1
|
Iltaf M, Niaz SI, Majeed MK, Saleem M, Shah M, Ali M, Shakeel Abbas S, Amin A. DFT, GC-MS analysis and biological evaluation of Limbarda crithmoides L. Dumort essential oil; an important edible halophyte grown in Pakistan. Nat Prod Res 2024:1-8. [PMID: 38946520 DOI: 10.1080/14786419.2024.2362426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/27/2024] [Indexed: 07/02/2024]
Abstract
Antimicrobial resistance is a major health burden in Pakistan, and therefore new herbal medicine-based therapeutic regimens are being largely investigated. Limbarda crithmoides essential oil was extracted by using hydrodistillation method. Chemical profiling of essential was evaluated by using FTIR and GC-MS analysis. A total of 20 components were identified including, p-xylene, o-xylene, β-linalool, acetophenole and 3-isopropylphenyl methylcarbamate. The HOMO and LUMO analysis in DFT investigations presented that 3-isopropylphenyl methylcarbamate, p-xylene and o-xylene posess a substantial capacity to transfer charge through molecules. The antimicrobial potential of essential oil showed moderate inhibition against E. coli (MIC = 6.25 mg/mL), whereras a significant inhibition Staphylococos aureus was recorded (MIC = 3.12 mg/mL). Further, significant antioxidant activities were recorded in DPPH radical scavenging (IC50 = 80.5 µg/mL), H2O2 (64 ± 1.2%) and FRAP (60.3 µg ferrous equivalents) assays. It was therefore concluded that Limbarda crithmoides essential oil has potential antioxidant and anti-antimicrobial properties and can be used for further investigations.
Collapse
Affiliation(s)
- Muhammad Iltaf
- Institute of Chemical Sciences (ICS), Gomal University, D.I.Khan, KPK, Pakistan
| | - Shah Iram Niaz
- Institute of Chemical Sciences (ICS), Gomal University, D.I.Khan, KPK, Pakistan
| | - Muhammad Kashif Majeed
- Erik Jonsson School of Engineering and Computer Science, University of TX at Dallas, Richardson, TX, USA
| | - Muhammad Saleem
- Gomal Centre of Biochemistry and Biotechnology (GCBB), Gomal University, D.I.Khan, KPK, Pakistan
| | - Mubarak Shah
- Institute of Chemical Sciences (ICS), Gomal University, D.I.Khan, KPK, Pakistan
| | - Muhammad Ali
- Institute of Chemical Sciences (ICS), Gomal University, D.I.Khan, KPK, Pakistan
| | - Syed Shakeel Abbas
- NPRL, Department of Pharmacognosy, Faculty of Pharmacognosy, Gomal University D.I.Khan, KPK, Pakistan
| | - Adnan Amin
- NPRL, Department of Pharmacognosy, Faculty of Pharmacy, Gomal University, D.I.Khan, KPK, Pakistan
| |
Collapse
|
2
|
Ozawa S, Ojiro R, Tang Q, Zou X, Jin M, Yoshida T, Shibutani M. In vitro and in vivo induction of ochratoxin A exposure-related micronucleus formation in rat proximal tubular epithelial cells and expression profiling of chromosomal instability-related genes. Food Chem Toxicol 2024; 185:114486. [PMID: 38301995 DOI: 10.1016/j.fct.2024.114486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Ochratoxin A (OTA) is a renal carcinogen in rats, and repeated administration induces karyomegaly in proximal tubular epithelial cells (PTECs) of the outer stripe of the outer medulla (OSOM) before inducing proliferative lesions. To investigate whether OTA induces micronuclei (MN) in PTECs, we performed an in vitro MN assay using rat renal NRK-52E PTECs after treatment for ≤21 days, and an in vivo OSOM MN assay in rats treated with OTA, other renal carcinogens, or non-carcinogenic renal toxicants for 4 or 13 weeks. The in vitro assay revealed an increased frequency of micronucleated cells from the acceptable dose level for cell viability, even after 21 days of treatment. The in vivo assay also revealed a dose- and treatment period-dependent increase in PTECs with γ-H2AX+ MN. OTA-specific gene expression profiling by OSOM RNA sequencing after week 13 revealed the altered expression of genes related to microtubule-kinetochore binding, the kinesin superfamily, centriole assembly, DNA damage repair, and cell cycle regulation. MN formation was also observed with other renal carcinogens that induce karyomegaly similarly to OTA. These results imply that γ-H2AX+ MN formation by OTA treatment is related to the induction of chromosomal instability accompanying karyomegaly formation before proliferative lesions form, providing a new insight into the carcinogenic mechanism that may be relevant to humans.
Collapse
Affiliation(s)
- Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, PR China.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
3
|
Almeer R, Alyami NM. Renal-protective effect of Asparagus officinalis aqueous extract against lead-induced nephrotoxicity mouse model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112745-112757. [PMID: 37837591 DOI: 10.1007/s11356-023-30280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Lead is one of the cursed substances that threaten all human life. Lead poisoning can occur through food or water contaminations and it is hard to be detected. This incognito metal accumulates over time and resides in the liver, kidneys, and brain tissues leading to serious medical conditions, affecting organ functions, causing failure, kidney tubule degeneration, and destroying neuronal development. However, known metal chelators have bad negative effects. Asparagus officinalis (AO) is a promising herb; its root extract exhibited antioxidant, antiapoptotic, protective, and immunomodulatory activities. Inspired by those reasons, this study investigated to which extent Asparagus extract affected male mice's renal toxicity caused by lead acetate (LA) and antioxidant defense system. This work screened for its nephroprotective activity in four mouse groups: negative and positive control, LA group with renal injury, and diseased but pretreated mice with AO extract (AOE). Kidney index and kidney function biomarkers were evaluated. Antioxidant activities, lipid peroxidation, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), nitric oxide (NO), and reduced glutathione (GSH) were also tested. Furthermore, inflammatory cytokine (tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)), inducible nitric oxide synthase (iNOS), renal pro-apoptotic protein (Bax), antiapoptotic protein (Bcl-2), and caspase-3 levels were evaluated. The results showed that LA administration induced oxidative stress, renal inflammation, apoptosis, and renal histopathological alteration. However, due to its antioxidant activities, AOE was found to restrain oxidative stress, therefore preventing inflammation and apoptosis. Collectively, AOE perfectly clogged lead poisoning sneaking, stopped the bad deterioration, and succeeded to protect kidney tissues from toxicity, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Hamza ZK, Hathout AS, Ostroff G, Soto E, Sabry BA, El-Hashash MA, Hassan NS, Aly SE. Assessment of the protective effect of yeast cell wall β-glucan encapsulating humic acid nanoparticles as an aflatoxin B 1 adsorbent in vivo. J Biochem Mol Toxicol 2021; 36:e22941. [PMID: 34726330 DOI: 10.1002/jbt.22941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 07/25/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
This study aimed to assess the protective effect of encapsulating humic acid-iron complexed nanoparticles (HA-Fe NPs) inside glucanmannan lipid particles (GMLPs) extracted from yeast cell wall against aflatoxin B (AFB1 ) toxicity in vivo. Four groups of male Sprague-Dawley rats were treated orally for 2 weeks included the control group, AFB1 treated group (80 µg/kg b.w); GMLP/HA-Fe NPs treated group (0.5 mg/kg b.w), and the group treated with AFB1 plus GMLP/HA-Fe NPs. GMLPs are empty 3-4 micron permeable microspheres that provide an efficient system for the synthesis and encapsulation of AFB1 -absorbing nanoparticles (NPs). Humic acid nanoparticles (HA-NPs) were incorporated inside the GMLP cavity by complexation with ferric chloride. In vivo study revealed that AFB1 significantly elevated serum alanine aminotransferase, aspartate aminotransferase, creatinine, uric acid, urea, cholesterol, triglycerides, LDL, malondialdehyde, and nitric oxide. It significantly decreased total protein, high-density lipoprotein, hepatic and renal CAT and glutathione peroxidase content and induced histological changes in the liver and kidney (p ≤ 0.05). The coadministration of the synthesized formulation GMLP/HA-Fe NPs with AFB1 has a protective effect against AFB1 -induced hepato-nephrotoxicity, oxidative stress and histological alterations in the liver and kidney.
Collapse
Affiliation(s)
- Zeinab K Hamza
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Egypt.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Amal S Hathout
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Egypt
| | - Gary Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ernesto Soto
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Bassem A Sabry
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Egypt
| | - Maher A El-Hashash
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nabila S Hassan
- Pathology Department, National Research Centre, Dokki, Egypt
| | - Soher E Aly
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Egypt
| |
Collapse
|
5
|
Hamed HS, Ali RM, Shaheen AA, Hussein NM. Chitosan nanoparticles alleviated endocrine disruption, oxidative damage, and genotoxicity of Bisphenol-A- intoxicated female African catfish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109104. [PMID: 34146699 DOI: 10.1016/j.cbpc.2021.109104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 12/18/2022]
Abstract
Bisphenol-A (BPA) is widely used in production of plastic products. It can reach the ecosystems affecting aquatic organisms most likely fishes. The purpose of this study was to study the toxic effects of BPA on the biochemical variables and oxidative stress in female African catfish, Clarias gariepinus and to estimate the protective role of chitosan nanoparticles (CSNPs) against BPA toxicity. Five groups in triplicates of fish were divided as follows: group I was control, group II was treated with CSNPs (0.66 ml/L), group III was exposed to BPA (1.43 μg/L), group IV was treated with BPA (1.43 μg/L) plus CSNPs (0.33 ml/L), and group V was treated with BPA (1.43 μg/L) plus CSNPs (0.66 ml/L) for 30 days. Blood and liver tissue samples were collected at the end of experiment for the biochemical and oxidative stress biomarkers analyses. Results exhibited that serum Follicle Stimulating Hormone (FSH) and 17-β Estradiol (E2) were significantly decreased in female catfish. While, serum Testosterone (T.) and Luteinizing Hormone (LH) were increased after exposure to BPA. Marked increment in superoxide dismutase (SOD) and malondialdehyde (MDA) levels of hepatic tissue of catfish exposed to BPA. Furthermore, significant reduction in hepatic catalase (CAT), glutathione peroxidase (GSH-px), total antioxidant capacity (TAC), reduced glutathione (GSH), and glutathione S-transferase (GST) levels were decreased significantly in BPA-exposed catfish compared to the control group. However, administration of female C. gariepinus with the low and high doses (0.33 ml/L and 0.66 ml/L) of CNPs restored the biochemical parameters to be close to the normal values of the control group and also, reduced oxidative stress induced by BPA toxicity. This improvement was evident in fish administrated with the high CSNPs dose (0.66 ml/L) compared to catfish exposed to BPA in group (III). Furthermore, the percentage of hepatic DNA damage was detected in group III exposed to BPA alone. However, it was declined after co- administration with both the low and high doses of CSNPs. The study has revealed that treatment with CSNPs has antagonistic functions against the toxicity of BPA in female African catfish.
Collapse
Affiliation(s)
- Heba S Hamed
- Department of Zoology, Faculty of women for Arts, Science & Education, Ain Shams University, Cairo 11757, Egypt.
| | - Rokaya M Ali
- Department of Zoology, Faculty of women for Arts, Science & Education, Ain Shams University, Cairo 11757, Egypt
| | - Adel A Shaheen
- Department of Aquatic animals Diseases and Management, Faculty of Veterinary Medicine, Banha University, Banha, Egypt
| | - Naema M Hussein
- Department of Zoology, Faculty of women for Arts, Science & Education, Ain Shams University, Cairo 11757, Egypt
| |
Collapse
|
6
|
Lima AR, Gama F, Castañeda-Loaiza V, Costa C, Schüler LM, Santos T, Salazar M, Nunes C, Cruz RMS, Varela J, Barreira L. Nutritional and Functional Evaluation of Inula crithmoides and Mesembryanthemum nodiflorum Grown in Different Salinities for Human Consumption. Molecules 2021; 26:molecules26154543. [PMID: 34361696 PMCID: PMC8347299 DOI: 10.3390/molecules26154543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022] Open
Abstract
The nutritional composition and productivity of halophytes is strongly related to the biotic/abiotic stress to which these extremophile salt tolerant plants are subjected during their cultivation cycle. In this study, two commercial halophyte species (Inula crithmoides and Mesembryanthemum nodiflorum) were cultivated at six levels of salinity using a soilless cultivation system. In this way, it was possible to understand the response mechanisms of these halophytes to salt stress. The relative productivity decreased from the salinities of 110 and 200 mmol L−1 upwards for I. crithmoides and M. nodiflorum, respectively. Nonetheless, the nutritional profile for human consumption remained balanced. In general, I. crithmoides vitamin (B1 and B6) contents were significantly higher than those of M. nodiflorum. For both species, β-carotene and lutein were induced by salinity, possibly as a response to oxidative stress. Phenolic compounds were more abundant in plants cultivated at lower salinities, while the antioxidant activity increased as a response to salt stress. Sensory characteristics were evaluated by a panel of culinary chefs showing a preference for plants grown at the salt concentration of 350 mmol L−1. In summary, salinity stress was effective in boosting important nutritional components in these species, and the soilless system promotes the sustainable and safe production of halophyte plants for human consumption.
Collapse
Affiliation(s)
- Alexandre R. Lima
- MED-Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus da Penha, 8005-139 Faro, Portugal; (A.R.L.); (F.G.); (R.M.S.C.)
| | - Florinda Gama
- MED-Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus da Penha, 8005-139 Faro, Portugal; (A.R.L.); (F.G.); (R.M.S.C.)
| | - Viana Castañeda-Loaiza
- CCMAR-Centre of Marine Sciences, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (V.C.-L.); (C.C.); (L.M.S.); (T.S.); (J.V.)
| | - Camila Costa
- CCMAR-Centre of Marine Sciences, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (V.C.-L.); (C.C.); (L.M.S.); (T.S.); (J.V.)
| | - Lisa M. Schüler
- CCMAR-Centre of Marine Sciences, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (V.C.-L.); (C.C.); (L.M.S.); (T.S.); (J.V.)
| | - Tamára Santos
- CCMAR-Centre of Marine Sciences, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (V.C.-L.); (C.C.); (L.M.S.); (T.S.); (J.V.)
| | - Miguel Salazar
- RiaFresh, Sítio do Besouro, CX 547-B, 8005-241 Faro, Portugal; (M.S.); (C.N.)
| | - Carla Nunes
- RiaFresh, Sítio do Besouro, CX 547-B, 8005-241 Faro, Portugal; (M.S.); (C.N.)
| | - Rui M. S. Cruz
- MED-Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus da Penha, 8005-139 Faro, Portugal; (A.R.L.); (F.G.); (R.M.S.C.)
| | - João Varela
- CCMAR-Centre of Marine Sciences, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (V.C.-L.); (C.C.); (L.M.S.); (T.S.); (J.V.)
| | - Luísa Barreira
- CCMAR-Centre of Marine Sciences, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (V.C.-L.); (C.C.); (L.M.S.); (T.S.); (J.V.)
- Correspondence: ; Tel.: +351-289-800-900 (ext. 7385)
| |
Collapse
|
7
|
D'Agostino G, Badalamenti N, Franco P, Bruno M, Gallo G. The chemical composition of the flowers essential oil of Inula crithmoides (Asteraceae) growing in aeolian islands, Sicily (Italy) and its biocide properties on microorganisms affecting historical art crafts. Nat Prod Res 2021; 36:2993-3001. [PMID: 34121541 DOI: 10.1080/14786419.2021.1938040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Essential oils have been used for a long time in several fields of interest. Recently, they have also been applied in the conservation of Cultural Heritage to contrast biodeterioration replacing the most current biocides toxic for humans and environment. Inula crithmoides L. (syn. Limbarda crithmoides (L.) Dumort) is a halophyte species distributed along the Mediterranean coasts and it is used as an edible vegetable since the young leaves or shoots are eaten raw or cooked. Several biological properties have been determined for this plant including antimicrobial activities. In this study the volatile composition of the aerial part of an accession from the Aeolian Islands, Sicily (Italy) is described. Furthermore, the in vitro antibacterial assay against four species of bacteria isolated from a XX century Tholu Bhommalu, a leather painted puppet from Andhra Pradesh (India), was showed by the Agar disc diffusion method.
Collapse
Affiliation(s)
- Giulia D'Agostino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Natale Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Palla Franco
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Giuseppe Gallo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| |
Collapse
|
8
|
Oliveira M, Hoste H, Custódio L. A systematic review on the ethnoveterinary uses of mediterranean salt-tolerant plants: Exploring its potential use as fodder, nutraceuticals or phytotherapeutics in ruminant production. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113464. [PMID: 33049342 DOI: 10.1016/j.jep.2020.113464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/15/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salt-tolerant plants are well adapted to the harsh conditions of the Mediterranean region, where have been used traditionally as food and medicines for human and animals. In addition, various species are currently recognized as sources of metabolites with pharmacological, cosmetical and nutraceutical interest. Nevertheless, ethnoveterinary data on salt-tolerant plants are dispersed in the literature and there are few discussions on its veterinary potential. Having in mind the rising interest on organic farming, alternatives to chemical substances in livestock production and concern for animal health and welfare practices, these plants may represent an untapped resource for animal management and veterinary purposes. In this sense, the purpose of this work is to summarize the ethnoveterinary knowledge on salt-tolerant plants described in the Mediterranean region, raising awareness to the potential of this group of plants to be used in veterinary science, targeting especially ruminants. MATERIAL AND METHODS Literature search (2000-2020) was conducted using Web of Science and Science Direct databases. Ethnoveterinary reports (EVR) concerning salt-tolerant plants were summarized and filtered for ruminants. From the final 29 publications, EVR concerning therapeutic uses were categorized according to its ATCvet code and results analyzed. RESULTS A total of 221 EVR were identified from 39 plants, belonging to 21 plant families, targetting ruminants. Ten EVR (4.5%) concerned uses of salt-tolerant species as animal feed, while around 75% of therapeutic uses was represented by three categories: alimentary tract and metabolism (QA; n = 75), dermatologicals (QD; n = 53) and genitourinary system and sex hormones (QG; n = 41). Pistacia lentiscus L., Foeniculum vulgare Mill., Dittrichia viscosa (L.) Greuter, Plantago major L. and Hordeum vulgare L. were the most cited species in the latter categories. CONCLUSIONS The ethnoveterinary knowledge on salt-tolerant species hints some plants of veterinary pharmacological potential, but other species deserve further notice. This information should serve as a basis and, coupled with the currently available scientific data on bioactive properties and chemical composition of salt-tolerant species, inspire additional research on the exploitation of this botanical group, as sources of novel products for ruminant nutrition, health and quality of its products.
Collapse
Affiliation(s)
- Marta Oliveira
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Hervé Hoste
- INRA, UMR 1225 IHAP, 23 Chemin des Capelles, Toulouse, F31076, France; Université de Toulouse, ENVT, 23 Chemin des Capelles, Toulouse, F31076, France
| | - Luísa Custódio
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
9
|
Evaluation of the Acute Hepatoprotective Potential of Hydroethanolic Extract of Duranta erecta L. Parts. J Toxicol 2020; 2020:8815719. [PMID: 33505464 PMCID: PMC7811493 DOI: 10.1155/2020/8815719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/27/2020] [Indexed: 12/03/2022] Open
Abstract
Liver disease is a major health problem and its treatment is costly in most developing countries with attendant adverse effects. This study aimed at determining the acute hepatoprotective efficacy of Duranta erecta hydroethanolic extracts of leaves, ripe and unripe fruits against CCl4-, and acetaminophen-induced hepatotoxicity in animals. Materials and Methods. CCl4 (1 mL/kg body weight in olive oil) and acetaminophen (500 mg/kg b.wt) were used to induce hepatotoxicity in the animals. Animals were treated with extracts at 250 mg/kg b.wt and standard drug, silymarin (100 mg/kg), for 7 days. Hepatoprotective efficacy was assessed by assaying serum biochemical markers such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (γGT), bilirubin (Bil), antioxidative biomarkers including reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione transferase (GST), superoxide dismutase (SOD), malondialdehyde (MDA), hydrogen peroxidase (H202), and nitric oxide (NO), as well as histological observations. Results. Exposure of the animals to CCl4 and acetaminophen resulted in liver injury as evidenced by elevated ALT, AST, ALP, γGT, Bil, MDA, H2O2, and NO levels with resultant derangement in liver microarchitecture. Pretreatment with hydroethanolic extracts, particularly ripe fruits of Duranta erecta, led to a reduction in these indicators and an increase in GSH, GPx, GST, and SOD levels. Biochemical data were supported by improvement in liver structure. Conclusion. The findings suggest that hydroethanolic Duranta erecta ripe fruits extract possesses hepatoprotective and antioxidative activities against CCl4- and acetaminophen-induced toxicity and could be developed as a potent agent for drug-induced liver diseases.
Collapse
|
10
|
Niaz K, Shah SZA, Khan F, Bule M. Ochratoxin A-induced genotoxic and epigenetic mechanisms lead to Alzheimer disease: its modulation with strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44673-44700. [PMID: 32424756 DOI: 10.1007/s11356-020-08991-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Ochratoxin A (OTA) is a naturally occurring mycotoxin mostly found in food items including grains and coffee beans. It induces DNA single-strand breaks and has been considered to be carcinogenic. It is recognized as a serious threat to reproductive health both in males and females. OTA is highly nephrotoxic and carcinogenic, and its potency changes evidently between species and sexes. There is a close association between OTA, mutagenicity, carcinogenicity, and genotoxicity, but the underlying mechanisms are not clear. Reports regarding genotoxic effects in relation to OTA which leads to the induction of DNA adduct formation, protein synthesis inhibition, perturbation of cellular energy production, initiation of oxidative stress, induction of apoptosis, influences on mitosis, induction of cell cycle arrest, and interference with cytokine pathways. All these mechanisms are associated with nephrotoxicity, hepatotoxicity, teratotoxicity, immunological toxicity, and neurotoxicity. OTA administration activates various mechanisms such as p38 MAPK, JNKs, and ERKs dysfunctions, BDNF disruption, TH overexpression, caspase-3 and 9 activation, and ERK-1/2 phosphorylation which ultimately lead to Alzheimer disease (AD) progression. The current review will focus on OTA in terms of recent discoveries in the field of molecular biology. The main aim is to investigate the underlying mechanisms of OTA in regard to genotoxicity and epigenetic modulations that lead to AD. Also, we will highlight the strategies for the purpose of attenuating the hazards posed by OTA exposure.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Syed Zahid Ali Shah
- Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Fazlullah Khan
- The Institute of Pharmaceutical Sciences (TIPS), School of Pharmacy, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, 1417614411, Iran
| | - Mohammed Bule
- Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Oromia, Ethiopia
| |
Collapse
|
11
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
12
|
Bioassay-Guided Isolation of Antiproliferative Compounds from Limbarda crithmoides (L.) Dumort. Molecules 2020; 25:molecules25081893. [PMID: 32325960 PMCID: PMC7221903 DOI: 10.3390/molecules25081893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Limbarda crithmoides (L.) Dumort (Asteraceae) n-hexane extract displayed high cell proliferation inhibitory activity against acute myeloid leukaemia cells (OCI-AML3) and was therefore subjected to a bioassay-guided multistep separation procedure. Two thymol derivatives, namely 10-acetoxy-8,9-epoxythymol tiglate (1) and 10-acetoxy-9-chloro-8,9-dehydrothymol (2), were isolated and identified by means of NMR spectroscopy. Both of them exhibited a significant dose-dependent inhibition of cell proliferation.
Collapse
|
13
|
Bio-guided fractionation and characterization of powerful antioxidant compounds from the halophyte Inula crithmoїdes. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Nikbakht E, Jamaluddin R, Redzwan SM, Khalesi S. Oral administration of Lactobacillus casei Shirota can ameliorate the adverse effect of an acute aflatoxin exposure in Sprague Dawley rats. INT J VITAM NUTR RES 2019; 88:199-208. [PMID: 31056010 DOI: 10.1024/0300-9831/a000513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxin B1(AFB1) is a toxic compound commonly found in some crops with an adverse health effect on human and animals. Some beneficial microorganisms (or probiotics) such as lactic acid bacteria have shown the ability to reduce the bioavailability of aflatoxins and its intestinal absorption. However, the dose and duration of aflatoxins exposure and probiotic treatment can influence the ability of probiotics to remove aflatoxins. Therefore, this research aimed to investigate the efficacy of oral probiotic Lactobacillus casei Shirota strain (LcS) induction in an acute exposure to AFB1 in rats. Experimentally, Sprague Dawley rats were divided into three groups: AFB1 only (n = 9); AFB1 treated with LcS (n = 9); and control (no AFB1 exposure) (n = 6) groups. The blood AFB1 level of rats treated with LcS was slightly lower than the untreated AFB1 induced rats (11.12 ± 0.71 vs 10.93 ± 0.69 ng g-1). Also, LcS treatment slightly moderated the liver and kidney biomarkers in AFB1 induced rats. However, a trend for a significant difference was only observed in ALT of AFB1 induced rats treated with LcS compared to their counterparts (126.11 ± 36.90 vs 157.36 ± 15.46, p = 0.06). Rats' body weight decreased in all animals force-fed with AFB1 with no significant difference between LcS treatment compared to the counterpart. In conclusion, this experiment indicated that probiotic LsC was able to slightly ameliorate the adverse effect of an acute exposure to AFB1 in rats. However, future studies with longer probiotics treatment or higher probiotics dose is required to confirm these findings.
Collapse
Affiliation(s)
- Elham Nikbakht
- 1 Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, Australia
| | - Rosita Jamaluddin
- 2 Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - S Mohd Redzwan
- 2 Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Saman Khalesi
- 3 Physical Activity Research Group, Appleton Institute and School of Health, Medical and Applied Sciences, Central Queensland University, Brisbane, Australia
| |
Collapse
|
15
|
Bueno M, Cordovilla MP. Polyamines in Halophytes. FRONTIERS IN PLANT SCIENCE 2019; 10:439. [PMID: 31024603 PMCID: PMC6465561 DOI: 10.3389/fpls.2019.00439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/22/2019] [Indexed: 05/28/2023]
Abstract
Polyamines (PAs) are related to many aspects of the plant's life cycle, including responses to biotic and abiotic stress. On the other hand, halophytic plants are useful models for studying salt tolerance mechanisms related to the adaptive strategies that these plants present in adverse environments. Furthermore, some halophytes have high economic value, being recommended instead of glycophytes as alternative agricultural crops in salt-affected coastal zones or saline farmlands. In recent years, the understanding of the role of PAs in salt-tolerant plants has greatly advanced. This mini review reports on the advances in the knowledge of PAs and their participation in achieving better salt tolerance in 10 halophytes. PAs are associated with responses to heavy metals in phytoremediation processes using certain salt-tolerant species (Atriplex atacamensis, A. halimus, Inula chrithmoides, and Kosteletzkya pentacarpos). In crops with exceptional nutritional properties such as Chenopodium quinoa, PAs may be useful markers of salt-tolerant genotypes. The signaling and protection mechanisms of PAs have been investigated in depth in the extreme halophyte Mesembryanthemum crystallinum and Thellungiella spp., enabling genetic manipulation of PA biosynthesis. In Prosopis strombulifera, different biochemical and physiological responses have been reported, depending on the type of salt (NaCl, Na2SO4). Increases in spermidine and spermine have been positively associated with stress tolerance as these compounds provide protection in Cymodocea nodosa, and Solanum chilense, respectively. In addition, abscisic acid and salicylic acid can improve the beneficial effect of PAs in these plants. Therefore, these results indicate the great potential of PAs and their contribution to stress tolerance.
Collapse
Affiliation(s)
- Milagros Bueno
- Laboratory of Plant Physiology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | | |
Collapse
|
16
|
Usende IL, Olopade JO, Emikpe BO, Oyagbemi AA, Adedapo AA. Oxidative stress changes observed in selected organs of African giant rats ( Cricetomys gambianus) exposed to sodium metavanadate. Int J Vet Sci Med 2018; 6:80-89. [PMID: 30255083 PMCID: PMC6147385 DOI: 10.1016/j.ijvsm.2018.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/28/2018] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Vanadium is a contaminant of crude oil that released into the atmosphere through burning of fossil fuels. The mechanism by which it exerts toxic influences had not been fully elucidated in African giant rat (AGR). This study investigates the mechanisms of sodium metavanadate (SMV) induced oxidative stress in AGR. A total of 24 adult male AGR weighing 600-850 g were used. Animals were randomly divided into six groups. Groups 1, 3 and 5 served as control while groups 2, 4 and 6 were treated with intraperitoneal 3 mg/kg body weight of SMV for 3, 7 and 14 days, respectively. Serum, brain, liver, testes, kidneys, spleen and lungs were harvested for biochemical assays. SMV induced significant increase in malondialdehyde, hydrogen peroxide, sulfhydryl (total thiol) and protein carbonyl levels but decreased non-protein thiol levels in tissues accessed. A significant decrease was observed in glutathione-S-transferase (GST), superoxide dismutase (SOD), reduced glutathione (GSH) and glutathione peroxidase (GPx) levels in SMV treated rats compared to controls. Serum myeloperoxidase, xanthine oxidase and Advanced Oxidative Protein Products (AOPP) were markedly increased while nitrous oxide levels were significantly decreased in all treated groups. SMV exposure to AGR induced oxidative stress through generation of reactive oxygen species (ROS) and depletion of the antioxidant defence system. These conditions could become severe with prolonged exposure.
Collapse
Affiliation(s)
- Ifukibot L. Usende
- Department of Veterinary Anatomy, University of Abuja, Nigeria
- Department of Veterinary Anatomy, University of Ibadan, Nigeria
| | | | | | - Ademola A. Oyagbemi
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Nigeria
| | - Adeolu A. Adedapo
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Nigeria
| |
Collapse
|
17
|
Petropoulos S, Karkanis A, Martins N, Ferreira I. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Oyagbemi AA, Omobowale TO, Olopade JO, Farombi EO. Kolaviron and Garcinia kola attenuate doxorubicin-induced cardiotoxicity in Wistar rats. ACTA ACUST UNITED AC 2018; 15:/j/jcim.ahead-of-print/jcim-2016-0168/jcim-2016-0168.xml. [DOI: 10.1515/jcim-2016-0168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/06/2017] [Indexed: 01/06/2023]
Abstract
AbstractBackgroundTheMethodsSixty male rats (Wistar strain) were used in this study. They were divided into 6 groups (A-F) each containing 10 animals. Group A was the control. Rats in Groups B, C, D, E and F were treated with doxorubicin at the dosage of 15 mg/kg body weight i.p. Prior to this treatment, rats in groups C, D, E and F were pre-treated orally with Kolaviron at the dosage of 100 mg/kg and 200 mg/kg, andResultsThe results show that doxorubicin caused a significant increase in heart rate and prolonged QT, reduced antioxidant status, increased oxidative stress, inflammation and markers of cardiac damage which were reversed by pre-treatment with Kolaviron andConclusionsOverall, pre-treatment with Kolaviron or
Collapse
|
19
|
Oyagbemi AA, Omobowale TO, Asenuga ER, Adejumobi AO, Ajibade TO, Ige TM, Ogunpolu BS, Adedapo AA, Yakubu MA. Sodium fluoride induces hypertension and cardiac complications through generation of reactive oxygen species and activation of nuclear factor kappa beta. ENVIRONMENTAL TOXICOLOGY 2017; 32:1089-1101. [PMID: 27378751 DOI: 10.1002/tox.22306] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/06/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
Human exposure to sodium fluoride through its daily usage is almost inevitable. Cardiovascular and renal dysfunction has been associated with fluoride toxicity. Therefore, this study investigated the mechanism of action of sodium fluoride (NaF) induced hypertension and cardiovascular complications Forty male albino rats of an average of 10 rats per group were used. Group A received clean tap water. Toxicity was induced in Group B to D by administering graded doses of NaF through drinking water ad libitum for 10 days at 150 ppm, 300 ppm, and 600 ppm concentration respectively. Following administration of NaF, there was significant increase in systolic pressure, diastolic pressure and mean arterial pressure. Markers of oxidative stress; malondialdehyde, hydrogen peroxide, advance oxidation protein products, and protein carbonyl were significantly increased in dose-dependent pattern in the cardiac and renal tissues of rats together with significant decrease in the GST activity in NaF-treated rats compared to the control. Also serum markers of inflammation, cardiac, and renal damage including myeloperoxidase, xanthine oxidase, blood urea nitrogen, creatinine, Lactate dehydrogenase (LDH), and Creatinine kinase myocardial band (CK-MB) significantly increased indicating induction of oxidative stress, renal, and cardiac damage after exposure. Histopathology of the kidney and heart revealed aberrations in the histological architecture in NaF-treated rats. Also, immunohistochemistry showed higher expression of nuclear factor kappa beta (NF-kB) in the cardiac and renal tissues of rats administered NaF. Combining all, these results indicate NaF-induced hypertension through generation of reactive oxygen species and activation of renal and cardiac NF-kB expressions. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1089-1101, 2017.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | | | | | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Temitope Moses Ige
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Technology and Engineering, Texas Southern University, 3100 Cleburne Avenue, Houston, TX, 77004, USA
| |
Collapse
|
20
|
Abdel-Wahhab MA, Aljawish A, El-Nekeety AA, Abdel-Aziem SH, Hassan NS. Chitosan nanoparticles plus quercetin suppress the oxidative stress, modulate DNA fragmentation and gene expression in the kidney of rats fed ochratoxin A-contaminated diet. Food Chem Toxicol 2017; 99:209-221. [PMID: 27923682 DOI: 10.1016/j.fct.2016.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 12/18/2022]
Abstract
This study aimed to evaluate the protective role of chitosan nanoparticles (COS-NPs) singly or plus quercetin (Q) against OTA-induced oxidative stress and renal genotoxicity. Twelve groups of male Sprague-Dawley rats were treated orally for 3 weeks included the control group, animals fed OTA-contaminated diet (3 mg/kg diet); COS-NPs-treated groups at low (140 mg/kg b.w.) or high (280 mg/kg b.w.) dose, Q-treated group (50 mg/kg b.w.), Q plus low or high dose of COS-NPs-treated groups and OTA plus Q and/or COS-NPs at the two tested doses-treated groups. The results indicated that COS-NPs were roughly rod in shape with average particle size of 200 nm and zeta potential 31.4 ± 2.8 mV. Animals fed OTA-contaminated diet showed significant changes in serum biochemical parameters, increase kidney MDA and DNA fragmentation and decreased GPx and SOD gene expression accompanied with severe histological changes. Q and/or COS-NPs at the two tested doses induced significant improvements in all tested parameters and succeeded to overcome these effects especially in the animals treated with Q plus the high dose of COS-NPs. It could be concluded that COS-NPs are promise candidate to enhance the antioxidant effect of Q and protect against the nephrotoxicity of OTA in high endemic areas.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Dept., National Research Center, Dokki, Cairo, Egypt.
| | - Abdulhadi Aljawish
- Laboratory of Nutrition and Toxicology (NUTox), INSERM UMR 866, Bourgogne University, 1 Esplanade Erasme, 21000 Dijon, France
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Dept., National Research Center, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Dept., National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
21
|
Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins (Basel) 2016; 8:111. [PMID: 27092524 PMCID: PMC4848637 DOI: 10.3390/toxins8040111] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 01/28/2023] Open
Abstract
Ochratoxin A (OTA) is a widely-spread mycotoxin all over the world causing major health risks. The focus of the present review is on the molecular and cellular interactions of OTA. In order to get better insight into the mechanism of its toxicity and on the several attempts made for prevention or attenuation of its toxic action, a detailed description is given on chemistry and toxicokinetics of this mycotoxin. The mode of action of OTA is not clearly understood yet, and seems to be very complex. Inhibition of protein synthesis and energy production, induction of oxidative stress, DNA adduct formation, as well as apoptosis/necrosis and cell cycle arrest are possibly involved in its toxic action. Since OTA binds very strongly to human and animal albumin, a major emphasis is done regarding OTA-albumin interaction. Displacement of OTA from albumin by drugs and by natural flavonoids are discussed in detail, hypothesizing their potentially beneficial effect in order to prevent or attenuate the OTA-induced toxic consequences.
Collapse
|
22
|
Abdel-Wahhab MA, Aljawish A, Kenawy AM, El-Nekeety AA, Hamed HS, Abdel-Aziem SH. Grafting of gallic acid onto chitosan nano particles enhances antioxidant activities in vitro and protects against ochratoxin A toxicity in catfish (Clarias gariepinus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:279-288. [PMID: 26774075 DOI: 10.1016/j.etap.2015.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/13/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
This study aimed to prepare and characterize enzymatic modified chitosan nanoparticles (CSNPs) with gallic acid (GA) or octyl gallate (OG) to optimize its potential in human application and to evaluate their protective role against ochrtoxin A (OTA) toxicity in catfish. The modified CSNPs have average size around 90 nm with positive charge and high scavenging activity especially GA-CSNPs. In the in vivo study, catfish were divided into 8 groups and treated for 3 weeks as follow: the control group, OTA-treated group (1 mg/kg b.w.), the groups treated with CSNPs, GA-CSNPs or OG-CSNPs (280 mg/kg b.w.) anole or in combination with OTA. Blood, liver and kidney samples were collected for different analyses. OTA induced a significant biochemical disturbances accompanied with oxidative stress in liver and kidney, histological changes and increase DNA fragmentation in the kidney. Co-treatment with OTA plus the different CSNPs resulted in a significant improvement in all tested parameters and histological picture of the kidney. This improvement was more pronounced in the group treated with GA-CSNPs. It could be concluded that grafting of GA or its ester improved the properties of CSNPs. Moreover, GA-CSNPs showed strong scavenging properties than OG-CSNPs due to the blocking of carboxyl groups responsible of the scavenging activity in OG.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, 12622 Cairo, Egypt.
| | - Abdulhadi Aljawish
- Université de Lorraine, Laboratoire d'Ingénierie des Biomolécules (LIBio), 2 avenue de la Forêt de Haye, TSA40602-F-54518 Vandœuvre-lès-Nancy, France
| | - Amany M Kenawy
- Hydrobiology Department, National Research Center, Dokki, 12622 Cairo, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, 12622 Cairo, Egypt
| | - Heba S Hamed
- Zoology Department, Faculty of Women for Arts, Science & Education, Ain shams University, Cairo, Egypt
| | | |
Collapse
|
23
|
Lee HJ, Ryu D. Advances in Mycotoxin Research: Public Health Perspectives. J Food Sci 2015; 80:T2970-83. [PMID: 26565730 DOI: 10.1111/1750-3841.13156] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/20/2015] [Indexed: 01/18/2023]
Abstract
Aflatoxins, ochratoxins, fumonisins, deoxynivalenol, and zearalenone are of significant public health concern as they can cause serious adverse effects in different organs including the liver, kidney, and immune system in humans. These toxic secondary metabolites are produced by filamentous fungi mainly in the genus Aspergillus, Penicillium, and Fusarium. It is challenging to control the formation of mycotoxins due to the worldwide occurrence of these fungi in food and the environment. In addition to raw agricultural commodities, mycotoxins tend to remain in finished food products as they may not be destroyed by conventional processing techniques. Hence, much of our concern is directed to chronic health effects through long-term exposure to one or multiple mycotoxins from contaminated foods. Ideally risk assessment requires a comprehensive data, including toxicological and epidemiological studies as well as surveillance and exposure assessment. Setting of regulatory limits for mycotoxins is considered necessary to protect human health from mycotoxin exposure. Although advances in analytical techniques provide basic yet critical tool in regulation as well as all aspects of scientific research, it has been acknowledged that different forms of mycotoxins such as analogs and conjugated mycotoxins may constitute a significant source of dietary exposure. Further studies should be warranted to correlate mycotoxin exposure and human health possibly via identification and validation of suitable biomarkers.
Collapse
Affiliation(s)
- Hyun Jung Lee
- School of Food Science, Univ. of Idaho, 875 Perimeter Drive MS 2312, Moscow, ID, 83844, U.S.A
| | - Dojin Ryu
- School of Food Science, Univ. of Idaho, 875 Perimeter Drive MS 2312, Moscow, ID, 83844, U.S.A
| |
Collapse
|
24
|
Oyagbemi AA, Omobowale TO, Akinrinde AS, Saba AB, Ogunpolu BS, Daramola O. Lack of reversal of oxidative damage in renal tissues of lead acetate-treated rats. ENVIRONMENTAL TOXICOLOGY 2015; 30:1235-1243. [PMID: 24706517 DOI: 10.1002/tox.21994] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/16/2014] [Accepted: 03/23/2014] [Indexed: 06/03/2023]
Abstract
Removal of lead from the environment of man or otherwise, the movement of man from lead-contaminated areas has been employed as a means of abatement of the toxic effects of lead. Whether toxic effects in already-exposed individuals subside after lead withdrawal remains unanswered. To understand the reversibility of nephrotoxicity induced by lead acetate, male Wistar rats were orally exposed to 0.25, 0.5, and 1.0 mg/mL of lead acetate for 6 weeks. Activities of glutathione-s-transferase, catalase (CAT), superoxide dismutase (SOD) and the concentrations of hydrogen peroxide (H2 O2 ), and malondialdehyde increased significantly (p < 0.05) in a dose-dependent manner, whereas reduced glutathione (GSH) level and glutathione peroxidase activity were significantly reduced. The pattern of alterations in most of the oxidative stress and antioxidant parameters remained similar in rats from the withdrawal period, although CAT and SOD activities reduced, in contrast to their elevation during the exposure period. Serum creatinine levels were significantly elevated in both exposure and withdrawal experiments whereas serum blood urea nitrogen levels were not significantly different from the control in both exposure and withdrawal periods. The histological damage observed include multifocal areas of inflammation, disseminated tubular necrosis, and fatty infiltration of the kidney tubules both at exposure and withdrawal periods. The results suggest that lead acetate-induced nephrotoxicity by induction of oxidative stress and disruption of antioxidant. The aforementioned alterations were not reversed in the rats left to recover within the time course of study.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Departments of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | - Akinleye Stephen Akinrinde
- Departments of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adebowale Bernard Saba
- Departments of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Oluwabusola Daramola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| |
Collapse
|
25
|
Cariddi LN, Sabini MC, Escobar FM, Montironi I, Mañas F, Iglesias D, Comini LR, Sabini LI, Dalcero AM. Polyphenols as possible bioprotectors against cytotoxicity and DNA damage induced by ochratoxin A. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:1008-1018. [PMID: 25867686 DOI: 10.1016/j.etap.2015.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 06/04/2023]
Abstract
The present study aimed to investigate the protective effects of luteolin (L), chlorogenic acid (ChlA) and caffeic acid (CafA) against cyto-genotoxic effects caused by OTA. Vero cells and rat lymphocytes were used and viability was measured by neutral red uptake, MTT and trypan blue dye exclusion method. L (50 and 100μg/mL), ChlA (100 and 200μg/mL) and CafA (10-50μg/mL) reduced the damage induced by OTA (10μg/mL) on both cells type shown a good protective effect. The comet and micronucleus tests in Balb/c mice were performed. ChlA (10mg/kg bw) reduced OTA (0.85mg/kg bw)-induced DNA damage on blood and bone marrow cells, CafA (10mg/kg bw) showed protective effect only in blood cells and luteolin (2.5mg/kg bw) failed to protect DNA integrity on cells. In conclusion, polyphenols tested reduced the toxicity caused by OTA on different target cells with good protective effect, being ChlA the compound that showed the best effects.
Collapse
Affiliation(s)
- L N Cariddi
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, Ciudad Autónoma de Buenos Aires, CP C1033AAJ, Argentina.
| | - M C Sabini
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, Ciudad Autónoma de Buenos Aires, CP C1033AAJ, Argentina
| | - F M Escobar
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, Ciudad Autónoma de Buenos Aires, CP C1033AAJ, Argentina
| | - I Montironi
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - F Mañas
- Cátedra de Farmacología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - D Iglesias
- Cátedra de Farmacología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - L R Comini
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, Ciudad Autónoma de Buenos Aires, CP C1033AAJ, Argentina; Farmacognosia, Departamento de Farmacia, Universidad Nacional de Córdoba (IMBIV-CONICET), Ciudad Universitaria, Córdoba CP 5000, Argentina
| | - L I Sabini
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - A M Dalcero
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, Ciudad Autónoma de Buenos Aires, CP C1033AAJ, Argentina
| |
Collapse
|
26
|
Domijan AM, Gajski G, Novak Jovanović I, Gerić M, Garaj-Vrhovac V. In vitro genotoxicity of mycotoxins ochratoxin A and fumonisin B1 could be prevented by sodium copper chlorophyllin – Implication to their genotoxic mechanism. Food Chem 2015; 170:455-62. [DOI: 10.1016/j.foodchem.2014.08.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/04/2014] [Accepted: 08/10/2014] [Indexed: 10/24/2022]
|
27
|
Abdel-Wahhab MA, El-Denshary ES, El-Nekeety AA, Abdel-Wahhab KG, Hamzawy MA, Elyamany MF, Hassan NS, Mannaa FA, Shaiea MNQ, Gado RA, Zawrah MF. Efficacy of Organo-Modified Nano Montmorillonite to Protect against the Cumulative Health Risk of Aflatoxin B<sub>1</sub> and Ochratoxin A in Rats. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/snl.2015.52004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Bucchini A, Ricci D, Messina F, Marcotullio MC, Curini M, Giamperi L. Antioxidant and antifungal activity of different extracts obtained from aerial parts of Inula crithmoides L. Nat Prod Res 2014; 29:1173-6. [PMID: 25426874 DOI: 10.1080/14786419.2014.983102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The total phenolic content, antioxidant and antifungal activities of three Inula crithmoides extracts (n-hexane, methylene chloride and MeOH) were investigated. The methanolic extract showed the highest total phenolic content. In the DPPH assay, the methanolic and hexane extracts exhibited the highest DPPH-radical scavenging activity; in the 5-lipoxygenase assay, the hexane extract showed greater inhibitory effect with an IC50 similar to that of Trolox and ascorbic acid. The antifungal activity of the methanolic extract revealed a higher activity against Phytophtora cryptogea and Alternaria solani.
Collapse
Affiliation(s)
- Anahi Bucchini
- a Dipartimento di Scienze della Terra , della Vita e dell'Ambiente - Università di Urbino "Carlo Bo" , Via Bramante 28, 61029 Urbino (PU) , Italy
| | | | | | | | | | | |
Collapse
|
29
|
Seca AML, Grigore A, Pinto DCGA, Silva AMS. The genus Inula and their metabolites: from ethnopharmacological to medicinal uses. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:286-310. [PMID: 24754913 DOI: 10.1016/j.jep.2014.04.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Inula comprises more than one hundred species widespread in temperate regions of Europe and Asia. Uses of this genus as herbal medicines have been first recorded by the Greek and Roman ancient physicians. In the Chinese Pharmacopoeia, from the 20 Inula spp. distributed in China, three are used as Traditional Chinese medicines, named Tumuxiang, Xuanfuhua and Jinfeicao. These medicines are used as expectorants, antitussives, diaphoretics, antiemetics, and bactericides. Moreover, Inula helenium L. which is mentioned in Minoan, Mycenaean, Egyptian/Assyrian pharmacotherapy and Chilandar Medical Codex, is good to treat neoplasm, wound, freckles and dandruff. Many other Inula spp. are used in Ayurvedic and Tibetan traditional medicinal systems for the treatment of diseases such as bronchitis, diabetes, fever, hypertension and several types of inflammation. This review is a critical evaluation of the published data on the more relevant ethnopharmacological and medicinal uses of Inula spp. and on their metabolites biological activities. This study allows the identification of the ethnopharmacological knowledge of this genus and will provide insight into the emerging pharmacological applications of Inula spp. facilitating the prioritirization of future investigations. The corroboration of the ethnopharmacological applications described in the literature with proved biological activities of Inula spp. secondary metabolites will also be explored. MATERIALS AND METHODS The major scientific databases including ScienceDirect, Medline, Scopus and Web of Science were queried for information on the genus Inula using various keyword combinations, more than 180 papers and patents related to the genus Inula were consulted. The International Plant Name Index was also used to confirm the species names. RESULTS Although the benefits of Inula spp. are known for centuries, there are insufficient scientific studies to certify it. Most of the patents are registered by Chinese researchers, proving the traditional use of these plants in their country. Although a total of sixteen Inula species were reported in the literature to have ethnopharmacological applications, the species Inula cappa (Buch.-Ham. ex D.Don) DC., Inula racemosa Hook.f., Inula viscosa (L.) Aiton [actually the accepted name is Dittrichia viscosa (L.) Greuter], Inula helenium, Inula britannica L. and Inula japonica Thunb. are the most frequently cited ones since their ethnopharmacological applications are vast. They are used to treat a large spectrum of disorders, mainly respiratory, digestive, inflammatory, dermatological, cancer and microbial diseases. Fifteen Inula spp. crude extracts were investigated and showed interesting biological activities. From these, only 7 involved extracts of the reported spp. used in traditional medicine and 6 of these were studied to isolate the bioactive compounds. Furthermore, 90 bioactive compounds were isolated from 16 Inula spp. The characteristic compounds of the genus, sesquiterpene lactones, are involved in a network of biological effects, and in consequence, the majority of the experimental studies are focused on these products, especially on their cytotoxic and anti-inflammatory activities. The review shows the chemical composition of the genus Inula and presents the pharmacological effects proved by in vitro and in vivo experiments, namely the cytotoxic, anti-inflammatory (with focus on nitric oxide, arachidonic acid and NF-κB pathways), antimicrobial, antidiabetic and insecticidal activities. CONCLUSIONS Although there are ca. 100 species in the genus Inula, only a few species have been investigated so far. Eight of the sixteen Inula spp. with ethnopharmacological application had been subjected to biological evaluations and/or phytochemical studies. Despite Inula royleana DC. and Inula obtusifolia A. Kerner are being used in traditional medicine, as far as we are aware, these species were not subjected to phytochemical or pharmacological studies. The biological activities exhibited by the compounds isolated from Inula spp., mainly anti-inflammatory and cytotoxic, support some of the described ethnopharmacological applications. Sesquiterpene lactone derivatives were identified as the most studied class, being britannilactone derivatives the most active ones and present high potential as anti-inflammatory drugs, although, their pharmacological effects, dose-response relationship and toxicological investigations to assess potential for acute or chronic adverse effects should be further investigated. The experimental results are promising, but the precise mechanism of action, the compound or extract toxicity, and the dose to be administrated for an optimal effect need to be investigated. Also human trials (some preclinical studies proved to be remarkable) should be further investigated. The genus Inula comprises species useful not only in medicine but also in other domains which makes it a high value-added plant.
Collapse
Affiliation(s)
- Ana M L Seca
- DCTD, University of Azores, 9501-801 Ponta Delgada, Portugal; Chemistry Department & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Alice Grigore
- Department of Pharmaceutical Biotechnologies, National Institute of Chemical-Pharmaceutical R&D, 112 Vitan Av., Bucharest, Romania.
| | - Diana C G A Pinto
- Chemistry Department & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Artur M S Silva
- Chemistry Department & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
30
|
Fontana G, Bruno M, Senatore F, Formisano C. Volatile constituents of aerial parts of two Mediterranean species of Inula: Inula crithmoides L. and I. verbascifolia (Willd.) Hausskn. (Asteraceae). Nat Prod Res 2014; 28:984-93. [DOI: 10.1080/14786419.2014.902821] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Gianfranco Fontana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy
| | - Felice Senatore
- Department of Pharmacy, University of Naples ‘Federico II’, Via D. Montesano, 49, 80131 Naples, Italy
| | - Carmen Formisano
- Department of Pharmacy, University of Naples ‘Federico II’, Via D. Montesano, 49, 80131 Naples, Italy
| |
Collapse
|
31
|
Ramyaa P, krishnaswamy R, Padma VV. Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells — up regulation of Nrf2 expression and down regulation of NF-κB and COX-2. Biochim Biophys Acta Gen Subj 2014; 1840:681-92. [DOI: 10.1016/j.bbagen.2013.10.024] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/30/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
|
32
|
The carotenoid lycopene protects rats against DNA damage induced by Ochratoxin A. Toxicon 2013; 73:96-103. [DOI: 10.1016/j.toxicon.2013.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 12/20/2022]
|
33
|
Jallali I, Zaouali Y, Missaoui I, Smeoui A, Abdelly C, Ksouri R. Variability of antioxidant and antibacterial effects of essential oils and acetonic extracts of two edible halophytes: Crithmum maritimum L. and Inula crithmoїdes L. Food Chem 2013; 145:1031-8. [PMID: 24128580 DOI: 10.1016/j.foodchem.2013.09.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 09/01/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
This work aimed to assess the richness of the food halophytes Crithmum maritimum and Inula crithmoїdes on phenolics and essential oils (EOs) and to evaluate the antioxidant and antibacterial potential of these metabolites. Results displayed that extract of I. crithmoїdes possesses considerable contents of phenolic compounds (14.1mg GAE.g⁻¹ DW) related to important antioxidant activities (IC₅₀ = 13 μg ml⁻¹ for the DPPH test) as compared to C. maritimum. C. maritimum EOs composition is dominated by oxygenated monoterpenes, while I. crithmoїdes one is mainly consisted by monoterpene hydrocarbons. EOs have low antioxidant activity as compared to acetone extracts; nevertheless, they show best antimicrobial activity. A significant variability is also depicted between the provenances of each species and depended on the chemical nature of antioxidant and antibacterial molecules as well as the used tests.
Collapse
Affiliation(s)
- Ines Jallali
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie à la Technopole de Borj Cédria (CBBC), BP 901, 2050 Hammam-lif, Tunisia.
| | | | | | | | | | | |
Collapse
|
34
|
Nikbakht Nasrabadi E, Jamaluddin R, Abdul Mutalib MS, Khaza'ai H, Khalesi S, Mohd Redzwan S. Reduction of aflatoxin level in aflatoxin-induced rats by the activity of probiotic Lactobacillus casei strain Shirota. J Appl Microbiol 2013; 114:1507-15. [PMID: 23351087 DOI: 10.1111/jam.12148] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 11/28/2022]
Abstract
AIMS Aflatoxin B1 (AFB1 ) is considered as the most toxic food contaminant, and microorganisms, especially bacteria, have been studied for their potential to reduce the bioavailability of mycotoxins including aflatoxins. Therefore, this research investigated the efficacy of oral administration of Lactobacillus casei Shirota (LcS) in aflatoxin-induced rats. METHODS AND RESULTS Sprague Dawley rats were divided into three groups of untreated control, the group induced with AFB1 only, and the group given probiotic in addition to AFB1. In the group induced with AFB1 only, food intake and body weight were reduced significantly. The liver and kidney enzymes were significantly enhanced in both groups induced with AFB1 , but they were lower in the group given LcS. AFB1 was detected from all serum samples except for untreated control group's samples. Blood serum level of AFB1 in the group induced with AFB1 only was significantly higher than the group which received probiotic as a treatment (P < 0·05), and there was no significant difference between the control group and the group treated with probiotic. CONCLUSIONS LcS supplementation could improve the adverse effect of AFB1 induction on rats' body weight, plasma biochemical parameters and also could reduce the level of AFB1 in blood serum. SIGNIFICANCE AND IMPACT OF THE STUDY This study's outcomes contribute to better understanding of the potential of probiotic to reduce the bioavailability ofAFB1 . Moreover, it can open an opportunity for future investigations to study the efficacy of oral supplementation of probiotic LcS in reducing aflatoxin level in human.
Collapse
Affiliation(s)
- E Nikbakht Nasrabadi
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | | | | | | | | | |
Collapse
|
35
|
Dewanjee S, Sahu R, Karmakar S, Gangopadhyay M. Toxic effects of lead exposure in Wistar rats: involvement of oxidative stress and the beneficial role of edible jute (Corchorus olitorius) leaves. Food Chem Toxicol 2013; 55:78-91. [PMID: 23291325 DOI: 10.1016/j.fct.2012.12.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/23/2012] [Indexed: 11/17/2022]
Abstract
Lead (Pb) is considered to be a multi-target toxicant. The present study was undertaken to evaluate the protective effect of aqueous extract of Corchorus olitorius leaves against Pb-acetate induced toxic manifestation in blood, liver, kidney, brain and heart of Wistar rats. The Pb-acetate (5mg/kg body weight) treated rats exhibited a significant inhibition of co-enzymes Q, antioxidant enzymes and reduced glutathione levels in the tissues. In addition, the extent of lipid peroxidation, DNA fragmentation and haematological parameters were significantly altered in the Pb-acetate treated rats as compared to control. Simultaneous administration of test extract (25, 50 and 100mg/kg body weight), could significantly restore the biochemical and haematological parameters near to the normal status through antioxidant activity and/or by preventing bioaccumulation of Pb within the tissues of experimental rats. Presence of substantial quantity of phenolics and flavonoids in the extract may be responsible for the observed protective role against Pb-intoxication.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700 032, India.
| | | | | | | |
Collapse
|
36
|
Poór M, Kunsági-Máté S, Czibulya Z, Li Y, Peles-Lemli B, Petrik J, Vladimir-Knežević S, Kőszegi T. Fluorescence spectroscopic investigation of competitive interactions between ochratoxin A and 13 drug molecules for binding to human serum albumin. LUMINESCENCE 2012; 28:726-33. [PMID: 22987806 DOI: 10.1002/bio.2423] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/13/2012] [Accepted: 07/19/2012] [Indexed: 11/11/2022]
Abstract
Ochratoxin A (OTA) is a highly toxic mycotoxin found worldwide in cereals, foods, animal feeds and different drinks. Based on previous studies, OTA is one of the major causes of the chronic tubulointerstitial nephropathy known as Balkan endemic nephropathy (BEN) and exerts several other adverse effects shown by cell and/or animal models. It is a well-known fact that OTA binds to various albumins with very high affinity. Recently, a few studies suggested that reducing the bound fraction of OTA might reduce its toxicity. Hypothetically, certain drugs can be effective competitors displacing OTA from its albumin complex. Therefore, we examined 13 different drug molecules to determine their competing abilities to displace OTA from human serum albumin (HSA). Competitors and ineffective chemicals were identified with a steady-state fluorescence polarization-based method. After characterization the competitive abilities of individual drugs, drug pairs were formed and their displacing activity were tested in OTA-HSA system. Indometacin, phenylbutazone, warfarin and furosemide showed the highest competing capacity but ibuprofen, glipizide and simvastatin represented detectable interaction too. Investigations of drug pairs raised the possibility of the presence of diverse binding sites of competing drugs. Apart from the chemical information obtained in our model, this explorative research might initiate future designs for epidemiologic studies to gain further in vivo evidence of long-term (potentially protective) effects of competing drugs administered to human patients.
Collapse
Affiliation(s)
- Miklós Poór
- Institute of Laboratory Medicine, University of Pécs, H-7624, Pécs, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Flavonoid aglycones can compete with Ochratoxin A for human serum albumin: a new possible mode of action. Int J Biol Macromol 2012; 51:279-83. [PMID: 22634515 DOI: 10.1016/j.ijbiomac.2012.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 11/22/2022]
Abstract
The mycotoxin Ochratoxin A (OTA) appears worldwide in cereals, plant products, different foods and drinks. Ochratoxin A binds to plasma albumin with a very high affinity. However, it is well known that natural flavonoids can also bind to human serum albumin (HSA) at the same binding site as OTA does (site I, subdomain IIA). A few experimental literature data suggest that reducing the bound fraction of OTA speeds up its elimination rate with a potential decrease in its toxicity. In our experimental model competitive binding properties of flavonoid aglycones were examined with a fluorescence polarization based approach. Our data show that some of the flavonoids are able to remove the toxin from HSA. We conclude that among the 13 studied flavonoid aglycones galangin and quercetin were the most effective competitors for OTA.
Collapse
|
38
|
Hathout AS, Mohamed SR, El-Nekeety AA, Hassan NS, Aly SE, Abdel-Wahhab MA. Ability of Lactobacillus casei and Lactobacillus reuteri to protect against oxidative stress in rats fed aflatoxins-contaminated diet. Toxicon 2011; 58:179-186. [PMID: 21658402 DOI: 10.1016/j.toxicon.2011.05.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
Lactic acid bacteria (LAB) have been reported to remove mycotoxins from aqueous solutions through a binding process, which appears to be species and strain specific. The aim of the current study was to evaluate the protective role of Lactobacillus casei (L1) and Lactobacillus reuteri (L2) against aflatoxin (AFs)-induced oxidative stress in rats. Sixty female Sprague-Dawley rats were divided into 6 groups including the control group and the groups treated with L1 or L2 (1 x 10¹¹/ml) alone at a dose of 10 ml/kg b.w or plus AFs (3 mg/kg diet) for 4 weeks. At the end of the treatments, blood and tissue samples were collected for biochemical and histological studies. The results indicated that AFs alone induced a significant decrease in food intake and body weight and a significant increase in transaminase, alkaline phosphatase cholesterol, triglycerides, total lipids, creatinine, uric acid and nitric oxide in serum and lipid peroxidation in liver and kidney accompanied with a significant decrease in total antioxidant capacity. Treatments with L1 or L2 succeeded to induce a significant improvement in all the biochemical parameters and histological picture of the liver. Moreover, L2 was more effective than L1 and both can be used safely in functional foods.
Collapse
Affiliation(s)
- Amal S Hathout
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | | | | | | | | |
Collapse
|
39
|
A potential role of calcium in apoptosis and aberrant chromatin forms in porcine kidney PK15 cells induced by individual and combined ochratoxin A and citrinin. Arch Toxicol 2011; 86:97-107. [DOI: 10.1007/s00204-011-0735-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
|
40
|
Marin-Kuan M, Ehrlich V, Delatour T, Cavin C, Schilter B. Evidence for a role of oxidative stress in the carcinogenicity of ochratoxin a. J Toxicol 2011; 2011:645361. [PMID: 21776264 PMCID: PMC3135259 DOI: 10.1155/2011/645361] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 04/20/2011] [Indexed: 12/15/2022] Open
Abstract
The in vitro and in vivo evidence compatible with a role for oxidative stress in OTA carcinogenicity has been collected and described. Several potential oxido-reduction mechanisms have been identified in the past. More recently, the possibility of a reduction of cellular antioxidant defense has been raised as an indirect source of oxidative stress. Consequences resulting from the production of oxidative stress are observed at different levels. First, OTA exposure has been associated with increased levels of oxidative DNA, lipid, and protein damage. Second, various biological processes known to be mobilized under oxidative stress were shown to be altered by OTA. These effects have been observed in both in vitro and in vivo test systems. In vivo, active doses were often within doses documented to induce renal tumors in rats. In conclusion, the evidence for the induction of an oxidative stress response resulting from OTA exposure can be considered strong. Because the contribution of the oxidative stress response in the development of cancers is well established, a role in OTA carcinogenicity is plausible. Altogether, the data reviewed above support the application of a threshold-based approach to establish safe level of dietary human exposure to OTA.
Collapse
Affiliation(s)
- M. Marin-Kuan
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - V. Ehrlich
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - T. Delatour
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - C. Cavin
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - B. Schilter
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| |
Collapse
|
41
|
Jackie T, Haleagrahara N, Chakravarthi S. Antioxidant effects of Etlingera elatior flower extract against lead acetate - induced perturbations in free radical scavenging enzymes and lipid peroxidation in rats. BMC Res Notes 2011; 4:67. [PMID: 21414212 PMCID: PMC3069941 DOI: 10.1186/1756-0500-4-67] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 03/17/2011] [Indexed: 11/21/2022] Open
Abstract
Background Etlingera elatior or 'pink torch ginger' (Zingiberaceae) are widely cultivated in tropical countries and used as spices and food flavoring. The purpose of this study was to evaluate the antioxidant effects of Etlingera elatior against lead - induced changes in serum free radical scavenging enzymes and lipid hydroperoxides in rats. Findings Rats were exposed to lead acetate in drinking water (500 ppm) for 14 days alone or plus the ethanol extract of E. elatior (50, 100 and 200 mg/kg). Blood lead levels, lipid hydroperoxides, protein carbonyl contents and oxidative marker enzymes were estimated. Lead acetate in drinking water elicited a significant increase in lipid hydroperoxides (LPO) and protein-carbonyl-contents (PCC). There was a significant decrease in total antioxidants, superoxide dismutase, glutathione peroxidase and glutathione S-transferase levels with lead acetate treatment. Supplementation of E. elatior was associated with reduced serum LPO and PCC and a significant increase in total antioxidants and antioxidant enzyme levels. Conclusions The results suggest that flower extract of Etlingera elatior has powerful antioxidant effect against lead - induced oxidative stress and the extract may be useful therapeutic agent against lead toxicity. However, detailed evaluations are required to identify the active antioxidant compounds from this plant extract.
Collapse
Affiliation(s)
- Tan Jackie
- Human Biology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
42
|
Haleagrahara N, Jackie T, Chakravarthi S, Rao M, Kulur A. Protective effect of Etlingera elatior (torch ginger) extract on lead acetate--induced hepatotoxicity in rats. J Toxicol Sci 2010; 35:663-71. [PMID: 20930461 DOI: 10.2131/jts.35.663] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Lead is known to disrupt the biological systems by altering the molecular interactions, cell signaling, and cellular function. Exposure to even low levels of lead may have potential hazardous effects on brain, liver, kidneys and testes. The efficacy of Etlingera elatior (torch ginger) to protect hepatotoxicity induced by lead acetate was evaluated experimentally in male Sprague - Dawley rats. Rats were exposed to lead acetate in drinking water (500 ppm) for 21 days and the effects of concurrent treatment with extract of E. elatior on hepatic lipid hydroperoxides (LPO), protein carbonyl content (PCC), total antioxidants (TA), superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione S- Transferase (GST) levels and histopathological changes in liver were evaluated. There was a significant decrease in TA and other antioxidant enzymes (p < 0.05) and increase in LPO and PCC (p < 0.05) with lead acetate ingestion. Concurrent treatment with E. elatior extract significantly reduced the LPO and PCC (p < 0.05) in serum and increased the antioxidant enzyme levels (p < 0.05) in the liver. Significant histopathological changes were seen in hepatic tissue with chronic lead ingestion. Treatment with E. elatior significantly reduced these lead-induced changes in hepatic architecture. E. elatior has also reduced the blood lead levels (BLL). Thus, there has been extensive biochemical and structural alterations indicative of liver toxicity with exposure to lead and E. elatior treatment significantly reduced these oxidative damage. Our results suggest that E. elatior has a powerful antioxidant effect against lead-induced hepatotoxicity.
Collapse
Affiliation(s)
- Nagaraja Haleagrahara
- Human Biology Division, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.
| | | | | | | | | |
Collapse
|
43
|
Ahmed NS, Mohamed AS, Abdel-Wahhab MA. Chlorpyrifos-induced oxidative stress and histological changes in retinas and kidney in rats: Protective role of ascorbic acid and alpha tocopherol. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2010; 98:33-38. [DOI: 10.1016/j.pestbp.2010.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
44
|
Madrigal-Santillán E, Morales-González JA, Vargas-Mendoza N, Reyes-Ramírez P, Cruz-Jaime S, Sumaya-Martínez T, Pérez-Pastén R, Madrigal-Bujaidar E. Antigenotoxic studies of different substances to reduce the DNA damage induced by aflatoxin B(1) and ochratoxin A. Toxins (Basel) 2010; 2:738-757. [PMID: 22069607 PMCID: PMC3153197 DOI: 10.3390/toxins2040738] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 04/08/2010] [Accepted: 04/13/2010] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins are produced mainly by the mycelial structure of filamentous fungi, or more specifically, molds. These secondary metabolites are synthesized during the end of the exponential growth phase and appear to have no biochemical significance in fungal growth and development. The contamination of foods and feeds with mycotoxins is a significant problem for the adverse effects on humans, animals, and crops that result in illnesses and economic losses. The toxic effect of the ingestion of mycotoxins in humans and animals depends on a number of factors including intake levels, duration of exposure, toxin species, mechanisms of action, metabolism, and defense mechanisms. In general, the consumption of contaminated food and feed with mycotoxin induces to neurotoxic, immunosuppressive, teratogenic, mutagenic, and carcinogenic effect in humans and/or animals. The most significant mycotoxins in terms of public health and agronomic perspective include the aflatoxins, ochratoxin A (OTA), trichothecenes, fumonisins, patulin, and the ergot alkaloids. Due to the detrimental effects of these mycotoxins, several strategies have been developed in order to reduce the risk of exposure. These include the degradation, destruction, inactivation or removal of mycotoxins through chemical, physical and biological methods. However, the results obtained with these methods have not been optimal, because they may change the organoleptic characteristics and nutritional values of food. Another alternative strategy to prevent or reduce the toxic effects of mycotoxins is by applying antimutagenic agents. These substances act according to several extra- or intracellular mechanisms, their main goal being to avoid the interaction of mycotoxins with DNA; as a consequence of their action, these agents would inhibit mutagenesis and carcinogenesis. This article reviews the main strategies used to control AFB(1) and ochratoxin A and contains an analysis of some antigenotoxic substances that reduce the DNA damage caused by these mycotoxins.
Collapse
Affiliation(s)
- Eduardo Madrigal-Santillán
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, I.P.N., Av. Wilfrido Massieu. Unidad A. López Mateos. Zacatenco. Col Lindavista. D.F. CP 07738, México; (E.M.B.)
| | - José A. Morales-González
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
| | - Nancy Vargas-Mendoza
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
| | - Patricia Reyes-Ramírez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
| | - Sandra Cruz-Jaime
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
| | - Teresa Sumaya-Martínez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
| | - Ricardo Pérez-Pastén
- Laboratorio de Toxicología Preclínica, Escuela Nacional de Ciencias Biológicas, I.P.N., Av. Wilfrido Massieu. Unidad A. López Mateos. Zacatenco. Col Lindavista. D.F. CP 07738, México; (R.P.)
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, I.P.N., Av. Wilfrido Massieu. Unidad A. López Mateos. Zacatenco. Col Lindavista. D.F. CP 07738, México; (E.M.B.)
| |
Collapse
|
45
|
Giamperi L, Bucchini A, Fraternale D, Genovese S, Curini M, Ricci D. Composition and Antioxidant Activity of Inula crithmoides Essential Oil Grown in Central Italy (Marche Region). Nat Prod Commun 2010. [DOI: 10.1177/1934578x1000500230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The chemical composition of the essential oil obtained from the aerial parts of Inula crithmoides L. was analyzed by GC and GC/MS and 22 components were identified, the major ones being p-cymene (30.1%), 1-methylethyl-trimethylbenzene (18.7%), scopoletin (15.3%) and α-pinene (13.1%). The antioxidant activity of the oil was evaluated by the DPPH test and 5-lipoxygenase assay. The essential oil exerted a good antioxidant activity in the protection of lipid peroxidation when compared with known antioxidants.
Collapse
Affiliation(s)
- Laura Giamperi
- Dipartimento di Scienze dell'Uomo, dell’ Ambiente e della Natura – Sez. Biologia Vegetale – Università degli Studi di Urbino “Carlo Bo “, Via Bramante, 28 – 61029, Urbino (PU), Italy
| | - Anahi Bucchini
- Dipartimento di Scienze dell'Uomo, dell’ Ambiente e della Natura – Sez. Biologia Vegetale – Università degli Studi di Urbino “Carlo Bo “, Via Bramante, 28 – 61029, Urbino (PU), Italy
| | - Daniele Fraternale
- Dipartimento di Scienze dell'Uomo, dell’ Ambiente e della Natura – Sez. Biologia Vegetale – Università degli Studi di Urbino “Carlo Bo “, Via Bramante, 28 – 61029, Urbino (PU), Italy
| | - Salvatore Genovese
- Dipartimento di Scienze del Farmaco, Via dei Vestini 31, 66013 Chieti Scalo (CH), Italy
| | - Massimo Curini
- Dipartimento di Chimica e Tecnologia del Farmaco-Sez. Chimica Organica, Facoltà di Farmacia, Università degli Studi di Perugia, Via del Liceo 1, 06100 Perugia (PG), Italy
| | - Donata Ricci
- Dipartimento di Scienze dell'Uomo, dell’ Ambiente e della Natura – Sez. Biologia Vegetale – Università degli Studi di Urbino “Carlo Bo “, Via Bramante, 28 – 61029, Urbino (PU), Italy
| |
Collapse
|
46
|
El-Nekeety AA, El-Kady AA, Soliman MS, Hassan NS, Abdel-Wahhab MA. Protective effect of Aquilegia vulgaris (L.) against lead acetate-induced oxidative stress in rats. Food Chem Toxicol 2009; 47:2209-2215. [PMID: 19531368 DOI: 10.1016/j.fct.2009.06.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/15/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
Oxidative stress has been proposed as a possible mechanism involved in lead toxicity. The current study was carried out to evaluate the antioxidant activity of the ethanol extract of Aquilegia vulgaris (L.) against lead acetate (LA)-induced oxidative stress in male rats. Tested animals were treated orally with A. vulgaris extract (100 ppm) in combination with, before, or after LA treatment (20 ppm). The results indicated that the extract alone did not induce any significant changes in body weight gain, food intake, serum biochemical chemistry or the histological picture of the liver and kidney. However, it increased significantly the level of Glutathione (GSH). On the other hand, LA decreased food intake, body weight gain and induced oxidative stress as indicated by the significant changes in serum biochemical parameters and histological picture of liver and kidney and increased lipid peroxide and reduces GSH levels in liver tissues. The extract succeeded to improve the histological pictures of liver and kidney and the biochemical parameters towards the normal values of the control. Moreover, this improvement was pronounced in the animals treated with the extract after LA intoxication.
Collapse
Affiliation(s)
- Aziza A El-Nekeety
- Food Toxicology and Contaminants Dept, National Research Center, Dokki, Cairo, Egypt
| | | | | | | | | |
Collapse
|
47
|
Vasatkova A, Krizova S, Adam V, Zeman L, Kizek R. Changes in metallothionein level in rat hepatic tissue after administration of natural mouldy wheat. Int J Mol Sci 2009; 10:1138-60. [PMID: 19399242 PMCID: PMC2672023 DOI: 10.3390/ijms10031138] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 02/28/2009] [Accepted: 03/09/2009] [Indexed: 01/08/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by microfungi that are capable of causing disease and death in humans and other animals. This work was aimed at investigation of influence of mouldy wheat contaminated by pathogenic fungi producing mycotoxins on metallothionein levels in hepatic tissue of rats. The rats were administrating feed mixtures with different contents of vitamins or naturally mouldy wheat for 28 days. It was found that the wheat contained deoxynivalenol (80 +/- 5 microg per kg of mouldy wheat), zearalenone (56 +/- 3 microg/kg), T2-toxin (20 +/- 2 microg/kg) and aflatoxins as a sum of B1, B2, G1 and G2 (3.9 +/- 0.2 microg/kg). Rats were fed diets containing 0, 33, 66 and 100% naturally moulded wheat. Control group 0, 33, 66 and 100% contained vitamins according to Nutrient Requirements of Rats (NRC). Other four groups (control group with vitamins, vit33, vit66 and vit100%) were fed on the same levels of mouldy wheat, also vitamins at levels 100% higher than the previous mixtures. We determined weight, feed conversion and performed dissection to observe pathological processes. Changes between control group and experimental groups exposed to influence of mouldy wheat and experimental groups supplemented by higher concentration of vitamins and mouldy wheat were not observed. Livers were sampled and did not demonstrate significant changes in morphology compared to control either. In the following experiments the levels of metallothionein as a marker of oxidative stress was determined. We observed a quite surprising trend in metallothionein levels in animals supplemented with increased concentration of vitamins. Its level enhanced with increasing content of mouldy wheat. It was possible to determine a statistically significant decline (p<0.05) between control group and groups of animals fed with 33, 66 and 100% mouldy wheat. It is likely that some mycotoxins presented in mouldy wheat are able to block the mechanism of metallothionein synthesis.
Collapse
Affiliation(s)
- Anna Vasatkova
- Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails:
(A.V.);
(S.K.);
(V.A.);
(L.Z.)
| | - Sarka Krizova
- Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails:
(A.V.);
(S.K.);
(V.A.);
(L.Z.)
| | - Vojtech Adam
- Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails:
(A.V.);
(S.K.);
(V.A.);
(L.Z.)
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Ladislav Zeman
- Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails:
(A.V.);
(S.K.);
(V.A.);
(L.Z.)
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +420-5-4513-3350; Fax: +420-5-4521-2044
| |
Collapse
|