pereira AA, Bonatto D, Henriques JAP, Eleutherio ECA. Evaluation of heavy metal toxicity in eukaryotes using a simple functional assay. Metallomics 2011; 3:1355-61. [PMID: 21879111 DOI: 10.1039/c1mt00086a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although carcinogenesis caused by metals has been intensively investigated, the mechanisms of action, especially at the molecular level, are still unclear. This work aimed to investigate Cd(2+), Cu(2+), Ni(2+), Cr(3+), and Zn(2+) mutagenicity and its relationship with oxidative stress. We have applied the Functional Assay for the Separation of Alleles in Yeast (FASAY) with only minor modifications to detect p53 defects caused by metals. In this method, human p53-coding gene (TP53) expressed in Saccharomyces cerevisiae activates transcription of the ADE2 reporter gene. Yeast cells, expressing p53, were exposed to increased concentrations of metals and, then, plated on media supplemented or not with adenine. Yeast colonies containing functional p53 grow independently of adenine supplementation and colonies containing nonfunctional p53 are dependent on this nutrient. Mutations in the TP53 are implicated in the pathogenesis of half of all human tumors. According to our results, Cd(2+) was found to be the most toxic metal and produced the highest oxidative damage to lipids and proteins. At low concentrations (40 μM), this metal decreased viability and completely inhibited cell growth, while higher concentrations were necessary to produce the same toxic effect by Cu(2+), Cr(3+), and Ni(2+). Zn(2+) showed no significant toxicity. Cd(2+) strongly induced damages and altered the function of p53, while Cu(2+), followed by Cr(3+), showed lower percentages of p53-mutant colonies. Our results point towards a relationship between the loss of functional p53 protein and oxidative stress, a mechanism that can be associated with tumor formation induced by heavy metals in mammalian cells. By this adaptation of FASAY developed by us it is possible to easily and rapidly detect mutations caused by metals or other stresses.
Collapse
Affiliation(s)
- Cristiano J Riger
- LIFE/Departamento de Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
Eyckmans M, Celis N, Horemans N, Blust R, De Boeck G. Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 103:112-120. [PMID: 21419094 DOI: 10.1016/j.aquatox.2011.02.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/31/2011] [Accepted: 02/12/2011] [Indexed: 05/30/2023]
Abstract
Among species, various strategies in metal handling can occur. Moreover, the same metal concentration, or even the same metal dose, does not always seem to exert the same effect in different species. Here, we have investigated differences in a copper induced oxidative stress response between rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio) and gibel carp (Carassius auratus gibelio). Fish were exposed to two sub-lethal Cu concentrations, an identical concentration of 50μg/l for all fish species and an identical toxic dose which was 10% of the concentration lethal to 50% of the fish within 96h of exposure (LC50 96h value) for each of the 3 species (20μg/l for rainbow trout, 65μg/l for carp and 150μg/l for gibel carp). Different anti-oxidative enzyme (superoxide dismutase, glutathione reductase and catalase) activities and anti-oxidant (reduced glutathione and reduced ascorbate) concentrations were determined in gill samples collected after 1h, 12h, 24h, 3 days, 1 week and 1 month of Cu exposure. Changes in the measured parameters were present in all 3 species, yet a clear differentiation between fish species could be made before and during the exposure. The ascorbate levels of gibel carp were twice as high as those in common carp or rainbow trout. In contrast, the level of glutathione in rainbow trout was more than twice of that in the two other species. Also, glutathione reductase activity of rainbow trout was higher than in the other species. In rainbow trout a decrease of reduced ascorbate and reduced glutathione was observed in the beginning of the exposure, indicating that ROS scavenging molecules were under pressure. This was followed by an increase in the activity of superoxide dismutase after 3 days of exposure. In contrast, common carp and especially gibel carp enhanced their anti-oxidant enzyme activities as quickly as in the first day of exposure. Furthermore, our research seems to confirm that some fish rely more on glutathione as a first line of defence against metal exposure, while others rely more on metallothionein in combination with anti-oxidant enzymes.
Collapse
Affiliation(s)
- Marleen Eyckmans
- Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
50
|
Lee SY, Liu S, Mitchell RM, Slagle-Webb B, Hong YS, Sheehan JM, Connor JR. HFE polymorphisms influence the response to chemotherapeutic agents via induction of p16INK4A. Int J Cancer 2011; 129:2104-14. [PMID: 21190189 DOI: 10.1002/ijc.25888] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 12/07/2010] [Indexed: 12/12/2022]
Abstract
HFE is a protein that impacts cellular iron uptake. HFE gene variants are identified as risk factors or modifiers for multiple diseases. Using HFE stably transfected human neuroblastoma cells, we found that cells carrying the C282Y HFE variant do not differentiate when exposed to retinoic acid. Therefore, we hypothesized HFE variants would impact response to therapeutic agents. Both the human neuroblastoma and glioma cells that express the C282Y HFE variant are resistant to Temodar, geldanamycin and γ-radiation. A gene array analysis revealed that p16INK4A (p16) expression was increased in association with C282Y expression. Decreasing p16 protein by siRNA resulted in increased vulnerability to all of the therapeutic agents suggesting that p16 is responsible for the resistance. Decreasing HFE expression by siRNA resulted in a 85% decrease in p16 expression in the neuroblastoma cells but not the astrocytoma cells. These data suggest a potential direct relationship between HFE and p16 that may be cell specific or mediated by different pathways in the different cell types. In conclusion, the C282Y HFE variant impacts the vulnerability of cancer cells to current treatment strategies apparently by increasing expression of p16. Although best known as a tumor suppressor, there are multiple reports that p16 is elevated in some forms of cancer. Given the frequency of the HFE gene variants, as high as 10% of the Caucasian population, these data provide compelling evidence that the C282Y HFE variant should be part of a pharmacogenetic strategy for evaluating treatment efficacy in cancer cells.
Collapse
Affiliation(s)
- Sang Y Lee
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, MS Hershey Medical Center, Hershey, PA 17033-0850, USA.
| | | | | | | | | | | | | |
Collapse
|