1
|
Cheng F, Wang D, Wang J, Wang X, Long M, Sun SE, Zhu C, Cheng JE, Tan X, Zhang D, Liu Y. The nematicidal activity of Bacillus thuringiensis Cry1Ia36 expressing in Escherichia coli. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 211:106419. [PMID: 40350232 DOI: 10.1016/j.pestbp.2025.106419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
Plant-parasitic nematodes (PPNs) are a significant threat to numerous agricultural crops. Biocontrol is an effective and safe method of the managing PPNs. Bacillus thuringiensis (Bt) and its parasporal crystal proteins (ICPs) are important biocontrol resources for PPNs. In this study, the 2160-bp cry1Ia36 gene from the Bt YC-10 strain was expressed in Escherichia coli and the 81-kDa protein was purified. The nematicidal activity test yielded an LC50 of 12.79 mg/L at 96 h for the second stage juveniles (J2s) of Meloidogyne incognita, and the Cry1Ia36 protein exhibited a pronounced inhibitory effect on the infection of M. incognita to cucumber roots with the pot experiment, which the control effect was 76.95 % treated with 40 mg/L Cry1Ia36. Transgenic tomatoes that expressed the cry1Ia36 gene exhibited efficient control of M. incognita, showing a notable reduction in the number of galls and eggmasses compared to the control. Subsequent transcriptome analysis revealed substantial alterations in the expression patterns of numerous genes in M. incognita J2s treated with Cry1Ia36 protein. Furthermore, the yeast two-hybrid analysis and pull-down assays demonstrated an interaction protein in M. incognita and the interaction protein is associated with the nematicidal activity of Cry1Ia36. Consequently, these findings suggest that the Cry1Ia36 protein could be a promising nematicidal agent for the control of PPN diseases, which offers a viable alternative to chemical pesticides because of its association with environmental concerns, although no previous reports have been found that demonstrate its activity against PPNs. Concurrently, this study has also expanded the spectrum of Bt ICPs.
Collapse
Affiliation(s)
- Feixue Cheng
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Dongwei Wang
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jian Wang
- Hunan Institute of Agricultural Economics and Information, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Xin Wang
- Hunan Anshengmei Pharmaceutical Research Institute Co. LTD, Changsha 410125, China
| | - Minzhi Long
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shu-E Sun
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Chunhui Zhu
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ju-E Cheng
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xinqiu Tan
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Deyong Zhang
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yong Liu
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
2
|
Pavone V, Argote-Vega FE, Butt W, Molina-Hernandez JB, Paludi D, Delgado-Ospina J, Valbonetti L, Pérez-Álvarez JÁ, Chaves-López C. Antibiofilm Power of Basil Essential Oil Against Fish-Originated Multidrug-Resistant Salmonella and Bacillus spp.: Targeting Biofilms on Food Contact Surfaces. Foods 2025; 14:1830. [PMID: 40428609 PMCID: PMC12110890 DOI: 10.3390/foods14101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/10/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
The antimicrobial and antibiofilm efficacy of two Ocimum basilicum L., essential oils sourced from Colombia (BEOC) and Italy (BEOI), was evaluated against multidrug-resistant fish isolates of Salmonella enterica subsp. salamae, Bacillus thuringiensis, and Bacillus oceanisediminis-species for which such activity has not been previously reported. Using a fish-based model system (FBMS), we found that BEOI, rich in linalool (69.86%), exhibited stronger antimicrobial activity than camphor-dominated BEOC (24.61%). The antimicrobial effects of both EOs were strain- and concentration-dependent, with minimum bactericidal concentration (MBC) 3.75-15.0 µL/mL for BEOI and 15.0-30.0 µL/mL for BEOC. Pure linalool showed even greater potency (MBC: 0.0125 to 0.025 µL/mL). Confocal laser scanning microscopy revealed that BEOI induced severe membrane damage (27% of the cells within 1 h), ultimately leading to the death of 96% of the cells after 24 h. Biofilm formation, assessed in both FBMS and tryptone soy broth (TSB), was strain-dependent, with FBMS promoting higher biofilm production than TSB. Moreover, significant differences in biofilm morphotypes were observed, with the morphotype PDAR (pink dry and rough), characterized by only cellulose, being the most frequently exhibited by the strains (7/15), while BDAR (brown dry and rough), characterized by only curli, was the least expressed (7/15); the remaining strains presented morphotype RDAR. In addition, the strains in polystyrene surfaces accumulated more biomass than stainless steel 304. Notably, BEOI and linaool significantly reduced biofilm formation across all strains, with a reduction of 90% in S. enterica subsp. salamae strains (TJC19 and TJC21. These strains with the RDAR phenotype likely contribute to their strong biofilm-forming capacity. Our findings highlight BEOI's potential as a natural anti-biofilm agent in food processing environments, offering a promising strategy to combat multidrug-resistant bacteria biofilm-related challenges in the food industry.
Collapse
Affiliation(s)
- Valentina Pavone
- Deparment of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (V.P.); (W.B.); (L.V.)
| | - Francisco Emilio Argote-Vega
- IPOA Research Group, Centro de investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO), Miguel Hernández University, 03202 Orihuela, Alicante, Spain; (F.E.A.-V.); (J.Á.P.-Á.)
| | - Waleed Butt
- Deparment of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (V.P.); (W.B.); (L.V.)
| | - Junior Bernardo Molina-Hernandez
- Deparment of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (V.P.); (W.B.); (L.V.)
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
| | - Domenico Paludi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy;
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, Cali 76001, Colombia;
| | - Luca Valbonetti
- Deparment of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (V.P.); (W.B.); (L.V.)
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Centro de investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO), Miguel Hernández University, 03202 Orihuela, Alicante, Spain; (F.E.A.-V.); (J.Á.P.-Á.)
| | - Clemencia Chaves-López
- Deparment of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (V.P.); (W.B.); (L.V.)
| |
Collapse
|
3
|
Zhang J, Zhou Z, Liu X, Zhang Y, Zhang T. Differential Characterization of Midgut Microbiota Between Bt-Resistant and Bt-Susceptible Populations of Ostrinia furnacalis. INSECTS 2025; 16:532. [PMID: 40429245 PMCID: PMC12111966 DOI: 10.3390/insects16050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/13/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
Bacillus thuringiensis (Bt) is an efficacious biocontrol bacterium known for producing various toxins, such as crystal toxins, which disrupt the midgut epithelium of pest larvae, leading to larval mortality. However, the development of resistance to Bacillus thuringiensis in pests poses a significant threat to the widespread application of Bt corn. Consequently, we employed high-throughput sequencing of the midgut bacterial 16S ribosomal RNA to characterize the midgut bacteria in four Bt-resistant strains. Specifically, Bt-resistant strains (ACB-FR and ACB-AcR) exhibited lower bacterial diversity compared to ACB-AbR and ACB-IeR. Multivariate analyses and statistical evaluations further demonstrated that the microbiota communities in Bt-resistant pests (AbR, AcR, IeR, and FR) were distinct from those in Bt-susceptible strains. Notably, the genus Klebsiella predominated in BtS, whereas Enterococcus was the genus with peak enrichment in AbR, AcR, IeR, and FR. Bioassays subsequently revealed that Enterococcus enhances the Cry1Ab resistance of ACB larvae. Our investigations indicate that treatment with Bt protein alters the midgut microbiota community of O. furnacalis, and these microbiota differences may potentially modulate the Bt-induced lethality mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Tan S, Shang Z, Jia H, Huang J, Geng L, Shu C, Soberón M, Bravo A, Shi W, Zhang J, Wei H. Enhancing Bacillus thuringiensis Cry8Ea1 toxicity: Insights into protease sensitivity for the evolutionary adaptation of Cry toxins to insect hosts. Int J Biol Macromol 2025; 308:142246. [PMID: 40132718 DOI: 10.1016/j.ijbiomac.2025.142246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/20/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Toxicity of Bacillus thuringiensis Cry protoxins relies on activation by larval midgut proteases, but overprocessing can reduce toxicity in various insects. Cry8Ea1 is effective against Coleopteran pests but shows limited toxicity towards Holotrichia parallela due to instability in its midgut proteases. Treatment of Cry8Ea1 protoxin with trypsin or midgut juice-proteases, produces a 55.6 kDa fragment by cleaving between residues V163 and Y655, removing the first three α-helices from domain I. To prevent protease degradation, the trypsin cleavage site was identified and mutated (Cry8Ea1R163H). Cry8Ea1R163H mutant resulted in a 67.2 kDa activated toxin after treatment with trypsin or midgut juice-proteases, and showed a correlative 8.5-fold increase insecticidal activity against H. parallela larvae. We analyzed the activation of other Cry8 proteins with trypsin or midgut juice-proteases from H. parallela, our data showed that Cry8Fa1 was activated into a 67.2 kDa protein, in contrast to Cry8Ha1, Cry8Ca1 and Cry8Ga2 that were activated into 55.6 kDa protein fragments. Finally, the structure of the trypsin cleavage site in all Cry8 protein members was predicted, revealing that in Cry8Fa, Cry8Q and Cry8I, the trypsin cleavage site is buried. Phylogenetic analyses suggest an adaptive evolution of certain Cry8 proteins against the host digesting enzymes.
Collapse
Affiliation(s)
- Shuqian Tan
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| | - Zixuan Shang
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Haoran Jia
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinqiu Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Wangpeng Shi
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongshuang Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Böhringer AC, Sievers CC, Burghaus M, Merzendorfer H. A G-protein coupled receptor is involved in the DUOX pathway in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104306. [PMID: 40158639 DOI: 10.1016/j.ibmb.2025.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/27/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Activation of the dual oxidase (DUOX) pathway is an important intestinal defense mechanism against enteric infection triggering the formation of radical oxygen species by stimulating DUOX enzyme activity and/or gene expression. In insects, several studies have suggested that uracil released by pathogenic bacteria functions as a major trigger molecule for the activation of DUOX, which leads to the formation of antimicrobial hypochlorous acid (HOCl). While the recognition of pathogen-associated molecular patterns of microbes by pattern recognition receptors is well understood, the detection of uracil is still elusive. It has been postulated that a G-protein coupled receptor (GPCR) binds the pyrimidine uracil, which activates PLCβ signalling and further downstream events. So far, no pyrimidinergic receptor has been identified in insects, particularly none that binds uracil nucleotides or sugar derivatives. To identify potential candidates for insect pyrimidine receptors, we used a human P2Y4 receptor as a template to screen the Tribolium castaneum reference proteome. Four promising receptor candidates were identified, of which two were analyzed using RNA interference to determine their influence on uracil-induced TcDUOX expression, HOCl formation and development in control larvae and larvae that were challenged with the enteric pathogen Bacillus thuringiensis. Silencing TcGPCR41 resulted in a loss of uracil-induced TcDUOX expression and HOCl formation. Furthermore, the development of challenged larvae was affected in a manner like that observed in a TcDUOX knockdown. We conclude that the identified receptor may play a role in the uracil-dependent activation of the DUOX-pathways.
Collapse
Affiliation(s)
| | | | - Maximilian Burghaus
- University of Siegen, Department of Chemistry-Biology, 57068, Siegen, Germany
| | - Hans Merzendorfer
- University of Siegen, Department of Chemistry-Biology, 57068, Siegen, Germany.
| |
Collapse
|
6
|
Cotto-Rivera RO, Joya N, Guo W, Hernández-Martínez P, Ferré J, Wang P. Calcofluor disrupts binding of Bt toxin Cry1Ac to midgut receptors in Trichoplusia ni. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104311. [PMID: 40220933 DOI: 10.1016/j.ibmb.2025.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
The parasporal crystal proteins (Cry proteins) from the soil bacterium Bacillus thuringiensis (Bt) are major insecticidal toxins in formulated Bt sprays and in current transgenic Bt crops widely used in agriculture. To understand the modes of action of Cry proteins and mechanisms of Cry resistance in insects, it is important to understand the specific interaction of Cry proteins with the specific receptors in the insect midgut. Previous studies have found that the fluorescent brightener Calcofluor could significantly reduce the insecticidal activity of Cry1Ac in the cabbage looper, Trichoplusia ni. In this study, the effects of Calcofluor in T. ni larvae on the structure of the midgut, the composition and abundance of midgut brush border membrane proteins, and the binding of midgut brush border membranes with Cry1Ac were examined. Finally, the inhibiting activity of Calcofluor on the binding of Cry1Ac to midgut binding sites was determined. The results from this study indicated that Calcofluor blocks the binding of Cry1Ac to the midgut binding sites by competitively binding the carbohydrate moieties that are involved in the specific binding of Cry1Ac to the midgut, which consequently inhibits the toxicity of Cry1Ac in larvae. Therefore, this study revealed that carbohydrate moieties on insect midgut brush border membranes play crucially important roles in the functional specific binding of Cry1Ac to the midgut receptors in the pathway of toxicity.
Collapse
Affiliation(s)
| | - Noelia Joya
- Department of Genetics, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, 46100, Spain
| | - Wei Guo
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA
| | - Patricia Hernández-Martínez
- Department of Genetics, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, 46100, Spain
| | - Juan Ferré
- Department of Genetics, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, 46100, Spain
| | - Ping Wang
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
7
|
Jin L, Zhang B, Aguila LCR, Lu J, Gao X, Luo J, Cui J, Lin Y. Potential Mechanisms Underlying the Minimal Impact of Cry1Ab1 Protein on Myzus persicae. Int J Mol Sci 2025; 26:2924. [PMID: 40243523 PMCID: PMC11988580 DOI: 10.3390/ijms26072924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 04/18/2025] Open
Abstract
Transgenic crops have been commercially cultivated for nearly three decades, leading to increasing concerns about their environmental safety, particularly their effects on non-target organisms. This study investigated the underlying mechanisms behind the lack of impact of the Cry1Ab1 protein on the Myzus persicae. The Cry1Ab1 protein showed no significant impact on the survival and development of M. persicae. Compared to other Cry protein, fewer Cry1Ab1-binding proteins were identified including beta-actin, ATP synthase subunit alpha, and GPN-loop GTPase 2. Transcriptomic analysis showed that a small set of pathways, mainly involved in immune defense, were temporarily enriched at 24 h after exposure to the Cry1Ab1 protein, while no significant pathways were enriched at 48 h in M. persicae. The results suggest that the Cry1Ab1 protein has a transient and minimal impact on M. persicae. Further structural comparisons between Cry1Ab1 and other Cry proteins (e.g., Cry1Ac) revealed significant differences in Domain III, which likely reduced the binding efficiency and impact on M. persicae's metabolism and biological traits. This study provides valuable insights into the molecular and functional mechanisms behind the ineffectiveness of Cry1Ab1 on M. persicae and contributes to the safety evaluation of Bt for non-target organisms.
Collapse
Affiliation(s)
- Liang Jin
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Binwu Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology, Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingwen Lu
- Fujian Provincial Key Laboratory of Biochemical Technology, Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xueke Gao
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junyu Luo
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinjie Cui
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yi Lin
- Fujian Provincial Key Laboratory of Biochemical Technology, Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
8
|
Zhu C, Qi L, Yu Y, Zhang X, Ying J, Ye Y, Shen Z. Molecular Characterization and Assessment of Insect Resistance of Transgenic Maize ZDRF-8. PLANTS (BASEL, SWITZERLAND) 2025; 14:901. [PMID: 40265875 PMCID: PMC11946635 DOI: 10.3390/plants14060901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
ZDRF-8 is a transgenic maize event created via Agrobacterium-mediated transformation for insect resistance and glyphosate tolerance by expressing Cry1Ab, Cry2Ab, and G10evo-epsps. A Southern blot analysis suggested that it is a single-copy T-DNA insertion event. The flanking genomic sequences of the T-DNA insertion suggested that its T-DNA was inserted at the terminal region of the long arm of chromosome 7 without interrupting any known or predicted genes. Event-specific PCRs based on the flanking sequence were able to detect this event specifically. Laboratory bioassays and field trials of multiple generations demonstrated that ZDRF-8 is highly active against major corn pests in China, including Asian corn borers (ACB, Ostrinia furnacalis), cotton bollworms (CBW, Helicoverpa armigera), and oriental armyworm (OAW, Mythimna separata), and meanwhile confers glyphosate tolerance up to two times the recommended dose. The expression of the transgenes and the efficacy of insect resistance and glyphosate tolerance were stable over more than 10 generations. ZDRF-8 has been granted with a safety certificate in China, and its commercial release is expected in the coming years.
Collapse
Affiliation(s)
- Chengqi Zhu
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (C.Z.); (L.Q.); (Y.Y.)
| | - Liang Qi
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (C.Z.); (L.Q.); (Y.Y.)
| | - Yinfang Yu
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (C.Z.); (L.Q.); (Y.Y.)
| | - Xianwen Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Jifeng Ying
- Hangzhou LeadGene Biotech Co., Ltd., Hangzhou 310018, China;
| | - Yuxuan Ye
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China;
| | - Zhicheng Shen
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (C.Z.); (L.Q.); (Y.Y.)
| |
Collapse
|
9
|
Segretin ME, Soto GC, Lorenzo CD. Latin America: a hub for agrobiotechnological innovations. ANNALS OF BOTANY 2025; 135:629-642. [PMID: 39470392 PMCID: PMC11904903 DOI: 10.1093/aob/mcae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Modern biotechnology is one of the last century's major advances in human science. Particularly in the agronomical field, the landscape of crop improvement technologies has witnessed a great expansion, driven by the integration of molecular and genetic engineering methodologies into the breeding toolbox. Latin America (LATAM) serves as a pioneering region in incorporating such techniques with several countries swiftly embracing these technologies. SCOPE This review aims to give a comprehensive overview of the elements that influenced agrobiotech acceptance in LATAM countries and how such cases could provide support for upcoming technologies to be considered worldwide. CONCLUSIONS Nearly 50 years of biotech breakthroughs have provided humankind with an impressive portfolio of tools already integrated into several life-science areas. The agronomical field has greatly progressed thanks to technologies derived from genetically modified organisms and great promises are being made to also incorporate genome-editing products. LATAM provides a prime example of how early introduction of novelties in the crop production chain can result in improved yields, paving the way for future developments to be easily integrated into the technological ecosystem of a region. The example set by LATAM can also be useful for the present gene-editing regulatory scenario. With several countries presently on the path to approving these methods in their current crop systems, basing their next steps on the example of LATAM could represent a safe and practical pathway towards a new agronomical revolution.
Collapse
Affiliation(s)
- Maria Eugenia Segretin
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular-INGEBI-CONICET, Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma Buenos Aires, C1428EGA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Cynthia Soto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Genética ‘Ewald Favret’ (INTA), Buenos Aires, Argentina
| | - Christian Damian Lorenzo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
| |
Collapse
|
10
|
Sparks ME, Heraghty SD, Kuhar D, Farrar RR, Bartholomew HP, Blackburn MB, Gundersen-Rindal DE. Larval spongy moth transcriptomic response to ingestion of broad-versus narrow-spectrum insecticidal Chromobacterium species. Sci Rep 2025; 15:8106. [PMID: 40057515 PMCID: PMC11890870 DOI: 10.1038/s41598-025-92113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
The PRAA4-1T strain of Chromobacterium subtsugae was the first insecticidal bacterium to be registered by the U.S. Environmental Protection Agency for use in crop protection applications since approval for Bacillus thuringiensis was granted in 1961. C. subtsugae, a Gram-negative betaproteobacterium, exhibits oral toxicity against a broad range of important insects, including dipteran, coleopteran, lepidopteran, and at least some hemipteran and tetranychidan pests. Chromobacterium sphagni is a closely related bacterium exhibiting a distinctly narrower activity spectrum than that of C. subtsugae: it is toxic to lepidopteran, but not dipteran or coleopteran pest insects. The molecular mode of activity for either species is not well characterized at present, and it remains unclear whether these bacterial species affect insects similarly, notwithstanding their close evolutionary relatedness. In this study, synchronized third-instar larvae of the destructive lepidopteran forest pest, Lymantria dispar dispar (European spongy moth), were separately fed with cultures of C. subtsugae strain PRAA4-1T or C. sphagni strain 14B-1T and sampled after 24 h post infection. Gene expression levels in healthy reference versus treated insects were independently compared at the whole-insect and midgut-only tissue levels to characterize host-specific transcriptional responses to intoxication. Treatment induced up-regulation of such antimicrobial peptides as attacin and cecropin, of two cytochrome P450-encoding genes, and of gelsolin, a molecule involved in actin organization. Some differentially expressed genes were novel or uncharacterized, hence future work with lepidopteran species will be necessary to understand insect physiological responses to Chromobacterium infection.
Collapse
Affiliation(s)
- Michael E Sparks
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, 20705, USA
| | - Sam D Heraghty
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, 20705, USA
| | - Daniel Kuhar
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, 20705, USA
| | - Robert R Farrar
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, 20705, USA
| | - Holly P Bartholomew
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, 20705, USA
| | - Michael B Blackburn
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, 20705, USA
| | | |
Collapse
|
11
|
Muniz VA, de Melo Katak R, Caesar L, de Oliveira JC, Rocha EM, de Oliveira MR, da Silva GF, Roque RA, Marinotti O, Terenius O, de Andrade EV. Genomic and morphological features of an Amazonian Bacillus thuringiensis with mosquito larvicidal activity. AMB Express 2025; 15:39. [PMID: 40045023 PMCID: PMC11882490 DOI: 10.1186/s13568-025-01850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
The occurrence of mosquito-borne diseases is increasing, and their geographical range is expanding due to climate change. New control measures are urgently needed to combat these debilitating and, in some cases, fatal diseases. Bacteria of the genus Bacillus are of interest due to the production of bioactive compounds, including those useful for insect control. The discovery and characterization of new species of Bacillus with mosquito larvicidal activity may offer opportunities to develop new products for vector control. In this study, we evaluated larvicidal activity, described morphological characteristics, and sequenced and analyzed the genome of a bacterial strain (GD02.13) isolated from the Amazon region. The metabolites produced by GD02.13 are as effective in killing Aedes aegypti larvae as the commercial product Natular™ DT (Spinosad). Furthermore, the morphological characteristics of the GD02.13 spores and crystal inclusions resemble those previously described for B. thuringiensis. A phylogenetic analysis based on 443 single-copy orthologs indicated that the bacterial strain GD02.13 belongs to the Bacillus thuringiensis species. Its genome, which was assembled and has a size of 6.6 Mb, contains 16 secondary metabolite biosynthetic gene clusters and genes encoding insecticidal proteins, predicted based on sequence similarity. The data obtained in this study support the development of new insecticide products based on the strain GD02.13 of B. thuringiensis.
Collapse
Affiliation(s)
| | - Ricardo de Melo Katak
- Oswaldo Cruz Foundation - Leônidas and Maria Deane Institute, Manaus, Amazonas, Brazil
| | - Lílian Caesar
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | | | - Marta Rodrigues de Oliveira
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, ESALQ - USP - Piracicaba, São Paulo, Brazil
| | | | | | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Olle Terenius
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, 751 24, Uppsala, Sweden.
| | | |
Collapse
|
12
|
Antonino JD, Chaudhary S, Lubberts M, McConkey BJ, Valença CAS, de Aragão Batista MV, Severino P, da Costa Mendonça M, Souto EB, Dolabella SS, Jain S. Phylogenetic analysis and homology modelling of a new Cry8A crystal protein expressed in a sporulating soil bacterium. J Struct Biol 2025; 217:108167. [PMID: 39765318 DOI: 10.1016/j.jsb.2025.108167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/14/2024] [Accepted: 01/04/2025] [Indexed: 01/14/2025]
Abstract
Cry proteins, commonly found in Gram-positive soil bacteria, are used worldwide as aerial sprays or in transgenic plants for controlling crop pest populations and insect vectors. Via PCR analysis, a spore producing soil isolate (BV5) was speculated to encode a Cry gene. Partial nucleotide sequence of the amplified PCR fragment showed homology with the Cry8 genes present in GenBank. A full-length Cry gene was cloned, and the predicted protein sequence grouped the newly isolated Cry protein with other Cry8A present in GenBank with a high possibility of it being a new Cry8. SDS-PAGE and MALDI-TOF mass spectrometry confirmed the expression of a single 135 KDa protein matching uniquely to the putative protein sequence of the BV5 Cry gene. However, bioassay against the coleopteran Anthonomus grandis (Coleopterans are a known Cry8A target), showed no activity. Phylogenetic analysis and homology modelling was performed to characterize the protein structure and function. These analyses suggest a series of mutations in one of the variable loops on the surface of the protein.
Collapse
Affiliation(s)
- José D Antonino
- Departament of Agronomy-Entomology, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Mark Lubberts
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | - Camilla A S Valença
- Postgraduate Program in Industrial Biotechnology, Tiradentes University, Aracaju, Sergipe, Brazil
| | - Marcus V de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Patricia Severino
- Postgraduate Program in Industrial Biotechnology, Tiradentes University, Aracaju, Sergipe, Brazil
| | | | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| | - Silvio S Dolabella
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Sona Jain
- Postgraduate Program in Industrial Biotechnology, Tiradentes University, Aracaju, Sergipe, Brazil; Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
13
|
Tufan-Cetin O, Cetin H. A Review of Biological and Sustainable Management Approaches for Alphitobius diaperinus, a Major Pest in Poultry Facilities. Vet Sci 2025; 12:158. [PMID: 40005918 PMCID: PMC11860681 DOI: 10.3390/vetsci12020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/25/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The lesser mealworm (Alphitobius diaperinus) is a significant pest in poultry facilities, transmitting pathogens such as Salmonella and causing structural damage in poultry operations. Challenges such as insecticide resistance and environmental concerns associated with the widespread use of traditional insecticides underscore the need for sustainable alternatives. This review examines biological and sustainable management strategies for managing the lesser mealworm, including entomopathogenic fungi, bacteria, nematodes, plant essential oils-extracts, pheromones, and diatomaceous earth. These eco-friendly approaches highlight fungi and nematodes for their effectiveness in larval control and essential oils for their insecticidal and repellent properties. The application of pheromones and diatomaceous earth further complements other methods within integrated pest management (IPM) systems. Integrating these biological tools into IPM offers a sustainable and effective solution for reducing A. diaperinus populations, addressing both health and environmental concerns.
Collapse
Affiliation(s)
- Ozge Tufan-Cetin
- Department of Environmental Protection Technology, Vocational School of Technical Sciences, Akdeniz University, 07070 Antalya, Türkiye
| | - Huseyin Cetin
- Faculty of Science, Department of Biology, Akdeniz University, 07070 Antalya, Türkiye
| |
Collapse
|
14
|
Toledo D, Bel Y, Menezes de Moura S, Jurat-Fuentes JL, Grossi de Sa MF, Robles-Fort A, Escriche B. Distinct Impact of Processing on Cross-Order Cry1I Insecticidal Activity. Toxins (Basel) 2025; 17:67. [PMID: 39998084 PMCID: PMC11860814 DOI: 10.3390/toxins17020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
The insecticidal Cry proteins from Bacillus thuringiensis are used in biopesticides or transgenic crops for pest control. The Cry1I protein family has unique characteristics of being produced during the vegetative rather than sporulation phase, its protoxins forming dimers in solution, and exhibiting dual toxicity against lepidopteran and coleopteran pests. The Cry1Ia protoxin undergoes sequential proteolysis from the N- and C-terminal ends, producing intermediate forms with insecticidal activity, while in some cases, the fully processed toxin is inactive. We investigated the oligomerization and toxicity of Cry1Ia intermediate forms generated through trypsinization (T-Int) and larval gut fluid (GF-Int) treatments, as well as the fully trypsinized protein (toxin). Heterologously expressed intermediate forms assembled into oligomers and showed similar toxicity to Cry1Ia protoxin against Ostrinia nubilalis (European corn borer) larvae, while the toxin form was ~30 times less toxic. In contrast, bioassays with Leptinotarsa decemlineata (Colorado potato beetle) larvae did not show significant differences in toxicity among Cry1Ia protoxin, T-Int, GF-Int, and fully processed toxin. These results suggest that the Cry1I mode of action differs by insect order, with N-terminal cleavage affecting toxicity against lepidopteran but not coleopteran larvae. This knowledge is essential for designing pest control strategies using Cry1I insecticidal proteins.
Collapse
Affiliation(s)
- Dafne Toledo
- Institute of Biotechnology and Biomedicine, University of Valencia, 46100 Valencia, Spain;
- Department of Genetics, University of Valencia, 46100 Valencia, Spain;
| | - Yolanda Bel
- Institute of Biotechnology and Biomedicine, University of Valencia, 46100 Valencia, Spain;
- Department of Genetics, University of Valencia, 46100 Valencia, Spain;
| | - Stefanie Menezes de Moura
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (S.M.d.M.); (J.L.J.-F.)
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil;
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (S.M.d.M.); (J.L.J.-F.)
| | | | - Aida Robles-Fort
- Department of Genetics, University of Valencia, 46100 Valencia, Spain;
| | - Baltasar Escriche
- Institute of Biotechnology and Biomedicine, University of Valencia, 46100 Valencia, Spain;
- Department of Genetics, University of Valencia, 46100 Valencia, Spain;
| |
Collapse
|
15
|
Stoll VS, Röder N, Gerstle V, Manfrin A, Schwenk K. Effects of Bti on the diversity and community composition of three Chironomidae subfamilies across different micro-habitats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125490. [PMID: 39653262 DOI: 10.1016/j.envpol.2024.125490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
The mosquito control agent Bacillus thuringiensis subsp. israelensis (Bti) is considered environmentally friendly due to its highly specific mode of action. Nevertheless, adverse effects of Bti have been observed in non-biting midges of the family Chironomidae. In this study, we applied the maximum field rate of Bti three times from April to May to six out of twelve floodplain pond mesocosms. Chironomidae larvae were sampled two weeks after the third application in three different micro-habitats and DNA metabarcoding was used to identify the larvae. We observed Bti effects on the Chironomidae subfamily Chironominae, while Tanypodinae and Orthocladiinae remained unaffected. The interspecific diversity of Chironominae was significantly reduced by 27% in the Bti treatment. Although the interaction between treatment and habitat was not significant, a notable decrease in interspecific diversity of Chironominae between the control and Bti treatment in two out of three micro-habitats was detected (47% and 41%, respectively). We observed a significant habitat-dependent change in intraspecific diversity of Chironominae, with a 28% decline in one habitat and a 21% increase in another. The Chironominae community composition differed between the control and Bti treatment in two out of three habitats. These outcomes highlight the variability of Bti's impact on Chironomidae communities across subfamilies and micro-habitats, potentially elucidating discrepancies reported in prior studies and emphasising the necessity for comprehensive risk assessments that encompass diversity at various taxonomic levels and environmental variation at different spatial scales.
Collapse
Affiliation(s)
- V Sophie Stoll
- iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, D-76829, Landau, Germany.
| | - Nina Röder
- iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, D-76829, Landau, Germany
| | - Verena Gerstle
- iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, D-76829, Landau, Germany; Eußerthal Ecosystem Research Station, RPTU Kaiserslautern-Landau, Birkenthalstraße 13, D-76857, Eußerthal, Germany
| | - Alessandro Manfrin
- iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, D-76829, Landau, Germany
| | - Klaus Schwenk
- iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, D-76829, Landau, Germany; LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Liang J, Xiao F, Ojo J, Chao WH, Ahmad B, Alam A, Abbas S, Abdelhafez MM, Rahman N, Khan KA, Ghramh HA, Ali J, Chen R. Insect Resistance to Insecticides: Causes, Mechanisms, and Exploring Potential Solutions. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70045. [PMID: 40001298 DOI: 10.1002/arch.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/27/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
Insecticides play a crucial role as the primary means of controlling agricultural pests, preventing significant damage to crops. However, the misuse of these insecticides has led to the development of resistance in insect pests against major classes of these chemicals. The emergence of resistance poses a serious threat, especially when alternative options for crop protection are limited for farmers. Addressing this challenge and developing new, effective, and sustainable pest management approaches is not merely essential but also critically important. In the absence of alternative solutions, understanding the root causes behind the development of resistance in insects becomes a critical necessity. Without this understanding, the formulation of effective approaches to combat resistance remains elusive. With insecticides playing a vital role in global food security and public health, understanding and mitigating resistance are paramount. Given the growing concern over insect resistance to insecticides, this review addresses a crucial research gap by thoroughly examining the causes, mechanisms, and potential solutions. The review examines factors driving resistance, such as evolutionary pressure and excessive pesticide use, and provides a detailed analysis of mechanisms, including detoxifying enzyme overproduction and target site mutations. Providing an analysis of potential solutions, it discusses integrated pest management, strategic insecticide rotation, and the use of new pest control technologies and biological agents. Emphasizing the urgency of a multifaceted approach, the review provides a concise roadmap for sustainable pest management, guiding future research and applications.
Collapse
Affiliation(s)
- Jiyun Liang
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Feng Xiao
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - James Ojo
- Department of Crop Production, Kawara State University, Malete, Nigeria
| | - Wu Hai Chao
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Bilal Ahmad
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Aleena Alam
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Sohail Abbas
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Mogeda M Abdelhafez
- Plant Protection Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Nadeemur Rahman
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Khalid Ali Khan
- Center of Bee Research and its Products and Research Centre for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Hamed A Ghramh
- Center of Bee Research and its Products and Research Centre for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
17
|
Amichot M, Bertrand C, Chauvel B, Corio-Costet MF, Martin-Laurent F, Le Perchec S, Mamy L. Natural products for biocontrol: review of their fate in the environment and impacts on biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2857-2892. [PMID: 38630402 DOI: 10.1007/s11356-024-33256-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/04/2024] [Indexed: 02/19/2025]
Abstract
Biocontrol solutions (macroorganisms, microorganisms, natural substances, semiochemicals) are presented as potential alternatives to conventional plant protection products (PPPs) because they are supposed to have lower impacts on ecosystems and human health. However, to ensure the sustainability of biocontrol solutions, it is necessary to document the unintended effects of their use. Thus, the objectives of this work were to review (1) the available biocontrol solutions and their regulation, (2) the contamination of the environment (soil, water, air) by biocontrol solutions, (3) the fate of biocontrol solutions in the environment, (4) their ecotoxicological impacts on biodiversity, and (5) the impacts of biocontrol solutions compared to those of conventional PPPs. Very few studies concern the presence of biocontrol solutions in the environment, their fate, and their impacts on biodiversity. The most important number of results were found for the organisms that have been used the longest, and most often from the angle of their interactions with other biocontrol agents. However, the use of living organisms (microorganisms and macroorganisms) in biocontrol brings a specific dimension compared to conventional PPPs because they can survive, multiply, move, and colonize other environments. The questioning of regulation stems from this specific dimension of the use of living organisms. Concerning natural substances, the few existing results indicate that while most of them have low ecotoxicity, others have a toxicity equivalent to or greater than that of the conventional PPPs. There are almost no result regarding semiochemicals. Knowledge of the unintended effects of biocontrol solutions has proved to be very incomplete. Research remains necessary to ensure their sustainability.
Collapse
Affiliation(s)
- Marcel Amichot
- UMR ISA, INRAE, Université Côte d'Azur, CNRS, 06903, Sophia Antipolis, France
| | - Cédric Bertrand
- Université de Perpignan Via Domitia, CRIOBE UAR 3278 CNRS-EPHE-UPVD, Centre de Phytopharmacie, 66860, Perpignan, France
| | - Bruno Chauvel
- INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, 21000, Dijon, France
| | | | - Fabrice Martin-Laurent
- INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, 21000, Dijon, France
| | | | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France.
| |
Collapse
|
18
|
Kryukova NA, Polenogova OV, Rotskaya UN, Zolotareva KA, Chertkova EA. Wolbachia does not give an advantage to the ectoparasitoid Habrobracon hebetor (Say, 1836) when it develops on an infected host. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025:1-10. [PMID: 39881623 DOI: 10.1017/s0007485324000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The effect of Wolbachia on the viability and antimicrobial activity of the ectoparasitoid Habrobracon hebetor was evaluated in laboratory experiments. Two lines of the parasitoid, Wolbachia-infected (W+) and Wolbachia-free (W-), were used. Parasitoid larvae were fed with a host orally infected with a sublethal dose of Bacillus thuringiensis (Bt) and on the host uninfected with Bt. Parasitoid survival was assessed at developmental stages from second-instar larvae to adults. At all developmental stages, there were no statistically significant differences in survival between lines W+ and W-, regardless of host Bt infection. In both W+ and W- lines, the expression of lysozyme-like proteins, antimicrobial peptides (AMPs), and Hsp70 genes was analysed in fourth-instar larvae fed with an infected and uninfected host. In addition, lysozyme-like activity and antibacterial activity were evaluated. The expression of AMPs was significantly higher in W- larvae and did not get induced during the feeding on the Bt-infected host. mRNA expression of lysozyme-like proteins and lysozyme activity were significantly higher in W+ larvae than in W- larvae and did not get induced when the larvae were fed with the infected host. In whole-body homogenates of H. hebetor larvae fed with the uninfected host, antibacterial activity against gram-positive bacteria (Bacillus cereus and Bacillus subtilis) was significantly higher in the W+ line and did not get induced during the feeding with the Bt-infected host. Therefore, there is no obvious immunostimulatory effect of Wolbachia in H. hebetor larvae when they feed on a host infected with an entomopathogenic bacterium.
Collapse
Affiliation(s)
- Natalia A Kryukova
- Laboratory of ecological parasitology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Olga V Polenogova
- Laboratory of ecological parasitology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Ulyana N Rotskaya
- Laboratory of ecological parasitology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Karina A Zolotareva
- Laboratory of ecological parasitology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Ekaterina A Chertkova
- Laboratory of ecological parasitology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| |
Collapse
|
19
|
Rajchanuwong P, Peaboon S, Ngoen-Klan R, Rattanawannee A, Noosidum A, Promdonkoy B, Chanpaisaeng J, Chareonviriyaphap T. Larvicidal activity of Bacillus thuringiensis strains against Aedes aegypti and Culex quinquefasciatus mosquitoes. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2025; 7:100245. [PMID: 39989477 PMCID: PMC11847307 DOI: 10.1016/j.crpvbd.2025.100245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/07/2025] [Accepted: 01/24/2025] [Indexed: 02/25/2025]
Abstract
Organophosphates, carbamates and synthetic pyrethroids are commonly used in Thailand to control mosquito vectors; however, long-term use of insecticides in vector control has led to the rapid development of insecticide resistance. In this study, we screened Bacillus thuringiensis strains as biological control agents for potential toxins against mosquito larvae as an additional control tool. Preliminary bioassays conducted on 434 strains demonstrated that 41 strains (11.64%) and 14 strains (3.97%) achieved 100% mortality against Ae. aegypti and Cx. quinquefasciatus larvae, respectively. Three strains (JC690, JC691, and JC699) showed toxicity to both mosquito species, compared with the reference Bti strain. Strain JC691 demonstrated the highest efficacy against Ae. aegypti and Cx. quinquefasciatus, with an LC50 value of 6.96 × 104 CFU/ml and 1.16 × 103 CFU/ml, respectively. A comparison of LC50 values revealed that JC691 exhibited higher efficacy against Cx. quinquefasciatus than that by Bti (Bti LC50: 8.89 × 10⁴ CFU/ml) but lower efficacy against Ae. aegypti (Bti LC50: 1.99 × 10³ CFU/ml). Scanning electron microscopy revealed that JC690, JC691, and JC699 are rod-shaped, have oval spores, and produce bi-pyramidal crystal proteins. Protein profile analysis using SDS-PAGE demonstrated distinct differences between these Thailand strains (JC690, JC691, and JC699) and the reference Bti strain. All three Thailand strains contained cry1I and cry2A genes, and only JC691 harbored the cry32 gene. Bayesian inference and maximum likelihood phylogenetic analyses of cry32 indicated that the partial sequences of cry32 in JC691 from Thailand were distinct from those of other B. thuringiensis strains from different countries. This study demonstrates the potential of JC690, JC691, and JC699 as biocontrol agents for Ae. aegypti and Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Prakai Rajchanuwong
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
- Research and Lifelong Learning Center on Urban and Medical Entomology, Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Sawaporn Peaboon
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Ratchadawan Ngoen-Klan
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
- Research and Lifelong Learning Center on Urban and Medical Entomology, Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Atsalek Rattanawannee
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Atirat Noosidum
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathumthani, 12120, Thailand
| | - Jariya Chanpaisaeng
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Theeraphap Chareonviriyaphap
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
- Research and Lifelong Learning Center on Urban and Medical Entomology, Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
20
|
Kunnikuruvan A, Vijayakumar A, Sivaprakasam M, Padmanaban H, Mandodan S, Gangmei K, Lukose J, Bora B, Gupta B, Ashokkumar M, Balakrishnan V, Subbiah P. Enhanced Mosquito Larvicidal Efficacy and Dehairing Properties of Bacillus thuringiensis Serovar israelensis Strain VCRC-B649 Isolated from Malabar Coast, India. Curr Microbiol 2025; 82:93. [PMID: 39825904 DOI: 10.1007/s00284-025-04070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.0°E) district of Kerala, India. One bacterial strain was isolated from the coastal alluvium soil and showed promising mosquitocidal activity. The mosquitocidal isolate was identified as Bacillus thuringiensis serovar israelensis strain VCRC-B649 through phylogenetic analysis of whole genome sequence. LC50 values against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi larvae were determined as 0.0064, 0.0072, and 0.0101 mg/L, and LC90 values were 0.0127, 0.0140, and 0.019 mg/L. Comparative analysis of larvicidal activity of this strain has revealed more efficacy than the WHO reference strain of B. thuringiensis var. israelensis (H14) The cry and cyt gene profile of this isolate is found to be similar to WHO reference strain of B. thuringiensis var. israelensis (H14). This new isolate has not shown any adverse effects against aquatic non-target organisms. Further evaluation of its morphological, biochemical characteristics and growth kinetics revealed similarities with already reported B. thuringiensis strains. Sporulated culture at 72 h showed maximum (20.6 ± 1.5 mm) proteolytic activity and animal skin (goat skin) dehairing property and revealed the industrial applications of this new strain. This is the first report on the isolation of mosquitocidal bacterial strain with enzyme-producing property from the Malabar coastal region and it was proven to be a more suitable alternative biocontrol agent for controlling the disease transmitting mosquito vectors with translational value.
Collapse
Affiliation(s)
- Aneha Kunnikuruvan
- Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Abhisubesh Vijayakumar
- Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Manikandan Sivaprakasam
- Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Hemaladkshmi Padmanaban
- Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Sahadiya Mandodan
- Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Kakhuangailiu Gangmei
- Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Jibi Lukose
- Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Bhagyashree Bora
- Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Bhavna Gupta
- ICMR-Vector Control Research Centre, Field Station, Madurai, Tamil Nadu, 625002, India
| | - Mathivanan Ashokkumar
- Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Vijayakumar Balakrishnan
- Unit of Biostatistics, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Poopathi Subbiah
- Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India.
| |
Collapse
|
21
|
Vasantha-Srinivasan P, Park KB, Kim KY, Jung WJ, Han YS. The role of Bacillus species in the management of plant-parasitic nematodes. Front Microbiol 2025; 15:1510036. [PMID: 39895938 PMCID: PMC11782231 DOI: 10.3389/fmicb.2024.1510036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025] Open
Abstract
Plant-parasitic nematodes (PPNs), including root-knot nematodes (Meloidogyne spp.), cyst nematodes (Heterodera and Globodera spp.), and other economically significant nematode species, pose severe threats to global agriculture. These nematodes employ diverse survival strategies, such as dormancy in cysts or robust infective juvenile stages. Consequently, their management is challenging. Traditional control methods, such as the use of chemical nematicides, are increasingly scrutinized because of environmental and health concerns. This review focuses on the specific mechanisms employed by Bacillus spp., including nematicidal compound production, systemic resistance induction, and cuticle degradation, to target root-knot and cyst nematodes. These mechanisms offer sustainable solutions for managing nematodes and promoting soil health by enhancing microbial diversity and nutrient cycling. An integrated approach leveraging Bacillus-based biocontrol is proposed to maximize efficacy and agricultural sustainability.
Collapse
Affiliation(s)
- Prabhakaran Vasantha-Srinivasan
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Ki Beom Park
- Research and Development Center, Invirustech Co., Inc., Gwangju, Republic of Korea
| | - Kil Yong Kim
- Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Woo-Jin Jung
- Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
22
|
Li J, Guo Q, Yang B, Zhou J. Combined Analysis of Metabolomics and Transcriptome Revealed the Effect of Bacillus thuringiensis on the 5th Instar Larvae of Dendrolimus kikuchii Matsumura. Int J Mol Sci 2024; 25:11823. [PMID: 39519375 PMCID: PMC11547106 DOI: 10.3390/ijms252111823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Dendrolimus kikuchii Matsumura (D. kikuchii) is a serious pest of coniferous trees. Bacillus thuringiensis (Bt) has been widely studied and applied as a biological control agent for a variety of pests. Here, we found that the mortality rate of D. kikuchii larvae after being fed Bt reached 95.33% at 24 h; the midgut membrane tissue was ulcerated and liquefied, the MDA content in the midgut tissue decreased and the SOD, CAT and GPx enzyme activities increased, indicating that Bt has toxic effects on D. kikuchii larvae. In addition, transmission electron microscopy showed that Bt infection caused severe deformation of the nucleus of the midgut tissue of D. kikuchii larvae, vacuoles in the nucleolus, swelling and shedding of microvilli, severe degradation of mitochondria and endoplasmic reticulum and decreased number. Surprisingly, metabolomics and transcriptome association analysis revealed that four metabolic-related signaling pathways, Nicotinate and nicotinamide metabolism, Longevity regulating pathway-worm, Vitamin digestion and absorption and Lysine degradation, were co-annotated in larvae. More surprisingly, Niacinamide was a common differential metabolite in the first three signaling pathways, and both Niacinamide and L-2-Aminoadipic acid were reduced. The differentially expressed genes involved in the four signaling pathways, including NNT, ALDH, PNLIP, SETMAR, GST and RNASEK, were significantly down-regulated, but only SLC23A1 gene expression was up-regulated. Our results illustrate the effects of Bt on the 5th instar larvae of D. kikuchii at the tissue, cell and molecular levels, and provide theoretical support for the study of Bt as a new biological control agent for D. kikuchii.
Collapse
Affiliation(s)
- Jinyan Li
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (J.L.); (Q.G.)
| | - Qiang Guo
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (J.L.); (Q.G.)
| | - Bin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Jielong Zhou
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (J.L.); (Q.G.)
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
23
|
Polenogova OV, Kryukova NA, Klementeva T, Artemchenko AS, Lukin AD, Khodyrev VP, Slepneva I, Vorontsova Y, Glupov VV. The influence of inactivated entomopathogenic bacterium Bacillus thuringiensis on the immune responses of the Colorado potato beetle. PeerJ 2024; 12:e18259. [PMID: 39494291 PMCID: PMC11531747 DOI: 10.7717/peerj.18259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/17/2024] [Indexed: 11/05/2024] Open
Abstract
Background Invasion of microorganisms into the gut of insects triggers a cascade of immune reactions accompanied by increased synthesis of effectors (such as antimicrobial peptides, cytokines, and amino acids), leading to changes in the physiological state of the host. We hypothesized that even an inactivated bacterium can induce an immune response in an insect. The aim of this study was to compare the roles of reactive oxygen species (ROS) formation and of the response of detoxification and antioxidant systems in a Colorado potato beetle (CPB) larval model in the first hours after invasion by either an inactivated or live bacterium. Methods The influence of per os inoculation with inactivated entomopathogenic bacterium Bacillus thuringiensis var. tenebrionis (Bt) on the survival and physiological and biochemical parameters of CPB larvae was assessed as changes in the total hemocyte count (THC), activity of phenoloxidases (POs), glutathione-S-transferases (GSTs), nonspecific esterases (ESTs), catalase, peroxidases, superoxide dismutases (SODs) and formation of reactive oxygen species (ROS). Results A series of changes occurred within the hemolymph and the midgut of CPBs inoculated with inactivated Bt at 12 h after inoculation. These physiological and biochemical alterations serve to mediate generalized resistance to pathogens. The changes were associated with an increase in the THC and a 1.4-2.2-fold enhancement of detoxification enzymatic activities (such as GST and EST) as well as increased levels of antioxidants (especially peroxidases) in hemolymph in comparison to the control group. Suppressed EST activity and reduced ROS formation were simultaneously detectable in the larval midgut. Inoculation of beetle larvae with active Bt cells yielded similar results (elevated THC and suppressed PO activity). A fundamental difference in the immune activation processes between larvae that ingested the inactivated bacterium and larvae that had consumed the active bacterium was that the inactivated bacterium did not influence ROS formation in the hemolymph but did reduce their formation in the midgut. At 24 h postinfection with active Bt, ROS levels went up in both the hemolymph and the midgut. This was accompanied by a significant 5.7-fold enhancement of SOD activity and a 5.3-fold suppression of peroxidase activity. The observed alterations may be due to within-gut toxicity caused by early-stage bacteriosis. The imbalance in the antioxidant system and the accumulation of products toxic to the "putative" pathogen can activate detoxification mechanisms, including those of an enzymatic nature (EST and GST). The activation of detoxification processes and of innate immune responses is probably due to the recognition of the "putative" pathogen by gut epithelial cells and is similar in many respects to the immune response at early stages of bacteriosis.
Collapse
Affiliation(s)
- Olga V. Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia A. Kryukova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana Klementeva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Anna S. Artemchenko
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Viktor P. Khodyrev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina Slepneva
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Yana Vorontsova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor V. Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
24
|
Lanzaro MD, Padilha I, Ramos LFC, Mendez APG, Menezes A, Silva YM, Martins MR, Junqueira M, Nogueira FCS, AnoBom CD, Dias GM, Gomes FM, Oliveira DMP. Cry1Ac toxin binding in the velvetbean caterpillar Anticarsia gemmatalis: study of midgut aminopeptidases N. Front Physiol 2024; 15:1484489. [PMID: 39534858 PMCID: PMC11554492 DOI: 10.3389/fphys.2024.1484489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
The velvetbean caterpillar Anticarsia gemmatalis is one of the main soybean defoliators in Brazil. Currently, the main biopesticide used to control insect pests worldwide is the bacteria Bacillus thuringiensis (Bt), which produces entomopathogenic Crystal toxins (Cry) that act in the midgut of susceptible insects, leading them to death. The mode of action of Cry toxins in the midgut involves binding to specific receptors present on the brush border of epithelial cells such as aminopeptidase N (APN), alkaline phosphatase (ALP), cadherin, and others. Mutations in these receptors, among other factors, may be involved in the development of resistance; identification of functional Cry receptors in the midgut of A. gemmatalis is crucial to develop effective strategies to overcome this possible scenario. This study's goal is to characterize APNs of A. gemmatalis and identify a receptor for Cry1Ac in the midgut. The interaction of Bt spores with the midgut epithelium was observed in situ by immunohistochemistry and total aminopeptidase activity was estimated in brush border membrane vesicle (BBMV) samples, presenting higher activity in challenged individuals than in control ones. Ten APN sequences were found in a A. gemmatalis' transcriptome and subjected to different in silico analysis, such as phylogenetic tree, multiple sequence alignment and identification of signal peptide, activity domains and GPI-anchor signal. BBMV proteins from 5th instar larvae were submitted to a ligand blotting using activated Cry1Ac toxin and a commercial anti-Cry polyclonal antibody; corresponding bands of proteins that showed binding to Cry toxin were excised from the SDS-PAGE gel and subjected to mass spectrometry analysis, which resulted in the identification of seven of those APNs. Quantitative PCR was realized to compare expression levels between individuals subjected to sublethal infection with Bt spores and control ones, presenting up- and downregulations upon Bt infection. From these results, we can infer that aminopeptidases N in A. gemmatalis could be involved in the mode of action of Cry toxins in its larval stage.
Collapse
Affiliation(s)
- M. D. Lanzaro
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - I. Padilha
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - L. F. C. Ramos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A. P. G. Mendez
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A. Menezes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Y. M. Silva
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M. R. Martins
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M. Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - F. C. S. Nogueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C. D. AnoBom
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - G. M. Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - F. M. Gomes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil
| | - D. M. P. Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Dhaouadi S, Jeni RE, Kraiem H, Ayyildiz G, Filik-Iscen C, Yurtkuran-Ceterez Z, Bouhaouala-Zahar B. Effects of New Btk-Based Formulations BLB1 and Lip on Aquatic Non-Target Organisms. BIOLOGY 2024; 13:824. [PMID: 39452133 PMCID: PMC11505242 DOI: 10.3390/biology13100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 10/26/2024]
Abstract
Integrated pest management based on the use of biopesticides is largely applied. Experimental bioassays are critical to assess biopesticide biosafety at the ecotoxicological level. In this study, we investigated the effects of the new Bacillus thuringiensis subsp. kurstaki (Btk)-formulated-based biopesticides BLB1 and Lip, efficiently tested in field assays (IPM-4-CITRUS EC project no. 734921) on two aquatic non-target organisms, precisely the water flea Daphnia magna and the bioluminescent bacteria Aliivibrio fischeri. Acute toxicity studies, carried out in a comparative manner with Delfin® as the reference bioproduct and the lactose-based Blank formulation, show that no significant toxicity was observed up to 1 g/L. Our results indicated that BLB1- and Lip-formulated new bioproducts are far less toxic than the Delfin® reference bioproduct.
Collapse
Affiliation(s)
- Sayda Dhaouadi
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Equipe NanoBioMedika, Institut Pasteur de Tunis, Université Tunis-El Manar, 13 Place Pasteur, BP74, Belvédère, Tunis 1002, Tunisia; (S.D.); (R.E.J.)
| | - Rim El Jeni
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Equipe NanoBioMedika, Institut Pasteur de Tunis, Université Tunis-El Manar, 13 Place Pasteur, BP74, Belvédère, Tunis 1002, Tunisia; (S.D.); (R.E.J.)
| | - Hazar Kraiem
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Equipe NanoBioMedika, Institut Pasteur de Tunis, Université Tunis-El Manar, 13 Place Pasteur, BP74, Belvédère, Tunis 1002, Tunisia; (S.D.); (R.E.J.)
| | - Gul Ayyildiz
- Biyans Biyolojik ÜRÜNLER AR-GE DAN. SAN. TİC.LTD.ŞTİ., Mustafa Kemal Mah. Dumlupinar BLV.NO: 280: G İÇ KAPI NO: 1260, Çankaya 06530, Turkey; (G.A.); (Z.Y.-C.)
| | - Cansu Filik-Iscen
- Department of Mathematics and Science Education, Faculty of Education, Eskisehir Osmangazi University, Eskisehir 26040, Turkey;
| | - Zeynep Yurtkuran-Ceterez
- Biyans Biyolojik ÜRÜNLER AR-GE DAN. SAN. TİC.LTD.ŞTİ., Mustafa Kemal Mah. Dumlupinar BLV.NO: 280: G İÇ KAPI NO: 1260, Çankaya 06530, Turkey; (G.A.); (Z.Y.-C.)
| | - Balkiss Bouhaouala-Zahar
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Equipe NanoBioMedika, Institut Pasteur de Tunis, Université Tunis-El Manar, 13 Place Pasteur, BP74, Belvédère, Tunis 1002, Tunisia; (S.D.); (R.E.J.)
- Faculté de Médecine de Tunis, Université Tunis-El Manar, 13 Place Pasteur, BP74, Belvédère, Tunis 1002, Tunisia
| |
Collapse
|
26
|
Wannassi T, Sayadi A, Abbes K, Djebbi S, Naccache C, Khemakhem MM, Chermiti B. Prevalence of Wolbachia infection in field natural population of the apricot seed wasp Eurytoma samsonowi (Hymenoptera: Eurytomidae). Int Microbiol 2024:10.1007/s10123-024-00593-9. [PMID: 39264544 DOI: 10.1007/s10123-024-00593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Obligate endosymbiont bacteria associated with insects are naturally providing their hosts with essential nutrients such as vitamins and amino acids and biological services including protection from pathogens. In this study, we aimed to investigate the presence of Wolbachia infection among males and females of the parasitic apricot seed wasp (ASW) Eurytoma samsonowi Vassiliev (Vassiliev Petrograd 11: 1-15, 1915) (Hymenoptera: Eurytomidae), a very harmful pest of apricot (Prunus armeniaca), in the oasis of Gafsa, Southern-West of Tunisia. The detection of Wolbachia infection was assessed based on the amplification of the Wolbachia surface protein (wsp) gene and a multilocus sequence typing (MLST) as a universal genotyping tool for Wolbachia involving the analyses of genes gatB, coxA, hcpA, fbpA, and ftsz. Confirming the screening results, Wolbachia was detected in the natural apricot wasp for the first time, with a significant difference between males (5%) and females (59%) based on wsp gene. All Wolbachia strains identified in E. samsonowi were clustered among supergroups B of Wolbachia.
Collapse
Affiliation(s)
- Takwa Wannassi
- Department of Biological Sciences and Plant Protection, High Agronomic Institute of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia.
| | - Ahmed Sayadi
- Department of Biological Sciences and Plant Protection, High Agronomic Institute of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Khaled Abbes
- Department of Biological Sciences and Plant Protection, High Agronomic Institute of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Salma Djebbi
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Chahnez Naccache
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Maha Mezghani Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Brahim Chermiti
- Department of Biological Sciences and Plant Protection, High Agronomic Institute of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| |
Collapse
|
27
|
Noor PS, Ahmed M, Ansari AS, Gadahi JA, Memon SB, Tariq M, Laghari ZA, Soomro F, Bhutto B, Mari NUN, Chen Z. Molecular Identification of Hyalomma Ticks and Application of Bacillus thuringiensis Toxins as an Effective Biological Acaricide. J Parasitol Res 2024; 2024:9952738. [PMID: 39296814 PMCID: PMC11410401 DOI: 10.1155/2024/9952738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/07/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024] Open
Abstract
Bacillus thuringiensis (B. thuringiensis) is considered one of the most important entomopathogenic microorganisms. It produces potent toxins against insects. Therefore, the present study investigates the bioacaricidal properties of B. thuringiensis on the Hyalomma tick species. Firstly, we identify Hyalomma ticks based on morphological screening and molecular characterization. The cytochrome C oxidase subunit I (COX1) gene was selected for the polymerase chain reaction (PCR) analysis, which resulted in the amplification of 656 bp. The amplified products were sequenced, and the isolated (COX1) gene of ticks was submitted to the gene bank of NCBI (Accession No. OR077934.1). The nucleotide sequences were retrieved from the NCBI data bank by BLASTn analysis, which confirmed that all obtained sequences belong to genus Hyalomma, and multiple alignments confirmed that the sequence of Hyalomma anatolicum Tandojam-isolate (HA-TJ) 100% aligned with Hyalomma analoticum KP792577.1, Hyalomma detritum KP792595.1, Hyalomma excavatum KX911989.1, and H. excavatum OQ449693.1. The generated phylogenetic tree confirmed that sequences of HA-TJ COX1 clustered with a single clad of H. analoticum, H. excavatum, and H. detritum. The acaricidal effect of B. thuringiensis toxins B. thuringiensis spore crystal mix (BtSCM) and B. thuringiensis crystal proteins (Btcps) was evaluated against larvae and adult life stages of Hyalomma ticks in vitro. We applied Btcps and BtSCM separately with different concentrations and calculated the mortality percentage. Adult mortality was estimated at the 8th, 10th, 12th, and 15th days posttreatment and larval mortality after 24 h. During treatment of the adult life stage, at first, ticks were immersed in different concentrations of Btcps and BtSCM for 5 min after the treatments, and the samples were transferred to sterile containers and placed in an incubator with 80% humidity at 23°C. Furthermore, Btcps produced the highest mortality on Day 15, 89 ± 1.00% at a concentration of 3000 μg/mL, followed by the 12th, 10th, and 8th days produced 83 ± 1.91%, 70 ± 1.15%, and 61 ± 1.00%, respectively. BtSCM produced mortality of 69 ± 1.91% on Day 15 at a concentration of 3000 μg/mL, followed by the 12th, 10th, and 8th days at 57 ± 2.51%, 37 ± 1.91%, and 34 ± 2.00%. The present study revealed that B. thuringiensis toxins produced a significant (p < 0.05) increase in mortality rate in adults of Hyalomma ticks. Additionally, Btcps and BtSCM were used to treat the larval stage. The treatments were applied to calculate the mortality percentage via the Laravel packet test. At a 1500 μg/mL concentration, Btcps resulted in the highest mortality of 98 ± 1.15%; this was followed by 1250 μg/mL, 1000 μg/mL, and 750 μg/mL, which produced mortalities of 76 ± 1.63%, 60 ± 1.63%, and 56 ± 1.63%, respectively. In addition, BtSCM produced a mortality rate of 79 ± 2.51% at a concentration of 1500 μg/mL. Furthermore, 75 ± 2.51%, 65 ± 1.91%, and 58 ± 1.15% mortality were observed at concentrations of 1250 μg/mL, 1000 μg/mL, and 750 μg/mL, respectively. The results showed a significant (p < 0.05) increase in larval mortality compared to the control group. We conclude that B. thuringiensis toxins are applicable as a bioacaricide.
Collapse
Affiliation(s)
- Panhwer Sana Noor
- Department of Veterinary Parasitology Sindh Agriculture University, Tandojam, Pakistan
- Laboratory of Animal Disease Model College of Veterinary Medicine Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Department of Veterinary Parasitology Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Munir Ahmed
- Department of Veterinary Parasitology Sindh Agriculture University, Tandojam, Pakistan
| | - Abdul Suboor Ansari
- Department of Veterinary Parasitology Sindh Agriculture University, Tandojam, Pakistan
| | - Javaid Ali Gadahi
- Department of Veterinary Parasitology Sindh Agriculture University, Tandojam, Pakistan
| | - Shahar Bano Memon
- Department of Animal Breeding and Genetics Sindh Agriculture University, Tandojam, Pakistan
| | - Mansoor Tariq
- Department of Veterinary Pathology Sindh Agriculture University, Tandojam, Pakistan
| | - Zubair Ahmed Laghari
- Department of Veterinary Parasitology Sindh Agriculture University, Tandojam, Pakistan
| | - Feroza Soomro
- Department of Veterinary Parasitology Sindh Agriculture University, Tandojam, Pakistan
| | - Bachal Bhutto
- Department of Veterinary Parasitology Sindh Agriculture University, Tandojam, Pakistan
| | | | - Zhengli Chen
- Laboratory of Animal Disease Model College of Veterinary Medicine Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
28
|
Srisaisap M, Suwankhajit T, Boonserm P. A fusion protein designed for soluble expression, rapid purification, and enhanced stability of parasporin-2 with potential therapeutic applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 43:e00851. [PMID: 39219730 PMCID: PMC11364052 DOI: 10.1016/j.btre.2024.e00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Bacillus thuringiensis parasporin-2 (PS2Aa1 or Mpp46Aa1) selectively destroys human cancer cells, making it a promising anticancer agent. PS2Aa1 protoxin expression in Escherichia coli typically results in inclusion bodies that must be solubilized and digested by proteinase K to become active. Here, maltose-binding protein (MBP) was fused to the N-terminus of PS2Aa1, either full-length (MBP-fPS2) or truncated (MBP-tPS2), to increase soluble protein expression in E. coli and avoid solubilization and proteolytic activation. Soluble MBP-fPS2 and MBD-tPS2 proteins were produced in E. coli and purified with endotoxin levels below 1 EU/μg. MBP-fPS2 was cytotoxic against T cell leukemia MOLT-4 and Jurkat cell lines after proteinase-K digestion. However, MBP-tPS2 was cytotoxic immediately without MBP tag removal or activation. MBP-tPS2's thermal stability also makes it appropriate for bioproduction and therapeutic applications.
Collapse
Affiliation(s)
- Monrudee Srisaisap
- Institute of Molecular Biosciences, Mahidol University, Phuttamonthon Salaya, Nakhon Pathom 73170, Thailand
| | - Thanya Suwankhajit
- Undergraduate Program in Biological Sciences, Mahidol University International College, Mahidol University, Phuttamonthon Salaya, Nakhon Pathom 73170, Thailand
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Phuttamonthon Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
29
|
Tamura H. Bacterial Pesticides: Mechanism of Action, Possibility of Food Contamination, and Residue Analysis Using MS. JOURNAL OF PESTICIDE SCIENCE 2024; 49:135-147. [PMID: 39398503 PMCID: PMC11464265 DOI: 10.1584/jpestics.d24-006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/02/2024] [Indexed: 10/15/2024]
Abstract
As Sustainable Development Goals (SDGs) and the realities of climate change become widely accepted around the world, the next-generation of integrated pest management will become even more important for establishing a sustainable food production system. To meet the current challenge of food security and climate change, biological control has been developed as one sustainable crop protection technology. However, most registered bacteria are ubiquitous soil-borne bacteria that are closely related to food poisoning and spoilage bacteria. Therefore, this review outlined (1) the mechanism of action of bacterial pesticides, (2) potential concerns about secondary contamination sources associated with past food contamination, and, as a prospective solution, focused on (3) principles and methods of bacterial identification, and (4) the possibility of identifying residual bacteria based on mass spectrometry.
Collapse
|
30
|
Osborne CJ, Su T, Silver KS, Cohnstaedt LW. Variable gut pH as a potential mechanism of tolerance to Bacillus thuringiensis subsp. israelensis toxins in the biting midge Culicoides sonorensis. PEST MANAGEMENT SCIENCE 2024; 80:4006-4012. [PMID: 38527917 DOI: 10.1002/ps.8104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Toxins of Bacillus thuringiensis subsp. israelensis (Bti) are safer alternatives for controlling dipteran pests such as black flies and mosquitoes. The biting midge Culicoides sonorensis (Diptera: Ceratopogonidae) is an important pest of livestock in much of the United States and larval midges utilize semi-aquatic habitats which are permissive for Bti product application. Reports suggest that Bti products are ineffective at killing biting midges despite their taxonomic relation to black flies and mosquitoes. Here, we investigate the toxicity of a Bti-based commercial insecticide and its active ingredient in larval Culicoides sonorensis. A suspected mechanism of Bti tolerance is an acidic larval gut, and we used a pH indicator dye to examine larval Culicoides sonorensis gut pH after exposure to Bti. RESULTS The lethal concentration to kill 90% (LC90) of larvae of the commercial product (386 mg/L) was determined to be almost 10 000 times more than that of some mosquito species, and no concentration of active ingredient tested achieved 50% larval mortality. The larval gut was found to be more acidic after exposure to Bti which inhibits Bti toxin activity. By comparison, 100% mortality was achieved in larval Aedes aegypti at the product's label rate for this species and mosquito larvae had alkaline guts regardless of treatment. Altering the larval rearing water to alkaline conditions enhanced Bti efficacy when using the active ingredient. CONCLUSION We conclude that Bti is not practical for larval Culicoides sonorensis control at the same rates as mosquitos but show that alterations or additives to the environment could make the products more effective. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cameron J Osborne
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Tianyun Su
- EcoZone International, Riverside, CA, USA
| | | | - Lee W Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| |
Collapse
|
31
|
Castellane TCL, Fernandes CC, Pinheiro DG, Lemos MVF, Varani AM. Exploratory comparative transcriptomic analysis reveals potential gene targets associated with Cry1A.105 and Cry2Ab2 resistance in fall armyworm (Spodoptera frugiperda). Funct Integr Genomics 2024; 24:129. [PMID: 39039331 DOI: 10.1007/s10142-024-01408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Genetically modified (GM) crops, expressing Bacillus thuringiensis (Bt) insecticidal toxins, have substantially transformed agriculture. Despite rapid adoption, their environmental and economic benefits face scrutiny due to unsustainable agricultural practices and the emergence of resistant pests like Spodoptera frugiperda, known as the fall armyworm (FAW). FAW's adaptation to Bt technology in corn and cotton compromises the long-term efficacy of Bt crops. To advance the understanding of the genetic foundations of resistance mechanisms, we conducted an exploratory comparative transcriptomic analysis of two divergent FAW populations. One population exhibited practical resistance to the Bt insecticidal proteins Cry1A.105 and Cry2Ab2, expressed in the genetically engineered MON-89Ø34 - 3 maize, while the other population remained susceptible to these proteins. Differential expression analysis supported that Cry1A.105 and Cry2Ab2 significantly affect the FAW physiology. A total of 247 and 254 differentially expressed genes were identified in the Cry-resistant and susceptible populations, respectively. By integrating our findings with established literature and databases, we underscored 53 gene targets potentially involved in FAW's resistance to Cry1A.105 and Cry2Ab2. In particular, we considered and discussed the potential roles of the differentially expressed genes encoding ABC transporters, G protein-coupled receptors, the P450 enzymatic system, and other Bt-related detoxification genes. Based on these findings, we emphasize the importance of exploratory transcriptomic analyses to uncover potential gene targets involved with Bt insecticidal proteins resistance, and to support the advantages of GM crops in the face of emerging challenges.
Collapse
Affiliation(s)
- Tereza Cristina L Castellane
- Departamento de Biologia, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Rod. Prof. Paulo Donato Castellane km 5, Jaboticabal, CEP 14884-900, SP, Brasil.
| | - Camila C Fernandes
- Instituto de Pesquisa em Bioenergia, Laboratório Multiusuário de Sequenciamento em Larga Escala e Expressão Gênica, IPBEN, 14884-900, Jaboticabal, SP, Brasil
| | - Daniel G Pinheiro
- Departamento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Rod. Prof. Paulo Donato Castellane km 5, Jaboticabal, CEP 14884-900, SP, Brasil
| | - Manoel Victor Franco Lemos
- Departamento de Biologia, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Rod. Prof. Paulo Donato Castellane km 5, Jaboticabal, CEP 14884-900, SP, Brasil
- Instituto de Pesquisa em Bioenergia, Laboratório Multiusuário de Sequenciamento em Larga Escala e Expressão Gênica, IPBEN, 14884-900, Jaboticabal, SP, Brasil
| | - Alessandro M Varani
- Departamento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Rod. Prof. Paulo Donato Castellane km 5, Jaboticabal, CEP 14884-900, SP, Brasil.
| |
Collapse
|
32
|
Bryce-Sharron N, Nasiri M, Powell T, West MJ, Crickmore N. A Shared Receptor Suggests a Common Ancestry between an Insecticidal Bacillus thuringiensis Cry Protein and an Anti-Cancer Parasporin. Biomolecules 2024; 14:795. [PMID: 39062509 PMCID: PMC11274968 DOI: 10.3390/biom14070795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Cry toxins, produced by the bacterium Bacillus thuringiensis, are of significant agronomic value worldwide due to their potent and highly specific activity against various insect orders. However, some of these pore-forming toxins display specific activity against a range of human cancer cells whilst possessing no known insecticidal activity; Cry41Aa is one such toxin. Cry41Aa has similarities to its insecticidal counterparts in both its 3-domain toxic core structure and pore-forming abilities, but how it has evolved to target human cells is a mystery. This work shows that some insecticidal Cry toxins can enhance the toxicity of Cry41Aa against hepatocellular carcinoma cells, despite possessing no intrinsic toxicity themselves. This interesting crossover is not limited to human cancer cells, as Cry41Aa was found to inhibit some Aedes-active Cry toxins in mosquito larval assays. Here, we present findings that suggest that Cry41Aa shares a receptor with several insecticidal toxins, indicating a stronger evolutionary relationship than their divergent activities might suggest.
Collapse
Affiliation(s)
| | | | | | | | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK; (N.B.-S.); (M.N.); (T.P.); (M.J.W.)
| |
Collapse
|
33
|
Eigharlou M, Hashemi Z, Mohammadi A, Khelghatibana F, Nami Y, Sadeghi A. Herbicidal proteins from Bacillus wiedmannii isolate ZT selectively inhibit ryegrass (Lolium temulentum L.). PEST MANAGEMENT SCIENCE 2024; 80:3478-3490. [PMID: 38426586 DOI: 10.1002/ps.8053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/16/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The widespread use of chemical herbicides and the growing issue of weed resistance pose significant challenges in agriculture. To address these problems, there is a pressing need to develop biological herbicides based on bacterial metabolites. RESULTS In this study, we investigated the impact of the cell-free culture filtrate (CFCF) from the ZT isolate, a bacilliform bacterium obtained from diseased wheat seeds, on the germination and seedling growth of various plant species, including wild oat, ryegrass, redroot, wheat, and chickpea. The results revealed that CFCF had a detrimental effect on the fresh and dry weight of stems and roots in most of the studied plants, except chickpeas. The CFCF was further subjected to separation into aqueous and organic phases using chloroform, followed by the division of the aqueous phase into 13 fractions using an alumina column. Notably, both the aqueous phase (20%) and all 13 fractions (ranging from 50% to 83%) displayed the ability to reduce the root length of ryegrass, a monocotyledonous weed. Liquid chromatography-mass spectrometry (LC-MS) analysis identified that fractions 3 and 7, which were effective against ryegrass but not redroot, contained Cry family proteins, including Cry10 Aa, Cry4 Ba, and Cry4 Aa. Additionally, 16s rRNA gene sequencing revealed that the ZT isolate is closely related (98.27%) to Bacillus wiedmannii. CONCLUSION Conclusively, metabolites from the ZT bacterium hold promise for monocotyledonous weed-targeted herbicides, providing a constructive strategy to confront agricultural issues tied to chemical herbicides and weed resistance. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mahsa Eigharlou
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Department of Microbiology, School of Biology and Pharmaceutical Biotechnology Lab, College of Science, Tehran University, Tehran, Iran
| | - Zeinabalsadat Hashemi
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Fatemeh Khelghatibana
- Plant Pathology Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research, Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
34
|
Berini F, Montali A, Liguori R, Venturini G, Bonelli M, Shaltiel-Harpaz L, Reguzzoni M, Siti M, Marinelli F, Casartelli M, Tettamanti G. Production and characterization of Trichoderma asperellum chitinases and their use in synergy with Bacillus thuringiensis for lepidopteran control. PEST MANAGEMENT SCIENCE 2024; 80:3401-3411. [PMID: 38407453 DOI: 10.1002/ps.8045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Despite their known negative effects on ecosystems and human health, synthetic pesticides are still largely used to control crop insect pests. Currently, the biopesticide market for insect biocontrol mainly relies on the entomopathogenic bacterium Bacillus thuringiensis (Bt). New biocontrol tools for crop protection might derive from fungi, in particular from Trichoderma spp., which are known producers of chitinases and other bioactive compounds able to negatively affect insect survival. RESULTS In this study, we first developed an environmentally sustainable production process for obtaining chitinases from Trichoderma asperellum ICC012. Then, we investigated the biological effects of this chitinase preparation - alone or in combination with a Bt-based product - when orally administered to two lepidopteran species. Our results demonstrate that T. asperellum efficiently produces a multi-enzymatic cocktail able to alter the chitin microfibril network of the insect peritrophic matrix, resulting in delayed development and larval death. The co-administration of T. asperellum chitinases and sublethal concentrations of Bt toxins increased larval mortality. This synergistic effect was likely due to the higher amount of Bt toxins that passed the damaged peritrophic matrix and reached the target receptors on the midgut cells of chitinase-treated insects. CONCLUSION Our findings may contribute to the development of an integrated pest management technology based on fungal chitinases that increase the efficacy of Bt-based products, mitigating the risk of Bt-resistance development. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology (BAT Centre), University of Naples Federico II, Portici, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Riccardo Liguori
- Isagro Research Centre affiliated to Gowan Crop Protection Ltd, Novara, Italy
| | - Giovanni Venturini
- Isagro Research Centre affiliated to Gowan Crop Protection Ltd, Novara, Italy
| | - Marco Bonelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Liora Shaltiel-Harpaz
- Integrated Pest Management Laboratory Northern R&D, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
- Environmental Sciences Department, Faculty of Sciences and Technology, Tel Hai College, Kiryat Shmona, Israel
| | - Marcella Reguzzoni
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Moran Siti
- Luxembourg Industries Ltd, Tel-Aviv, Israel
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology (BAT Centre), University of Naples Federico II, Portici, Italy
| | - Morena Casartelli
- Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology (BAT Centre), University of Naples Federico II, Portici, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology (BAT Centre), University of Naples Federico II, Portici, Italy
| |
Collapse
|
35
|
Ribeiro TP, Martins-de-Sa D, Macedo LLP, Lourenço-Tessutti IT, Ruffo GC, Sousa JPA, Rósario Santana JMD, Oliveira-Neto OB, Moura SM, Silva MCM, Morgante CV, Oliveira NG, Basso MF, Grossi-de-Sa MF. Cotton plants overexpressing the Bacillus thuringiensis Cry23Aa and Cry37Aa binary-like toxins exhibit high resistance to the cotton boll weevil (Anthonomus grandis). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112079. [PMID: 38588981 DOI: 10.1016/j.plantsci.2024.112079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The cotton boll weevil (CBW, Anthonomus grandis) stands as one of the most significant threats to cotton crops (Gossypium hirsutum). Despite substantial efforts, the development of a commercially viable transgenic cotton event for effective open-field control of CBW has remained elusive. This study describes a detailed characterization of the insecticidal toxins Cry23Aa and Cry37Aa against CBW. Our findings reveal that CBW larvae fed on artificial diets supplemented exclusively with Cry23Aa decreased larval survival by roughly by 69%, while supplementation with Cry37Aa alone displayed no statistical difference compared to the control. However, the combined provision of both toxins in the artificial diet led to mortality rates approaching 100% among CBW larvae (LC50 equal to 0.26 PPM). Additionally, we engineered transgenic cotton plants by introducing cry23Aa and cry37Aa genes under control of the flower bud-specific pGhFS4 and pGhFS1 promoters, respectively. Seven transgenic cotton events expressing high levels of Cry23Aa and Cry37Aa toxins in flower buds were selected for greenhouse bioassays, and the mortality rate of CBW larvae feeding on their T0 and T1 generations ranged from 75% to 100%. Our in silico analyses unveiled that Cry23Aa displays all the hallmark characteristics of β-pore-forming toxins (β-PFTs) that bind to sugar moieties in glycoproteins. Intriguingly, we also discovered a distinctive zinc-binding site within Cry23Aa, which appears to be involved in protein-protein interactions. Finally, we discuss the major structural features of Cry23Aa that likely play a role in the toxin's mechanism of action. In view of the low LC50 for CBW larvae and the significant accumulation of these toxins in the flower buds of both T0 and T1 plants, we anticipate that through successive generations of these transgenic lines, cotton plants engineered to overexpress cry23Aa and cry37Aa hold promise for effectively managing CBW infestations in cotton crops.
Collapse
Affiliation(s)
- Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Diogo Martins-de-Sa
- Department of Cellular Biology, University of Brasília, Brasília, DF 70910-900, Brazil; Genesilico Biotech, Brasília, DF 71503-508, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Gustavo Caseca Ruffo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - João Pedro Abreu Sousa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - Julia Moura do Rósario Santana
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - Osmundo Brilhante Oliveira-Neto
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Euroamerican University Center, Unieuro, Brasília, DF 70790-160, Brazil
| | - Stéfanie Menezes Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Carolina Vianna Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Embrapa Semi-Arid, Pretrolina, PE 56302-970, Brazil
| | - Nelson Geraldo Oliveira
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Marcos Fernando Basso
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil; Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, MS 79117-900, Brazil.
| |
Collapse
|
36
|
de Oliveira JC, de Melo Katak R, Muniz VA, de Oliveira MR, Rocha EM, da Silva WR, do Carmo EJ, Roque RA, Marinotti O, Terenius O, Astolfi-Filho S. Bacteria isolated from Aedes aegypti with potential vector control applications. J Invertebr Pathol 2024; 204:108094. [PMID: 38479456 DOI: 10.1016/j.jip.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024]
Abstract
Highly anthropophilic and adapted to urban environments, Aedes aegypti mosquitoes are the main vectors of arboviruses that cause human diseases such as dengue, zika, and chikungunya fever, especially in countries with tropical and subtropical climates. Microorganisms with mosquitocidal and larvicidal activities have been suggested as environmentally safe alternatives to chemical or mechanical mosquito control methods. Here, we analyzed cultivable bacteria isolated from all stages of the mosquito life cycle for their larvicidal activity against Ae. aegypti. A total of 424 bacterial strains isolated from eggs, larvae, pupae, or adult Ae. aegypti were analyzed for the pathogenic potential of their crude cultures against larvae of this same mosquito species. Nine strains displayed larvicidal activity comparable to the strain AM65-52, reisolated from commercial BTi-based product VectoBac® WG. 16S rRNA gene sequencing revealed that the set of larvicidal strains contains two representatives of the genus Bacillus, five Enterobacter, and two Stenotrophomonas. This study demonstrates that some bacteria isolated from Ae. aegypti are pathogenic for the mosquito from which they were isolated. The data are promising for developing novel bioinsecticides for the control of these medically important mosquitoes.
Collapse
Affiliation(s)
| | | | | | - Marta Rodrigues de Oliveira
- Department of Entomology and Acarology, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo - ESALQ - USP, Brazil
| | - Elerson Matos Rocha
- School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Central Multiuser Laboratory, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | | | - Edson Júnior do Carmo
- Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC/UFAM, Brazil; Instituto de Ciências Biológicas - ICB/UFAM, Brazil
| | | | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Olle Terenius
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden.
| | - Spartaco Astolfi-Filho
- Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC/UFAM, Brazil; Instituto de Ciências Biológicas - ICB/UFAM, Brazil
| |
Collapse
|
37
|
Pal A, Mann A, den Bakker HC. Analysis of Microbial Composition of Edible Insect Products Available for Human Consumption within the United States Using Traditional Microbiological Methods and Whole Genome Sequencing. J Food Prot 2024; 87:100277. [PMID: 38615992 DOI: 10.1016/j.jfp.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Edible insects offer a promising protein source for humans, but their food safety risks have not been previously investigated within the United States. Therefore, the aim of this study was to investigate the microbial content of processed edible insect products. A total of eight different types of edible insect products, including diving beetles, silkworms, grasshoppers, Jamaican crickets, mealworms, mole crickets, whole roasted crickets, and 100% pure cricket powder, were purchased from a large online retailer for the analysis. All the products were purchased in August 2022 and examined between August 2022 and November 2022. Traditional microbiological methods were employed to determine microbial counts for each product type using three replicates (total number of samples = 24). This included assessing aerobic bacterial spore, lactic acid bacteria, Enterobacteriaceae, total viable counts, and the presence of Salmonella. Additionally, whole genome sequencing was employed to further characterize selected colonies (n = 96). Microbial counts data were statistically analyzed using one-way ANOVA, while sequence data were taxonomically classified using Sepia.Bacilluscereusgroup isolates underwent additional characterization with Btyper3. Product type significantly influenced total viable counts, bacterial spore counts, and lactic acid bacteria counts (P = 0.00391, P = 0.0065, and P < 0.001, respectively), with counts ranging from < 1.70 to 6.01 Log10 CFU/g, <1.70 to 5.25 Log10 CFU/g, and < 1.70 to 4.86 Log10 CFU/g, respectively. Enterobacteriaceae were only detected in mole crickets (<2.30 Log10 CFU/g) and house cricket powder (<2.15 Log10 CFU/g). All samples were negative for Salmonella. Whole genome sequencing revealed the presence of 12 different bacterial genera among the analyzed isolates, with a majority belonging to the Bacillus genus. Some of the isolates of Bacillus cereus group were identified as biovar Emeticus. Overall, although edible insects offer a promising food alternative, the presence of Bacillus cereus group in some products could raise concerns regarding food safety.
Collapse
Affiliation(s)
- Amrit Pal
- Center for Food Safety, Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of Georgia, Griffin, GA, USA
| | - Amy Mann
- Center for Food Safety, Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of Georgia, Griffin, GA, USA
| | - Henk C den Bakker
- Center for Food Safety, Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of Georgia, Griffin, GA, USA.
| |
Collapse
|
38
|
Tavares CS, Mishra R, Kishk A, Wang X, Ghobrial PN, Killiny N, Bonning BC. The beta pore-forming bacterial pesticidal protein Tpp78Aa1 is toxic to the Asian citrus psyllid vector of the citrus greening bacterium. J Invertebr Pathol 2024; 204:108122. [PMID: 38710321 DOI: 10.1016/j.jip.2024.108122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The Asian citrus psyllid (ACP) Diaphorina citri transmits the causative agent of huanglongbing, or citrus greening disease, that has decimated global citrus production. Pesticidal proteins derived from bacteria such as Bacillus thuringiensis (Bt) can provide effective and environmentally friendly alternatives for management of D. citri, but few with sufficient toxicity to D. citri have been identified. Here, we report on the toxicity of 14 Bt-derived pesticidal proteins from five different structural groups against D. citri. These proteins were selected based on previously reported toxicity to other hemipteran species and on pesticidal protein availability. Most of the proteins were expressed in Escherichia coli and purified from inclusion bodies or His-tag affinity purification, while App6Aa2 was expressed in Bt and purified from spore/crystal mixtures. Pesticidal proteins were initially screened by feeding psyllids on a single dose, and lethal concentration (LC50) then determined for proteins with significantly greater mortality than the buffer control. The impact of CLas infection of D. citri on toxicity was assessed for selected proteins via topical feeding. The Bt protein Tpp78Aa1 was toxic to D. citri adults with an LC50 of approximately 204 µg/mL. Nymphs were more susceptible to Tpp78Aa1 than adults but no significant difference in susceptibility was observed between healthy and CLas-infected nymphs or adults. Tpp78Aa1 and other reported D. citri-active proteins may provide valuable tools for suppression of D. citri populations.
Collapse
Affiliation(s)
- Clebson S Tavares
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Abdelaziz Kishk
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850, USA; Department of Plant Protection, Faculty of Agriculture, Tanta University 31527, Egypt
| | - Xinyue Wang
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Pierre N Ghobrial
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Nabil Killiny
- Department of Plant Protection, Faculty of Agriculture, Tanta University 31527, Egypt
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
39
|
Storer NP, Simmons AR, Sottosanto J, Anderson JA, Huang MH, Mahadeo D, Mathesius CA, Sanches da Rocha M, Song S, Urbanczyk-Wochniak E. Modernizing and harmonizing regulatory data requirements for genetically modified crops-perspectives from a workshop. Front Bioeng Biotechnol 2024; 12:1394704. [PMID: 38798956 PMCID: PMC11117168 DOI: 10.3389/fbioe.2024.1394704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Genetically modified (GM) crops that have been engineered to express transgenes have been in commercial use since 1995 and are annually grown on 200 million hectares globally. These crops have provided documented benefits to food security, rural economies, and the environment, with no substantiated case of food, feed, or environmental harm attributable to cultivation or consumption. Despite this extensive history of advantages and safety, the level of regulatory scrutiny has continually increased, placing undue burdens on regulators, developers, and society, while reinforcing consumer distrust of the technology. CropLife International held a workshop at the 16th International Society of Biosafety Research (ISBR) Symposium to examine the scientific basis for modernizing global regulatory frameworks for GM crops. Participants represented a spectrum of global stakeholders, including academic researchers, GM crop developers, regulatory consultants, and regulators. Concurrently examining the considerations of food and feed safety, along with environmental safety, for GM crops, the workshop presented recommendations for a core set of data that should always be considered, and supplementary (i.e., conditional) data that would be warranted only on a case-by-case basis to address specific plausible hypotheses of harm. Then, using a case-study involving a hypothetical GM maize event expressing two familiar traits (insect protection and herbicide tolerance), participants were asked to consider these recommendations and discuss if any additional data might be warranted to support a science-based risk assessment or for regulatory decision-making. The discussions during the workshop highlighted that the set of data to address the food, feed, and environmental safety of the hypothetical GM maize, in relation to a conventional comparator, could be modernized compared to current global regulatory requirements. If these scientific approaches to modernize data packages for GM crop regulation were adopted globally, GM crops could be commercialized in a more timely manner, thereby enabling development of more diverse GM traits to benefit growers, consumers, and the environment.
Collapse
Affiliation(s)
| | | | | | | | - Ming Hua Huang
- Syngenta Seeds LLC, Research Triangle Park, NC, United States
| | | | | | | | - Shuang Song
- Syngenta Seeds LLC, Research Triangle Park, NC, United States
| | | |
Collapse
|
40
|
Niu X, Jiang J, Sun Y, Hull JJ, Ma W, Hua H, Lin Y. Knockdown of MAPK p38-linked genes increases the susceptibility of Chilo suppressalis larvae to various transgenic Bt rice lines. Int J Biol Macromol 2024; 266:130815. [PMID: 38537847 DOI: 10.1016/j.ijbiomac.2024.130815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/11/2024] [Accepted: 03/10/2024] [Indexed: 04/01/2024]
Abstract
Bacillus thuringiensis (Bt) toxins have provided exceptional control of agricultural insect pests, however, over reliance on the proteins would potentially contribute to the development of field tolerance. Developing new sustainable insect pest control methods that target the mechanisms underlying Bt tolerance can potentially support the Bt control paradigm while also providing insights into basic insect physiology. The MAPK p38 pathway is strongly associated with Bt tolerance in Chilo suppressalis, a major pest of rice. To gain insights into how this pathway impacts tolerance, high-throughput screening of C. suppressalis larval midguts initially identified eight novel target genes. Increased larval sensitivity to the transgenic cry1Ca rice strain T1C-19 was observed following RNA interference-mediated knockdown of four of the genes, Cscnc, Csgcp, Cszfp26 and CsZMYM1. Similar enhanced sensitivity to the TT51 (expressing Cry1Ab/1Ac) and T2A-1 (expressing Cry2Aa) transgenic rice lines occurred when Cszfp26 and CsZMYM1 were knocked down. All four target genes are downstream of the MAPK p38 pathway but do not participate in negative feedback loop of the pathway. These results implicate Cscnc, Csgcp, Cszfp and CsZMYM1 in the C. suppressalis transgenic cry1Ca rice tolerance mechanism regulated by MAPK p38. These findings further enhance our understanding of the MAPK p38-dependent molecular mechanisms underlying Bt tolerance in C. suppressalis and open new avenues of tolerance management to develop.
Collapse
Affiliation(s)
- Xurong Niu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, United States
| | - Jialiang Jiang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, United States
| | - Yajie Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, United States
| | - J Joe Hull
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, United States
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, United States
| | - Hongxia Hua
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, United States
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, United States
| |
Collapse
|
41
|
Williams PDE, Brewer MT, Aroian RV, Robertson AP, Martin RJ. The nematode (Ascaris suum) intestine is a location of synergistic anthelmintic effects of Cry5B and levamisole. PLoS Pathog 2024; 20:e1011835. [PMID: 38758969 PMCID: PMC11139322 DOI: 10.1371/journal.ppat.1011835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/30/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
A novel group of biocidal compounds are the Crystal 3D (Cry) and Cytolytic (Cyt) proteins produced by Bacillus thuringiensis (Bt). Some Bt Cry proteins have a selective nematocidal activity, with Cry5B being the most studied. Cry5B kills nematode parasites by binding selectively to membrane glycosphingolipids, then forming pores in the cell membranes of the intestine leading to damage. Cry5B selectively targets multiple species of nematodes from different clades and has no effect against mammalian hosts. Levamisole is a cholinergic anthelmintic that acts by selectively opening L-subtype nicotinic acetylcholine receptor ion-channels (L-AChRs) that have been found on muscles of nematodes. A synergistic nematocidal interaction between levamisole and Cry5B at the whole-worm level has been described previously, but the location, mechanism and time-course of this synergism is not known. In this study we follow the timeline of the effects of levamisole and Cry5B on the Ca2+ levels in enterocyte cells in the intestine of Ascaris suum using fluorescence imaging. The peak Ca2+ responses to levamisole were observed after approximately 10 minutes while the peak responses to activated Cry5B were observed after approximately 80 minutes. When levamisole and Cry5B were applied simultaneously, we observed that the responses to Cry5B were bigger and occurred sooner than when it was applied by itself. It is proposed that the synergism is due to the cytoplasmic Ca2+ overload that is induced by the combination of levamisole opening Ca2+ permeable L-subtype nAChRs and the Ca2+ permeable Cry5B toxin pores produced in the enterocyte plasma membranes. The effect of levamisole potentiates and speeds the actions of Cry5B that gives rise to bigger Ca2+ overloads that accelerates cell-death of the enterocytes.
Collapse
Affiliation(s)
- Paul D. E. Williams
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Matthew T. Brewer
- Department of Veterinary Pathology, Iowa State University, Ames, Iowa, United States of America
| | - Raffi V. Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
42
|
Savelyeva E, Avdeenko A. The use of antigens derived from Bacillus thuringiensis bacteria for further differentiation. Heliyon 2024; 10:e29744. [PMID: 38681647 PMCID: PMC11053190 DOI: 10.1016/j.heliyon.2024.e29744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
This study is devoted to studying Bacillus thuringiensis antigens and their insecticide activity as critical features in bacterial differentiation. Indeed, 190 samples were examined for flagellar antigenicity as well as the insecticidal activity exhibited. From a serological perspective, 122 isolates (64.2 %) were attributed to 8 H-serogroups, including 3 non-typeable and 65 unverified. The dominant serotype was H3abc (82 % frequency); H6 was less frequent (8.5 %). The other 6 serotypes accounted for a low frequency of occurrence (up to 1.5 %). Of the 190 isolates tested, 125 (65.8 %) formed bipyramidal, and 63 (33.2 %) represented spherical inclusions. All H3abc isolates contained bipyramidal inclusions. The same applied to H8ab and H7 isolates. Insecticide activity was noted in 70.1 % of the population. In general, 128 samples were toxic to both species (Bombyx mori, Aedes sp.). Another 3 samples were toxic only to B. mori, and 2 for Aedes sp. Among the samples exhibiting toxicity to both species, 97.6 % belonged to bipyramidal paraspore inclusions (H3abc). All H7 samples were toxic to two insect species. Monotoxic B. thuringiensis against Aedes sp. were found only among organisms producing spherical parasporal inclusions in the cell. Examples of such microorganisms include an isolate of the H4ab/43 serotype.
Collapse
Affiliation(s)
- Ekaterina Savelyeva
- Department of Medical Genetics, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Aleksei Avdeenko
- Department of Agriculture and Storage Technologies for Crop Products, Don State Agrarian University, Persianovsky, Russian Federation
| |
Collapse
|
43
|
Zafar H, Saier MHH. An Insider's Perspective about the Pathogenic Relevance of Gut Bacterial Transportomes. Microb Physiol 2024; 34:133-141. [PMID: 38636461 PMCID: PMC11283328 DOI: 10.1159/000538779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The gut microbiome is integral to host health, hosting complex interactions between the host and numerous microbial species in the gastrointestinal tract. Key among the molecular mechanisms employed by gut bacteria are transportomes, consisting of diverse transport proteins crucial for bacterial adaptation to the dynamic, nutrient-rich environment of the mammalian gut. These transportomes facilitate the movement of a wide array of molecules, impacting both the host and the microbial community. SUMMARY This communication explores the significance of transportomes in gut bacteria, focusing on their role in nutrient acquisition, competitive interactions among microbes, and potential pathogenicity. It delves into the transportomes of key gut bacterial species like E. coli, Salmonella, Bacteroides, Lactobacillus, Clostridia, and Bifidobacterium, examining the functions of predicted transport proteins. The overview synthesizes recent research efforts, highlighting how these transportomes influence host-microbe interactions and contribute to the microbial ecology of the gut. KEY MESSAGES Transportomes are vital for the survival and adaptation of bacteria in the gut, enabling the import and export of various nutrients and molecules. The complex interplay of transport proteins not only supports bacterial growth and competition but also has implications for host health, potentially contributing to pathogenic processes. Understanding the pathogenic potential of transportomes in major gut bacterial species provides insights into gut health and disease, offering avenues for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Hassan Zafar
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Milton H. Herman Saier
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, La Jolla, California, 92093-0116, USA
| |
Collapse
|
44
|
Pan X, Cao F, Guo X, Wang Y, Cui Z, Huang T, Hou Y, Guan X. Development of a Safe and Effective Bacillus thuringiensis-Based Nanobiopesticide for Controlling Tea Pests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7807-7817. [PMID: 38514390 DOI: 10.1021/acs.jafc.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Mg(OH)2 was used as the nanocarrier of the Bacillus thuringiensis (Bt) Cry1Ac protein, and the synthesized Cry1Ac-Mg(OH)2 composites were regular and uniform nanosheets. Nano-Mg(OH)2 could effectively improve the insecticidal effect of the Cry1Ac protein toward Ectropis obliqua. It could enhance the damage degree of the Cry1Ac protein to intestinal epithelial cells and microvilli, induce and enrich the production of reactive oxygen species (ROS) in the midgut, and enhance the degradation of the Cry1Ac protein into active fragments. Furthermore, an anti-rinsing assay showed that the Cry1Ac-Mg(OH)2 composites were bound to the notch structure of the tea leaf surface. The retention of the Cry1Ac protein increased by 11.45%, and sprayed nano-Mg(OH)2 was rapidly absorbed by different tissues of tea plants. Moreover, nano-Mg(OH)2 and composites did not significantly affect non-target organisms. These results show that nano-Mg(OH)2 can serve as a safe and effective biopesticide carrier, which provides a new approach for stable and efficient Bt preparation.
Collapse
Affiliation(s)
- Xiaohong Pan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Fang Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Xueping Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Yilin Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Ziqi Cui
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
45
|
Zhang Z, Yang X, Wang W, Wu K. Insecticidal Effects of Transgenic Maize Bt-Cry1Ab, Bt-Vip3Aa, and Bt-Cry1Ab+Vip3Aa against the Oriental Armyworm, Mythimna separata (Walker) in Southwest China. Toxins (Basel) 2024; 16:134. [PMID: 38535800 PMCID: PMC10974810 DOI: 10.3390/toxins16030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024] Open
Abstract
The oriental armyworm, Mythimna separata (Walker), an important migratory pest of maize and wheat, is posing a severe threat to maize production in Asian countries. As source areas of spring-summer emigratory populations, the control of M. separata in southwestern China is of great significance for East Asian maize production. To assess the toxicity of Bt maize against the pest, bioassays of Bt-(Cry1Ab+Vip3Aa) maize (event DBN3601T), Bt-Cry1Ab maize (event DBN9936), and Bt-Vip3Aa maize (event DBN9501) were conducted in Yunnan province of southwest China. There were significant differences in insecticidal activity between the three Bt maize events, and DBN3601T presented the highest insecticidal role. The results also indicated that the insecticidal effect of various Bt maize tissues took an order in leaf > kernel > silk, which is highly consistent with the expression amounts of Bt insecticidal protein in leaf (69.69 ± 1.18 μg/g), kernel (11.69 ± 0.75 μg/g), and silk (7.32 ± 0.31 μg/g). In field trials, all larval population densities, plant damage rates, and leaf damage levels of DBN3601T maize were significantly lower than the conventional maize. This research indicated that the DBN3601T event had a high control efficiency against M. separata and could be deployed in southwest China for the management of M. separata.
Collapse
Affiliation(s)
- Zhenghao Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (W.W.)
| | - Xianming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (W.W.)
| | - Wenhui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (W.W.)
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (W.W.)
| |
Collapse
|
46
|
Güney G, Cedden D, Hänniger S, Hegedus DD, Heckel DG, Toprak U. Peritrophins are involved in the defense against Bacillus thuringiensis and nucleopolyhedrovirus formulations in Spodoptera littoralis (Lepidoptera: Noctuidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 166:104073. [PMID: 38215915 DOI: 10.1016/j.ibmb.2024.104073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
The peritrophic matrix (or peritrophic membrane, PM) is present in most insects where it acts as a barrier to mechanical insults and pathogens, as well as a facilitator of digestive processes. The PM is formed by the binding of structural PM proteins, referred to as peritrophins, to chitin fibrils and spans the entire midgut in lepidopterans. To investigate the role of peritrophins in a highly polyphagous lepidopteran pest, namely the cotton leafworm (Spodoptera littoralis), we generated Insect Intestinal Mucin (IIM-) and non-mucin Peritrophin (PER-) mutant strains via CRISPR/Cas9 mutagenesis. Both strains exhibited deformed PMs and retarded developmental rates. Bioassays conducted with Bacillus thuringiensis (Bt) and nucleopolyhedrovirus (SpliNPV) formulations showed that both the IIM- and PER- mutant larvae were more susceptible to these bioinsecticides compared to the wild-type (WT) larvae with intact PM. Interestingly, the provision of chitin-binding agent Calcofluor (CF) in the diet lowered the toxicity of Bt formulations in both WT and IIM- larvae and the protective effect of CF was significantly lower in PER- larvae. This suggested that the interaction of CF with PER is responsible for Bt resistance mediated by CF. In contrast, the provision of CF caused increased susceptibility to SpliNPV in both mutants and WT larvae. The study showed the importance of peritrophins in the defense against pathogens in S. littoralis and revealed novel insights into CF-mediated resistance to Cry toxin.
Collapse
Affiliation(s)
- Gözde Güney
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany; Max Planck Institute for Chemical Ecology, Department of Entomology, Jena, Germany; Ankara University, Molecular Entomology Lab., Dept. of Plant Protection, Faculty of Agriculture, Ankara, Turkey
| | - Doga Cedden
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany; Ankara University, Molecular Entomology Lab., Dept. of Plant Protection, Faculty of Agriculture, Ankara, Turkey
| | - Sabine Hänniger
- Max Planck Institute for Chemical Ecology, Department of Entomology, Jena, Germany
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada; University of Saskatchewan, Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, Saskatoon, SK, Canada
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Department of Entomology, Jena, Germany.
| | - Umut Toprak
- Ankara University, Molecular Entomology Lab., Dept. of Plant Protection, Faculty of Agriculture, Ankara, Turkey.
| |
Collapse
|
47
|
Fang Q, Cao Y, Oo TH, Zhang C, Yang M, Tang Y, Wang M, Zhang W, Zhang L, Zheng Y, Li W, Meng F. Overexpression of cry1c* Enhances Resistance against to Soybean Pod Borer ( Leguminivora glycinivorella) in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:630. [PMID: 38475476 DOI: 10.3390/plants13050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Soybean [Glycine max (L.) Merr.], an essential staple food and oil crop worldwide, boasts abundant vegetable proteins and fats beneficial for both human and animal consumption. However, the soybean pod borer (Leguminivora glycinivorella) (SPB) stands as the most destructive soybean insect pest in northeast China and other northeastern Asian regions, leading to significant annual losses in soybean yield and economic burden. Therefore, this study aims to investigate the introduction of a previously tested codon-optimized cry1c gene, cry1c*, into the soybean genome and assess its effect on the SPB infestation by generating and characterizing stable transgenic soybeans overexpressing cry1c*. The transgenic soybean lines that constitutively overexpressed cry1c* exhibited a significant reduction in the percentage of damaged seeds, reaching as low as 5% in plants under field conditions. Additionally, feeding transgenic leaves to the larvae of S. exigua, S. litura, and M. separta resulted in inhibited larval growth, decreased larval body weight, and lower survival rates compared to larvae fed on wild-type leaves. These findings showed that the transgenic lines maintained their resistance to SPB and other lepidopteran pests, especially the transgenic line KC1. Southern blotting and genome-wide resequencing analysis revealed that T-DNA integration occurred as a single copy between loci 50,868,122 and 50,868,123 of chromosome 10 in the transgenic line KC1. Therefore, the transgenic line KC1, overexpressing high levels of cry1c* in leaves and seeds, holds strong potential for commercial use in the integrated management of SPB and other lepidopteran pests.
Collapse
Affiliation(s)
- Qingxi Fang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yingxue Cao
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Thinzar Hla Oo
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Chuang Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Mingyu Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yuecheng Tang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Meizi Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Wu Zhang
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe 164300, China
| | - Ling Zhang
- Jilin Academy of Agricultural Sciences, China Agricultural Science & Technology Northeast Innovation Center, Changchun 130033, China
| | - Yuhong Zheng
- Jilin Academy of Agricultural Sciences, China Agricultural Science & Technology Northeast Innovation Center, Changchun 130033, China
| | - Wenbin Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Fanli Meng
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
48
|
Jammor P, Sanguanphun T, Meemon K, Promdonkoy B, Boonserm P. Biosynthesis of Cry5B-Loaded Sulfur Nanoparticles using Arthrobotrys oligospora Filtrate: Effects on Nematicidal Activity, Thermal Stability, and Pathogenicity against Caenorhabditis elegans. ACS OMEGA 2024; 9:6945-6954. [PMID: 38371837 PMCID: PMC10870406 DOI: 10.1021/acsomega.3c08653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
Cry5B, a crystal protein produced by Bacillus thuringiensis (Bt), is a bionematicide with potent nematicidal activity against various plant-parasitic and free-living nematodes. This protein, however, is susceptible to destruction by ultraviolet light, proteolytic enzymes, and high temperatures. This study aims to produce Cry5B protein for bionematicidal use and improve its stability and nematicidal efficacy by loading it intoArthrobotrys oligospora-mediated sulfur nanoparticles (AO-SNPs). Based on the mortality assay, the Cry5B protein exhibited dose-dependent nematicidal activity against the model organismCaenorhabditis elegans. The nematicidal activity, thermal stability, and pathogenic effects of Cry5B-loaded AO-SNPs (Cry5B-SNPs) were compared to those of free Cry5B. After 3 h of exposure to heat at 60 °C, Cry5B-SNPs had greater nematicidal activity than free Cry5B protein, indicating the effective formulation of Cry5B-SNPs that could be used as an alternative to current nematicide delivery strategies.
Collapse
Affiliation(s)
- Pasin Jammor
- Institute
of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Tanatcha Sanguanphun
- Department
of Anatomy, Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Krai Meemon
- Department
of Anatomy, Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Boonhiang Promdonkoy
- National
Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Phahonyothin Road, Khlong
Luang, Pathumthani 12120, Thailand
| | - Panadda Boonserm
- Institute
of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
49
|
Fu BW, Xu L, Zheng MX, Shi Y, Zhu YJ. Engineering of Bacillus thuringiensis Cry2Ab toxin for improved insecticidal activity. AMB Express 2024; 14:15. [PMID: 38300478 PMCID: PMC10834393 DOI: 10.1186/s13568-024-01669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/13/2024] [Indexed: 02/02/2024] Open
Abstract
Bacillus thuringiensis Cry2Ab toxin was a widely used bioinsecticide to control lepidopteran pests all over the world. In the present study, engineering of Bacillus thuringiensis Cry2Ab toxin was performed for improved insecticidal activity using site-specific saturation mutation. Variants L183I were screened with lower LC50 (0.129 µg/cm2) against P. xylostella when compared to wild-type Cry2Ab (0.267 µg/cm2). To investigate the molecular mechanism behind the enhanced activity of variant L183I, the activation, oligomerization and pore-formation activities of L183I were evaluated, using wild-type Cry2Ab as a control. The results demonstrated that the proteolytic activation of L183I was the same as that of wild-type Cry2Ab. However, variant L183I displayed higher oligomerization and pore-formation activities, which was consistence with its increased insecticidal activity. The current study demonstrated that the insecticidal activity of Cry2Ab toxin could be assessed using oligomerization and pore-formation activities, and the screened variant L183I with improved activity might contribute to Cry2Ab toxin's future application.
Collapse
Affiliation(s)
- Bai-Wen Fu
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Lian Xu
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Mei-Xia Zheng
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Yan Shi
- School of Life Sciences, Xiamen University, Xiamen, 361005, China.
| | - Yu-Jing Zhu
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China.
| |
Collapse
|
50
|
He X, Yang Y, Soberón M, Bravo A, Zhang L, Zhang J, Wang Z. Bacillus thuringiensis Cry9Aa Insecticidal Protein Domain I Helices α3 and α4 Are Two Core Regions Involved in Oligomerization and Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1321-1329. [PMID: 38175929 DOI: 10.1021/acs.jafc.3c08070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Bacillus thuringiensis Cry9 proteins show high insecticidal activity against different lepidopteran pests. Cry9 could be a valuable alternative to Cry1 proteins because it showed a synergistic effect with no cross-resistance. However, the pore-formation region of the Cry9 proteins is still unclear. In this study, nine mutations of certain Cry9Aa helices α3 and α4 residues resulted in a complete loss of insecticidal activity against the rice pest Chilo suppressalis; however, the protein stability and receptor binding ability of these mutants were not affected. Among these mutants, Cry9Aa-D121R, Cry9Aa-D125R, Cry9Aa-D163R, Cry9Aa-E165R, and Cry9Aa-D167R are unable to form oligomers in vitro, while the oligomers formed by Cry9Aa-R156D, Cry9Aa-R158D, and Cry9Aa-R160D are unstable and failed to insert into the membrane. These data confirmed that helices α3 and α4 of Cry9Aa are involved in oligomerization, membrane insertion, and toxicity. The knowledge of Cry9 pore-forming action may promote its application as an alternative to Cry1 insecticidal proteins.
Collapse
Affiliation(s)
- Xiang He
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanchao Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Apdo. Postal 510-3, Morelos 62250, Mexico
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Apdo. Postal 510-3, Morelos 62250, Mexico
| | - Lihong Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Jie Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|