1
|
Hwang J, Jung JS, Kim D, Kwon M, Yong J, Yoon H, Park KM. Therapeutic Potential of Dimethyl Sulfoxide via Subconjunctival Injection in a Diabetic Retinopathy Rat Model. In Vivo 2025; 39:132-145. [PMID: 39740902 PMCID: PMC11705140 DOI: 10.21873/invivo.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM Diabetic retinopathy (DR), a complication of diabetes, causes damage to retinal blood vessels and can lead to vision impairment. Persistent high blood glucose levels contribute to this damage, and despite ongoing research, effective treatment options for DR remain limited. Dimethyl sulfoxide (DMSO) has shown anti-inflammatory and antioxidant properties in both in vivo and in vitro studies; however, its potential as an anti-inflammatory agent in the context of DR has not yet been explored. This study aimed to assess the effects of subconjunctival injection of DMSO on the progression of DR. MATERIALS AND METHODS DR was induced in rats using intraperitoneal injections of streptozotocin (55 mg/kg), confirmed by measuring blood glucose levels and electroretinography (ERG). The rats were divided into five groups: a normal control group (CON), a DR control group receiving PBS injections (DMSO 0), and three DR groups receiving different concentrations of DMSO (98%, 50%, and 10%). Retinal function was evaluated using ERG at weeks 10 and 14, and histological analysis at week 16. RESULTS The DMSO 50 group had significantly higher B-wave amplitude in ERG compared to the DMSO 0 group (p<0.05). Flicker response amplitudes were also significantly greater in the DMSO 50 and DMSO 10 groups compared to DMSO 0 (p<0.05). Histological examination revealed thinner retinal layers in the DMSO 0 group compared to the CON group, while the DMSO-treated groups showed improved retinal thickness. CONCLUSION Subconjunctival injection of 50% DMSO appears to improve retinal function in a rat model of DR.
Collapse
Affiliation(s)
- Jiyi Hwang
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea
| | - Ji Seung Jung
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea
| | - Donghee Kim
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea
| | - Myeongjee Kwon
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea
| | - Jungyeon Yong
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea
| | - Haerin Yoon
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea
| | - Kyung-Mee Park
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea
| |
Collapse
|
2
|
Nakamori H, Niimi A, Mitsui R, Hashitani H. Lipopolysaccharide accelerates peristalsis by stimulating glucagon-like peptide-1 release from L cells in the rat proximal colon. J Physiol 2024; 602:4803-4820. [PMID: 39287487 DOI: 10.1113/jp286258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Upon epithelial barrier dysfunction, lipopolysaccharide (LPS) stimulates glucagon-like peptide-1 (GLP-1) secretion from enteroendocrine L cells by activating Toll-like receptor 4 (TLR4). Because GLP-1 accelerates peristalsis in the proximal colon, the present study aimed to explore whether LPS facilitates colonic peristalsis by stimulating L cell-derived GLP-1 release. In isolated segments of rat proximal colon that were serosally perfused with physiological salt solution and luminally perfused with 0.9% saline, peristaltic wall motion was video recorded and converted into spatio-temporal maps. Fluorescence immunohistochemistry was also carried out. Intraluminal administration of LPS (100 or 1 µg mL-1 but not 100 ng mL-1) increased the frequency of oro-aboral propagating peristaltic contractions. The LPS-induced acceleration of colonic peristalsis was blocked by TAK-242 (the TLR4 antagonist), exendin-3 (the GLP-1 receptor antagonist) or BIBN4096 (the calcitonin gene-related peptide receptor antagonist). GLP-1-positive epithelial cells co-expressed TLR4 immunoreactivity. In aspirin-pretreated preparations where epithelial barrier function had been impaired, a lower dose of LPS (100 ng mL-1) became capable of accelerating peristalsis. By contrast, luminally applied dimethyl sulphoxide, a reactive oxygen species scavenger that protects epithelial integrity, attenuated the prokinetic effects of a higher dose of LPS (100 µg mL-1). In colonic segments of a stress rat model leading to a leaky gut, LPS induced more pronounced prokinetic effects. Colonic L cells may well sense luminal LPS via TLR4 triggering the release of GLP-1 that stimulates calcitonin gene-related peptide-containing neurons. The resultant acceleration of peristalsis would facilitate excretion of Gram-negative bacteria from the intestine, and thus L cells may have a protective role against intestinal bacterial infections. KEY POINTS: Colonic epithelial cells form a barrier against bacterial invasion but also may contribute more actively to the exclusion of luminal pathogen by stimulating colonic motility. Luminal lipopolysaccharide (LPS) accelerated colonic peristalsis by stimulating calcitonin gene-related peptide-containing neurons. The prokinetic effect of LPS was mediated by the secretion of glucagon-like peptide-1 from enteroendocrine L cells in which Toll-like receptor 4 was expressed. The LPS-mediated acceleration of peristalsis depended on epithelial barrier integrity. L cells have a defensive role against Gram-negative bacterial infections by facilitating faecal excretion, and could be a potential therapeutic target for gastrointestinal infections.
Collapse
Affiliation(s)
- Hiroyuki Nakamori
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Atsuko Niimi
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Retsu Mitsui
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| |
Collapse
|
3
|
Leistikow KR, May DS, Suh WS, Vargas Asensio G, Schaenzer AJ, Currie CR, Hristova KR. Bacillus subtilis-derived peptides disrupt quorum sensing and biofilm assembly in multidrug-resistant Staphylococcus aureus. mSystems 2024; 9:e0071224. [PMID: 38990088 PMCID: PMC11334493 DOI: 10.1128/msystems.00712-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024] Open
Abstract
Multidrug-resistant Staphylococcus aureus is one of the most clinically important pathogens in the world, with infections leading to high rates of morbidity and mortality in both humans and animals. The ability of S. aureus to form biofilms protects cells from antibiotics and promotes the transfer of antibiotic resistance genes; therefore, new strategies aimed at inhibiting biofilm growth are urgently needed. Probiotic species, including Bacillus subtilis, are gaining interest as potential therapies against S. aureus for their ability to reduce S. aureus colonization and virulence. Here, we search for strains and microbially derived compounds with strong antibiofilm activity against multidrug-resistant S. aureus by isolating and screening Bacillus strains from a variety of agricultural environments. From a total of 1,123 environmental isolates, we identify a single strain B. subtilis 6D1, with a potent ability to inhibit biofilm growth, disassemble mature biofilm, and improve antibiotic sensitivity of S. aureus biofilms through an Agr quorum sensing interference mechanism. Biochemical and molecular networking analysis of an active organic fraction revealed multiple surfactin isoforms, and an uncharacterized peptide was driving this antibiofilm activity. Compared with commercial high-performance liquid chromatography grade surfactin obtained from B. subtilis, we show these B. subtilis 6D1 peptides are significantly better at inhibiting biofilm formation in all four S. aureus Agr backgrounds and preventing S. aureus-induced cytotoxicity when applied to HT29 human intestinal cells. Our study illustrates the potential of exploring microbial strain diversity to discover novel antibiofilm agents that may help combat multidrug-resistant S. aureus infections and enhance antibiotic efficacy in clinical and veterinary settings. IMPORTANCE The formation of biofilms by multidrug-resistant bacterial pathogens, such as Staphylococcus aureus, increases these microorganisms' virulence and decreases the efficacy of common antibiotic regimens. Probiotics possess a variety of strain-specific strategies to reduce biofilm formation in competing organisms; however, the mechanisms and compounds responsible for these phenomena often go uncharacterized. In this study, we identified a mixture of small probiotic-derived peptides capable of Agr quorum sensing interference as one of the mechanisms driving antibiofilm activity against S. aureus. This collection of peptides also improved antibiotic killing and protected human gut epithelial cells from S. aureus-induced toxicity by stimulating an adaptive cytokine response. We conclude that purposeful strain screening and selection efforts can be used to identify unique probiotic strains that possess specially desired mechanisms of action. This information can be used to further improve our understanding of the ways in which probiotic and probiotic-derived compounds can be applied to prevent bacterial infections or improve bacterial sensitivity to antibiotics in clinical and agricultural settings.
Collapse
Affiliation(s)
- Kyle R. Leistikow
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Daniel S. May
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, Washington College, Chestertown, Maryland, USA
| | - Won Se Suh
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Adam J. Schaenzer
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
4
|
Hofmann K, Hofmann S, Weigl F, Mai J, Schreiner S. DMSO and Its Role in Differentiation Impact Efficacy of Human Adenovirus (HAdV) Infection in HepaRG Cells. Viruses 2024; 16:633. [PMID: 38675973 PMCID: PMC11054035 DOI: 10.3390/v16040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Differentiated HepaRG cells are popular in vitro cell models for hepatotoxicity studies. Their differentiation is usually supported by the addition of dimethyl sulfoxide (DMSO), an amphipathic solvent widely used in biomedicine, for example, in potential novel therapeutic drugs and cryopreservation of oocytes. Recent studies have demonstrated drastic effects, especially on epigenetics and extracellular matrix composition, induced by DMSO, making its postulated inert character doubtful. In this work, the influence of DMSO and DMSO-mediated modulation of differentiation on human adenovirus (HAdV) infection of HepaRG cells was investigated. We observed an increase in infectivity of HepaRG cells by HAdVs in the presence of 1% DMSO. However, this effect was dependent on the type of medium used for cell cultivation, as cells in William's E medium showed significantly stronger effects compared with those cultivated in DMEM. Using different DMSO concentrations, we proved that the impact of DMSO on infectability was dose-dependent. Infection of cells with a replication-deficient HAdV type demonstrated that the mode of action of DMSO was based on viral entry rather than on viral replication. Taken together, these results highlight the strong influence of the used cell-culture medium on the performed experiments as well as the impact of DMSO on infectivity of HepaRG cells by HAdVs. As this solvent is widely used in cell culture, those effects must be considered, especially in screening of new antiviral compounds.
Collapse
Affiliation(s)
- Katharina Hofmann
- Institute of Virology, School of Medicine, Technical University of Munich, 80333 München, Germany
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (K.H.)
| | - Samuel Hofmann
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Franziska Weigl
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (K.H.)
| | - Julia Mai
- Institute of Virology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, 80333 München, Germany
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, 30625 Hannover, Germany
- Institute of Virology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
5
|
Makaro A, Świerczyński M, Pokora K, Sarniak B, Kordek R, Fichna J, Salaga M. Empagliflozin attenuates intestinal inflammation through suppression of nitric oxide synthesis and myeloperoxidase activity in in vitro and in vivo models of colitis. Inflammopharmacology 2024; 32:377-392. [PMID: 37086302 PMCID: PMC10907478 DOI: 10.1007/s10787-023-01227-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023]
Abstract
Inflammatory bowel diseases (IBD) are characterized by chronic and relapsing inflammation affecting the gastrointestinal (GI) tract. The incidence and prevalence of IBD are relatively high and still increasing. Additionally, current therapeutic strategies for IBD are not optimal. These facts urge todays' medicine to find a novel way to treat IBD. Here, we focused on the group of anti-diabetic drugs called gliflozins, which inhibit sodium glucose co-transporter type 2 (SGLT-2). Numerous studies demonstrated that gliflozins exhibit pleiotropic effect, including anti-inflammatory properties. In this study, we tested the effect of three gliflozins; empagliflozin (EMPA), dapagliflozin (DAPA), and canagliflozin (CANA) in in vitro and in vivo models of intestinal inflammation. Our in vitro experiments revealed that EMPA and DAPA suppress the production of nitric oxide in LPS-treated murine RAW264.7 macrophages. In in vivo part of our study, we showed that EMPA alleviates acute DSS-induced colitis in mice. Treatment with EMPA reduced macro- and microscopic colonic damage, as well as partially prevented from decrease in tight junction gene expression. Moreover, EMPA attenuated biochemical inflammatory parameters including reduced activity of myeloperoxidase. We showed that SGLT-2 inhibitors act as anti-inflammatory agents independently from their hypoglycemic effects. Our observations suggest that gliflozins alleviate inflammation through their potent effects on innate immune cells.
Collapse
Affiliation(s)
- Adam Makaro
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Mikołaj Świerczyński
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kacper Pokora
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Barbara Sarniak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Radzisław Kordek
- Department of Pathology, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
6
|
Corrêa RLGQ, de Moraes MMF, de Oliveira KT, Aoto YA, Coutinho-Neto MD, Homem-de-Mello P. Diving into the optoelectronic properties of Cu(II) and Zn(II) curcumin complexes: a DFT and wavefunction benchmark. J Mol Model 2023; 29:166. [PMID: 37118617 DOI: 10.1007/s00894-023-05560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/14/2023] [Indexed: 04/30/2023]
Abstract
CONTEXT Curcumin is a popular food additive around the world whose medicinal properties have been known since ancient times. The literature has recently highlighted several biological properties, but besides the health-related usages, its natural yellowish color may also be helpful for light-harvesting applications. This research aims to close a knowledge gap regarding the photophysical description of curcumin and its metallic complexes. METHODS We conducted benchmark experiments comparing NEVPT calculations with several DFT functionals (B3LYP, M06-L, M06-2X, CAM-B3LYP, and ωB97X-D) for describing the UV spectra of curcumin and its metallo-derivative, curcumin-copper(II). Once we determined the most suitable functional, we performed tests with different basis sets and conditions, such as solvation and redox state, to identify their impact on excited state properties. These results are also reported for the curcumin-zinc(II) derivative. We found that the accuracy of DFT functionals depends strongly on the nature of curcumin's excitations. Intra-ligand transitions dominate the absorption spectra of the complexes. Curcumin absorption is marginally affected by solvation and chelation, but when combined with redox processes, they may result in significant modifications. This is because copper cation changes its coordination geometry in response to redox conditions, changing the spectrum. We found that, compared to a NEVPT reference, B3LYP is the best functional for a general description of the compounds, despite not being appropriate for charge transfer transitions. M06-L was the best for LMCT transitions. However, compared with NEVPT2 and PNO-LCCSD(T)-F12 results, no functional achieved acceptable accuracy for MLCT transitions.
Collapse
Affiliation(s)
| | | | | | - Yuri Alexandre Aoto
- Center for Mathematics, Computation and Cognition (CMCC), Federal University of ABC (UFABC), Santo André, 09210-580, Brazil
| | | | - Paula Homem-de-Mello
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, 09210-580, Brazil.
| |
Collapse
|
7
|
Tabuchi Y, Katsushima M, Nishida Y, Shirakashi M, Tsuji H, Onizawa H, Kitagori K, Akizuki S, Nakashima R, Murakami K, Murata K, Yoshifuji H, Tanaka M, Morinobu A, Hashimoto M. Oral dextran sulfate sodium administration induces peripheral spondyloarthritis features in SKG mice accompanied by intestinal bacterial translocation and systemic Th1 and Th17 cell activation. Arthritis Res Ther 2022; 24:176. [PMID: 35879738 PMCID: PMC9310491 DOI: 10.1186/s13075-022-02844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spondyloarthritis (SpA) is an autoimmune and autoinflammatory musculoskeletal disease characterised by systemic enthesitis. Recent research has focused on subclinical inflammatory bowel disease (IBD) in SpA pathogenesis. SKG mice, harbouring the Zap70 W163C mutation, increase autoreactive Th17 cells intrinsically, and in a conventional environment, they exhibit spontaneous arthritis with fungal factors. Under SPF conditions, they show SpA features, including enteritis, after peritoneal injection of β-1,3-glucan. This study aimed to clarify whether oral dextran sulfate sodium (DSS) administration, utilised in IBD model mice, can provoke SpA features in SKG mice under SPF conditions, focusing on the relationship between gut microorganisms and SpA pathogenesis. METHODS BALB/c and SKG mice were administered oral DSS, and their body weights, arthritis, and enthesitis scores were recorded. In another cohort, antibiotics (meropenem and vancomycin) or an anti-fungal agent (amphotericin B) was administered orally before DSS administration. The splenic Th1 and Th17 cell populations were examined before and after DSS administration using flow cytometry. Furthermore, the amount of circulating bacterial DNA in whole blood was measured by absolute quantitative polymerase chain reaction (qPCR), and the number and characteristics of bacterial species corresponding to these circulating DNA were analysed by next-generation sequencing (NGS). RESULTS Ankle enthesitis as a peripheral SpA feature was elicited in half of DSS-administered SKG mice, and none of the BALB/c mice. Pre-administration of antibiotics suppressed enthesitis, whilst an anti-fungal agent could not. Th1 and Th17 cell levels in the spleen increased after DSS administration, and this was suppressed by pre-administration of antibiotics. SKG mice have a larger amount of bacterial DNA in whole blood than BALB/c mice before and 1 day after the initiation of DSS administration. The number of bacterial species in whole blood increased after DSS administration in BALB/c and SKG mice. Some genera and species significantly specific to the DSS-treated SKG mouse group were also detected. CONCLUSION Oral DSS administration alone elicited peripheral enthesitis in SKG mice with bacterial translocation accompanied by increased splenic Th1 and Th17 cell levels. Pre-administration of antibiotics ameliorated these DSS-induced SpA features. These findings suggest that intestinal bacterial leakage plays a pivotal role in SpA pathogenesis.
Collapse
Affiliation(s)
- Yuya Tabuchi
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Masao Katsushima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Yuri Nishida
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Mirei Shirakashi
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Hideaki Tsuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Hideo Onizawa
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Koji Kitagori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Shuji Akizuki
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Ran Nakashima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Kosaku Murakami
- Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Koichi Murata
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Motomu Hashimoto
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan. .,Department of Clinical Immunology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, Japan.
| |
Collapse
|
8
|
Schuldt L, Reimann M, von Brandenstein K, Steinmetz J, Döding A, Schulze-Späte U, Jacobs C, Symmank J. Palmitate-Triggered COX2/PGE2-Related Hyperinflammation in Dual-Stressed PdL Fibroblasts Is Mediated by Repressive H3K27 Trimethylation. Cells 2022; 11:955. [PMID: 35326406 PMCID: PMC8946768 DOI: 10.3390/cells11060955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
The interrelationships between periodontal disease, obesity-related hyperlipidemia and mechanical forces and their modulating effects on the epigenetic profile of periodontal ligament (PdL) cells are assumed to be remarkably complex. The PdL serves as a connective tissue between teeth and alveolar bone and is involved in pathogen defense and the inflammatory responses to mechanical stimuli occurring during tooth movement. Altered inflammatory signaling could promote root resorption and tooth loss. Hyperinflammatory COX2/PGE2 signaling was reported for human PdL fibroblasts (HPdLFs) concomitantly stressed with Porphyromonas gingivalis lipopolysaccharides and compressive force after exposure to palmitic acid (PA). The aim of this study was to investigate the extent to which this was modulated by global and gene-specific changes in histone modifications. The expression of key epigenetic players and global H3Kac and H3K27me3 levels were quantitatively evaluated in dual-stressed HPdLFs exposed to PA, revealing a minor force-related reduction in repressive H3K27me3. UNC1999-induced H3K27me3 inhibition reversed the hyperinflammatory responses of dual-stressed PA cultures characterized by increased COX2 expression, PGE2 secretion and THP1 adhesion. The reduced expression of the gene encoding the anti-inflammatory cytokine IL-10 and the increased presence of H3K27me3 at its promoter-associated sites were reversed by inhibitor treatment. Thus, the data highlight an important epigenetic interplay between the different stimuli to which the PdL is exposed.
Collapse
Affiliation(s)
- Lisa Schuldt
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| | - Michael Reimann
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (M.R.); (A.D.); (U.S.-S.)
| | - Katrin von Brandenstein
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| | - Julia Steinmetz
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| | - Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (M.R.); (A.D.); (U.S.-S.)
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (M.R.); (A.D.); (U.S.-S.)
| | - Collin Jacobs
- Center for Dental, Oral and Maxillofacial Medicine, Department of Orthodontics, University Hospital Jena, 07743 Jena, Germany;
| | - Judit Symmank
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| |
Collapse
|
9
|
Fart F, Salihović S, McGlinchey A, Gareau MG, Orešič M, Halfvarson J, Hyötyläinen T, Schoultz I. Perfluoroalkyl substances are increased in patients with late-onset ulcerative colitis and induce intestinal barrier defects ex vivo in murine intestinal tissue. Scand J Gastroenterol 2021; 56:1286-1295. [PMID: 34383611 DOI: 10.1080/00365521.2021.1961306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Environmental factors are strongly implicated in late-onset of inflammatory bowel disease. Here, we investigate whether high levels of perfluoroalkyl substances are associated with (1) late-onset inflammatory bowel disease, and (2) disturbances of the bile acid pool. We further explore the effect of the specific perfluoroalkyl substance perfluorooctanoic acid on intestinal barrier function in murine tissue. METHODS Serum levels of perfluoroalkyl substances and bile acids were assessed by ultra-performance liquid chromatography coupled to a triple-quadrupole mass spectrometer in matched samples from patients with ulcerative colitis (n = 20) and Crohn's disease (n = 20) diagnosed at the age of ≥55 years. Age and sex-matched blood donors (n = 20), were used as healthy controls. Ex vivo Ussing chamber experiments were performed to assess the effect of perfluorooctanoic acid on ileal and colonic murine tissue (n = 9). RESULTS The total amount of perfluoroalkyl substances was significantly increased in patients with ulcerative colitis compared to healthy controls and patients with Crohn's disease (p < .05). Ex vivo exposure to perfluorooctanoic acid induced a significantly altered ileal and colonic barrier function. The distribution of bile acids, as well as the correlation pattern between (1) perfluoroalkyl substances and (2) bile acids, differed between patient and control groups. DISCUSSION Our results demonstrate that perfluoroalkyl substances levels are increased in patients with late-onset ulcerative colitis and may contribute to the disease by inducing a dysfunctional intestinal barrier.
Collapse
Affiliation(s)
- Frida Fart
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Samira Salihović
- School of Medical Sciences, Örebro University, Örebro, Sweden.,School of Science and Technology, Örebro University, Örebro, Sweden
| | | | - Melanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Ida Schoultz
- School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
10
|
Tumu HCR, Cuffari BJ, Billack B. Combination of ebselen and hydrocortisone substantially reduces nitrogen mustard-induced cutaneous injury. Curr Res Toxicol 2021; 2:375-385. [PMID: 34806038 PMCID: PMC8585582 DOI: 10.1016/j.crtox.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
The purpose of the present study was to investigate the vesicant countermeasure effects of hydrocortisone (HC) and ebselen (EB-1), administered as monotherapy or as a combination treatment. The mouse ear vesicant model (MEVM) was utilized and test doses of HC (0.016, 0.023, 0.031, 0.047, 0.063, 0.125 or 0.250 mg/ear), EB-1 (0.125, 0.187, 0.250, 0.375 or 0.500 mg/ear) or the combination of HC + EB-1 were topically applied at 15 min, 4 h and 8 h after nitrogen mustard exposure. Ear punch biopsies were obtained 24 h after mechlorethamine (HN2) exposure. Compared to control ears, ear tissues exposed topically to HN2 (0.500 µmol/ear) presented with an increase in ear thickness, vesication, TUNEL fluorescence and expression of matrix metalloproteinase 9 (MMP-9) and inducible nitric oxide synthase (iNOS). In contrast, HN2 exposed ears treated topically with EB-1 showed a significant decrease in morphometric thickness and vesication vs. HN2 alone. Ear tissues exposed to HN2 and then treated with HC also demonstrated reductions in morphometric thickness and vesication. Combination treatment of HC + EB-1 was found to be the most effective at reducing HN2-induced ear edema and vesication. The combination also dramatically decreased HN2-mediated cutaneous expression of iNOS and MMP-9 and decreased HN2-induced TUNEL staining. Taken together, our study demonstrates that the combination of HC + EB-1 is an efficacious countermeasure to HN2.
Collapse
Affiliation(s)
- Hemanta C Rao Tumu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
| | - Benedette J. Cuffari
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
| | - Blase Billack
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
| |
Collapse
|
11
|
Hoang C, Nguyen AK, Nguyen TQ, Fang W, Han B, Hoang BX, Tran HD. Application of Dimethyl Sulfoxide as a Therapeutic Agent and Drug Vehicle for Eye Diseases. J Ocul Pharmacol Ther 2021; 37:441-451. [PMID: 34314611 DOI: 10.1089/jop.2021.0043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Dimethyl sulfoxide (DMSO) is an amphipathic molecule widely used as a solvent for water-insoluble substances, cryopreserving, and cell-biological therapies. It has known properties as an inducer of cellular differentiation, a free radical scavenger, and a radioprotectant. In addition, DMSO is used for its various therapeutic and pharmaceutical properties, such as anti-inflammatory, local and systemic analgesic, antibacterial, antifungal, antiviral, and membrane penetration enhancement agents. DMSO treatment can be given orally, intravenously, or topically for a wide range of indications. The administration of DMSO exhibits favorable outcomes in human eye diseases with low to none observed ocular or systemic ocular toxicity. Nevertheless, DMSO is an essential and nonpatentable potential therapeutic agent that remains underexplored and ignored by pharmaceutical developers and ophthalmologists. This current review takes data from experimental and clinical studies that have been published to substantiate the potential therapeutic efficacy of DMSO and stimulate the research of its application in clinical ophthalmology. Given that DMSO is inexpensive, safe, and easily formulated into therapeutic medicinal products and conventional ophthalmological drugs, this compound should be further explored and studied in the treatment of a variety of acute and chronic ocular disorders.
Collapse
Affiliation(s)
- Cuong Hoang
- Department of Training and Social Relationship, National Ophthalmological Hospital, Hanoi, Vietnam
| | - Anh Kim Nguyen
- Inventive Medical Foundation, South El Monte, California, USA
| | | | - William Fang
- Western University of Health Sciences, Pomona, California, USA
| | - Bo Han
- Department of Surgery, Keck School of Medicine University of Southern California, Los Angeles, California, USA
| | - Ba X Hoang
- Department of Surgery, Keck School of Medicine University of Southern California, Los Angeles, California, USA
| | - Hau D Tran
- Department of Oncology, National Children Hospital, Hanoi, Vietnam
| |
Collapse
|
12
|
Kondrashina A, Brodkorb A, Giblin L. Sodium butyrate converts Caco-2 monolayers into a leaky but healthy intestinal barrier resembling that of a newborn infant. Food Funct 2021; 12:5066-5076. [PMID: 33960994 DOI: 10.1039/d1fo00519g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and reliable in vitro model of the infant intestinal barrier is needed to study nutrient absorption and drug permeability specifically for this life stage. This study investigated the treatment of 20 day old differentiated Caco-2 monolayers with sodium butyrate at various concentrations (0-250 mM). Monolayer integrity, cytotoxicity, permeability and inflammatory response were tracked. An intestinal barrier model, with infant gut characteristics, was developed based on the treatment of mature monolayers with 125 mM sodium butyrate for 24 h. Such treatment was not cytotoxic but caused a stable transepithelial electrical resistance value of 408 ± 52 Ω cm2. The ratio of lactulose to mannitol transport across the intestinal barrier increased 1.79-fold. Redistribution of the tight junction proteins, occludin and ZO-1, in response to sodium butyrate treatment was visualized with immunofluorescence. Levels of the cytokines, TNF-α and IL-6, although modestly increased did not indicate an inflammatory response by Caco-2 to sodium butyrate. This intestinal barrier demonstrated physiologically relevant transport rates for dairy protein of 0.01-0.06%, suggesting it may be used to track permeability of proteins in infant nutritional products.
Collapse
Affiliation(s)
- Alina Kondrashina
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61C996, Ireland.
| | - Andre Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61C996, Ireland.
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61C996, Ireland.
| |
Collapse
|
13
|
Denner DR, Udan-Johns MLD, Nichols MR. Inhibition of matrix metalloproteinase-9 secretion by dimethyl sulfoxide and cyclic adenosine monophosphate in human monocytes. World J Biol Chem 2021; 12:1-14. [PMID: 33552397 PMCID: PMC7818474 DOI: 10.4331/wjbc.v12.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/17/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs), including MMP-9, are an integral part of the immune response and are upregulated in response to a variety of stimuli. New details continue to emerge concerning the mechanistic and regulatory pathways that mediate MMP-9 secretion. There is significant evidence for regulation of inflammation by dimethyl sulfoxide (DMSO) and 3',5'-cyclic adenosine monophosphate (cAMP), thus investigation of how these two molecules may regulate both MMP-9 and tumor necrosis factor α (TNFα) secretion by human monocytes was of high interest. The hypothesis tested in this study was that DMSO and cAMP regulate MMP-9 and TNFα secretion by distinct mechanisms.
AIM To investigate the regulation of lipopolysaccharide (LPS)-stimulated MMP-9 and tumor necrosis factor α secretion in THP-1 human monocytes by dimethyl sulfoxide and cAMP.
METHODS The paper describes a basic research study using THP-1 human monocyte cells. All experiments were conducted at the University of Missouri-St. Louis in the Department of Chemistry and Biochemistry. Human monocyte cells were grown, cultured, and prepared for experiments in the University of Missouri-St. Louis Cell Culture Facility as per accepted guidelines. Cells were treated with LPS for selected exposure times and the conditioned medium was collected for analysis of MMP-9 and TNFα production. Inhibitors including DMSO, cAMP regulators, and anti-TNFα antibody were added to the cells prior to LPS treatment. MMP-9 secretion was analyzed by gel electrophoresis/western blot and quantitated by ImageJ software. TNFα secretion was analyzed by enzyme-linked immuno sorbent assay. All data is presented as the average and standard error for at least 3 trials. Statistical analysis was done using a two-tailed paired Student t-test. P values less than 0.05 were considered significant and designated as such in the Figures. LPS and cAMP regulators were from Sigma-Aldrich, MMP-9 standard and antibody and TNFα antibodies were from R&D Systems, and amyloid-β peptide was from rPeptide.
RESULTS In our investigation of MMP-9 secretion from THP-1 human monocytes, we made the following findings. Inclusion of DMSO in the cell treatment inhibited LPS-induced MMP-9, but not TNFα, secretion. Inclusion of DMSO in the cell treatment at different concentrations inhibited LPS-induced MMP-9 secretion in a dose-dependent fashion. A cell-permeable cAMP analog, dibutyryl cAMP, inhibited both LPS-induced MMP-9 and TNFα secretion. Pretreatment of the cells with the adenylyl cyclase activator forskolin inhibited LPS-induced MMP-9 and TNFα secretion. Pretreatment of the cells with the general cAMP phosphodiesterase inhibitor IBMX reduced LPS-induced MMP-9 and TNFα in a dose-dependent fashion. Pre-treatment of monocytes with an anti-TNFα antibody blocked LPS-induced MMP-9 and TNFα secretion. Amyloid-β peptide induced MMP-9 secretion, which occurred much later than TNFα secretion. The latter two findings strongly suggested an upstream role for TNFα in mediating LPS-stimulate MMP-9 secretion.
CONCLUSION The cumulative data indicated that MMP-9 secretion was a distinct process from TNFα secretion and occurred downstream. First, DMSO inhibited MMP-9, but not TNFα, suggesting that the MMP-9 secretion process was selectively altered. Second, cAMP inhibited both MMP-9 and TNFα with a similar potency, but at different monocyte cell exposure time points. The pattern of cAMP inhibition for these two molecules suggested that MMP-9 secretion lies downstream of TNFα and that TNFα may a key component of the pathway leading to MMP-9 secretion. This temporal relationship fit a model whereby early TNFα secretion directly led to later MMP-9 secretion. Lastly, antibody-blocking of TNFα diminished MMP-9 secretion, suggesting a direct link between TNFα secretion and MMP-9 secretion.
Collapse
Affiliation(s)
- Darcy R Denner
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St Louis, MO 63121, United States
| | - Maria LD Udan-Johns
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St Louis, MO 63121, United States
| | - Michael R Nichols
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St Louis, MO 63121, United States
| |
Collapse
|
14
|
Prasad A, Sedlářová M, Balukova A, Ovsii A, Rác M, Křupka M, Kasai S, Pospíšil P. Reactive Oxygen Species Imaging in U937 Cells. Front Physiol 2020; 11:552569. [PMID: 33178031 PMCID: PMC7593787 DOI: 10.3389/fphys.2020.552569] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023] Open
Abstract
The U937 cell culture is a pro-monocytic, human histiocytic lymphoma cell line. These monocytes can differentiate into either macrophages or dendritic cells (antigen-presenting cells) depending on the initiators. The U937 cells activated in the presence of phorbol 12-myristate 13-acetate (PMA) change their morphology into macrophage-like cells creating pseudopodia and adhering generously. Macrophages are known to produce reactive oxygen species (ROS) mostly during phagocytosis of foreign particles, an important non-specific immune response. Recently, we have focused on the role of hydroxyl radical (HO∙) and provide evidence on its importance for differentiation in U937 cells. Based on electron paramagnetic resonance (EPR) spectroscopy combined with confocal laser scanning microscopy (CLSM), formation of HO∙ was confirmed within the cells undergoing differentiation and/or apoptosis during the PMA treatment. This study aims to increase our knowledge of ROS metabolism in model cell lines used in human research.
Collapse
Affiliation(s)
- Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Anastasiia Balukova
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Alina Ovsii
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Marek Rác
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Michal Křupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czechia
| | - Shigenobu Kasai
- Graduate Department of Electronics, Tohoku Institute of Technology, Sendai, Japan
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
15
|
Yi JK, Park S, Ha JJ, Kim DH, Huang H, Park SJ, Lee MH, Ryoo ZY, Kim SH, Kim MO. Effects of Dimethyl Sulfoxide on the Pluripotency and Differentiation Capacity of Mouse Embryonic Stem Cells. Cell Reprogram 2020; 22:244-253. [DOI: 10.1089/cell.2020.0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Jun-Koo Yi
- Department of Embryo Transfer Research, Gyeongbuk Livestock Research Institute, Yeongju, Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Jae-Jung Ha
- Department of Embryo Transfer Research, Gyeongbuk Livestock Research Institute, Yeongju, Korea
| | - Dae-Hyun Kim
- Department of Embryo Transfer Research, Gyeongbuk Livestock Research Institute, Yeongju, Korea
| | - Hai Huang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Korea
| | - Si-Jun Park
- Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo, Korea
- China-US (Henan) Hormel Cancer Institute, No. 127 Dongming Road, Zhengzhou, Henan, China
| | - Zae-Young Ryoo
- Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Sung-Hyun Kim
- Life Medicine Analysis Korea Polytechnics Institute, Nonsan, Korea
| | - Myoung-Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Korea
| |
Collapse
|
16
|
Elnagar MM, Samir S, Shaker YM, Abdel‐Shafi AA, Sharmoukh W, Abdel‐Aziz MS, Abou‐El‐Sherbini KS. Synthesis, characterization, and evaluation of biological activities of new 4′‐substituted ruthenium (II) terpyridine complexes: Prospective anti‐inflammatory properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Safia Samir
- Department of Biochemistry and Molecular Biology Theodor Bilharz Research Institute Giza Egypt
| | - Yasser M. Shaker
- Division of Pharmaceutical and Drug Industries, Department of the Chemistry of Natural and Microbial Products National Research Centre Giza Egypt
| | | | - Walid Sharmoukh
- Department of Inorganic Chemistry National Research Centre Giza Egypt
| | | | | |
Collapse
|
17
|
Valdez JC, Cho J, Bolling BW. Aronia berry inhibits disruption of Caco-2 intestinal barrier function. Arch Biochem Biophys 2020; 688:108409. [DOI: 10.1016/j.abb.2020.108409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
|
18
|
Nemidkanam V, Kato Y, Kubota T, Chaichanawongsaroj N. Ethyl acetate extract of Kaempferia parviflora inhibits Helicobacter pylori-associated mammalian cell inflammation by regulating proinflammatory cytokine expression and leukocyte chemotaxis. BMC Complement Med Ther 2020; 20:124. [PMID: 32321502 PMCID: PMC7179042 DOI: 10.1186/s12906-020-02927-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/14/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Kaempferia parviflora (KP) has been used in traditional Thai medicine to cure gastrointestinal disorders since ancient times. Helicobacter pylori is an initiating factor in gastric pathogenesis via activation of massive inflammation, the cumulative effect of which leads to gastric disease progression, including gastric carcinogenesis. Accordingly, the effect of a crude ethyl acetate extract of KP (CEAE-KP) on proinflammatory cytokine production and cell chemotaxis was the focus of this study. METHODS The cytotoxicity of CEAE-KP (8-128 μg/ml) on AGS (gastric adenocarcinoma) cells was determined at 6, 12 and 24 h using an MTT assay. The effect of CEAE-KP on H. pylori-induced interleukin (IL)-8 production by AGS cells was evaluated by ELISA and RT-PCR. The effect of CEAE-KP on monocyte and neutrophil chemotaxis to H. pylori soluble protein (sHP) and IL-8, respectively, was determined using a Boyden chamber assay with THP-1 or HL-60 cells. RESULTS CEAE-KP reduced AGS cell viability in a concentration- and time-dependent manner, but at 8-16 μg/ml, it was not cytotoxic after 6-24 h of exposure. Coculture of AGS cells with CEAE-KP at a noncytotoxic concentration of 16 μg/ml and H. pylori reduced IL-8 secretion by ~ 60% at 12 h, which was consistent with the decreased level of mRNA expression, and inhibited neutrophil chemotaxis to IL-8. sHP (100 ng/ml) induced marked monocyte chemoattraction, and this was decreased by ~ 60% by CEAE-KP. CONCLUSION CEAE-KP might serve as a potent alternative medicine to ameliorate the inflammation mediated by H. pylori infection.
Collapse
Affiliation(s)
- Variya Nemidkanam
- Program of Molecular Sciences in Medical Microbiology and Immunology, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Yuko Kato
- Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan
| | - Tetsuo Kubota
- Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan
| | - Nuntaree Chaichanawongsaroj
- Research Unit of Innovative Diagnosis of Antimicrobial Resistance, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, Bangkok, Thailand.
| |
Collapse
|
19
|
Krajčíková K, Suváková M, Glinská G, Ohlasová J, Tomečková V. Stability of natural polyphenol fisetin in eye drops Stability of fisetin in eye drops. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractFisetin is a polyphenolic compound with anti-inflammatory and antioxidant properties. Inflammation and reactive oxygen species play a major role in the pathophysiology of the dry eye syndrome (DES). Patients with DES undergo symptomatic treatment using eye drops known as artificial tears. Addition of fisetin into the eye drops could result in a better recovery of the eye surface. This experimental study examines the stability of fisetin in selected eye drops (Arufil, Hypromelóza-P, Ocutein, Refresh). Absorption spectra of fisetin were measured in selected eye drops, dimethylsulphoxide (DMSO), deionized water and normal saline solution (NSS) during a period of four weeks. The fisetin absorption maximum was placed at 350 – 390 nm depending on the solvent. Good stability of fisetin solutions were observed in DMSO and deionized water. The highest stability of fisetin in selected eye drops was observed in Hypromelóza-P. Irreversible fisetin structural changes were detected in Arufil, Ocutein, Refresh and NSS. For further clinical evaluation, fisetin solution in Hypromelóza-P could be examined.
Collapse
Affiliation(s)
- Kristína Krajčíková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, 04011, Slovakia
| | - Mária Suváková
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, 04154, Slovakia
| | - Gabriela Glinská
- Ophthalmology Clinic, PROOKO, spol. s.r.o., Košice, 04001, Slovakia
| | - Jana Ohlasová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, 04011, Slovakia
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, 04011, Slovakia
| |
Collapse
|
20
|
Guo W, Qiu W, Ao X, Li W, He X, Ao L, Hu X, Li Z, Zhu M, Luo D, Xing W, Xu X. Low-concentration DMSO accelerates skin wound healing by Akt/mTOR-mediated cell proliferation and migration in diabetic mice. Br J Pharmacol 2020; 177:3327-3341. [PMID: 32167156 DOI: 10.1111/bph.15052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE DMSO has been found to promote tissue repair. However, the role of DMSO in diabetic skin wound healing and the underlying molecular mechanisms are still unclear. EXPERIMENTAL APPROACH The effects of DMSO on wound healing were evaluated by HE staining, immunohistochemistry and collagen staining using a wound model of full-thickness skin resection on the backs of non-diabetic or diabetic mice. Real-time cell analysis and 5-ethynyl-2'-deoxyuridine incorporation assays were used to study the effect of DMSO on primary fibroblast proliferation. A transwell assay was used to investigate keratinocyte migration. The associated signalling pathway was identified by western blotting and inhibitor blocking. The effect of DMSO on the translation rate of downstream target genes was studied by RT-qPCR of polyribosome mRNA. KEY RESULTS We found that low-concentration DMSO significantly accelerated skin wound closure by promoting fibroblast proliferation in both nondiabetic and diabetic mice. In addition, increased migration of keratinocytes may also contribute to accelerated wound healing, which was stimulated by increased TGF-β1 secretion from fibroblasts. Furthermore, we demonstrated that this effect of DMSO depends on Akt/mTOR-mediated translational control and the promotion of the translation of a set of cell proliferation-related genes. As expected, DMSO-induced wound healing and cell proliferation were impaired by rapamycin, an inhibitor of Akt/mTOR signalling. CONCLUSION AND IMPLICATIONS DMSO can promote skin wound healing in diabetic mice by activating the Akt/mTOR pathway. Low-concentration DMSO presents an alternative medication for chronic cutaneous wounds, especially for diabetic patients.
Collapse
Affiliation(s)
- Wei Guo
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Wei Qiu
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Xiang Ao
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Weiqiang Li
- Department of Stem Cell & Regenerative Medicine.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, P.R. China
| | - Xiao He
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Luoquan Ao
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Xueting Hu
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Zhan Li
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Ming Zhu
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Donglin Luo
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wei Xing
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, P.R. China
| |
Collapse
|
21
|
Huang SH, Wu CH, Chen SJ, Sytwu HK, Lin GJ. Immunomodulatory effects and potential clinical applications of dimethyl sulfoxide. Immunobiology 2020; 225:151906. [PMID: 31987604 DOI: 10.1016/j.imbio.2020.151906] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
Dimethyl sulfoxide (DMSO) was discovered during the 19th century by the German chemical industry. DMSO comprises a highly polar group and two non-polar domains, which render it soluble in both aqueous solutions and organic solutions. Furthermore, DMSO can penetrate the cell membrane of both the mammalian cells and the non-mammalian cells and prevent freeze-thaw injuries to the cells. Thus, it is frequently used for the cryopreservation of cells and tissues for laboratory and clinical applications. In contrast to this traditional application, DMSO has recently been shown to possess immunomodulatory effects, such as immune enhancement, and anti-inflammatory effects in the innate immunity. In addition, DMSO also affects the adaptive immunity by regulating the expression of transcription factors in immune cells. This review briefly summarizes and highlights the roles and immunomodulatory effects of DMSO on the immune system and reveals the future clinical therapeutic potential of DMSO treatment in cancer, in autoimmune diseases and in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Shing-Hwa Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan; Department of General Surgery, En Chu Kong Hospital, New Taipei, Taiwan
| | - Chih-Hsiung Wu
- Department of General Surgery, En Chu Kong Hospital, New Taipei, Taiwan
| | - Shyi-Jou Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
22
|
Schmutz C, Cenk E, Marko D. The Alternaria Mycotoxin Alternariol Triggers the Immune Response of IL-1β-stimulated, Differentiated Caco-2 Cells. Mol Nutr Food Res 2019; 63:e1900341. [PMID: 31584250 PMCID: PMC6856692 DOI: 10.1002/mnfr.201900341] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/20/2019] [Indexed: 11/12/2022]
Abstract
SCOPE Alternariol (AOH), a toxic secondary metabolite of Alternaria spp., may contaminate a broad spectrum of food and feed. Besides its cytotoxic, genotoxic, and estrogenic properties, several studies report the potential of AOH to suppress the rich network of immune responses. The specific effect of AOH on inflammation-related signaling in non-immune cells of the intestinal epithelial layer has, however, not been investigated yet. Since intestinal epithelial cells (IECs) are, compared to underlying cells, exposed to higher concentrations of the ingested mycotoxin, the question is addressed whether immunomodulation by AOH at the gastrointestinal barrier must be considered. METHODS AND RESULTS The impact of AOH (0.02-40 µm) on inflammatory signaling in either IL-1β-stimulated or non-stimulated differentiated Caco-2 cells is determined. AOH significantly reduces IL-1β transcription after 5 h but shows an increasing tendency on IL-8 transcript levels after long-term exposure (20 h). In IL-1β-stimulated cells, AOH (20-40 µm) augments TNF-α transcripts while repressing IL-8, IL-6, and IL-1β transcription as well as IL-8 secretion. Furthermore, inflammation-related microRNAs miR-16, miR-146a, miR-125b, and miR-155 are altered in response to AOH. CONCLUSION The obtained data indicate that AOH represses immune responses in an inflamed environment, possibly leading to higher susceptibility to diseases.
Collapse
Affiliation(s)
- Cornelia Schmutz
- University of ViennaFaculty of ChemistryDepartment of Food Chemistry and ToxicologyWaehringerstr. 38A‐1090ViennaAustria
| | - Ebru Cenk
- University of ViennaFaculty of ChemistryDepartment of Food Chemistry and ToxicologyWaehringerstr. 38A‐1090ViennaAustria
| | - Doris Marko
- University of ViennaFaculty of ChemistryDepartment of Food Chemistry and ToxicologyWaehringerstr. 38A‐1090ViennaAustria
| |
Collapse
|
23
|
Lipid-Rich Extract from Mexican Avocado Seed ( Persea americana var. drymifolia) Reduces Staphylococcus aureus Internalization and Regulates Innate Immune Response in Bovine Mammary Epithelial Cells. J Immunol Res 2019; 2019:7083491. [PMID: 31612151 PMCID: PMC6757280 DOI: 10.1155/2019/7083491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
Bovine mammary epithelial cells (bMECs) are capable of initiating an innate immune response (IIR) to invading bacteria. Staphylococcus aureus is not classically an intracellular pathogen, although it has been shown to be internalized into bMECs. S. aureus internalizes into nonprofessional phagocytes, which allows the evasion of the IIR and turns antimicrobial therapy unsuccessful. An alternative treatment to control this pathogen is the modulation of the innate immune response of the host. The Mexican avocado (Persea americana var. drymifolia) is a source of molecules with anti-inflammatory and immunomodulatory properties. Hence, we analyze the effect of a lipid-rich extract from avocado seed (LEAS) on S. aureus internalization into bMECs and their innate immunity response. The effects of LEAS (1-500 ng/ml) on the S. aureus growth and bMEC viability were assessed by turbidimetry and MTT assays, respectively. LEAS did not show neither antimicrobial nor cytotoxic effects. S. aureus internalization into bMECs was analyzed by gentamicin protection assays. Interestingly, LEAS (1-200 ng/ml) decreased bacterial internalization (60-80%) into bMECs. This effect correlated with NO production and the induction of the gene expression of IL-10, while the expression of the proinflammatory cytokine TNF-α was reduced. These effects could be related to the inhibition of MAPK p38 (∼60%) activation by LEAS. In conclusion, our results showed that LEAS inhibits the S. aureus internalization into bMECs and modulates the IIR, which indicates that avocado is a source of metabolites for control of mastitis pathogens.
Collapse
|
24
|
Tumu HCR, Cuffari BJ, Pino MA, Palus J, Piętka-Ottlik M, Billack B. Ebselen oxide attenuates mechlorethamine dermatotoxicity in the mouse ear vesicant model. Drug Chem Toxicol 2018; 43:335-346. [DOI: 10.1080/01480545.2018.1488858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hemanta C. Rao Tumu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
| | - Benedette J. Cuffari
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
| | - Maria A. Pino
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
- Department of Clinical Specialties, NYIT College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Jerzy Palus
- Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Magdalena Piętka-Ottlik
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Blase Billack
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
| |
Collapse
|
25
|
Ferreira NH, Furtado RA, Ribeiro AB, de Oliveira PF, Ozelin SD, de Souza LDR, Neto FR, Miura BA, Magalhães GM, Nassar EJ, Tavares DC. Europium(III)-doped yttrium vanadate nanoparticles reduce the toxicity of cisplatin. J Inorg Biochem 2018; 182:9-17. [DOI: 10.1016/j.jinorgbio.2018.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/29/2017] [Accepted: 01/22/2018] [Indexed: 12/29/2022]
|
26
|
Nagy Z, Nagy M, Kiss A, Rácz D, Barna B, Könczöl P, Bankó C, Bacsó Z, Kéki S, Banfalvi G, Szemán-Nagy G. MICAN, a new fluorophore for vital and non-vital staining of human cells. Toxicol In Vitro 2018; 48:137-145. [PMID: 29357300 DOI: 10.1016/j.tiv.2018.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 12/27/2022]
Abstract
Fluorescence time-lapse microscopy is in connection with the invasive properties of fluorochrome applied, and with the toxicity of the excitation energy and wavelength of the dye itself. Experiments with the newly synthesized fluorescent dye 1-N-methylamino-5-isocyanonaphthalene (MICAN) served to test its cytotoxicity on human HaCaT keratinocyte cell cultures. Experiments related to staining capability were performed with paraformaldehyde (PFA) fixed cells and observed with fluorescence microscope. It was assumed that the fluorophore 1-amino-5-isocyanonaphthalene (ICAN) and especially its N-methylamino derivative MICAN, containing condensed aromatic rings could serve as a nonselective fluorescent dye capable to stain cellular structures of fixed, living, damaged and dead cells. This notion was confirmed by the MICAN staining of cytoplasmic proteins primarily rough endoplasmic reticulum (RER), smooth endoplasmic reticulum (SEM) and less efficiently nuclear proteins suggesting the involvement of staining of subcellular structures involved in protein synthesis. MICAN was not only well tolerated by living cells but turned out to be a strong heterochromatin and RER staining agent. This led to the development of a MICAN staining protocol for native and living samples. Relative to other fluorescent dyes, MICAN is not only useful but also cost-effective. Toxicology tests were performed using 30, 10, 5, 0.5 μg/ml MICAN concentrations. Time-lapse videomicroscopy at near-infrared (NIR) illumination has been used for the examination of MICAN effect on cell division. It was found that MICAN as a vital stain had no significant harmful effect on HaCaT cells. MICAN turned out to be a non-toxic, highly quantum-efficient vital stain with minimal, or no photobleaching, and can be applied to co-stain with propidium-iodide due the strong spectral separation.
Collapse
Affiliation(s)
- Zsolt Nagy
- Department of Applied Chemistry, Faculty of Science, University of Debrecen, 4010, Hungary
| | - Miklós Nagy
- Department of Applied Chemistry, Faculty of Science, University of Debrecen, 4010, Hungary
| | - Alexandra Kiss
- Department of Biotechnology and Microbiology, Faculty of Science, University of Debrecen, 4010, Hungary
| | - Dávid Rácz
- Department of Applied Chemistry, Faculty of Science, University of Debrecen, 4010, Hungary
| | - Beatrix Barna
- Department of Biotechnology and Microbiology, Faculty of Science, University of Debrecen, 4010, Hungary
| | - Péter Könczöl
- Department of Biotechnology and Microbiology, Faculty of Science, University of Debrecen, 4010, Hungary
| | - Csaba Bankó
- University of Debrecen, Medical and Health Science Center, Faculty of Medicine, Department of Biophysics and Cell Biology, 4010, Hungary
| | - Zsolt Bacsó
- University of Debrecen, Medical and Health Science Center, Faculty of Medicine, Department of Biophysics and Cell Biology, 4010, Hungary
| | - Sándor Kéki
- Department of Applied Chemistry, Faculty of Science, University of Debrecen, 4010, Hungary.
| | - Gaspar Banfalvi
- Department of Biotechnology and Microbiology, Faculty of Science, University of Debrecen, 4010, Hungary.
| | - Gábor Szemán-Nagy
- Department of Biotechnology and Microbiology, Faculty of Science, University of Debrecen, 4010, Hungary
| |
Collapse
|
27
|
Santos J, Milthorpe BK, Herbert BR, Padula MP. Proteomic Analysis of Human Adipose Derived Stem Cells during Small Molecule Chemical Stimulated Pre-neuronal Differentiation. Int J Stem Cells 2017; 10:193-217. [PMID: 28844130 PMCID: PMC5741201 DOI: 10.15283/ijsc17036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2017] [Indexed: 11/09/2022] Open
Abstract
Background Adipose derived stem cells (ADSCs) are acquired from abdominal liposuction yielding a thousand fold more stem cells per millilitre than those from bone marrow. A large research void exists as to whether ADSCs are capable of transdermal differentiation toward neuronal phenotypes. Previous studies have investigated the use of chemical cocktails with varying inconclusive results. Methods Human ADSCs were treated with a chemical stimulant, beta-mercaptoethanol, to direct them toward a neuronal-like lineage within 24 hours. Quantitative proteomics using iTRAQ was then performed to ascertain protein abundance differences between ADSCs, beta-mercaptoethanol treated ADSCs and a glioblastoma cell line. Results The soluble proteome of ADSCs differentiated for 12 hours and 24 hours was significantly different from basal ADSCs and control cells, expressing a number of remodeling, neuroprotective and neuroproliferative proteins. However toward the later time point presented stress and shock related proteins were observed to be up regulated with a large down regulation of structural proteins. Cytokine profiles support a large cellular remodeling shift as well indicating cellular distress. Conclusion The earlier time point indicates an initiation of differentiation. At the latter time point there is a vast loss of cell population during treatment. At 24 hours drastically decreased cytokine profiles and overexpression of stress proteins reveal that exposure to beta-mercaptoethanol beyond 24 hours may not be suitable for clinical application as our results indicate that the cells are in trauma whilst producing neuronal-like morphologies. The shorter treatment time is promising, indicating a reducing agent has fast acting potential to initiate neuronal differentiation of ADSCs.
Collapse
Affiliation(s)
- Jerran Santos
- Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, NSW, Australia.,Proteomics Core Facility, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Bruce K Milthorpe
- Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Benjamin R Herbert
- Northern Clinical School, Sydney Medical School, University of Sydney, NSW, Australia
| | - Matthew P Padula
- Proteomics Core Facility, School of Life Sciences, University of Technology Sydney, NSW, Australia
| |
Collapse
|
28
|
de Abreu Costa L, Henrique Fernandes Ottoni M, Dos Santos MG, Meireles AB, Gomes de Almeida V, de Fátima Pereira W, Alves de Avelar-Freitas B, Eustáquio Alvim Brito-Melo G. Dimethyl Sulfoxide (DMSO) Decreases Cell Proliferation and TNF-α, IFN-γ, and IL-2 Cytokines Production in Cultures of Peripheral Blood Lymphocytes. Molecules 2017; 22:molecules22111789. [PMID: 29125561 PMCID: PMC6150313 DOI: 10.3390/molecules22111789] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 02/03/2023] Open
Abstract
Dimethylsulfoxide (DMSO) is an amphipathic molecule composed of a polar domain characterized by the sulfinyl and two nonpolar methyl groups, for this reason it is able to solubilize polar and nonpolar substances and transpose hydrophobic barriers. DMSO is widely used to solubilize drugs of therapeutic applications and studies indicated that 10% v/v concentration did not modify culture viability when used to treat human peripheral blood mononuclear cells (PBMC). However, some DMSO concentrations could influence lymphocyte activation and present anti-inflammatory effects. Therefore, the objective of this study was to evaluate the effect of DMSO on lymphocyte activation parameters. Cell viability analysis, proliferation, and cytokine production were performed on PBMC from six healthy subjects by flow cytometry. The results indicated that 2.5% v/v DMSO concentrations did not modify lymphocytes viability. DMSO at 1% and 2% v/v concentrations reduced the relative proliferation index of lymphocytes and at 5% and 10% v/v concentrations reduced the percentage of total lymphocytes, cluster of differentiation 4+ (CD4+) T lymphocytes and CD8+ T lymphocytes interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2) producers. Thus, it was concluded that DMSO has an in vitro anti-inflammatory effect by reducing lymphocyte activation demonstrated with proliferation reduction and the decrease of cytokine production.
Collapse
Affiliation(s)
- Lucas de Abreu Costa
- Immunology Laboratory, Integrated Center for Health Research, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, MG 39100-000, Brazil.
- Multicenter Graduate Program in Physiological Sciences/UFVJM Graduate Program in Pharmaceutical Sciences/UFVJM, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, MG 39100-000, Brazil.
| | - Marcelo Henrique Fernandes Ottoni
- Immunology Laboratory, Integrated Center for Health Research, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, MG 39100-000, Brazil.
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, MG 39100-000, Brazil.
| | - Michaelle Geralda Dos Santos
- Immunology Laboratory, Integrated Center for Health Research, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, MG 39100-000, Brazil.
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, MG 39100-000, Brazil.
| | - Agnes Batista Meireles
- Immunology Laboratory, Integrated Center for Health Research, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, MG 39100-000, Brazil.
- Multicenter Graduate Program in Physiological Sciences/UFVJM Graduate Program in Pharmaceutical Sciences/UFVJM, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, MG 39100-000, Brazil.
| | - Valéria Gomes de Almeida
- Immunology Laboratory, Integrated Center for Health Research, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, MG 39100-000, Brazil.
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, MG 39100-000, Brazil.
| | - Wagner de Fátima Pereira
- Immunology Laboratory, Integrated Center for Health Research, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, MG 39100-000, Brazil.
| | - Bethânia Alves de Avelar-Freitas
- Immunology Laboratory, Integrated Center for Health Research, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, MG 39100-000, Brazil.
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, MG 39100-000, Brazil.
| | - Gustavo Eustáquio Alvim Brito-Melo
- Immunology Laboratory, Integrated Center for Health Research, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, MG 39100-000, Brazil.
- Multicenter Graduate Program in Physiological Sciences/UFVJM Graduate Program in Pharmaceutical Sciences/UFVJM, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, MG 39100-000, Brazil.
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, MG 39100-000, Brazil.
| |
Collapse
|
29
|
Yi X, Liu M, Luo Q, Zhuo H, Cao H, Wang J, Han Y. Toxic effects of dimethyl sulfoxide on red blood cells, platelets, and vascular endothelial cells in vitro. FEBS Open Bio 2017; 7:485-494. [PMID: 28396834 PMCID: PMC5377396 DOI: 10.1002/2211-5463.12193] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/17/2016] [Accepted: 12/29/2016] [Indexed: 01/29/2023] Open
Abstract
Dimethyl sulfoxide (DMSO) is widely used in biological studies as a cryoprotective agent for cells and tissues, and also for cryopreserved platelets (PLTs). However, few data on the toxic effects of DMSO following intravenous infusion of cryopreserved PLTs are available. The aim of this study was to explore dose-related effects of DMSO on red blood cells (RBCs), PLTs and vascular endothelial cells in vitro. The results showed that DMSO treatments had significant effects on RBCs, affecting osmotic fragility and increasing hemolysis. Free hemoglobin (FHb) level of RBCs was 0.64 ± 0.19 g L-1 after incubation for 6 h with 0.6% DMSO, and these levels were elevated compared with controls (0.09 ± 0.05 g L-1). Aggregation of PLTs induced by adenosine diphosphate, thrombin (THR), and thrombin receptor activator peptide (TRAP) were inhibited by DMSO treatment because the THR generation capacity was reduced. The intensity of the cytosolic esterase-induced fluorescence response from carboxy dimethyl fluorescein diacetate (CMFDA) in PLTs was decreased about 29% ± 0.04% after treatment with DMSO. DMSO also inhibited the proliferation of the vascular endothelial cell line EAhy926 cells by blocking the G1 phase. Apoptosis of EAhy926 cells with 0.6% DMSO stimulation was increased threefold compared to controls. On the basis of these findings, it was concluded that DMSO was toxic to the hematologic system. This should be taken into account when assessing the infusion effects of cryopreserved PLTs or other blood products requiring DMSO as a vehicle, such as cryopreserved stem cells, in order to avoid adverse therapeutic effects.
Collapse
Affiliation(s)
- Xiaoyang Yi
- Beijing Institute of Transfusion Medicine Beijing China
| | - Minxia Liu
- Beijing Institute of Transfusion Medicine Beijing China
| | - Qun Luo
- Department of Transfusion Affiliated Hospital of Academy of Military Medical Sciences Beijing China
| | - Hailong Zhuo
- Department of Transfusion Affiliated Hospital of Academy of Military Medical Sciences Beijing China
| | - Hui Cao
- Beijing Red Cross Blood Center Beijing China
| | - Jiexi Wang
- Beijing Institute of Transfusion Medicine Beijing China
| | - Ying Han
- Beijing Institute of Transfusion Medicine Beijing China
| |
Collapse
|
30
|
Determination of five alcohol compounds in fermented Korean foods via simple liquid extraction with dimethyl-sulfoxide followed by gas chromatography-mass spectrometry for Halal food certification. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.08.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
All-trans retinoic acid (ATRA) prevents lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment in aged rats. J Neuroimmunol 2016; 300:21-29. [DOI: 10.1016/j.jneuroim.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/12/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022]
|
32
|
Kim JC, Shim YS. Method validation of analytical method for 12 flavonol glycosides in foods using ultra high-performance liquid chromatography coupled with photodiode array detection. Food Sci Biotechnol 2016; 25:659-664. [PMID: 30263320 DOI: 10.1007/s10068-016-0116-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 12/01/2022] Open
Abstract
An analytical method for the simultaneous determination of 12 flavonol glycosides in buckwheat, black tea, and wild parsley using ultra high-performance liquid chromatography (UHPLC) coupled with a simple liquid extraction method using dimethyl sulfoxide (DMSO) was validated in precision, accuracy, and linearity. The UHPLC separation of target compounds was performed on a C18 column using a photodiode array (PDA) detector and the wavelength was fixed at 350 nm. The recovery values for flavonol glycosides ranged from 85.44 to 108.79%. The limits of detection and limits of quantification were less than 0.32 mg/kg and less than 0.97 mg/kg, respectively. The intraday and interday precisions were less than 13.69% for all the test samples. This method coupled with UHPLCPDA detection could be expected to provide more convenient sample preparation than conventional methods in the tested foods.
Collapse
Affiliation(s)
- Jong-Chan Kim
- 1Food Standard Research Center, Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| | - You-Shin Shim
- 1Food Standard Research Center, Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea.,2Department of Food Biotechnology, University of Science & Technology, Daejeon, 34113 Korea
| |
Collapse
|
33
|
Elisia I, Nakamura H, Lam V, Hofs E, Cederberg R, Cait J, Hughes MR, Lee L, Jia W, Adomat HH, Guns ES, McNagny KM, Samudio I, Krystal G. DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis. PLoS One 2016; 11:e0152538. [PMID: 27031833 PMCID: PMC4816398 DOI: 10.1371/journal.pone.0152538] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/15/2016] [Indexed: 01/03/2023] Open
Abstract
Dimethyl sulfoxide (DMSO) is currently used as an alternative treatment for various inflammatory conditions as well as for cancer. Despite its widespread use, there is a paucity of data regarding its safety and efficacy as well as its mechanism of action in human cells. Herein, we demonstrate that DMSO has ex-vivo anti-inflammatory activity using Escherichia coli- (E. coli) and herpes simplex virus-1 (HSV-1)-stimulated whole human blood. Specifically, we found that between 0.5%-2%, DMSO significantly suppressed the expression of many pro-inflammatory cytokines/chemokines and prostaglandin E2 (PGE2). However, a significant reduction in monocyte viability was also observed at 2% DMSO, suggesting a narrow window of efficacy. Anti-inflammatory concentrations of DMSO suppressed E. coli-induced ERK1/2, p38, JNK and Akt phosphorylation, suggesting DMSO acts on these signaling pathways to suppress inflammatory cytokine/chemokine production. Although DMSO induces the differentiation of B16/F10 melanoma cells in vitro, topical administration of DMSO to mice subcutaneously implanted with B16 melanoma cells was ineffective at reducing tumor growth, DMSO was also found to block mouse macrophages from polarizing to either an M1- or an M2-phenotype, which may contribute to its inability to slow tumor growth. Topical administration of DMSO, however, significantly mitigated K/BxN serum-induced arthritis in mice, and this was associated with reduced levels of pro-inflammatory cytokines in the joints and white blood cell levels in the blood. Thus, while we cannot confirm the efficacy of DMSO as an anti-cancer agent, the use of DMSO in arthritis warrants further investigation to ascertain its therapeutic potential.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Hisae Nakamura
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Vivian Lam
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Elyse Hofs
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Rachel Cederberg
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Jessica Cait
- The Biomedical Research Centre, University of British Columbia, Vancouver, B.C., Canada
| | - Michael R. Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, B.C., Canada
| | - Leora Lee
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - William Jia
- The Brain Research Centre, University of British Columbia, Vancouver, B.C., Canada
| | - Hans H. Adomat
- The Vancouver Prostate Centre at Vancouver General Hospital, Vancouver, B.C., Canada
| | - Emma S. Guns
- The Vancouver Prostate Centre at Vancouver General Hospital, Vancouver, B.C., Canada
| | - Kelly M. McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, B.C., Canada
| | - Ismael Samudio
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| |
Collapse
|
34
|
Catalpol reduces the production of inflammatory mediators via PPAR-γ activation in human intestinal Caco-2 cells. J Nat Med 2016; 70:620-6. [DOI: 10.1007/s11418-016-0988-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023]
|
35
|
Li YM, Wang HB, Zheng JG, Bai XD, Zhao ZK, Li JY, Hu S. Dimethyl sulfoxide inhibits zymosan-induced intestinal inflammation and barrier dysfunction. World J Gastroenterol 2015; 21:10853-10865. [PMID: 26478676 PMCID: PMC4600586 DOI: 10.3748/wjg.v21.i38.10853] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/25/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether dimethyl sulfoxide (DMSO) inhibits gut inflammation and barrier dysfunction following zymosan-induced systemic inflammatory response syndrome and multiple organ dysfunction syndrome.
METHODS: Sprague-Dawley rats were randomly divided into four groups: sham with administration of normal saline (SS group); sham with administration of DMSO (SD group); zymosan with administration of normal saline (ZS group); and zymosan with administration of DMSO (ZD group). Each group contained three subgroups according to 4 h, 8 h, and 24 h after surgery. At 4 h, 8 h, and 24 h after intraperitoneal injection of zymosan (750 mg/kg), the levels of intestinal inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-10] and oxides (myeloperoxidase, malonaldehyde, and superoxide dismutase) were examined. The levels of diamine oxidase (DAO) in plasma and intestinal mucosal blood flow (IMBF) were determined. Intestinal injury was also evaluated using an intestinal histological score and apoptosis of intestinal epithelial cells was determined by deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The intestinal epithelial tight junction protein, ZO-1, was observed by immunofluorescence.
RESULTS: DMSO decreased TNF-α and increased IL-10 levels in the intestine compared with the ZS group at the corresponding time points. The activity of intestinal myeloperoxidase in the ZS group was higher than that in the ZD group 24 h after zymosan administration (P < 0.05). DMSO decreased the content of malondialdehyde (MDA) and increased the activity of superoxide dehydrogenase (SOD) 24 h after zymosan administration. The IMBF was lowest at 24 h and was 49.34% and 58.26% in the ZS group and ZD group, respectively (P < 0.05). DMSO alleviated injury in intestinal villi, and the gut injury score was significantly lower than the ZS group (3.6 ± 0.2 vs 4.2 ± 0.3, P < 0.05). DMSO decreased the level of DAO in plasma compared with the ZS group (65.1 ± 4.7 U/L vs 81.1 ± 5.0 U/L, P < 0.05). DMSO significantly preserved ZO-1 protein expression and localization 24 h after zymosan administration. The TUNEL analysis indicated that the number of apoptotic intestinal cells in the ZS group was much higher than the ZD group (P < 0.05).
CONCLUSION: DMSO inhibited intestinal cytokines and protected against zymosan-induced gut barrier dysfunction.
Collapse
|
36
|
Şimşek E, Aydemir EA, İmir N, Koçak O, Kuruoğlu A, Fışkın K. Dimethyl sulfoxide-caused changes in pro- and anti-angiogenic factor levels could contribute to an anti-angiogenic response in HeLa cells. Neuropeptides 2015; 53:37-43. [PMID: 26275957 DOI: 10.1016/j.npep.2015.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 12/31/2022]
Abstract
Dimethyl sulfoxide (DMSO) is widely used in biological research as a general solvent. While it has been previously demonstrated that DMSO possesses a wide range of pharmacological effects, there is no published work regarding the effects of DMSO on pro-angiogenic factor levels. This study was designed to investigate the possible effects of DMSO on the levels of three pro-angiogenic factors released from HeLa cells in vitro. Cells were treated with two different and previously determined concentrations of DMSO. The cytotoxic effects of DMSO concentrations on HeLa cells were determined via MTT. Survival rates of DMSO-treated cells were determined by Invitrogen live/dead viability/cytotoxicity kit and trypan blue exclusion assay. Changes in the pro-angiogenic levels in media were evaluated by Cayman's Substance P Enzyme Immunoassay ELISA kit. Vascular endothelial growth factor ELISA kit and interferon gamma ELISA kit for substance P, VEGF and IFNγ respectively. Changes in substance P levels were corrected by standard western blotting. Changes in VEGF and IFNγ levels were corrected both by western blot and real time PCR. Treatment with 1.4 μM DMSO caused a time-dependent inhibition of cell proliferation at 24, 48 and 72 h. 1.4 μM DMSO caused a significant reduction in VEGF levels at 72 h of incubation and sharp increases in IFNγ levels at both 48 and 72 h of incubation. According to real time PCR analyses, DMSO (1.4 μM) exhibited an inhibitory effect on VEGF but acted as an augmenter of IFNγ release on HeLa cells in vitro. This is the first report showing that the general solvent DMSO suppressed HeLa cell proliferation, decreased the levels of two pro-angiogenic factors (substance P and VEGF) and increased the release of an anti-angiogenic factor IFNγ in vitro.
Collapse
Affiliation(s)
- Ece Şimşek
- Department of Nutrition and Dietetics, Antalya School of Health, Akdeniz University, 07058 Antalya, Turkey.
| | - Esra Arslan Aydemir
- Department of Biology, Faculty of Arts and Sciences, Akdeniz University, 07058 Antalya, Turkey.
| | - Nilüfer İmir
- Department of Biology Education, Faculty of Education, Institute of Life Sciences, Akdeniz University, 07058 Antalya, Turkey.
| | - Orhan Koçak
- Department of Biology, Faculty of Arts and Sciences, Akdeniz University, 07058 Antalya, Turkey.
| | - Aykut Kuruoğlu
- Department of Biology, Faculty of Arts and Sciences, Akdeniz University, 07058 Antalya, Turkey.
| | - Kayahan Fışkın
- Department of Biology, Faculty of Arts and Sciences, Akdeniz University, 07058 Antalya, Turkey.
| |
Collapse
|
37
|
Adefolaju GA, Theron KE, Hosie MJ. BAX/BCL-2 mRNA and protein expression in human breast MCF-7 cells exposed to drug vehicles-methanol and dimethyl sulfoxide (DMSO) for 24 hrs. Niger Med J 2015; 56:169-74. [PMID: 26229223 PMCID: PMC4518331 DOI: 10.4103/0300-1652.160349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: Methanol and DMSO are commonly used as carrier solvents for lipophilic chemicals in in-vitro experiments. However, very little information is available regarding the effects of these solvents on the expression of pro and anti-apoptotic genes and proteins. Materials and Methods: In this study, we examined the cytotoxic effects of methanol and dimethylsulfoxide at 0.5% (final concentrations recommended for in-vitro toxicity assays) on human breast cancer MCF-7 cells. We also investigated the effects of these solvents on the mRNA and immunocytochemical expression of apoptotic proteins BAX and BCL-2. Results: The results of neutral red cell viability assay showed that methanol and DMSO concentrations of 0.5% exhibited no cytotoxic effects on MCF-7 cells following a 24 hour exposure. Gene expression and Immunofluorescence results showed that methanol but not DMSO reduced the expression of the BAX pro-apoptotic protein, while both solvents did not alter the expression of the BCL-2 oncoprotein. Conclusion: Our results suggest that while methanol concentrations at 0.5% may be appropriate for in vitro toxicity studies in human breast cancer MCF-7 cells, it could alter the results of gene and protein expression experiments.
Collapse
Affiliation(s)
- Gbenga Anthony Adefolaju
- School of Anatomical Sciences, Wits Medical School, University of the Witwatersrand, Johannesburg, South Africa ; Department of Medical Sciences, Public Health and Health Promotion, School of Health Sciences, University of Limpopo, Sovenga, South Africa ; Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, Nigeria, South Africa
| | - Kathrine E Theron
- Department of Medical Sciences, Public Health and Health Promotion, School of Health Sciences, University of Limpopo, Sovenga, South Africa
| | - Margot Jill Hosie
- School of Anatomical Sciences, Wits Medical School, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
38
|
Sricharoen P, Techawongstein S, Chanthai S. A high correlation indicating for an evaluation of antioxidant activity and total phenolics content of various chilli varieties. Journal of Food Science and Technology 2015; 52:8077-85. [PMID: 26604380 DOI: 10.1007/s13197-015-1931-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/17/2015] [Accepted: 06/26/2015] [Indexed: 01/23/2023]
Abstract
Use of dimethyl sulfoxide (DMSO) as a suitable extraction solvent under the optimum conditions of microwave assisted extraction (MAE) prior to total phenolics determination and antioxidant activity assay was conducted. The MAE method was done with 0.05 g sample in 10 mL DMSO at 500 W within 5 min. The effects of DMSO on various antioxidant activities using DPPH(·+), DMPD(·+), ABTS(·+) and FRAP, and Folin-Ciocalteu reagent were investigated. From the results, it is clearly demonstrated that the DMSO itself shows no effect on any of those antioxidant assays including total phenolics content. The DMSO extracts of 14 local chilli varieties gave their antioxidant activities in the following ranges: DPPH, 3.07-20.0; DMPD, 1.52-6.61; ABTS, 20.4-56.0; FRAP, 8.98-42.1 mg GA/g DW. Their total phenolics contents were found in the range of 53.7-200 mg GA/g DW. This study demonstrates that DMSO was found as the most suitable extraction solvent for antioxidants and phenolics from chilli. In addition, analysis of the data obtained among four antioxidant activity assays with respect to total phenolics shows a highly significant and positive regression coefficient (r > 0.92), indicating the total phenolics are primarily responsible for their antioxidant activity of the chilli extract.
Collapse
Affiliation(s)
- Phitchan Sricharoen
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Suchila Techawongstein
- Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Saksit Chanthai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand
| |
Collapse
|
39
|
The impact of ATRA on shaping human myeloid cell responses to epithelial cell-derived stimuli and on T-lymphocyte polarization. Mediators Inflamm 2015; 2015:579830. [PMID: 25944986 PMCID: PMC4405019 DOI: 10.1155/2015/579830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 12/15/2022] Open
Abstract
Vitamin A plays an essential role in the maintenance of gut homeostasis but its interplay with chemokines has not been explored so far. Using an in vitro model system we studied the effects of human colonic epithelial cells (Caco2, HT-29, and HCT116) derived inflammatory stimuli on monocyte-derived dendritic cells and macrophages. Unstimulated Caco2 and HT-29 cells secreted CCL19, CCL21, and CCL22 chemokines, which could attract dendritic cells and macrophages and induced CCR7 receptor up-regulation by retinoic-acid resulting in dendritic cell migration. The chemokines Mk, CXCL16, and CXCL7 were secreted by all the 3 cell lines tested, and upon stimulation by IL-1β or TNF-α this effect was inhibited by ATRA but had no impact on CXCL1, CXCL8, and CCL20 secretion in response to IL-1β. In the presence of ATRA the supernatants of these cells induced CD103 expression on monocyte-derived dendritic cells and when conditioned by ATRA and cocultured with CD4+ T-lymphocytes they reduced the proportion of Th17 T-cells. However, in the macrophage-T-cell cocultures the number of these effector T-cells was increased. Thus cytokine-activated colonic epithelial cells trigger the secretion of distinct combinations of chemokines depending on the proinflammatory stimulus and are controlled by retinoic acid, which also governs dendritic cell and macrophage responses.
Collapse
|
40
|
Czysz K, Minger S, Thomas N. DMSO efficiently down regulates pluripotency genes in human embryonic stem cells during definitive endoderm derivation and increases the proficiency of hepatic differentiation. PLoS One 2015; 10:e0117689. [PMID: 25659159 PMCID: PMC4320104 DOI: 10.1371/journal.pone.0117689] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 12/30/2014] [Indexed: 11/19/2022] Open
Abstract
Background Definitive endoderm (DE) is one of the three germ layers which during in vivo vertebrate development gives rise to a variety of organs including liver, lungs, thyroid and pancreas; consequently efficient in vitro initiation of stem cell differentiation to DE cells is a prerequisite for successful cellular specification to subsequent DE-derived cell types [1, 2]. In this study we present a novel approach to rapidly and efficiently down regulate pluripotency genes during initiation of differentiation to DE cells by addition of dimethyl sulfoxide (DMSO) to Activin A-based culture medium and report its effects on the downstream differentiation to hepatocyte-like cells. Materials and Methods Human embryonic stem cells (hESC) were differentiated to DE using standard methods in medium supplemented with 100ng/ml of Activin A and compared to cultures where DE specification was additionally enhanced with different concentrations of DMSO. DE cells were subsequently primed to generate hepatic-like cells to investigate whether the addition of DMSO during formation of DE improved subsequent expression of hepatic markers. A combination of flow cytometry, real-time quantitative reverse PCR and immunofluorescence was applied throughout the differentiation process to monitor expression of pluripotency (POUF5/OCT4 & NANOG), definitive endoderm (SOX17, CXCR4 & GATA4) and hepatic (AFP & ALB) genes to generate differentiation stage-specific signatures. Results Addition of DMSO to the Activin A-based medium during DE specification resulted in rapid down regulation of the pluripotency genes OCT4 and NANOG, accompanied by an increase expression of the DE genes SOX17, CXCR4 and GATA4. Importantly, the expression level of ALB in DMSO-treated cells was also higher than in cells which were differentiated to the DE stage via standard Activin A treatment.
Collapse
Affiliation(s)
- Katherine Czysz
- GE Healthcare Life Sciences, The Maynard Centre, Cardiff, Wales, United Kingdom
- * E-mail:
| | - Stephen Minger
- GE Healthcare Life Sciences, The Maynard Centre, Cardiff, Wales, United Kingdom
| | - Nick Thomas
- GE Healthcare Life Sciences, The Maynard Centre, Cardiff, Wales, United Kingdom
| |
Collapse
|
41
|
Laddomada B, Durante M, Minervini F, Garbetta A, Cardinali A, D'Antuono I, Caretto S, Blanco A, Mita G. Phytochemical composition and anti-inflammatory activity of extracts from the whole-meal flour of Italian durum wheat cultivars. Int J Mol Sci 2015; 16:3512-27. [PMID: 25658801 PMCID: PMC4346910 DOI: 10.3390/ijms16023512] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/15/2015] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
In this study, the quali-quantitative composition of hydrophilic (phenolic acids) and lipophilic (isoprenoids) extracts from whole-meal flour of five elite Italian durum wheat cultivars was determined. Significant differences in the content of bioactive compounds were observed among the wheat extracts, in particular concerning the content of bound phenolic acids, lutein and β-tocotrienols. The cultivars Duilio and Svevo showed the highest amount of phenolic acids and isoprenoids, respectively. Extracts were evaluated for their anti-inflammatory activity on HT-29 human colon cells by measuring the levels of interleukin 8 (IL-8) and transforming growth factor β1 (TGF-β1). Durum wheat extracts significantly inhibited the secretion of the pro-inflammatory IL-8 mediator at 66 µg/mL of phenolic acids and at 0.2 µg/mL of isoprenoids. Conversely, the secretion of the anti-inflammatory mediator TGF-β1 was not modified by neither hydrophilic nor lipophilic extracts. These results provide further insight into the potential of durum wheat on human health suggesting the significance of varieties with elevated contents of bioactive components.
Collapse
Affiliation(s)
| | - Miriana Durante
- Institute of Sciences of Food Production, CNR, 73100 Lecce, Italy.
| | | | | | - Angela Cardinali
- Institute of Sciences of Food Production, CNR, 70125 Bari, Italy.
| | | | - Sofia Caretto
- Institute of Sciences of Food Production, CNR, 73100 Lecce, Italy.
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Giovanni Mita
- Institute of Sciences of Food Production, CNR, 73100 Lecce, Italy.
| |
Collapse
|
42
|
Csóka B, Németh ZH, Törő G, Koscsó B, Kókai E, Robson SC, Enjyoji K, Rolandelli RH, Erdélyi K, Pacher P, Haskó G. CD39 improves survival in microbial sepsis by attenuating systemic inflammation. FASEB J 2015; 29:25-36. [PMID: 25318479 PMCID: PMC4285550 DOI: 10.1096/fj.14-253567] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/27/2014] [Indexed: 02/06/2023]
Abstract
Sepsis remains the leading cause of morbidity and mortality in critically ill patients. Excessive inflammation is a major cause of organ failure and mortality in sepsis. Ectonucleoside triphosphate diphosphohydrolase 1, ENTPDase1 (CD39) is a cell surface nucleotide-metabolizing enzyme, which degrades the extracellular purines ATP and ADP, thereby regulating purinergic receptor signaling. Although the role of purinergic receptor signaling in regulating inflammation and sepsis has been addressed previously, the role of CD39 in regulating the host's response to sepsis is unknown. We found that the CD39 mimic apyrase (250 U/kg) decreased and knockout or pharmacologic blockade with sodium polyoxotungstate (5 mg/kg; IC50 ≈ 10 μM) of CD39 increased mortality of mice with polymicrobial sepsis induced by cecal ligation and puncture. CD39 decreased inflammation, organ damage, immune cell apoptosis, and bacterial load. Use of bone marrow chimeric mice revealed that CD39 expression on myeloid cells decreases inflammation in septic mice. CD39 expression is upregulated during sepsis in mice, as well as in both murine and human macrophages stimulated with Escherichia coli. Moreover, E. coli increases CD39 promoter activity in macrophages. Altogether, these data indicate CD39 as an evolutionarily conserved inducible protective pathway during sepsis. We propose CD39 as a novel therapeutic target in the management of sepsis.
Collapse
Affiliation(s)
- Balázs Csóka
- Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | | | | - Balázs Koscsó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | | - Simon C Robson
- Department of Medicine, Gastroenterology and Transplant Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; and
| | - Keiichi Enjyoji
- Department of Medicine, Gastroenterology and Transplant Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; and
| | | | - Katalin Erdélyi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Pál Pacher
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA;
| |
Collapse
|
43
|
Deng R, Wang SM, Yin T, Ye TH, Shen GB, Li L, Zhao JY, Sang YX, Duan XG, Wei YQ. Dimethyl Sulfoxide Suppresses Mouse 4T1 Breast Cancer Growth by Modulating Tumor-Associated Macrophage Differentiation. J Breast Cancer 2014; 17:25-32. [PMID: 24744794 PMCID: PMC3988339 DOI: 10.4048/jbc.2014.17.1.25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/07/2014] [Indexed: 02/06/2023] Open
Abstract
Purpose The universal organic solvent dimethyl sulfoxide (DMSO) can be used as a differentiation inducer of many cancer cells and has been widely used as a solvent in laboratories. However, its effects on breast cancer cells are not well understood. The aim of this study is to investigate the effect and associated mechanisms of DMSO on mouse breast cancer. Methods We applied DMSO to observe the effect on tumors in a mouse breast cancer model. Tumor-associated macrophages (TAMs) were tested by flow cytometry. Ex vivo tumor microenvironment was imitated by 4T1 cultured cell conditioned medium. Enzyme-linked immunosorbent assays were performed to detect interleukin (IL)-10 and IL-12 expression in medium. To investigate the cytotoxicity of DMSO on TAMs, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed. Results We found that DMSO produced tumor retardation when injected into mouse peritoneal cavities in a certain concentration range (0.5-1.0 mg/g). Furthermore, as detected by flow cytometry, TAM subtypes were found to be transformed. We further imitated a tumor microenvironment in vitro by using 4T1 cultured cell conditioned medium. Similarly, by using low concentration DMSO (1.0%-2.0% v/v), TAMs were induced to polarize to the classically activated macrophage (M1-type) and inhibited from polarizing into the alternatively activated macrophage (M2-type) in the conditioned medium. IL-10 expression in tumors was reduced, while IL-12 was increased compared with the control. Furthermore, we reported that 2.0% (v/v) DMSO could lead to cytotoxicity in peritoneal macrophages after 48 hours in MTT assays. Conclusion Our findings suggest that DMSO could exert antitumor effects in 4T1 cancer-bearing mice by reversing TAM orientation and polarization from M2- to M1-type TAMs. These data may provide novel insight into studying breast cancer immunotherapy.
Collapse
Affiliation(s)
- Rui Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Shi-Min Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Tao Yin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ting-Hong Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Guo-Bo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ling Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing-Yi Zhao
- Department of Medical Oncology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ya-Xiong Sang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xiao-Gang Duan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Subbaram S, Lyons SP, Svenson KB, Hammond SL, McCabe LG, Chittur SV, DiPersio CM. Integrin α3β1 controls mRNA splicing that determines Cox-2 mRNA stability in breast cancer cells. J Cell Sci 2014; 127:1179-89. [PMID: 24434582 DOI: 10.1242/jcs.131227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
It is unknown how cues from the tumor microenvironment can regulate post-transcriptional mechanisms, such as alternative splicing, that control genes that drive malignant growth. The induction of cyclooxygenase 2 (Cox-2) by integrin α3β1 in breast cancer cells can promote tumor progression. We have used RNAi to suppress α3β1 in human MDA-MB-231 breast cancer cells and then investigated changes in global gene expression. Numerous mRNAs, including Cox-2, show altered expression and/or alternative exon usage (AEU) in α3β1-deficient cells. AEU included patterns predicted to render an mRNA susceptible to degradation, such as 3'-UTR variations or retention of elements that target an mRNA for nonsense-mediated decay (NMD). PCR-based analysis of α3β1-deficient cells confirmed changes in Cox-2 mRNA that might target it for NMD, including retention of an intron that harbors premature termination codons and changes within the 3'-UTR. Moreover, Cox-2 mRNA has reduced stability in α3β1-deficient cells, which is partially reversed by knockdown of the essential NMD factor UPF1. Our study identifies α3β1-mediated AEU as a novel paradigm of integrin-dependent gene regulation that has potential for exploitation as a therapeutic target.
Collapse
Affiliation(s)
- Sita Subbaram
- Center for Cell Biology and Cancer Research, Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Involvement of reactive oxygen species in brominated diphenyl ether-47-induced inflammatory cytokine release from human extravillous trophoblasts in vitro. Toxicol Appl Pharmacol 2013; 274:283-92. [PMID: 24296301 DOI: 10.1016/j.taap.2013.11.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 11/23/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds. Brominated diphenyl ether (BDE)-47 is one of the most prevalent PBDE congeners found in human breast milk, serum and placenta. Despite the presence of PBDEs in human placenta, effects of PBDEs on placental cell function are poorly understood. The present study investigated BDE-47-induced reactive oxygen species (ROS) formation and its role in BDE-47-stimulated proinflammatory cytokine release in a first trimester human extravillous trophoblast cell line, HTR-8/SVneo. Exposure of HTR-8/SVneo cells for 4h to 20μM BDE-47 increased ROS generation 1.7 fold as measured by the dichlorofluorescein (DCF) assay. Likewise, superoxide anion production increased approximately 5 fold at 10 and 15μM and 9 fold at 20μM BDE-47 with a 1-h exposure, as measured by cytochrome c reduction. BDE-47 (10, 15 and 20μM) decreased the mitochondrial membrane potential by 47-64.5% at 4, 8 and 24h as assessed with the fluorescent probe Rh123. Treatment with 15 and 20μM BDE-47 stimulated cellular release and mRNA expression of IL-6 and IL-8 after 12 and 24-h exposures: the greatest increases were a 35-fold increased mRNA expression at 12h and a 12-fold increased protein concentration at 24h for IL-6. Antioxidant treatments (deferoxamine mesylate, (±)α-tocopherol, or tempol) suppressed BDE-47-stimulated IL-6 release by 54.1%, 56.3% and 37.7%, respectively, implicating a role for ROS in the regulation of inflammatory pathways in HTR-8/SVneo cells. Solvent (DMSO) controls exhibited statistically significantly decreased responses compared with non-treated controls for IL-6 release and IL-8 mRNA expression, but these responses were not consistent across experiments and times. Nonetheless, it is possible that DMSO (used to dissolve BDE-47) may have attenuated the stimulatory actions of BDE-47 on cytokine responses. Because abnormal activation of proinflammatory responses can disrupt trophoblast functions necessary for placental development and successful pregnancy, further investigation is warranted of the impact of ROS and BDE-47 on trophoblast cytokine responses.
Collapse
|
46
|
During A, Larondelle Y. The O-methylation of chrysin markedly improves its intestinal anti-inflammatory properties: Structure–activity relationships of flavones. Biochem Pharmacol 2013; 86:1739-46. [DOI: 10.1016/j.bcp.2013.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/01/2013] [Accepted: 10/01/2013] [Indexed: 01/31/2023]
|
47
|
Ahn H, Kim J, Jeung EB, Lee GS. Dimethyl sulfoxide inhibits NLRP3 inflammasome activation. Immunobiology 2013; 219:315-22. [PMID: 24380723 DOI: 10.1016/j.imbio.2013.11.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/16/2013] [Accepted: 11/14/2013] [Indexed: 12/13/2022]
Abstract
Dimethyl sulfoxide (DMSO) is an amphipathic molecule that is commonly/widely used as a solvent for biological compounds. In addition, DMSO has been studied as a medication for the treatment of inflammation, cystitis, and arthritis. Based on the anti-inflammatory characteristics of DMSO, we elucidated the effects of DMSO on activation of inflammasomes, which are cytoplasmic multi-protein complexes that mediate the maturation of interleukin (IL)-1β by activating caspase-1 (Casp1). In the present study, we prove that DMSO attenuated IL-1β maturation, Casp1 activity, and ASC pyroptosome formation via NLRP3 inflammasome activators. Further, NLRC4 and AIM2 inflammasome activity were not affected, suggesting that DMSO is a selective inhibitor of the NLRP3 inflammasomes. The anti-inflammatory effect of DMSO was further confirmed in animal, LPS-endotoxin sepsis and inflammatory bowel disease models. In addition, DMSO inhibited LPS-mediating IL-1s transcription. Taken together, DMSO shows anti-inflammatory characteristics, attenuates NLRP3 inflammasome activation, and mediates inhibition of IL-1s transcription.
Collapse
Affiliation(s)
- Huijeong Ahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Jeeyoung Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea.
| |
Collapse
|
48
|
Prenylated Flavonoids from Morus alba L. Cause Inhibition of G1/S Transition in THP-1 Human Leukemia Cells and Prevent the Lipopolysaccharide-Induced Inflammatory Response. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:350519. [PMID: 23762124 PMCID: PMC3671669 DOI: 10.1155/2013/350519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/26/2013] [Indexed: 12/04/2022]
Abstract
Morus alba L. (MA) is a natural source of many compounds with different biological effects. It has been described to possess anti-inflammatory, antioxidant, and hepatoprotective activities. The aim of this study was to evaluate cytotoxicity of three flavonoids isolated from MA (kuwanon E, cudraflavone B, and 4′-O-methylkuwanon E) and to determine their effects on proliferation of THP-1 cells, and on cell cycle progression of cancer cells. Anti-inflammatory effects were also determined for all three given flavonoids.
Methods used in the study included quantification of cells by hemocytometer and WST-1 assays, flow cytometry, western blotting, ELISA, and zymography.
From the three compounds tested, cudraflavone B showed the strongest effects on cell cycle progression and viability of tumor and/or immortalized cells and also on inflammatory response of macrophage-like cells. Kuwanon E and 4′-O-methylkuwanon E exerted more sophisticated rather than direct toxic effect on used cell types. Our data indicate that mechanisms different from stress-related or apoptotic signaling pathways are involved in the action of these compounds. Although further studies are required to precisely define the mechanisms of MA flavonoid action in human cancer and macrophage-like cells, here we demonstrate their effects combining antiproliferative and anti-inflammatory activities, respectively.
Collapse
|
49
|
Huguet A, Henri J, Petitpas M, Hogeveen K, Fessard V. Comparative cytotoxicity, oxidative stress, and cytokine secretion induced by two cyanotoxin variants, microcystin LR and RR, in human intestinal Caco-2 cells. J Biochem Mol Toxicol 2013; 27:253-8. [PMID: 23554253 DOI: 10.1002/jbt.21482] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/15/2013] [Accepted: 03/06/2013] [Indexed: 01/01/2023]
Abstract
While MC-LR and MC-RR share significant structural similarity, MC-RR is less cytotoxic than MC-LR. In the current study, we have compared the effects of MC-LR and MC-RR in Caco-2 cells by evaluating cytotoxicity, oxidative stress (reactive oxygen species production), and the cellular proinflammatory response (IL-6 and IL-8 production). Following treatment with 100 µM microcystins (MC), cytotoxicity was two-fold greater with MC-LR as compared to MC-RR after 24 h exposure. Whereas the reactive oxygen species production and IL-6 secretion were similar following a 24-h treatment with either MC, 100 µM MC-LR induced a five-fold greater IL-8 secretion when compared to MC-RR. Our study has demonstrated that, although both MC-LR and MC-RR induced some cytotoxicity in human intestinal cells, a major difference in IL-8 production was observed between the two variants.
Collapse
Affiliation(s)
- Antoine Huguet
- Contaminant Toxicology Unit, Fougères Laboratory, Anses, 10B rue Claude Bourgelat-Javené CS 40608, 35306 Fougères Cedex, France.
| | | | | | | | | |
Collapse
|
50
|
Timm M, Saaby L, Moesby L, Hansen EW. Considerations regarding use of solvents in in vitro cell based assays. Cytotechnology 2013; 65:887-94. [PMID: 23328992 DOI: 10.1007/s10616-012-9530-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/20/2012] [Indexed: 01/21/2023] Open
Abstract
Cell culture systems are widely used for the investigation of in vitro immunomodulatory effects of medicines and natural products. Since many pharmacological relevant compounds are water-insoluble, solvents are frequently used in cell based assays. Although many reports describe the cellular effects of solvents at high concentrations, only a few relate the effects of solvents used at low concentrations. In this report we investigate the interference of three commonly used solvents: Dimethyl sulfoxide (DMSO), ethanol and β-cyclodextrin with five different cell culture systems. The effects of the solvents are investigated in relation to the cellular production of interleukin (IL)-6 or reactive oxygen species (ROS) after lipopolysaccharide (LPS) stimulation. We show that DMSO above 1 % reduces readout parameters in all cell types but more interestingly the 0.25 and 0.5 % solutions induce inhibitory effects in some cell types and stimulatory effects in others. We also found that LPS induced ROS production was more affected than the IL-6 production in the presence of ethanol. Finally we showed that β-cyclodextrin at the investigated concentrations did not have any effect on the LPS induced IL-6 production and only minor effects on the ROS production. We conclude that the effects induced by solvents even at low concentrations are highly relevant for the interpretation of immunomodulatory effects evaluated in cell assays. Furthermore, these results show the importance of keeping solvent concentrations constant in serial dilution of any compound investigated in cell based assays.
Collapse
Affiliation(s)
- Michael Timm
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, K-2100, Copenhagen, Denmark,
| | | | | | | |
Collapse
|