1
|
Ferreira MM, Marins-Gonçalves L, De Souza D. An integrative review of analytical techniques used in food authentication: A detailed description for milk and dairy products. Food Chem 2024; 457:140206. [PMID: 38936134 DOI: 10.1016/j.foodchem.2024.140206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/04/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The use of suitable analytical techniques for the detection of adulteration, falsification, deliberate substitution, and mislabeling of foods has great importance in the industrial, scientific, legislative, and public health contexts. This way, this work reports an integrative review with a current analytical approach for food authentication, indicating the main analytical techniques to identify adulteration and perform the traceability of chemical components in processed and non-processed foods, evaluating the authenticity and geographic origin. This work presents results from a systematic search in Science Direct® and Scopus® databases using the keywords "authentication" AND "food", "authentication," AND "beverage", from published papers from 2013 to, 2024. All research and reviews published were employed in the bibliometric analysis, evaluating the advantages and disadvantages of analytical techniques, indicating the perspectives for direct, quick, and simple analysis, guaranteeing the application of quality standards, and ensuring food safety for consumers. Furthermore, this work reports the analysis of natural foods to evaluate the origin (traceability), and industrialized foods to detect adulterations and fraud. A focus on research to detect adulteration in milk and dairy products is presented due to the importance of these products in the nutrition of the world population. All analytical tools discussed have advantages and drawbacks, including sample preparation steps, the need for reference materials, and mathematical treatments. So, the main advances in modern analytical techniques for the identification and quantification of food adulterations, mainly milk and dairy products, were discussed, indicating trends and perspectives on food authentication.
Collapse
Affiliation(s)
- Mariana Martins Ferreira
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo Street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Lorranne Marins-Gonçalves
- Laboratory of Electroanalytical of Food and Environmental Contaminants (LECAA), Chemistry Institute, Uberlândia Federal University, João Naves de Ávila Street, 2121, 1D block, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical of Food and Environmental Contaminants (LECAA), Chemistry Institute, Uberlândia Federal University, João Naves de Ávila Street, 2121, 1D block, Santa Mônica, Uberlândia, MG, 38400-902, Brazil..
| |
Collapse
|
2
|
Nematbakhsh S, Pei CP, Nordin N, Selamat J, Idris LH, Razis AFA. Identification and validation of novel breed-specific biomarker for the purpose of village chicken authentication using genomics approaches. Poult Sci 2024; 103:104128. [PMID: 39180779 PMCID: PMC11387346 DOI: 10.1016/j.psj.2024.104128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/26/2024] Open
Abstract
Local village chicken, or "Ayam kampung" as it's known in Malaysia, is considered a premium chicken breed with a higher price than other chicken breeds. As a result of their comparable appearances and sizes, colored broiler chickens are often sold as village chickens, which is a form of food fraud that can result in a 3- to 4-fold rise in profit. Therefore, developing a breed-specific authentication method is crucial for preventing food fraud in the poultry industry. This study aims to investigate the genetic diversity of village chickens from other commercial chicken breed populations available in the market (broiler [Cobb], colored broiler [Hubbard], and layer [DeKalb]) to identify breed-specific DNA fragments as biomarkers for village chicken authentication. The Whole-genome sequencing and mutation calling of 12 chickens (3 chickens/breed) led to the identification of a total of 73,454,654 single nucleotide polymorphisms (SNP) and 8,762,338 insertion and deletions (InDel) variants, with more variants detected in the village chicken population (6,346,704 SNPs; 752,408 InDels) compared to commercial breeds. Therefore, this study revealed that village chickens were more genetically variable compared to other breeds in Malaysia. Furthermore, the breed-specific genomic region located on chromosome 1 (1:84,405,652) harboring SNP (C-T) with high discrimination power was discovered and validated which can be considered as a novel breed-specific biomarker to develop a method for accurate authentication of village chickens in Malaysia. This authentication method offers potentialw applications in the chicken industry and food safety.
Collapse
Affiliation(s)
- Sara Nematbakhsh
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Chong Pei Pei
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Noordiana Nordin
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Jinap Selamat
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Lokman Hakim Idris
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
3
|
Song D, Dong K, Liu S, Fu S, Zhao F, Man C, Jiang Y, Zhao K, Qu B, Yang X. Research advances in detection of food adulteration and application of MALDI-TOF MS: A review. Food Chem 2024; 456:140070. [PMID: 38917694 DOI: 10.1016/j.foodchem.2024.140070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
Food adulteration and illegal supplementations have always been one of the major problems in the world. The threat of food adulteration to the health of consumers cannot be ignored. Food of questionable origin causes economic losses to consumers, but the potential health risks cannot be ignored. However, the traditional detection methods are time-consuming and complex. This review mainly discusses the types of adulteration and technologies used to detect adulteration. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is also emphasized in the detection of adulteration and authenticity of origin analysis of various types of food (milk, meat, edible oil, etc.), and the future application direction and feasibility of this technology are analyzed. On this basis, MALDI-TOF MS was compared with other detection methods, highlighting the advantages of this technology in the detection of food adulteration. The future development prospect and direction of this technology are also emphasized.
Collapse
Affiliation(s)
- Danliangmin Song
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Kai Dong
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shiyu Liu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shiqian Fu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Feng Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Kuangyu Zhao
- Fang zheng comprehensive Product quality inspection and testing center, Harbin 150030, China
| | - Bo Qu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China.
| |
Collapse
|
4
|
Wang Y, Wu J, Wang G, Tang W, Wu F, Zhao H, Cao W. Hydroxy Fatty Acid Synthesis-Related mRNA as the Biomarker for Detecting Mislabeling of Honey Entomological Origin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18283-18293. [PMID: 39082820 DOI: 10.1021/acs.jafc.4c03934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The authentication of the entomological origin of honey is a widespread concern, necessitating the prompt establishment of an effective approach for distinguishing between Apis cerana cerana honey (ACH) and Apis mellifera ligustica honey (AMH). Hydroxy fatty acids (HFAs) found in honey are bee-derived components synthesized by the mandibular glands of worker bees. We previously discovered significant variations in the hydroxy fatty acid composition between ACH and AMH, suggesting their potential as indicators for identifying the authenticity of the entomological origin of honey. Herein, we identified differentially expressed genes associated with HFA synthesis by conducting transcriptome sequencing of the mandibular glands of AC and AM honeybees. Subsequently, we proposed a method for the relative quantitative analysis of bee-derived RNA components using real-time fluorescence quantitative polymerase chain reaction, which was supplemented by multivariate statistical analysis to further discern differences in HFA synthesis-related mRNA between ACH and AMH. The results showed that the mRNAs of FAXDC2 (fatty acid hydroxylase domain-containing protein 2) and FAS (fatty acid synthase) may serve as indicators to discern the entomological origin of honey. This study presents two novel biomarkers for detecting mislabeling of the entomological origin in ACH and AMH based on variations in bee-derived components.
Collapse
Affiliation(s)
- Yan Wang
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Jinkui Wu
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Guiling Wang
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Wenxuan Tang
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Fanhua Wu
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| |
Collapse
|
5
|
Lu W, Li Y, Ge L, Wang H, Liu T, Zhao Q, Mao Z, Liang J, Wang P, Chen K, Xue J, Shen Q. Comprehensive lipidomics study of basa catfish and sole fish using ultra-performance liquid chromatography Q-extractive orbitrap mass spectrometry for fish authenticity. Curr Res Food Sci 2024; 9:100812. [PMID: 39139808 PMCID: PMC11321432 DOI: 10.1016/j.crfs.2024.100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/23/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
The authenticity of fish products has become a widespread issue in markets due to substitution and false labeling. Lipidomics combined with chemometrics enables the fraudulence identification of food through the analysis of a large amount of data. This study utilized ultra-high-performance liquid chromatography (UHPLC)-QE Orbitrap MS technology to comprehensively analyze the lipidomics of commercially available basa catfish and sole fish. In positive and negative ion modes, a total of 779 lipid molecules from 21 lipid subclasses were detected, with phospholipid molecules being the most abundant, followed by glycerides molecules. Significant differences in the lipidome fingerprinting between the two fish species were observed. A total of 165 lipid molecules were screened out as discriminative features to distinguish between basa catfish and sole fish, such as TAG(16:0/16:0/18:1), PC(14:0/22:3), and TAG(16:1/18:1/18:1), etc. This study could provide valuable insights into authenticating aquatic products through comprehensive lipidomics analysis, contributing to quality control and consumer protection in the food industry.
Collapse
Affiliation(s)
- Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yunyan Li
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Lijun Ge
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Honghai Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Ting Liu
- Zhoushan Institute of Food & Drug Control, Zhoushan, China
| | - Qiaoling Zhao
- Zhoushan Institute of Food & Drug Control, Zhoushan, China
| | - Zhujun Mao
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Jingjing Liang
- Zhejiang Provincial Institute for Food and Drug Control, Hangzhou, 310052, China
| | - Pingya Wang
- Zhoushan Institute of Food & Drug Control, Zhoushan, China
| | - Kang Chen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Jing Xue
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| |
Collapse
|
6
|
Ji Z, Zhang J, Deng C, Guo T, Han R, Yang Y, Zang C, Chen Y. Identification of pasteurized mare milk and powder adulteration with bovine milk using quantitative proteomics and metabolomics approaches. Food Chem X 2024; 22:101265. [PMID: 38468636 PMCID: PMC10926301 DOI: 10.1016/j.fochx.2024.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Adulteration in dairy products presents food safety challenges, driven by economic factors. Processing may change specific biomarkers, thus affecting their effectiveness in detection. In this study, proteomics and metabolomics approaches were to investigate the detection of bovine milk (BM) constituents adulteration in pasteurized mare milk (PMM) and mare milk powder (MMP). Several bovine proteins and metabolites were identified, with their abundances in PMM and MMP increasing upon addition of BM. Proteins like osteopontin (OPN) and serotransferrin (TF) detected adulteration down to 1 % in PMM, whereas these proteins in MMP were utilized to identify 10 % adulteration. Biotin and N6-Me-adenosine were effective in detecting adulteration in PMM as low as 10 % and 1 % respectively, while in MMP, their detection limits extend down to 0.1 %. These findings offer insights for authenticating mare milk products and underscore the influence of processing methods on biomarker levels, stressing the need to consider these effects in milk product authentication.
Collapse
Affiliation(s)
- Zhongyuan Ji
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junyu Zhang
- Institute of Feed Research, Xinjiang Academy of Animal Science, Urumqi 830052, Xinjiang, China
| | - Chunxia Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Tongjun Guo
- Institute of Feed Research, Xinjiang Academy of Animal Science, Urumqi 830052, Xinjiang, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Changjiang Zang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Yong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| |
Collapse
|
7
|
Windarsih A, Abu Bakar NK, Rohman A, Yuliana ND, Dachriyanus D. Untargeted metabolomics using liquid chromatography-high resolution mass spectrometry and chemometrics for analysis of non-halal meats adulteration in beef meat. Anim Biosci 2024; 37:918-928. [PMID: 38228131 PMCID: PMC11065716 DOI: 10.5713/ab.23.0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/23/2023] [Accepted: 11/02/2023] [Indexed: 01/18/2024] Open
Abstract
OBJECTIVE The adulteration of raw beef (BMr) with dog meat (DMr) and pork (PMr) becomes a serious problem because it is associated with halal status, quality, and safety of meats. This research aimed to develop an effective authentication method to detect non-halal meats (dog meat and pork) in beef using metabolomics approach. METHODS Liquid chromatography-high resolution mass spectrometry (LC-HRMS) using untargeted approach combined with chemometrics was applied for analysis non-halal meats in BMr. RESULTS The untargeted metabolomics approach successfully identified various metabolites in BMr DMr, PMr, and their mixtures. The discrimination and classification between authentic BMr and those adulterated with DMr and PMr were successfully determined using partial least square-discriminant analysis (PLS-DA) with high accuracy. All BMr samples containing non-halal meats could be differentiated from authentic BMr. A number of discriminating metabolites with potential as biomarkers to discriminate BMr in the mixtures with DMr and PMr could be identified from the analysis of variable importance for projection value. Partial least square (PLS) and orthogonal PLS (OPLS) regression using discriminating metabolites showed high accuracy (R2>0.990) and high precision (both RMSEC and RMSEE <5%) in predicting the concentration of DMr and PMr present in beef indicating that the discriminating metabolites were good predictors. The developed untargeted LC-HRMS metabolomics and chemometrics successfully identified non-halal meats adulteration (DMr and PMr) in beef with high sensitivity up to 0.1% (w/w). CONCLUSION A combination of LC-HRMS untargeted metabolomic and chemometrics promises to be an effective analytical technique for halal authenticity testing of meats. This method could be further standardized and proposed as a method for halal authentication of meats.
Collapse
Affiliation(s)
- Anjar Windarsih
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603,
Malaysia
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Gunungkidul, Yogyakarta 55861,
Indonesia
| | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603,
Malaysia
| | - Abdul Rohman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281,
Indonesia
- Center of Excellence, Institute for Halal Industry and Systems (PUIPT-IHIS), Universitas Gadjah Mada, Yogyakarta 55281,
Indonesia
| | - Nancy Dewi Yuliana
- Department of Food Science and Technology, IPB University, Bogor 16680,
Indonesia
| | | |
Collapse
|
8
|
Makni Y, Diallo T, Guérin T, Parinet J. A proof-of-concept study on the versatility of liquid chromatography coupled to high-resolution mass spectrometry to screen for various contaminants and highlight markers of floral and geographical origin for different honeys. Food Chem 2024; 436:137720. [PMID: 37844510 DOI: 10.1016/j.foodchem.2023.137720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
The high-resolution mass spectrometry is a powerful analytical tool for improving food safety and authenticity, but still underused in official control laboratories. The present work is a proof-of-concept study overviewing how liquid-chromatography coupled to high-resolution mass spectrometry could be used simultaneously for large-scale screening of contaminants and differentiation of honey samples. Within this study, the samples were extracted using all-in-one QuEChERS-based protocol that allowed for analysis of various anthropogenic contaminants and endogenous compounds. First, targeted-analysis of 52 honey samples led to unequivocal identification of 23 chemicals, including neonicotinoids, triazole fungicides and synergist. Then, suspect-screening using MSDial software allowed for tentative identification of 30 chemicals including plasticizers, flame-retardants and additives. Suspect-screening also made it possible to highlight tentative markers of chestnut honey (deoxyvasicinone, 2-quinolone, indoleacrylic acid and kynurenic acid) and citrus honey (caffeine, 2-oxindole and indole-3-carbinol). Lastly, non-targeted analysis enabled to separate honeys by their type, floral and geographical origins.
Collapse
Affiliation(s)
- Yassine Makni
- University Paris Est Creteil, ANSES, Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort, France
| | - Thierno Diallo
- University Paris Est Creteil, ANSES, Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Thierry Guérin
- ANSES, Strategy and Programmes Department, F-94701 Maisons-Alfort, France
| | - Julien Parinet
- University Paris Est Creteil, ANSES, Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort, France.
| |
Collapse
|
9
|
Windarsih A, Bakar NKA, Rohman A, Erwanto Y. Analysis of dog meat adulteration in beef meatballs using non-targeted UHPLC-Orbitrap HRMS metabolomics and chemometrics for halal authentication study. ANAL SCI 2024; 40:385-397. [PMID: 38095741 DOI: 10.1007/s44211-023-00470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/08/2023] [Indexed: 02/27/2024]
Abstract
Due to the different price and high quality, halal meat such as beef can be adulterated with non-halal meat with low price to get an economical price. The objective of this research was to develop an analytical method for halal authentication testing of beef meatballs (BM) from dog meat (DM) using a non-targeted metabolomics approach employing liquid chromatography-high-resolution mass spectrometry (LC-HRMS) and chemometrics. The differentiation of authentic BM from that adulterated with DM was successfully performed using partial least square-discriminant analysis (PLS-DA) with high accuracy (R2X = 0.980, and R2Y = 0.980) and good predictivity (Q2 = 0.517). In addition, partial least square (PLS) and orthogonal PLS (OPLS) were successfully used to predict the DM added (% w/w) in BM with high accuracy (R2 > 0.990). A number of metabolites, potential for biomarker candidates, were identified to differentiate BM and that adulterated with DM. It showed that the combination of a non-targeted LC-HRMS Orbitrap metabolomics and chemometrics could detect up to 0.1% w/w of DM adulteration. The developed method was successfully applied for analysis of commercial meatball samples (n = 28). Moreover, pathway analysis revealed that beta-alanine, histidine, and ether lipid metabolism were significantly affected by dog meat adulteration. In summary, this developed method has great potential to be developed and used as an alternative method for analysis of non-halal meats in halal meat products.
Collapse
Affiliation(s)
- Anjar Windarsih
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta, 55861, Indonesia
| | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abdul Rohman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
- Center of Excellence, Institute for Halal Industry and Systems (PUI-PT IHIS), Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
| | - Yuny Erwanto
- Center of Excellence, Institute for Halal Industry and Systems (PUI-PT IHIS), Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Faculty of Animal Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
10
|
Chien HJ, Zheng YF, Wang WC, Kuo CY, Hsu YM, Lai CC. Determination of adulteration, geographical origins, and species of food by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2273-2323. [PMID: 35652168 DOI: 10.1002/mas.21780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Food adulteration, mislabeling, and fraud, are rising global issues. Therefore, a number of precise and reliable analytical instruments and approaches have been proposed to ensure the authenticity and accurate labeling of food and food products by confirming that the constituents of foodstuffs are of the kind and quality claimed by the seller and manufacturer. Traditional techniques (e.g., genomics-based methods) are still in use; however, emerging approaches like mass spectrometry (MS)-based technologies are being actively developed to supplement or supersede current methods for authentication of a variety of food commodities and products. This review provides a critical assessment of recent advances in food authentication, including MS-based metabolomics, proteomics and other approaches.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ming Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
11
|
Cao Y, Song X. Meat Authenticity Made Easy: DNA Extraction-Free Rapid Onsite Detection of Duck and Pork Ingredients in Beef and Lamb Using Dual-Recombinase-Aided Amplification and Multiplex Lateral Flow Strips. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14782-14794. [PMID: 37784234 DOI: 10.1021/acs.jafc.3c03259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Meat adulteration is a major global concern that poses a threat to public health and consumer rights. However, current detection techniques, such as quantitative polymerase chain reaction (qPCR) and gas chromatography-mass spectrometry, are time-consuming and require sophisticated equipment. In this study, we developed a rapid onsite identification method for animal-derived ingredients by utilizing a fast nucleic acid lysis buffer to expedite the release of sample nucleic acids and combined it with dual-recombinase-aided amplification (dual-RAA) technology and visual multiplex lateral flow strips (MLFSs). Our method successfully detected duck- and bovine-derived, porcine- and bovine-derived, duck- and ovine-derived, and porcine- and ovine-derived meat in a rapid 20 min onsite detection assay, with a detection limit of 101 copies/50 μL reaction system for target genes. Moreover, our method accurately detected adulterated meat with proportions as low as 1:999. These findings have significant implications for food safety and the protection of consumer rights.
Collapse
Affiliation(s)
- Yuhao Cao
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xuemei Song
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
12
|
Windarsih A, Bakar NKA, Dachriyanus, Yuliana ND, Riswanto FDO, Rohman A. Analysis of Pork in Beef Sausages Using LC-Orbitrap HRMS Untargeted Metabolomics Combined with Chemometrics for Halal Authentication Study. Molecules 2023; 28:5964. [PMID: 37630216 PMCID: PMC10459517 DOI: 10.3390/molecules28165964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Beef sausage (BS) is one of the most favored meat products due to its nutrition and good taste. However, for economic purposes, BS is often adulterated with pork by unethical players. Pork consumption is strictly prohibited for religions including Islam and Judaism. Therefore, advanced detection methods are highly required to warrant the halal authenticity of BS. This research aimed to develop a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method to determine the halal authenticity of BS using an untargeted metabolomics approach. LC-HRMS was capable of detecting various metabolites in BS and BS containing pork. The presence of pork in BS could be differentiated using principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) with high accuracy. PLS-DA perfectly classified authentic BS and BS containing pork in all concentration levels of pork with R2X = (0.821), R2Y(= 0.984), and Q2 = (0.795). The level of pork in BS was successfully predicted through partial least squares (PLS) and orthogonal PLS (OPLS) chemometrics. Both models gave high R2 (>0.99) actual and predicted values as well as few errors, indicating good accuracy and precision. Identification of discriminating metabolites' potential as biomarker candidates through variable importance for projections (VIP) value revealed metabolites of 2-arachidonyl-sn-glycero-3-phosphoethanolamine, 3-hydroxyoctanoylcarnitine, 8Z,11Z,14Z-eicosatrienoic acid, D-(+)-galactose, oleamide, 3-hydroxyhexadecanoylcarnitine, arachidonic acid, and α-eleostearic acid as good indicators to detect pork. It can be concluded that LC-HRMS metabolomics combined with PCA, PLS-DA, PLS, and OPLS was successfully used to detect pork adulteration in beef sausages. The results imply that LC-HRMS untargeted metabolomics in combination with chemometrics is a promising alternative as an analytical technique to detect pork in sausage products. Further analysis of larger samples is required to warrant the reproducibility.
Collapse
Affiliation(s)
- Anjar Windarsih
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.W.); (N.K.A.B.)
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.W.); (N.K.A.B.)
| | - Dachriyanus
- Faculty of Pharmacy, Andalas University, Padang 25175, Indonesia;
| | - Nancy Dewi Yuliana
- Department of Food Science and Technology, IPB University, Bogor 16680, Indonesia;
- Halal Science Center, IPB University, Bogor 16129, Indonesia
| | - Florentinus Dika Octa Riswanto
- Division of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Campus III Paingan, Universitas Sanata Dharma, Yogyakarta 55282, Indonesia;
| | - Abdul Rohman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center of Excellence, Institute for Halal Industry and Systems (PUIPT-IHIS), Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
13
|
Atmospheric solids analysis probe-mass spectrometry (ASAP-MS) as a rapid fingerprinting technique to differentiate the harvest seasons of Tieguanyin oolong teas. Food Chem 2023; 408:135135. [PMID: 36527922 DOI: 10.1016/j.foodchem.2022.135135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/13/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Atmospheric solids analysis probe-mass spectrometry (ASAP-MS), an ambient mass spectrometry technique, was used to differentiate spring and autumn Tieguanyin teas. Two configurations were used to obtain their chemical fingerprints - ASAP attached to a high-resolution quadrupole time-of-flight mass spectrometer (i.e., ASAP-QTOF) and to a single-quadrupole mass spectrometer (i.e., Radian™ ASAP™ mass spectrometer). Then, orthogonal projections to latent structures-discriminant analysis was conducted to identify features that held promise in differentiating harvest seasons. Four machine learning models - decision tree, linear discriminant analysis, support vector machine, and k-nearest neighbour - were built using these features, and high classification accuracy of up to 100% was achieved. The markers were putatively identified using their accurate masses and MS/MS fragmentation patterns from ASAP-QTOF. This approach was successfully transferred to the Radian ASAP MS, which is more deployable in the field. Overall, this study demonstrated the potential of ASAP-MS as a rapid fingerprinting tool for differentiating spring and autumn Tieguanyin.
Collapse
|
14
|
Mahrous E, Chen R, Zhao C, Farag MA. Lipidomics in food quality and authentication: A comprehensive review of novel trends and applications using chromatographic and spectroscopic techniques. Crit Rev Food Sci Nutr 2023; 64:9058-9081. [PMID: 37165484 DOI: 10.1080/10408398.2023.2207659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Lipid analysis is an integral part of food authentication and quality control which provides consumers with the necessary information to make an informed decision about their lipid intake. Recent advancement in lipid analysis and lipidome scope represents great opportunities for food science. In this review we provide a comprehensive overview of available tools for extraction, analysis and interpretation of data related to dietary fats analyses. Different analytical platforms are discussed including GC, MS, NMR, IR and UV with emphasis on their merits and limitations alongside complementary tools such as chemometric models and lipid-targeted online databases. Applications presented here include quality control, authentication of organic and delicacy food, tracing dietary fat source and investigating the effect of heat/storage on lipids. A multitude of analytical methods with different sensitivity, affordability, reproducibility and ease of operation are now available to comprehensively analyze dietary fats. Application of these methods range from studies which favor the use of large data generating platforms such as MS-based methods, to routine quality control which demands easy to use affordable equipment as TLC and IR. Hence, this review provides a navigation tool for food scientists to help develop an optimal protocol for their future lipid analysis quest.
Collapse
Affiliation(s)
- Engy Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ruoxin Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Suratno, Windarsih A, Warmiko HD, Khasanah Y, Indrianingsih AW, Rohman A. Metabolomics and Proteomics Approach Using LC-Orbitrap HRMS for the Detection of Pork in Tuna Meat for Halal Authentication. FOOD ANAL METHOD 2023. [DOI: 10.1007/s12161-023-02472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
16
|
Toomik E, Rood L, Bowman JP, Kocharunchitt C. Microbial spoilage mechanisms of vacuum-packed lamb meat: A review. Int J Food Microbiol 2023; 387:110056. [PMID: 36563532 DOI: 10.1016/j.ijfoodmicro.2022.110056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Lamb meat is an important export commodity, however chilled vacuum-packed (VP) lamb has approximately half the shelf-life of beef under the same storage conditions. This makes the industry more vulnerable to financial losses due to long shipping times and unexpected spoilage. Understanding the spoilage mechanisms of chilled VP lamb in relation to VP beef is important for developing effective strategies to extend the shelf-life of lamb. This review has discussed various key factors (i.e., pH, fat, and presence of bone) that have effects on microbial spoilage of VP lamb contributing to its shorter shelf-life relative to VP beef. A range of bacterial organisms and their metabolisms in relevance to lamb spoilage are also discussed. The data gap in the literature regarding the potential mechanisms of spoilage in VP red meat is highlighted. This review has provided the current understanding of key factors affecting the shelf-life of VP lamb relative to VP beef. It has also identified key areas of research to further understand the spoilage mechanisms of VP lamb. These include investigating the potential influence of fat and bone (including bone marrow) on the shelf-life, as well as assessing changes in the meat metabolome as the spoilage microbial community is developing using an integrated approach. Such new knowledge would aid the development of effective approaches to extend the shelf-life of VP lamb.
Collapse
Affiliation(s)
- Elerin Toomik
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia.
| | - Laura Rood
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| | - John P Bowman
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| | - Chawalit Kocharunchitt
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| |
Collapse
|
17
|
Determinants of the willingness to buy products certified by omics technology: differences between regular and occasional consumers of organic food. Food Res Int 2023; 164:112324. [PMID: 36737917 DOI: 10.1016/j.foodres.2022.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Consumers' demand for organic food has increased in the last years, together with a growing request for food authentication and safety. Omics technologies represent a viable analytical strategy to respond to such needs, strengthen food safety information transmission between consumers and industry, and differentiate between organic and conventional products. However, little is known about consumers' perception of such a novel certification approach. The present research ought to provide insights into the perspectives of consumers, exploring the antecedents of their intention to purchase organic vegetables certified through omics technologies and differentiating between regular and occasional consumers of organic foods. Data were collected from a representative sample of 807 Italian respondents who completed a self-report questionnaire, and Structural Equation Modeling was performed to analyze the data. Results show that several factors influence consumers' approach to omics technology, among which trust in actors in the food industry, attitudes towards the technology and environmental food concerns. In addition, the study drew attention to the differential path impacting consumers with distinct eating habits. Indeed, the degree of importance attributed to food in one's life and the interest towards innovative food are significant predictors of the intention to adopt omics technology only for people consuming organic products with higher frequency. Also, trust in industry actors follows a different path for regular and occasional organic food consumers. The present study sheds light on consumers' perspective on omics technologies, a relatively unexplored topic. Moreover, it allowed to differentiate consumers based on their organic consumption habits, which has been rarely done in previous research. The evidence collected suggests the need for tailored communication programs to stimulate the adoption of omics technologies and foster consumers' confidence in novel food technologies.
Collapse
|
18
|
Untargeted HPLC-MS-based metabolomics approach to reveal cocoa powder adulterations. Food Chem 2023; 402:134209. [DOI: 10.1016/j.foodchem.2022.134209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
|
19
|
Biological mass spectrometry analysis for traceability of production method and harvesting seasons of sea cucumber (Apostichopus japonicus). Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Balcázar-Zumaeta CR, Castro-Alayo EM, Cayo-Colca IS, Idrogo-Vásquez G, Muñoz-Astecker LD. Metabolomics during the spontaneous fermentation in cocoa (Theobroma cacao L.): An exploraty review. Food Res Int 2023; 163:112190. [PMID: 36596129 DOI: 10.1016/j.foodres.2022.112190] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Spontaneous fermentation is a process that depends on substrates' physical characteristics, crop variety, and postharvest practices; it induces variations in the metabolites that are responsible for the taste, aroma, and quality. Metabolomics makes it possible to detect key metabolites using chemometrics and makes it possible to establish patterns or identify biomarker behaviors under certain conditions at a given time. Therefore, sensitive and highly efficient analytical techniques allow for studying the metabolomic fingerprint changes during fermentation; which identify and quantify metabolites related to taste and aroma formation of an adequate processing time. This review shows that studying metabolomics in spontaneous fermentation permits the characterization of spontaneous fermentation in different stages. Also, it demonstrates the possibility of modulating the quality of cocoa by improving the spontaneous fermentation time (because of volatile aromatic compounds formation), thus standardizing the process to obtain attributes and quality that will later impact the chocolate quality.
Collapse
Affiliation(s)
- César R Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru.
| | - Efraín M Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru.
| | - Ilse S Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru.
| | - Guillermo Idrogo-Vásquez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru.
| | - Lucas D Muñoz-Astecker
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru.
| |
Collapse
|
21
|
Nichani K, Uhlig S, Stoyke M, Kemmlein S, Ulberth F, Haase I, Döring M, Walch SG, Gowik P. Essential terminology and considerations for validation of non-targeted methods. Food Chem X 2022; 17:100538. [PMID: 36845497 PMCID: PMC9943841 DOI: 10.1016/j.fochx.2022.100538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/16/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Through their suggestive name, non-targeted methods (NTMs) do not aim at a predefined "needle in the haystack." Instead, they exploit all the constituents of the haystack. This new type of analytical method is increasingly finding applications in food and feed testing. However, the concepts, terms, and considerations related to this burgeoning field of analytical testing need to be propagated for the benefit of those associated with academic research, commercial development, or official control. This paper addresses frequently asked questions regarding terminology in connection with NTMs. The widespread development and adoption of these methods also necessitate the need to develop innovative approaches for NTM validation, i.e., evaluating the performance characteristics of a method to determine if it is fit-for-purpose. This work aims to provide a roadmap for approaching NTM validation. In doing so, the paper deliberates on the different considerations that influence the approach to validation and provides suggestions therefor.
Collapse
Affiliation(s)
- Kapil Nichani
- QuoData GmbH, Prellerstr. 14, 01309 Dresden, Germany,Institute of Nutritional Sciences, University of Potsdam, Arthur-Scheunert Allee 114-116, 14558 Nuthetal, Germany,Corresponding authors at: QuoData GmbH, Prellerstr. 14, 01309 Dresden, Germany (K. Nichani).
| | - Steffen Uhlig
- QuoData GmbH, Fabeckstr. 43, 14195 Berlin, Germany,Corresponding authors at: QuoData GmbH, Prellerstr. 14, 01309 Dresden, Germany (K. Nichani).
| | - Manfred Stoyke
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Sabine Kemmlein
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Franz Ulberth
- European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| | - Ilka Haase
- Max Rubner-Institut (MRI) - Bundesforschungsinstitut für Ernährung und Lebensmittel, Nationales Referenzzentrum für authentische Lebensmittel, E-C-Baumannstr. 20, 95236 Kulmbach, Germany
| | - Maik Döring
- Max Rubner-Institut (MRI) - Bundesforschungsinstitut für Ernährung und Lebensmittel, Nationales Referenzzentrum für authentische Lebensmittel, E-C-Baumannstr. 20, 95236 Kulmbach, Germany
| | - Stephan G Walch
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weißenburger Str. 3, 76187 Karlsruhe, Germany
| | - Petra Gowik
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL), Diedersdorfer Weg 1, 12277 Berlin, Germany
| |
Collapse
|
22
|
Yin X, Xing R, Li Z, Hu B, Yang L, Deng R, Cao J, Chen Y. Real-time qPCR for the detection of puffer fish components from Lagocephalus in food: L. inermis, L. lagocephalus, L. gloveri, L. lunaris, and L. spadiceus. Front Nutr 2022; 9:1068767. [PMID: 36545464 PMCID: PMC9760932 DOI: 10.3389/fnut.2022.1068767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 12/11/2022] Open
Abstract
Puffer fish is a type of precious high-end aquatic product, is widely popular in Asia, especially in China and Japan, even though it naturally harbors a neurotoxin known as tetrodotoxin (TTX) that is poisonous to humans and causes food poisoning. With the increasing trade demand, which frequently exceeds existing supply capacities, fostering fraudulent practices, such as adulteration of processed products with non-certified farmed wild puffer fish species. To determine the authenticity of puffer fish processed food, we developed a real-time qPCR method to detect five common puffer fish species in aquatic products: Lagocephalus inermis, Lagocephalus lagocephalus, Lagocephalus gloveri, Lagocephalus lunaris, and Lagocephalus spadiceus. The specificity, cross-reactivity, detection limit, efficiency, and robustness of the primers and probes created for five species of puffer fish using TaqMan technology have been determined. No cross-reactivity was detected in the DNA of non-target sample materials, and no false-positive signal was detected; the aquatic products containing 0.1% of a small amount of wild puffer fish materials without certification can be reliably tracked; the statistical p-value for each method's Ct value was greater than 0.05. The developed qPCR method was sensitive, highly specific, robust, and reproducibility, which could be used to validate the authenticity of wild puffer fish in aquatic products sold for commercial purposes.
Collapse
Affiliation(s)
- Xinying Yin
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
- Healthy Food Evaluation Research Center, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Ranran Xing
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Zhiru Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Lili Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Ruijie Deng
- Healthy Food Evaluation Research Center, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
23
|
Detection of Pork in Beef Meatballs Using LC-HRMS Based Untargeted Metabolomics and Chemometrics for Halal Authentication. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238325. [PMID: 36500423 PMCID: PMC9740294 DOI: 10.3390/molecules27238325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Adulteration of high-quality meat products using lower-priced meats, such as pork, is a crucial issue that could harm consumers. The consumption of pork is strictly forbidden in certain religions, such as Islam and Judaism. Therefore, the objective of this research was to develop untargeted metabolomics using liquid chromatography-high resolution mass spectrometry (LC-HRMS) combined with chemometrics for analysis of pork in beef meatballs for halal authentication. We investigated the use of non-targeted LC-HRMS as a method to detect such food adulteration. As a proof of concept using six technical replicates of pooled samples from beef and pork meat, we could show that metabolomics using LC-HRMS could be used for high-throughput screening of metabolites in meatballs made from beef and pork. Chemometrics of principal component analysis (PCA) was successfully used to differentiate beef meatballs and pork meatball samples. Partial least square-discriminant analysis (PLS-DA) clearly discriminated between halal and non-halal beef meatball samples with 100% accuracy. Orthogonal projection to latent structures-discriminant analysis (OPLS-DA) perfectly discriminated and classified meatballs made from beef, pork, and a mixture of beef-pork with a good level of fitness (R2X = 0.88, R2Y = 0.71) and good predictivity (Q2 = 0.55). Partial least square (PLS) and orthogonal PLS (OPLS) were successfully applied to predict the concentration of pork present in beef meatballs with high accuracy (R2 = 0.99) and high precision. Thirty-five potential metabolite markers were identified through VIP (variable important for projections) analysis. Metabolites of 1-(1Z-hexadecenyl)-sn-glycero-3-phosphocholine, acetyl-l-carnitine, dl-carnitine, anserine, hypoxanthine, linoleic acid, and prolylleucine had important roles for predicting pork in beef meatballs through S-line plot analysis. It can be concluded that a combination of untargeted metabolomics using LC-HRMS and chemometrics is promising to be developed as a standard analytical method for halal authentication of highly processed meat products.
Collapse
|
24
|
The Application of Untargeted Metabolomics Using UHPLC-HRMS and Chemometrics for Authentication of Horse Milk Adulterated with Cow Milk. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
“Omics” technologies for the certification of organic vegetables: Consumers’ orientation in Italy and the main determinants of their acceptance. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Yin XL, Fu WJ, Chen Y, Zhou RF, Sun W, Ding B, Peng XT, Gu HW. GC-MS-based untargeted metabolomics reveals the key volatile organic compounds for discriminating grades of Yichang big-leaf green tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
An Integrative Glycomic Approach for Quantitative Meat Species Profiling. Foods 2022; 11:foods11131952. [PMID: 35804766 PMCID: PMC9265272 DOI: 10.3390/foods11131952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
It is estimated that food fraud, where meat from different species is deceitfully labelled or contaminated, has cost the global food industry around USD 6.2 to USD 40 billion annually. To overcome this problem, novel and robust quantitative methods are needed to accurately characterise and profile meat samples. In this study, we use a glycomic approach for the profiling of meat from different species. This involves an O-glycan analysis using LC-MS qTOF, and an N-glycan analysis using a high-resolution non-targeted ultra-performance liquid chromatography-fluorescence-mass spectrometry (UPLC-FLR-MS) on chicken, pork, and beef meat samples. Our integrated glycomic approach reveals the distinct glycan profile of chicken, pork, and beef samples; glycosylation attributes such as fucosylation, sialylation, galactosylation, high mannose, α-galactose, Neu5Gc, and Neu5Ac are significantly different between meat from different species. The multi-attribute data consisting of the abundance of each O-glycan and N-glycan structure allows a clear separation between meat from different species through principal component analysis. Altogether, we have successfully demonstrated the use of a glycomics-based workflow to extract multi-attribute data from O-glycan and N-glycan analysis for meat profiling. This established glycoanalytical methodology could be extended to other high-value biotechnology industries for product authentication.
Collapse
|
28
|
Pan Y, Gu HW, Lv Y, Yin XL, Chen Y, Long W, Fu H, She Y. Untargeted metabolomic analysis of Chinese red wines for geographical origin traceability by UPLC-QTOF-MS coupled with chemometrics. Food Chem 2022; 394:133473. [PMID: 35716498 DOI: 10.1016/j.foodchem.2022.133473] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
Identifying geographical origins of red wines made in specific regions is of significance since the false claim of geographical origins has been frequently exposed in China's wine industry. In this work, an untargeted metabolomic approach based on UPLC-QTOF-MS was established to discriminate geographical origins of Chinese red wines. The principal component analysis (PCA) showed significant differences between wine samples from three famous geographical origins in China. The metabolites contributing to the differentiation were screened by orthogonal partial least squares-discriminant analysis (OPLS-DA) with pairwise modeling. 40 and 46 differential metabolites in positive and negative ionization modes were putatively identified as chemical markers. Furthermore, heatmap visualization and OPLS-DA models were constructed based on these identified markers and external verification wine samples from different regions were successfully discriminated, with recognition rate up to 96.7%. This study indicated that UPLC-QTOF-MS-based untargeted metabolomics has great potential for the geographical origin traceability of Chinese red wines.
Collapse
Affiliation(s)
- Yuan Pan
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Hui-Wen Gu
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China.
| | - Yi Lv
- Key Laboratory of Quality and Safety of Wolfberry and Wine for State Administration for Market Regulation, Ningxia Food Testing and Research Institute, Yinchuan 750004, China
| | - Xiao-Li Yin
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Ying Chen
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
29
|
Kumar P, Rani A, Singh S, Kumar A. Recent advances on
DNA
and omics‐based technology in Food testing and authentication: A review. J Food Saf 2022. [DOI: 10.1111/jfs.12986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Pramod Kumar
- National Institute of Cancer Prevention and Research Indian Council for Medical Research (ICMR‐NICPR) Noida India
| | - Alka Rani
- National Institute of Cancer Prevention and Research Indian Council for Medical Research (ICMR‐NICPR) Noida India
| | - Shalini Singh
- National Institute of Cancer Prevention and Research Indian Council for Medical Research (ICMR‐NICPR) Noida India
| | - Anuj Kumar
- National Institute of Cancer Prevention and Research Indian Council for Medical Research (ICMR‐NICPR) Noida India
| |
Collapse
|
30
|
Zhong P, Wei X, Li X, Wei X, Wu S, Huang W, Koidis A, Xu Z, Lei H. Untargeted metabolomics by liquid chromatography‐mass spectrometry for food authentication: A review. Compr Rev Food Sci Food Saf 2022; 21:2455-2488. [DOI: 10.1111/1541-4337.12938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Peng Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiaoyi Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Shaozong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Weijuan Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Anastasios Koidis
- Institute for Global Food Security Queen's University Belfast Belfast UK
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
31
|
Pastor K, Ilić M, Kojić J, Ačanski M, Vujić D. Classification of Cereal Flour by Gas Chromatography – Mass Spectrometry (GC-MS) Liposoluble Fingerprints and Automated Machine Learning. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2050921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Kristian Pastor
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Marko Ilić
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Jovana Kojić
- Institute of Food Technology Novi Sad (FINS), University of Novi Sad, Novi Sad, Serbia
| | | | | |
Collapse
|
32
|
Kritikou AS, Aalizadeh R, Damalas DE, Barla IV, Baessmann C, Thomaidis NS. MALDI-TOF-MS integrated workflow for food authenticity investigations: An untargeted protein-based approach for rapid detection of PDO feta cheese adulteration. Food Chem 2022; 370:131057. [PMID: 34536781 DOI: 10.1016/j.foodchem.2021.131057] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/25/2023]
Abstract
Advances in Matrix-assisted Laser Desorption/Ionization -Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) have led to its supremacy for complex assessment of food authenticity studies, like dairy products fraud, holding promise for the discovery of potential authenticity (bio)markers. In this study, an integrated untargeted protein-based workflow in combination with advanced chemometrics is presented, to address authenticity challenges in PDO feta cheese which is legally manufactured by the mixture of sheep/goat milk. Potential markers attributed to specific animal origin were found from protein profiles acquired for authentic feta and white cheeses (prepared from cow milk), belonging to 4 kDa-18.5 kDa mass area. Rapid detection of feta cheese adulteration from cow milk was also achieved down to 1% adulteration level. The discriminative models showed high predictive ability for feta cheese authenticity (Q2 = 0.920, RMSEE = 0.053) and its adulteration (Q2 = 0.835, RMSEE = 0.121), introducing a reliable approach in routine analysis. The methodology was successfully applied in detection of cow milk in sheep yoghurt.
Collapse
Affiliation(s)
- Anastasia S Kritikou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Dimitrios E Damalas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Ioanna V Barla
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | | | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
33
|
Beteinakis S, Papachristodoulou A, Mikros E, Halabalaki M. From sample preparation to NMR-based metabolic profiling in food commodities: The case of table olives. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:83-93. [PMID: 34096121 DOI: 10.1002/pca.3070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Nuclear magnetic resonance (NMR)-based metabolic profiling has been widely used in food and plant sciences. Despite its simplicity and inherent reproducibility, the determination of the appropriate pre-processing procedures greatly affects the obtained metabolic profile. OBJECTIVES The current study represents a detailed guide of use for untargeted NMR-based metabolic profiling of table olives (Olea europaea L.). METHODS Greek Kalamon table olives from different geographical origins were selected as reference materials. Differently treated samples were extracted using different solvents and/or solvent systems. Chemical profiles were evaluated with high-performance thin layer chromatography (HPTLC). Different deuterated solvents and sample concentrations were evaluated for the recording of optimal quality spectra. RESULTS The methanol extract of freeze-dried table olives was found to contain the most representative secondary metabolites, in higher concentrations, as well. The optimal deuterated solvent for the NMR analysis was methanol-d4 , while final sample concentration should be within the range of 10 to 15 mg/mL. Multivariate data analysis was also used to estimate and confirm the variation and clustering caused by different characteristics of the samples. CONCLUSIONS Results of the present study make evident the necessity for thorough planning and method development prior to any extensive metabolomic study based on NMR spectroscopy. Pre-processing and sample preparation stages seemed to greatly affect the metabolic profile and spectral quality in the case of table olives, which by extrapolation could apply to other food commodities. Nevertheless, the nature of the samples must be fully described in general, in order to proceed to solid conclusions.
Collapse
Affiliation(s)
- Stavros Beteinakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Papachristodoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
34
|
Approaches for sustainable food production and consumption systems. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Selamat J, Rozani NAA, Murugesu S. Application of the Metabolomics Approach in Food Authentication. Molecules 2021; 26:molecules26247565. [PMID: 34946647 PMCID: PMC8706891 DOI: 10.3390/molecules26247565] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 02/04/2023] Open
Abstract
The authentication of food products is essential for food quality and safety. Authenticity assessments are important to ensure that the ingredients or contents of food products are legitimate and safe to consume. The metabolomics approach is an essential technique that can be utilized for authentication purposes. This study aimed to summarize food authentication through the metabolomics approach, to study the existing analytical methods, instruments, and statistical methods applied in food authentication, and to review some selected food commodities authenticated using metabolomics-based methods. Various databases, including Google Scholar, PubMed, Scopus, etc., were used to obtain previous research works relevant to the objectives. The review highlights the role of the metabolomics approach in food authenticity. The approach is technically implemented to ensure consumer protection through the strict inspection and enforcement of food labeling. Studies have shown that the study of metabolomics can ultimately detect adulterant(s) or ingredients that are added deliberately, thus compromising the authenticity or quality of food products. Overall, this review will provide information on the usefulness of metabolomics and the techniques associated with it in successful food authentication processes, which is currently a gap in research that can be further explored and improved.
Collapse
Affiliation(s)
- Jinap Selamat
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Correspondence: or ; Tel.: +603-97691146
| | | | - Suganya Murugesu
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
36
|
Agregán R, Echegaray N, Nawaz A, Hano C, Gohari G, Pateiro M, Lorenzo JM. Foodomic-Based Approach for the Control and Quality Improvement of Dairy Products. Metabolites 2021; 11:818. [PMID: 34940577 PMCID: PMC8709215 DOI: 10.3390/metabo11120818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
The food quality assurance before selling is a needed requirement intended for protecting consumer interests. In the same way, it is also indispensable to promote continuous improvement of sensory and nutritional properties. In this regard, food research has recently contributed with studies focused on the use of 'foodomics'. This review focuses on the use of this technology, represented by transcriptomics, proteomics, and metabolomics, for the control and quality improvement of dairy products. The complex matrix of these foods requires sophisticated technology able to extract large amounts of information with which to influence their aptitude for consumption. Thus, throughout the article, different applications of the aforementioned technologies are described and discussed in essential matters related to food quality, such as the detection of fraud and/or adulterations, microbiological safety, and the assessment and improvement of transformation industrial processes (e.g., fermentation and ripening). The magnitude of the reported results may open the door to an in-depth transformation of the most conventional analytical processes, with the introduction of new techniques that allow a greater understanding of the biochemical phenomena occurred in this type of food.
Collapse
Affiliation(s)
- Rubén Agregán
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (M.P.)
| | - Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (M.P.)
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, CEDEX 2, 45067 Orléans, France;
| | - Gholamreza Gohari
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, Iran;
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (M.P.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (M.P.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
37
|
Vafin RR, Galstyan AG, Tyulkin SV, Gilmanov KK, Yurova EA, Semipyatniy VK, Bigaeva AV. Species identification of ruminant milk by genotyping of the κ-casein gene. J Dairy Sci 2021; 105:1004-1013. [PMID: 34802731 DOI: 10.3168/jds.2020-19931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 09/29/2021] [Indexed: 12/18/2022]
Abstract
The development of molecular genetic and bioinformatic systems for identifying the species of milk and the raw material composition of dairy products is of great scientific and practical importance with the purpose of introducing developments in the system for controlling the turnover of falsified products. The aim of the research is to develop a method of PCR-RFLP analysis for species identification of milk and dairy products from agricultural ruminant animals by the κ-casein gene (CSN3) with the possibility of qualitative and relative quantitative assessment of species-specific DNA of the tested biomaterial. The objects of research were samples of raw milk and milk powder, pasteurized cream, and hard and semi-hard cheeses. The developed method of species identification of milk and dairy products includes sample preparation of the studied samples, nucleic acid extraction, combined PCR-RFLP technique, detection of obtained results by the method of horizontal electrophoresis in agarose gel and their analysis, including using the developed mathematical algorithms and software. The synergistic effect established in combined operation of 2 restriction enzymes ensured their application in a mix with increased performance in an ergonomic way in the context of DNA authentication of cow, goat, and sheep milk and dairy products based on them. The specificity and sensitivity of the proposed method is potentially suitable for implementing the development of a system to control the turnover of falsified and counterfeit goods.
Collapse
Affiliation(s)
- R R Vafin
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316, Moscow, Russia
| | - A G Galstyan
- All-Russian Scientific Research Institute of the Dairy Industry, 115093, Moscow, Russia
| | - S V Tyulkin
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316, Moscow, Russia
| | - Kh Kh Gilmanov
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316, Moscow, Russia
| | - E A Yurova
- All-Russian Scientific Research Institute of the Dairy Industry, 115093, Moscow, Russia
| | - V K Semipyatniy
- All-Russian Scientific Research Institute of the Dairy Industry, 115093, Moscow, Russia.
| | - A V Bigaeva
- All-Russian Scientific Research Institute of the Dairy Industry, 115093, Moscow, Russia
| |
Collapse
|
38
|
Ivanov AV, Popravko DS, Safenkova IV, Zvereva EA, Dzantiev BB, Zherdev AV. Rapid Full-Cycle Technique to Control Adulteration of Meat Products: Integration of Accelerated Sample Preparation, Recombinase Polymerase Amplification, and Test-Strip Detection. Molecules 2021; 26:6804. [PMID: 34833896 PMCID: PMC8622786 DOI: 10.3390/molecules26226804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022] Open
Abstract
Verifying the authenticity of food products is essential due to the recent increase in counterfeit meat-containing food products. The existing methods of detection have a number of disadvantages. Therefore, simple, cheap, and sensitive methods for detecting various types of meat are required. In this study, we propose a rapid full-cycle technique to control the chicken or pig adulteration of meat products, including 3 min of crude DNA extraction, 20 min of recombinase polymerase amplification (RPA) at 39 °C, and 10 min of lateral flow assay (LFA) detection. The cytochrome B gene was used in the developed RPA-based test for chicken and pig identification. The selected primers provided specific RPA without DNA nuclease and an additional oligonucleotide probe. As a result, RPA-LFA, based on designed fluorescein- and biotin-labeled primers, detected up to 0.2 pg total DNA per μL, which provided up to 0.001% w/w identification of the target meat component in the composite meat. The RPA-LFA of the chicken and pig meat identification was successfully applied to processed meat products and to meat after heating. The results were confirmed by real-time PCR. Ultimately, the developed analysis is specific and enables the detection of pork and chicken impurities with high accuracy in raw and processed meat mixtures. The proposed rapid full-cycle technique could be adopted for the authentication of other meat products.
Collapse
Affiliation(s)
| | | | | | | | | | - Anatoly V. Zherdev
- Research Centre of Biotechnology, A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (A.V.I.); (D.S.P.); (I.V.S.); (E.A.Z.); (B.B.D.)
| |
Collapse
|
39
|
Xue W, Zhang H, Liu M, Chen X, He S, Chu Y. Metabolomics-based screening analysis of PPCPs in water pretreated with five different SPE columns. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4594-4603. [PMID: 34580678 DOI: 10.1039/d1ay01313k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The selection of solid phase extraction (SPE) columns in the pretreatment process plays a decisive role in the screening and quantification of pharmaceutical and personal care products (PPCPs). As growing PPCPs have frequently been detected in the aquatic environment, it is a burdensome task through one-by-one recovery comparison to judge which column presents relatively ideal pretreatment results for PPCPs. In view of this, we developed a novel metabolomics-based screening method based on ultrahigh-performance liquid chromatography-tandem mass spectrometer (UHPLC-MS/MS) results to accurately, rapidly and comprehensively choose a suitable column from 5 different kinds to handle 64 PPCPs in two water environments (50 μg L-1/pH ≅ 7.0/pure water and 1 μg L-1/pH ≅ 7.0/reservoir water) through seeking 'biomarkers', for which multivariate and univariate analyses were adopted. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) play a crucial role in multivariate analysis, and the pairwise t-test and fold change judgement in univariate analysis. Each column group was fully separated from the other 4 groups in PCA and OPLS-DA plots, laying a foundation to distinguish 'biomarkers' between groups. The S-Plot, permutation and variable importance in projection (VIP) in OPLS-DA were employed to screen and identify 'biomarkers', which were further verified by a pairwise t-test and fold change judgement. Eventually, the 64 PPCPs as 'biomarkers' were divided into 5 groups, which correspond to 5 column groups, consistent with the findings of traditional PPCP recovery comparison, proving the validity of the metabolomics-based screening method. This novel method will exhibit greater superiority in choosing suitable SPE columns to handle a growing and larger number of PPCPs in water environments and beyond.
Collapse
Affiliation(s)
- Weifeng Xue
- Technical Center of Dalian Customs, Dalian 116000, China.
| | - Haiqin Zhang
- School of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Mengyao Liu
- Technical Center of Dalian Customs, Dalian 116000, China.
| | - Xi Chen
- Technical Center of Dalian Customs, Dalian 116000, China.
| | - Shuwen He
- Technical Center of Dalian Customs, Dalian 116000, China.
| | - Yingqian Chu
- Technical Center of Dalian Customs, Dalian 116000, China.
| |
Collapse
|
40
|
González-Sálamo J, Varela-Martínez DA, González-Curbelo MÁ, Hernández-Borges J. The Role of Chromatographic and Electromigration Techniques in Foodomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:31-49. [PMID: 34628626 DOI: 10.1007/978-3-030-77252-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Foodomics is the discipline aimed at studying the prevention of diseases by food, identifying chemical, biological and biochemical food contaminants, determining changes in genetically modified foods, identifying biomarkers able to confirm the authenticity and quality of foods or studying the safety, quality and traceability of foods, among other issues. It is mainly based on the use of genomic, transcriptomic, proteomic and metabolomic tools, among others, in order to understand the effect of food on animals and humans at the level of genes, messenger ribonucleic acid, proteins and metabolites. Since the first definition of Foodomics, a reasonable number of works have shown the extremely high possibilities of this discipline, which is highly based on the use of advanced analytical hyphenated techniques - especially for proteomics and metabolomics. This book chapter aims at providing a general description of the role of chromatographic and electromigration techniques that are currently being applied to achieve the main objectives of Foodomics, particularly in the proteomic and metabolomic fields, since most published works have been focused on these approaches, and to highlight relevant applications.
Collapse
Affiliation(s)
- Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Diana Angélica Varela-Martínez
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain.,Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad EAN, Bogotá D.C., Colombia
| | | | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain. .,Instituto Universitario de Enfermedades Tropicales y Salud Pública, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain.
| |
Collapse
|
41
|
Hunter ES, Literman R, Handy SM. Utilizing Big Data to Identify Tiny Toxic Components: Digitalis. Foods 2021; 10:1794. [PMID: 34441571 PMCID: PMC8391216 DOI: 10.3390/foods10081794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
The botanical genus Digitalis is equal parts colorful, toxic, and medicinal, and its bioactive compounds have a long history of therapeutic use. However, with an extremely narrow therapeutic range, even trace amounts of Digitalis can cause adverse effects. Using chemical methods, the United States Food and Drug Administration traced a 1997 case of Digitalis toxicity to a shipment of Plantago (a common ingredient in dietary supplements marketed to improve digestion) contaminated with Digitalis lanata. With increased accessibility to next generation sequencing technology, here we ask whether this case could have been cracked rapidly using shallow genome sequencing strategies (e.g., genome skims). Using a modified implementation of the Site Identification from Short Read Sequences (SISRS) bioinformatics pipeline with whole-genome sequence data, we generated over 2 M genus-level single nucleotide polymorphisms in addition to species-informative single nucleotide polymorphisms. We simulated dietary supplement contamination by spiking low quantities (0-10%) of Digitalis whole-genome sequence data into a background of commonly used ingredients in products marketed for "digestive cleansing" and reliably detected Digitalis at the genus level while also discriminating between Digitalis species. This work serves as a roadmap for the development of novel DNA-based assays to quickly and reliably detect the presence of toxic species such as Digitalis in food products or dietary supplements using genomic methods and highlights the power of harnessing the entire genome to identify botanical species.
Collapse
Affiliation(s)
| | | | - Sara M. Handy
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U.S. Food and Drug Administration, College Park, MD 20740, USA; (E.S.H.); (R.L.)
| |
Collapse
|
42
|
Dong X, Wang X, Xu X, Song Y, Nie X, Jia W, Guo W, Zhang F. An untargeted metabolomics approach to identify markers to distinguish duck eggs that come from different poultry breeding systems by ultra high performance liquid chromatography-high resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122820. [PMID: 34325310 DOI: 10.1016/j.jchromb.2021.122820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/06/2021] [Accepted: 05/29/2021] [Indexed: 11/26/2022]
Abstract
Untargeted metabolomics approach based on ultra high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS) was used to investigate the differences in cage duck eggs and sea duck eggs that from different poultry breeding system, which could help to combat fraud within the egg industry. High dimensions and complex data collected by UHPLC-HRMS were analyzed by multivariate statistical analysis. Identification model of sea duck eggs based on was established. After matching with the chemical databases, four potential markers were putatively matched. Further analysis showed that three of them were confirmed by reference standards. All these three markers (n-behenoyl-d-erythro-sphingosine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and n-nervonoyl-d-erythro-sphingosine) have higher content in sea duck eggs. The quantitative analysis showed that the content difference of three markers in farm samples were in highly consistent with the concentration changes measured in experimental samples, which indicate that these three markers are reliable.
Collapse
Affiliation(s)
- Xuyang Dong
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Xiuli Xu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Yaxuan Song
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Xuemei Nie
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Guo
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China.
| |
Collapse
|
43
|
Utpott M, Rodrigues E, Rios ADO, Mercali GD, Flôres SH. Metabolomics: An analytical technique for food processing evaluation. Food Chem 2021; 366:130685. [PMID: 34333182 DOI: 10.1016/j.foodchem.2021.130685] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022]
Abstract
This review aimed to retrieve the most recent research with strong impact concerning the application of metabolomics analysis in food processing. The literature reveals the high capacity of this methodology to evaluate chemical and organoleptic transformations that occur during food production. Current and potential applications of metabolomics analysis will be addressed, focusing on process-composition-function relationships. The use of the metabolomics approach to evaluate transformations in foods submitted to minimal processes, heat or cold treatments, drying, fermentation, chemical and enzymatic treatments and processes using innovative technologies will be discussed. Moreover, the main strategies and advantages of metabolomics-based approaches are reviewed, as well as the most used analytical platforms. Overall, metabolomics can be seen as an important tool to support academia and industry on pursuing knowledge about the transformation of raw animal or plant materials into ready-to-eat products.
Collapse
Affiliation(s)
- Michele Utpott
- Bioactive Compounds Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Avenue Bento Gonçalves n° 9500, P. O. Box 15059, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.
| | - Eliseu Rodrigues
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Avenue Bento Gonçalves n° 9500, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.
| | - Alessandro de Oliveira Rios
- Bioactive Compounds Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Avenue Bento Gonçalves n° 9500, P. O. Box 15059, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.
| | - Giovana Domeneghini Mercali
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Avenue Bento Gonçalves n° 9500, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.
| | - Simone Hickmann Flôres
- Bioactive Compounds Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Avenue Bento Gonçalves n° 9500, P. O. Box 15059, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.
| |
Collapse
|
44
|
Authentication of carioca common bean cultivars (Phaseolus vulgaris L.) using digital image processing and chemometric tools. Food Chem 2021; 364:130349. [PMID: 34175626 DOI: 10.1016/j.foodchem.2021.130349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/31/2021] [Accepted: 06/09/2021] [Indexed: 01/10/2023]
Abstract
Bean authentication can result in higher quality products for commerce. Partial least squares discriminant analysis (PLS-DA) was applied to digital images in order to develop a methodology that allows the non-destructive discrimination of three Phaseolus vulgaris L. cultivars (Agro ANfc9, IPR-Andorinha, and IPR-Sabiá) having different technological characteristics. Principal component analysis resulted in a separation of these cultivars, but with a certain amount of overlap. Supervised analysis showed that three PLS1-DA models, each for two cultivars, was moderately better than the simultaneous treatment of all three cultivars (PLS2-DA). Permutation test evaluated statistical significance of PLS-DA models. The classification models were more accurate for Agro ANfc9 and IPR-Sabiá cultivars than for IPR-Andorinha. The Agro ANfc9-IPR-Sabiá model correctly classified 100% of the two bean classes in both training and test sets. This analytical strategy is fast, inexpensive, environmentally friendly, and can be applied for bean quality control helping cultivar authenticity for commerce.
Collapse
|
45
|
Lotz F, Baar P, Spengler B, Schulz S. Development of a handheld liquid extraction pen for on-site mass spectrometric analysis of daily goods. Analyst 2021; 146:3004-3015. [PMID: 33949361 DOI: 10.1039/d0an02281k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We present a handheld liquid extraction pen (LEP) combined with a self-sustaining electrospray ionization platform for ambient mass spectrometry within a laboratory-independent workspace. The LEP enables direct sampling from various surfaces and textures, independent of sample shape without precise sample positioning or dedicated sample preparation. The combination of liquid extraction of analytes through the pen and electrospray ionization (ESI) opens a broad field of applications. Qualitative and semi-quantitative analysis is presented for pesticides, plasticizers and drugs which were analyzed from representative consumer goods, such as fruits, toys and pills. Food authentication via metabolomic fingerprinting and multivariate statistics is demonstrated for the analysis of fish fillets and coffee. The LEP source uses a rechargeable battery to power a compressor. Ambient air is used for solvent nebulization in ESI. Through a pressure pump with integrated solvent reservoir, a solvent flow through the LEP and ESI source is generated. Measurement times of more than three hours are possible. The ion source is adaptable to any kind of mass spectrometer equipped with an atmospheric pressure interface. Measurements were performed on orbital trapping instruments and on a miniature mass spectrometer. Coupled to the miniaturized mass spectrometer, the completely portable LEP-MS instrument has dimensions of 48.4 × 27.0 × 18.0 cm (l × w × h).
Collapse
Affiliation(s)
- Florian Lotz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Germany.
| | - Paula Baar
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Germany.
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Germany.
| | - Sabine Schulz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Germany.
| |
Collapse
|
46
|
Chromatography-MS based metabolomics applied to the study of virgin olive oil bioactive compounds: Characterization studies, agro-technological investigations and assessment of healthy properties. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Chromatography hyphenated to high resolution mass spectrometry in untargeted metabolomics for investigation of food (bio)markers. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Stachniuk A, Sumara A, Montowska M, Fornal E. LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY BOTTOM-UP PROTEOMIC METHODS IN ANIMAL SPECIES ANALYSIS OF PROCESSED MEAT FOR FOOD AUTHENTICATION AND THE DETECTION OF ADULTERATIONS. MASS SPECTROMETRY REVIEWS 2021; 40:3-30. [PMID: 31498909 DOI: 10.1002/mas.21605] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review offers an overview of the current status and the most recent advances in liquid chromatography-mass spectrometry (LC-MS) techniques with both high-resolution and low-resolution tandem mass analyzers applied to the identification and detection of heat-stable species-specific peptide markers of meat in highly processed food products. We present sets of myofibrillar and sarcoplasmic proteins, which turned out to be the source of 105 heat-stable peptides, detectable in processed meat using LC-MS/MS. A list of heat-stable species-specific peptides was compiled for eleven types of white and red meat including chicken, duck, goose, turkey, pork, beef, lamb, rabbit, buffalo, deer, and horse meat, which can be used as markers for meat authentication. Among the 105 peptides, 57 were verified by multiple reaction monitoring, enabling identification of each species with high specificity and selectivity. The most described and monitored species by LC-MS/MS so far are chicken and pork with 26 confirmed heat-stable peptide markers for each meat. In thermally processed samples, myosin, myoglobin, hemoglobin, l-lactase dehydrogenase A and β-enolase are the main protein sources of heat-stable markers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Anna Stachniuk
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Agata Sumara
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624, Poznan, Poland
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| |
Collapse
|
49
|
García-Oliveira P, Fraga-Corral M, Pereira AG, Prieto MA, Simal-Gandara J. Solutions for the sustainability of the food production and consumption system. Crit Rev Food Sci Nutr 2020; 62:1765-1781. [PMID: 33242978 DOI: 10.1080/10408398.2020.1847028] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to the increasing population, there is high concern about whether the current food system will be able to provide enough healthy food for 10 billion people by 2050. The general opinion is that it is possible to feed this population, but the food system requires major transformations on behalf of promoting sustainability, reducing food waste and stimulating a change toward diets healthy for humans and also sustainable for the planet. This article will review some detected problems in food production and consumption. In food production, current problems like destruction of land ecosystems, overfishing or generation of high amounts of residues stand out. Some solutions have been described, such as implement the agroecology, improve productivity of aquaculture or re-valorization of by-products. In food consumption, the main problems are the food fraud and the unhealthy dietary patters, whose main solutions are the standardization along food chain and education on healthy lifestyles. Concluding, food system should change toward more sustainable practices and behaviors in other to ensure the subsistence of the present and the future generations.
Collapse
Affiliation(s)
- P García-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - A G Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M A Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - J Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| |
Collapse
|
50
|
Wang J, Xu Z, Zhang H, Wang Y, Liu X, Wang Q, Xue J, Zhao Y, Yang S. Meat differentiation between pasture-fed and concentrate-fed sheep/goats by liquid chromatography quadrupole time-of-flight mass spectrometry combined with metabolomic and lipidomic profiling. Meat Sci 2020; 173:108374. [PMID: 33229106 DOI: 10.1016/j.meatsci.2020.108374] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/16/2023]
Abstract
Animal feeding method is a crucial factor in influencing meat quality. Consumers would preferentially select meat obtained from pasture-fed animals. In this study, an untargeted metabolomic and lipidomic method based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) combined with chemometric analysis was utilized to investigate the differences between meat from free-range and intensively-fed sheep/goats. Distinct separation between these two kinds of sheep/goats meat obtained were identified by principal component analysis. Analysis of variance, fold change and orthogonal projection to latent structures discriminant analysis were then conducted to determine specific potential markers. A total of 46 potential markers were selected according to online chemical databases. The support vector machine (SVM) method was used to process the responses of the selected potential markers, and the results of metabolomics and lipidomics from an additional 59 samples revealed the discrimination rate of 89.3% and 98.3%. These findings provided a basis for differentiation of meat from sheep/goats fed in the two methods.
Collapse
Affiliation(s)
- Jishi Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongbo Zhang
- Inner Mongolia Food Safety and Inspection Testing Center, Hohhot, Inner Mongolia 010090, China
| | - Yanyun Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoxia Liu
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiali Xue
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shuming Yang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|