1
|
Yong MY, Tan KY, Tan CH. A genus-wide study on venom proteome variation and phospholipase A 2 inhibition in Asian lance-headed pit vipers (genus: Trimeresurus). Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110077. [PMID: 39579840 DOI: 10.1016/j.cbpc.2024.110077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
High molecular weight proteins are present abundantly in viperid venoms. The amino acid sequence can be highly variable, contributing to the structure and function diversity of snake venom protein. However, this variability remains poorly understood in many species. The study investigated the venom protein variability in a distinct clade of Asian pit vipers (Trimeresurus species complex) through comparative proteomics, applying gel electrophoresis (SDS-PAGE), liquid chromatography-tandem mass spectrometry (LCMS/MS), and bioinformatic approaches. The proteomes revealed a number of conserved protein families, within each are variably expressed protein paralogs that are unrelated to the snake phylogeny and geographic origin. The expression levels of two major enzymes, i.e., snake venom serine proteinase and metalloproteinase, correlate weakly with procoagulant and hemorrhagic activities, implying co-expression of other functionally versatile toxins in the venom. The phospholipase A2 (PLA2) abundance correlates strongly with its enzymatic activity, and a unique phenotype was discovered in two species expressing extremely little PLA2. The commercial mono-specific antivenom effectively neutralized the venoms' procoagulant and hemorrhagic effects but failed to inhibit the PLA2 activities. Instead, the PLA2 activities of all venoms were effectively inhibited by the small molecule inhibitor varespladib, suggesting its potential to be repurposed as a highly potent adjuvant therapeutic in snakebite envenoming.
Collapse
Affiliation(s)
- Mun Yee Yong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan; Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Venancio de Lima EO, Tasima LJ, Hatakeyama DM, Farias Rodrigues MA, Serino-Silva C, Stuginski DR, Machado da Silveira GP, Prezoto BC, Grego KF, Sant'Anna SS, Tanaka-Azevedo AM, de Morais-Zani K. Understanding the effects of Bothrops erythromelas and Bothrops leucurus venoms on human blood coagulation. Toxicon 2025; 255:108231. [PMID: 39788325 DOI: 10.1016/j.toxicon.2025.108231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/10/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Coagulation disorders are a primary symptom of envenomation caused by snakes belonging to the genus Bothrops. In the Northeast region of Brazil, the species Bothrops erythromelas and Bothrops leucurus are the main responsible for snakebite accidents. Due to the specific action of Bothrops venoms on several components of the coagulation cascade, the objective of this work was to characterize the coagulotoxic profile of B. erythromelas and B. leucurus venoms and the neutralizing potential of bothropic antivenom, considering that their venom are not used in the production of antivenom. Regarding the clotting components targeted by the venom of these species, B. leucurus samples had higher thrombin-like activity and ability to activate prothrombin, while the activation of Factor X was comparable between these two species. B.erythromelas and B. leucurus venom displayed α- and β-fibrinogenolytic activities, with the former presenting higher overall fibrinogenolytic activity. In contrast, B. erythromelas venom showed greater procoagulant activity on human plasma, assessed through the coagulation time induced by the venom samples and thromboelastometry. Bothropic antivenom inhibited the procoagulant potential of B. leucurus venom better than B. erythromelas. However, the ability of the antivenom to neutralize this activity is lower compared to that determined for the venom of B. jararaca, which is used for antivenom production. The results shown herein describe the procoagulant activity of B. leucurus and B. erythromelas venoms and highlight the differences regarding their procoagulant capacity on human plasma, contributing to a deeper understanding of the pathophysiology of the envenomation caused by these species.
Collapse
Affiliation(s)
- Eduardo Oliveira Venancio de Lima
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil
| | - Lídia Jorge Tasima
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil
| | - Daniela Miki Hatakeyama
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil
| | | | | | | | | | | | | | | | - Anita Mitico Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil
| | - Karen de Morais-Zani
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil; Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
3
|
Motta Soares MV, da Costa Galizio N, Teixeira da Rocha MM, Grego KF, Tanaka-Azevedo AM, de Morais-Zani K. Analysis of fibrinogenolytic activity of South American Bothrops and Crotalus venoms reveals widespread variation on human fibrinogen cleavage. Toxicon 2025; 255:108236. [PMID: 39793628 DOI: 10.1016/j.toxicon.2025.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Fibrinogen is a common target of SVMP and SVSP. These toxins can destructively cleave fibrinogen, leading to the depletion of its levels. Herein we comparatively describe the fibrinogenolytic activity of the venom of Bothrops and Crotalus snakes, viperids of high epidemiological importance in Brazil. Results emphasize species-specific differences in the degradation rate and the specificity of the preferentially degraded fibrinogen chains, reflecting the complexity of the coagulotoxic effects induced by envenomation.
Collapse
Affiliation(s)
- Maria Victória Motta Soares
- Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, Brazil; Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
| | - Nathália da Costa Galizio
- Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo - Instituto de Pesquisas Tecnológicas - Instituto Butantan, São Paulo, Brazil
| | | | | | - Anita Mitico Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo - Instituto de Pesquisas Tecnológicas - Instituto Butantan, São Paulo, Brazil
| | - Karen de Morais-Zani
- Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, Brazil; Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo - Instituto de Pesquisas Tecnológicas - Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
4
|
Lima EOVD, Tasima LJ, Grego KF, Tanaka-Azevedo AM. Fibrinogenolytic potential of venoms of medically important Brazilian snakes. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110019. [PMID: 39233288 DOI: 10.1016/j.cbpc.2024.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
One of the main clinical manifestations presented by victims of snake bite envenoming are coagulation disorders. Considering that fibrinogen is a key molecule for crosslinked fibrin clot formation, the objective of this work was the quantitative analysis of the fibrinogenolytic activity of snakes of medical importance in Brazil and neutralization by specific antivenom. For this, pools of three genera of medical importance (Bothrops, Crotalus and Lachesis) that are used for the production of antivenom were used, and three pools of species of the genus Bothrops that are not part of the pool for the production of antivenom. The Lachesis pool had the highest fibrinogenolytic activity, even demonstrating partial cleavage (42.9 % consumption) of the fibrinogen gamma chain. The Bothrops genus venom pools have shown subtle variations between them. The Crotalus pool, despite not showing total cleavage of any fibrinogen chain, began cleavage of fibrinogen by the beta chain. The specific antivenoms used were able to delay the cleavage of fibrinogen in all the venoms used, which could be the first step towards implementing previous in vitro tests to analyze the quality of the batches of antivenoms produced, thus potentially reducing the use of animals used in this process.
Collapse
Affiliation(s)
- Eduardo Oliveira Venancio de Lima
- Laboratory of Herpetology, Instituto Butantan, São Paulo 05503-900, SP, Brazil; Interunidades em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | - Lídia Jorge Tasima
- Laboratory of Herpetology, Instituto Butantan, São Paulo 05503-900, SP, Brazil; Interunidades em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | | | - Anita Mitico Tanaka-Azevedo
- Laboratory of Herpetology, Instituto Butantan, São Paulo 05503-900, SP, Brazil; Interunidades em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil.
| |
Collapse
|
5
|
Kempson K, Chowdhury A, Violette A, Fourmy R, Soria R, Fry BG. Age Is Just a Number: Ontogenetic Conservation in Activation of Blood Clotting Factors VII, X, and XII by Caucasus Blunt-Nosed Viper ( Macrovipera lebetina obtusa) Venoms. Toxins (Basel) 2024; 16:520. [PMID: 39728778 PMCID: PMC11728708 DOI: 10.3390/toxins16120520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
This study examined the pathophysiological effects of venoms from neonate and adult specimens of the viperid snake Macrovipera lebetina obtusa, focusing on their ability to activate various blood clotting factors in human plasma. All venoms exhibited strong procoagulant properties. In concentration-response tests, the clotting potency of the neonate venoms fell within the range of their parents' maximum clotting velocities and areas under the curve. Intriguingly, females were more potent than males within each age group, but this requires a larger sample size to confirm. Antivenom neutralization efficacy was equipotent across age groups. The venoms potently activated Factor X (FX) robustly, consistent with previous knowledge of this genus. For the first time, the ability to activate Factors VII (FVII) and XII (FXII) was identified in this genus, with FXII exhibiting particularly strong activation. The study found no significant ontogenetic variation in procoagulant venom potency on human plasma, convergent with the Daboia genus, the other large-bodied lineage within the Palearctic viperid clade. However, the activation of FXII and FVII reveals previously undocumented pathways in the procoagulant activity of these venoms, contributing to the broader understanding of venom evolution and its clinical impacts. These findings have implications for venom biodiscovery and the development of antivenoms, highlighting the complexity of clotting factor activation beyond traditional investigations that have myopically focused upon FX and prothrombin pathways, thereby underscoring the importance of exploring additional clotting factors.
Collapse
Affiliation(s)
- Katrina Kempson
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (K.K.); (A.C.)
- Biomedical Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (K.K.); (A.C.)
| | - Aude Violette
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium; (A.V.); (R.F.)
| | - Rudy Fourmy
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium; (A.V.); (R.F.)
| | | | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (K.K.); (A.C.)
| |
Collapse
|
6
|
Avella I, Schulte L, Hurka S, Damm M, Eichberg J, Schiffmann S, Henke M, Timm T, Lochnit G, Hardes K, Vilcinskas A, Lüddecke T. Proteogenomics-guided functional venomics resolves the toxin arsenal and activity of Deinagkistrodon acutus venom. Int J Biol Macromol 2024; 278:135041. [PMID: 39182889 DOI: 10.1016/j.ijbiomac.2024.135041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Snakebite primarily impacts rural communities of Africa, Asia, and Latin America. The sharp-nosed viper (Deinagkistrodon acutus) is among the snakes of highest medical importance in Asia. Despite various studies on its venom using modern venomics techniques, a comprehensive understanding of composition and function of this species' venom remains lacking. We combined proteogenomics with extensive bioactivity profiling to present the first genome-level catalogue of D. acutus venom proteins and their exochemistry. Our analysis identified an unusually simple venom containing 45 components from 20 distinct protein families. Relative toxin abundances indicate that C-type lectin and C-type lectin-related protein (CTL), snake venom metalloproteinase (svMP), snake venom serine protease (svSP), and phospholipase A2 (PLA2) constitute 90 % of the venom. Bioassays targeting key aspects of viperid envenomation showed considerable concentration-dependent cytotoxicity, particularly in kidney and lung cells, and potent protease and PLA2 activity. Factor Xa and thrombin activities were minor, and no plasmin activity was observed. Effects on haemolysis, intracellular calcium (Ca2+) release, and nitric oxide (NO) synthesis were negligible. Our analysis provides the first holistic genome-based overview of the toxin arsenal of D. acutus, predicting the molecular and functional basis of its life-threatening effects, and opens novel avenues for treating envenomation by this highly dangerous snake.
Collapse
Affiliation(s)
- Ignazio Avella
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| | - Lennart Schulte
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sabine Hurka
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Maik Damm
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Johanna Eichberg
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Susanne Schiffmann
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt am Main, Germany
| | - Marina Henke
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt am Main, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Günther Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Kornelia Hardes
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Tim Lüddecke
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
7
|
Qiao Z, Jones L, Bourke LA, Seneci L, Chowdhury A, Violette A, Fourmy R, Soria R, Aldridge M, Fry BG. Tiny but Mighty: Vipera ammodytes meridionalis (Eastern Long-Nosed Viper) Ontogenetic Venom Variations in Procoagulant Potency and the Impact on Antivenom Efficacies. Toxins (Basel) 2024; 16:396. [PMID: 39330854 PMCID: PMC11436208 DOI: 10.3390/toxins16090396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
The Eastern Long-Nosed Viper (Vipera ammodytes meridionalis) is considered one of the most venomous snakes in Europe. However, it is unknown whether ontogenetic variation in venom effects occurs in this subspecies and how this may impact antivenom efficacy. In this study, we compared the procoagulant activities of V. a. meridionalis venom on human plasma between neonate and adult venom phenotypes. We also examined the efficacy of three antivenoms-Viperfav, ViperaTAb, and Inoserp Europe-across our neonate and adult venom samples. While both neonate and adult V. a. meridionalis venoms produced procoagulant effects, the effects produced by neonate venom were more potent. Consistent with this, neonate venom was a stronger activator of blood-clotting zymogens, converting them into their active forms, with a rank order of Factor X >> Factor VII > Factor XII. Conversely, the less potent adult venom had a rank order of FXII marginally more activated than Factor VII, and both much more so than Factor X. This adds to the growing body of evidence that activation of factors besides FII (prothrombin) and FX are significant variables in reptile venom-induced coagulopathy. Although all three examined antivenoms displayed effective neutralization of both neonate and adult V. a. meridionalis venoms, they generally showed higher efficacy on adult venom than on neonate venom. The ranking of antivenom efficacy against neonate venom, from the most effective to the least effective, were Viperfav, Inoserp Europe, ViperaTAb; for adult venom, the ranking was Inoserp Europe, Viperfav, ViperaTAb. Our data reveal ontogenetic variation in V. a meridionalis, but this difference may not be of clinical concern as antivenom was effective at neutralizing both adult and neonate venom phenotypes. Regardless, our results highlight a previously undocumented ontogenetic shift, likely driven by the documented difference in prey preference observed for this species across age classes.
Collapse
Affiliation(s)
- Zichen Qiao
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lee Jones
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lachlan A. Bourke
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lorenzo Seneci
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Aude Violette
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (A.V.); (R.F.)
| | - Rudy Fourmy
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (A.V.); (R.F.)
| | - Raul Soria
- Inosan Biopharma, 28108 Alcobendas, Madrid, Spain;
| | | | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| |
Collapse
|
8
|
Coimbra FCP, Sanchez EE, Lomonte B, Gutiérrez JM, Calvete JJ, Fry BG. Blood Lines: Intraspecific and Interspecific Variations in Anticoagulant Actions of Agkistrodon Viperid Venoms. Toxins (Basel) 2024; 16:291. [PMID: 39057931 PMCID: PMC11281148 DOI: 10.3390/toxins16070291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the intraspecific and interspecific variability in the venom effects of Agkistrodon viperid snake species and subspecies (eleven venoms total) on plasma clotting times, fibrinogen levels, and fibrin clot strength. Significant delays in plasma clotting time were observed for A. conanti, A. contortrix mokasen, A. contortrix phaeogaster, A. howardgloydi, A. piscivorus leucostoma, and A. piscivorus piscivorus. Notably, the phylogenetically disjunct lineages A. conanti, A. contortrix mokasen, and A. howardgloydi exhibited the most potent anticoagulant effects, indicating the independent amplification of a basal trait. Inhibition assays with the activated clotting enzymes Factors XIa, IXa, Xa, and IIa (thrombin) revealed that FXa inhibition is another basal trait amplified independently on multiple occasions within the genus, but with A. howardgloydi, notably more potent than all others. Phospholipid degradation and zymogen destruction were identified as mechanisms underlying the variability in venom effects observed experimentally and in previous clinical reports. Thromboelastography demonstrated that the venoms did not clot fibrinogen directly but affected fibrin clot strength by damaging fibrinogen and that thrombin was subsequently only able to cleave into weak, unstable clots. The ability to activate Protein C, an endogenous anticoagulant enzyme, varied across species, with some venoms exceeding that of A. contortrix contortrix, which previously yielded the protein diagnostic agent Protac®. Phylogenetic analysis suggested that both fibrinogen degradation and Protein C activation were each amplified multiple times within the genus, albeit with negative correlation between these two modes of action. This study highlights the evolutionary, clinical, and biodiscovery implications of venom variability in the Agkistrodon species, underscoring their dynamic evolution, emphasising the need for tailored clinical approaches, and highlighting the potential for novel diagnostic and therapeutic developments inspired by the unique properties of snake venoms.
Collapse
Affiliation(s)
- Francisco C. P. Coimbra
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia;
| | - Elda E. Sanchez
- National Natural Toxins Research Center, Department of Chemistry, Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA;
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (B.L.); (J.M.G.)
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (B.L.); (J.M.G.)
| | - Juan J. Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, CSIC, 46010 Valencia, Spain;
| | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia;
| |
Collapse
|
9
|
Dobson J, Chowdhury A, Tai-A-Pin J, van der Ploeg H, Gillett A, Fry BG. The Clot Thickens: Differential Coagulotoxic and Cardiotoxic Activities of Anguimorpha Lizard Venoms. Toxins (Basel) 2024; 16:283. [PMID: 38922177 PMCID: PMC11209219 DOI: 10.3390/toxins16060283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Despite their evolutionary novelty, lizard venoms are much less studied in comparison to the intense research on snake venoms. While the venoms of helodermatid lizards have long been assumed to be for defensive purposes, there is increasing evidence of toxic activities more useful for predation than defence (such as paralytic neurotoxicity). This study aimed to ascertain the effects of Heloderma, Lanthanotus, and Varanus lizard venoms on the coagulation and cardiovascular systems. Anticoagulant toxicity was demonstrated for the Varanus species studied, with the venoms prolonging clotting times in human and bird plasma due to the destructive cleavage of fibrinogen. In contrast, thromboelastographic analyses on human and bird plasmas in this study demonstrated a procoagulant bioactivity for Heloderma venoms. A previous study on Heloderma venom using factor-depleted plasmas as a proxy model suggested a procoagulant factor was present that activated either Factor XI or Factor XII, but could not ascertain the precise target. Our activation studies using purified zymogens confirmed FXII activation. Comparisons of neonate and adult H. exasperatum, revealed the neonates to be more potent in the ability to activate FXII, being more similar to the venom of the smaller species H. suspectum than the adult H. exasperatum. This suggests potent FXII activation a basal trait in the genus, present in the small bodied last common ancestor. This also indicates an ontogenetic difference in prey preferences in the larger Heloderma species paralleing the change in venom biochemistry. In addition, as birds lack Factor XII, the ability to clot avian plasma suggested an additional procoagulant site of action, which was revealed to be the activation of Factor VII, with H. horridum being the most potent. This study also examined the effects upon the cardiovascular system, including the liberation of kinins from kininogen, which contributes to hypotension induction. This form of toxicity was previously described for Heloderma venoms, and was revealed in this study was to also be a pathophysiological effect of Lanthanotus and Varanus venoms. This suggests that this toxic activity was present in the venom of the last common ancestor of the anguimorph lizards, which is consistent with kallikrein enzymes being a shared toxin trait. This study therefore uncovered novel actions of anguimorph lizard venoms, not only contributing to the evolutionary biology body of knowledge but also revealing novel activities to mine for drug design lead compounds.
Collapse
Affiliation(s)
- James Dobson
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (J.D.); (A.C.)
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (J.D.); (A.C.)
| | | | - Harold van der Ploeg
- Working Group Adder Research Netherlands, RAVON, 6525 ED Nijmegen, The Netherlands;
| | - Amber Gillett
- FaunaVet Wildlife Consultancy, Glass House Mountains, QLD 4518, Australia;
| | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (J.D.); (A.C.)
| |
Collapse
|
10
|
Tsai TS, Tsai IH, Qiu JL, Chan YY, Chiang YW. Comparative analysis of Deinagkistrodon acutus venom from Taiwan and China utilizing chromatographic, electrophoretic, and bioinformatic approaches, along with ELISA employing a monospecific antivenom. Toxicon 2024; 241:107663. [PMID: 38423218 DOI: 10.1016/j.toxicon.2024.107663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Deinagkistrodon acutus is a medically important pitviper inhabiting mainly South China and Taiwan. The hemorrhagic effects of its envenoming are compatible to its venom, which is abundant in metalloproteases (svMPs) and C-type lectin-like proteins. In this study, we investigated geographic variations in the venom of D. acutus collected from Taiwan and four Mainland Chinese provinces: Fujian, Jiangxi, Anhui, and Hunan. The variations were assessed through high-performance liquid chromatography, non-metric multidimensional scaling analysis, gel electrophoresis, and enzyme-linked immunosorbent assay (ELISA) with a monospecific antivenom (DaMAV) generated against the Taiwanese D. acutus venom, and discussed based on venom-protein sequences in databases and literature related to D. acutus venom. Additionally, the cross-reactivity of DaMAV against Crotalus horridus and Calloselasma rhodostoma venoms was investigated. We noted differential abundances of D. acutus venom metalloproteases, C-type lectin-like proteins, and phospholipase A2, along with point mutations and selective expression of serine protease isoforms. The ELISA results revealed that the venom from Taiwan was more reactive toward Taiwanese DaMAV than the four Mainland Chinese venoms, consistent with chromatographic profile differences, whereas C. horridus venom presented moderate cross-reactivity with DaMAV. The observed immunoreactivities of these venom with DaMAV can be attributed to the high prevalence of their PIII-svMPs, which are the dominant antigens, and the conservation of PIII-svMP epitopes.
Collapse
Affiliation(s)
- Tein-Shun Tsai
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Pingtung, 912301, Taiwan.
| | - Inn-Ho Tsai
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Sec. 2, Taipei, 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan
| | - Jing-Lin Qiu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Pingtung, 912301, Taiwan
| | - Yuen-Ying Chan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Pingtung, 912301, Taiwan
| | - Yu-Wei Chiang
- Department of Medical Research, Taipei Veterans General Hospital, No. 322, Sec. 2, Shipai Rd., Taipei, 112062, Taiwan; Department of Biology and Anatomy, National Defense Medical Centre, No. 161, Sec. 6, Minquan E. Rd., Taipei, 11490, Taiwan
| |
Collapse
|
11
|
Alvitigala BY, Gooneratne LV, Dharmasena I, Premawardana N, Wimalachandra M, Weerarathna M, Arya R, Gnanathasan A. The use of rotational thromboelastometry parameters in understanding the coagulopathy following hump-nosed viper (Hypnale spp) bites: a preliminary study. Trop Dis Travel Med Vaccines 2023; 8:28. [PMID: 36588149 PMCID: PMC9806870 DOI: 10.1186/s40794-022-00186-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/28/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Hump-nosed vipers (HNV; Hypnale spp) are one of the medically important venomous snakes in Sri Lanka and South-Western regions of India. The haemostatic dysfunction due to HNV bites is poorly characterized by standard diagnostic tests performed to identify coagulopathy. We aimed to determine the usefulness of rotational thromboelastometry (ROTEM) parameters compared to 20-minute whole blood clotting test (WBCT20) and prothrombin time (PT) in understanding the coagulopathy of HNV bites. METHODS Twenty-three HNV snakebite patients in a prospective study of 127 consecutive snakebites were recruited. After recording details of the clinical presentation, PT/international normalized ratio (INR), WBCT20 and ROTEM delta were performed at presentation. RESULTS In this preliminary study, none of the patients had clinically apparent bleeding. Coagulopathy was detected by either WBCT20, INR or ROTEM in 13 HNV patients. Eleven had a coagulopathy detectable by ROTEM (either abnormal EXTEM-CT, INTEM-CT or FIBTEM-MCF) but with negative WBCT20. Of them, only two had prolonged INR values. Two patients had positive WBCT20 but with normal ROTEM and INR values. The remaining 10 patients did not show any coagulopathy either by INR, ROTEM or WBCT20. CONCLUSION In this preliminary study with small number of sample size, ROTEM parameters appeared to be more sensitive to subtle changes in coagulation compared to WBCT20. The clinical utility of detecting these changes and their usefulness in managing snakebite should be explored further in a larger study.
Collapse
Affiliation(s)
- Bhawani Yasassri Alvitigala
- grid.8065.b0000000121828067Department of Pathology, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | - Lallindra Viranjan Gooneratne
- grid.8065.b0000000121828067Department of Pathology, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | - Iresha Dharmasena
- grid.513263.0Department of Hematology, Teaching Hospital Anuradhapura, Anuradhapura, Sri Lanka
| | - Nuwan Premawardana
- grid.430357.60000 0004 0433 2651Department of Clinical Medicine, University of Rajarata, Anuradhapura, Sri Lanka
| | - Manujasri Wimalachandra
- grid.8065.b0000000121828067Department of Pathology, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | - Miyuru Weerarathna
- grid.8065.b0000000121828067Department of Pathology, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | - Roopen Arya
- grid.46699.340000 0004 0391 9020Department of Hematological Medicine, King’s College Hospital, Denmark Hill, SE5 9RS London, UK
| | - Ariaranee Gnanathasan
- grid.8065.b0000000121828067Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| |
Collapse
|
12
|
Ismail AK, Abd Hamid MNH, Ariff NA, Frederic Ng VER, Goh WC, Abdul Samat NS, Osman AMZ, Safferi RS, Mohamed@Ismail Z. Frequency, clinical characteristics and outcomes of Tropidolaemus species bite envenomations in Malaysia. PLoS Negl Trop Dis 2023; 17:e0010983. [PMID: 36598885 PMCID: PMC9812298 DOI: 10.1371/journal.pntd.0010983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
Pit vipers from the genus Tropidolaemus are identified as one of the common causes of snake bite from venomous species in Malaysia. All Tropidolaemus species bite cases referred to the Remote Envenomation Consultation Services (RECS) between 2015-2021 were included. A total of 4,718 snake-related injuries cases consulted to RECS with 310 (6.6%) involved Tropidolaemus species; of these 190 (61.3%) were T. subannulatus and 120 (38.7%) T. wagleri. All the T. subannulatus cases occurred in Sabah and Sarawak while all cases of T. wagleri occurred in Peninsular Malaysia. The majority of patients were male (74.8%) and adults between 18-59 years old (61.2%). The upper limb (56.6%) was the most frequent anatomical region involved. Most cases were non-occupationally related (75.4%). Bites from both species caused local pain (77.1%) and swelling (27.2%). Most patients complained of mild pain (48.0%). Paracetamol (40.0%) was the most common analgesic prescribed. Antivenom was not indicated in all cases. Two patients were given antivenom inappropriately before RECS consultation. Most patients (54.7%) needed hospital observation for less than 24 hours. No deaths occurred in the group studied.
Collapse
Affiliation(s)
- Ahmad Khaldun Ismail
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Nur Alissa Ariff
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vera Effa Rezar Frederic Ng
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wan Chee Goh
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Syafiqah Abdul Samat
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Ruth Sabrina Safferi
- Emergency and Trauma Department, Hospital Raja Permaisuri Bainun, Ipoh, Perak, Malaysia
| | | |
Collapse
|
13
|
Extreme Procoagulant Potency in Human Plasma of Venoms from the African Viperid Genera Atheris, Cerastes, and Proatheris and the Relative Efficacy of Antivenoms and Synthetic Enzyme-Inhibitors. Toxins (Basel) 2022; 14:toxins14120836. [PMID: 36548733 PMCID: PMC9788330 DOI: 10.3390/toxins14120836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
The African viperid snake genera Atheris, Cerastes, and Proatheris are closely related, similar in size, but occupy extremely divergent ecological niches (arboreal in tropical rainforests, fossorial in deserts, and swamp-dwelling, respectively). Their venoms have not previously been subjected to comparative analyses for their action upon the coagulation of blood, most notably with significant data deficiencies from Atheris and Proatheris. In contrast, the closely related genus Echis is well-documented as capable of producing potent procoagulant effects. In light of this, we set out to compare the coagulotoxic actions of Atheris ceratophora, A. chlorechis, A. desaixi, A. nitschei, A. squamigera, C. cerastes, C. cerastes gasperettii, C. vipera, and Proatheris superciliaris and explore potential pharmacological interventions to reestablish normal blood coagulation. All venoms displayed extremely potent procoagulant effects, over twice as fast as the most potent Echis reported to date. Although Cerastes is used in the immunising mixture of two different regionally available antivenoms (Inoserp-MENA with C. cerastes, C. cerastes gasperettii, C. vipera and Saudi Arabian polyvalent with C. cerastes), none of the other species in this study are included in the immunising mixture of any antivenom. Notably, all the Cerastes species were only neutralised by the Inoserp-MENA antivenom. C. cerastes venom was not neutralised well by the Saudi Arabian antivenom, with the low levels of recognition for any of the Cerastes venoms suggesting a strong regional variation in the venom of this species, as the C. cerastes venom tested was of African (Tunisian) origin versus Saudi locality used in that antivenom's production. The other antivenoms (Micropharm EchiTAbG, ICP EchiTAb-Plus-ICP, Inosan Inoserp Pan-Africa, Premium Serums PANAF Sub-Sahara Africa, South African Vaccine Producers Echis, South African Vaccine Producers Polyvalent) all displayed trivial-to-no ability to neutralise the procoagulant toxicity of any of the Atheris, Cerastes, or Proatheris venoms. Comparative testing of the enzyme inhibitors DMPS, marimastat, and prinomastat, revealed a very potent neutralising capacity of marimastat, with prinomastat showing lower but still significant potency at the same molar concentration, while a 5× molar concentration of DMPS had no apparent effect on procoagulant venom effects normalized by the other inhibitors. These results and methods contribute to the body of knowledge of potential clinical effects and data necessary for evidence-based advancement of clinical management strategies.
Collapse
|
14
|
Chowdhury A, Lewin MR, Carter RW, Casewell NR, Fry BG. Keel venom: Rhabdophis subminiatus (red-necked keelback) venom pathophysiologically affects diverse blood clotting pathways. Toxicon 2022; 218:19-24. [PMID: 36057394 DOI: 10.1016/j.toxicon.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Venoms are evolutionary novelties that have real-world implications due to their impact upon human health. However, relative to the abundant studies of elapid and viperid snake venoms, fewer investigations have been undertaken on those of rear-fanged snakes as they are more problematic for obtaining venom. While most rear-fanged venomous snakes are not considered to be of great medical importance, several species are capable of producing fatalities. Most notable among these are snakes from the genus Rhabdophis, the Asian "keelback" snakes. Prior work have described potent procoagulant toxicity suggesting Factor X and prothrombin activation, but did not investigate the ability to activate other clotting factors. Here we show that in addition to activating both Factor X and prothrombin (with prothrombin twice that of FX), the venom of Rhabdophis subminiatus is able to more potently activate Factor VII (ten times that of prothrombin), while also activating FXII and FIX equipotently to prothrombin, and with FXI also activated but at a much lower level. The ability to activate FVII represents a third convergent evolution of this trait. The Australian elapid clade of [Oxyuranus (taipans) + Pseudonaja (brown snakes)] was the first identified to have evolved this trait. and only recently was it shown to be independently present in another lineage (the Central American viperid species Porthidium volcanicum). In addition, the abilities to activate FXI and FXII are also convergent between R. subminiatus and P. volcanicum, but with R. subminiatus being much more potent. By testing across amphibian, avian, and mammalian plasmas we demonstrate that the venom is potently procoagulant across diverse plasma types. However, consistent with dietary preference, R. subminiatus venom was most potent upon amphibian plasma. While a Rhabdophis antivenom is produced in Japan to treat R. tigrinus envenomings, it is scarce even within Japan and is not exported. As this genus is very wide-ranging in Asia, alternate treatment options are in need of development. Hence we tested the ability of candidate, broad-spectrum enzyme inhibitors to neutralize R. subminiatus venom: marimastat was more effective than prinomastat but both marimastat and prinomastat were significantly more effective than DMPS (2,3-Dimercapto-1-propanesulfonic acid). The findings of this study shed light on the evolution of these fascinating rear-fanged snakes as well as explored their systemic effects upon blood coagulation and point to potential treatment options for the rare, but potentially lethal encounters.
Collapse
Affiliation(s)
- Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia; Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh.
| | - Matthew R Lewin
- Ophirex Inc., Corte Madera, CA, 94925, USA; California Academy of Sciences, San Francisco, CA, 94118, USA
| | | | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
15
|
Differences between Two Groups of Burmese Vipers (Viperidae: Azemiops) in the Proteomic Profiles, Immunoreactivity and Biochemical Functions of Their Venoms. Toxins (Basel) 2022; 14:toxins14080572. [PMID: 36006235 PMCID: PMC9416478 DOI: 10.3390/toxins14080572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
Two recently revised Azemiops snakes with apparent differences in their external appearances and skeletal morphologies but unclear genetic boundaries have been proposed. Some researchers have refrained from using the newly proposed taxonomy because these two “species” might be two clades corresponding to different geographical populations of Azemiops feae. To improve the understanding of the kinship of these two Burmese viper groups, more of their characteristics should be explored in depth. We performed a comparative analysis of the proteomic profiles and biochemical activities of snake venoms from these two groups (Sichuan A. feae and Zhejiang A. feae) and evaluated the immunorecognition capacity of commercial antivenoms toward them. Eight protein families were identified in venoms from these two groups, while phospholipase B was only detected in venom from Sichuan A. feae. These protein families displayed varying degrees of differences in relative abundance between venoms, and phospholipase A2 (Sichuan A. feae: 57.15%; Zhejiang A. feae: 65.94%) was the predominated component. Gloydius brevicaudus antivenom exhibited the strongest capacity to immunologically recognize these two venoms, but this was mainly limited to components with high molecular masses, some of which differed between venoms. Additionally, Zhejiang A. feae venom was more toxic than Sichuan A. feae venom, and the venoms expressed remarkable differences in enzymatic activities, probably resulting from the variation in the relative abundance of specific protein families. Our findings unveil differences between the two Burmese viper groups in terms of proteomic profiles, immunoreactivity, and the biochemical functions of their venoms. This information will facilitate the management of snakebites caused by these snakes.
Collapse
|
16
|
Jones L, Youngman NJ, Neri-Castro E, Guadarrama-Martínez A, Lewin MR, Carter R, Frank N, Fry BG. Differential Antivenom and Small-Molecule Inhibition of Novel Coagulotoxic Variations in Atropoides, Cerrophidion, Metlapilcoatlus, and Porthidium American Viperid Snake Venoms. Toxins (Basel) 2022; 14:toxins14080511. [PMID: 35893753 PMCID: PMC9332056 DOI: 10.3390/toxins14080511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Within Neotropical pit-vipers, the Mexican/Central-American clade consisting of Atropoides, Cerrophidion, Metlapilcoatlus, and Porthidium is a wide-ranging, morphologically and ecologically diverse group of snakes. Despite their prevalence, little is known of the functional aspects of their venoms. This study aimed to fill the knowledge gap regarding coagulotoxic effects and to examine the potential of different therapeutic approaches. As a general trait, the venoms were shown to be anticoagulant but were underpinned by diverse biochemical actions. Pseudo-procoagulant activity (i.e., thrombin-like), characterized by the direct cleavage of fibrinogen to form weak fibrin clots, was evident for Atropoides picadoi, Cerrophidiontzotzilorum, Metlapilcoatlus mexicanus, M. nummifer, M. occiduus, M. olmec, and Porthidium porrasi. In contrast, other venoms cleaved fibrinogen in a destructive (non-clotting) manner, with C. godmani and C. wilsoni being the most potent. In addition to actions on fibrinogen, clotting enzymes were also inhibited. FXa was only weakly inhibited by most species, but Cerrophidion godmani and C. wilsoni were extremely strong in their inhibitory action. Other clotting enzymes were more widely inhibited by diverse species spanning the full taxonomical range, but in each case, there were species that had these traits notably amplified relatively to the others. C. godmani and C. wilsoni were the most potent amongst those that inhibited the formation of the prothrombinase complex and were also amongst the most potent inhibitors of Factor XIa. While most species displayed only low levels of thrombin inhibition, Porthidium dunni potently inhibited this clotting factor. The regional polyvalent antivenom produced by Instituto Picado Clodomiro was tested and was shown to be effective against the diverse anticoagulant pathophysiological effects. In contrast to the anticoagulant activities of the other species, Porthidium volcanicum was uniquely procoagulant through the activation of Factor VII and Factor XII. This viperid species is the first snake outside of the Oxyuranus/Pseudonaja elapid snake clade to be shown to activate FVII and the first snake venom of any kind to activate FXII. Interestingly, while small-molecule metalloprotease inhibitors prinomastat and marimastat demonstrated the ability to prevent the procoagulant toxicity of P. volcanicum, neither ICP antivenom nor inhibitor DMPS showed this effect. The extreme variation among the snakes here studied underscores how venom is a dynamic trait and how this can shape clinical outcomes and influence evolving treatment strategies.
Collapse
Affiliation(s)
- Lee Jones
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia;
- Correspondence: (L.J.); (B.G.F.)
| | - Nicholas J. Youngman
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia;
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (E.N.-C.); (A.G.-M.)
| | - Alid Guadarrama-Martínez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Mexico; (E.N.-C.); (A.G.-M.)
| | | | - Rebecca Carter
- Ophirex Inc., Corte Madera, CA 94925, USA; (M.R.L.); (R.C.)
| | | | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia;
- Correspondence: (L.J.); (B.G.F.)
| |
Collapse
|
17
|
Bourke LA, Zdenek CN, Tanaka-Azevedo AM, Silveira GPM, Sant’Anna SS, Grego KF, Rodrigues CFB, Fry BG. Clinical and Evolutionary Implications of Dynamic Coagulotoxicity Divergences in Bothrops (Lancehead Pit Viper) Venoms. Toxins (Basel) 2022; 14:toxins14050297. [PMID: 35622544 PMCID: PMC9148167 DOI: 10.3390/toxins14050297] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Despite coagulotoxicity being a primary weapon for prey capture by Bothrops species (lancehead pit vipers) and coagulopathy being a major lethal clinical effect, a genus-wide comparison has not been undertaken. To fill this knowledge gap, we used thromboelastography to compare 37 venoms, from across the full range of geography, taxonomy, and ecology, for their action upon whole plasma and isolated fibrinogen. Potent procoagulant toxicity was shown to be the main venom effect of most of the species tested. However, the most basal species (B. pictus) was strongly anticoagulant; this is consistent with procoagulant toxicity being a novel trait that evolved within Bothrops subsequent to their split from anticoagulant American pit vipers. Intriguingly, two of the arboreal species studied (B. bilineatus and B. taeniatus) lacked procoagulant venom, suggesting differential evolutionary selection pressures. Notably, some terrestrial species have secondarily lost the procoagulant venom trait: the Mogi Mirim, Brazil locality of B. alternatus; San Andres, Mexico locality of B. asper; B. diporus; and the São Roque of B. jararaca. Direct action on fibrinogen was extremely variable; this is consistent with previous hypotheses regarding it being evolutionary decoupled due to procoagulant toxicity being the primary prey-capture weapon. However, human patients live long enough for fibrinogen depletion to be clinically significant. The extreme variability may be reflective of antivenom variability, with these results thereby providing a foundation for such future work of clinical relevance. Similarly, the venom diversification trends relative to ecological niche will also be useful for integration with natural history data, to reconstruct the evolutionary pressures shaping the venoms of these fascinating snakes.
Collapse
Affiliation(s)
- Lachlan Allan Bourke
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia;
- Correspondence: (L.A.B.); (B.G.F.)
| | - Christina N. Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Anita Mitico Tanaka-Azevedo
- Laboratrio de Herpetologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (A.M.T.-A.); (G.P.M.S.); (S.S.S.); (K.F.G.); (C.F.B.R.)
| | - Giovanni Perez Machado Silveira
- Laboratrio de Herpetologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (A.M.T.-A.); (G.P.M.S.); (S.S.S.); (K.F.G.); (C.F.B.R.)
| | - Sávio Stefanini Sant’Anna
- Laboratrio de Herpetologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (A.M.T.-A.); (G.P.M.S.); (S.S.S.); (K.F.G.); (C.F.B.R.)
| | - Kathleen Fernandes Grego
- Laboratrio de Herpetologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (A.M.T.-A.); (G.P.M.S.); (S.S.S.); (K.F.G.); (C.F.B.R.)
| | | | - Bryan Grieg Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia;
- Correspondence: (L.A.B.); (B.G.F.)
| |
Collapse
|
18
|
Xie B, Dashevsky D, Rokyta D, Ghezellou P, Fathinia B, Shi Q, Richardson MK, Fry BG. Dynamic genetic differentiation drives the widespread structural and functional convergent evolution of snake venom proteinaceous toxins. BMC Biol 2022; 20:4. [PMID: 34996434 PMCID: PMC8742412 DOI: 10.1186/s12915-021-01208-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The explosive radiation and diversification of the advanced snakes (superfamily Colubroidea) was associated with changes in all aspects of the shared venom system. Morphological changes included the partitioning of the mixed ancestral glands into two discrete glands devoted for production of venom or mucous respectively, as well as changes in the location, size and structural elements of the venom-delivering teeth. Evidence also exists for homology among venom gland toxins expressed across the advanced snakes. However, despite the evolutionary novelty of snake venoms, in-depth toxin molecular evolutionary history reconstructions have been mostly limited to those types present in only two front-fanged snake families, Elapidae and Viperidae. To have a broader understanding of toxins shared among extant snakes, here we first sequenced the transcriptomes of eight taxonomically diverse rear-fanged species and four key viperid species and analysed major toxin types shared across the advanced snakes. RESULTS Transcriptomes were constructed for the following families and species: Colubridae - Helicops leopardinus, Heterodon nasicus, Rhabdophis subminiatus; Homalopsidae - Homalopsis buccata; Lamprophiidae - Malpolon monspessulanus, Psammophis schokari, Psammophis subtaeniatus, Rhamphiophis oxyrhynchus; and Viperidae - Bitis atropos, Pseudocerastes urarachnoides, Tropidolaeumus subannulatus, Vipera transcaucasiana. These sequences were combined with those from available databases of other species in order to facilitate a robust reconstruction of the molecular evolutionary history of the key toxin classes present in the venom of the last common ancestor of the advanced snakes, and thus present across the full diversity of colubroid snake venoms. In addition to differential rates of evolution in toxin classes between the snake lineages, these analyses revealed multiple instances of previously unknown instances of structural and functional convergences. Structural convergences included: the evolution of new cysteines to form heteromeric complexes, such as within kunitz peptides (the beta-bungarotoxin trait evolving on at least two occasions) and within SVMP enzymes (the P-IIId trait evolving on at least three occasions); and the C-terminal tail evolving on two separate occasions within the C-type natriuretic peptides, to create structural and functional analogues of the ANP/BNP tailed condition. Also shown was that the de novo evolution of new post-translationally liberated toxin families within the natriuretic peptide gene propeptide region occurred on at least five occasions, with novel functions ranging from induction of hypotension to post-synaptic neurotoxicity. Functional convergences included the following: multiple occasions of SVMP neofunctionalised in procoagulant venoms into activators of the clotting factors prothrombin and Factor X; multiple instances in procoagulant venoms where kunitz peptides were neofunctionalised into inhibitors of the clot destroying enzyme plasmin, thereby prolonging the half-life of the clots formed by the clotting activating enzymatic toxins; and multiple occasions of kunitz peptides neofunctionalised into neurotoxins acting on presynaptic targets, including twice just within Bungarus venoms. CONCLUSIONS We found novel convergences in both structural and functional evolution of snake toxins. These results provide a detailed roadmap for future work to elucidate predator-prey evolutionary arms races, ascertain differential clinical pathologies, as well as documenting rich biodiscovery resources for lead compounds in the drug design and discovery pipeline.
Collapse
Affiliation(s)
- Bing Xie
- Institute of Biology Leiden, Leiden University, 2333BE, Leiden, The Netherlands
| | - Daniel Dashevsky
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072 Australia
- Australian National Insect Collection, Commonwealth Science and Industry Research Organization, ACT, Canberra, 2601 Australia
| | - Darin Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 24105 USA
| | - Parviz Ghezellou
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411 Iran
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Behzad Fathinia
- Department of Biology, Faculty of Science, Yasouj University, Yasouj, 75914 Iran
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, 518083 China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083 China
| | | | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072 Australia
| |
Collapse
|
19
|
Tsai TS, Wang YM, Tsai IH. Sequence determination and bioinformatic comparison of ten venom serine proteases of Trimeresurus gracilis, a Taiwanese endemic pitviper with controversial taxonomy. Toxicon 2021; 206:28-37. [PMID: 34929211 DOI: 10.1016/j.toxicon.2021.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Trimeresurus gracilis (Tgc) is endemic to Taiwan and shown to be closely related with Ovophis okinavensis by previous phylogenetic analyses, but their taxonomic status remain controversial. Here, we cloned and sequenced ten of its venom serine-proteases (designated as Tgc-vSPs). All the Tgc-vSPs conserve the catalytic triads, six appear to be kallikrein-like (KNs) and four are plasminogen-activator homologs (PAHs and PAs). They are studied under four structural categories: (1) highly similar Tgc-KN1, Tgc-KN2 and Tgc-KN3, with four predicted N-glycosylation sites; (2) Tgc-KN4, with a single N -glycosylation site; (3) Tgc-KN5 and Tgc-KN6, with two distinct N-glycosylation sites; (4) Tgc-PAH1/PAH2, TgcPA3, and Tgc-PA4, with two conserved N-glycosylation sites. Additionally, Tgc-KN1, Tgc-KN4 and Tgc-PAH1 were purified by reversed-phase HPLC and identified by peptide-mass-fingerprinting. Results of BLAST and sequence alignments reveal that Tgc-KN1∼3 and Tgc-KN6 are most like the vSPs of rattlesnakes, while the sequences of Tgc-KN4, KN5 and Tgc-PAH1/PAH2 match closely to the partial sequences of three O. okinavensis vSPs. Thus, our results reveal non-overlapping similarities of Tgc-vSPs to the O. okinavensis vSPs and vSPs of the New World pitvipers. In addition, molecular phylogenetic analyses of the plasminogen-activator like vSPs reveal separate evolution of two clusters of the enzymes with distinct functions.
Collapse
Affiliation(s)
- Tein-Shun Tsai
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ying-Ming Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Inn-Ho Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
20
|
Seneci L, Zdenek CN, Bourke LA, Cochran C, Sánchez EE, Neri-Castro E, Bénard-Valle M, Alagón A, Frank N, Fry BG. A symphony of destruction: Dynamic differential fibrinogenolytic toxicity by rattlesnake (Crotalus and Sistrurus) venoms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109034. [PMID: 33766656 PMCID: PMC8162888 DOI: 10.1016/j.cbpc.2021.109034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022]
Abstract
What factors influence the evolution of a heavily selected functional trait in a diverse clade? This study adopts rattlesnakes as a model group to investigate the evolutionary history of venom coagulotoxicity in the wider context of phylogenetics, natural history, and biology. Venom-induced clotting of human plasma and fibrinogen was determined and mapped onto the rattlesnake phylogenetic tree to reconstruct the evolution of coagulotoxicity across the group. Our results indicate that venom phenotype is often independent of phylogenetic relationships in rattlesnakes, suggesting the importance of diet and/or other environmental variables in driving venom evolution. Moreover, the striking inter- and intraspecific variability in venom activity on human blood highlights the considerable variability faced by physicians treating envenomation. This study is the most comprehensive effort to date to describe and characterize the evolutionary and biological aspects of coagulotoxins in rattlesnake venom. Further research at finer taxonomic levels is recommended to elucidate patterns of variation within species and lineages.
Collapse
Affiliation(s)
- Lorenzo Seneci
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; Institute of Biology Leiden (IBL), Leiden University, 2333 BE Leiden, the Netherlands
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lachlan A Bourke
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Chip Cochran
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Department of Chemistry, Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Melisa Bénard-Valle
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | | | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
21
|
Tsai IH, Wang YM, Lin SW, Huang KF. Structural and bioinformatic analyses of Azemiops venom serine proteases reveal close phylogeographic relationships to pitvipers from eastern China and the New World. Toxicon 2021; 198:93-101. [PMID: 33957151 DOI: 10.1016/j.toxicon.2021.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
The semi-fossil and pit-less Azemiops feae is possibly the most primitive crotalid species. Here, we have cloned and sequenced cDNAs encoding four serine proteases (vSPs) from the venom glands of Chinese A. feae. Full amino-acid sequences of the major vSP (designated as AzKNa) and three minor vSPs (designated as AzKNb, AzKNc and Az-PA) were deduced. Using Protein-BLAST search, the ten most-similar vSPs for each Azemiops vSP have been selected for multiple sequence alignment, and all the homologs are crotalid vSPs. The results suggest that the A. feae vSPs are structurally most like those of eastern-Chinese Gloydius, Viridovipera, Protobothrops and North American pitvipers, and quite different from more-specialized vSPs such as Agkistrodon venom Protein-C activators. The vSPs from Chinese A. feae and those from Vietnamese A. feae show significant sequence variations. AzKNa is acidic and contains six potential N-glycosylation sites and its surface-charge distribution differs greatly from that of AzKNb, as revealed by 3D-modeling. AzKNb and AzKNc do not contain N-glycosylation sites although most of their close homologs contain one or two. Az-PA belongs to the plasminogen-activator subtype with a conserved N20-glycosylation site. The evolution of this subtype of vSPs in Azemiops and related pitvipers has been traced by phylogenetic analysis.
Collapse
Affiliation(s)
- Inn-Ho Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Scienvaces, National Taiwan University, Taipei, Taiwan.
| | - Ying-Ming Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
22
|
Seneci L, Zdenek CN, Chowdhury A, Rodrigues CFB, Neri-Castro E, Bénard-Valle M, Alagón A, Fry BG. A Clot Twist: Extreme Variation in Coagulotoxicity Mechanisms in Mexican Neotropical Rattlesnake Venoms. Front Immunol 2021; 12:612846. [PMID: 33815366 PMCID: PMC8011430 DOI: 10.3389/fimmu.2021.612846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Rattlesnakes are a diverse clade of pit vipers (snake family Viperidae, subfamily Crotalinae) that consists of numerous medically significant species. We used validated in vitro assays measuring venom-induced clotting time and strength of any clots formed in human plasma and fibrinogen to assess the coagulotoxic activity of the four medically relevant Mexican rattlesnake species Crotalus culminatus, C. mictlantecuhtli, C. molossus, and C. tzabcan. We report the first evidence of true procoagulant activity by Neotropical rattlesnake venom in Crotalus culminatus. This species presented a strong ontogenetic coagulotoxicity dichotomy: neonates were strongly procoagulant via Factor X activation, whereas adults were pseudo-procoagulant in that they converted fibrinogen into weak, unstable fibrin clots that rapidly broke down, thereby likely contributing to net anticoagulation through fibrinogen depletion. The other species did not activate clotting factors or display an ontogenetic dichotomy, but depleted fibrinogen levels by cleaving fibrinogen either in a destructive (non-clotting) manner or via a pseudo-procoagulant mechanism. We also assessed the neutralization of these venoms by available antivenom and enzyme-inhibitors to provide knowledge for the design of evidence-based treatment strategies for envenomated patients. One of the most frequently used Mexican antivenoms (Bioclon Antivipmyn®) failed to neutralize the potent procoagulant toxic action of neonate C. culminatus venom, highlighting limitations in snakebite treatment for this species. However, the metalloprotease inhibitor Prinomastat substantially thwarted the procoagulant venom activity, while 2,3-dimercapto-1-propanesulfonic acid (DMPS) was much less effective. These results confirm that venom-induced Factor X activation (a procoagulant action) is driven by metalloproteases, while also suggesting Prinomastat as a more promising potential adjunct treatment than DMPS for this species (with the caveat that in vivo studies are necessary to confirm this potential clinical use). Conversely, the serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) inhibited the direct fibrinogen cleaving actions of C. mictlantecuhtli venom, thereby revealing that the pseudo-procoagulant action is driven by kallikrein-type serine proteases. Thus, this differential ontogenetic variation in coagulotoxicity patterns poses intriguing questions. Our results underscore the need for further research into Mexican rattlesnake venom activity, and also highlights potential limitations of current antivenom treatments.
Collapse
Affiliation(s)
- Lorenzo Seneci
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia.,Institute of Biology Leiden (IBL), Leiden University, Leiden, Netherlands
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Caroline F B Rodrigues
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia.,Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Mexico
| | - Melisa Bénard-Valle
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Mexico
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Mexico
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
23
|
Chowdhury A, Zdenek CN, Dobson JS, Bourke LA, Soria R, Fry BG. Clinical implications of differential procoagulant toxicity of the palearctic viperid genus Macrovipera, and the relative neutralization efficacy of antivenoms and enzyme inhibitors. Toxicol Lett 2021; 340:77-88. [PMID: 33412251 DOI: 10.1016/j.toxlet.2020.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Species within the viperid genus Macrovipera are some of the most dangerous snakes in the Eurasian region, injecting copious amounts of potent venom. Despite their medical importance, the pathophysiological actions of their venoms have been neglected. Particularly poorly known are the coagulotoxic effects and thus the underlying mechanisms of lethal coagulopathy. In order to fill this knowledge gap, we ascertained the effects of venom upon human plasma for Macrovipera lebetina cernovi, M. l. lebetina, M. l. obtusa, M. l. turanica, and M. schweizeri using diverse coagulation analysing protocols. All five were extremely potent in their ability to promote clotting but varied in their relative activation of Factor X, being equipotent in this study to the venom of the better studied, and lethal, species Daboia russelii. The Insoserp European viper antivenom was shown to be highly effective against all the Macrovipera venoms, but performed poorly against the D. russelii venom. Reciprocally, while Daboia antivenoms performed well against D. russelii venom, they failed against Macrovipera venom. Thus despite the two genera sharing a venom phenotype (Factor X activation) driven by the same toxin type (P-IIId snake venom metalloproteases), the surface biochemistries of the toxins differed significantly enough to impede antivenom cross- neutralization. The differences in venom biochemistry were reflected in coagulation co-factor dependence. While both genera were absolutely dependent upon calcium for the activation of Factor X, dependence upon phospholipid varied. The Macrovipera venoms had low levels of dependence upon phospholipid while the Daboia venom was three times more dependent upon phospholipid for the activation of Factor X. This suggests that the sites on the molecular surface responsible for phospholipid dependence, are the same differential sites that prevent inter-genera antivenom cross- neutralization. Due to cold-chain requirements, antivenoms may not be stocked in rural settings where the need is at the greatest. Thus we tested the efficacy of enzyme inhibitor Prinomastat as a field-deployable treatment to stabilise patients while being transported to antivenom stocks, and showed that it was extremely effective in blocking the Factor X activating pathophysiological actions. Marimastat however was less effective. These results thus not only shed light on the coagulopathic mechanisms of Macrovipera venoms, but also provide data critical for evidence-based design of snakebite management strategies.
Collapse
Affiliation(s)
- Abhinandan Chowdhury
- Toxin Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, 4072, Australia; Department of Biochemistry & Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Christina N Zdenek
- Toxin Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - James S Dobson
- Toxin Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Lachlan A Bourke
- Toxin Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Raul Soria
- Inosan Biopharma, S.A. Arbea Campus Empresarial, Edificio 2, Planta 2, Carretera Fuencarral a Alcobendas, Km 3.8, 28108, Madrid, Spain
| | - Bryan G Fry
- Toxin Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
24
|
Dashevsky D, Bénard-Valle M, Neri-Castro E, Youngman NJ, Zdenek CN, Alagón A, Portes-Junior JA, Frank N, Fry BG. Anticoagulant Micrurus venoms: Targets and neutralization. Toxicol Lett 2020; 337:91-97. [PMID: 33197555 DOI: 10.1016/j.toxlet.2020.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022]
Abstract
Snakebite is a neglected tropical disease with a massive global burden of injury and death. The best current treatments, antivenoms, are plagued by a number of logistical issues that limit supply and access in remote or poor regions. We explore the anticoagulant properties of venoms from the genus Micrurus (coral snakes), which have been largely unstudied, as well as the effectiveness of antivenom and a small-molecule phospholipase inhibitor-varespladib-at counteracting these effects. Our in vitro results suggest that these venoms likely interfere with the formation or function of the prothrombinase complex. We find that the anticoagulant potency varies widely across the genus and is especially pronounced in M. laticollaris. This variation does not appear to correspond to previously described patterns regarding the relative expression of the three-finger toxin and phospholipase A2 (PLA2) toxin families within the venoms of this genus. The coral snake antivenom Coralmyn, is largely unable to ameliorate these effects except for M. ibiboboca. Varespladib on the other hand completely abolished the anticoagulant activity of every venom. This is consistent with the growing body of results showing that varespladib may be an effective treatment for a wide range of toxicity caused by PLA2 toxins from many different snake species. Varespladib is a particularly attractive candidate to help alleviate the burden of snakebite because it is an approved drug that possesses several logistical advantages over antivenom including temperature stability and oral availability.
Collapse
Affiliation(s)
- Daniel Dashevsky
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia; Australian National Insect Collection, Commonwealth Science and Industry Research Organization, Canberra, ACT 2601 Australia
| | - Melisa Bénard-Valle
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Nicholas J Youngman
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia
| | - Christina N Zdenek
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - José A Portes-Junior
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo 05503-900, Brazil
| | | | - Bryan G Fry
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia.
| |
Collapse
|
25
|
Zdenek CN, Llinas J, Dobson J, Allen L, Dunstan N, Sousa LF, Moura da Silva AM, Fry BG. Pets in peril: The relative susceptibility of cats and dogs to procoagulant snake venoms. Comp Biochem Physiol C Toxicol Pharmacol 2020; 236:108769. [PMID: 32376497 DOI: 10.1016/j.cbpc.2020.108769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/07/2020] [Accepted: 04/18/2020] [Indexed: 11/27/2022]
Abstract
Snakebite is a common occurrence for pet cats and dogs worldwide and can be fatal. In Australia the eastern brown snake (Pseudonaja textilis) is responsible for an estimated 76% of reported snakebite cases to domestic pets nationally each year, with the primary pathology being venom-induced consumptive coagulopathy. While only 31% of dogs survive P. textilis bites without antivenom, cats are twice as likely to survive bites (66%). Even with antivenom treatment, cats have a significantly higher survival rate. The reason behind this disparity is unclear. Using a coagulation analyser (Stago STA R Max), we tested the relative procoagulant effects of P. textilis venom-as well as 10 additional procoagulant venoms found around the world-on cat and dog plasma in vitro, as well as on human plasma for comparison. All venoms acted faster upon dog plasma than cat or human, indicating that dogs would likely enter coagulopathic states sooner, and are thus more vulnerable to procoagulant snake venoms. The spontaneous clotting time (recalcified plasma with no venom added) was also substantially faster in dogs than in cats, suggesting that the naturally faster clotting blood of dogs predisposes them to being more vulnerable to procoagulant snake venoms. This is consistent with clinical records showing more rapid onset of symptoms and lethal effects in dogs than cats. Several behavioural differences between cats and dogs are also highly likely to disproportionately negatively affect prognosis in dogs. Thus, compared to cats, dogs require earlier snakebite first-aid and antivenom to prevent the onset of lethal venom effects.
Collapse
Affiliation(s)
- Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | | | - James Dobson
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Luke Allen
- Venom Supplies Pty Ltd, Stonewell Rd, Tanunda, SA 5352, Australia
| | - Nathan Dunstan
- Venom Supplies Pty Ltd, Stonewell Rd, Tanunda, SA 5352, Australia
| | - Leijiane F Sousa
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil
| | | | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
26
|
Babenko VV, Ziganshin RH, Weise C, Dyachenko I, Shaykhutdinova E, Murashev AN, Zhmak M, Starkov V, Hoang AN, Tsetlin V, Utkin Y. Novel Bradykinin-Potentiating Peptides and Three-Finger Toxins from Viper Venom: Combined NGS Venom Gland Transcriptomics and Quantitative Venom Proteomics of the Azemiops feae Viper. Biomedicines 2020; 8:biomedicines8080249. [PMID: 32731454 PMCID: PMC7460416 DOI: 10.3390/biomedicines8080249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 01/22/2023] Open
Abstract
Feae's viper Azemipos feae belongs to the Azemiopinae subfamily of the Viperidae family. The effects of Viperidae venoms are mostly coagulopathic with limited neurotoxicity manifested by phospholipases A2. From A. feae venom, we have earlier isolated azemiopsin, a novel neurotoxin inhibiting the nicotinic acetylcholine receptor. To characterize other A. feae toxins, we applied label-free quantitative proteomics, which revealed 120 unique proteins, the most abundant being serine proteinases and phospholipases A2. In total, toxins representing 14 families were identified, among which bradykinin-potentiating peptides with unique amino acid sequences possessed biological activity in vivo. The proteomic analysis revealed also basal (commonly known as non-conventional) three-finger toxins belonging to the group of those possessing neurotoxic activity. This is the first indication of the presence of three-finger neurotoxins in viper venom. In parallel, the transcriptomic analysis of venom gland performed by Illumina next-generation sequencing further revealed 206 putative venom transcripts. Together, the study unveiled the venom proteome and venom gland transciptome of A. feae, which in general resemble those of other snakes from the Viperidae family. However, new toxins not found earlier in viper venom and including three-finger toxins and unusual bradykinin-potentiating peptides were discovered.
Collapse
Affiliation(s)
- Vladislav V. Babenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia;
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (R.H.Z.); (M.Z.); (V.S.); (V.T.)
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Igor Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia; (I.D.); (E.S.); (A.N.M.)
| | - Elvira Shaykhutdinova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia; (I.D.); (E.S.); (A.N.M.)
| | - Arkady N. Murashev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia; (I.D.); (E.S.); (A.N.M.)
| | - Maxim Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (R.H.Z.); (M.Z.); (V.S.); (V.T.)
| | - Vladislav Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (R.H.Z.); (M.Z.); (V.S.); (V.T.)
| | - Anh Ngoc Hoang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam;
| | - Victor Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (R.H.Z.); (M.Z.); (V.S.); (V.T.)
| | - Yuri Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (R.H.Z.); (M.Z.); (V.S.); (V.T.)
- Correspondence: or ; Tel.: +7-495-336-6522
| |
Collapse
|
27
|
Harris RJ, Zdenek CN, Debono J, Harrich D, Fry BG. Evolutionary Interpretations of Nicotinic Acetylcholine Receptor Targeting Venom Effects by a Clade of Asian Viperidae Snakes. Neurotox Res 2020; 38:312-318. [PMID: 32394055 DOI: 10.1007/s12640-020-00211-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/29/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022]
Abstract
Ecological variability among closely related species provides an opportunity for evolutionary comparative studies. Therefore, to investigate the origin and evolution of neurotoxicity in Asian viperid snakes, we tested the venoms of Azemiops feae, Calloselasma rhodostoma, Deinagkistrodon acutus, Tropidolaeums subannulatus, and T. wagleri for their relative specificity and potency upon the amphibian, lizard, bird, rodent, and human α-1 (neuromuscular) nicotinic acetylcholine receptors. We utilised a biolayer interferometry assay to test the binding affinity of these pit viper venoms to orthosteric mimotopes of nicotinic acetylcholine receptors binding region from a diversity of potential prey types. The Tropidolaemus venoms were much more potent than the other species tested, which is consistent with the greater prey escape potential in arboreal niches. Intriguingly, the venom of C. rhodostoma showed neurotoxic binding to the α-1 mimotopes, a feature not known previously for this species. The lack of prior knowledge of neurotoxicity in this species is consistent with our results due to the bias in rodent studies and human bite reports, whilst this venom had a greater binding affinity toward amphibian and diapsid α-1 targets. The other large terrestrial species, D. acutus, did not display any meaningful levels of neurotoxicity. These results demonstrate that whilst small peptide neurotoxins are a basal trait of these snakes, it has been independently amplified on two separate occasions, once in Azemiops and again in Tropidolaemus, and with Calloselasma representing a third possible amplification of this trait. These results also point to broader sources of novel neuroactive peptides with the potential for use as lead compounds in drug design and discovery.
Collapse
Affiliation(s)
- Richard J Harris
- Venom Evolution Lab, University of Queensland, School of Biological Sciences, Brisbane, Queensland, 4072, Australia
| | - Christina N Zdenek
- Venom Evolution Lab, University of Queensland, School of Biological Sciences, Brisbane, Queensland, 4072, Australia
| | - Jordan Debono
- Venom Evolution Lab, University of Queensland, School of Biological Sciences, Brisbane, Queensland, 4072, Australia
| | - David Harrich
- QIMR Berghofer, Royal Brisbane Hospital, Brisbane, QLD, 4029, Australia
| | - Bryan G Fry
- Venom Evolution Lab, University of Queensland, School of Biological Sciences, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
28
|
Park EJ, Choi S, Kim HH, Jung YS. Novel Treatment Strategy for Patients with Venom-Induced Consumptive Coagulopathy from a Pit Viper Bite. Toxins (Basel) 2020; 12:toxins12050295. [PMID: 32380672 PMCID: PMC7290867 DOI: 10.3390/toxins12050295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022] Open
Abstract
Pit viper venom commonly causes venom-induced consumptive coagulopathy (VICC), which can be complicated by life-threatening hemorrhage. VICC has a complex pathophysiology affecting multiple steps of the coagulation pathway. Early detection of VICC is challenging because conventional blood tests such as prothrombin time (PT) and activated partial thromboplastin time (aPTT) are unreliable for early-stage monitoring of VICC progress. As the effects on the coagulation cascade may differ, even in the same species, the traditional coagulation pathways cannot fully explain the mechanisms involved in VICC or may be too slow to have any clinical utility. Antivenom should be promptly administered to neutralize the lethal toxins, although its efficacy remains controversial. Transfusion, including fresh frozen plasma, cryoprecipitate, and specific clotting factors, has also been performed in patients with bleeding. The effectiveness of viscoelastic monitoring in the treatment of VICC remains poorly understood. The development of VICC can be clarified using thromboelastography (TEG), which shows the procoagulant and anticoagulant effects of snake venom. Therefore, we believe that TEG may be able to be used to guide hemostatic resuscitation in victims of VICC. Here, we aim to discuss the advantages of TEG by comparing it with traditional coagulation tests and propose potential treatment options for VICC.
Collapse
|
29
|
Bourke LA, Youngman NJ, Zdenek CN, Op den Brouw B, Violette A, Fourmy R, Fry BG. Trimeresurus albolabris snakebite treatment implications arising from ontogenetic venom comparisons of anticoagulant function, and antivenom efficacy. Toxicol Lett 2020; 327:2-8. [PMID: 32199952 DOI: 10.1016/j.toxlet.2020.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/01/2020] [Accepted: 03/14/2020] [Indexed: 01/19/2023]
Abstract
Does the venom of Trimeresurus albolabris (white-lipped pit viper) differ between neonate and adults? This species is responsible for most snakebites within south and southeast Asia, yet it is unknown whether ontogenetic variation in venom composition occurs in this species, or how this might affect antivenom efficacy. Using a coagulation analyser robot, we examined the anticoagulant activity of T. albolabris venom from eight individuals across multiple age classes. We then compared the efficacy of Thai Red Cross Green Pit Viper Antivenom across these age classes. Venoms from all age classes were equally potent in their pseudo-procoagulant, fibrinogenolytic activity, in that fibrinogen was cleaved to form weak, unstable fibrin clots that rapidly broke down, thus resulting in a net anticoagulant state. Similarly, this coagulotoxic activity was well neutralised by antivenom across all venoms. Given that coagulotoxicity is the primary serious pathology in T. albolabris envenomations, we conclude that Thai Red Cross Green Tree Pit Viper Antivenom is a valid treatment for envenomations by this species, regardless of age or sex of the offending snake. These results are relevant for clinical treatment of envenomations by T. albolabris.
Collapse
Affiliation(s)
- Lachlan A Bourke
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nicholas J Youngman
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bianca Op den Brouw
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Aude Violette
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911, Montroeul-au-bois, Belgium
| | - Rudy Fourmy
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911, Montroeul-au-bois, Belgium
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
30
|
Grashof D, Zdenek CN, Dobson JS, Youngman NJ, Coimbra F, Benard-Valle M, Alagon A, Fry BG. A Web of Coagulotoxicity: Failure of Antivenom to Neutralize the Destructive (Non-Clotting) Fibrinogenolytic Activity of Loxosceles and Sicarius Spider Venoms. Toxins (Basel) 2020; 12:toxins12020091. [PMID: 32019058 PMCID: PMC7076800 DOI: 10.3390/toxins12020091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Envenomations are complex medical emergencies that can have a range of symptoms and sequelae. The only specific, scientifically-validated treatment for envenomation is antivenom administration, which is designed to alleviate venom effects. A paucity of efficacy testing exists for numerous antivenoms worldwide, and understanding venom effects and venom potency can help identify antivenom improvement options. Some spider venoms can produce debilitating injuries or even death, yet have been largely neglected in venom and antivenom studies because of the low venom yields. Coagulation disturbances have been particularly under studied due to difficulties in working with blood and the coagulation cascade. These circumstances have resulted in suboptimal spider bite treatment for medically significant spider genera such as Loxosceles and Sicarius. This study identifies and quantifies the anticoagulant effects produced by venoms of three Loxoscles species (L. reclusa, L. boneti, and L. laeta) and that of Sicarius terrosus. We showed that the venoms of all studied species are able to cleave the fibrinogen Aα-chain with varying degrees of potency, with L. reclusa and S. terrosus venom cleaving the Aα-chain most rapidly. Thromboelastography analysis revealed that only L. reclusa venom is able to reduce clot strength, thereby presumably causing anticoagulant effects in the patient. Using the same thromboelastography assays, antivenom efficacy tests revealed that the commonly used Loxoscles-specific SMase D recombinant based antivenom failed to neutralize the anticoagulant effects produced by Loxosceles venom. This study demonstrates the fibrinogenolytic activity of Loxosceles and Sicarius venom and the neutralization failure of Loxosceles antivenom, thus providing impetus for antivenom improvement.
Collapse
Affiliation(s)
- Dwin Grashof
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - Christina N. Zdenek
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - James S. Dobson
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - Nicholas J. Youngman
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - Francisco Coimbra
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - Melisa Benard-Valle
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico; (M.B.-V.); (A.A.)
| | - Alejandro Alagon
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico; (M.B.-V.); (A.A.)
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
- Correspondence:
| |
Collapse
|
31
|
Debono J, Dashevsky D, Nouwens A, Fry BG. The sweet side of venom: Glycosylated prothrombin activating metalloproteases from Dispholidus typus (boomslang) and Thelotornis mossambicanus (twig snake). Comp Biochem Physiol C Toxicol Pharmacol 2020; 227:108625. [PMID: 31634575 DOI: 10.1016/j.cbpc.2019.108625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
Dispholidus typus and Thelotornis mossambicanus are closely related rear-fanged colubrid snakes that both possess strongly procoagulant venoms. However, despite similarities in overall venom biochemistry and resulting clinical manifestations, the underlying venom composition differs significantly between the two species. As a result, the only available antivenom-which is a monovalent antivenom for D. typus-has minimal cross reactivity with T. mossambicanus and is not a clinically viable option. It was hypothesised that this lack of cross reactivity is due to the additional large metalloprotease protein within T. mossambicanus venom, which may also be responsible for faster coagulation times. In this study, we found that T. mossambicanus venom is a more powerful activator of prothrombin than that of D. typus and that the SVMP transcripts from T. mossambicanus form a clade with those from D. typus. The sequences from D. typus and T. mossambicanus were highly similar in length, with the calculated molecular weights of the T. mossambicanus transcripts being significantly less than the molecular weights of some isoforms on the 1D SDS-PAGE gels. Analyses utilising degylcosylating enzymes revealed that T. mossambicanus SVMPs are glycosylated during post-translational modification, but that this does not lead to the different molecular weight bands observed in 1D SDS-PAGE gels. However, differences in glycosylation patterns may still explain some of the difference between the enzymatic activities and neutralization by antivenom that have been observed in these venoms. The results of this study provide new information regarding the treatment options for patients envenomated by T. mossambicanus as well as the evolution of these dangerous snakes.
Collapse
Affiliation(s)
- Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Daniel Dashevsky
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
32
|
Comparison of thromboelastography versus conventional coagulation tests in simulated Crotalus atrox envenomation using human blood. Toxicon 2019; 175:19-27. [PMID: 31833475 DOI: 10.1016/j.toxicon.2019.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Pit viper bites are a source of significant morbidity and mortality. Pit viper bites can cause venom-induced consumptive coagulopathy (VICC), typically evaluated with laboratory-based conventional coagulation tests (CCTs). However, CCTs require a laboratory and average 1 h to conduct. Thromboelastography (TEG) provides real-time, point-of-care tests of coagulation that are fast and require no separate laboratory facilities, which could be advantageous in both hospital and austere settings. However, the relative efficacy of TEG versus CCTs was unclear, particularly at low venom concentrations. Therefore, the objectives of this study were to test human blood with various concentrations of pit viper venom using CCTs and TEG to determine dose-dependent changes, lowest observed effect concentration (LOEC), and sensitivity to detecting samples out of normal diagnostic range. METHODS Blood samples from 20 volunteers were mixed with varying concentrations of western diamond back rattlesnake (Crotalus atrox) venom based on the mouse LD50IV (none, 0.5%, 1%, 2%, 33%, 66%, and 100% LD50IV). Samples were split and assessed with both CCTs including prothrombin time (PT), international normalized ratio (INR), partial thromboplastin time (PTT), fibrinogen, and D-dimer, along with TEG measures of reaction time (R), kinetic time (K), rate of clot formation (α-angle), and clot strength (MA). Data were analyzed as dose-dependent concentration-based changes in raw values and in percent of samples exceeding diagnostic thresholds using ANOVA and nonparametric statistics at the p < .05 threshold. RESULTS All evaluations showed significant concentration-dependent changes, and 100% of samples exceeded diagnostic thresholds at 33%LD50IV and above, save D-dimer. At 0.5%LD50IV, R, K, α-angle, PT, and INR were significantly different from controls, and at 1%LD50IV, mean values exceeded diagnostic thresholds for R, K, α-angle, MA, PT, and INR, but not for PTT, D-dimer, or fibrinogen. At 2%LD50IV, 100% of samples were out of normal range for K, α-angle, and PT. CONCLUSION: TEG is effective in coagulopathy evaluations of in vitro simulated pit viper envenomation. At low venom concentrations, TEG performed as well or better than the majority of CCTs. These findings provide empirical evidence supporting the use of TEG to rapidly and accurately evaluate VICC.
Collapse
|
33
|
Debono J, Bos MHA, Do MS, Fry BG. Clinical implications of coagulotoxic variations in Mamushi (Viperidae: Gloydius) snake venoms. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108567. [PMID: 31306806 DOI: 10.1016/j.cbpc.2019.108567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Snake bite is currently one of the most neglected tropical diseases affecting much of the developing world. Asian pit vipers are responsible for a considerable amount of envenomations annually and bites can cause a multitude of clinical complications resulting from coagulopathic and neuropathic effects. While intense research has been undertaken for some species of Asian pit viper, functional coagulopathic effects have been neglected for others. We investigated their effects upon the human clotting cascade using venoms of four species of Gloydius and Ovophis okinavensis, a species closely to Gloydius. All species of included within this investigation displayed varying fibrinogenolytic effects, resulting in a net anticoagulant outcome. Gloydius saxatilis and Gloydius ussuriensis displayed the most variable effects from differing localities, sampled from Russia and Korea. As this Gloydius investigation includes some geographical variation, notable results indicate key variations of these species that point to possible limitations in antivenom cross-reactivities, which may have implications for the clinical care of victims envenomed by these snakes.
Collapse
Affiliation(s)
- Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Mettine H A Bos
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Min Seock Do
- Animal Ecology Lab, Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
34
|
Debono J, Bos MHA, Frank N, Fry B. Clinical implications of differential antivenom efficacy in neutralising coagulotoxicity produced by venoms from species within the arboreal viperid snake genus Trimeresurus. Toxicol Lett 2019; 316:35-48. [PMID: 31509773 DOI: 10.1016/j.toxlet.2019.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
Abstract
Snake envenomation globally is attributed to an ever-increasing human population encroaching into snake territories. Responsible for many bites in Asia is the widespread genus Trimeresurus. While bites lead to haemorrhage, only a few species have had their venoms examined in detail. We found that Trimeresurus venom causes haemorrhaging by cleaving fibrinogen in a pseudo-procoagulation manner to produce weak, unstable, short-lived fibrin clots ultimately resulting in an overall anticoagulant effect due to fibrinogen depletion. The monovalent antivenom 'Thai Red Cross Green Pit Viper antivenin', varied in efficacy ranging from excellent neutralisation of T. albolabris venom through to T. gumprechti and T. mcgregori being poorly neutralised and T. hageni being unrecognised by the antivenom. While the results showing excellent neutralisation of some non-T. albolabris venoms (such as T. flavomaculaturs, T. fucatus, and T. macrops) needs to be confirmed with in vivo tests, conversely the antivenom failure T. hageni, and the very poor results against T. gumprechti and T. mcgregori, despite being conducted in the ideal scenario of preincubation of antivenom:venom, indicates that the likelihood of clinically relevant cross-reactivity for these species is low (T. gumprechti and T. mcgregori) to non-existent (T. hageni). These same latter three species were also not inhibited by the serine protease inhibitor AEBSF, suggesting that the toxins leading to a coagulotoxic effect in these species are non-serine proteases while in contrast T. albolabris coagulotoxicity was completely impeded by AEBSF, and thus driven by kallikrein-type serine proteases. There was a conspicuous lack of phylogenetic pattern in venom variation, with the most potent venoms (T. albolabris and T. hageni) being distant to each other on the organismal tree, and with the three most divergent and poorly neutralised venoms (T. gumprechti, T. hageni, and T. mcgregori) were also not each others closest relatives. This reinforces the paradigm that the fundamental dynamic evolution of venom results in organismal phylogeny being a poor predictor of venom potency or antivenom efficacy. This study provides a robust investigation on the differential venom effects from a wide range of Trimeresurus species on coagulation, highlighting differential fibrinogenolytic effects, while also investigating the relative antivenom neutralisation capabilities of the widely available Thai Red Cross Green Pit Viper antivenom. These results therefore have immediate, real-world implications for patients envenomed by Trimeresurus species.
Collapse
Affiliation(s)
- Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mettine H A Bos
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | | | - Bryan Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
35
|
Venomous Landmines: Clinical Implications of Extreme Coagulotoxic Diversification and Differential Neutralization by Antivenom of Venoms within the Viperid Snake Genus Bitis. Toxins (Basel) 2019; 11:toxins11070422. [PMID: 31331004 PMCID: PMC6669450 DOI: 10.3390/toxins11070422] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/29/2022] Open
Abstract
The genus Bitis comprises 17 snake species that inhabit Africa and the Arabian Peninsula. They are responsible for a significant proportion of snakebites in the region. The venoms of the two independent lineages of giant Bitis (B. arietans and again in the common ancestor of the clade consisting of B. gabonica, B. nasicornis, B. parviocula and B. rhinoceros) induce an array of debilitating effects including anticoagulation, hemorrhagic shock and cytotoxicity, whilst the dwarf species B. atropos is known to have strong neurotoxic effects. However, the venom effects of the other species within the genus have not been explored in detail. A series of coagulation assays were implemented to assess the coagulotoxic venom effects of fourteen species within the genus. This study identified procoagulant venom as the ancestral condition, retained only by the basal dwarf species B. worthingtoni, suggesting anticoagulant venom is a derived trait within the Bitis genus and has been secondarily amplified on at least four occasions. A wide range of anticoagulant mechanisms were identified, such as coagulant and destructive activities upon fibrinogen in both giant and dwarf Bitis and the action of inhibiting the prothrombinase complex, which is present in a clade of dwarf Bitis. Antivenom studies revealed that while the procoagulant effects of B. worthingtoni were poorly neutralized, and thus a cause for concern, the differential mechanisms of anticoagulation in other species were all well neutralized. Thus, this study concludes there is a wide range of coagulotoxic mechanisms which have evolved within the Bitis genus and that clinical management strategies are limited for the procoagulant effects of B. worthingtoni, but that anticoagulant effects of other species are readily treated by the South African polyvalent antivenom. These results therefore have direct, real-work implications for the treatment of envenomed patients.
Collapse
|
36
|
LFB: A Novel Antimicrobial Brevinin-Like Peptide from the Skin Secretion of the Fujian Large Headed Frog, Limnonectes fujianensi. Biomolecules 2019; 9:biom9060242. [PMID: 31234333 PMCID: PMC6627297 DOI: 10.3390/biom9060242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022] Open
Abstract
Amphibians are a natural source of abundant antimicrobial peptides and thus have been widely investigated for isolation of such biomolecules. Many new antimicrobial peptide families have been discovered from amphibians. In this study, a novel antimicrobial peptide named Limnonectes fujianensis Brevinvin (LFB) has been identified in the skin secretion from the Fujian large headed frog, Limnonectes fujianensis. The cDNA sequence was cloned from a skin secretion library and the predicted mature peptide was identified through MS/MS fragmentation sequencing of reverse phase HPLC fractions on the same sample. LFB was predicted to be an amphipathic, hydrophobic, alpha helical, and beta turn peptide that inserts into a lipid bilayer in order to kill the cells. In antimicrobial assays, a synthetic replicate of this novel antimicrobial peptide demonstrated significant activity against the Gram-positive bacterium Staphylococcus aureus, the Gram-negative bacterium Escherichia coli and the yeast, Candida albicans. This novel peptide was highly potent (MIC 4.88 uM) against Gram-negative bacterium, and also has the ability to inhibit the growth of human cancer cell lines with IC50 values ranging from 18.9 μM down to 2.0 μM. These findings help to enrich our understanding of Brevinin-like peptides. Moreover, the data presented here validate frog secretion as a source of potential novel antimicrobial peptides, that also exhibit anti-tumor properties, that could be useful for the treatment of cancer.
Collapse
|