1
|
Wu S, Tong C, Liu J. Obesogenic effects of six classes of emerging contaminants. J Environ Sci (China) 2025; 151:252-272. [PMID: 39481937 DOI: 10.1016/j.jes.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 11/03/2024]
Abstract
There is growing concern about the concept that exposure to environmental chemicals may be contributing to the obesity epidemic. However, there is no consensus on the obesogenic effects of emerging contaminants from a toxicological and environmental perspective. The potential human exposure and experimental evidence for obesogenic effects of emerging contaminants need to be systematically discussed. The main objective of this review is to provide recommendations for further subsequent policy development following a critical analysis of the literature for humans and experimental animals exposed to emerging contaminants. This article reviews human exposure to emerging contaminants (with a focus on antimicrobials, preservatives, water and oil repellents, flame retardants, antibiotics and bisphenols) and the impact of emerging contaminants on obesity. These emerging contaminants have been widely detected in human biological samples. Epidemiological studies provide evidence linking exposure to emerging contaminants to the risks of obesity in humans. Studies based on animal models and adipose cells show the obesogenic effects of emerging contaminants and identify modes of action by which contaminants may induce changes in body fat accumulation and lipid metabolic homeostasis. Some knowledge gaps in this area and future directions for further investigation are discussed.
Collapse
Affiliation(s)
- Siying Wu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoyu Tong
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Xie C, Jiang X, Yin J, Jiang R, Zhu J, Zou S. Bisphenol S accelerates the progression of high fat diet-induced NAFLD by triggering ferroptosis via regulating HMGCS2. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137166. [PMID: 39799675 DOI: 10.1016/j.jhazmat.2025.137166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Bisphenol S (BPS) is a widely detected environmental toxin with the potential to increase the risk of non-alcoholic fatty liver disease (NAFLD). However, the effects of BPS on the progression of high fat diet (HFD)-induced NAFLD remain unclear. This study aimed to explore the role and underlying mechanisms of action of BPS in HFD-induced NAFLD. Our results showed that BPS exposure (50 and 500 μg/kg bodyweight/day) promoted the progression of NAFLD, which was evidenced by increased liver/body weight ratio, elevated serum alanine aminotransferase and aspartate aminotransferase levels, and more and larger lipid droplets in liver tissues. These phenomena were accompanied by abnormal expression levels of fatty acid uptake (Cd36), fatty acid synthesis (Pparγ, Scd-1, and Fasn), fatty acid oxidation (Pparα), and cytokines (TNFα, IL-1β, and IL-6). In vitro and in vivo studies showed that BPS exposure caused hepatic ferroptosis by regulating ferroptosis-related markers (GPX4, xCT, FTH, and ACSL4). Moreover, BPS exposure caused ROS overproduction, mitochondrial dysfunction, lipid peroxidation, and GSH suppression, all of which were restored by ferrostatin-1, a ferroptosis inhibitor. Moreover, BPS significantly upregulated HMGCS2 expression in the hepatocytes and liver tissues. 3-hydroxy-3-methylglutaryl coenzyme A synthetase 2 (HMGCS2) knockdown mitigated the effects of BPS on hepatocytes and reversed the expression of ferroptosis-related markers. Thus, BPS exposure aggravates HFD-induced NAFLD by regulating HMGCS2-mediated ferroptosis. Collectively, our study indicates that BPS exposure at environmentally relevant concentrations may aggravate NAFLD phenotypes under HFD conditions, highlighting the health risks of BPS to the liver.
Collapse
Affiliation(s)
- Chunfeng Xie
- Medical School, Nanjing University, Nanjing 210093, China; Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinyao Jiang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Juan Yin
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Runqiu Jiang
- Medical School, Nanjing University, Nanjing 210093, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| | - Shenshan Zou
- Department of General Surgery, Changzhou TCM Hospital, No. 25, Heping North Road, Changzhou City, Jiangsu Province 213003, China.
| |
Collapse
|
3
|
Li S, Gao L, Song H, Lin J, Zhang S, Schmitt-Kopplin P, Zeng J. A comprehensive atlas of multi-tissue metabolome and microbiome shifts: Exploring obesity and insulin resistance induced by perinatal bisphenol S exposure in high-fat diet-fed offspring. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136895. [PMID: 39706018 DOI: 10.1016/j.jhazmat.2024.136895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Bisphenol S (BPS) is widely used as a substitute for Bisphenol A (BPA). While perinatal BPS exposure is suspected to increase susceptibility to high-caloric diet-induced adipogenesis, how BPS affects offspring remains largely unknown. This study explored effects of prenatal BPS exposure on adiposity and insulin resistance in high-fat diet (HFD)-fed C57BL/6 offspring, revealing significant changes in body weight, glucose tolerance, insulin sensitivity, and histopathology. Employing nontargeted metabolomics and 16S rRNA sequencing, we constructed a comprehensive atlas of metabolome and microbiome shifts across heart, liver, pancreas, white adipose tissue (WAT), brown adipose tissue (BAT), and feces. Male offspring showed greater metabolic and microbial disturbances. Low-dose BPS exposure (0.05 mg/kg/d) induced changes across entire atlas comparable to high-dose (5 mg/kg/d). BAT and WAT were key target tissues with the most significant metabolic disturbances. BPS disrupted fatty acid β-oxidation in WAT by reducing carnitine carriers, causing WAT fat accumulation. A resistance mechanism to BPS exposure was indicated by both mobilization of BAT compensatory thermogenesis, characterized by increased carnitines and UCP1 expression, and an increase in beneficial commensal bacteria. Their competition and imbalance contributed to obesity and insulin resistance in offspring, highlighting the potential for early interventions targeting key metabolites and microbiota.
Collapse
Affiliation(s)
- Shuyin Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Longhua Gao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Haoyue Song
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jiayi Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Shen Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha 410000, China; NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha 410075, China.
| | | | - Jun Zeng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China.
| |
Collapse
|
4
|
Alexandre-Santos B, Reis GDS, Medeiros GR, Stockler-Pinto MB, Oliveira NSC, Miranda-Alves L, Nóbrega ACLD, Magliano DC, Frantz EDC. Bisphenol S exposure induces cardiac remodeling and aggravates high-fat diet-induced cardiac hypertrophy in mice. ENVIRONMENTAL RESEARCH 2024; 261:119781. [PMID: 39142458 DOI: 10.1016/j.envres.2024.119781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Bisphenol S (BPS) is widely used in the manufacture products and increase the risk of cardiovascular diseases. The effect of the association between obesity and BPS on cardiac outcomes is still unknown. Male C57BL/6 mice were divided into standard chow diet (SC; 15 kJ/g), standard chow diet + BPS (SCB), high-fat diet (HF; 21 kJ/g), and high-fat diet + BPS (HFB). Over 12 weeks, the groups were exposed to BPS through drinking water (dose: 25 μg/kg/day) and/or a HF diet. We evaluated: body mass (BM), total cholesterol, systolic blood pressure (SBP), left ventricle (LV) mass, and cardiac remodeling. In the SCB group, BM, total cholesterol, and SBP increase were augmented in relation to the SC group. In the HF and HFB groups, these parameters were higher than in the SC and SCB groups. Cardiac hypertrophy was evidenced by augmented LV mass and wall thickness, and ANP protein expression in all groups in comparison to the SC group. Only the HFB group had a thicker LV wall than SCB and HF groups, and increased cardiomyocyte area when compared with SC and SCB groups. Concerning cardiac fibrosis, SCB, HF, and HFB groups presented higher interstitial collagen area, TGFβ, and α-SMA protein expression than the SC group. Perivascular collagen area was increased only in the HF and HFB groups than SC group. Higher IL-6, TNFα, and CD11c protein expression in all groups than the SC group evidenced inflammation. All groups had elevated CD36 and PPARα protein expression in relation to the SC group, but only HF and HFB groups promoted cardiac steatosis with increased perilipin 5 protein expression than the SC group. BPS exposure alone promoted cardiac remodeling with pathological concentric hypertrophy, fibrosis, and inflammation. Diet-induced remodeling is aggravated when associated with BPS, with marked hypertrophy, alongside fibrosis, inflammation, and lipid accumulation.
Collapse
Affiliation(s)
- Beatriz Alexandre-Santos
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Guilherme Dos Santos Reis
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Gabriela Rodrigues Medeiros
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Research Center on Nutrigenetics and Nutrigenomics, Faculty of Nutrition, Fluminense Federal University, Niteroi, RJ, Brazil
| | | | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology, Institute of Biomedical Science, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - D'Angelo Carlo Magliano
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Experimental Endocrinology, Institute of Biomedical Science, Federal University of Rio de Janeiro, RJ, Brazil
| | - Eliete Dalla Corte Frantz
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
5
|
Villalaín J. Bisphenol F and Bisphenol S in a Complex Biomembrane: Comparison with Bisphenol A. J Xenobiot 2024; 14:1201-1220. [PMID: 39311147 PMCID: PMC11417855 DOI: 10.3390/jox14030068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024] Open
Abstract
Bisphenols are a group of endocrine-disrupting chemicals used worldwide for the production of plastics and resins. Bisphenol A (BPA), the main bisphenol, exhibits many unwanted effects. BPA has, currently, been replaced with bisphenol F (BPF) and bisphenol S (BPS) in many applications in the hope that these molecules have a lesser effect on metabolism than BPA. Since bisphenols tend to partition into the lipid phase, their place of choice would be the cellular membrane. In this paper, I carried out molecular dynamics simulations to compare the localization and interactions of BPA, BPF, and BPS in a complex membrane. This study suggests that bisphenols tend to be placed at the membrane interface, they have no preferred orientation inside the membrane, they can be in the monomer or aggregated state, and they affect the biophysical properties of the membrane lipids. The properties of bisphenols can be attributed, at least in part, to their membranotropic effects and to the modulation of the biophysical membrane properties. The data support that both BPF and BPS, behaving in the same way in the membrane as BPA and with the same capacity to accumulate in the biological membrane, are not safe alternatives to BPA.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202 Elche, Alicante, Spain
| |
Collapse
|
6
|
Lee HJ, Lee YJ, Lim YH, Kim HY, Kim BN, Kim JI, Cho YM, Hong YC, Shin CH, Lee YA. Relationship of bisphenol A substitutes bisphenol F and bisphenol S with adiponectin/leptin ratio among children from the environment and development of children cohort. ENVIRONMENT INTERNATIONAL 2024; 185:108564. [PMID: 38467088 DOI: 10.1016/j.envint.2024.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Bisphenol A (BPA) is known as an obesogenic endocrine disruptor. Bisphenol S (BPS) and F (BPF) are substitutes that have recently replaced BPA. OBJECTIVES To investigate the relationships of urinary bisphenols (BPA, BPS and BPF) with adiposity measurements (obesity, BMI z-score, and fat mass), serum adipokine levels (adiponectin and leptin), and adiponectin/leptin ratio (A/L ratio) in 6- and 8-year-old children. METHODS A total of 561 children who participated in the Environment and Development of Children cohort (482 and 516 children visited at age 6 and 8, respectively) at Seoul National University Children's Hospital during 2015-2019 were included. Urinary BPA levels were log-transformed. BPS levels were categorized into three groups (non-detected, lower-half, and higher-half of detected), and BPF levels were classified into two groups (non-detected and detected). RESULTS The urinary BPS higher-half group had a higher BMI z-score (β = 0.160, P= 0.044), higher fat mass (β = 0.104, P< 0.001), lower adiponectin concentration (β =- 0.069, P< 0.001), higher leptin concentration (β = 0.360, P< 0.001), and lower A/L ratio (β =- 0.428, P< 0.001) compared with the non-detected group. The urinary BPF-detected group had a higher fat mass (β = 0.074, P< 0.001), lower adiponectin concentration (β =- 0.069, P< 0.001), higher leptin concentration (β = 0.360, P< 0.001), and lower A/L ratio (β =- 0.428, P< 0.001) compared with the non-detected group. The BPA levels showed no consistent associations with outcomes, except for isolated associations of BPA at age 6 with a higher BMI z-score at age 6 (P= 0.016) and leptin at age 8 (P= 0.021). CONCLUSIONS Increased exposure to BPS and BPF is associated with higher fat mass and leptin concentration, lower serum adiponectin, and lower A/L ratio in children. These findings suggest potential adverse effects of BPA substitutes on adiposity and adipokines. No consistent association of BPA exposure with outcomes could be partly explained by the decreasing BPA levels over time.
Collapse
Affiliation(s)
- Hye Jin Lee
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Yun Jeong Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hwa Young Kim
- Department of Pediatrics, Bundang Seoul National University Hospital, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yong Min Cho
- Department of Nano Chemical and Biological Engineering, SeoKyeong University, Seoul, Republic of Korea
| | - Yun-Chul Hong
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Molangiri A, Varma S, Hridayanka KSN, Srinivas M, Kona SR, Ibrahim A, Duttaroy AK, Basak S. Gestational exposure to bisphenol S induces microvesicular steatosis in male rat offspring by modulating metaflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166775. [PMID: 37660821 DOI: 10.1016/j.scitotenv.2023.166775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Prenatal exposure to endocrine-disrupting bisphenol A (BPA) shows a long-lasting programming effect on an organ's metabolic function and predisposes it to the risk of adult metabolic diseases. Although a reduced contaminant risk due to "BPA-free" exposure is proposed, limited data on a comparative assessment of gestational exposure to BPS and BPA and their effects on metaflammation in predisposing liver metabolic disease is reported. Pregnant Wistar rats were exposed to BPS and BPA (0.0, 0.4, 4.0 μg/kg bw) via gavage from gestational day 4 to 21, and effects were assessed in the 90 d male offspring. Prenatal BPS-exposed offspring showed a more obesogenic effect than BPA, including changes in body fat distribution, feed efficiency, and leptin signalling. The BPS exposure induced the adipocyte hypertrophy of visceral adipose to a greater extent than BPA. The adipose hypertrophy was augmented by tissue inflammation, endoplasmic reticulum (ER) stress, and apoptosis due to increased expression of pro-inflammatory (IL6, IL1β, CRP, COX2) cytokines, ER stress modulator (CHOP), and apoptotic effector (Caspase 3). The enlarged, stressed, inflamed adipocytes triggered de novo lipogenesis in the bisphenol-exposed offspring liver due to increased expression of cholesterol and lipid biogenesis mediators (srebf1, fasn, acaca, PPARα) concomitant with elevated triacylglycerol (TG) and cholesterol (TC), resulted in impaired hepatic clearance of lipids. The lipogenic effects were also promoted by increased expression of HSD11β1. BPS exposure increased absolute liver weight, discoloration, altered liver lobes more than in BPA. Liver histology showed numerous lipid droplets, and hepatocyte ballooning, upregulated ADRP expression, an increased expression of pro-inflammatory mediators (IL6, CRP, IL1β, TNFα, COX2), enhanced lipid peroxidation in the BPS-exposed offspring's liver suggest altered metaflammation leads to microvesicular steatosis. Overall, gestational BPS exposure demonstrated a higher disruption in metabolic changes than BPA, involving excess adiposity, liver fat, inflammation, and predisposition to steatosis in the adult male offspring.
Collapse
Affiliation(s)
- Archana Molangiri
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikanth Varma
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | | | - Myadara Srinivas
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Suryam Reddy Kona
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ahamed Ibrahim
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Sanjay Basak
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
| |
Collapse
|
8
|
Basak S, Varma S, Duttaroy AK. Modulation of fetoplacental growth, development and reproductive function by endocrine disrupters. Front Endocrinol (Lausanne) 2023; 14:1215353. [PMID: 37854189 PMCID: PMC10579913 DOI: 10.3389/fendo.2023.1215353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Maternal endocrine homeostasis is vital to a successful pregnancy, regulated by several hormones such as human chorionic gonadotropin, estrogen, leptin, glucocorticoid, insulin, prostaglandin, and others. Endocrine stress during pregnancy can modulate nutrient availability from mother to fetus, alter fetoplacental growth and reproductive functions. Endocrine disrupters such as bisphenols (BPs) and phthalates are exposed in our daily life's highest volume. Therefore, they are extensively scrutinized for their effects on metabolism, steroidogenesis, insulin signaling, and inflammation involving obesity, diabetes, and the reproductive system. BPs have their structural similarity to 17-β estradiol and their ability to bind as an agonist or antagonist to estrogen receptors to elicit an adverse response to the function of the endocrine and reproductive system. While adults can negate the adverse effects of these endocrine-disrupting chemicals (EDCs), fetuses do not equip themselves with enzymatic machinery to catabolize their conjugates. Therefore, EDC exposure makes the fetoplacental developmental window vulnerable to programming in utero. On the one hand prenatal BPs and phthalates exposure can impair the structure and function of the ovary and uterus, resulting in placental vascular defects, inappropriate placental expression of angiogenic growth factors due to altered hypothalamic response, expression of nutrient transporters, and epigenetic changes associated with maternal endocrine stress. On the other, their exposure during pregnancy can affect the offspring's metabolic, endocrine and reproductive functions by altering fetoplacental programming. This review highlights the latest development in maternal metabolic and endocrine modulations from exposure to estrogenic mimic chemicals on subcellular and transgenerational changes in placental development and its effects on fetal growth, size, and metabolic & reproductive functions.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikanth Varma
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Varghese SV, Hall JM. Bisphenol A substitutes and obesity: a review of the epidemiology and pathophysiology. Front Endocrinol (Lausanne) 2023; 14:1155694. [PMID: 37529602 PMCID: PMC10390214 DOI: 10.3389/fendo.2023.1155694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
The prevalence of obesity, a condition associated with increased health risks, has risen significantly over the past several decades. Although obesity develops from energy imbalance, its etiology involves a multitude of other factors. One of these factors are endocrine disruptors, or "obesogens", when in reference to obesity. Bisphenol A (BPA), a known endocrine disruptor used in plastic materials, has recently been described as an environmental obesogen. Although BPA-free products are becoming more common now than in the past, concerns still remain about the obesogenic properties of the compounds that replace it, namely Bisphenol S (BPS), Bisphenol F (BPF), and Bisphenol AF (BPAF). The purpose of this review is to investigate the relationship between BPA substitutes and obesity. Literature on the relationship between BPA substitutes and obesity was identified through PubMed and Google Scholar, utilizing the search terms "BPA substitutes", "bisphenol analogues", "BPS", "BPF", "BPAF", "obesity", "obesogens", "adipogenesis", "PPARγ", and "adipocyte differentiation". Various population-based studies were assessed to gain a better understanding of the epidemiology, which revealed evidence that BPA substitutes may act as obesogens at the pathophysiological level. Additional studies were assessed to explore the potential mechanisms by which these compounds act as obesogens. For BPS, these mechanisms include Peroxisome proliferator-activated receptor gamma (PPARγ) activation, potentiation of high-fat diet induced weight-gain, and stimulation of adipocyte hypertrophy and adipose depot composition. For BPF and BPAF, the evidence is more inconclusive. Given the current understanding of these compounds, there is sufficient concern about exposures. Thus, further research needs to be conducted on the relationship of BPA substitutes to obesity to inform on the potential public health measures that can be implemented to minimize exposures.
Collapse
|
10
|
Zhang R, Guo J, Wang Y, Sun R, Dong G, Wang X, Du G. Prenatal bisphenol S exposure induces hepatic lipid deposition in male mice offspring through downregulation of adipose-derived exosomal miR-29a-3p. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131410. [PMID: 37088024 DOI: 10.1016/j.jhazmat.2023.131410] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The increased usage of bisphenol S (BPS) results in wide distribution in pregnant women. In this study, pregnant mice were given multiple-dose BPS during gestation. Results showed that prenatal BPS exposure (50 μg/kg/day) induced increased weight gain, dyslipidemia, higher liver triglyceride (TG), adipocyte hypertrophy, and hepatic lipid deposition in male offspring. Exosomes play important roles in regulating lipid metabolism. Here, serum exosomes and adipose miRNA sequencing of male offspring indicated a remarkable decrease in miR-29a-3p expression. To clarify whether adipocyte-derived exosomes mediate hepatic lipid deposition, exosomes were extracted from BPS-treated adipocytes and co-cultured with hepatocytes. These exosomes could be taken up by hepatocytes and promoted lipid deposition, and notably, exosomal miR-29a-3p was downregulated. Furthermore, miR-29a-3p knockdown in adipocyte-derived exosomes promoted hepatocyte lipid deposition, whereas overexpression led to the opposite effect. Also, the role of miR-29a-3p was demonstrated in hepatocytes by overexpressing or knocking it down. Subsequent studies have shown that miR-29a-3p can promote lipid deposition by directly targeting Col4a1. Taken together, prenatal BPS exposure could lead to lower miR-29a-3p yield in adipocyte-derived exosomes and decrease miR-29a-3p content transported to hepatocytes, which further negatively regulate Col4a1 and promote hepatic lipid deposition. Our findings provided clues to maternal environmental exposure-induced liver metabolic diseases.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Immunology, Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai 200136, China
| | - Jingyao Guo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yupeng Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rundong Sun
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guangzhu Dong
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Baijiahu Community Health Service Center, Moling Street, Jiangning District, Nanjing 211102, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
11
|
Thacharodi A, Hassan S, Hegde TA, Thacharodi DD, Brindhadevi K, Pugazhendhi A. Water a major source of endocrine-disrupting chemicals: An overview on the occurrence, implications on human health and bioremediation strategies. ENVIRONMENTAL RESEARCH 2023; 231:116097. [PMID: 37182827 DOI: 10.1016/j.envres.2023.116097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are toxic compounds that occur naturally or are the output of anthropogenic activities that negatively impact both humans and wildlife. A number of diseases are associated with these disruptors, including reproductive disorders, cardiovascular disorders, kidney disease, neurological disorders, autoimmune disorders, and cancer. Due to their integral role in pharmaceuticals and cosmetics, packaging companies, agro-industries, pesticides, and plasticizers, the scientific awareness on natural and artificial EDCs are increasing. As these xenobiotic compounds tend to bioaccumulate in body tissues and may also persist longer in the environment, the concentrations of these organic compounds may increase far from their original point of concentrations. Water remains as the major sources of how humans and animals are exposed to EDCs. However, these toxic compounds cannot be completely biodegraded nor bioremediated from the aqueous medium with conventional treatment strategies thereby requiring much more efficient strategies to combat EDC contamination. Recently, genetically engineered microorganism, genome editing, and the knowledge of protein and metabolic engineering has revolutionized the field of bioremediation thereby helping to breakdown EDCs effectively. This review shed lights on understanding the importance of aquatic mediums as a source of EDCs exposure. Furthermore, the review sheds light on the consequences of these EDCs on human health as well as highlights the importance of different remediation and bioremediation approaches. Particular attention is paid to the recent trends and perspectives in order to attain sustainable approaches to the bioremediation of EDCs. Additionally, rigorous restrictions to preclude the discharge of estrogenic chemicals into the environment should be followed in efforts to combat EDC pollution.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand; Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Saqib Hassan
- Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, 20036, USA; Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Thanushree A Hegde
- Civil Engineering Department, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - Dhanya Dilip Thacharodi
- Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Kathirvel Brindhadevi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
12
|
Zhang W, Ma X, Zhang Y, Tong W, Zhang X, Liang Y, Song M. Obesogenic effect of Bisphenol P on mice via altering the metabolic pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114703. [PMID: 36857923 DOI: 10.1016/j.ecoenv.2023.114703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/12/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol P (BPP), structurally similar to bisphenol A, is commonly identified in the samples of environment, food, and humans. Unfortunately, very little information is currently available on adverse effects of BPP. The obesogenic effects and underlying mechanisms of BPP on mice were investigated in this study. Compared with the control, high-resolution microcomputed tomography (micro-CT) scans displayed that the visceral fat volume of mice was significantly increased at a dose of 5 mg/kg/day after BPP exposure for 14 days, whereas the subcutaneous fat volume remained unchanged. Nontargeted metabolomic analysis revealed that BPP significantly perturbed the metabolic pathways of mouse livers, and acetyl-CoA was identified as the potential key metabolite responsible for the visceral fat induced by BPP. These findings recommend that a great deal of attention should be paid to the obesogenic properties of BPP as a result of its widely utilized and persistence in the environment.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuerui Ma
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Yijia Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Wanjing Tong
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Xing Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Maoyong Song
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Gong P, Bailbé D, Tolu S, Pommier G, Liu J, Movassat J. Preconceptional exposure of adult male rats to bisphenol S impairs insulin sensitivity and glucose tolerance in their male offspring. CHEMOSPHERE 2023; 314:137691. [PMID: 36592828 DOI: 10.1016/j.chemosphere.2022.137691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Since the use of bisphenol A (BPA) has been restricted because of its endocrine disruptor properties, bisphenol S (BPS) has been widely used as a substitute of BPA. However, BPS exerts similar effects on metabolic health as BPA. The effects of maternal exposure to BPA and BPS on the metabolic health of offspring have been largely documented during the past decade. However, the impact of preconceptional paternal exposure to BPS on progenies remains unexplored. In this study we investigated the impact of paternal exposure to BPS before conception, on the metabolic phenotype of offspring. Male Wistar rats were administered BPS through drinking water at the dose of 4 μg/kg/day (BPS-4 sires) or 40 μg/kg/day (BPS-40 sires) for 2 months before mating with females. The progenies (F1) were studied at fetal stage and in adulthood. We showed that preconceptional paternal exposure to BPS for 2 months did not alter the metabolic status of sires. The female offspring of sires exposed to lower or higher doses of BPS showed no alteration of their metabolic phenotype compared to females from control sires. In contrast, male offspring of BPS-4 sires exhibited increased body weight and body fat/lean ratio, decreased insulin sensitivity and increased glucose-induced insulin secretion at adult age, compared to the male offspring of control sires. Moreover, male offspring of BPS-4 sires developed glucose intolerance later in life. None of these effects were apparent in male offspring of BPS-40 sires. In conclusion, our study provides the first evidence of the non-monotonic and sex-specific effects of preconceptional paternal exposure to BPS on the metabolic health of offspring, suggesting that BPS is not a safe BPA substitute regarding the inter-generational transmission of metabolic disorders through the paternal lineage.
Collapse
Affiliation(s)
- Pengfei Gong
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Danielle Bailbé
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Stefania Tolu
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Gaëlle Pommier
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France; Université Paris Cité, UFR Sciences Du Vivant, F-75013, Paris, France
| | - Junjun Liu
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, China
| | - Jamileh Movassat
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France. http://bfa.univ-paris-diderot.fr
| |
Collapse
|
14
|
Wang W, Li Z, Zhang X, Zhang J, Ru S. Bisphenol S Impairs Behaviors through Disturbing Endoplasmic Reticulum Function and Reducing Lipid Levels in the Brain of Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:582-594. [PMID: 36520979 DOI: 10.1021/acs.est.2c07828] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The number of neurotoxic pollutants is increasing, but their mechanism of action is unclear. Here, zebrafish were exposed to 0, 1, 10, and 100 μg/L bisphenol S (BPS) for different durations beginning at 2 h postfertilization (hpf) to explore the neurotoxic mechanisms of BPS. Zebrafish larvae exposed to BPS displayed abnormal neurobehaviors. At 48 and 120 hpf, BPS inhibited yolk lipid consumption and reduced the lipid distribution in the zebrafish brain. Moreover, BPS downregulated the mRNA levels of genes involved in fatty acid elongation in the endoplasmic reticulum (ER) and activated ER stress pathways at 48 and 120 hpf, and KEGG analysis after RNA-seq showed that the protein processing pathway in the ER was significantly enriched after BPS exposure. Exposure to ER toxicants (thapsigargin and tunicamycin), two positive controls, induced neurotoxic effects on zebrafish embryos and larvae similar to those of BPS exposure. These data suggested that BPS and ER toxicants disturbed ER function and reduced brain lipid levels. Continued exposure to BPS into adulthood not only inhibited brain fatty acid elongation and ER function but also caused abnormal swelling of the ER in zebrafish. Our data provide new insights into the neurotoxic mechanism of BPS.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
15
|
Klančič V, Gobec M, Jakopin Ž. Halogenated ingredients of household and personal care products as emerging endocrine disruptors. CHEMOSPHERE 2022; 303:134824. [PMID: 35525453 DOI: 10.1016/j.chemosphere.2022.134824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The everyday use of household and personal care products (HPCPs) generates an enormous amount of chemicals, of which several groups warrant additional attention, including: (i) parabens, which are widely used as preservatives; (ii) bisphenols, which are used in the manufacture of plastics; (iii) UV filters, which are essential components of many cosmetic products; and (iv) alkylphenol ethoxylates, which are used extensively as non-ionic surfactants. These chemicals are released continuously into the environment, thus contaminating soil, water, plants and animals. Wastewater treatment and water disinfection procedures can convert these chemicals into halogenated transformation products, which end up in the environment and pose a potential threat to humans and wildlife. Indeed, while certain parent HPCP ingredients have been confirmed as endocrine disruptors, less is known about the endocrine activities of their halogenated derivatives. The aim of this review is first to examine the sources and occurrence of halogenated transformation products in the environment, and second to compare their endocrine-disrupting properties to those of their parent compounds (i.e., parabens, bisphenols, UV filters, alkylphenol ethoxylates). Albeit previous reports have focused individually on selected classes of such substances, none have considered the problem of their halogenated transformation products. This review therefore summarizes the available research on these halogenated compounds, highlights the potential exposure pathways, and underlines the existing knowledge gaps within their toxicological profiles.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Xu KJ, Loganathan N, Belsham DD. Bisphenol S induces Agrp expression through GPER1 activation and alters transcription factor expression in immortalized hypothalamic neurons: A mechanism distinct from BPA-induced upregulation. Mol Cell Endocrinol 2022; 552:111630. [PMID: 35569583 DOI: 10.1016/j.mce.2022.111630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 11/22/2022]
Abstract
The increasing prevalence of obesity around the world has brought concern upon ubiquitously present obesogenic environmental compounds, such as bisphenol A (BPA). Increasingly tightened regulations on the industrial use of BPA have prompted a transition to a structurally similar alternative, bisphenol S (BPS). BPS displays endocrine-disrupting behaviours similar to those of BPA and increases body weight, food intake and the hypothalamic expression of Agrp in vivo. However, the mechanisms behind this deleterious effect are unclear. Here, we report an increase in the mRNA level of Agrp at 4 h following BPS treatment in immortalized murine hypothalamic cell lines of embryonic and adult origin (mHypoE-41, mHypoA-59). BPS-induced changes in the expression of transcription factors and estrogen receptors that occurred concurrently with Agrp upregulation demonstrated similarities to BPA-induced changes, however, there were also changes that were unique to BPS. Specifically, while Chop, Atf3, Atf4, Atf6, Klf4, and Creb1 were upregulated and Gper1 was downregulated by both BPA and BPS, Esr1 mRNA levels were upregulated and Foxo1 and Stat3 levels remained unchanged by BPS. Finally, inhibition of GPER1 by G15 prevented BPS-mediated Agrp upregulation, independent of Atf3 and Klf4 upregulation. Overall, our results demonstrate the ability of BPS to increase Agrp mRNA expression through GPER1 signaling and to alter transcription factor expression in hypothalamic neurons, further elucidating the endocrine-disrupting potential of this alternative industrial chemical.
Collapse
Affiliation(s)
- Katherine J Xu
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
17
|
Vaccher V, Lopez ME, Castaño A, Mol H, Haji-Abbas-Zarrabi K, Bury D, Koch HM, Dvorakova D, Hajslova J, Nübler S, Kaur Sakhi A, Thomsen C, Vorkamp K, Göen T, Antignac JP. European interlaboratory comparison investigations (ICI) and external quality assurance schemes (EQUAS) for the analysis of bisphenol A, S and F in human urine: Results from the HBM4EU project. ENVIRONMENTAL RESEARCH 2022; 210:112933. [PMID: 35182598 DOI: 10.1016/j.envres.2022.112933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The Human Biomonitoring for Europe initiative (HBM4EU) aims to study the exposure of citizens to chemicals and potentially associated health effects. One objective of this project has been to build a network of laboratories able to answer to the requirements of European human biomonitoring studies. Within the HBM4EU quality assurance and quality control scheme (QA/QC), a number of interlaboratory comparison investigations (ICIs) and external quality assurance schemes (EQUASs) were organized to ensure data consistency, comparability and reliability. Bisphenols are among the prioritized substance groups in HBM4EU, including bisphenol A (BPA), bisphenol S (BPS) and bisphenol F (BPF) in human urine. In four rounds of ICI/EQUAS, two target concentration levels were considered, related to around P25 and P95 of the typical exposure distribution observed in the European general population. Special attention was paid to the conjugated phase II metabolites known to be most dominant in samples of environmentally exposed individuals, through the analysis of both native samples and samples fortified with glucuronide forms. For the low level, the average percentage of satisfactory results across the four rounds was 83% for BPA, 71% for BPS and 62% for BPF. For the high level, the percentages of satisfactory results increased to 93% for BPA, 89% for BPS and 86% for BPF. 24 out of 32 participating laboratories (75%) were approved for the analyses of BPA in the HBM4EU project according to the defined criterion of Z-scores for both low and high concentration levels in at least two ICI/EQUAS rounds. For BPS and BPF, the number of qualified laboratories was 18 out of 27 (67%) and 13 out of 28 (46%), respectively. These results demonstrate a strong analytical capability for BPA and BPS in Europe, while improvements may be needed for BPF.
Collapse
Affiliation(s)
- Vincent Vaccher
- Oniris, INRAE, UMR 1329, Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA), F-44307, Nantes, France
| | - Marta Esteban Lopez
- National Center for Environmental Health, Instituto de Salud Carlos III, Ctra. Majadahonda a Pozuelo km 2,2, 28220, Madrid, Spain
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III, Ctra. Majadahonda a Pozuelo km 2,2, 28220, Madrid, Spain
| | - Hans Mol
- Wageningen Food Safety Research - part of, Wageningen University and Research, Akkermaalsbos 2, WB, 6708, Wageningen, the Netherlands
| | - Karin Haji-Abbas-Zarrabi
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Daniel Bury
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Darina Dvorakova
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition, Technicka 5, 16000, Prague, Czech Republic
| | - Jana Hajslova
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition, Technicka 5, 16000, Prague, Czech Republic
| | - Stefanie Nübler
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Amrit Kaur Sakhi
- Section for Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Cathrine Thomsen
- Section for Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Jean-Philippe Antignac
- Oniris, INRAE, UMR 1329, Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA), F-44307, Nantes, France.
| |
Collapse
|
18
|
Abrantes-Soares F, Lorigo M, Cairrao E. Effects of BPA substitutes on the prenatal and cardiovascular systems. Crit Rev Toxicol 2022; 52:469-498. [PMID: 36472586 DOI: 10.1080/10408444.2022.2142514] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous chemical compound constantly being released into the environment, making it one of the most persistent endocrine-disrupting chemical (EDC) in nature. This EDC has already been associated with developing various pathologies, such as diabetes, obesity, and cardiovascular, renal, and behavioral complications, among others. Therefore, over the years, BPA has been replaced, gradually, by its analog compounds. However, these compounds are structurally similar to BPA, so, in recent years, questions have been raised concerning their safety for human health. Numerous investigations have been performed to determine the effects BPA substitutes may cause, particularly during pregnancy and prenatal life. On the other hand, studies investigating the association of these compounds with the development of cardiovascular diseases (CVD) have been developed. In this sense, this review summarizes the existing literature on the transgenerational transfer of BPA substitutes and the consequent effects on maternal and offspring health following prenatal exposure. In addition, these compounds' effects on the cardiovascular system and the susceptibility to develop CVD will be presented. Therefore, this review aims to highlight the need to investigate further the safety and benefits, or hazards, associated with replacing BPA with its analogs.
Collapse
Affiliation(s)
- Fatima Abrantes-Soares
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
19
|
Barra NG, Kwon YH, Morrison KM, Steinberg GR, Wade MG, Khan WI, Vijayan MM, Schertzer JD, Holloway AC. Increased gut serotonin production in response to bisphenol A structural analogs may contribute to their obesogenic effects. Am J Physiol Endocrinol Metab 2022; 323:E80-E091. [PMID: 35575233 DOI: 10.1152/ajpendo.00049.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesogens are synthetic, environmental chemicals that can disrupt endocrine control of metabolism and contribute to the risk of obesity and metabolic disease. Bisphenol A (BPA) is one of the most studied obesogens. There is considerable evidence that BPA exposure is associated with weight gain, increased adiposity, poor blood glucose control, and nonalcoholic fatty liver disease in animal models and human populations. Increased usage of structural analogs of BPA has occurred in response to legislation banning their use in some commercial products. However, BPA analogs may also cause some of the same metabolic impairments because of common mechanisms of action. One key effector that is altered by BPA and its analogs is serotonin, however, it is unknown if BPA-induced changes in peripheral serotonin pathways underlie metabolic perturbations seen with BPA exposure. Upon ingestion, BPA and its analogs act as endocrine-disrupting chemicals in the gastrointestinal tract to influence serotonin production by the gut, where over 95% of serotonin is produced. The purpose of this review is to evaluate how BPA and its analogs alter gut serotonin regulation and then discuss how disruption of serotonergic networks influences host metabolism. We also provide evidence that BPA and its analogs enhance serotonin production in gut enterochromaffin cells. Taken together, we propose that BPA and many BPA analogs represent endocrine-disrupting chemicals that can influence host metabolism through the endogenous production of gut-derived factors, such as serotonin.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Ferreira Azevedo L, Masiero MM, Cherkaoui S, Hornos Carneiro MF, Barbosa F, Zamboni N. The alternative analog plasticizer BPS displays similar phenotypic and metabolomic responses to BPA in HepG2 and INS-1E cells. Food Chem Toxicol 2022; 167:113266. [PMID: 35779701 DOI: 10.1016/j.fct.2022.113266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
Bisphenols A (BPA) and S (BPS) are endocrine-disrupting chemicals that affect energy metabolism, leading to impairment of glucose and lipid homeostasis. We aimed at identifying metabolic pathways regulated by both compounds in human liver cells and rat pancreatic β-cells that could impair energy homeostasis regulation. We assessed the effects on growth, proliferation, and viability of hepatocarcinoma (HepG2) and insulinoma (INS-1E) cells exposed to either BPA or BPS in a full range concentration between 0.001 and 100 μM. Both the dose and duration of exposure caused a differential response on growth and viability of both cells. Effects were more pronounced on HepG2, as these cells exhibited non-linear dose-responses following exposure to xenobiotics. For INS-1E, effect was observed only at the highest concentration. In addition, we profiled their intracellular state by untargeted metabolomics at 24, 48, and 72 h of exposure. This analysis revealed time- and dose-dependently molecular changes for HepG2 and INS-1E that were similar between BPA and BPS. Both increased levels of inflammatory mediators, such as metabolites pertaining to linolenic and linoleic acid metabolic pathway. In summary, this study shows that BPS also disrupts molecular functions in cells that regulate energy homeostasis, displaying similar but less pronounced responses than BPA.
Collapse
Affiliation(s)
- L Ferreira Azevedo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil; Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland.
| | - Mauro Miguel Masiero
- Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland; PhD Program in Systems Biology, Life Science Zürich, 8057, Zürich, Switzerland.
| | - S Cherkaoui
- Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland; PhD Program in Systems Biology, Life Science Zürich, 8057, Zürich, Switzerland; Division of Metabolism, University Children's Hospital Zürich and Children's Research Center, University of Zürich, Switzerland; Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Université Paris-Saclay, INSERM U1015, Villejuif, France.
| | - M F Hornos Carneiro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil; Department of Pharmacy, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
| | - F Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil.
| | - N Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland.
| |
Collapse
|
21
|
Mornagui B, Rezg R, Repond C, Pellerin L. Bisphenol S favors hepatic steatosis development via an upregulation of liver MCT1 expression and an impairment of the mitochondrial respiratory system. J Cell Physiol 2022; 237:3057-3068. [PMID: 35561261 DOI: 10.1002/jcp.30771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Bisphenol S (BPS) is a common substitute of bisphenol A (BPA). Recent data suggest that BPS acts as an obesogenic endocrine disruptor with emerging implications in the physiopathology of metabolic syndrome. However, the effects of BPS on monocarboxylate transporters (acting as carriers for lactate, pyruvate, and ketone bodies) and the mitochondrial respiratory system in the liver remain limited. For this purpose, male Swiss mice were treated with BPS at 100 µg/kg/day for 10 weeks, in drinking water. An increase in body weight and food intake was observed with no increase in locomotor activity. Moreover, data show that BPS increases hepatic MCT1 (a key energetic fuel transporter) mRNA expression accompanied by hepatic steatosis initiation and lipid accumulation, while disrupting mitochondrial function and oxidative stress parameters. Furthermore, BPS produced a significant increase in lactate dehydrogenase and creatine kinase activities. We can suggest that BPS contributes to hepatic steatosis in mice by upregulating monocarboxylate transporters and affecting the bioenergetic status characterized by an impaired mitochondrial respiratory system. Thus, our data highlight a new mechanism putatively implicated in hepatic steatosis development during BPS-induced obesity involving lactate metabolism.
Collapse
Affiliation(s)
- Bessem Mornagui
- Faculty of Sciences of Gabes, University of Gabes, Gabes, Tunisia
| | - Raja Rezg
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Cendrine Repond
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Inserm U1313, Faculté de Médecine et de Pharmacie, Université et CHU de Poitiers, Poitiers Cedex, France
| |
Collapse
|
22
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
23
|
Are BPA Substitutes as Obesogenic as BPA? Int J Mol Sci 2022; 23:ijms23084238. [PMID: 35457054 PMCID: PMC9031831 DOI: 10.3390/ijms23084238] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic diseases, such as obesity, Type II diabetes and hepatic steatosis, are a significant public health concern affecting more than half a billion people worldwide. The prevalence of these diseases is constantly increasing in developed countries, affecting all age groups. The pathogenesis of metabolic diseases is complex and multifactorial. Inducer factors can either be genetic or linked to a sedentary lifestyle and/or consumption of high-fat and sugar diets. In 2002, a new concept of “environmental obesogens” emerged, suggesting that environmental chemicals could play an active role in the etiology of obesity. Bisphenol A (BPA), a xenoestrogen widely used in the plastic food packaging industry has been shown to affect many physiological functions and has been linked to reproductive, endocrine and metabolic disorders and cancer. Therefore, the widespread use of BPA during the last 30 years could have contributed to the increased incidence of metabolic diseases. BPA was banned in baby bottles in Canada in 2008 and in all food-oriented packaging in France from 1 January 2015. Since the BPA ban, substitutes with a similar structure and properties have been used by industrials even though their toxic potential is unknown. Bisphenol S has mainly replaced BPA in consumer products as reflected by the almost ubiquitous human exposure to this contaminant. This review focuses on the metabolic effects and targets of BPA and recent data, which suggest comparable effects of the structural analogs used as substitutes.
Collapse
|
24
|
Beausoleil C, Le Magueresse-Battistoni B, Viguié C, Babajko S, Canivenc-Lavier MC, Chevalier N, Emond C, Habert R, Picard-Hagen N, Mhaouty-Kodja S. Regulatory and academic studies to derive reference values for human health: The case of bisphenol S. ENVIRONMENTAL RESEARCH 2022; 204:112233. [PMID: 34688643 DOI: 10.1016/j.envres.2021.112233] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
The close structural analogy of bisphenol (BP) S with BPA, a recognized endocrine-disrupting chemical and a substance of very high concern in the European Union, highlights the need to assess the extent of similarities between the two compounds and carefully scrutinize BPS potential toxicity for human health. This analysis aimed to investigate human health toxicity data regarding BPS, to find a point of departure for the derivation of human guidance values. A systematic and transparent methodology was applied to determine whether European or international reference values have been established for BPS. In the absence of such values, the scientific literature on human health effects was evaluated by focusing on human epidemiological and animal experimental studies. The results were analyzed by target organ/system: male and female reproduction, mammary gland, neurobehavior, and metabolism/obesity. Academic experimental studies were analyzed and compared to regulatory data including subchronic studies and an extended one-generation and reproduction study. In contrast to the regulatory studies, which were performed at dose levels in the mg/kg bw/day range, the academic dataset on specific target organs or systems showed adverse effects for BPS at much lower doses (0.5-10 μg/kg bw/day). A large disparity between the lowest-observed-adverse-effect levels (LOAELs) derived from regulatory and academic studies was observed for BPS, as for BPA. Toxicokinetic data on BPS from animal and human studies were also analyzed and showed a 100-fold higher oral bioavailability compared to BPA in a pig model. The similarities and differences between the two bisphenols, in particular the higher bioavailability of BPS in its active (non-conjugated) form and its potential impact on human health, are discussed. Based on the available experimental data, and for a better human protection, we propose to derive human reference values for exposure to BPS from the N(L)OAELs determined in academic studies.
Collapse
Affiliation(s)
| | | | - Catherine Viguié
- Toxalim, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Toulouse University, Ecole Nationale Vétérinaire de Toulouse (ENVT), Ecole d'Ingénieurs de Purpan (EIP), Université Paul Sabatier (UPS), Toulouse, France
| | - Sylvie Babajko
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | | | - Nicolas Chevalier
- Université Côte d'Azur, Centre Hospitalier Universitaire (CHU) de Nice, INSERM U1065, C3M, Nice, France
| | - Claude Emond
- University of Montreal, School of Public Health, DSEST, Montreal, Quebec, Canada
| | - René Habert
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, University Paris Diderot, Institut National de la Santé et de la Recherche Médicale (Inserm) U 967 - CEA, Fontenay-aux-Roses, France
| | - Nicole Picard-Hagen
- Toxalim, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Toulouse University, Ecole Nationale Vétérinaire de Toulouse (ENVT), Ecole d'Ingénieurs de Purpan (EIP), Université Paul Sabatier (UPS), Toulouse, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| |
Collapse
|
25
|
Darghouthi M, Rezg R, Boughmadi O, Mornagui B. Low-dose bisphenol S exposure induces hypospermatogenesis and mitochondrial dysfunction in rats: A possible implication of StAR protein. Reprod Toxicol 2022; 107:104-111. [PMID: 34838688 DOI: 10.1016/j.reprotox.2021.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
A wide variety of environmental chemicals/xenobiotics including bisphenol A (BPA) has been shown to cause male reproductive dysfunctions and infertility. Recently, bisphenol S (BPS) replaces BPA, in several products, including foodstuffs, under the BPA-free label. However, several studies have raised inquietude about the potential adverse effects of BPS. The present study was conducted to evaluate sperm parameters, biochemical parameters, mitochondrial function, and histopathological patterns after post-lactation BPS exposure at a low dose. Male rats (21 days old) were exposed to water containing BPS at 50 μg/L in drinking water for 10 weeks. Results showed no significant alteration in the gonadosomatic index (GSI) and relative reproductive organs weight. However, a significant reduction in epididymal sperm parameters (number, viability, and mobility) with morphological abnormalities were observed in the BPS group compared to control. An increase of malondialdehyde (MDA) level accompanied by antioxidant defense alteration particularly, in glutathione peroxidase activity, as well as a defective mitochondrial function were observed in testicular tissues of BPS treated rats. More importantly, in histopathological diagnosis, BPS treatment induces hypospermatogenesis and alteration in Sertoli cells. In silico docking studies illustrated BPS binds with steroidogenic acute regulatory (StAR) protein thereby affecting the transport of cholesterol into mitochondria resulting in decreased steroidogenesis. These results reflect a reprotoxic effect of BPS vould potentially lead to fertility reduction, in sexually maturity age. We highlighted that post-lactation exposure to BPS, equivalent in humans to the period covering childhood and adolescent stages, disrupt male reproduction function.
Collapse
Affiliation(s)
- Malek Darghouthi
- LR18ES36, University of Gabes, Faculty of Sciences of Gabes, Gabes, Tunisia
| | - Raja Rezg
- BIOLIVAL LR-14ES06, University of Monastir, Monastir, Tunisia
| | - Olfa Boughmadi
- BIOLIVAL LR-14ES06, University of Monastir, Monastir, Tunisia
| | - Bessem Mornagui
- LR18ES36, University of Gabes, Faculty of Sciences of Gabes, Gabes, Tunisia.
| |
Collapse
|
26
|
High throughput screening of bisphenols and their mixtures under conditions of low-intensity adipogenesis of human mesenchymal stem cells (hMSCs). Food Chem Toxicol 2022; 161:112842. [DOI: 10.1016/j.fct.2022.112842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 01/11/2023]
|
27
|
Zhou X, Li J, Zhang X, Zhang C, Bai J, Zhao Y, Zhu Y, Zhang J, Xiao X. Bisphenol S promotes fat storage in multiple generations of Caenorhabditis elegans in a daf-16/nhr-49 dependent manner. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109175. [PMID: 34464736 DOI: 10.1016/j.cbpc.2021.109175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 01/10/2023]
Abstract
Bisphenol S (BPS) has been gradually used in all kinds of productions. Our previous study has demonstrated that BPS increases the obesogenic effects of a high-glucose diet through regulating lipid metabolism in Caenorhabditis elegans (C. elegans). Whether the effects pass on to the next generations remains uncovered. In the present study, C. elegans was selected as the model organism to investigate the effects of BPS on lipid metabolism in multiple generations. Oil Red O staining and triglyceride assays showed that multi-generational exposure to BPS in C. elegans significantly increased the fat accumulation in wild type worms, while not in the daf-16 gene-deficient worms. In addition, BPS affected the expressions of fat-7 and acs-2 in four generations of C. elegans. Furthermore, BPS promotes fat storage in C. elegans of multiple generations by the daf-16/nhr-49-mediated signaling pathway.
Collapse
Affiliation(s)
- Xinghua Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jie Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaowei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Caiqin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
28
|
An H, Yu H, Wei Y, Liu F, Ye J. Disrupted metabolic pathways and potential human diseases induced by bisphenol S. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103751. [PMID: 34624477 DOI: 10.1016/j.etap.2021.103751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Although the toxicity of bisphenol S has been studied in some species, the global metabolic network disrupted by bisphenol S remains unclear. To this end, published datasets related to the genes, proteins, and metabolites disturbed by bisphenol S were investigated through omics methods. The dataset revealed that bisphenol S at high concentrations tended to downregulate biomolecules, while low concentrations of bisphenol S tended to enhance metabolic reactions. The results showed that exposure to bisphenol S upregulated estrogen and downregulated androgen metabolism in humans, mice, rats, and zebrafish. Fatty acid metabolism and phospholipid metabolism in mice were upregulated. Reactions in amino acid metabolism were upregulated, with the exception of the suppressive conversion of arginine to ornithine. In zebrafish, fatty acid synthesis was promoted, while nucleotide metabolism was primarily depressed through the downregulation of pyruvate 2-o-phosphotransferase. The interference in amino acid metabolism by bisphenol S could trigger Alzheimer's disease, while its disturbance of glucose metabolism was associated with type II diabetes. Disturbed glycolipid metabolism and vitamin metabolism could induce Alzheimer's disease and diabetes. These findings based on omics data provide scientific insight into the metabolic network regulated by bisphenol S and the diseases triggered by its metabolic disruption.
Collapse
Affiliation(s)
- Haiyan An
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Henan Yu
- Guangdong Ocean Engineering Technology School, Guangzhou, 510320, China
| | - Yibo Wei
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Feng Liu
- China Nuclear Power Technology Research Institute Co., Ltd, Shenzhen, 518000, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
29
|
Schaffert A, Krieg L, Weiner J, Schlichting R, Ueberham E, Karkossa I, Bauer M, Landgraf K, Junge KM, Wabitsch M, Lehmann J, Escher BI, Zenclussen AC, Körner A, Blüher M, Heiker JT, von Bergen M, Schubert K. Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. ENVIRONMENT INTERNATIONAL 2021; 156:106730. [PMID: 34186270 DOI: 10.1016/j.envint.2021.106730] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA), which is used in a variety of consumer-related plastic products, was reported to cause adverse effects, including disruption of adipocyte differentiation, interference with obesity mechanisms, and impairment of insulin- and glucose homeostasis. Substitute compounds are increasingly emerging but are not sufficiently investigated.We aimed to investigate the mode of action of BPA and four of its substitutes during the differentiation of human preadipocytes to adipocytes and their molecular interaction with peroxisome proliferator-activated receptor γ (PPARγ), a pivotal regulator of adipogenesis.Binding and effective biological activation of PPARγ were investigated by surface plasmon resonance and reporter gene assay, respectively. Human preadipocytes were continuously exposed to BPA, BPS, BPB, BPF, BPAF, and the PPARγ-antagonist GW9662. After 12 days of differentiation, lipid production was quantified via Oil Red O staining, and global protein profiles were assessed using LC-MS/MS-based proteomics. All tested bisphenols bound to human PPARγ with similar efficacy as the natural ligand 15d-PGJ2in vitroand provoked an antagonistic effect on PPARγ in the reporter gene assay at non-cytotoxic concentrations. During the differentiation of human preadipocytes, all bisphenols decreased lipid production. Global proteomics displayed a down-regulation of adipogenesis and metabolic pathways, similar to GW9662. Interestingly, pro-inflammatory pathways were up-regulated, MCP1 release was increased, and adiponectin decreased. pAKT/AKT ratios revealed significantly reduced insulin sensitivity by BPA, BPB, and BPS upon insulin stimulation.Thus, our results show that not only BPA but also its substitutes disrupt crucial metabolic functions and insulin signaling in adipocytes under low, environmentally relevant concentrations. This effect, mediated through inhibition of PPARγ, may promote hypertrophy of adipose tissue and increase the risk of developing metabolic syndrome, including insulin resistance.
Collapse
Affiliation(s)
- Alexandra Schaffert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Laura Krieg
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Juliane Weiner
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Leipzig, Germany; Department of Endocrinology, Nephrology Rheumatology, University Hospital Leipzig Medical Research Center, Leipzig, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Elke Ueberham
- Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Kristin M Junge
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, Ulm, Germany
| | - Jörg Lehmann
- Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany; Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Leipzig, Germany; Department of Endocrinology, Nephrology Rheumatology, University Hospital Leipzig Medical Research Center, Leipzig, Germany
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| |
Collapse
|
30
|
Guo Y, Lv Z, Tang Z, Huang S, Peng C, Wang F, Zhou Z, Ding W, Liu W, Liu P, Li D, Song J, He J, Chen Y, Liu G, Hu X, Liu J, Ke Y. Long-term exposure to low doses of bisphenol S has hypoglycaemic effect in adult male mice by promoting insulin sensitivity and repressing gluconeogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116630. [PMID: 33667749 DOI: 10.1016/j.envpol.2021.116630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 05/27/2023]
Abstract
Bisphenol S (BPS), an industrial chemical that is a structural analogue of bisphenol A, has been widely reported to be involved in various biological processes. Epidemiological studies have demonstrated that exposure to BPS is associated with dysglycaemia-related health outcomes. The role of BPS in glucose metabolism, however, remains controversial. In this study, we aimed to investigate the effects of chronic exposure to environmentally relevant concentrations of BPS on glucose metabolism in different nutritionally conditioned mice. Our results revealed that 1-month exposure to a BPS dosage of 100 μg/kg bw slightly increased the insulin sensitivity of normal diet-fed mice, and that this effect was enhanced after 3-month exposure. It was also found that BPS exposure attenuated insulin resistance and reduced gluconeogenesis in high-fat diet-fed mice. Consequently, the concentrations of hepatic metabolites related to glucose metabolism were altered in both groups of mice. Moreover, thyroid hormone signalling was disrupted after BPS administration in both groups of mice. Taken together, our results demonstrated that chronic exposure to environmentally relevant concentrations of BPS exerted an unexpected hypoglycaemic effect in mice of different nutritional statuses, and that this was partly attributable to disrupted thyroid hormone signalling.
Collapse
Affiliation(s)
- Yajie Guo
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhi Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China; Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Changfeng Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Fangting Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhiguang Zhou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Wenqi Ding
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Weiwen Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Peiyi Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Di Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jiayi Song
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jie He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Ying Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Guangnan Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiaoxiao Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianjun Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuebin Ke
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
31
|
Bisphenol F and bisphenol S promote lipid accumulation and adipogenesis in human adipose-derived stem cells. Food Chem Toxicol 2021; 152:112216. [PMID: 33865937 DOI: 10.1016/j.fct.2021.112216] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 12/14/2022]
Abstract
Bisphenol F (BPF) and bisphenol S (BPS) are increasingly used as substitutes for bisphenol A (BPA), an endocrine disrupting chemical (EDC) with obesogenic activity. We investigated the in vitro effects of BPS and BPF on the adipogenesis of human adipose-derived stem cells (hASCs) exposed to different doses (0.01, 0.1, 1, 10 and 25 μM), stopping the adipogenic process at 7 or 14 days. Intracellular lipid accumulation was quantified by the Oil Red O assay, gene expression of peroxisome proliferator-activated receptor gamma (PPARγ), CCAT/enhancer-binding protein (C/EBPα), lipoprotein-lipase (LPL) and fatty acid binding protein 4 (FABP4), by quantitative real-time polymerase chain reaction (qRT-PCR) and protein levels by Western Blot. hASCs with BPF or BPS produced a linear dose-response increase in intracellular lipid accumulation and in gene expression of the adipogenic markers, confirmed by protein levels. Co-treatment ICI 182,780 significantly inhibited BPF- but not BPS-induced lipid accumulation. Given the affinity of bisphenols for diverse nuclear receptors, their obesogenic effects may result from a combination of pathways rather than a single mechanism. Further research is warranted on the manner in which chemicals interfere with adipogenic differentiation. To our best knowledge, this report shows for the first time the obesogenic potential of BPF in hASCs.
Collapse
|
32
|
Ullah H, Ullah F, Rehman O, Jahan S, Afsar T, Al-Disi D, Almajwal A, Razak S. Chronic exposure of bisphenol S (BPS) affect hypothalamic-pituitary-testicular activities in adult male rats: possible in estrogenic mode of action. Environ Health Prev Med 2021; 26:31. [PMID: 33678156 PMCID: PMC7938458 DOI: 10.1186/s12199-021-00954-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/23/2021] [Indexed: 11/20/2022] Open
Abstract
Background The industrial revolution has resulted in increased synthesis and the introduction of a variety of compounds into the environment and their potentially hazardous effects have been observed in the biota. The present study was aimed to evaluate the potential endocrine-disrupting effects of chronic exposure to the low concentrations of bisphenol S (BPS) in male rats. Methods Weaning male Sprague-Dawley rats (22 days old) were either exposed to water containing 0.1% ethanol for control or different concentrations of BPS (0.5, 5, and 50 μg/L) in drinking water for 48 weeks in the chronic exposure study. After completion of the experimental period, animals were dissected and different parameters (hormone concentrations, histology of testis and epididymis, oxidative stress and level of antioxidant enzymes in the testis, daily sperm production (DSP), and sperm parameters) were determined. Results Results of the present study showed a significant alteration in the gonadosomatic index (GSI) and relative reproductive organ weights. Oxidative stress in the testis was significantly elevated while sperm motility, daily sperm production, and the number of sperm in epididymis were reduced. Plasma testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) concentrations were reduced and estradiol levels were high in the 50 μg/L-exposed group. Histological observations involved a significant reduction in the epithelial height of the testis along with disrupted spermatogenesis, an empty lumen of the seminiferous tubules, and the caput region of the epididymis. Conclusion These results suggest that exposure to 5 and 50 μg/L of BPS for the chronic duration started from an early age can induce structural changes in testicular tissue architecture and endocrine alterations in the male reproductive system which may lead to infertility in males.
Collapse
Affiliation(s)
- Hizb Ullah
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Faizan Ullah
- University of Science and Technology Bannu, Bannu, Pakistan
| | - Owais Rehman
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sarwat Jahan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Dara Al-Disi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
33
|
Gys C, Bastiaensen M, Bruckers L, Colles A, Govarts E, Martin LR, Verheyen V, Koppen G, Morrens B, Den Hond E, De Decker A, Schoeters G, Covaci A. Determinants of exposure levels of bisphenols in flemish adolescents. ENVIRONMENTAL RESEARCH 2021; 193:110567. [PMID: 33275923 DOI: 10.1016/j.envres.2020.110567] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
The broadly used industrial chemical bisphenol A (BPA), applied in numerous consumer products, has been under scrutiny in the past 20 years due to its widespread detection in humans and the environment and potential detrimental effects on human health. Following implemented restrictions and phase-out initiatives, BPA is replaced by alternative bisphenols, which have not received the same amount of research attention. As a part of the fourth cycle of the Flemish Environment and Health Study (FLEHS IV, 2016-2020), we monitored the internal exposure to six bisphenols in urine samples of 423 adolescents (14-15 years old) from Flanders, Belgium. All measured bisphenols were detected in the study population, with BPA and its alternatives bisphenol F (BPF) and bisphenol S (BPS) showing detection frequencies > 50%. The reference values show that exposure to these compounds is extensive. However, the urinary BPA level decreased significantly in Flemish adolescents compared to a previous cycle of the FLEHS (2008-2009). This suggests that the replacement of BPA with its analogues is ongoing. Concentrations of bisphenols measured in the Flemish adolescents were generally in the same order of magnitude compared to recent studies worldwide. Multiple regression models were used to identify determinants of exposure based on information on demographic and lifestyle characteristics of participants, acquired through questionnaires. Some significant determinants could be identified: sex, season, smoking behavior, educational level of the parents, recent consumption of certain foods and use of certain products were found to be significantly associated with levels of bisphenols. Preliminary risk assessment showed that none of the estimated daily intakes (EDIs) of BPA exceeded the tolerable daily intake, even in a high exposure scenario. For alternative bisphenols, no health-based guidance values are available, but in line with the measured urinary levels, their EDIs were lower than that of BPA. This study is, to the best of our knowledge, the first to determine internal exposure levels of other bisphenols than BPA in a European adolescent population.
Collapse
Affiliation(s)
- Celine Gys
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Liesbeth Bruckers
- BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Ann Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Laura Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Veerle Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Bert Morrens
- Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | - Elly Den Hond
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Annelies De Decker
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
34
|
Amato AA, Wheeler HB, Blumberg B. Obesity and endocrine-disrupting chemicals. Endocr Connect 2021; 10:R87-R105. [PMID: 33449914 PMCID: PMC7983487 DOI: 10.1530/ec-20-0578] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Obesity is now a worldwide pandemic. The usual explanation given for the prevalence of obesity is that it results from consumption of a calorie dense diet coupled with physical inactivity. However, this model inadequately explains rising obesity in adults and in children over the past few decades, indicating that other factors must be important contributors. An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture that interferes with any aspect of hormone action. EDCs have become pervasive in our environment, allowing humans to be exposed daily through ingestion, inhalation, and direct dermal contact. Exposure to EDCs has been causally linked with obesity in model organisms and associated with obesity occurrence in humans. Obesogens promote adipogenesis and obesity, in vivo, by a variety of mechanisms. The environmental obesogen model holds that exposure to obesogens elicits a predisposition to obesity and that such exposures may be an important yet overlooked factor in the obesity pandemic. Effects produced by EDCs and obesogen exposure may be passed to subsequent, unexposed generations. This "generational toxicology" is not currently factored into risk assessment by regulators but may be another important factor in the obesity pandemic as well as in the worldwide increases in the incidence of noncommunicable diseases that plague populations everywhere. This review addresses the current evidence on how obesogens affect body mass, discusses long-known chemicals that have been more recently identified as obesogens, and how the accumulated knowledge can help identify EDCs hazards.
Collapse
Affiliation(s)
- Angelica Amorim Amato
- Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Hailey Brit Wheeler
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| |
Collapse
|
35
|
Brulport A, Le Corre L, Maquart G, Barbet V, Dastugue A, Severin I, Vaiman D, Chagnon MC. Multigenerational study of the obesogen effects of bisphenol S after a perinatal exposure in C57BL6/J mice fed a high fat diet. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116243. [PMID: 33326921 DOI: 10.1016/j.envpol.2020.116243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/13/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bisphenol S is an endocrine disruptor exhibiting metabolic disturbances, especially following perinatal exposures. To date, no data are available on the obesogen effects of BPS in a mutligenerational issue. OBJECTIVES We investigated obesogen effects of BPS in a multigenerational study by focusing on body weight, adipose tissue and plasma parameters in male and female mice. METHODS Pregnant C57BL6/J mice were exposed to BPS (1.5 μg/kg bw/day ie a human equivalent dose of 0.12 μg/kg bw/day) by drinking water from gestational day 0 to post natal day 21. All offsprings were fed with a high fat diet during 15 weeks. Body weight was monitored weekly and fat mass was measured before euthanasia. At euthanasia, blood glucose, insuline, triglyceride, cholesterol and no esterified fatty acid plasma levels were determined and gene expressions in visceral adipose tissue were assessed. F1 males and females were mated to obtain the F2 generation. Likewise, the F2 mice were cross-bred to obtain F3. The same analyses were performed. RESULTS In F1 BPS induced an overweight in male mice associated to lipolysis gene expressions upregulation. In F1 females, dyslipidemia was observed. In F2, BPS exposure was associated to an increase in body weight, fat and VAT masses in males and females. Several plasma parameters were increased but with a sex related pattern (blood glucose, triglycerides and cholesterol in males and NEFA in females). We observed a down-regulation in mRNA expression of gene involved in lipogenesis and in lipolysis for females but only in the lipogenesis for males. In F3, a decrease in VAT mass and an upregulation of lipogenesis gene expression occurred only in females. CONCLUSIONS BPS perinatal exposure induced sex-dependent obesogen multigenerational effects, the F2 generation being the most impacted. Transgenerational disturbances persisted only in females.
Collapse
Affiliation(s)
- Axelle Brulport
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSupdijon, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Ludovic Le Corre
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSupdijon, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France.
| | - Guillaume Maquart
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSupdijon, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Virginie Barbet
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSupdijon, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Aurélie Dastugue
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSupdijon, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Isabelle Severin
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSupdijon, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Daniel Vaiman
- From Gametes to Birth Team (FGTB), INSERM, U1016, Institut Cochin, F-75014, Paris, France; CNRS UMR8104, F-75014, Paris, France; Université Sorbonne Paris Cité, F-75014, Paris, France
| | - Marie-Christine Chagnon
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSupdijon, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| |
Collapse
|
36
|
Brulport A, Lencina C, Chagnon MC, Le Corre L, Guzylack-Piriou L. Transgenerational effects on intestinal inflammation status in mice perinatally exposed to bisphenol S. CHEMOSPHERE 2021; 262:128009. [PMID: 33182144 DOI: 10.1016/j.chemosphere.2020.128009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Increasing evidence has highlighted the critical role of early life environment in shaping the future health outcomes of individuals in subsequent generations. Bisphenol S (BPS) has been widely used as a substitute for various plastic materials due to the limited application of Bisphenol A (BPA) which is an endocrine disruptor. However, the lack of efficient evaluation of BPS leaves doubts about the relevant substitute of BPA. Few studies of transgenerational inheritance have examined the effects of environmental exposures to endocrine disruptors on the immune system. In this study, we analyzed the transgenerational effects of BPS on intestinal inflammation and its consequence in metabolism. In this study, only F0 pregnant mice were exposed to BPS (1.5 μg/kg bw/day) from gestational day 0 until weaning of offspring. In this work, both F1 and F2 male offspring developed an inflammatory response in the ileum and colon at adulthood after F0 mothers were exposed to BPS; this phenomenon disappeared in F3. This inflammatory response in F1 male offspring is associated with a significant decrease of blood cholesterol without modification of metabolic status. Further, in F3 offspring male, the decrease of gut inflammatory response is associated with a decrease of fat weight and with an increase of blood glucose and cholesterol level. A sex-specific profile is observed in female offspring. We also observed that early life exposure to BPS was associated with strong abnormal intestinal immune status. The study presented here demonstrates that the immune system, like other organ systems, is vulnerable to transgenerational effects caused by environmental exposures.
Collapse
Affiliation(s)
- Axelle Brulport
- Université de Bourgogne Franche-Comté, LNC UMR1231, 21000, Dijon, France; AgroSup, LNC UMR1231, 21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, 21000, Dijon, France
| | - Corinne Lencina
- Toxalim, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Marie-Christine Chagnon
- Université de Bourgogne Franche-Comté, LNC UMR1231, 21000, Dijon, France; AgroSup, LNC UMR1231, 21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, 21000, Dijon, France
| | - Ludovic Le Corre
- Université de Bourgogne Franche-Comté, LNC UMR1231, 21000, Dijon, France; AgroSup, LNC UMR1231, 21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, 21000, Dijon, France
| | | |
Collapse
|
37
|
Gyimah E, Xu H, Dong X, Qiu X, Zhang Z, Bu Y, Akoto O. Developmental neurotoxicity of low concentrations of bisphenol A and S exposure in zebrafish. CHEMOSPHERE 2021; 262:128045. [PMID: 33182117 DOI: 10.1016/j.chemosphere.2020.128045] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
The vulnerability to environmental insults is heightened at early stages of development. However, the neurotoxic potential of bisphenol A (BPA) and bisphenol S (BPS) at developmental windows remains unclear. To investigate the mechanisms mediating the developmental neurotoxicity, zebrafish embryos were treated with 0.01, 0.03, 0.01, 0.3, 1 μM BPA/BPS. Also, we used Tg(HuC:GFP) zebrafish to investigate whether BPA/BPS could induce neuron development. The reduction in body length, and increased heart rate were significant in 0.3 and 1 μM BPA/BPS groups. The green fluorescence protein (GFP) intensity increased at 72 hpf and 120 hpf in Tg(HuC:GFP) larvae which was consistent with the increased mRNA expression of elval3 following BPS treatments, an indication of the plausible effect of BPS on embryonic neuron development. Additionally, BPA/BPS treatments elicited hyperactivity and reduced static time in zebrafish larvae, suggesting behavioral alterations. Moreover, qRT-PCR results showed that BPA and BPS could interfere with the normal expression of development-related genes vegfa, wnt8a, and mstn1 at the developmental stages. The expression of neurodevelopment-related genes (ngn1, elavl3, gfap, α1-tubulin, mbp, and gap43) were significantly upregulated in BPA and BPS treatments, except for the remarkable downregulation of mbp and gfap elicited by BPA at 48 (0.03 μM) and 120 hpf (0.3 μM) respectively; ngn1 at 48 hpf for 0.1 μM BPS. Overall, our results highlighted that embryonic exposure to low concentrations of BPA/BPS could be deleterious to the central nervous system development and elicit behavioral abnormalities in zebrafish at developmental stages.
Collapse
Affiliation(s)
- Eric Gyimah
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China
| | - Xing Dong
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Zhang
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Osei Akoto
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
38
|
Le Magueresse-Battistoni B. Adipose Tissue and Endocrine-Disrupting Chemicals: Does Sex Matter? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249403. [PMID: 33333918 PMCID: PMC7765367 DOI: 10.3390/ijerph17249403] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Obesity and metabolic-related diseases, among which diabetes, are prominent public health challenges of the 21st century. It is now well acknowledged that pollutants are a part of the equation, especially endocrine-disrupting chemicals (EDCs) that interfere with the hormonal aspect. The aim of the review is to focus on adipose tissue, a central regulator of energy balance and metabolic homeostasis, and to highlight the significant differences in the endocrine and metabolic aspects of adipose tissue between males and females which likely underlie the differences of the response to exposure to EDCs between the sexes. Moreover, the study also presents an overview of several mechanisms of action by which pollutants could cause adipose tissue dysfunction. Indeed, a better understanding of the mechanism by which environmental chemicals target adipose tissue and cause metabolic disturbances, and how these mechanisms interact and sex specificities are essential for developing mitigating and sex-specific strategies against metabolic diseases of chemical origin. In particular, considering that a scenario without pollutant exposure is not a realistic option in our current societies, attenuating the deleterious effects of exposure to pollutants by acting on the gut-adipose tissue axis may constitute a new direction of research.
Collapse
Affiliation(s)
- Brigitte Le Magueresse-Battistoni
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite, France; ; Tel.: +33-(0)-426235919; Fax: +33-(0)-426235916
- CarMeN Laboratory, INSERM U1060, Hopital Lyon-Sud, Bâtiment CENS ELI-2D, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| |
Collapse
|
39
|
Brulport A, Vaiman D, Bou-Maroun E, Chagnon MC, Corre LL. Hepatic transcriptome and DNA methylation patterns following perinatal and chronic BPS exposure in male mice. BMC Genomics 2020; 21:881. [PMID: 33297965 PMCID: PMC7727143 DOI: 10.1186/s12864-020-07294-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/28/2020] [Indexed: 11/21/2022] Open
Abstract
Background Bisphenol S (BPS) is a common bisphenol A (BPA) substitute, since BPA is virtually banned worldwide. However, BPS and BPA have both endocrine disrupting properties. Their effects appear mostly in adulthood following perinatal exposures. The objective of the present study was to investigate the impact of perinatal and chronic exposure to BPS at the low dose of 1.5 μg/kg body weight/day on the transcriptome and methylome of the liver in 23 weeks-old C57BL6/J male mice. Results This multi-omic study highlights a major impact of BPS on gene expression (374 significant deregulated genes) and Gene Set Enrichment Analysis show an enrichment focused on several biological pathways related to metabolic liver regulation. BPS exposure also induces a hypomethylation in 58.5% of the differentially methylated regions (DMR). Systematic connections were not found between gene expression and methylation profile excepted for 18 genes, including 4 genes involved in lipid metabolism pathways (Fasn, Hmgcr, Elovl6, Lpin1), which were downregulated and featured differentially methylated CpGs in their exons or introns. Conclusions This descriptive study shows an impact of BPS on biological pathways mainly related to an integrative disruption of metabolism (energy metabolism, detoxification, protein and steroid metabolism) and, like most high-throughput studies, contributes to the identification of potential exposure biomarkers. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07294-3.
Collapse
Affiliation(s)
- Axelle Brulport
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France.,AgroSup, LNC UMR1231, 1 Esplanade Erasme, 21000, Dijon, France.,Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Daniel Vaiman
- From Gametes to Birth Team (FGTB), INSERM, U1016, Institut Cochin, F-75014, Paris, France.,CNRS UMR8104, F-75014, Paris, France.,Université Sorbonne Paris Cité, F-75014, Paris, France
| | - Elias Bou-Maroun
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Procédés Alimentaires et Microbiologiques, F-21000, Dijon, France
| | - Marie-Christine Chagnon
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France.,AgroSup, LNC UMR1231, 1 Esplanade Erasme, 21000, Dijon, France.,Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Ludovic Le Corre
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France. .,AgroSup, LNC UMR1231, 1 Esplanade Erasme, 21000, Dijon, France. .,Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France.
| |
Collapse
|
40
|
Naderi M, Kwong RWM. A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models. ENVIRONMENT INTERNATIONAL 2020; 145:106078. [PMID: 32911243 DOI: 10.1016/j.envint.2020.106078] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The normal brain development and function are delicately driven by an ever-changing milieu of steroid hormones arising from fetal, placental, and maternal origins. This reliance on the neuroendocrine system sets the stage for the exquisite sensitivity of the central nervous system to the adverse effects of endocrine-disrupting chemicals (EDCs). Bisphenol A (BPA) is one of the most common EDCs which has been a particular focus of environmental concern for decades due to its widespread nature and formidable threat to human and animal health. The heightened regulatory actions and the scientific and public concern over the adverse health effects of BPA have led to its replacement with a suite of structurally similar but less known alternative chemicals. Bisphenol S (BPS) is the main substitute for BPA that is increasingly being used in a wide array of consumer and industrial products. Although it was considered to be a safe BPA alternative, mounting evidence points to the deleterious effects of BPS on a wide range of neuroendocrine functions in animals. In addition to its reproductive toxicity, recent experimental efforts indicate that BPS has a considerable potential to induce neurotoxicity and behavioral dysfunction. This review analyzes the current state of knowledge regarding the neurobehavioral effects of BPS and discusses its potential mode of actions on several aspects of the neuroendocrine system. We summarize the role of certain hormones and their signaling pathways in the regulation of brain and behavior and discuss how BPS induces neurotoxicity through interactions with these pathways. Finally, we review potential links between BPS exposure and aberrant neurobehavioral functions in animals and identify key knowledge gaps and hypotheses for future research.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
41
|
Gys C, Ait Bamai Y, Araki A, Bastiaensen M, Caballero-Casero N, Kishi R, Covaci A. Biomonitoring and temporal trends of bisphenols exposure in Japanese school children. ENVIRONMENTAL RESEARCH 2020; 191:110172. [PMID: 32919958 DOI: 10.1016/j.envres.2020.110172] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
The widely used chemical bisphenol A (BPA), applied in various consumer products, has been under scrutiny in the past 20 years due to its widespread detection in humans and potential detrimental effects on human health. Following the implementation of restrictions and phase-out initiatives, BPA has been replaced by other structurally similar bisphenols, which have not yet received the same level of research attention. In this study, we aimed to 1) investigated the internal exposure to seven bisphenols in morning void urine samples (n = 396) from 7-year-old children from Hokkaido, Japan and 2) assess possible time trends in the concentrations of bisphenols between 2012 and 2017. Information on demographic, indoor environment and dietary characteristics of participants were acquired through a self-administered questionnaire. All bisphenols were detected in the study population, with BPA, BPF and BPS showing detection frequencies >50%. Concentrations of bisphenols measured in the Japanese children in our study were generally lower compared to studies worldwide. We found that BPA concentrations decreased significantly over the study time period (average 6.5% per year), whereas BPS rose with 2.8% per year. Levels of BPA and BPF were higher in autumn compared to winter. Higher urinary BPF levels were significantly associated with higher concentrations of the oxidative stress biomarker, 8-hydroxy-2'-deoxyguanosine (8-OHdG). BPA and BPF levels were higher in children from families with lower household income. Bisphenol concentrations were significantly influenced by some other personal (e.g. household income), food intake (e.g. vegetables and cow milk) and indoor housing characteristics (e.g. flooring). This is the first study to report longitudinal time trends of bisphenols in Japan. The presented findings imply that further research on bisphenols is warranted in the future to monitor whether these time trends continue.
Collapse
Affiliation(s)
- Celine Gys
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Sapporo, Japan
| | - Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Sapporo, Japan
| | - Michiel Bastiaensen
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | | | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Sapporo, Japan
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
42
|
Lizcano F, Arroyave F. Control of Adipose Cell Browning and Its Therapeutic Potential. Metabolites 2020; 10:metabo10110471. [PMID: 33227979 PMCID: PMC7699191 DOI: 10.3390/metabo10110471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue is the largest endocrine organ in humans and has an important influence on many physiological processes throughout life. An increasing number of studies have described the different phenotypic characteristics of fat cells in adults. Perhaps one of the most important properties of fat cells is their ability to adapt to different environmental and nutritional conditions. Hypothalamic neural circuits receive peripheral signals from temperature, physical activity or nutrients and stimulate the metabolism of white fat cells. During this process, changes in lipid inclusion occur, and the number of mitochondria increases, giving these cells functional properties similar to those of brown fat cells. Recently, beige fat cells have been studied for their potential role in the regulation of obesity and insulin resistance. In this context, it is important to understand the embryonic origin of beige adipocytes, the response of adipocyte to environmental changes or modifications within the body and their ability to transdifferentiate to elucidate the roles of these cells for their potential use in therapeutic strategies for obesity and metabolic diseases. In this review, we discuss the origins of the different fat cells and the possible therapeutic properties of beige fat cells.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia
- Correspondence:
| | - Felipe Arroyave
- Doctoral Program in Biociencias, Universidad de La Sabana, 250008 Chia, Colombia
| |
Collapse
|
43
|
Xiao X, Zhang X, Bai J, Li J, Zhang C, Zhao Y, Zhu Y, Zhang J, Zhou X. Bisphenol S increases the obesogenic effects of a high-glucose diet through regulating lipid metabolism in Caenorhabditis elegans. Food Chem 2020; 339:127813. [PMID: 32916401 DOI: 10.1016/j.foodchem.2020.127813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/28/2022]
Abstract
Bisphenol S (BPS), a structural analog of Bisphenol A (BPA), has been widely used as a substitute for epoxy resin, food packaging materials, and other products due to the limited application of BPA. Studies in vivo and in vitro have indicated that BPA could induce fat accumulation like an obesogen. The main goal of this study was to investigate the role and mechanism of BPS in lipid metabolism using Caenorhabditis elegans (C. elegans) as a model. Results showed that both the overall fat deposition and the triglyceride level were significantly increased in a non-monotonically increasing trend, and the low dose of BPS (0.01 μM) exhibited a stronger influence. Additionally, BPS enhanced fat synthesis depending on daf-16, fat-5, fat-6 and fat-7, and inhibited fatty acid oxidation via nhr-49 and acs-2. This study further indicate that fat accumulation induced by BPS requires nhr-49, which also mediated the nuclear hormone signaling pathway.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaowei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jie Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Caiqin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xinghua Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
44
|
Ahn YA, Baek H, Choi M, Park J, Son SJ, Seo HJ, Jung J, Seong JK, Lee J, Kim S. Adipogenic effects of prenatal exposure to bisphenol S (BPS) in adult F1 male mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138759. [PMID: 32403013 DOI: 10.1016/j.scitotenv.2020.138759] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 05/20/2023]
Abstract
Bisphenol S (BPS) has been increasingly used as a substitute for bisphenol A (BPA), a known endocrine disruptor. Early-life exposure to BPA affects fetal development and the risk of obesity in adolescence and adulthood. However, the effects of fetal exposure BPS in later life are unknown. This study aimed to investigate the effects of prenatal BPS exposure on adiposity in adult F1 mice. Pregnant C57BL/6 N mice were exposed to BPS (0, 0.05, 0.5, 5, and 50 mg/kg/d) via drinking water from gestation day 9 until delivery. Thereafter, two groups of offspring (6 weeks old) were either administered a standard diet (STD) or a high-fat diet (HFD) for 4 weeks until euthanasia. The body weight and gonadal white adipose tissue (gWAT) mass were determined, and the energy expenditure for the adiposity phenotype was computed especially for male mice, followed by histological analysis of the gWAT. Thereafter, the expression levels of adipogenic marker genes (Pparg, Cebpa, Fabp4, Lpl, and Adipoq) were analyzed in the gWAT via reverse-transcription PCR analysis. BPS-exposed male mice displayed apparent gWAT hypertrophy, consistent with the significant increase in adipocyte size in the gWAT and upregulation of Pparg and its direct target genes among HFD mice in comparison with the control mice. These results suggest that prenatal BPS exposure potentially increases the susceptibility to HFD-induced adipogenesis in male adult mice.
Collapse
Affiliation(s)
- Young-Ah Ahn
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hwayoung Baek
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| | - Miso Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| | - Junbo Park
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| | - Soo Jin Son
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Program for Advanced Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hyun Ju Seo
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Program for Advanced Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jaeyun Jung
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Program for Advanced Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea.
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Program for Advanced Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jaehyouk Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea; Institute of Health and Environment, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
45
|
Darbre PD. Chemical components of plastics as endocrine disruptors: Overview and commentary. Birth Defects Res 2020; 112:1300-1307. [PMID: 32720473 DOI: 10.1002/bdr2.1778] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 01/11/2023]
Abstract
Bisphenol A and phthalate esters are used as additives in the manufacture of plastic materials, but their ability to leach out with age and heat has resulted in their becoming ubiquitous contaminants of the ecosystem including within human body tissues. Over recent years, these compounds have been shown to possess endocrine disrupting properties with an ability to interfere in the actions of many hormones and to contribute to human health problems. Much of the reported disruptive activity has been in relation to the action of estrogens, androgens, and thyroid hormones, and concerns have been raised for adverse consequences on female and male reproductive health, thyroid function, metabolic alterations, brain development/function, immune responses, and development of cancers in hormone-sensitive tissues. A recurring theme throughout seems to be that there are windows of susceptibility to exposure in utero and in early postnatal life, which may then result in disease in later life without any need for further exposure. This commentary highlights key issues in a historical context and raises questions regarding the many data gaps.
Collapse
Affiliation(s)
- Philippa D Darbre
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
46
|
Martínez M, Blanco J, Rovira J, Kumar V, Domingo J, Schuhmacher M. Bisphenol A analogues (BPS and BPF) present a greater obesogenic capacity in 3T3-L1 cell line. Food Chem Toxicol 2020; 140:111298. [DOI: 10.1016/j.fct.2020.111298] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 11/25/2022]
|
47
|
Zhou B, Yang P, Deng YL, Zeng Q, Lu WQ, Mei SR. Prenatal exposure to bisphenol a and its analogues (bisphenol F and S) and ultrasound parameters of fetal growth. CHEMOSPHERE 2020; 246:125805. [PMID: 31918106 DOI: 10.1016/j.chemosphere.2019.125805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/04/2019] [Accepted: 12/30/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Bisphenol A (BPA) has been shown to affect normal fetal growth, but human evidence on its analogues (BPF and BPS) is limited. OBJECT To examine the associations between prenatal exposure to BPA and its analogues (BPF and BPS) and ultrasound parameters of fetal growth. METHODS We measured urinary BPA, BPF, and BPS concentrations among 322 pregnant women during late pregnancy from a cohort study in Wuhan, China. Fetal biparietal diameter (BPD), head circumference (HC), femur length (FL), and abdominal circumference (AC) were measured by ultrasonography. The associations of maternal urinary BPA, BPF, and BPS concentrations with ultrasound parameters of fetal growth were estimated by multivariable adjusted models. RESULTS We observed a gender difference in association of maternal urinary BPA concentrations and fetal HC (P for interaction = 0.003); each ln-unit increase in maternal urinary BPA concentration was associated with a mean decrease of 0.10 cm (95%CI: 0.18, -0.02) among boys and a mean increase of 0.14 cm (95%CI: 0.00, 0.28) among girls for HC. The associations were robust for urinary BPA concentrations modeled as tertiles or including urinary BPA, BPF, and BPS into mutual adjustment models. We did not observe robust associations between maternal urinary BPF and BPS concentrations and ultrasound parameters of fetal growth, though an inverse association with AC and a positive association with FL were estimated for maternal urinary BPF concentrations modeled as continuous variables. CONCLUSIONS Prenatal exposure to BPA but not BPF and BPS was sex-specifically associated with certain fetal growth parameters.
Collapse
Affiliation(s)
- Bin Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Su-Rong Mei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
48
|
Corrigan JK, Ramachandran D, He Y, Palmer CJ, Jurczak MJ, Chen R, Li B, Friedline RH, Kim JK, Ramsey JJ, Lantier L, McGuinness OP, Banks AS. A big-data approach to understanding metabolic rate and response to obesity in laboratory mice. eLife 2020; 9:e53560. [PMID: 32356724 PMCID: PMC7274785 DOI: 10.7554/elife.53560] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
Maintaining a healthy body weight requires an exquisite balance between energy intake and energy expenditure. To understand the genetic and environmental factors that contribute to the regulation of body weight, an important first step is to establish the normal range of metabolic values and primary sources contributing to variability. Energy metabolism is measured by powerful and sensitive indirect calorimetry devices. Analysis of nearly 10,000 wild-type mice from two large-scale experiments revealed that the largest variation in energy expenditure is due to body composition, ambient temperature, and institutional site of experimentation. We also analyze variation in 2329 knockout strains and establish a reference for the magnitude of metabolic changes. Based on these findings, we provide suggestions for how best to design and conduct energy balance experiments in rodents. These recommendations will move us closer to the goal of a centralized physiological repository to foster transparency, rigor and reproducibility in metabolic physiology experimentation.
Collapse
Affiliation(s)
- June K Corrigan
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUnited States
| | - Deepti Ramachandran
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUnited States
| | - Yuchen He
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUnited States
| | - Colin J Palmer
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUnited States
| | - Michael J Jurczak
- Division of Endocrinology, Yale University School of MedicineNew HavenUnited States
| | - Rui Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of MedicineNashvilleUnited States
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of MedicineNashvilleUnited States
| | - Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, DavisDavisUnited States
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of MedicineNashvilleUnited States
| | - Owen P McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of MedicineNashvilleUnited States
| | - Mouse Metabolic Phenotyping Center Energy Balance Working Group
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUnited States
- Division of Endocrinology, Yale University School of MedicineNew HavenUnited States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of MedicineNashvilleUnited States
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, DavisDavisUnited States
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUnited States
| |
Collapse
|
49
|
Azevedo LF, Hornos Carneiro MF, Dechandt CRP, Cassoli JS, Alberici LC, Barbosa F. Global liver proteomic analysis of Wistar rats chronically exposed to low-levels of bisphenol A and S. ENVIRONMENTAL RESEARCH 2020; 182:109080. [PMID: 31901629 DOI: 10.1016/j.envres.2019.109080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 05/26/2023]
Abstract
Exposure to bisphenol A (BPA) and bisphenol S (BPS) has been associated with the development of metabolic disorders, such as obesity, dyslipidemias, and nonalcoholic fatty liver disease. Nonetheless, the associated mechanisms are still not fully understood. BPS is being used with no restrictions to replace BPA, which increases the concern regarding its safety and claims for further investigation on its potential mechanisms of toxicity. The present study aims to access liver molecular disturbances which could be associated with systemic metabolic disorders following exposure to BPA or BPS. Therefore, body weight gain and serum biochemical parameters were measured in male Wistar rats chronically exposed to 50 or 500 µg/kg/day of BPA or BPS, while an extensive evaluation of liver protein expression changes was conducted after exposure to 50 µg/kg/day of both compounds. Exposure to the lowest dose of BPA led to the development of hyperglycemia and hypercholesterolemia, while the BPS lowest dose led to the development of hypertriglyceridemia. Besides, exposure to 500 µg/kg/day of BPS significantly increased body weight gain and LDL-cholesterol levels. Hepatic proteins differentially expressed in BPA and BPS-exposed groups compared to the control group were mostly related to lipid metabolism and synthesis, with upregulation of glucokinase activity-related sequence 1 (1.8-fold in BPA and 2.4-fold in BPS), which is involved in glycerol triglycerides synthesis, and hydroxymethylglutaryl-CoA synthase cytoplasmic (2-fold in BPS), an enzyme involved in mevalonate biosynthesis. Essential mitochondrial proteins of the electron transport chain were upregulated after exposure to both contaminants. Also, BPA and BPS dysregulated expression of liver antioxidant enzymes, which are involved in cellular reactive oxygen species detoxification. Altogether, the results of the present study contribute to expand the scientific understanding of how BPA and BPS lead to the development of metabolic disorders and reinforce the risks associated with exposure to these contaminants.
Collapse
Affiliation(s)
- Lara Ferreira Azevedo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Maria Fernanda Hornos Carneiro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil; Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Carlos Roberto Porto Dechandt
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | | | - Luciane Carla Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil.
| |
Collapse
|
50
|
Egusquiza RJ, Blumberg B. Environmental Obesogens and Their Impact on Susceptibility to Obesity: New Mechanisms and Chemicals. Endocrinology 2020; 161:bqaa024. [PMID: 32067051 PMCID: PMC7060764 DOI: 10.1210/endocr/bqaa024] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
The incidence of obesity has reached an all-time high, and this increase is observed worldwide. There is a growing need to understand all the factors that contribute to obesity to effectively treat and prevent it and associated comorbidities. The obesogen hypothesis proposes that there are chemicals in our environment termed obesogens that can affect individual susceptibility to obesity and thus help explain the recent large increases in obesity. This review discusses current advances in our understanding of how obesogens act to affect health and obesity susceptibility. Newly discovered obesogens and potential obesogens are discussed, together with future directions for research that may help to reduce the impact of these pervasive chemicals.
Collapse
Affiliation(s)
- Riann Jenay Egusquiza
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California
- Department of Biomedical Engineering, University of California Irvine, Irvine, California
| |
Collapse
|