1
|
Mussalo L, Afonin AM, Zavodna T, Krejcik Z, Honkova K, Fayad C, Shahbaz MA, Kalapudas J, Penttilä E, Löppönen H, Koivisto AM, Malm T, Topinka J, Jalava P, Lampinen R, Kanninen KM. Traffic-related ultrafine particles influence gene regulation in olfactory mucosa cells altering PI3K/AKT signaling. ENVIRONMENT INTERNATIONAL 2025; 199:109484. [PMID: 40273555 DOI: 10.1016/j.envint.2025.109484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/10/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Traffic-related ultrafine particles (UFPs) are an emerging health concern affecting the brain and increasing the risk of Alzheimer's disease (AD). PI3K/AKT signaling is known to contribute to neuronal survival and to be altered in AD. The nasal olfactory mucosa (OM) is a sensory tissue exposed directly to ambient air, and a starting point for olfactory neural circuits towards the brain. Evidence of air pollution-induced transcriptional regulation via microRNAs (miRNA) and DNA methylation (DNAmet) is accumulating and air pollutant-mediated disturbances in PI3K/AKT signaling have been reported. By utilizing a highly translational human-based in vitro model of OM, we aimed to investigate possible gene regulatory mechanisms in PI3K/AKT signaling induced by UFPs, and to compare the responses between cognitively healthy and individuals with AD. miRNA expression was analyzed using next-generation sequencing (NGS) and chip-based methylation analysis was performed to detect differentially methylated loci (DML). These data were combined with previously published transcriptomics analysis (mRNA) to construct an mRNA-miRNA-DNAmet-integrative network. Protein level changes were studied by immunoassays. We observed UFP-induced reductions in viability and increases in oxidative stress and DNA damage without eminent cell death. Integrative network analysis revealed multiple connections of miRNAs to differentially expressed genes in the PI3K/AKT pathway, and effects were most prominent in AD cells. Similarly, in AD cells DML were identified in transcription factor and apoptosis genes, downstream of PI3K/AKT signaling. Conclusively, traffic-related UFPs influence gene regulation of PI3K/AKT signaling to modulate OM cell survival, with existing AD pathology resulting in heightened vulnerability to UFP effects.
Collapse
Affiliation(s)
- Laura Mussalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Alexey M Afonin
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Tana Zavodna
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Zdenek Krejcik
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Katerina Honkova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Claire Fayad
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Muhammad Ali Shahbaz
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Juho Kalapudas
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210 Kuopio, Finland; Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210 Kuopio, Finland; Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki 00014 Helsinki, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jan Topinka
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Riikka Lampinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland.
| |
Collapse
|
2
|
Aschner M, Skalny AV, Martins AC, Tizabi Y, Zaitseva IP, Santamaria A, Lu R, Gluhcheva YY, Tinkov AA. The role of NLRP3 inflammasome activation in proinflammatory and cytotoxic effects of metal nanoparticles. Arch Toxicol 2025; 99:1287-1314. [PMID: 39960653 DOI: 10.1007/s00204-025-03972-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/27/2025] [Indexed: 04/04/2025]
Abstract
Exposure to metal nanoparticles (NPs) is known to induce inflammatory responses in various tissues, thus limiting their therapeutic potential. NOD-like receptor protein 3 (NLRP3) inflammasome activation is an essential component of innate immunity playing a significant role in inflammation and development of inflammatory diseases. Therefore, the objective of the present review was to summarize data on the role of NLRP3 inflammasome in proinflammatory effects induced by metal NPs, and to discuss the underlying molecular mechanisms, including its dependence on the physical and chemical properties of metal NPs. Titanium, zinc, silver, aluminum, iron, cobalt, nickel, vanadium, and tungsten nanoparticles, as well as metal-based quantum dots have all been shown to induce NLRP3 inflammasome activation in vitro in macrophages and monocytes, dendritic cells, keratinocytes, hepatocytes, enterocytes, microglia, astrocytes, lung epithelial cells, endotheliocytes, as well as certain types of cancer cells. In vivo studies confirmed the role of NLRP3 pathway activation in development of colitis, pulmonary inflammation, liver damage, osteolysis, and neuroinflammation induced by various metal nanoparticles. Briefly, particle endocytosis with subsequent lysosomal damage, induction of ROS formation, K+ efflux, increased intracellular Ca2+ levels, and NF-κB pathway activation results in NLRP3 inflammasome complex assembly, caspase-1 activation, and cleavage of pro-IL-1β and pro-IL-18 to mature proinflammatory cytokines, while gasdermin D cleavage induces pyroptotic cell death. Moreover, small-sized and rod-shaped metal NPs exert a more profound stimulatory effect on NLRP3 inflammasome activation, but contrary findings have also been reported. Taken together, it is concluded that NLRP3 inflammasome may mediate both adverse proinflammatory effects of metal nanoparticles, as well as their beneficial effect when used as antitumor agents.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Irina P Zaitseva
- Laboratory of Ecobiomonitoring and Quality Control and Department of Physical Education, Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yordanka Y Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology With Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
- Laboratory of Ecobiomonitoring and Quality Control and Department of Physical Education, Yaroslavl State University, Yaroslavl, 150003, Russia
| |
Collapse
|
3
|
Colboc H, Moguelet P, Letavernier E, Frochot V, Bernaudin JF, Weil R, Rouzière S, Senet P, Bachmeyer C, Laporte N, Lucas I, Descamps V, Amode R, Brunet-Possenti F, Kluger N, Deschamps L, Dubois A, Reguer S, Somogyi A, Medjoubi K, Refregiers M, Daudon M, Bazin D. Pathologies related to abnormal deposits in dermatology: a physico-chemical approach. CR CHIM 2022. [DOI: 10.5802/crchim.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Gu M, Wang S, Cao W, Yan D, Cao Y. Comparison of P25 and nanobelts on Kruppel-like factor-mediated nitric oxide pathways in human umbilical vein endothelial cells. J Appl Toxicol 2022; 42:651-659. [PMID: 34633093 DOI: 10.1002/jat.4247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022]
Abstract
Recently, we reported that titanium dioxide (TiO2 ) materials activated endothelial cells via Kruppel-like factor (KLF)-mediated nitric oxide (NO) dysfunction, but the roles of physical properties of materials are not clear. In this study, we prepared nanobelts from P25 particles and compared their adverse effects to human umbilical vein endothelial cells (HUVECs). TiO2 nanobelts had belt-like morphology but comparable surface areas as P25 particles. When applied to HUVECs, P25 particles or nanobelts did not induce cytotoxicity, although nanobelts were much more effective to increase intracellular Ti element concentrations compared the same amounts of P25 particles. Only nanobelts significantly induced THP-1 adhesion onto HUVECs. Consistently, nanobelts were more significant to induce the expression of intracellular adhesion molecule-1 (ICAM1) and the release of soluble ICAM-1 (sICAM-1), indicating that nanobelts were more potent to induce endothelial activation in vitro. As the mechanisms for endothelial activation, both P25 and nanobelts reduced the generation of intracellular NO as well as the expression of NO regulators KLF2 and KLF4. Combined, the results from this study indicated that the different morphologies of P25 particles and nanobelts only changed their internalization into HUVECs but showed minimal impact on KLF-mediated NO signaling pathways.
Collapse
Affiliation(s)
- Manyu Gu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Shuyi Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Wandi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Dejian Yan
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
5
|
Liu K, Salvati A, Sabirsh A. Physiology, pathology and the biomolecular corona: the confounding factors in nanomedicine design. NANOSCALE 2022; 14:2136-2154. [PMID: 35103268 DOI: 10.1039/d1nr08101b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biomolecular corona that forms on nanomedicines in different physiological and pathological environments confers a new biological identity. How the recipient biological system's state can potentially affect nanomedicine corona formation, and how this can be modulated, remains obscure. With this perspective, this review summarizes the current knowledge about the content of biological fluids in various compartments and how they can be affected by pathological states, thus impacting biomolecular corona formation. The content of representative biological fluids is explored, and the urgency of integrating corona formation, as an essential component of nanomedicine designs for effective cargo delivery, is highlighted.
Collapse
Affiliation(s)
- Kai Liu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713AV, The Netherlands
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
6
|
Mancuso F, Arato I, Di Michele A, Antognelli C, Angelini L, Bellucci C, Lilli C, Boncompagni S, Fusella A, Bartolini D, Russo C, Moretti M, Nocchetti M, Gambelunghe A, Muzi G, Baroni T, Giovagnoli S, Luca G. Effects of Titanium Dioxide Nanoparticles on Porcine Prepubertal Sertoli Cells: An " In Vitro" Study. Front Endocrinol (Lausanne) 2022; 12:751915. [PMID: 35046890 PMCID: PMC8762334 DOI: 10.3389/fendo.2021.751915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
The increasing use of nanomaterials in a variety of industrial, commercial, medical products, and their environmental spreading has raised concerns regarding their potential toxicity on human health. Titanium dioxide nanoparticles (TiO2 NPs) represent one of the most commonly used nanoparticles. Emerging evidence suggested that exposure to TiO2 NPs induced reproductive toxicity in male animals. In this in vitro study, porcine prepubertal Sertoli cells (SCs) have undergone acute (24 h) and chronic (from 1 up to 3 weeks) exposures at both subtoxic (5 µg/ml) and toxic (100 µg/ml) doses of TiO2 NPs. After performing synthesis and characterization of nanoparticles, we focused on SCs morphological/ultrastructural analysis, apoptosis, and functionality (AMH, inhibin B), ROS production and oxidative DNA damage, gene expression of antioxidant enzymes, proinflammatory/immunomodulatory cytokines, and MAPK kinase signaling pathway. We found that 5 µg/ml TiO2 NPs did not induce substantial morphological changes overtime, but ultrastructural alterations appeared at the third week. Conversely, SCs exposed to 100 µg/ml TiO2 NPs throughout the whole experiment showed morphological and ultrastructural modifications. TiO2 NPs exposure, at each concentration, induced the activation of caspase-3 at the first and second week. AMH and inhibin B gene expression significantly decreased up to the third week at both concentrations of nanoparticles. The toxic dose of TiO2 NPs induced a marked increase of intracellular ROS and DNA damage at all exposure times. At both concentrations, the increased gene expression of antioxidant enzymes such as SOD and HO-1 was observed whereas, at the toxic dose, a clear proinflammatory stress was evaluated along with the steady increase in the gene expression of IL-1α and IL-6. At both concentrations, an increased phosphorylation ratio of p-ERK1/2 was observed up to the second week followed by the increased phosphorylation ratio of p-NF-kB in the chronic exposure. Although in vitro, this pilot study highlights the adverse effects even of subtoxic dose of TiO2 NPs on porcine prepubertal SCs functionality and viability and, more importantly, set the basis for further in vivo studies, especially in chronic exposure at subtoxic dose of TiO2 NPs, a condition closer to the human exposure to this nanoagent.
Collapse
Affiliation(s)
- Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luca Angelini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Catia Bellucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Lilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simona Boncompagni
- Center for Advanced Studies and Technology (CAST) and Department of Neuroscience, Imaging and Clinical Sciences (DNICS), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Aurora Fusella
- Center for Advanced Studies and Technology (CAST) and Department of Neuroscience, Imaging and Clinical Sciences (DNICS), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Carla Russo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Angela Gambelunghe
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giacomo Muzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Tiziano Baroni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Medical Andrology and Endocrinology of Reproduction, Saint Mary Hospital, Terni, Italy
| |
Collapse
|
7
|
Silva-Bermudez LS, Sevastyanova TN, Schmuttermaier C, De La Torre C, Schumacher L, Klüter H, Kzhyshkowska J. Titanium Nanoparticles Enhance Production and Suppress Stabilin-1-Mediated Clearance of GDF-15 in Human Primary Macrophages. Front Immunol 2021; 12:760577. [PMID: 34975851 PMCID: PMC8714923 DOI: 10.3389/fimmu.2021.760577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Macrophages are key innate immune cells that mediate implant acceptance or rejection. Titanium implants degrade over time inside the body, which results in the release of implant wear-off particles. Titanium nanoparticles (TiNPs) favor pro-inflammatory macrophage polarization (M1) and lower tolerogenic activation (M2). GDF-15 regulates immune tolerance and fibrosis and is endocytosed by stabilin-1. How TiNPs affect the healing activities of macrophages and their release of circulating cytokines is an open question in regenerative medicine. In this study for the first time, we identified the transcriptional program induced and suppressed by TiNPs in human pro-inflammatory and healing macrophages. Microarray analysis revealed that TiNPs altered the expression of 5098 genes in M1 (IFN-γ-stimulated) and 4380 genes in M2 (IL-4–stimulated) macrophages. 1980 genes were differentially regulated in both M1 and M2. Affymetrix analysis, confirmed by RT-PCR, demonstrated that TiNPs upregulate expression of GDF-15 and suppress stabilin-1, scavenger receptor of GDF-15. TiNPs also significantly stimulated GDF-15 protein secretion in inflammatory and healing macrophages. Flow cytometry demonstrated, that scavenging activity of stabilin-1 was significantly suppressed by TiNPs. Confocal microscopy analysis showed that TiNPs impair internalization of stabilin-1 ligand acLDL and its transport to the endocytic pathway. Our data demonstrate that TiNPs have a dual effect on the GDF-15/stabilin-1 interaction in macrophage system, by increasing the production of GDF-15 and suppressing stabilin-1-mediated clearance function. In summary, this process can result in a significant increase of GDF-15 in the extracellular space and in circulation leading to unbalanced pro-fibrotic reactions and implant complications.
Collapse
Affiliation(s)
- Lina S. Silva-Bermudez
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
| | - Tatyana N. Sevastyanova
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christina Schmuttermaier
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolina De La Torre
- Microarray Analytics – NGS Core Facility (IKC), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Leonie Schumacher
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
- *Correspondence: Julia Kzhyshkowska,
| |
Collapse
|
8
|
Manuja A, Kumar B, Kumar R, Chhabra D, Ghosh M, Manuja M, Brar B, Pal Y, Tripathi B, Prasad M. Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol Rep 2021; 8:1970-1978. [PMID: 34934635 PMCID: PMC8654697 DOI: 10.1016/j.toxrep.2021.11.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/27/2021] [Accepted: 11/27/2021] [Indexed: 12/19/2022] Open
Abstract
Metal/metal oxide nanoparticles show promise for various applications, including diagnosis, treatment, theranostics, sensors, cosmetics, etc. Their altered chemical, optical, magnetic, and structural properties have differential toxicity profiles. Depending upon their physical state, these NPs can also change their properties due to alteration in pH, interaction with proteins, lipids, blood cells, and genetic material. Metallic nanomaterials (comprised of a single metal element) tend to be relatively stable and do not readily undergo dissolution. Contrarily, metal oxide and metal alloy-based nanomaterials tend to exhibit a lower degree of stability and are more susceptible to dissolution and ion release when introduced to a biological milieu, leading to reactive oxygen species production and oxidative stress to cells. Since NPs have considerable mobility in various biological tissues, the investigation related to their adverse effects is a critical issue and required to be appropriately addressed before their biomedical applications. Short and long-term toxicity assessment of metal/metal oxide nanoparticles or their nano-formulations is of paramount importance to ensure the global biome's safety; otherwise, to face a fiasco. This article provides a comprehensive introspection regarding the effects of metal/metal oxides' physical state, their surface properties, the possible mechanism of actions along with the potential future strategy for remediation of their toxic effects.
Collapse
Affiliation(s)
- Anju Manuja
- ICAR-National Research Centre on Equines Sirsa Road, Hisar, Haryana, India
| | - Balvinder Kumar
- ICAR-National Research Centre on Equines Sirsa Road, Hisar, Haryana, India
| | - Rajesh Kumar
- Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Dharvi Chhabra
- ICAR-National Research Centre on Equines Sirsa Road, Hisar, Haryana, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur, UP, 231001, India
| | - Mayank Manuja
- Birla Institute of Technology and Science, Pilani, Goa Campus, Goa, India
| | - Basanti Brar
- Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Yash Pal
- ICAR-National Research Centre on Equines Sirsa Road, Hisar, Haryana, India
| | - B.N. Tripathi
- ICAR-National Research Centre on Equines Sirsa Road, Hisar, Haryana, India
| | - Minakshi Prasad
- Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| |
Collapse
|
9
|
Ajdary M, Keyhanfar F, Moosavi MA, Shabani R, Mehdizadeh M, Varma RS. Potential toxicity of nanoparticles on the reproductive system animal models: A review. J Reprod Immunol 2021; 148:103384. [PMID: 34583090 DOI: 10.1016/j.jri.2021.103384] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Over the past two decades, nanotechnology has been involved in an array of applications in various fields, including diagnostic kits, disease treatment, drug manufacturing, drug delivery, and gene therapy. But concerns about the toxicity of nanoparticles have greatly hindered their use; also, due to their increasing use in various industries, all members of society are exposed to the toxicity of these nanoparticles. Nanoparticles have a negative impact on various organs, including the reproductive system. They also can induce abortion in women, reduce fetal growth and development, and can damage the reproductive system and sperm morphology in men. In some cases, it has been observed that despite the modification of nanoparticles in composition, concentration, and method of administration, there is still damage to the reproductive organs. Therefore, understanding how nanoparticles affect the reproductive system is of very importance. In several studies, the nanoparticle toxicity effect on the genital organs has been investigated at the clinical and molecular levels using the in vivo and in vitro models. This study reviews these investigations and provides important data on the toxicity, hazards, and safety of nanoparticles in the reproductive system to facilitate the optimal use of nanoparticles in the industry.
Collapse
Affiliation(s)
- Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Keyhanfar
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, 14965/161, Iran
| | - Ronak Shabani
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
10
|
Engin AB. Combined Toxicity of Metal Nanoparticles: Comparison of Individual and Mixture Particles Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:165-193. [PMID: 33539016 DOI: 10.1007/978-3-030-49844-3_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Toxicity of metal nanoparticles (NPs) are closely associated with increasing intracellular reactive oxygen species (ROS) and the levels of pro-inflammatory mediators. However, NP interactions and surface complexation reactions alter the original toxicity of individual NPs. To date, toxicity studies on NPs have mostly been focused on individual NPs instead of the combination of several species. It is expected that the amount of industrial and highway-acquired NPs released into the environment will further increase in the near future. This raises the possibility that various types of NPs could be found in the same medium, thereby, the adverse effects of each NP either could be potentiated, inhibited or remain unaffected by the presence of the other NPs. After uptake of NPs into the human body from various routes, protein kinases pathways mediate their toxicities. In this context, family of mitogen-activated protein kinases (MAPKs) is mostly efficient. Despite each NP activates almost the same metabolic pathways, the toxicity induced by a single type of NP is different than the case of co-exposure to the combined NPs. The scantiness of toxicological data on NPs combinations displays difficulties to determine, if there is any risk associated with exposure to combined nanomaterials. Currently, in addition to mathematical analysis (Response surface methodology; RSM), the quantitative-structure-activity relationship (QSAR) is used to estimate the toxicity of various metal oxide NPs based on their physicochemical properties and levels applied. In this chapter, it is discussed whether the coexistence of multiple metal NPs alter the original toxicity of individual NP. Additionally, in the part of "Toxicity of diesel emission/exhaust particles (DEP)", the known individual toxicity of metal NPs within the DEP is compared with the data regarding toxicity of total DEP mixture.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
11
|
Huang M, Chen J, Yan G, Yang Y, Luo D, Chen X, He M, Yuan H, Huang Z, Lu Y. Plasma titanium level is positively associated with metabolic syndrome: A survey in China's heavy metal polluted regions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111435. [PMID: 33038727 DOI: 10.1016/j.ecoenv.2020.111435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/20/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Several heavy metals have been reported to be associated with metabolic syndrome(MetS) in general population, while effects of multiple metals exposure on MetS in residents living in heavy metal polluted regions have not been investigated. We aimed to assess the association of 23 metal levels and MetS among population living in China's heavy metal polluted regions. METHODS From August 2016 to July 2017, a total of 2109 eligible participants were consecutively enrolled in our study in Hunan province, China. The levels of plasma and urine metals were measured by inductively coupled plasma mass spectrometer (ICP-MS). MetS was defined by the criteria of the International Diabetes Federation. Multivariable regression models were applied to analysis the potential relationship. RESULTS In the overall population, crude model showed positive relationship of plasma titanium (Ti) with MetS and negative association of urine vanadium, iron, and selenium with MetS. After adjusted for potential confounders, only plasma Ti was positive associated with MetS (adjusted OR for Q4 versus Q1: 1.46; 95% CI: 1.06-1.99), and this positive correlation was explained by abdominal obesity (OR = 1.84, 95% CI: 1.41-2.39) and high triglycerides (OR = 2.23, 95% CI: 1.68-2.96). Further linear regression analysis revealed significant association of plasma Ti levels with waist circumference (β = 0.0056, 95% CI: 0.0004-0.0109, P = 0.036) and triglycerides (β = 0.0012, 95% CI: 0.0006-0.0019, P < 0.001), respectively. CONCLUSION High plasma Ti level was associated with increased risk of MetS via increasing waist circumference and triglycerides in people under high metal exposure.
Collapse
Affiliation(s)
- Miao Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jingyuan Chen
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Guangyu Yan
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yiping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Dan Luo
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Yuan
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China; National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology, Changsha 410000, China
| | - Zhijun Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Yao Lu
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China; National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology, Changsha 410000, China.
| |
Collapse
|
12
|
Krishnaiah D, Khiari M, Klibet F, Kechrid Z. Oxidative stress toxicity effect of potential metal nanoparticles on human cells. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Yang L, Jiang Y, Zhao L, Li M, Guo W, Shu J, Zhu R, Zhang X. Multiple metals exposure and arterial stiffness: A panel study in China. CHEMOSPHERE 2021; 263:128217. [PMID: 33297174 DOI: 10.1016/j.chemosphere.2020.128217] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
Chronic exposure to metals has been linked to arterial stiffness. However, the effects of exposure to multiple metals on arterial stiffness have rarely been studied. We aimed to investigate the associations of 23 urinary metals with arterial stiffness in a panel study of 127 Chinese adults with 3 repeated visits. Urinary metal measurements were conducted once a day for 4 consecutive days of each visit. Brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI) were measured in health examinations during each visit. Linear mixed models, least absolute shrinkage and selection operator (LASSO) penalized regression models, and generalized linear models were applied to investigate the associations between multiple metals and arterial stiffness parameters. The odds ratio (OR) for peripheral arterial disease (PAD) was examined using generalized estimating equations. After adjusting for potential covariates and other metals, we found ABI reductions were associated with one unit increase in 4-day average (lag 0-3 day) of ln-transformed urinary titanium (Ti) [β = -0.019 (SE = 0.010), P = 0.045], and cobalt (Co) [β = -0.012 (SE = 0.006), P = 0.048], whereas no significant associations were observed for baPWV at different lag days. Stratified analyses revealed that urinary Ti was inversely related to ABI among never-smokers or in the winter. In addition, the current day or 4-day average of ln-transformed urinary Ti was associated with an increased OR of 1.94 (95% CI: 1.28, 2.92) or 3.30 (95% CI: 1.64, 6.63) for PAD, respectively. Our study showed significant associations of exposure to Ti and Co with arterial stiffness. Particularly, Ti may increase the risk of PAD.
Collapse
Affiliation(s)
- Liangle Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyi Shu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhu
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Jayaram DT, Payne CK. Food-Grade TiO 2 Particles Generate Intracellular Superoxide and Alter Epigenetic Modifiers in Human Lung Cells. Chem Res Toxicol 2020; 33:2872-2879. [PMID: 33064449 DOI: 10.1021/acs.chemrestox.0c00331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Titanium dioxide (TiO2) particles are a common ingredient in food, providing the bright white color for many candies, gums, and frostings. While ingestion of these materials has been examined previously, few studies have examined the effect of these particles on lung cells. Inhalation is an important exposure pathway for workers processing these foods and, more recently, home users who purchase these particles directly. We examine the response of lung cells to food-grade TiO2 particles using a combination of fluorescence microscopy and RT-PCR. These experiments show that TiO2 particles generate intracellular reactive oxygen species, specifically superoxide, and alter expression of two epigenetic modifiers, histone deacetylase 9 (HDAC9) and HDAC10. We use a protein corona formed from superoxide dismutase (SOD), an enzyme that scavenges superoxide, to probe the relationship between TiO2 particles and superoxide generation. These experiments show that low, non-cytotoxic, concentrations of food-grade TiO2 particles lead to cellular responses, including altering two enzymes responsible for epigenetic modifications. This production of superoxide and change in epigenetic modifiers could affect human health following inhalation. We expect this research will motivate future in vivo experiments examining the pulmonary response to food-grade TiO2 particles.
Collapse
Affiliation(s)
- Dhanya T Jayaram
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Christine K Payne
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
15
|
Jayaram DT, Payne CK. Intracellular Generation of Superoxide by TiO2 Nanoparticles Decreases Histone Deacetylase 9 (HDAC9), an Epigenetic Modifier. Bioconjug Chem 2020; 31:1354-1361. [DOI: 10.1021/acs.bioconjchem.0c00091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dhanya T. Jayaram
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Christine K. Payne
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
16
|
Jeong CH, Kwon HC, Kim DH, Cheng WN, Kang S, Shin DM, Yune JH, Yoon JE, Chang YH, Sohn H, Han SG. Effects of Aluminum on the Integrity of the Intestinal Epithelium: An in Vitro and in Vivo Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:17013. [PMID: 31971835 PMCID: PMC7015552 DOI: 10.1289/ehp5701] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Aluminum (Al) is the most abundant and ubiquitous metal in the environment. The main route of human exposure to Al is through food and water intake. Although human exposure to Al is common, the influence of Al on the gastrointestinal tract remains poorly understood. OBJECTIVES We aimed to further understand the toxic effect of Al and to elucidate the underlying cellular mechanisms in the intestinal barrier. METHODS The human intestinal epithelial cell line HT-29 and C57BL6 mice were exposed to AlCl3 at 0-16 mM (1-24h) and 5-50mg/kg body weight (13 weeks), respectively. In cell culture experiments, intracellular oxidative stress, inflammatory protein and gene expression, and intestinal epithelial permeability were measured. In animal studies, histological examination, gene expression, and myeloperoxidase (MPO) activity assays were conducted. RESULTS Cellular oxidative stress level (superoxide production) in AlCl3-treated cells (4 mM, 3h) was approximately 38-fold higher than that of the control. Both protein and mRNA expression of tight junction (TJ) components (occludin and claudin-1) in AlCl3-treated cells (1-4 mM, 24h) was significantly lower than that of the control. Transepithelial electrical resistance (TEER) decreased up to 67% in AlCl3-treated cells (2 mM, 24h) compared with that of the control, which decreased approximately 7%. Al activated extracellular signal-regulated kinase 1/2 and nuclear factor-kappa B (NF-κB), resulting in mRNA expression of matrix metalloproteinase-9, myosin light-chain kinase, and inflammatory cytokines [tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and IL-6] in HT-29 cells. Moreover, oral administration of AlCl3 to mice induced pathological alteration, MPO activation, and inflammatory cytokine (TNF-α, IL-1β, and IL-6) production in the colon. CONCLUSION Al induced epithelial barrier dysfunction and inflammation via generation of oxidative stress, down-regulation of the TJ proteins, and production of inflammatory cytokines in HT-29 cells. In addition, Al induced toxicity in the colon by increasing the levels of inflammatory cytokines and MPO activity and induced histological damage in a mouse model. Our data suggest that Al may be a potential risk factor for human intestinal diseases. https://doi.org/10.1289/EHP5701.
Collapse
Affiliation(s)
- Chang Hee Jeong
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Hyuk Cheol Kwon
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Do Hyun Kim
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Wei Nee Cheng
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Sukyung Kang
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Dong-Min Shin
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Jong Hyeok Yune
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Jee Eun Yoon
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - You Hyun Chang
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Hyejin Sohn
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Sung Gu Han
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Park DH, Kothari D, Niu KM, Han SG, Yoon JE, Lee HG, Kim SK. Effect of Fermented Medicinal Plants as Dietary Additives on Food Preference and Fecal Microbial Quality in Dogs. Animals (Basel) 2019; 9:ani9090690. [PMID: 31527540 PMCID: PMC6770862 DOI: 10.3390/ani9090690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Dog foods are becoming more equivalent to human foods, and functional additives are being included in their diets to promote health. In this study, turmeric, glasswort, and Ganghwa mugwort were used as medicinal plants and were subjected to fermentation by autochthonous Enterococcus faecium. Fermentation significantly improved the in vitro antioxidant activities of these plants. Food preference tests of dog foods containing these fermented medicinal plants were conducted in beagles. Abstract This research determined the antioxidant activities of medicinal plants fermented by Enterococcus faecium and their subsequent applications as dog food additives. Turmeric (5%, w/v), glasswort (2.5%, w/v), Ganghwa mugwort (2.5%, w/v), and their mixture (5%, w/v) were fermented by autochthonous E. faecium (1%, v/v) for 72 h. Bacterial cell counts and pH were monitored during fermentation. Total polyphenol content (TPC), total flavonoid content (TFC), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, and intracellular superoxide scavenging activity in bovine mammary alveolar epithelial (MAC-T) cells were measured with the fermented and non-fermented samples. Only the antioxidant capacity of the mixture was increased after fermentation. However, intracellular superoxide level in MAC-T cells was significantly reduced after treatment with fermented plant samples (p < 0.001) as compared with that in non-fermented plants. Fermented plants were then sprayed at 1% (v/w) onto dog foods. TPC, TFC, ABTS radical scavenging activity, and DPPH radical scavenging activity of dog foods were significantly enhanced after the addition of fermented plants. Food preference testing was conducted using a two-pan method—control diet vs. four treatment diets—for 4 days for each additive diet, a total 16 days in 9 beagles. Feces were collected to enumerate bacterial counts. Preferences for glasswort and Ganghwa mugwort were higher than those of the control (p < 0.05). Furthermore, fecal microbiota enumeration displayed a higher number of beneficial microorganisms in treated groups. These results suggest that fermented plants with enhanced antioxidant abilities might be useful as potential additives for dog foods.
Collapse
Affiliation(s)
- Da Hye Park
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea.
- Team of an Educational Program of Specialists in Global Animal Science, Brain Korea 21 Plus Project, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea.
| | - Damini Kothari
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Kai-Min Niu
- Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang 330029, China.
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul 05029, Korea.
| | - Jee Eun Yoon
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul 05029, Korea.
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea.
- Team of an Educational Program of Specialists in Global Animal Science, Brain Korea 21 Plus Project, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea.
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
18
|
Hwang JS, Yu J, Kim HM, Oh JM, Choi SJ. Food Additive Titanium Dioxide and Its Fate in Commercial Foods. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1175. [PMID: 31426388 PMCID: PMC6724087 DOI: 10.3390/nano9081175] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023]
Abstract
Titanium dioxide (TiO2) is one of the most extensively utilized food additives (E171) in the food industry. Along with nanotechnology development, the concern about the presence of nanostructured particles in E171 TiO2 and commercial food products is growing. In the present study, the physicochemical properties of commercially available E171 TiO2 particles, including particle size distribution, were investigated, followed by their cytotoxicity and intestinal transport evaluation. The fate determination and quantification of E171 TiO2 in commercial foods were carried out based on the analytical procedure developed using simulated foods. The results demonstrated that TiO2 is a material mainly composed of particles larger than 100 nm, but present as an agglomerated or aggregated particle in commercial foods with amounts of less than 1% (wt/wt). Titanium dioxide particles generated reactive oxygen species and inhibited long-term colony formation, but the cytotoxicity was not related to particle size distribution or particle type (food- or general-grade). All TiO2 particles were mainly transported by microfold (M) cells, but also by intestinal tight junction. These findings will be useful for TiO2 application in the food industry and predicting its potential toxicity.
Collapse
Affiliation(s)
- Ji-Soo Hwang
- Division of Applied Food System, Major of Food Science & Technology, Seoul Women's University, Seoul 01797, Korea
| | - Jin Yu
- Division of Applied Food System, Major of Food Science & Technology, Seoul Women's University, Seoul 01797, Korea
| | - Hyoung-Mi Kim
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju 26493, Gangwondo, Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Korea
| | - Soo-Jin Choi
- Division of Applied Food System, Major of Food Science & Technology, Seoul Women's University, Seoul 01797, Korea.
| |
Collapse
|
19
|
Zhou Y, Ji J, Ji L, Wang L, Hong F. Respiratory exposure to nano-TiO 2 induces pulmonary toxicity in mice involving reactive free radical-activated TGF-β/Smad/p38MAPK/Wnt pathways. J Biomed Mater Res A 2019; 107:2567-2575. [PMID: 31356723 DOI: 10.1002/jbm.a.36762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
Numerous studies have shown that lung injury can be caused by respiratory exposure to nanoparticulate titanium dioxide (nano-TiO2 ), but whether pulmonary inflammation and fibrosis are related to the activation of the TGF-β/Smad/p38MAPK/Wnt pathways remains unclear. In this study, mice were administrated nano-TiO2 by nasal instillation for nine consecutive months, and the molecular mechanisms of nano-TiO2 on the pulmonary toxicity of mice were examined. The findings suggested that nano-TiO2 caused pneumonia and pulmonary fibrosis. Furthermore, the results also showed that an overproduction of reactive free radicals occurred in mouse lungs, and that the expression of TGF-β/p38MAPK/Wnt pathway-related factors, including hypoxia-inducible factor 1α (HIF-1α), transforming growth factor-β1 (TGF-β1), phosphorylated p38 mitogen activated protein kinases (p-p38MAPK), small mothers against decapentaplegic homolog 2 (Smad2), extracellular matrix (ECM), Wingless/Integrated 3 (Wnt3), Wingless/Integrated 4 (Wnt4), integrin-linked kinase (ILK), β-catenin, nuclear factor-κB (NF-κB), α-smooth muscle actin (α-SMA), c-Myc, Type I collage (collagen I), and Type collage III (collagen III) were remarkably elevated, while phosphorylated glycogen synthase kinase-3β (p-GSK-3β) expression was decreased. Those data implied that the pulmonary inflammation and fibrosis caused by nano-TiO2 exposure may be involved in reactive free radical-mediated activation of the TGF-β/Smad/p38MAPK/Wnt pathways.
Collapse
Affiliation(s)
- Yingjun Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China.,School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Jianhui Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China.,School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Li Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China.,School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Ling Wang
- Library of Soochow University, Suzhou, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China.,School of Life Sciences, Huaiyin Normal University, Huaian, China
| |
Collapse
|
20
|
Gholinejad Z, Khadem Ansari MH, Rasmi Y. Titanium dioxide nanoparticles induce endothelial cell apoptosis via cell membrane oxidative damage and p38, PI3K/Akt, NF-κB signaling pathways modulation. J Trace Elem Med Biol 2019; 54:27-35. [PMID: 31109618 DOI: 10.1016/j.jtemb.2019.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/27/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Titanium dioxide nanoparticles (TiO2 NPs) are widely used nanoparticles. Despite, several studies investigated the toxic effects of TiO2 NPs on HUVECs, the results are contradictory and the possible underlying mechanisms remain unclear. METHODS In the present study, we conducted an in vitro study to re-evaluate the possible toxic effects of TiO2 NPs on HUVECs including cell viability, lipids peroxidation, intracellular signaling pathways and nitric oxide syntheses enzymes. RESULTS Our results demonstrated that, TiO2 NPs were internalized to HUVECs and induce intracellular reactive oxygen species production and cell membrane oxidative damage at the higher concentration. TiO2 NPs induce IKKα/β and Akt phosphorylation and p38 dephosphorylation. After 24 h treatment, pro-inflammatory cytokines, adhesion molecules and chemokine upregulated significantly. TiO2 NPs have no significant effects on eNOS enzymatic activation and iNOS gene expression. At cellular level, apoptosis is the main process that occur in response to TiO2 NPs treatment. HUVECs pretreatment with N-acetyl-l-cysteine (NAC) ameliorate the toxic effects of TiO2 NPs that indicate the oxidative stress is essential in TiO2 NPs -induced toxicity. Total antioxidant capacity show a trend to increase in response to TiO2 NPs exposure. CONCLUSIONS Taken together, this study confirmed the effects of TiO2 NPs on endothelial cells and proposed multiple underlying mechanisms including cell membrane oxidative damage and intracellular processes.
Collapse
Affiliation(s)
- Zafar Gholinejad
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Scienc, Urmia, Iran
| | | | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Scienc, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
21
|
Complications of ocular tattooing: a Canadian case series. CANADIAN JOURNAL OF OPHTHALMOLOGY 2019; 54:e273-e277. [PMID: 31836111 DOI: 10.1016/j.jcjo.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/22/2019] [Indexed: 11/22/2022]
|
22
|
Montalvo-Quiros S, Luque-Garcia JL. Combination of bioanalytical approaches and quantitative proteomics for the elucidation of the toxicity mechanisms associated to TiO2 nanoparticles exposure in human keratinocytes. Food Chem Toxicol 2019; 127:197-205. [DOI: 10.1016/j.fct.2019.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
|
23
|
Bittner A, Ducray AD, Widmer HR, Stoffel MH, Mevissen M. Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood-brain barrier. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:941-954. [PMID: 31165021 PMCID: PMC6541356 DOI: 10.3762/bjnano.10.95] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Nanomedicine is a constantly expanding field, facilitating and improving diagnosis and treatment of diseases. As nanomaterials are foreign objects, careful evaluation of their toxicological and functional aspects prior to medical application is imperative. In this study, we aimed to determine the effects of gold and polymer-coated silica nanoparticles used in laser tissue soldering on brain endothelial cells and the blood-brain barrier using rat brain capillary endothelial cells (rBCEC4). All types of nanoparticles were taken up time-dependently by the rBCEC4 cells, albeit to a different extent, causing a time- and concentration-dependent decrease in cell viability. Nanoparticle exposure did not change cell proliferation, differentiation, nor did it induce inflammation. rBCEC4 cells showed blood-brain barrier characteristics including tight junctions. None of the nanoparticles altered the expression of tight junctions or impaired the blood-brain barrier permeability. The findings suggest that effects of these nanoparticles on the metabolic state of cells have to be further characterized before use for medical purposes.
Collapse
Affiliation(s)
- Aniela Bittner
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland
| | - Angélique D Ducray
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Research Unit, Inselspital, University of Bern, Freiburgstrasse 8, 3010 Bern, Switzerland
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland
| | - Meike Mevissen
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland
| |
Collapse
|
24
|
Delmond KA, Vicari T, Guiloski IC, Dagostim AC, Voigt CL, Silva de Assis HC, Ramsdorf WA, Cestari MM. Antioxidant imbalance and genotoxicity detected in fish induced by titanium dioxide nanoparticles (NpTiO 2) and inorganic lead (PbII). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 67:42-52. [PMID: 30711874 DOI: 10.1016/j.etap.2019.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/10/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Titanium dioxide nanoparticles (NpTiO2) are the most widely-used nanoparticle type and the adsorption of metals such as lead (PbII) onto their surface is a major source of concern to scientists. This study evaluated the effects of the associated exposure to both types of contaminant, i.e., lead (a known genotoxic metal) and NpTiO2, in a freshwater fish (Astyanax serratus) through intraperitoneal injection for an acute assay of 96 h. The effects of this exposure were evaluated using the comet assay, DNA diffusion assay and piscine micronucleus test, as well as the quantification of antioxidant enzymes (SOD, CAT, and GST) and metallothioneins. Our findings indicate that co-exposure of PbII with NpTiO2 can provoke ROS imbalances, leading to DNA damage in the blood and liver tissue of A. serratus, as well as modifying erythropoiesis in this species, inducing necrosis and changing the nuclear morphology of the erythrocytes.
Collapse
Affiliation(s)
- Kézia Aguiar Delmond
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Taynah Vicari
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Izonete Cristina Guiloski
- Department of Pharmacology, Laboratory of Environmental Toxicology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil.
| | - Ana Carolina Dagostim
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Carmen Lúcia Voigt
- Department of Chemistry, State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Helena Cristina Silva de Assis
- Department of Pharmacology, Laboratory of Environmental Toxicology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Wanessa Algarte Ramsdorf
- Department of Chemistry, Laboratory of Ecotoxicology, Federal and Technological University of Paraná (UTFPR), Curitiba, Paraná, Brazil
| | - Marta Margarete Cestari
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
25
|
Abstract
As a consequence of their increase in annual production and widespread distribution in the environment, nanoparticles potentially pose a significant public health risk. The sought-after catalytic activity granted by their physiochemical properties doubles as a hazard to physiological processes following exposure through inhalation, oral, transdermal, subcutaneous, and intravenous uptake. Upon uptake into the body, their size, morphology, surface charge, coating, and chemical composition augment the response of biological systems to the materials and enhance their toxicity. Identification of each property is necessary to predict the harm imposed by foreign nanomaterials in the body. Assay methods ranging from endotoxin and lactate dehydrogenase (LDH) signaling to apoptosis and oxidative stress detection supply valuable techniques for exposing biomarkers of nanoparticle-induced cellular damage. Spectroscopic investigation of epithelial barrier permeation and distribution within living cells reveals the proclivity of nanoparticles to penetrate the body's natural defensive boundaries and deposit themselves in cytotoxic locations. Combination of the various characterization methodologies and assays is required for every new nanoparticulate system despite preexisting data for similar systems due to the lack of deterministic trends among investigated nanoparticles. The propensity of nanomaterials to denature proteins and oxidize substrates in their local environment generates significant concern for the applicability of several traditional in vitro assays, and the modification of susceptible approaches into novel methods suitable for the evaluation of nanoparticles comprises the focus of future work centered on nanoparticle toxicity analysis.
Collapse
Affiliation(s)
- Dustin T Savage
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Thomas D Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
26
|
Khan MJ, Singh R, Joshi KB, Vinayak V. TiO2 doped polydimethylsiloxane (PDMS) and Luffa cylindrica based photocatalytic nanosponge to absorb and desorb oil in diatom solar panels. RSC Adv 2019; 9:22410-22416. [PMID: 35519465 PMCID: PMC9066621 DOI: 10.1039/c9ra03821c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/10/2019] [Indexed: 11/28/2022] Open
Abstract
Our previous report(s) demonstrated that piezoelectric disc fabricated diatom solar panels worked as micro resonating devices. Such devices have potential to harvest oils from living diatom cultures. However, it is observed that the collection and separation of oil from culture media using these devices are found to be difficult due to the presence of both living and dead diatom cells, which simultaneously get collected during this process. In this study we made a highly biocompatible nanosponge using TiO2 nanoparticle doped polydimethylsiloxane (PDMS) and Luffa cylindrica. Such hybrid nanosponge selectively absorbs and desorbs oil on exposure to ultraviolet light. The fabricated PDMS-Luffa-TiO2 nanosponge was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and atomic force microscopy to show the surface characteristics and affinity of nanoparticles to the membranous structure of PDMS-Luffa. A maximum 38% oil absorption was found in PDMS-Luffa-TiO2 nanosponge which was almost double that of sponges made up of PDMS (19%), PDMS-Luffa (18%) and PDMS-TiO2 coated (24%). Thus PDMS-Luffa-TiO2 nanosponge serves as a selective and recyclable oil absorption membranous structure. Furthermore, this hybrid nanosponge exhibited excellent recyclability by repeated absorption–desorption processes on exposure to UV light. Our previous report(s) demonstrated that piezoelectric disc fabricated diatom solar panels worked as micro resonating devices.![]()
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism
- School of Applied Sciences
- Dr HariSingh Gour Central University
- Sagar
- India
| | - Ramesh Singh
- Department of Chemistry
- School of Chemical Science and Technology
- Dr HariSingh Gour Central University
- Sagar
- India
| | - Khashti Ballabh Joshi
- Department of Chemistry
- School of Chemical Science and Technology
- Dr HariSingh Gour Central University
- Sagar
- India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism
- School of Applied Sciences
- Dr HariSingh Gour Central University
- Sagar
- India
| |
Collapse
|
27
|
Priyam A, Singh PP, Gehlout S. Role of Endocrine-Disrupting Engineered Nanomaterials in the Pathogenesis of Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2018; 9:704. [PMID: 30542324 PMCID: PMC6277880 DOI: 10.3389/fendo.2018.00704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
Nanotechnology has enabled the development of innovative technologies and products for several industrial sectors. Their unique physicochemical and size-dependent properties make the engineered nanomaterials (ENMs) superior for devising solutions for various research and development sectors, which are otherwise unachievable by their bulk forms. However, the remarkable advantages mediated by ENMs and their applications have also raised concerns regarding their possible toxicological impacts on human health. The actual issue stems from the absence of systematic data on ENM exposure-mediated health hazards. In this direction, a comprehensive exploration on the health-related consequences, especially with respect to endocrine disruption-related metabolic disorders, is largely lacking. The reasons for the rapid increase in diabetes and obesity in the modern world remain largely unclear, and epidemiological studies indicate that the increased presence of endocrine disrupting chemicals (EDCs) in the environment may influence the incidence of metabolic diseases. Functional similarities, such as mimicking natural hormonal actions, have been observed between the endocrine-disrupting chemicals (EDCs) and ENMs, which supports the view that different types of NMs may be capable of altering the physiological activity of the endocrine system. Disruption of the endocrine system leads to hormonal imbalance, which may influence the development and pathogenesis of metabolic disorders, particularly type 2 diabetes mellitus (T2DM). Evidence from many in vitro, in vivo and epidemiological studies, suggests that ENMs generally exert deleterious effects on the molecular/hormonal pathways and the organ systems involved in the pathogenesis of T2DM. However, the available data from several such studies are not congruent, especially because of discrepancies in study design, and therefore need to be carefully examined before drawing meaningful inferences. In this review, we discuss the outcomes of ENM exposure in correlation with the development of T2DM. In particular, the review focuses on the following sub-topics: (1) an overview of the sources of human exposure to NMs, (2) systems involved in the uptake of ENMs into human body, (3) endocrine disrupting engineered nanomaterials (EDENMs) and mechanisms underlying the pathogenesis of T2DM, (4) evidence of the role of EDENMs in the pathogenesis of T2DM from in vitro, in vivo and epidemiological studies, and (5) conclusions and perspectives.
Collapse
Affiliation(s)
| | - Pushplata Prasad Singh
- TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | | |
Collapse
|
28
|
Saikia J, Mohammadpour R, Yazdimamaghani M, Northrup H, Hlady V, Ghandehari H. Silica Nanoparticle-Endothelial Interaction: Uptake and Effect on Platelet Adhesion under Flow Conditions. ACS APPLIED BIO MATERIALS 2018; 1:1620-1627. [PMID: 34046558 DOI: 10.1021/acsabm.8b00466] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Silica nanoparticles are extensively used in biomedical applications and consumer products. Little is known about the interaction of these NPs with the endothelium and effect on platelet adhesion under flow conditions in circulation. In this study, we investigated the effect of silica nanoparticles on the endothelium and its inflammation, and subsequent adhesion of flowing platelets in vitro. Platelet counts adhered onto the surface of endothelial cells in the presence of nanoparticles increased at both low and high concentrations of nanoparticles. Preincubation of endothelial cells with nanoparticles also increased platelet adhesion. Interestingly, platelet adhesion onto TNF-α-treated endothelial cells decreased in the presence of nanoparticles at different concentrations as compared with the absence of nanoparticles. We monitored the expression of different endothelial proteins, known to initiate platelet adhesion, in the presence and absence of silica nanoparticles. We found that silica nanoparticles caused changes in the endothelium such as overexpression of PECAM that promoted platelet adhesion to the endothelial cell.
Collapse
Affiliation(s)
- Jiban Saikia
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah 84112, United States.,Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Raziye Mohammadpour
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah 84112, United States
| | - Mostafa Yazdimamaghani
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah 84112, United States.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Hannah Northrup
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Vladimir Hlady
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah 84112, United States.,Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah 84112, United States.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.,Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
29
|
Horváth T, Papp A, Igaz N, Kovács D, Kozma G, Trenka V, Tiszlavicz L, Rázga Z, Kónya Z, Kiricsi M, Vezér T. Pulmonary impact of titanium dioxide nanorods: examination of nanorod-exposed rat lungs and human alveolar cells. Int J Nanomedicine 2018; 13:7061-7077. [PMID: 30464459 PMCID: PMC6220432 DOI: 10.2147/ijn.s179159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Titanium dioxide nanoparticles have numerous applications, resulting in human exposure. Nonetheless, available toxicological and safety data are insufficient regarding aspherical particles, such as rod-shaped nanoparticles. METHODS In a combined in vitro-in vivo approach, cultured A549 lung alveolar adenocarcinoma cells were treated with approximately 15×65 nm TiO2 nanorod-containing medium, while young adult rats received the same substance by intratracheal instillation for 28 days in 5 and 18 mg/kg body-weight doses. Nanoparticle accumulation in the lungs and consequent oxidative stress, cell damage, and inflammation were assessed by biochemical and histopathological methods. RESULTS Titanium was detected in tissue samples by single-particle inductively coupled plasma mass spectrometry. Nanoparticles were visualized inside cultured A549 cells, within pulmonary macrophages, and in hilar lymph nodes of the rats. A549 cells showed dose-dependent oxidative stress and lethality, and the observed nanoparticle-laden endosomes suggested deranged lysosomal function and possible autophagy. Strongly elevated Ti levels were measured in the lungs of nanorod-treated rats and moderately elevated levels in the blood of the animals. Numerous cytokines, indicating acute and also chronic inflammation, were identified in the lung samples of TiO2-exposed rodents. CONCLUSION Several signs of cell and tissue damage were detected in both the cultured alveolar cells and in treated rats' lungs. Rod-shaped nanoparticulate TiO2 may consequently be more harmful than has generally been supposed. The occupational health risk suggested by the results calls for improved safety measures.
Collapse
Affiliation(s)
- Tamara Horváth
- Department of Public Health, Faculty of Medicine, University of Szeged, Szeged, Hungary,
| | - András Papp
- Department of Public Health, Faculty of Medicine, University of Szeged, Szeged, Hungary,
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Dávid Kovács
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Vivien Trenka
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Tiszlavicz
- Department of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Rázga
- Department of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Tünde Vezér
- Department of Public Health, Faculty of Medicine, University of Szeged, Szeged, Hungary,
| |
Collapse
|
30
|
Vasomotor dysfunction in human subcutaneous arteries exposed ex vivo to food-grade titanium dioxide. Food Chem Toxicol 2018; 120:321-327. [DOI: 10.1016/j.fct.2018.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 01/22/2023]
|
31
|
Popp L, Tran V, Patel R, Segatori L. Autophagic response to cellular exposure to titanium dioxide nanoparticles. Acta Biomater 2018; 79:354-363. [PMID: 30134208 DOI: 10.1016/j.actbio.2018.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 01/12/2023]
Abstract
Titanium dioxide is "generally regarded as safe" and titanium dioxide nanoparticles (TiO2 NPs) are used in a wide variety of consumer products. Cellular exposure to TiO2 NPs results in complex effects on cell physiology including induction of oxidative stress and impairment of lysosomal function, raising concerns about the impact of TiO2 NPs on biological systems. We investigated the effects of TiO2 NPs (15, 50, and 100 nm in diameter) on the lysosome-autophagy system, the main cellular catabolic pathway that mediates degradation of nanomaterials. Specifically, we monitored a comprehensive set of markers of the lysosome-autophagy system upon cell exposure to TiO2 NPs, ranging from transcriptional activation of genes required for the formation of autophagic vesicles to clearance of autophagic substrates. This study reveals that uptake of TiO2 NPs induces a response of the lysosome-autophagy system mediated by the transcription factor EB and consequent upregulation of the autophagic flux. Prolonged exposure to TiO2 NPs, however, was found to induce lysosomal dysfunction and membrane permeabilization, leading to a blockage in autophagic flux. Results from this study will inform the design of TiO2 NP based devices with specific autophagy-modulating properties.
Collapse
|
32
|
Xue B, Li FC, Tian JH, Li JX, Cheng XY, Hu JH, Hu JS, Li B. Titanium nanoparticles influence the Akt/Tor signal pathway in the silkworm, Bombyx mori, silk gland. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21470. [PMID: 29709078 DOI: 10.1002/arch.21470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Various nanoparticles, such as silver nanoparticles (AgNPs) and titanium nanoparticles (TiO2 NPs) are increasingly used in industrial processes. Because they are released into the environment, research into their influence on the biosphere is necessary. Among its other effects, dietary TiO2 NPs promotes silk protein synthesis in silkworms, which prompted our hypothesis that TiO2 NPs influence protein kinase B (Akt)/Target of rapamycin (Tor) signaling pathway (Akt/Tor) signaling in their silk glands. The Akt/Tor signaling pathway is a principle connector integrating cellular reactions to growth factors, metabolites, nutrients, protein synthesis, and stress. We tested our hypothesis by determining the influence of dietary TiO2 NPs (for 72 h) and, separately, of two Akt/Tor pathway inhibitors (LY294002 and rapamycin) on expression of Akt/Tor signaling pathway genes and proteins in the silk glands. TiO2 NPs treatments led to increased accumulation of mRNAs for Akt, Tor1 and Tor2 by 1.6-, 12.1-, and 4.8-fold. Dietary inhibitors led to 2.6- to 4-fold increases in mRNAs encoding Akt and substantial decreases in mRNAs encoding Tor1 and Tor2. Western blot analysis showed that dietary TiO2 NPs increased the phosphorylation of Akt and its downstream proteins. LY294002 treatments led to inhibition of Akt phosphorylation and its downstream proteins and rapamycin treatments similarly inhibited the phosphorylation of Tor-linked downstream proteins. These findings support our hypothesis that TiO2 NPs influence Akt/Tor signaling in silk glands. The significance of this work is identification of specific sites of TiO2 NPs actions.
Collapse
Affiliation(s)
- Bin Xue
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Fan-Chi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Jiang-Hai Tian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Jin-Xin Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Xiao-Yu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Jia-Huan Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Jing-Sheng Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, P.R. China
| |
Collapse
|
33
|
Niu KM, Kothari D, Cho SB, Han SG, Song IG, Kim SC, Kim SK. Exploring the Probiotic and Compound Feed Fermentative Applications of Lactobacillus plantarum SK1305 Isolated from Korean Green Chili Pickled Pepper. Probiotics Antimicrob Proteins 2018; 11:801-812. [DOI: 10.1007/s12602-018-9447-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Zheng W, McKinney W, Kashon ML, Pan D, Castranova V, Kan H. The effects of inhaled multi-walled carbon nanotubes on blood pressure and cardiac function. NANOSCALE RESEARCH LETTERS 2018; 13:189. [PMID: 29971611 PMCID: PMC6029995 DOI: 10.1186/s11671-018-2603-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Heart rate variability (HRV) as a marker reflects the activity of the autonomic nervous system. The prognostic significance of HRV for cardiovascular disease has been reported in clinical and epidemiological studies. Our laboratory has reported alterations in rat heart rate variability (HRV) due to increasing activity of both sympathetic and parasympathetic nervous system after pulmonary exposure to multi-walled carbon nanotubes (MWCNTs). This suggests that pulmonary inhalation of engineered nanoparticles (ENs) may lead to functional changes in the cardiovascular system. The present study further investigated the effects of inhaled MWCNTs on the cardiovascular system and evaluated the correlation between the alterations in HRV and changes in cardiovascular function. METHODS Male Sprague-Dawley rats were pre-implanted with a telemetry device and exposed by inhalation to MWCNTs for 5 h at a concentration of 5 mg/m3. The electrocardiogram (EKG) and blood pressure were recorded in real time by the telemetry system at pre-exposure, during exposure, and 1 and 7 days post-exposure. In vivo cardiac functional performance in response to dobutamine was determined by a computerized pressure-volume loop system. RESULTS Inhalation of MWCNTs significantly increased both systolic and diastolic blood pressure and decreased heart rate in awake freely moving rat. Additionally, inhalation of MWCNTs also reduced cardiac stroke work, stroke volume, and output in response to dobutamine in anesthetized rats. CONCLUSIONS Inhalation of MWCNTs altered cardiovascular performance, which was associated with MWCNT exposure-induced alterations in the sympathetic and parasympathetic nervous system. These findings suggest the need to further investigate the cardiovascular effects of inhaled MWCNTs.
Collapse
Affiliation(s)
- Wen Zheng
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Michael L. Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Daniel Pan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Vincent Castranova
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506 USA
| | - Hong Kan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506 USA
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505 USA
| |
Collapse
|
35
|
Heller A, Jarvis K, Coffman SS. Association of Type 2 Diabetes with Submicron Titanium Dioxide Crystals in the Pancreas. Chem Res Toxicol 2018; 31:506-509. [PMID: 29792697 DOI: 10.1021/acs.chemrestox.8b00047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pigment-grade titanium dioxide (TiO2) of 200-300 nm particle diameter is the most widely used submicron-sized particle material. Inhaled and ingested TiO2 particles enter the bloodstream, are phagocytized by macrophages and neutrophils, are inflammatory, and activate the NLRP3 inflammasome. In this pilot study of 11 pancreatic specimens, 8 of the type 2 diabetic pancreas and 3 of the nondiabetic pancreas, we show that particles comprising 110 ± 70 nm average diameter TiO2 monocrystals abound in the type 2 diabetic pancreas, but not in the nondiabetic pancreas. In the type 2 diabetic pancreas, the count of the crystals is as high as 108-109 per gram.
Collapse
|
36
|
|
37
|
Zhao L, Zhu Y, Chen Z, Xu H, Zhou J, Tang S, Xu Z, Kong F, Li X, Zhang Y, Li X, Zhang J, Jia G. Cardiopulmonary effects induced by occupational exposure to titanium dioxide nanoparticles. Nanotoxicology 2018; 12:169-184. [PMID: 29324056 DOI: 10.1080/17435390.2018.1425502] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although some toxicological studies have reported that exposure to titanium dioxide nanoparticles (nano-TiO2) may elicit adverse cardiopulmonary effects, related data collected from human are currently limited. The purpose of this study is to explore cardiopulmonary effects among workers who were exposed to nano-TiO2 and to identify biomarkers associated with exposure. A cross-sectional study was conducted in a nano-TiO2 manufacturing plant in eastern China. Exposure assessment and characterization of TiO2 particles were performed in a packaging workshop. Physical examination and possible biomarkers for cardiopulmonary effects were examined among 83 exposed workers and 85 controls. In packaging workshop, the total mass concentration of particles was 3.17 mg/m3. The mass concentration of nanoparticles was 1.22 mg/m3 accounting for 39% of the total mass. Lung damage markers (SP-D and pulmonary function), cardiovascular disease markers (VCAM-1, ICAM-1, LDL, and TC), oxidative stress markers (SOD and MDA), and inflammation markers (IL-8, IL-6, IL-1β, TNF-α, and IL-10) were associated with occupational exposure to nano-TiO2. Among those markers, SP-D showed a time (dose)-response pattern within exposed workers. The data strongly suggest that nano-TiO2 could contribute, at least in part, to the cardiopulmonary effects observed in workers. The studied markers and pulmonary function tests may be useful in health surveillance for workers exposed to nanomaterials.
Collapse
Affiliation(s)
- Lin Zhao
- a Department of Occupational and Environmental Health Sciences , School of Public Health, Peking University , Beijing , P. R. China
| | - Yifang Zhu
- b Department of Environmental Health Sciences , Jonathan and Karin Fielding School of Public Health, University of California Los Angeles , Los Angeles , CA , USA
| | - Zhangjian Chen
- a Department of Occupational and Environmental Health Sciences , School of Public Health, Peking University , Beijing , P. R. China
| | - Huadong Xu
- a Department of Occupational and Environmental Health Sciences , School of Public Health, Peking University , Beijing , P. R. China
| | - Jingwen Zhou
- c Jinan Center for Disease Control and Prevention , Jinan , Shandong , P. R. China
| | - Shichuan Tang
- d Beijing Municipal Institute of Labor Protection , Beijing , P. R. China
| | - Zhizhen Xu
- d Beijing Municipal Institute of Labor Protection , Beijing , P. R. China
| | - Fanling Kong
- e Shandong Center for Disease Control and Prevention , Jinan , Shandong , P.R. China
| | - Xinwei Li
- c Jinan Center for Disease Control and Prevention , Jinan , Shandong , P. R. China
| | - Yifei Zhang
- f Zibo Prevention and Treatment Hospital for Occupation Diseases , Zibo , Shandong , P.R. China
| | - Xianzuo Li
- f Zibo Prevention and Treatment Hospital for Occupation Diseases , Zibo , Shandong , P.R. China
| | - Ji Zhang
- c Jinan Center for Disease Control and Prevention , Jinan , Shandong , P. R. China
| | - Guang Jia
- a Department of Occupational and Environmental Health Sciences , School of Public Health, Peking University , Beijing , P. R. China
| |
Collapse
|
38
|
Curcumin inhibits activation induced by urban particulate material or titanium dioxide nanoparticles in primary human endothelial cells. PLoS One 2017; 12:e0188169. [PMID: 29244817 PMCID: PMC5731739 DOI: 10.1371/journal.pone.0188169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/01/2017] [Indexed: 01/21/2023] Open
Abstract
Curcumin has protective effects against toxic agents and shows preventive properties for various diseases. Particulate material with an aerodynamic diameter of ≤10 μm (PM10) and titanium dioxide nanoparticles (TiO2-NPs) induce endothelial dysfunction and activation. We explored whether curcumin is able to attenuate different events related to endothelial activation. This includes adhesion, expression of adhesion molecules and oxidative stress induced by PM10 and TiO2-NPs. Human umbilical vein endothelial cells (HUVEC) were treated with 1, 10 and 100 μM curcumin for 1 h and then exposed to PM10 at 3 μg/cm2 or TiO2-NPs at 10 μg/cm2. Cell adhesion was evaluated by co-culture with U937 human myelomonocytic cells. Adhesion molecules expression was measured by flow cytometry after 3 or 24 h of exposure. Oxidative stress was determined by 2,7-dichlorodihydrofluorescein (H2DCF) oxidation. PM10 and TiO2-NPs induced the adhesion of U937 cells and the expression of E- and P-selectins, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1). The expression of E- and P-selectins matched the adhesion of monocytes to HUVEC after 3 h. In HUVEC treated with 1 or 10 μM curcumin, the expression of adhesion molecules and monocytes adhesion was significantly diminished. Curcumin also partially reduced the H2DCF oxidation induced by PM10 and TiO2-NPs. Our results suggest an anti-inflammatory and antioxidant role by curcumin attenuating the activation caused on endothelial cells by exposure to particles. Therefore, curcumin could be useful in the treatment of diseases where an inflammatory process and endothelial activation are involved.
Collapse
|
39
|
Zhou Y, Hong F, Tian Y, Zhao X, Hong J, Ze Y, Wang L. Nanoparticulate titanium dioxide-inhibited dendritic development is involved in apoptosis and autophagy of hippocampal neurons in offspring mice. Toxicol Res (Camb) 2017; 6:889-901. [PMID: 30090551 PMCID: PMC6062220 DOI: 10.1039/c7tx00153c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/05/2017] [Indexed: 12/24/2022] Open
Abstract
Background: Numerous studies have demonstrated that, upon maternal exposure, nano-TiO2 can cross the placental barrier, accumulate in offspring animals, and cause neurotoxicity. However, the neurotoxic mechanisms are not fully understood. The aim of this study is to determine the effects of nano-TiO2 on the dendritic outgrowth of hippocampal neurons and confirm the role of apoptosis and excessive autophagy in the neurotoxicity of offspring mice caused by nano-TiO2, as well as its molecular mechanisms. Methods: Pregnant mice were intragastrically administered 1, 2, or 3 mg per kg body weight nano-TiO2 consecutively from prenatal day 7 to postpartum day 21. The ultrastructure, mitochondrial membrane potential (MMP), levels of reactive oxygen species (ROS) and peroxides, and ATP contents, along with the expression of apoptosis- and autophagy-related factors, were investigated. Results: The dendritic length of hippocampal neurons was lower in the group treated with nano-TiO2 than in the control group. Apoptosis, excessive autophagy, and nano-TiO2 aggregation in hippocampal neurons resulted from maternal exposure to nano-TiO2. Maternal exposure to nano-TiO2 also resulted in the over-production of ROS, increases in malondialdehyde and protein carbonylation, reductions in MMP and ATP contents, up-regulation of apoptosis- or autophagy-related factors including histone H2AX at serine 139 (γH2AX), cytochrome C (Cyt C), caspase 3, phosphoinositide 3-kinase (PI3K3C), Beclin 1, c-Jun, LC3I, LC3II, JNK and p-JNK expression, and an increase of LC3II/LC3I, as well as down-regulation of Bcl-2 expression in hippocampal neurons of offspring mice. Conclusions: Maternal exposure to nano-TiO2 inhibited the dendritic outgrowth of hippocampal neurons. This effect is closely associated with excessive autophagy, which is related to severe oxidative stress and alterations in the expressions of apoptosis- and autophagy-related factors in the hippocampal neurons of offspring mice, due to maternal exposure to nano-TiO2.
Collapse
Affiliation(s)
- Yingjun Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Laboratory for Food Safety and Nutritional Function , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Laboratory for Food Safety and Nutritional Function , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
| | - Yusheng Tian
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Laboratory for Food Safety and Nutritional Function , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
| | - Xiangyu Zhao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Laboratory for Food Safety and Nutritional Function , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
| | - Jie Hong
- Medical College of Soochow University , Suzhou 215123 , China
| | - Yuguan Ze
- Medical College of Soochow University , Suzhou 215123 , China
| | - Ling Wang
- Library of Soochow University , Suzhou 215123 , China
| |
Collapse
|
40
|
Tang H, Chen H, Jia Y, Liu X, Han Z, Wang A, Liu Q, Li X, Feng X. Effect of inhibitors of endocytosis and NF-kB signal pathway on folate-conjugated nanoparticle endocytosis by rat Kupffer cells. Int J Nanomedicine 2017; 12:6937-6947. [PMID: 29075112 PMCID: PMC5609780 DOI: 10.2147/ijn.s141407] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The regular accumulation of nanoparticles in the liver makes them hepatotoxic and decreases the circulation time, thus reducing their therapeutic effect. Resolving this problem will be significant in improving bioavailability and reducing side effects. In this study, we reduced the phagocytosis of epirubicin (EPI)-loaded folic acid-conjugated pullulan acetate (FPA/EPI) nanoparticles by Kupffer cells (KCs) through internalization and nuclear factor kappa B (NF-kB) signal pathway inhibitors, thus allowing development of FPA/EPI nanoparticles as a nanodrug delivery system (NDDS) based on our previous study. FPA/EPI nanoparticles were prepared by the dialysis method. Rat KCs were preincubated with the following individual or compound inhibitors: chlorpromazine (CPZ), nystatin (NY), colchicine (Col), amiloride (AMR), and pyrrolidine dithiocarbamate (PDTC). Dose- and time-dependent cellular uptake effects of inhibitors on FPA/EPI nanoparticles were determined through fluorometry. The cytokine levels of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6 were tested in culture supernatants by bead-based multiplex flow cytometry. The uptake study demonstrated that inhibitors had an obvious inhibitory effect (P<0.05 or P<0.01), with NY, AMR and Col all showing time-dependent inhibitory effects. PDTC + NY had the strongest inhibitory effect, with an uptake rate of 14.62%. The levels of the three proinflammatory cytokines were changed significantly by the compound inhibitors. TNF-α was significantly inhibited (P<0.05 or P<0.01), but IL-1β and IL-6 showed smaller decreases. These results suggested that clathrin- and caveolae-mediated endocytosis were the main routes via which nanoparticles entered KCs and that the NF-kB signal pathway was very important too. In summary, multiple mechanisms, including clathrin- and caveolae-mediated endocytosis, contribute to cytokine production in macrophages following exposure to folic acid-conjugated pullulan acetate nanoparticles. Thus, the endocytosis inhibition strategy has great potential for improving therapy and reducing toxicity of an NDDS in the treatment of cancer.
Collapse
Affiliation(s)
- Hongbo Tang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Hongli Chen
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Yajing Jia
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Xiaoyan Liu
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Zhaohong Han
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Aihua Wang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Qi Liu
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Xinlei Li
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Xin Feng
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| |
Collapse
|
41
|
Bengalli R, Gualtieri M, Capasso L, Urani C, Camatini M. Impact of zinc oxide nanoparticles on an in vitro model of the human air-blood barrier. Toxicol Lett 2017; 279:22-32. [DOI: 10.1016/j.toxlet.2017.07.877] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 01/10/2023]
|
42
|
Ruszkiewicz JA, Pinkas A, Ferrer B, Peres TV, Tsatsakis A, Aschner M. Neurotoxic effect of active ingredients in sunscreen products, a contemporary review. Toxicol Rep 2017; 4:245-259. [PMID: 28959646 PMCID: PMC5615097 DOI: 10.1016/j.toxrep.2017.05.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 01/07/2023] Open
Abstract
Sunscreen application is the main strategy used to prevent the maladies inflicted by ultraviolet (UV) radiation. Despite the continuously increasing frequency of sunscreen use worldwide, the prevalence of certain sun exposure-related pathologies, mainly malignant melanoma, is also on the rise. In the past century, a variety of protective agents against UV exposure have been developed. Physical filters scatter and reflect UV rays and chemical filters absorb those rays. Alongside the evidence for increasing levels of these agents in the environment, which leads to indirect exposure of wildlife and humans, recent studies suggest a toxicological nature for some of these agents. Reviews on the role of these agents in developmental and endocrine impairments (both pathology and related mechanisms) are based on both animal and human studies, yet information regarding the potential neurotoxicity of these agents is scant. In this review, data regarding the neurotoxicity of several organic filters: octyl methoxycinnamate, benzophenone-3 and −4, 4-methylbenzylidene camphor, 3-benzylidene camphor and octocrylene, and two allowed inorganic filters: zinc oxide and titanium dioxide, is presented and discussed. Taken together, this review advocates revisiting the current safety and regulation of specific sunscreens and investing in alternative UV protection technologies.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Adi Pinkas
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tanara V Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Crete, Greece
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
43
|
Alinovi R, Goldoni M, Pinelli S, Ravanetti F, Galetti M, Pelosi G, De Palma G, Apostoli P, Cacchioli A, Mutti A, Mozzoni P. Titanium dioxide aggregating nanoparticles induce autophagy and under-expression of microRNA 21 and 30a in A549 cell line: A comparative study with cobalt(II, III) oxide nanoparticles. Toxicol In Vitro 2017; 42:76-85. [PMID: 28400205 DOI: 10.1016/j.tiv.2017.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/14/2017] [Accepted: 04/07/2017] [Indexed: 12/22/2022]
Abstract
The toxicity of TiO2 nanoparticles (NPs) is controversial, while it is widely accepted for Co3O4 NPs. We present a comparative study concerning the uptake of these NPs and their effect on cytoplasmic organelles and autophagy in a human lung carcinoma cell line (A549), including assays on the expression of autophagy-related microRNAs. The NP accumulation caused a fast dose- and time-dependent change of flow cytometry physical parameters particularly after TiO2 NP exposure. The intracellular levels of metals confirmed it, but the Co concentration was ten times higher than that of Ti. Both NPs caused neither necrosis nor apoptosis, but cytotoxicity was mainly evident for Co3O4 NPs in the first 72h. TiO2 NPs caused autophagy, contrarily to Co3O4 NPs. Furthermore, a significant and persistent downregulation of miRNA-21 and miRNA-30a was observed only in TiO2 NPs-treated cultures. The expression of miRNA-155 was similar for both NPs. Oxidative stress was evident only for Co3O4 NPs, while both NPs perturbed endoplasmic reticulum and p-53 expression. In conclusion, the oxidative stress caused by Co3O4 NPs can influence energy homeostasis and hamper the ability to detoxify and to repair the resulting damage, thus preventing the induction of autophagy, while TiO2 NPs elicit autophagy also under sub-toxic conditions.
Collapse
Affiliation(s)
- Rossella Alinovi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Matteo Goldoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Ravanetti
- Department of Medical Veterinary Sciences, Unit of Normal Veterinary Anatomy, University of Parma, Parma, Italy
| | - Maricla Galetti
- Italian Workers' Compensation Authority (INAIL) Research Center, Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giuseppe De Palma
- Section of Public Health and Human Sciences, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Pietro Apostoli
- Section of Public Health and Human Sciences, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Antonio Cacchioli
- Department of Medical Veterinary Sciences, Unit of Normal Veterinary Anatomy, University of Parma, Parma, Italy
| | - Antonio Mutti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
44
|
Hu Q, Guo F, Zhao F, Fu Z. Effects of titanium dioxide nanoparticles exposure on parkinsonism in zebrafish larvae and PC12. CHEMOSPHERE 2017; 173:373-379. [PMID: 28129614 DOI: 10.1016/j.chemosphere.2017.01.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 05/09/2023]
Abstract
Nanomaterials hold significant potential for industrial and biomedical application these years. Therefore, the relationship between nanoparticles and neurodegenerative disease is of enormous interest. In this contribution, zebrafish embryos and PC12 cell lines were selected for studying neurotoxicity of titanium dioxide nanoparticles (TiO2 NPs). After exposure of different concentrations of TiO2 NPs to embryos from fertilization to 96 hpf, the hatching time of zebrafish was decreased, accompanied by an increase in malformation rate. However, no significant increases in mortality relative to control were observed. These results indicated that TiO2 NPs exposure hold a risk for premature of zebrafish embryos, but not fatal. The further investigation confirmed that TiO2 NPs could accumulate in the brain of zebrafish larvae, resulting in reactive oxygen species (ROS) generation and cell death of hypothalamus. Meanwhile, q-PCR analysis showed that TiO2 NPs exposure increased the pink1, parkin, α-syn and uchl1 gene expression, which are related with the formation of Lewy bodies. We also observed loss of dopaminergic neurons in zebrafish and in vitro. These remarkable hallmarks are all linked to these Parkinson's disease (PD) symptoms. Our results indicate that TiO2NPs exposure induces neurotoxicity in vivo and in vitro, which poses a significant risk factor for the development of PD.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fengliang Guo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fenghui Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
45
|
Corbo C, Molinaro R, Tabatabaei M, Farokhzad OC, Mahmoudi M. Personalized protein corona on nanoparticles and its clinical implications. Biomater Sci 2017; 5:378-387. [PMID: 28133653 PMCID: PMC5592724 DOI: 10.1039/c6bm00921b] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is now well understood that once in contact with biological fluids, nanoscale objects lose their original identity and acquire a new biological character, referred to as a protein corona. The protein corona changes many of the physicochemical properties of nanoparticles, including size, surface charge, and aggregation state. These changes, in turn, affect the biological fate of nanoparticles, including their pharmacokinetics, biodistribution, and therapeutic efficacy. It is progressively being accepted that even slight variations in the composition of a protein source (e.g., plasma and serum) can substantially change the composition of the corona formed on the surface of the exact same nanoparticles. Recently it has been shown that the protein corona is strongly affected by the patient's specific disease. Therefore, the same nanomaterial incubated with plasma proteins of patients with different pathologies adsorb protein coronas with different compositions, giving rise to the concept of personalized protein corona. Herein, we review this concept along with recent advances on the topic, with a particular focus on clinical relevance.
Collapse
Affiliation(s)
- Claudia Corbo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Roberto Molinaro
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Mateen Tabatabaei
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. and King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Morteza Mahmoudi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Ye L, Hong F, Ze X, Li L, Zhou Y, Ze Y. Toxic effects of TiO 2 nanoparticles in primary cultured rat sertoli cells are mediated via a dysregulated Ca 2+ /PKC/p38 MAPK/NF-κB cascade. J Biomed Mater Res A 2017; 105:1374-1382. [PMID: 28188686 DOI: 10.1002/jbm.a.36021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 01/21/2017] [Accepted: 01/26/2017] [Indexed: 11/11/2022]
Abstract
Although numerous studies have demonstrated that titanium dioxide nanoparticles (TiO2 NPs) can be accumulated in various animal organs and can cause toxicity, there is currently only limited data regarding reproductive toxicity especially on the toxic mechanisms of TiO2 NPs in Sertoli cells. In order to investigate the mechanism of reproductive toxicity, primary cultured rat Sertoli cells were exposed to 5, 15, or 30 μg/mL TiO2 NPs for 24 h, and TiO2 NPs internalization, expression of PKC (p-PKC) and p38 MAPK (p-p38 MAPK) as well as calcium homeostasis were examined. Our findings demonstrated that TiO2 NPs crossed the membrane into the cytoplasm or nucleus, and significantly suppressed cell viability of primary cultured rat Sertoli cells in a concentration-dependent manner. Furthermore, immunological dysfunction caused by TiO2 NPs was involved in the increased expression of NF-κB, TNF-α, and IL-1β, and decreased IκB expression. TiO2 NPs significantly decreased Ca2+ -ATPase and Ca2+ /Mg2+ -ATPase activity and enhanced intracellular Ca2+ levels, and up-regulated the expression of p-PKC and p-p38 MAPK in a dose-dependent manner in primary cultured rat Sertoli cells. Taken together, these findings indicate that TiO2 NPs may induce immunological dysfunction of primary cultured rat Sertoli cells by stimulating the Ca2+ /PKC/p38 MAPK cascade, which triggers NF-κB activation and ultimately induces the expression of inflammatory cytokines in primary cultured rat Sertoli cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1374-1382, 2017.
Collapse
Affiliation(s)
- Lingqun Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, 223300, China.,Jiangsu Key Laboratory for Food Safety and Nutritional Function, Huaiyin Normal University, Huaian, 223300, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Xiao Ze
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Lingjuan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yaoming Zhou
- Jiangsu Food and Pharmaceutical Science College, Huaian, 223303, China
| | - Yuguan Ze
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| |
Collapse
|
47
|
Cheah HY, Kiew LV, Lee HB, Japundžić-Žigon N, Vicent MJ, Hoe SZ, Chung LY. Preclinical safety assessments of nano-sized constructs on cardiovascular system toxicity: A case for telemetry. J Appl Toxicol 2017; 37:1268-1285. [DOI: 10.1002/jat.3437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Hoay Yan Cheah
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Hong Boon Lee
- Department of Pharmacy, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Nina Japundžić-Žigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine; University of Belgrade; Republic of Serbia
| | - Marίa J. Vicent
- Polymer Therapeutics Lab; Centro de Investigación Príncipe Felipe; Av. Eduardo Primo Yúfera 3 E-46012 Valencia Spain
| | - See Ziau Hoe
- Department of Physiology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| |
Collapse
|
48
|
Arsenic downregulates tight junction claudin proteins through p38 and NF-κB in intestinal epithelial cell line, HT-29. Toxicology 2017; 379:31-39. [PMID: 28115242 DOI: 10.1016/j.tox.2017.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 11/24/2022]
Abstract
Arsenic is a naturally occurring metalloid that often is found in foods and drinking water. Human exposure to arsenic is associated with the development of gastrointestinal problems such as fluid loss, diarrhea and gastritis. Arsenic is also known to induce toxic responses including oxidative stress in cells of the gastrointestinal track. Tight junctions (TJs) regulate paracellular permeability and play a barrier role by inhibiting the movement of water, solutes and microorganisms in the paracellular space. Since oxidative stress and TJ damage are known to be associated, we examined whether arsenic produces TJ damage such as downregulation of claudins in the human colorectal cell line, HT-29. To confirm the importance of oxidative stress in arsenic-induced TJ damage, effects of the antioxidant compound (e.g., N-acetylcysteine (NAC)) were also determined in cells. HT-29 cells were treated with arsenic trioxide (40μM, 12h) to observe the modified expression of TJ proteins. Arsenic decreased expression of TJ proteins (i.e., claudin-1 and claudin-5) and transepithelial electrical resistance (TEER) whereas pretreatment of NAC (5-10mM, 1h) attenuated the observed claudins downregulation and TEER. Arsenic treatment produced cellular oxidative stress via superoxide generation and lowering glutathione (GSH) levels, while NAC restored cellular GSH levels and decreased oxidative stress. Arsenic increased phosphorylation of p38 and nuclear translocation of nuclear factor-kappa B (NF-κB) p65, while NAC attenuated these intracellular events. Results demonstrated that arsenic can damage intestinal epithelial cells by proinflammatory process (oxidative stress, p38 and NF-κB) which resulted in the downregulation of claudins and NAC can protect intestinal TJs from arsenic toxicity.
Collapse
|
49
|
Song B, Zhou T, Yang W, Liu J, Shao L. Contribution of oxidative stress to TiO 2 nanoparticle-induced toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:130-140. [PMID: 27771506 DOI: 10.1016/j.etap.2016.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
With the rapid development of nanotechnology, titanium dioxide nanoparticles (TNPs) are widely used in many fields. People in such workplaces or researchers in laboratories are at a higher risk of being exposed to TNPs, so are the consumers. Moreover, increasing evidence revealed that the concentrations of TNPs are elevated in animal organs after systematic exposure and such accumulated TNPs could induce organ dysfunction. Although cellular responses such as oxidative stress, inflammatory response, apoptosis, autophagy, signaling pathways, and genotoxic effects contribute to the toxicity of TNPs, the interrelationship among them remains obscure. Given the pivotal role of oxidative stress, we summarized relevant articles covering the involvement of oxidative stress in TNPs' toxicity and found that TNP-induced oxidative stress might play a central role in toxic mechanisms. However, available data are far from being conclusive and more investigations should be performed to further confirm whether the toxicity of TNPs might be attributed in part to the cascades of oxidative stress. Tackling this uncertain issue may help us to comprehensively understand the interrelationship among toxic cellular responses induced by TNPs and might shed some light on methods to alleviate toxicity of TNPs.
Collapse
Affiliation(s)
- Bin Song
- Guizhou Provincial People's Hospital, Guiyang 550002, China; Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Ting Zhou
- Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - WenLong Yang
- Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - LongQuan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
50
|
Yu X, Hong F, Zhang YQ. Cardiac inflammation involving in PKCε or ERK1/2-activated NF-κB signalling pathway in mice following exposure to titanium dioxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2016; 313:68-77. [PMID: 27054666 DOI: 10.1016/j.jhazmat.2016.03.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/15/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
The evaluation of toxicological effects of nanoparticles (NPs) is increasingly important due to their growing occupational use and presence as compounds in consumer products. Recent researches have demonstrated that long-term exposure to air particulate matter can induce cardiovascular events, but whether cardiovascular disease, such as cardiac damage, is induced by NP exposure and its toxic mechanisms is rarely evaluated. In the present study, when mice were continuously exposed to TiO2 NPs at 2.5, 5 or 10mg/kg BW by intragastric administration for 90days, obvious histopathological changes, and great alterations of NF-κB and its inhibitor I-κB, as well as TNF-α, IL-1β, IL-6 and IFN-α expression were induced. The NPs significantly decreased Ca(2+)-ATPase, Ca(2+)/Mg(2+)-ATPase and Na(+)/K(+)-ATPase activities and enhanced NCX-1 content. The NPs also considerably increased CAMK II and α1/β1-AR expression and up-regulated p-PKCε and p-ERK1/2 in a dose-dependent manner in the mouse heart. These data suggest that low-dose and long-term exposure to TiO2 NPs may cause cardiac damage such as cardiac fragmentation or disordered myocardial fibre arrangement, tissue necrosis, myocardial haemorrhage, swelling or cardiomyocyte hypertrophy, and the inflammatory response was potentially mediated by NF-κB activation via the PKCε or ERK1/2 signalling cascades in mice.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM 702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou 215123, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China.
| | - Yu-Qing Zhang
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM 702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou 215123, China.
| |
Collapse
|