1
|
KHasti H, Emadi L, Azizi S, Mohammadi E, Tavakkoli H. Effects of Thermal Manipulation and Serotonin Modulation on Brain HSP70 and HSP90 Gene Expression in Late Embryogenesis of Broilers. Vet Med Sci 2025; 11:e70195. [PMID: 40172036 PMCID: PMC11962759 DOI: 10.1002/vms3.70195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/27/2024] [Accepted: 12/30/2024] [Indexed: 04/04/2025] Open
Abstract
INTRODUCTION Broiler chickens are particularly vulnerable to elevated temperatures compared to mammals because they have feathers instead of sweat glands, undergo rapid growth and are intensively bred in commercial systems. Serotonin, as neurotransmitter, is essential for the development of the embryonic brain and neural functions, helping the body adapt to difficult environments such as heat stress (HS) that broiler chickens are susceptible to by regulating physiological and metabolic processes. Heat shock proteins, which are produced in response to different types of stress, protect cells from damage. This research seeks to investigate the effect of HS on the cellular stress response in embryonic brain tissues, with a particular emphasis on the role of serotonin. METHODS A total of 120 fertilized eggs were randomly divided into control and serotonin (20 µg/egg) groups. Before incubation, serotonin solution or normal saline (0.9% NaCl) was injected into the albumen. On the 13th day of the experiment, subjects were divided into groups exposed to either high or normal temperature conditions. The HS groups were initially exposed to 39.5°C for 2 h, with the exposure duration increasing by 2 h each day until the 17th day of incubation, culminating in 10 h of HS on the final day. On the 18th day, brain samples were collected for histopathological examination and mRNA expression analysis of HSP70 and HSP90. RESULTS HS significantly reduced the gene expression of HSP70 and HSP90 in embryonic brain tissue. However, the presence of serotonin under stress conditions significantly increased the expression of these heat shock proteins compared to the HS group alone. CONCLUSION This study is the first to report decreased gene expression of brain HSP70 and HSP90 in Ross broiler embryos under HS, with serotonin serving as an anti-stress agent by promoting HSP gene expression. Further research is necessary to explore the effects of serotonin on heat tolerance and chick performance post-hatching.
Collapse
Affiliation(s)
- Hamed KHasti
- Department of Basic Sciences, Faculty of Veterinary MedicineShahid Bahonar University of KermanKermanIran
| | - Ladan Emadi
- Department of Basic Sciences, Faculty of Veterinary MedicineShahid Bahonar University of KermanKermanIran
- Department of Basic Sciences, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Shahrzad Azizi
- Department of Pathobiology, Faculty of Veterinary MedicineShahid Bahonar University of KermanKermanIran
| | - Elham Mohammadi
- Department of Pathobiology, Faculty of Veterinary MedicineShahid Bahonar University of KermanKermanIran
| | - Hadi Tavakkoli
- Department of Clinical Sciences, Faculty of Veterinary MedicineShahid Bahonar University of KermanKermanIran
| |
Collapse
|
2
|
Singh MK, Han S, Ju S, Ranbhise JS, Ha J, Yeo SG, Kim SS, Kang I. Hsp70: A Multifunctional Chaperone in Maintaining Proteostasis and Its Implications in Human Disease. Cells 2025; 14:509. [PMID: 40214463 PMCID: PMC11989206 DOI: 10.3390/cells14070509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/15/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Hsp70, a 70 kDa molecular chaperone, plays a crucial role in maintaining protein homeostasis. It interacts with the DnaJ family of co-chaperones to modulate the functions of client proteins involved in various cellular processes, including transmembrane transport, extracellular vesicle trafficking, complex formation, and proteasomal degradation. Its presence in multiple cellular organelles enables it to mediate stress responses, apoptosis, and inflammation, highlighting its significance in disease progression. Initially recognized for its essential roles in protein folding, disaggregation, and degradation, later studies have demonstrated its involvement in several human diseases. Notably, Hsp70 is upregulated in multiple cancers, where it promotes tumor proliferation and serves as a tumor immunogen. Additionally, epichaperome networks stabilize protein-protein interactions in large and long-lived assemblies, contributing to both cancer progression and neurodegeneration. However, extracellular Hsp70 (eHsp70) in the tumor microenvironment can activate immune cells, such as natural killer (NK) cells, suggesting its potential in immunotherapeutic interventions, including CAR T-cell therapy. Given its multifaceted roles in cellular physiology and pathology, Hsp70 holds immense potential as both a biomarker and a therapeutic target across multiple human diseases. This review highlights the structural and functional importance of Hsp70, explores its role in disease pathogenesis, and discusses its potential in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jyotsna S. Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Sevillano F, Blanch M, Pastor JJ, Ibáñez MA, Menoyo D. Effects of Olive Pomace and Spice Extracts on Performance and Antioxidant Function in Broiler Chickens. Animals (Basel) 2025; 15:808. [PMID: 40150337 PMCID: PMC11939207 DOI: 10.3390/ani15060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
This research aimed to evaluate the effects of an olive pomace extract (OE) and a fat-encapsulated extract composed of a blend of oleoresins from Capsicum sp., black pepper, and ginger (SPICY) on broiler chicken performance and antioxidant function. In total, 640 1-day-old male chicks were randomly assigned to five experimental diets (eight replicates/treatment, 16 birds/replicate). Diets included a basal diet with no added vitamin E (NC), NC plus 100 ppm of vitamin E (PC), NC plus 1250 ppm of OE, NC plus 250 ppm of (SPICY), and NC plus 1250 ppm OE plus 250 ppm of SPICY (SPIOE). Phytogenic additives were supplied by Lucta S.A., Spain. Compared to the NC, the PC significantly (p < 0.05) increased ADG from 8 to 14 days of age, with both OE and SPICY showing intermediate values between both controls. At the end of this trial, at 35 days of age, a significant (p < 0.05) increase in plasma GPx activity was observed in PC-fed birds compared to the NC, with no effects of malonyl dialdehyde (MDA) and total antioxidant capacity. Birds fed the OE and SPICY displayed intermediate values of GPx activity compared to both controls. The expression of heat shock protein 70 (HSP70) and glutathione S-Transferase Alpha 4 (GSTA4) was significantly lower (p < 0.05) in the jejunal mucosa of birds fed the OE compared to the NC. Moreover, the expression of HSP70 was significantly lower (p < 0.05) in birds fed the OE compared to SPICY but was not significantly different compared to the blend of both extracts (SPIOE). In conclusion, OE and SPICY were useful in maintaining growth performance in no vit E-supplemented diets, particularly in the case of OE mediated by its antioxidant action through HSP70.
Collapse
Affiliation(s)
- Fernando Sevillano
- Departamento de Producción Agraria, ETS Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Marta Blanch
- Innovation Division, Lucta S. A., UAB Research Park, Edifici Eureka, 08193 Bellaterra, Spain; (M.B.); (J.J.P.)
| | - Jose J. Pastor
- Innovation Division, Lucta S. A., UAB Research Park, Edifici Eureka, 08193 Bellaterra, Spain; (M.B.); (J.J.P.)
| | - Miguel Angel Ibáñez
- Departamento de Economía Agraria, Estadística y Gestión de Empresas, ETS Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - David Menoyo
- Departamento de Producción Agraria, ETS Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| |
Collapse
|
4
|
Guille AG, Purnell S, Lohery S, Ciocan C. CLAMity: Mixtures of agricultural pesticides as multiple stressors in a bivalve species. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136692. [PMID: 39616845 DOI: 10.1016/j.jhazmat.2024.136692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/11/2024] [Accepted: 11/25/2024] [Indexed: 01/28/2025]
Abstract
Pesticides play a vital role in ensuring global food security amid a growing global population; however, their movement away from application sites can pose significant risks to the health of non-target species. Pollution of freshwater is a key contributor to the high extinction rates of freshwater species, which often face exposure to a complex "cocktail" of pollutants simultaneously. A better understanding of pesticide interactions will enable more targeted policies and land management practices to mitigate environmental damage while ensuring food security. In this study, Corbicula fluminea (Asian clam) were exposed to binary pesticide mixtures commonly found in two rivers in the South of England. The exposures involved individual pesticides and mixtures at a concentration of 0.1μg/L per pesticide. Selected molecular markers were targeted and proved to be impacted by the timing and the pesticide mixture; an Integrated Biomarker Response (V2) value was also calculated. Our results show that both seasonality and the chemicals characteristics of the pesticides may significantly modulate their toxicity, both individually and in a mixture. When put into the context of catchment management this data combined with pesticide monitoring could improve estimating ecological risk. To the authors' knowledge, this is the first study to assess the molecular responses of these mixtures in bivalve molluscs using the IBRv2 value following exposure to combined pesticides.
Collapse
Affiliation(s)
- Alice Graihagh Guille
- Environment and Public Health Research and Enterprise Group, School of Applied Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4GJ, United Kingdom.
| | - Sarah Purnell
- Environment and Public Health Research and Enterprise Group, School of Applied Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| | - Simon Lohery
- South East Water Ltd., Rocfort Road, Snodland, Kent ME6 5AH, United Kingdom
| | - Corina Ciocan
- Environment and Public Health Research and Enterprise Group, School of Applied Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
5
|
Meichtry LB, Sotelo MB, Musachio EAS, Janner DE, Dahleh MMM, Fernandes EJ, Bortolotto VC, Guerra GP, Prigol M. Early exposure to trans fat causes cognitive impairment by modulating the expression of proteins associated with oxidative stress and synaptic plasticity in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109858. [PMID: 38369039 DOI: 10.1016/j.cbpc.2024.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/21/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Evidence has shown that consuming trans fatty acids (TFA) during development leads to their incorporation into the nervous tissue, resulting in neurological changes in flies. In this study, Drosophila melanogaster was exposed to different concentrations of hydrogenated vegetable fat (HVF) during development: substitute hydrogenated vegetable fat (SHVF), HVF 10 %, and HVF 20 %. The objective was to evaluate the effects of early trans fat exposure on cognition and associated pathways in flies. The results showed that early TFA exposure provoked a cerebral redox imbalance, as confirmed by increased reactive species (HVF 10 and 20 %) and lipid peroxidation (SHVF, HVF 10, and 20 %), reduced nuclear factor erythroid 2-related factor 2 immunoreactivity (HVF 10 and 20 %), and increased heat shock protein 70 (HVF 20 %), which was possibly responsible for decreasing superoxide dismutase (SHVF, HVF 10, and 20 %) and catalase (HVF 20 %) activities. Furthermore, the presence of TFA in nervous tissue impaired learning (HVF 10 and 20 %) and memory at 6 and 24 h (SHVF, HVF 10, and 20 %). These cognitive impairments may be linked to reduced Shank levels (HVF 20 %) and increased acetylcholinesterase activity (SHVF, HVF 10 and 20 %) observed. Our findings demonstrate that early exposure to trans fat leads to cerebral redox imbalance, altering proteins associated with stress, synaptic plasticity, and the cholinergic system, consequently leading to cognitive impairment in flies.
Collapse
Affiliation(s)
- Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Magna Barrientos Sotelo
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, RS, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil.
| |
Collapse
|
6
|
Yu M, Jiang C, Liang J, Zhang H, Teng X, Kang L. HSP27-HSP40-HSP70-HSP90 pathway participated in molecular mechanism of selenium alleviating lead-caused oxidative damage and proteotoxicity in chicken Bursa of Fabricius. Anim Biotechnol 2023; 34:4403-4414. [PMID: 36542527 DOI: 10.1080/10495398.2022.2155175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lead (Pb), a toxic environmental pollutant, is hazardous to the health of humans and birds. Bursa of Fabricius (BF) is a unique organ of birds. Toxic substances can attack BF and induce proteotoxicity. Increased heat shock proteins (HSPs) can induce oxidative damage. Selenium (Se) can alleviate harmful substance-caused oxidative damage. This study aimed to investigate whether Pb can cause oxidative damage and proteotoxicity, as well as Se reverse Pb-caused chicken BF toxicity. A model of chickens treated with Se and Pb alone and in combination was established. BFs were collected on days 30, 60, and 90. H&E and qRT-PCR were performed to observe the microstructure and to detect HSP27, HSP40, HSP60, HSP70, and HSP90 mRNA levels, respectively, in BFs. Multivariate correlation analysis and principal component analysis were conducted to explore the correlation among the five HSPs. In our results, Pb caused BF damage and up-regulated the five HSPs at three time points, causing oxidative damage and proteotoxicity via HSP27-HSP40-HSP70-HSP90 pathway. Furthermore, Pb caused time-dependent stress on HSP27, HSP40, HSP60, and HSP70. In addition, Se relieved Pb-caused damage and up-regulation of HSPs. Taken together, we concluded that Se alleviated Pb-caused oxidative injury and proteotoxicity in chicken BFs via the HSP27-HSP40-HSP70-HSP90 pathway.
Collapse
Affiliation(s)
- Meijin Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Chunyu Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiatian Liang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lu Kang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
7
|
Dey Bhowmik A, Das T, Chattopadhyay A. Chronic exposure to environmentally relevant concentration of fluoride impairs osteoblast's collagen synthesis and matrix mineralization: Involvement of epigenetic regulation in skeletal fluorosis. ENVIRONMENTAL RESEARCH 2023; 236:116845. [PMID: 37558119 DOI: 10.1016/j.envres.2023.116845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Globally, 200 million people are suffering from toxic manifestations of Fluoride(F), dental and skeletal fluorosis; unfortunately, there is no treatment. To unravel the pathogenesis of skeletal fluorosis, we established fluorosis mice by treating environmentally relevant concentration of F (15 ppm NaF) through drinking water for 4 months. As in skeletal fluorosis, locomotor disability, crippling deformities occur and thus, our hypothesis was F might adversely affects collagen which gives the bone tensile strength. This work inevitably had to be carried out on osteoblast cells, responsible for synthesis, deposition, and mineralization of bone matrix. Isolated osteoblast cells were confirmed by ALP activity and mineralized nodules formation. Expression of collagen Col1a1, Col1a2, COL1A1 was significantly reduced in treated mice. Further, a study revealed the involvement of epigenetic regulation by promoter hypermethylation of Col1a1; expressional alterations of transcription factors, calcium channels and other genes e.g., Cbfa-1, Tgf-β1, Bmp1, Sp1, Sp7, Nf-Kb p65, Bmp-2, Bglap, Gprc6a and Cav1.2 are associated with impairment of collagen synthesis, deposition and decreased mineralization thus, enfeebling bone health. This study indicates the possible association of epigenetic regulation in skeletal fluorosis. However, no association was found between polymorphisms in the Col1a1 (RsaI, HindIII) and Col1a2 (RsaI, HindIII) genes with fluorosis in mice.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Tanmoy Das
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | | |
Collapse
|
8
|
Yin P, Saito T, Fjelldal PG, Björnsson BT, Remø SC, Hansen TJ, Sharma S, Olsen RE, Hamre K. Seasonal Changes in Photoperiod: Effects on Growth and Redox Signaling Patterns in Atlantic Salmon Postsmolts. Antioxidants (Basel) 2023; 12:1546. [PMID: 37627541 PMCID: PMC10451801 DOI: 10.3390/antiox12081546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Farmed Atlantic salmon reared under natural seasonal changes in sea-cages had an elevated consumption of antioxidants during spring. It is, however, unclear if this response was caused by the increase in day length, temperature, or both. The present study examined redox processes in Atlantic salmon that were reared in indoor tanks at constant temperature (9 °C) under a simulated natural photoperiod. The experiment lasted for 6 months, from vernal to autumnal equinoxes, with the associated increase and subsequent decrease in day length. We found that intracellular antioxidants were depleted, and there was an increase in malondialdehyde (MDA) levels in the liver and muscle of Atlantic salmon with increasing day length. Antioxidant enzyme activity in liver and muscle and their related gene profiles was also affected, with a distinct upregulation of genes involved in maintaining redox homeostasis, such as peroxiredoxins in the brain in April. This study also revealed a nuclear factor-erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response in muscle and liver, suggesting that fish integrate environmental signals through redox signaling pathways. Furthermore, growth and expression profiles implicated in growth hormone (GH) signaling and cell cycle regulation coincided with stress patterns. The results demonstrate that a change in photoperiod without the concomitant increase in temperature is sufficient to stimulate growth and change the tissue oxidative state in Atlantic salmon during spring and early summer. These findings provide new insights into redox regulation mechanisms underlying the response to the changing photoperiod, and highlight a link between oxidative status and physiological function.
Collapse
Affiliation(s)
- Peng Yin
- Institute of Marine Research, 5817 Bergen, Norway; (P.Y.); (T.S.); (S.C.R.)
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Takaya Saito
- Institute of Marine Research, 5817 Bergen, Norway; (P.Y.); (T.S.); (S.C.R.)
| | - Per Gunnar Fjelldal
- Institute of Marine Research, Matre, 5984 Matredal, Norway; (P.G.F.); (T.J.H.)
| | - Björn Thrandur Björnsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden;
| | | | - Tom Johnny Hansen
- Institute of Marine Research, Matre, 5984 Matredal, Norway; (P.G.F.); (T.J.H.)
| | | | - Rolf Erik Olsen
- Department of Biology, Faculty of Science and Technology, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Kristin Hamre
- Institute of Marine Research, 5817 Bergen, Norway; (P.Y.); (T.S.); (S.C.R.)
| |
Collapse
|
9
|
Thanh LP, Wichasit N, Li Y, Batistel F, Tartrakoon W, Parys C, Guyader J, Loor JJ. Alterations in skeletal muscle abundance of protein turnover, stress, and antioxidant proteins during the periparturient period in dairy cows fed ethyl-cellulose rumen-protected methionine. J Dairy Sci 2023:S0022-0302(23)00278-3. [PMID: 37225585 DOI: 10.3168/jds.2022-23187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 05/26/2023]
Abstract
Skeletal muscle turnover helps support the physiological needs of dairy cows during the transition into lactation. We evaluated effects of feeding ethyl-cellulose rumen-protected methionine (RPM) during the periparturient period on abundance of proteins associated with transport AA and glucose, protein turnover, metabolism, and antioxidant pathways in skeletal muscle. Sixty multiparous Holstein cows were used in a block design and assigned to a control or RPM diet from -28 to 60 d in milk. The RPM was fed at a rate of 0.09% or 0.10% of dry matter intake (DMI) during the prepartal and postpartal periods to achieve a target Lys:Met ratio in the metabolizable protein of ∼2.8:1. Muscle biopsies from the hind leg of 10 clinically healthy cows per diet collected at -21, 1, and 21 d relative to calving were used for western blotting of 38 target proteins. Statistical analysis was performed using the PROC MIXED statement of SAS version 9.4 (SAS Institute Inc.) with cow as random effect, whereas diet, time, and diet × time were the fixed effects. Diet × time tended to affect prepartum DMI, with RPM cows consuming 15.2 kg/d and controls 14.6 kg/d. However, diet had no effect on postpartum DMI (17.2 and 17.1 ± 0.4 kg/d for control and RPM, respectively). Milk yield during the first 30 d in milk was also not affected by diet (38.1 and 37.5 ± 1.9 kg/d for control and RPM, respectively). Diet or time did not affect the abundance of several AA transporters or the insulin-induced glucose transporter (SLC2A4). Among evaluated proteins, feeding RPM led to lower overall abundance of proteins associated with protein synthesis (phosphorylated EEF2, phosphorylated RPS6KB1), mTOR activation (RRAGA), proteasome degradation (UBA1), cellular stress responses (HSP70, phosphorylated MAPK3, phosphorylated EIF2A, ERK1/2), antioxidant response (GPX3), and de novo synthesis of phospholipids (PEMT). Regardless of diet, there was an increase in the abundance of the active form of the master regulator of protein synthesis phosphorylated MTOR and the growth-factor-induced serine/threonine kinase phosphorylated AKT1 and PIK3C3, whereas the abundance of a negative regulator of translation (phosphorylated EEF2K) decreased over time. Compared with d 1 after calving and regardless of diet, the abundance of proteins associated with endoplasmic reticulum stress (XBP1 spliced), cell growth and survival (phosphorylated MAPK3), inflammation (transcription factor p65), antioxidant responses (KEAP1), and circadian regulation (CLOCK, PER2) of oxidative metabolism was upregulated at d 21 relative to parturition. These responses coupled with the upregulation of transporters for Lys, Arg, and His (SLC7A1) and glutamate/aspartate (SLC1A3) over time were suggestive of dynamic adaptations in cellular functions. Overall, management approaches that could take advantage of this physiological plasticity may help cows make a smoother transition into lactation.
Collapse
Affiliation(s)
- Lam Phuoc Thanh
- Department of Animal Sciences, Can Tho University, Ninh Kieu Can Tho, Vietnam 94000; Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Nithat Wichasit
- Department of Agricultural Science, Naresuan University, Phitsanulok, Thailand 65000
| | - Yu Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China 230036
| | - Fernanda Batistel
- Department of Animal Sciences, University of Florida, Gainesville 32608
| | - Wandee Tartrakoon
- Department of Agricultural Science, Naresuan University, Phitsanulok, Thailand 65000
| | - Claudia Parys
- Evonik Operations GmbH, Hanau-Wolfgang, Essen, Germany 63457
| | - Jessie Guyader
- Evonik Operations GmbH, Hanau-Wolfgang, Essen, Germany 63457
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
10
|
Caruso G, Scalisi EM, Pecoraro R, Cardaci V, Privitera A, Truglio E, Capparucci F, Jarosova R, Salvaggio A, Caraci F, Brundo MV. Effects of carnosine on the embryonic development and TiO 2 nanoparticles-induced oxidative stress on Zebrafish. Front Vet Sci 2023; 10:1148766. [PMID: 37035814 PMCID: PMC10078361 DOI: 10.3389/fvets.2023.1148766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Oxidative stress is due to an unbalance between pro-oxidants, such as reactive oxygen (ROS) and nitrogen (RNS) species, and antioxidants/antioxidant system. Under physiological conditions these species are involved in different cellular processes such as cellular homeostasis and immune response, while an excessive production of ROS/RNS has been linked to the development of various diseases such as cancer, diabetes, and Alzheimer's disease. In this context, the naturally occurring dipeptide carnosine has shown the ability to scavenge ROS, counteract lipid peroxidation, and inhibit proteins oxidation. Titanium dioxide nanoparticles (TiO2-NPs) have been widely used to produce cosmetics, in wastewater treatment, in food industry, and in healthcare product. As consequence, these NPs are often released into aquatic environments. The Danio rerio (commonly called zebrafish) embryos exposure to TiO2-NPs did not affect the hatching rate, but induced oxidative stress. According to this scenario, in the present study, we first investigated the effects of carnosine exposure and of a sub-toxic administration of TiO2-NPs on the development and survival of zebrafish embryos/larvae measured through the acute embryo toxicity test (FET-Test). Zebrafish larvae represent a useful model to study oxidative stress-linked disorders and to test antioxidant molecules, while carnosine was selected based on its well-known multimodal mechanism of action that includes a strong antioxidant activity. Once the basal effects of carnosine were assessed, we then evaluated its effects on TiO2-NPs-induced oxidative stress in zebrafish larvae, measured in terms of total ROS production (measured with 2,7-dichlorodihydrofluorescein diacetate probe) and protein expression by immunohistochemistry of two cellular stress markers, 70 kDa-heat shock protein (Hsp70) and metallothioneins (MTs). We demonstrated that carnosine did not alter the phenotypes of both embryos and larvae of zebrafish at different hours post fertilization. Carnosine was instead able to significantly decrease the enhancement of ROS levels in zebrafish larvae exposed to TiO2-NPs and its antioxidant effect was paralleled by the rescue of the protein expression levels of Hsp70 and MTs. Our results suggest a therapeutic potential of carnosine as a new pharmacological tool in the context of pathologies characterized by oxidative stress such as neurodegenerative disorders.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Elena Maria Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Vincenzo Cardaci
- Vita-Salute San Raffaele University, Milan, Italy
- Scuola Superiore di Catania, University of Catania, Catania, Italy
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Emanuela Truglio
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Romana Jarosova
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
| | | | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Zeebone YY, Kovács M, Bóta B, Zdeněk V, Taubner T, Halas V. Dietary fumonisin may compromise the nutritive value of feed and distort copper and zinc digestibility and retention in weaned piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:504-517. [PMID: 35534935 DOI: 10.1111/jpn.13724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/23/2022] [Accepted: 04/10/2022] [Indexed: 11/26/2022]
Abstract
Fumonisins (FUM) have been reported to impede gut functioning in pigs. However, investigations into the possible effect on mineral metabolism are limited. Thus, the trial studied the apparent total tract digestibility (ATTD) and retention of dietary nitrogen and minerals, intestinal architecture, digestive enzymes activity and heat-shock protein 70 (Hsp70) activity. Eighteen weaned piglets of 7 weeks old were assigned to three groups and their feed either contained 0, 15 or 30 mg FUM/kg for 21 days. ATTD and retention of dietary N and minerals were measured in a 5- day long balance trial between Day 17 and Day 21. The digestible and metabolisable energy (DE and ME) content of the feeds were also determined. The body weights, cumulative feed intake, relative organ weights, digestive enzymes activity and intestinal morphology were not affected (p > 0.05) by dietary treatments. The DE content was significantly lower (p < 0.05) when the feed contained 15 mg/kg FUM, but no statistically reliable treatment effect was confirmed for ME content. Dietary FUM significantly lowered (p < 0.05) the ATTD of Ca and P but not (p > 0.05) N, K, Mg and Na. The relative retention rate of N, Ca, P, K, Mg and Na in all groups were not impacted (p > 0.05) by treatments. The ATTD and relative retention of Cu and Zn were remarkably (p < 0.05) lower in piglets fed FUM-contaminated feed. In addition, the expression of Hsp70 activity in the liver was significantly elevated (p < 0.05) in the highest treatment group. These findings suggest that a dietary dose of 15 or 30 mg FUM/kg diet distorts the nutritive value of the mixed feed, results in poor ATTD and retention rates of Zn and Cu, and elevate Hsp70 activity in the liver without altering intestinal architecture or digestive enzymes' activity in weaned piglets.
Collapse
Affiliation(s)
- Y Y Zeebone
- Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences Kaposvár Campus, Kaposvár, Hungary.,MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
| | - M Kovács
- Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences Kaposvár Campus, Kaposvár, Hungary.,MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
| | - B Bóta
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
| | - V Zdeněk
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Prague, Czechia
| | - T Taubner
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czechia
| | - V Halas
- Department of Farm Animal Nutrition, Hungarian University of Agriculture and Life Sciences Kaposvár Campus, Kaposvár, Hungary
| |
Collapse
|
12
|
Wu K, Jia S, Xue D, Rajput SA, Liu M, Qi D, Wang S. Dual effects of zearalenone on aflatoxin B1-induced liver and mammary gland toxicity in pregnant and lactating rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114115. [PMID: 36179448 DOI: 10.1016/j.ecoenv.2022.114115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Food and feed are frequently co-contaminated with aflatoxin B1 (AFB1) and zearalenone (ZEN). This study investigated the effects of ZEN on the AFB1-induced liver and mammary gland toxicity in pregnant and lactating rats. AFB1 and ZEN co-exposure inhibited the growth of rats and caused oxidative stress and inflammatory responses in the liver and mammary gland. Compared with the AFB1-only group, damage was aggravated in the AFB1 + 10 mg/kg ZEN group, and the AFB1 + 1 mg/kg ZEN group showed a reduction in some metrics. The metabolomic results of the mammary gland showed that metabolite changes were mainly in lipid, amino acid, and glucose metabolism. Compared with the AFB1 + 0 mg/kg ZEN group, the AFB1 + 1 mg/kg ZEN group had the most metabolite changes. Moreover, AFB1 and ZEN co-exposure reduced the levels of sex hormones and RNA m6A methylation in the mammary gland. We speculate that ZEN affects the toxicity of AFB1 to the liver and mammary gland by interfering with the function of sex hormones, regulating cell proliferation and metabolic processes.
Collapse
Affiliation(s)
- Kuntan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sifan Jia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongfang Xue
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shahid Ali Rajput
- Department of Animal Feed and Production, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan
| | - Minjie Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Sirocko KT, Angstmann H, Papenmeier S, Wagner C, Spohn M, Indenbirken D, Ehrhardt B, Kovacevic D, Hammer B, Svanes C, Rabe KF, Roeder T, Uliczka K, Krauss-Etschmann S. Early-life exposure to tobacco smoke alters airway signaling pathways and later mortality in D. melanogaster. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119696. [PMID: 35780997 DOI: 10.1016/j.envpol.2022.119696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/31/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Early life environmental influences such as exposure to cigarette smoke (CS) can disturb molecular processes of lung development and thereby increase the risk for later development of chronic respiratory diseases. Among the latter, asthma and chronic obstructive pulmonary disease (COPD) are the most common. The airway epithelium plays a key role in their disease pathophysiology but how CS exposure in early life influences airway developmental pathways and epithelial stress responses or survival is poorly understood. Using Drosophila melanogaster larvae as a model for early life, we demonstrate that CS enters the entire larval airway system, where it activates cyp18a1 which is homologues to human CYP1A1 to metabolize CS-derived polycyclic aromatic hydrocarbons and further induces heat shock protein 70. RNASeq studies of isolated airways showed that CS dysregulates pathways involved in oxidative stress response, innate immune response, xenobiotic and glutathione metabolic processes as well as developmental processes (BMP, FGF signaling) in both sexes, while other pathways were exclusive to females or males. Glutathione S-transferase genes were further validated by qPCR showing upregulation of gstD4, gstD5 and gstD8 in respiratory tracts of females, while gstD8 was downregulated and gstD5 unchanged in males. ROS levels were increased in airways after CS. Exposure to CS further resulted in higher larval mortality, lower larval-pupal transition, and hatching rates in males only as compared to air-exposed controls. Taken together, early life CS induces airway epithelial stress responses and dysregulates pathways involved in the fly's branching morphogenesis as well as in mammalian lung development. CS further affected fitness and development in a highly sex-specific manner.
Collapse
Affiliation(s)
- Karolina-Theresa Sirocko
- Division for Invertebrate Models, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | | | - Stephanie Papenmeier
- Division for Invertebrate Models, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Christina Wagner
- Division for Invertebrate Models, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany; Division of Innate Immunity, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Michael Spohn
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | - Draginja Kovacevic
- DZL Laboratory - Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany; Division of Early Origins of Chronic Lung Disease
| | - Barbara Hammer
- DZL Laboratory - Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany; Division of Early Origins of Chronic Lung Disease
| | - Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Klaus F Rabe
- LungenClinic, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany; Department of Medicine, Christian Albrechts University, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Germany
| | - Karin Uliczka
- Division of Innate Immunity, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany; Division of Early Origins of Chronic Lung Disease
| | - Susanne Krauss-Etschmann
- Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany; Division of Early Origins of Chronic Lung Disease.
| |
Collapse
|
14
|
Rafieian-Naeini HR, Zhandi M, Sadeghi M, Yousefi AR, Benson AP. Effects of coenzyme Q10 on reproductive performance of laying Japanese quail (Coturnix japonica) under cadmium challenge. Poult Sci 2021; 100:101418. [PMID: 34600273 PMCID: PMC8531857 DOI: 10.1016/j.psj.2021.101418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/02/2022] Open
Abstract
Japanese quail is an increasingly important bird of economic importance for commercial egg and meat production, particularly in developing countries. There is a need for research aimed at improving efficiency of these birds during stressful challenges, such as oxidative stress. Coenzyme Q10 (CoQ10), a highly functional antioxidant, protects cells against oxidative stress. This study was conducted to determine the effects of CoQ10 on reproductive performance of Japanese quail under cadmium (Cd) challenge. A total of 216 six-wk-old Japanese quail were randomly allocated into 3 groups for an 8 wk experimental trial. The treatments include a negative control (NC): feeding basal diet; a positive control (PC): feeding basal diet and cadmium administration (1 mg/100 g BW, at 10 and 11 wk of age), and (CdQ10): feeding CoQ10 supplemented (900 mg/kg diet) basal diet and Cd administration. At 11 and 13 wk of age, egg production, body weight, mortality, oviduct, and ovarian biometry, were recorded. Histology and histopathology of isthmus and magnum, fertility, hatchability, hatchling quality, and HSP70 mRNA transcript abundance in the utero-vaginal junction (UVJ) were evaluated. Positive control and CdQ10 group had no significant effect on live body weight, stroma weight, follicle size, hatchability, and fertility; however, Cd administration increased (P < 0.01) mortality rate in the PC group compared to the NC and CdQ10 groups. CdQ10 quail produced more eggs and had a higher hatchling quality compared to the PC group (P < 0.01). The thickness and height of isthmus and magnum folds in the CdQ10 group was increased compared to the PC group (P < 0.01) and overall oviduct weight was increased with CoQ10 supplementation (P < 0.01). Compared to PC, the CdQ10 group had a reduction in infiltration of inflammatory cells. Relative abundance of HSP70 mRNA in UVJ was influenced by interactive effect of treatment × time (P < 0.05). In conclusion, dietary supplementation of CoQ10 showed beneficial effects on some reproduction characteristics of female Japanese quail under Cd-induced oxidative stress.
Collapse
Affiliation(s)
- Hamid Reza Rafieian-Naeini
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Alborz, Karaj, Iran
| | - Mahdi Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Alborz, Karaj, Iran.
| | - Mostafa Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Alborz, Karaj, Iran
| | - Ali Reza Yousefi
- Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Andrew Parks Benson
- Department of Poultry Science, University of Georgia, Athens, GA 30602-2772, USA
| |
Collapse
|
15
|
Gbore FA, Adewumi FH. Ameliorative potential of Moringa Leaf Meal on nutrient digestibility of rabbits fed Fumonisin B 1-contaminated diets. Toxicon 2021; 201:164-168. [PMID: 34453986 DOI: 10.1016/j.toxicon.2021.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
The ameliorative potential of Moringa leaf meal (MLM) on nutrient digestibility and organ weights of rabbits fed FB1-contaminated diets was evaluated. The rabbits were divided into nine treatment groups (2.5 mg FB1, 5.0 mg FB1, 2.5 mg FB1 + 10 g of MLM, 5.0 mg FB1 + 10 g of MLM, 2.5 mg FB1 + 20 g of MLM, 5.0 mg FB1 + 20 g of MLM, control diet, control diet + 10 g of MLM, and control diet + 20 g of MLM) kg/diet coded Diets 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively, in a six-week feeding experiment. There was significant influence of the dietary FB1 on the apparent digestibility values of nutrients and relative organ weights of the animals. The values of crude protein digestibility in animals fed Diets 7, 8 and 9 were significantly (p < 0.05) higher than the others. The apparent ash digestibility values in animals fed MLM diets were higher than those fed diets containing FB1. The relative liver weights of rabbits fed FB1-contaminated diets were significantly (P < 0.05) lower than those fed diets without FB1. Animals fed Diet 2, had the lowest relative liver and heart weights of 31-88% and 88-99%, respectively compared with other treatments. The potential of the antioxidant to ameliorate the impact of the toxin on nutrient digestibility of the rabbits, however, increased with increase in the MLM concentrations. Inclusion of MLM in FB1-contaminated feeds ameliorated the adverse impacts of the mycotoxin on nutrient digestibility of the animals.
Collapse
Affiliation(s)
| | - Funke Hannah Adewumi
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
16
|
Rankovic M, Draginic N, Jeremic J, Samanovic AM, Stojkov S, Mitrovic S, Jeremic N, Radonjic T, Srejovic I, Bolevich S, Svistunov A, Jakovljevic V, Turnic TN. Protective Role of Vitamin B 1 in Doxorubicin-Induced Cardiotoxicity in Rats: Focus on Hemodynamic, Redox, and Apoptotic Markers in Heart. Front Physiol 2021; 12:690619. [PMID: 34630136 PMCID: PMC8494423 DOI: 10.3389/fphys.2021.690619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Up until now, the specific mechanisms involved in doxorubicin (DOX)-induced cardiotoxicity have not been fully elucidated. Since thiamine deficiency is associated with myocardial dysfunction and it may lead to cardiomyopathy, we aimed to investigate whether thiamine (Vitamin B1) treatment provides cardioprotection and modulates DOX mediated subchronic cardiotoxicity as well as to determine possible mechanisms of its effects. The study involved 48 Wistar albino rats divided into four groups: healthy non-treated rats and healthy rats treated with thiamine and DOX rats without treatment and DOX rats treated with thiamine. DOX was applied as a single i.p.injection (15mg/kg), while thiamine treatment lasted 7days (25mg/kg/dayi.p.). Before and after the treatment hemodynamic changes were monitored in vivo by echocardiography. When the protocol was completed, animals were sacrificed and rat hearts were isolated in order to evaluate parameters of cardiac oxidative stress [superoxide anion radical-O2 -, hydrogen peroxide-H2O2, nitric oxide-NO-, index of lipid peroxidation-thiobarbituric acid (TBA) reactive substances (TBARS), superoxide dismutase - SOD, catalase (CAT), and reduced glutathione-GSH] and apoptosis (Bax, Bcl-2, caspases). DOX treatment significantly reduced the ejection fraction, while thiamine treatment led to its minor increase in the DOX-treated group. In that sense, heart oxidative stress markers were significantly increased in DOX-treated rats, while therapeutic dose of thiamine decreased the levels of free radicals. Our study demonstrated the promising ameliorative effects of thiamine against DOX-induced cardiotoxicity through modulation of oxidative stress, suppression of apoptosis, and possibility to improve myocardial performance and morphometric structure of rats` hearts.
Collapse
Affiliation(s)
- Marina Rankovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Draginic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Svetlana Stojkov
- Department of Pharmacy, Novi Sad University Business Academy, College of Vocational Studies for the Education of Preschool Teachers and Sports Trainers, Subotica, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey Bolevich
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrey Svistunov
- Research Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir Jakovljevic
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tamara Nikolic Turnic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
17
|
Wu F, Huang Y, Wei G, Huang Z, Shi C, Lin W, Liao J. Exogenous Hsp70 attenuates nitroglycerin-induced migraine-like symptoms in mice. J Neurophysiol 2021; 126:1030-1037. [PMID: 34469702 DOI: 10.1152/jn.00314.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the connection between heat shock protein 70 (HSP70) and vestibular migraine is not clear, HSP70 is neuroprotective in other scenarios. This study aimed to investigate the potential of exogenous HSP70 for treating migraine-like symptoms in a mouse model of nitroglycerin (NTG)-induced migraine. HSP70 levels were assessed in patients with vestibular migraine and healthy individuals by ELISA. Migraine was induced in mice by NTG, and HSP70 expression was examined in the trigeminal nucleus caudalis (TNC) tissue of mice treated with NTG and NTG together with exogenous HSP70. The effects of exogenous HSP70 on migraine-like symptoms were assessed through behavioral assays. Finally, the impact of HSP70 on oxidative stress and NF-κB signaling in mice with migraine was investigated. Serum HSP70 in patients with vestibular migraine was significantly lower than that of healthy individuals. NTG administration significantly suppressed HSP70 expression in mouse TNC tissue, which was reversed by exogenous HSP70. HSP70 alleviated NTG-induced mechanical hypersensitivity, light aversion, and anxiety-like behavior. Finally, exogenous HSP70 suppressed NTG-induced oxidative stress and NF-κB signaling. Our study suggests that exogenous HSP70 may be a potential therapy for alleviating migraine symptoms and our promising finding warrants further investigation of HSP70 for clinical application.NEW & NOTEWORTHY The study suggests that exogenous HSP70 may be a potential therapy for alleviating migraine symptoms and our promising finding warrants further investigation of HSP70 for clinical application.
Collapse
Affiliation(s)
- Fengfang Wu
- Department of Otolaryngology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yifeng Huang
- Department of Diagnostic Radiology, Huaqiao University Affiliated Straight Hospital, Quanzhou, China
| | - Guifang Wei
- Department of Otolaryngology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Zhiwei Huang
- Department of Otolaryngology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Congwen Shi
- Department of Otolaryngology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Weinian Lin
- Department of Otolaryngology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Jun Liao
- Department of Otolaryngology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
18
|
Calabrese EJ, Agathokleous E, Calabrese V. Ferulic acid and hormesis: Biomedical and environmental implications. Mech Ageing Dev 2021; 198:111544. [PMID: 34274398 DOI: 10.1016/j.mad.2021.111544] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023]
Abstract
The present paper provides the first systematic assessment of the capacity of ferulic acid to induce hormetic dose responses in biological systems. Ferulic acid induced hormetic effects in a broad range of animal models, affecting numerous biological endpoints, with particular focus on neuroprotective effects. Emerging evidence in multiple biomedical systems indicates that the hormetic effects of ferulic acid depend upon the activation of the transcription factor Nrf2. Ferulic acid was also shown to have an important role in ecological settings, being routinely released into the environment by numerous plant species, acting as an allelopathic agent affecting the growth of neighboring species via hormetic dose responses. These findings demonstrate the potential ecological and biomedical importance of ferulic acid effects and that these effects are commonly expressed via the hormetic dose response, suggesting complex multisystem evolutionary regulatory strategies.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
19
|
Ali O, Mézes M, Balogh K, Kovács M, Szabó A. The Effects of Mixed Fusarium Mycotoxins at EU-Permitted Feed Levels on Weaned Piglets' Tissue Lipids. Toxins (Basel) 2021; 13:444. [PMID: 34199083 PMCID: PMC8309798 DOI: 10.3390/toxins13070444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
At exactly the individual permitted EU-tolerance dietary limits, fumonisins (FB: 5 mg/kg diet) and mixed fusariotoxins (DZ: 0.9 mg deoxynivalenol + 0.1 mg zearalenone/kg diet, and FDZ: 5 mg fumonisins + 0.9 mg deoxynivalenol + 0.1 mg zearalenone/kg diet) were administered to piglets (n = 6/group) for three weeks. Bodyweights of intoxicated piglets increased, while feed conversion ratios decreased. In FDZ, both the absolute and relative weight of the liver decreased. In the renal-cellular membrane, the most pronounced alterations were in FDZ treatment, followed by individual FB exposure. In both treatments, high proportions of C20:0 and C22:0 with low fatty acid (FA) unsaturation were found. In hepatocyte phospholipids, FDZ toxins exerted antagonistic interactions, and FB had the strongest increasing effect on FA monounsaturation. Among all investigated organs, the spleen lipids were the least responsive, in which FDZ expressed synergistic reactions on C20:0 (↑ FDZ vs. FB) and C22:0 (↓ FDZ vs. DZ). The antioxidant defense of the kidney was depleted (↓ glutathione concentration by FB-exposure). Blood plasma indicated renal injury (profound increase of urea and creatinine in FB vs. DZ and FDZ). FB strongly increased total-cholesterol and low density lipoprotein concentrations, whereas FDZ synergistically increased gamma-glutamyltransferase, alkaline-phosphatase, calcium and phosphorus levels. Summarized, individual and combined multiple fusariotoxins modified the membrane lipid profile and antioxidant defense of splanchnic organs, and serum biochemicals, without retarding growth in piglets.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba S. u. 40., 7400 Kaposvár, Hungary; (M.K.); (A.S.)
| | - Miklós Mézes
- Department of Feed Toxicology, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, Páter K. u. 1., 2053 Gödöllő, Hungary; (M.M.); (K.B.)
| | - Krisztián Balogh
- Department of Feed Toxicology, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, Páter K. u. 1., 2053 Gödöllő, Hungary; (M.M.); (K.B.)
| | - Melinda Kovács
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba S. u. 40., 7400 Kaposvár, Hungary; (M.K.); (A.S.)
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba S. u. 40., 7400 Kaposvár, Hungary
| | - András Szabó
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba S. u. 40., 7400 Kaposvár, Hungary; (M.K.); (A.S.)
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba S. u. 40., 7400 Kaposvár, Hungary
| |
Collapse
|
20
|
Addition of Popular Exogenous Antioxidant Agent, PBN, to Culture Media May Be an Important Step to Optimization of Myogenic Stem/Progenitor Cell Preparation Protocol. Antioxidants (Basel) 2021; 10:antiox10060959. [PMID: 34203726 PMCID: PMC8232265 DOI: 10.3390/antiox10060959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to modify human skeletal muscle-derived stem/progenitor cells (SkMDS/PCs) and demonstrate the optimal cell preparation protocol for application in post-infarction hearts. We used conditioned SkMDS/PC culture medium with α-phenyl-N-tert-butyl nitrone (PBN). SkMDS/PCs were cultured under hypoxic conditions and the results were compared to the standard ones. We observed a significant increase of CD-56 positive phenotypic marker the ability to form functional myotubes, increase in the proportion of young cells in cell primary suspensions, and a decrease in the percentage of apoptotic cells among PBN-conditioned cells in normoxia an hypoxia. We also observed significantly higher levels of SOD3 expression; maintained expression of SOD1, SOD2, and CAT; a higher level of BCL2 gene expression; and a rather significant decrease in Hsp70 gene expression in PBN-conditioned SkMDS/PCs compared to the WT population under hypoxic conditions. In addition, significant increase of myogenic genes expression was observed after PBN addition to culture medium, compared to WT population under hypoxia. Interestingly, PBN addition significantly increased the lengths of telomeres under hypoxia. Based on the data obtained, we can postulate that PBN conditioning of human SkMDS/PCs could be a promising step in improving myogenic cell preparation protocol for pro-regenerative treatment of post-infarction hearts.
Collapse
|
21
|
Ghanbarinejad V, Jamshidzadeh A, Khalvati B, Farshad O, Li H, Shi X, Chen Y, Ommati MM, Heidari R. Apoptosis-inducing factor plays a role in the pathogenesis of hepatic and renal injury during cholestasis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1191-1203. [PMID: 33527194 DOI: 10.1007/s00210-020-02041-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Cholestasis is a clinical complication with different etiologies. The liver is the primary organ influenced in cholestasis. Renal injury is also a severe clinical complication in cholestatic/cirrhotic patients. Several studies mentioned the importance of oxidative stress and mitochondrial impairment as two mechanistically interrelated events in cholestasis-induced organ injury. Apoptosis-inducing factor (AIF) is a flavoprotein located in the inner mitochondrial membrane. This molecule is involved in a distinct pathway of cell death. The current study aimed to evaluate the role of AIF in the pathophysiology of cholestasis-associated hepatic and renal injury. Bile duct ligation (BDL) was used as an animal model of cholestasis. Serum, urine, and tissue samples were collected at scheduled time intervals (3, 7, 14, and 28 days after BDL surgery). Tissues' AIF mRNA levels, as well as serum, urine, and tissue activity of AIF, were measured. Moreover, markers of DNA fragmentation and apoptosis were assessed in the liver and kidney of cholestatic animals. A significant increase in liver and kidney AIF mRNA levels, in addition to increased AIF activity in the liver, kidney, serum, and urine, was detected in BDL rats. DNA fragmentation and apoptosis were raised in the liver and kidney of cholestatic animals, especially at the early stage of the disease. The apoptotic mode of cell death in the liver and kidney was connected to a higher AIF level. These data mention the importance of AIF in the pathogenesis of cholestasis-induced organ injury, especially at the early stage of this disease. Mitochondrial release of apoptosis-inducing factor (AIF) seems to play a pathogenic role in cholestasis-associated hepatic and renal injury. AIF release is directly connected to oxidative stress and mitochondrial impairment in cholestatic animals.
Collapse
Affiliation(s)
- Vahid Ghanbarinejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St, Shiraz, Fars, Iran
- Department of Pharmacology and Toxicology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St, Shiraz, Fars, Iran
- Department of Pharmacology and Toxicology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalvati
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St, Shiraz, Fars, Iran
| | - Huifeng Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiong Shi
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yuanyu Chen
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St, Shiraz, Fars, Iran.
| |
Collapse
|
22
|
Muñiz-González AB, Novo M, Martínez-Guitarte JL. Persistent pesticides: effects of endosulfan at the molecular level on the aquatic invertebrate Chironomus riparius. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31431-31446. [PMID: 33608783 DOI: 10.1007/s11356-021-12669-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Although banned in multiple areas, due to its persistence in the environment, endosulfan constitutes a significant environmental concern. In this work, fourth instar Chironomus riparius larvae were exposed at environmentally relevant endosulfan concentrations of 0.1, 1, and 10 μg/L for 24 h to analyze the possible effects of this acaricide on gene expression and enzymatic activity. Transcriptional changes were studied through the implementation of a real-time polymerase chain reaction array with 42 genes related to several metabolic pathways (endocrine system, detoxification response, stress response, DNA reparation, and immune system). Moreover, glutathione-S-transferase (GST), phenoloxidase (PO), and acetylcholinesterase (AChE) activities were assessed. The five pathways were differentially altered by endosulfan exposure with significant changes in the E93, Dis, MAPR, Met, InR, GSTd3, GSTt3, MRP1, hsp70, hsp40, hsp24, ATM, PARP, Proph, and Def genes. Besides, all of the measured enzymatic activities were modified, with increased activity of GST, followed by PO and AChE. In summary, the results reflected the effects provoked in C. riparius at molecular level despite the absence of lethality. These data raise concerns about the strong alteration on different metabolic routes despite the low concentrations used. Therefore, new risk assessment strategies should consider include the effects at the sub-organismal level as endpoints in addition to the classical ecologically relevant parameters (such as survival). This endeavor will facilitate a comprehensive evaluation of toxicants in the environment.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Environmental Biology and Toxicology Group, Department of Mathematical and Fluid Physics, National University of Distance Education, UNED, Senda del Rey 9, 28040, Madrid, Spain.
| | - Marta Novo
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Environmental Biology and Toxicology Group, Department of Mathematical and Fluid Physics, National University of Distance Education, UNED, Senda del Rey 9, 28040, Madrid, Spain
| |
Collapse
|
23
|
Schoevers EJ, Santos RR, Roelen BAJ. Susceptibility of Oocytes from Gilts and Sows to Beauvericin and Deoxynivalenol and Its Relationship with Oxidative Stress. Toxins (Basel) 2021; 13:toxins13040260. [PMID: 33917490 PMCID: PMC8067504 DOI: 10.3390/toxins13040260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 01/18/2023] Open
Abstract
Beauvericin (BEA) and deoxynivalenol are toxins produced by Fusarium species that can contaminate food and feed. The aim of this study was to assess the effects of these mycotoxins on the maturation of oocytes from gilts and sows. Furthermore, the antioxidant profiles in the oocytes' environment were assessed. Cumulus-oocyte-complexes (COCs) from gilts and sows were exposed to beauvericin (BEA) or deoxynivalenol (DON) and matured in vitro. As an extra control, these COCs were also exposed to reactive oxygen species (ROS). The maturation was mostly impaired when oocytes from gilts were exposed to 0.02 μmol/L DON. Oocytes from sows were able to mature even in the presence of 5 μmol/L BEA. However, the maturation rate of gilt oocytes was already impaired by 0.5 μmol/L BEA. It was observed that superoxide dismutase (SOD) and glutathione (GSH) levels in the follicular fluid (FF) of gilt oocytes was higher than that from sows. However, the expression of SOD1 and glutathione synthetase (GSS) was higher in the oocytes from sows than in those from gilts. Although DON and BEA impair cell development by diverse mechanisms, this redox imbalance may partially explain the vulnerability of gilt oocytes to these mycotoxins.
Collapse
Affiliation(s)
- Eric J. Schoevers
- Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands;
| | - Regiane R. Santos
- Schothorst Feed Research, P.O. Box 533, 8200 AM Lelystad, The Netherlands
- Correspondence:
| | - Bernard A. J. Roelen
- Embryology, Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CT Utrecht, The Netherlands;
| |
Collapse
|
24
|
Kócsó DJ, Ali O, Kovács M, Mézes M, Balogh K, Kachlek ML, Bóta B, Zeebone YY, Szabó A. A preliminary study on changes in heat shock protein 70 levels induced by Fusarium mycotoxins in rats: in vivo study. Mycotoxin Res 2021; 37:141-148. [PMID: 33665736 PMCID: PMC8163673 DOI: 10.1007/s12550-021-00425-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 01/08/2023]
Abstract
The heat shock protein (Hsp70) level was assessed after 14 days of oral gavage-exposure to fumonisin B1 (FB1: 150 µg/animal/day), deoxynivalenol (DON: 30 µg/animal/day) and zearalenone (ZEN: 150 µg/animal/day), alone or in combinations (in additive manner: FD = FB1 + DON, FZ = FB1 + ZEN, DZ = DON + ZEN and FDZ = FB1 + DON + ZEN) in the liver, kidneys and lung of 24 adult male Wistar rats (n = 3/group). The liver was the most responsive tissue, as compared with kidney and lung. Except of DZ-treatment, mycotoxins elevated the Hsp70 levels in livers. The highest Hsp70-levels (≈ twofold) were in the DON, FD, FZ and FDZ treatments (additive effects). In the kidney, alterations (↑ ≈ twofold) were detected in ZEN, FD, FZ and DZ treatments. The least responsive organ was the lung (↑ only in FDZ, antagonistic effect). DON and ZEA exposures have altered the reduced glutathione concentration (↓) and glutathione peroxidase activity (↓) in the blood serum. The serum malondialdehyde level increased only after exposure to FD (synergistic effect), as compared with the DZ group (antagonistic effect). When the blood clinical chemistry was assessed, significant alterations were in alanine aminotransferase (80% increase in FDZ, antagonistic effect) and total protein (↓ ZEN). Results varied according to the organ, toxin type and interactions. Furthermore, oxidative stress was not the only key player behind the Hsp70 increase, in which another mechanism is suggested.
Collapse
Affiliation(s)
- Dániel J Kócsó
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary
| | - Omeralfaroug Ali
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár, Hungary.
| | - Melinda Kovács
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary.,Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár, Hungary
| | - Miklós Mézes
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary.,Institute of Physiology and Nutrition, Department of Feed Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, Gödöllő, Hungary
| | - Krisztián Balogh
- Institute of Physiology and Nutrition, Department of Feed Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, Gödöllő, Hungary
| | - Mariam L Kachlek
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary
| | - Brigitta Bóta
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary
| | - Yarsmin Y Zeebone
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár, Hungary
| | - András Szabó
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary.,Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár, Hungary
| |
Collapse
|
25
|
Cheng Q, Jiang SZ, Huang LB, Yang WR, Yang ZB. Zearalenone regulates key factors of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1-nuclear factor erythroid 2-related factor 2 signaling pathway in duodenum of post-weaning gilts. Anim Biosci 2020; 34:1403-1414. [PMID: 33152220 PMCID: PMC8255894 DOI: 10.5713/ajas.20.0384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE This study explored the mechanism of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway under conditions of zearalenone (ZEA)-induced oxidative stress in the duodenum of post-weaning gilts. METHODS Forty post-weaning gilts were randomly allocated to four groups and fed diets supplemented with 0, 0.5, 1.0, or 1.5 mg/kg ZEA. RESULTS The results showed significant reductions in the activity of the antioxidant enzymes total superoxide dismutase and glutathione peroxidase and increases the malondialdehyde content with increasing concentrations of dietary ZEA. Immunohistochemical analysis supported these findings by showing a significantly increased expression of Nrf2 and glutathione peroxidase 1 (GPX1) with increasing concentrations of ZEA. The relative mRNA and protein expression of Nrf2, GPX1 increased linearly (p<0.05) and quadratically (p<0.05), which was consistent with the immunohistochemical results. The relative mRNA expression of Keap1 decreased linearly (p<0.05) and quadratically (p<0.05) in the duodenum as the ZEA concentration increased in the diet. The relative mRNA expression of modifier subunit of glutamate-cysteine ligase (GCLM) increased quadratically (p<0.05) in all ZEA treatment groups and the relative mRNA expression of quinone oxidoreductase 1 (NQO1) catalytic subunit of glutamate-cysteine ligase decreased linearly (p<0.05) and quadratically (p<0.05) in the ZEA1.0 group and ZEA1.5 group. The relative protein expression of Keap1 and GCLM decreased quadratically (p<0.05) in the duodenum as the ZEA concentration increased in the diet, respectively. The relative protein expression of NQO1 increased linearly (p<0.05) and quadratically (p<0.05) in all ZEA treatment groups in the duodenum. CONCLUSION These findings suggest that ZEA regulates the expression of key factors of the Keap1-Nrf2 signaling pathway in the duodenum, which enables resistance to ZEA-induced oxidative stress. Further studies are needed to examine the effects of ZEA induced oxidative stress on other tissues and organs in post-weaning gilts.
Collapse
Affiliation(s)
- Qun Cheng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Shu Zhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Li Bo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Wei Ren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zai Bin Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
26
|
Huang X, You Z, Luo Y, Yang C, Ren J, Liu Y, Wei G, Dong P, Ren M. Antifungal activity of chitosan against Phytophthora infestans, the pathogen of potato late blight. Int J Biol Macromol 2020; 166:1365-1376. [PMID: 33161079 DOI: 10.1016/j.ijbiomac.2020.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Phytophthora infestans, the pathogen of potato late blight which is a devastating disease of potatoes, causes stem and leaf rot, leading to significant economic losses. Chitosan is a naturally occurring polysaccharide with a broad spectrum of antimicrobial properties. However, the specific mechanism of chitosan on Phytophthora infestans has not been studied. In this study, we found that chitosan significantly inhibited the mycelial growth and spore germination of Phytophthora infestans in vitro, reduced the resistance of Phytophthora infestans to various adverse conditions, and it had synergistic effect with pesticides, making it a potential way to reduce the use of chemical pesticides. In addition, chitosan could induce resistance in potato pieces and leaves to Phytophthora infestans. Transcriptome analysis data showed that chitosan mainly affected cell growth of Phytophthora infestans, and most of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene ontology (GO) terms revolved in metabolic processes, cell membrane structure and function and ribosome biogenesis. Differentially expressed genes (DEGs) related to adverse stress and virulence were also discussed. On the whole, this study provided new ideas for the development of chitosan as an eco-friendly preparation for controlling potato late blight.
Collapse
Affiliation(s)
- Xiaoqing Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Ziyue You
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Yang Luo
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Chengji Yang
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Jie Ren
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Yanlin Liu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Guangjing Wei
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Pan Dong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China.
| | - Maozhi Ren
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| |
Collapse
|
27
|
Hoseini SM, Khalili M, Rajabiesterabadi H, Hoseinifar SH, Doan HV. Effects of dietary monoterpene, myrcene, administration on immune- and health-related genes expression in common carp gill following exposure to copper sulfate. FISH & SHELLFISH IMMUNOLOGY 2020; 98:438-445. [PMID: 31972293 DOI: 10.1016/j.fsi.2020.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The present study assessed the potential benefits of myrcene administration to suppress negative effects of copper exposure on immune-, antioxidant-, tight junction-, stress- and osmoregulatory-related gene expressions in common carp (Cyprinus carpio) gill. Fish were fed with diets containing 0% (control), 0.5% (M0.5) and 1% (M1) myrcene for 6 weeks, and then, exposed to 0.25 mg/L copper for further two weeks. The fish gill samples were taken for gene expression assays after six and eight weeks. The results showed that there were interaction effects of myrcene levels and copper exposure on superoxide dismutase (sod), catalase (cat), glutathione peroxidase (gpx), glutathione-s-transferase (gst), glutathione reductase (gr), heat shock protein-70 (hsp70), interleukin 1-beta (il1b), interleukin 10 (il10), tumor necrosis factor-alpha (tnfa), occludin (occl), caludin 3 (cld3), caludin 7 (cld7), and Na+-K+-ATPase (nka) genes expressions. Overall, the M0.5 treatment had significantly lower antioxidant genes expression, and higher hsp70, cytokines, tight-junction proteins, and nka genes expression, compared to the control treatment, before copper exposure. Copper exposure significantly down-regulated most of the tested genes (except il10), however, the M0.5 treatment had significantly higher antioxidant (except gpx), hsp70, cld7, and nka gene expression compared to the control treatment. The M1 treatment showed fluctuated antioxidant gene expressions, down-regulated gene expression of the pro-inflammatory cytokines, and occl, and up-regulation of cld3 gene expressions, before copper exposure. After copper exposure, this treatment had significantly higher gr and cat expression compared to the control; moreover, there was a marked up-regulation in il10 gene expression in this treatment, which was the highest value among all treatment combinations. In conclusion, copper exposure significantly down-regulates antioxidant-, inflammatory-, and tight junction-related along with hsp70 and nka genes expression in common carp gills. Pre-treatment with 0.5% myrcene is beneficial to suppress such negative effects, probably due to its antioxidant properties. However, myrcene administration must be done with caution, as higher levels may interfere with antioxidant and immune defenses.
Collapse
Affiliation(s)
- Seyyed Morteza Hoseini
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan, Iran
| | - Mohsen Khalili
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamid Rajabiesterabadi
- Young Researchers and Elite Club, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
28
|
Li L, Yang M, Li C, Yang F, Wang G. Understanding the Toxin Effects of β-Zearalenol and HT-2 on Bovine Granulosa Cells Using iTRAQ-Based Proteomics. Animals (Basel) 2020; 10:ani10010130. [PMID: 31941148 PMCID: PMC7022321 DOI: 10.3390/ani10010130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Zearalenone (ZEA) and T-2 are two important mycotoxins, which have deleterious effects on the health of humans and livestock. ZEA and its derivatives, α-zearalenol and β-zearalenol, disturb the hormonal homeostasis and lead to numerous problems in the reproductive system. The HT-2 toxin, as the primary metabolite of the T-2 toxin, exerts a series of toxic effects on humans and livestock. The T-2 toxin and its metabolite HT-2 toxin induce damages in multiple tissues, which include the reproductive system. However, toxic response profiles of these mycotoxins on bovine ovarian granulosa cells (bGCs) are unclear. In this study, we determined the importance of heat shock proteins, clarified oxidative stress, and the caspase-3 signaling cascade involved in the mycotoxin-treated toxic response. These results could provide new insights for future studies on prevention and treatment of reproductive problems caused by mycotoxins in bovines. Abstract Zearalenone (ZEA) and T-2 are the most common mycotoxins in grains and can enter the animal and human food-chain and cause many health disorders. To elucidate the toxic response profile, we stimulated bovine granulosa cells (GCs) with β-zearalenol or HT-2. Using isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic, 178 and 291 differentially expressed proteins (DEPs, fold change ≥ 1.3 and p-value < 0.05) in β-zearalenol and HT-2 groups were identified, respectively. Among these DEPs, there were 66 common DEPs between β-zearalenol and HT-2 groups. These 66 DEPs were associated with 23 biological processes terms, 14 molecular functions terms, and 19 cellular components terms. Most heat shock proteins (HSPs) were involved in the toxic response. Reactive oxygen species accumulation, the endoplasmic reticulum (ER)-stress related marker molecule (GRP78), and apoptosis were activated. β-zearalenol and HT-2 inhibited oestradiol (E2) production. These results emphasized the important function of HSPs, clarified oxidative stress, and demonstrated the caspase-3 signaling cascade involved in mycotoxin-treated toxic response, along with decreased E2 production. This study offers new insights into the toxicity of β-zearalenol and HT-2 on ovarian granulosa cells.
Collapse
Affiliation(s)
- Lian Li
- Correspondence: ; Tel.: +86-25-8439-5045; Fax: +86-25-8439-5314
| | | | | | | | | |
Collapse
|
29
|
Mackei M, Orbán K, Molnár A, Pál L, Dublecz K, Husvéth F, Neogrády Z, Mátis G. Cellular Effects of T-2 Toxin on Primary Hepatic Cell Culture Models of Chickens. Toxins (Basel) 2020; 12:E46. [PMID: 31941063 PMCID: PMC7020465 DOI: 10.3390/toxins12010046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
Trichothecene mycotoxins such as T-2 toxin cause severe problems for agriculture, as well as for veterinary medicine. As liver is one of the key organs in metabolism, the main aim of our study was to investigate the immunomodulatory and cytotoxic effects of T-2 toxin, using primary hepatocyte mono-culture and hepatocyte-nonparenchymal cell (predominantly Kupffer cell) co-culture models of chicken. Cultures were exposed to 10 (T10 group), 100 (T100 group) and 1000 (T1000 group) nmol/L T-2 toxin treatment for 8 or 24 h. Alterations of cellular metabolic activity, the production of reactive oxygen species (extracellular H2O2), heat shock protein 70 (HSP70), and the concentration of different inflammatory cytokines such as interleukin (IL-)6 and IL-8 were investigated. Metabolic activity was intensely decreased by T-2 toxin administration in all of the cell culture models, in every applied concentration and incubation time. Concentrations of HSP70 and IL-8 were significantly increased in hepatocyte mono-cultures exposed to higher T-2 toxin levels (both in T100 and T1000 groups for HSP70 and in T1000 group for IL-8, respectively) compared to controls after 24 h incubation. Similarly, IL-6 levels were also significantly elevated in the T100 and T1000 groups in both of mono- and co-cultures, but only after 8 h of incubation time. In spite of the general harmful effects of T-2 toxin treatment, no significant differences were observed on reactive oxygen species production. Furthermore, the two cell culture models showed different levels of H2O2, HSP70, and IL-8 concentrations independently of T-2 toxin supplementation. In conclusion, the established primary cell cultures derived from chicken proved to be proper models to study the specific molecular effects caused by T-2 toxin. Metabolic activity and immune status of the different examined cell cultures were intensively affected; however, no changes were found in H2O2 levels.
Collapse
Affiliation(s)
- Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (K.O.); (Z.N.); (G.M.)
| | - Kata Orbán
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (K.O.); (Z.N.); (G.M.)
| | - Andor Molnár
- Department of Animal Science, Georgikon Faculty, University of Pannonia, Deák Ferenc utca 16, H-8360 Keszthely, Hungary; (A.M.); (L.P.); (K.D.); (F.H.)
| | - László Pál
- Department of Animal Science, Georgikon Faculty, University of Pannonia, Deák Ferenc utca 16, H-8360 Keszthely, Hungary; (A.M.); (L.P.); (K.D.); (F.H.)
| | - Károly Dublecz
- Department of Animal Science, Georgikon Faculty, University of Pannonia, Deák Ferenc utca 16, H-8360 Keszthely, Hungary; (A.M.); (L.P.); (K.D.); (F.H.)
| | - Ferenc Husvéth
- Department of Animal Science, Georgikon Faculty, University of Pannonia, Deák Ferenc utca 16, H-8360 Keszthely, Hungary; (A.M.); (L.P.); (K.D.); (F.H.)
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (K.O.); (Z.N.); (G.M.)
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (K.O.); (Z.N.); (G.M.)
| |
Collapse
|
30
|
Dubravka R, Daniela J, Andrea HT, Domagoj K, Nevenka K, Lada R, Davor Ž, Maja P, Maja ŠK. Sterigmatocystin moderately induces oxidative stress in male Wistar rats after short-term oral treatment. Mycotoxin Res 2019; 36:181-191. [DOI: 10.1007/s12550-019-00382-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022]
|
31
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019; 6:91. [PMID: 31750312 PMCID: PMC6843074 DOI: 10.3389/fmolb.2019.00091] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
32
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019. [PMID: 31750312 DOI: 10.3389/fmolb.2019.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
33
|
Han G, Yang H, Wang Y, Zhang R, Tashiro K, Bungo T, Furuse M, Chowdhury VS. Effects of in ovofeeding of L-leucine on amino acids metabolism and heat-shock protein-70, and -90 mRNA expression in heat-exposed chicks. Poult Sci 2019; 98:1243-1253. [DOI: 10.3382/ps/pey444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/31/2018] [Indexed: 11/20/2022] Open
|
34
|
Zearalenone causes embryotoxicity and induces oxidative stress and apoptosis in differentiated human embryonic stem cells. Toxicol In Vitro 2019; 54:243-250. [DOI: 10.1016/j.tiv.2018.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023]
|
35
|
Somborac-Bačura A, Rumora L, Novak R, Rašić D, Dumić J, Čepelak I, Žanić-Grubišić T. Differential expression of heat shock proteins and activation of mitogen-activated protein kinases in A549 alveolar epithelial cells exposed to cigarette smoke extract. Exp Physiol 2018; 103:1666-1678. [PMID: 30242929 DOI: 10.1113/ep087038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/20/2018] [Indexed: 01/24/2023]
Abstract
NEW FINDINGS What is the central question of this study? What is the effect of cigarette smoke on cell death, oxidative damage, expression of heat shock proteins (HSPs) and activation of mitogen-activated protein kinases (MAPKs) in A549 alveolar epithelial cells? What is the main finding and its importance? Cigarette smoke induces cytotoxicity and oxidative damage to A549 cells, increases expression of different HSPs and activates MAPK signalling pathways. This could be related to inflammatory response and apoptosis observed in lungs of patients with smoking-related diseases. ABSTRACT Cigarette smoking is one of the main risk factors for development of chronic obstructive pulmonary disease (COPD). We previously reported that cigarette smoke (CS) induces damage to proteins and their ineffective degradation. Here, we hypothesize that CS could induce oxidative stress and cytotoxicity in lung epithelial cells through alterations of heat shock protein (HSP) expression and mitogen-activated protein kinase (MAPK) signalling pathways. We exposed A549 alveolar epithelial cells to various concentrations of cigarette smoke extract (CSE). Higher concentrations of CSE caused apoptosis of A549 cells after 4 h, while after 24 h cell viability was decreased, and lactate dehydrogenase in cell culture medium was increased as well as the number of necrotic cells. Concentrations of malondialdehyde (MDA) were elevated, while total thiol groups were decreased. Changes in the expression of HSPs (HSP70, HSP32 and HSP27) were time-dependent. After 6 h, CSE caused an increase in the expression of HSP70 and HSP32, while after 8 h all examined HSPs were up-regulated and remained increased up to 48 h. Treatment of A549 cells with CSE stimulated phosphorylation of extracellular signal-regulated kinase and p38 in a dose-dependent manner, while c-Jun N-terminal kinase activation was not detected. By using specific inhibitors, we demonstrated that MAPKs and HSPs interplay in CSE effects. In conclusion, our results show that MAPKs and HSPs are involved in the mechanism underlying CSE-induced cytotoxicity and oxidative damage to A549 alveolar epithelial cells. These processes could be related to inflammatory response and apoptosis observed in lungs of patients with smoking-related diseases, such as COPD.
Collapse
Affiliation(s)
- Anita Somborac-Bačura
- Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, University of Zagreb, Kneza Domagoja, Zagreb, Croatia
| | - Lada Rumora
- Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, University of Zagreb, Kneza Domagoja, Zagreb, Croatia
| | - Ruđer Novak
- Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, University of Zagreb, Ante Kovačića, Zagreb, Croatia
| | - Dubravka Rašić
- Unit of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta, Zagreb, Croatia
| | - Jerka Dumić
- Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, University of Zagreb, Ante Kovačića, Zagreb, Croatia
| | - Ivana Čepelak
- Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, University of Zagreb, Kneza Domagoja, Zagreb, Croatia
| | - Tihana Žanić-Grubišić
- Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, University of Zagreb, Kneza Domagoja, Zagreb, Croatia
| |
Collapse
|
36
|
El Golli-Bennour E, Timoumi R, Koroit M, Bacha H, Abid-Essefi S. Protective effects of kefir against zearalenone toxicity mediated by oxidative stress in cultured HCT-116 cells. Toxicon 2018; 157:25-34. [PMID: 30448289 DOI: 10.1016/j.toxicon.2018.11.296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 01/19/2023]
Abstract
Kefir is a fermented milk with numerous health favors counting restorative properties of bacterial flora, reduction of the symptoms of lactose intolerance, immune system stimulation, cholesterol reduction, as well as anti-mutagenic and anti-tumor properties. Zearalenone (ZEN) is a mycotoxin produced by some Fusarium species. ZEN often occurs as a contaminant in cereal grains and animal feeds. Human exposure occurs by ingestion of mycotoxin-contaminated products and can cause serious health problems. This study aimed to assess the preventive effect of kefir against ZEN toxicity in cultured HCT-116 colorectal carcinoma cells; by the evaluation of cell viability, oxidative stress status and the initiation of apoptotic cell death pathway. Our results demonstrated that ZEN inhibits cell proliferation which was accompanied by an increase in the generation of free radicals as measured by fluorescent 2,7-dichlorofluorescein (DCF) and Malondialdehyde (MDA). As an adaptive response to this redox status, we showed an induction of heat shock protein expression (Hsp 70) and an activation of antioxidant enzymes; catalase and Superoxide Dismutase (SOD). Moreover, a loss of mitochondrial membrane potential (Δѱm) was observed. The co-treatment as well as the pre-treatment by kefir showed a reduction of ZEN induced damages for all tested markers. However, the pre-treatment seems to be the most efficient, it prevented almost all ZEN hazards. Consequently, oxidative damage appears to be a key determinant of ZEN induced toxicity in cultured HCT-116 cells. In conclusion, we showed that kefir may better exert its virtue on preventive mode rather than on curative one. By this way, kefir as a beverage with highly antioxidant properties could be relevant particularly with the emergent demand for natural products which may counteract the detrimental effects of oxidative stress and therefore prevent multiple human diseases.
Collapse
Affiliation(s)
- Emna El Golli-Bennour
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia.
| | - Rim Timoumi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | - Meriam Koroit
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | - Hassen Bacha
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| |
Collapse
|
37
|
Woelflingseder L, Del Favero G, Blažević T, Heiss EH, Haider M, Warth B, Adam G, Marko D. Impact of glutathione modulation on the toxicity of the Fusarium mycotoxins deoxynivalenol (DON), NX-3 and butenolide in human liver cells. Toxicol Lett 2018; 299:104-117. [PMID: 30244016 DOI: 10.1016/j.toxlet.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022]
Abstract
DON, NX-3 and butenolide (BUT) are secondary metabolites formed by Fusarium graminearum. Evidence for formation of DON-glutathione adducts exists in plants, and also in human liver (HepG2) cells mass spectrometric evidence for GSH-adduct formation was reported. NX-3 is a DON derivative lacking structural features for Thiol-Michael addition, while BUT has the structural requirements (conjugated double bond and keto group). In the present study, we addressed whether these structural differences affect levels of intracellular reactive oxygen species in HepG2 cells, and if intracellular GSH levels influence toxic effects induced by DON, NX-3 and BUT. Pre-treatment with an inhibitor of GSH bio-synthesis, L-buthionine-[S,R]-sulfoximine, aggravated substantially BUT-induced cytotoxicity (≥50 μM, 24 h), but only marginally affected the cytotoxicity of DON and NX-3 indicating that GSH-mediated detoxification is of minor importance in HepG2 cells. We further investigated whether BUT, a compound inducing alone low oral toxicity, might affect the toxicity of DON. Under different experimental designs with respect to pre- and/or co-incubations, BUT was found to contribute to the combinatorial cytotoxicity, exceeding the toxic effect of DON alone. The observed combinatorial effects underline the potential contribution of secondary metabolites like BUT, considered to be alone of low toxicological relevance, to the toxicity of DON or structurally related trichothecenes, arguing for further studies on the toxicological relevance of naturally occurring mixtures.
Collapse
Affiliation(s)
- Lydia Woelflingseder
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria.
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria.
| | - Tina Blažević
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Maximilian Haider
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria.
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria.
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria.
| |
Collapse
|
38
|
Kócsó DJ, Szabó-Fodor J, Mézes M, Balogh K, Ferenczi S, Szabó A, Bóta B, Kovács M. Fumonisin B 1 exposure increases Hsp70 expression in the lung and kidney of rats without inducing significant oxidative stress. Acta Vet Hung 2018; 66:394-407. [PMID: 30264617 DOI: 10.1556/004.2018.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this experiment was to determine whether fumonisin B1 (FB1) added to the diet of rats in a dose of 50 mg/kg changes the production of heat shock protein 70 (Hsp70) in the lungs and kidney of rats. We also studied the effect of this mycotoxin on the antioxidant system of the body. Mature (8 weeks old) male Wistar Crl:WI BR rats (n = 6/group) were fed the toxin-containing diet for 5 days. FB1 resulted in a 7% body weight reduction without significantly changing the feed intake. Western blot analysis of the lungs and kidney demonstrated a substantial (1.4-fold and 1.8-fold, respectively) increase in Hsp70 expression. Alterations could not be detected in the clinical chemical parameters (total protein, albumin, total cholesterol, glucose, creatinine and urea concentrations, and aspartate aminotransferase activity). There was no statistically significant change in malondialdehyde concentrations and the measured antioxidant parameters (the amount of reduced glutathione, GSH and glutathione peroxidase activity, GPx) in the blood plasma, lung and kidney tissue. Thus, it can be concluded that FB1 did not induce oxidative stress in the lungs and kidney, but increased Hsp70 production.
Collapse
Affiliation(s)
- Dániel J. Kócsó
- 1 MTA-KE Mycotoxins in the Food Chain Research Group, Kaposvár University, Guba S. u. 40, H-7400 Kaposvár, Hungary
| | - Judit Szabó-Fodor
- 1 MTA-KE Mycotoxins in the Food Chain Research Group, Kaposvár University, Guba S. u. 40, H-7400 Kaposvár, Hungary
| | - Miklós Mézes
- 1 MTA-KE Mycotoxins in the Food Chain Research Group, Kaposvár University, Guba S. u. 40, H-7400 Kaposvár, Hungary
- 2 Department of Nutrition, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Krisztián Balogh
- 2 Department of Nutrition, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Szilamér Ferenczi
- 3 Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary
| | - András Szabó
- 1 MTA-KE Mycotoxins in the Food Chain Research Group, Kaposvár University, Guba S. u. 40, H-7400 Kaposvár, Hungary
- 2 Department of Nutrition, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Brigitta Bóta
- 1 MTA-KE Mycotoxins in the Food Chain Research Group, Kaposvár University, Guba S. u. 40, H-7400 Kaposvár, Hungary
| | - Melinda Kovács
- 1 MTA-KE Mycotoxins in the Food Chain Research Group, Kaposvár University, Guba S. u. 40, H-7400 Kaposvár, Hungary
- 4 Mycotoxins in the Food Chain Research Group, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| |
Collapse
|
39
|
Cao R, Wang D, Wei Q, Wang Q, Yang D, Liu H, Dong Z, Zhang X, Zhang Q, Zhao J. Integrative Biomarker Assessment of the Influence of Saxitoxin on Marine Bivalves: A Comparative Study of the Two Bivalve Species Oysters, Crassostrea gigas, and Scallops, Chlamys farreri. Front Physiol 2018; 9:1173. [PMID: 30246779 PMCID: PMC6110902 DOI: 10.3389/fphys.2018.01173] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023] Open
Abstract
Harmful algae blooms have expanded greatly in recent decades, and their secreted toxins pose a severe threat to human health and marine ecosystems. Saxitoxin (STX) is a main paralytic shellfish poison naturally produced by marine microalgae of the genus Alexandrium. Despite numerous studies have assessed the impacts of STX on marine bivalves, comparative in vivo study on the toxicity of STX on bivalves with distinct accumulation ability (such as oysters and scallops) has been seldom investigated. The aim of this study was to identify whether distinct sensitivity exists between oysters, Crassostrea gigas, and scallops, Chlamys farreri under the same amount of STX exposure using multiple biomarker responses. The responses of different biochemical markers including oxidative stress markers (catalase, superoxide dismutase, glutathione S-transferase, and lipid peroxidation) and immunotoxicity biomarkers (hemocyte phagocytosis rate, reactive oxidative species production, and DNA damages) were evaluated in bivalves after 12, 48, and 96 h of exposure to STX. The integrated biomarker responses value combined with two-way ANOVA analysis suggested that STX posed slightly severer stress on scallops than oysters for the extended period of time. This study provided preliminary results on the usefulness of a multi-biomarker approach to assess the toxicity associated with STX exposure in marine bivalves.
Collapse
Affiliation(s)
- Ruiwen Cao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Qianyu Wei
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Qing Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Dinglong Yang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Hui Liu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhijun Dong
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaoli Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Qianqian Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
40
|
Li Y, Wang T, Wu J, Zhang X, Xu Y, Qian Y. Multi-parameter analysis of combined hepatotoxicity induced by mycotoxin mixtures in HepG2 cells. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Evaluation of combined toxicity and exploring the corresponding mechanism is of great significance in characterising the interactions of mixed mycotoxins. This study used high content analysis and multiple evaluation models to estimate combined toxic hepatotoxicity in HepG2 cells, due to aflatoxin B1, zearalenone and deoxynivalenol, which are often detected simultaneously in the same grain sample. All mycotoxins induced cell loss in HepG2 cells in a concentration dependent manner. The combined toxic effects observed by multiple evaluation models (CA, IA and CI) suggested a similar mechanism and dominant synergistic effects for binary and ternary combinations. Based on reactive oxygen species, intracellular glutathione (GSH), and mitochondrial transmembrane potential (MMP) assessment, the synergistic mechanisms may be associated with mitochondrial damage by reducing GSH and MMP.
Collapse
Affiliation(s)
- Y. Li
- Key Laboratory of Agro-products Safety and Quality of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, 100081 Beijing, China P.R
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122 Jiangsu, China P.R
| | - T.Q. Wang
- Key Laboratory of Agro-products Safety and Quality of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, 100081 Beijing, China P.R
| | - J. Wu
- Key Laboratory of Agro-products Safety and Quality of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, 100081 Beijing, China P.R
| | - X.L. Zhang
- Key Laboratory of Agro-products Safety and Quality of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, 100081 Beijing, China P.R
| | - Y.Y. Xu
- Key Laboratory of Agro-products Safety and Quality of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, 100081 Beijing, China P.R
| | - Y.Z. Qian
- Key Laboratory of Agro-products Safety and Quality of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, 100081 Beijing, China P.R
| |
Collapse
|
41
|
Reitsema RE, Meire P, Schoelynck J. The Future of Freshwater Macrophytes in a Changing World: Dissolved Organic Carbon Quantity and Quality and Its Interactions With Macrophytes. FRONTIERS IN PLANT SCIENCE 2018; 9:629. [PMID: 29868084 PMCID: PMC5960680 DOI: 10.3389/fpls.2018.00629] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/20/2018] [Indexed: 05/22/2023]
Abstract
Freshwater ecosystems are confronted with the effects of climate change. One of the major changes is an increased concentration of aquatic carbon. Macrophytes are important in the aquatic carbon cycle and play as primary producers a crucial role in carbon storage in aquatic systems. However, macrophytes are affected by increasing carbon concentrations. The focus of this review lies on dissolved organic carbon (DOC), one of the most abundant forms of carbon in aquatic ecosystems which has many effects on macrophytes. DOC concentrations are rising; the exact cause of this increase is not known, although it is hypothesized that climate change is one of the drivers. The quality of DOC is also changing; for example, in urban areas DOC composition is different from the composition in natural watersheds, resulting in DOC that is more resistant to photo-degradation. Plants can benefit from DOC as it attenuates UV-B radiation, it binds potentially harmful heavy metals and provides CO2 as it breaks down. Yet plant growth can also be impaired under high DOC concentrations, especially by humic substances (HS). HS turn the water brown and attenuate light, which limits macrophyte photosynthesis at greater depths. This leads to lower macrophyte abundance and lower species diversity. HS form a wide class of chemicals with many different functional groups and they therefore have the ability to interfere with many biochemical processes that occur in freshwater organisms. Few studies have looked into the direct effects of HS on macrophytes, but there is evidence that HS can interfere with photosynthesis by entering macrophyte cells and causing damage. DOC can also affect reactivity of heavy metals, water and sediment chemistry. This indirectly affects macrophytes too, so they are exposed to multiple stressors that may have contradictive effects. Finally, macrophytes can affect DOC quality and quantity as they produce DOC themselves and provide a substrate to heterotrophic bacteria that degrade DOC. Because macrophytes take a key position in the aquatic ecosystem, it is essential to understand to what extent DOC quantity and quality in surface water are changing and how this will affect macrophyte growth and species diversity in the future.
Collapse
|
42
|
Subchronic exposure to deoxynivalenol exerts slight effect on the immune system and liver morphology of growing rabbits. ACTA VET BRNO 2017. [DOI: 10.2754/avb201786010037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As the most common grain contaminant worldwide, deoxynivalenol is of high importance despite its low toxicity compared to other trichothecene mycotoxins. Data on the effects of deoxynivalenol in rabbits are scarce. Thus, the aim of this study was to investigate the effects of dietary deoxynivalenol fed at a high level (10 mg/kg of feed) on the productive performance, blood indices, immunological variables, histopathological changes, and genotoxicity in rabbits. Forty-eight Pannon White rabbits were exposed to contaminated diets for three weeks. Despite its high concentration, deoxynivalenol did not affect the feed intake, body weight, and body weight gain. Liver and kidney function was not affected, as shown by the clinical chemistry indices. Conversely, in two rabbits the toxin caused mild fibrosis of the liver, without degenerative changes of the hepatocytes. No genotoxicity could be observed either. Gut cytokines and the phagocytic activity of the macrophages did not differ significantly. The percentage of neutrophils was significantly lower, whereas that of eosinophils was significantly higher in the toxin-fed group. Deoxynivalenol did not cause significant changes in gut and villus morphology. In 4 out of the 6 deoxynivalenol-treated animals, the ratio of lymphoblast proliferation and simultaneous apoptosis shifted towards apoptosis in the gut-associated lymphoid tissue. In the central part of the lymphoid follicles of the spleen, lymphocyte depletion and follicular atrophy could be detected. It can be concluded that rabbits are less sensitive to deoxynivalenol, but the findings confirm that this Fusarium toxin is capable of modulating the immune response.
Collapse
|
43
|
The Protective Effect of Selenium on Chronic Zearalenone-Induced Reproductive System Damage in Male Mice. Molecules 2016; 21:molecules21121687. [PMID: 27941626 PMCID: PMC6274099 DOI: 10.3390/molecules21121687] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/17/2022] Open
Abstract
This study aims to explore the protective effect of selenium (Se) on chronic zearalenone (ZEN)-induced reproductive system damage in male mice and the possible protective molecular mechanism against this. The chronic ZEN-induced injury mouse model was established with the continuous intragastric administration of 40 mg/kg body mass (B.M.) ZEN for 28 days. Then, interventions with different doses (0.1, 0.2, and 0.4 mg/kg B.M.) of Se were conducted on mice to analyse the changes in organ indexes of epididymis and testis, antioxidant capability of testis, serum level of testosterone, sperm concentration and motility parameters, and the expression levels of apoptosis-associated genes and blood testis barrier- (BTB) related genes. Our results showed that Se could greatly improve the ZEN-induced decrease of epididymis indexes and testis indexes. Results also showed that the decrease in sperm concentration, sperm normality rate, and sperm motility parameters, including percentage of motile sperm (motile), tropism percentage (progressive) and sperm average path velocity (VAP), caused by ZEN were elevated upon administration of the higher dose (0.4 mg/kg) and intermediate dose (0.2 mg/kg) of Se. Selenium also significantly reduced the content of malondialdehyde (MDA) but enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the testis tissue. Further research demonstrated that ZEN increased the level of mRNA expression of BCL2-associated X protein (Bax) and caspase 3 (Casp3), decreased the level of mRNA expression of B cell leukemia/lymphoma 2 (Bcl2), vimentin (Vim) and cadherin 2 (Cdh2), whereas the co-administration of Se reversed these gene expression levels. Our results indicated that high levels of Se could protect against reproductive system damage in male mice caused by ZEN and the mechanism might such be that Se improved mice antioxidant ability, inhibited reproductive cell apoptosis, and increased the decrease of BTB integrity-related genes caused by ZEN.
Collapse
|
44
|
Hafner D, Szabó A, D’Costa L, Szabó-Fodor J, Tornyos G, Blochné Bodnár Z, Ölbeiné Horvatovich K, Baloghné Zándoki E, Bóta B, Kovács M. Individual and combined effects of feed artificially contaminated with with fumonisin B1 and T-2 toxin in weaned rabbits. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2016.2067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Co-contamination of feed and feed raw materials with two or more mycotoxins is frequently reported, however, only a few studies have investigated the combined effects of low doses of multiple mycotoxins. In the present study the individual and combined effects of 10 mg/kg fumonisin B1 and 2 mg/kg T-2 toxin (n=12/group) were investigated in weaned rabbits. Mycotoxin contaminated feed was produced by adding fungal cultures of Fusarium verticillioides and Fusarium sporotrichioides, and fed to 40 days old rabbits during 28 days. Feed intake and body weight were measured weekly, serum biochemistry and antioxidant parameters on day 0, 14 and 28, while histopathological examination and comet assay were performed at the end of the experiment. T-2 exposure both alone and in combination resulted in 15-18% less final body weight compared to the control and FB1 treatment. There was a significant increase in the concentration of plasma total protein, albumin, fructosamine and creatinine in the group treated with FB1 compared to the control. The liver and the kidney of most animals treated with T-2 toxin, FB1 and their combination showed pathological changes, occurring more frequent in animals exposed to both toxins. T-2 resulted in depletion of lymphocytes in the spleen. FB1 and T-2 exerted synergistic effect on the antioxidant/oxidative parameters after 2 weeks of exposure, manifesting in less glutathione and glutathione peroxidase, while more malondialdehyde was produced. Both toxins caused DNA damage in the lymphocytes, which was more pronounced in the group fed T-2 toxin and T-2 combined with FB1, without additive or synergistic effects.
Collapse
Affiliation(s)
- D. Hafner
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, Guba S. 40., Kaposvár 7400, Hungary
| | - A. Szabó
- Institute of Diagnostic Imaging and Radiation Oncology, Kaposvár University, Guba S. 40., Kaposvár 7400, Hungary
| | - L. D’Costa
- MTA-KE Mycotoxins in the Food Chain Research Group, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Guba S. 40., Kaposvár 7400, Hungary
| | - J. Szabó-Fodor
- MTA-KE Mycotoxins in the Food Chain Research Group, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Guba S. 40., Kaposvár 7400, Hungary
| | - G. Tornyos
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, Guba S. 40., Kaposvár 7400, Hungary
| | - Zs. Blochné Bodnár
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, Guba S. 40., Kaposvár 7400, Hungary
| | - K. Ölbeiné Horvatovich
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, Guba S. 40., Kaposvár 7400, Hungary
| | - E. Baloghné Zándoki
- MTA-KE Mycotoxins in the Food Chain Research Group, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Guba S. 40., Kaposvár 7400, Hungary
| | - B. Bóta
- MTA-KE Mycotoxins in the Food Chain Research Group, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Guba S. 40., Kaposvár 7400, Hungary
| | - M. Kovács
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, Guba S. 40., Kaposvár 7400, Hungary
- MTA-KE Mycotoxins in the Food Chain Research Group, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Guba S. 40., Kaposvár 7400, Hungary
| |
Collapse
|
45
|
Long M, Yang SH, Han JX, Li P, Zhang Y, Dong S, Chen X, Guo J, Wang J, He JB. The Protective Effect of Grape-Seed Proanthocyanidin Extract on Oxidative Damage Induced by Zearalenone in Kunming Mice Liver. Int J Mol Sci 2016; 17:ijms17060808. [PMID: 27231898 PMCID: PMC4926342 DOI: 10.3390/ijms17060808] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 04/30/2016] [Accepted: 05/11/2016] [Indexed: 01/14/2023] Open
Abstract
Although grape-seed proanthocyanidin extract (GSPE) demonstrates strong anti-oxidant activity, little research has been done to clearly reveal the protective effects on the hepatotoxicity caused by zearalenone (ZEN). This study is to explore the protective effect of GSPE on ZEN-induced oxidative damage of liver in Kunming mice and the possible protective molecular mechanism of GSPE. The results indicated that GSPE could greatly reduce the ZEN-induced increase of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities. GSPE also significantly decreased the content of MDA but enhanced the activities of antioxidant enzymes SOD and GSH-Px. The analysis indicated that ZEN decreased both mRNA expression levels and protein expression levels of nuclear erythroid2-related factor2 (Nrf2). Nrf2 is considered to be an essential antioxidative transcription factor, as downstream GSH-Px, γ-glutamyl cysteine synthetase (γ-GCS), hemeoxygenase-1 (HO-1), and quinone oxidoreductase 1 (NQO1) decreased simultaneously, whereas the pre-administration of GSPE groups was shown to elevate these expressions. The results indicated that GSPE exerted a protective effect on ZEN-induced hepatic injury and the mechanism might be related to the activation of the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shu-Hua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jian-Xin Han
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuang Dong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xinliang Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jiayi Guo
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jun Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Jian-Bin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
46
|
Dragone R, Ermilov L, Grasso G, Maggioni S, Mantovani A, Frazzoli C. Antioxidant power as biochemical endpoint in bread for screening and early managing quality and toxicant-related safety anomalies in food production. Food Chem Toxicol 2016; 94:31-8. [PMID: 27174639 DOI: 10.1016/j.fct.2016.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Flaxseeds are both a food ingredient and a natural source of antioxidants (e.g. lignans, PUFAs) and pro-oxidant contaminants (e.g. cadmium): the variable mixture of anti- and pro-oxidant substances may impact on the redox homeostasis of flaxseed-enriched foods. The antioxidant power is studied here as biochemical activity of flaxseeds in white wheat bread and as endpoint for possible screening of anomalous variations of bioactive mixtures (antioxidants vs. prooxidants) in food matrices. A bioprobe assay based on the superoxide dismutase (SOD) enzyme (6 channels of the multiprobe bioelectronic platform BEST) was performed on white wheat bread with and without flaxseeds. Nine BEST channels were simultaneously used for validation and monitoring of measuring conditions (temperature, pH, conductivity). Findings were compared with quantitative analysis of antioxidants and pro-oxidant contaminants. Organic and aqueous extracts of both bread types were examined in parallel. The SOD-probe detected the difference in antioxidant power given by 10% flaxseed, thus supporting the use of antioxidant power detected by bioenzymatic screening as sensitive biochemical endpoint. Mixtures of bioactive molecules in foods generate biochemical activities that can be monitored as time-effective indicators of invariability, which is pivotal in the daily control of anomalies in food production and therefore in the protection of consumers' health.
Collapse
Affiliation(s)
- Roberto Dragone
- Institute of Nanostructured Materials, Consiglio Nazionale delle Ricerche, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Laura Ermilov
- Institute of Nanostructured Materials, Consiglio Nazionale delle Ricerche, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Gerardo Grasso
- Institute of Nanostructured Materials, Consiglio Nazionale delle Ricerche, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Silvia Maggioni
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", V. La Masa 19, Milan, Italy
| | - Alberto Mantovani
- Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - Chiara Frazzoli
- External Relations Office, Istituto Superiore di Sanità, V. Giano della Bella 34, 00162, Rome, Italy.
| |
Collapse
|
47
|
A Quantitative Genomic Approach for Analysis of Fitness and Stress Related Traits in a Drosophila melanogaster Model Population. Int J Genomics 2016; 2016:2157494. [PMID: 27274984 PMCID: PMC4853962 DOI: 10.1155/2016/2157494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/29/2016] [Indexed: 12/27/2022] Open
Abstract
The ability of natural populations to withstand environmental stresses relies partly on their adaptive ability. In this study, we used a subset of the Drosophila Genetic Reference Panel, a population of inbred, genome-sequenced lines derived from a natural population of Drosophila melanogaster, to investigate whether this population harbors genetic variation for a set of stress resistance and life history traits. Using a genomic approach, we found substantial genetic variation for metabolic rate, heat stress resistance, expression of a major heat shock protein, and egg-to-adult viability investigated at a benign and a higher stressful temperature. This suggests that these traits will be able to evolve. In addition, we outline an approach to conduct pathway associations based on genomic linear models, which has potential to identify adaptive genes and pathways, and therefore can be a valuable tool in conservation genomics.
Collapse
|
48
|
Boussabbeh M, Ben Salem I, Belguesmi F, Bacha H, Abid-Essefi S. Tissue oxidative stress induced by patulin and protective effect of crocin. Neurotoxicology 2016; 53:343-349. [DOI: 10.1016/j.neuro.2015.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 11/27/2022]
|
49
|
Arnal ME, Lallès JP. Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota. Nutr Rev 2016; 74:181-97. [PMID: 26883882 DOI: 10.1093/nutrit/nuv104] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epidemic of metabolic diseases has raised questions about the interplay between the human diet and the gut and its microbiota. The gut has two vital roles: nutrient absorption and intestinal barrier function. Gut barrier defects are involved in many diseases. Excess energy intake disturbs the gut microbiota and favors body entry of microbial compounds that stimulate chronic metabolic inflammation. In this context, the natural defense mechanisms of gut epithelial cells and the potential to boost them nutritionally warrant further study. One such important defense system is the activation of inducible heat-shock proteins (iHSPs) which protect the gut epithelium against oxidative stress and inflammation. Importantly, various microbial components can induce the expression of iHSPs. This review examines gut epithelial iHSPs as the main targets of microbial signals and nutrients and presents data on diseases involving disturbances of gut epithelial iHSPs. In addition, a broad literature analysis of dietary modulation of gut epithelial iHSPs is provided. Future research aims should include the identification of gut microbes that can optimize gut-protective iHSPs and the evaluation of iHSP-mediated health benefits of nutrients and food components.
Collapse
Affiliation(s)
- Marie-Edith Arnal
- M.E. Arnal and J.P. Lallès are with the Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France. J.P. Lallès is with the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France
| | - Jean-Paul Lallès
- M.E. Arnal and J.P. Lallès are with the Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France. J.P. Lallès is with the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France.
| |
Collapse
|
50
|
Papp G, Máté G, Mike N, Gazdag Z, Pesti M. Regulation of the antioxidant system in cells of the fission yeast Schizosaccharomyces pombe after combined treatment with patulin and citrinin. Toxicon 2016; 111:100-7. [PMID: 26752674 DOI: 10.1016/j.toxicon.2015.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/10/2015] [Accepted: 12/29/2015] [Indexed: 10/25/2022]
Abstract
The effects of combined treatment with patulin (PAT) and citrinin (CTN) on Schizosaccharomyces pombe cells were investigated in acute toxicity tests. In comparison with the controls the exposure of fission yeast cells (10(7) cells ml(-1)) to PAT + CTN (250 μM each) for 1 h at a survival rate of 66.6% significantly elevated the concentration of total reactive oxygen species (ROS) via increased levels of peroxides without affecting the concentrations of superoxides or the hydroxyl radical. This treatment induced a 3.08-fold increase in the specific concentration of glutathione and elevated specific activities of catalase and glutathione S-transferase, while at the same time the activity of glutathione reductase decreased. The pattern of the ROS was the same as that induced by CTN (Máté et al., 2014), while the presence of PAT in the PAT + CTN combination treatment modified the activities of the antioxidant system (Papp et al., 2012) in comparison with the individual PAT or CTN treatment, suggesting toxin-specific regulation of glutathione and the enzymes of the antioxidant system and the possibility that the transcription factor (pap1 and atf1) -regulated processes might be influenced directly by ROS.
Collapse
Affiliation(s)
- Gábor Papp
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary; Microbial Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| | - Gábor Máté
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Nóra Mike
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Zoltán Gazdag
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary; Microbial Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Miklós Pesti
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|