1
|
Tomassone L, Martello E, Mannelli A, Vicentini A, Gossner CM, Leonardi‐Bee J. A Systematic Review on the Prevalence of Tick-Borne Encephalitis Virus in Milk and Milk Products in Europe. Zoonoses Public Health 2025; 72:248-258. [PMID: 39988728 PMCID: PMC11967290 DOI: 10.1111/zph.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Tick-borne encephalitis virus (TBEV) is one of the most significant zoonotic diseases in Europe. It primarily spreads through the bites of infected ticks and, less frequently, through consumption of raw milk and dairy products from viremic domestic ruminants. AIMS Assess the prevalence of TBEV or anti-TBEV antibodies in milk and milk products from domestic ruminants in Europe. MATERIALS AND METHODS Systematic literature review adhering to the JBI methodology, and reported following the PRISMA framework. RESULTS From the 16 included scientific articles, we extracted 35 data collections (31 on raw milk and 4 on raw milk cheese); studies focused on cow (n = 15), goat (n = 11) and sheep milk (n = 5), goat (n = 3) and cow/goat cheese (n = 1). Fifteen data collections involved individual milk and 16 bulk milk samples. The estimated prevalence of TBEV in individual raw milk and cheese was 6% and 3%, respectively. TBEV prevalence in bulk milk was very heterogeneous, with most values either 0% or 100%. DISCUSSION Although published research on TBEV transmission to humans through milk and dairy products in the EU countries is limited, our results highlight the potential infection risk for consumers. The variable prevalence reported in the studies may reflect the focal nature of TBEV. CONCLUSION Studies on unpasteurised dairy products from domestic ruminants can be valuable for the detection of TBEV presence in a geographic area, even when human cases are not reported. Thanks to the ease of sample collection, their testing could be adopted in monitoring plans on TBEV.
Collapse
Affiliation(s)
- Laura Tomassone
- Department of Veterinary SciencesUniversity of TurinGrugliascoItaly
| | - Elisa Martello
- Centre for Evidence Based Healthcare, School of MedicineUniversity of NottinghamNottinghamUK
| | | | - Aurora Vicentini
- Department of Veterinary SciencesUniversity of TurinGrugliascoItaly
| | - Céline M. Gossner
- European Centre for Disease Prevention and Control (ECDC)SolnaSweden
| | - Jo Leonardi‐Bee
- Centre for Evidence Based Healthcare, School of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|
2
|
Sabadi D, Bodulić K, Savić V, Vlahović Vlašić N, Bogdanić M, Perić L, Tabain I, Lišnjić D, Duvnjak M, Židovec-Lepej S, Grubišić B, Rubil I, Barbić L, Švitek L, Stevanović V, Smajić P, Berišić B, Zlosa M, Rončević I, Vilibić-Čavlek T. Clinical Characteristics, Laboratory Parameters, and Molecular Epidemiology of Neuroinvasive Flavivirus Infections in a Hotspot Region of Eastern Croatia. Pathogens 2025; 14:69. [PMID: 39861030 PMCID: PMC11768143 DOI: 10.3390/pathogens14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Neuroinvasive flaviviruses such as tick-borne encephalitis virus (TBEV) and West Nile virus (WNV) are widely distributed in continental Croatian regions. We analyzed clinical characteristics, laboratory parameters, and molecular epidemiology of neuroinvasive flavivirus infections in eastern Croatia. A total of 43 patients with confirmed flavivirus infection hospitalized from 2017 to 2023 were included in the study. Reverse-transcription polymerase chain reaction (RT-qPCR) was used to detect flavivirus RNA in clinical samples (cerebrospinal fluid; CSF, urine). ELISA was used for IgM and IgG antibody detection in serum and CSF with confirmation of cross-reactive samples by virus neutralization test. WNV was detected more frequently (74.4%) than TBEV (25.6%). A statistically significant age difference was found between WNV patients (median 65 years) and TBEV patients (median 36 years). Comorbidities were more frequently detected in WNV patients (hypertension 56.3 vs. 18.2%; diabetes 31.3 vs. 0%). Meningitis was the most common clinical presentation in both TBE and WNV neuroinvasive disease (WNND; 63.6 and 59.4%, respectively). In addition, some rare clinical presentations of WNND were also detected (cerebellitis, polyradiculoneuritis). No significant differences in the frequency of clinical symptoms were observed between WNV and TBEV-infected patients (fever 93.7 vs. 100%; malaise 78.1 vs. 100%; headache 75.0 vs. 100%; nausea 50.0 vs. 63.6%; vomiting 34.4 vs. 54.6%). Comparative analysis of total and differential leukocyte blood count showed similar results. However, CSF pleocytosis was higher in TBE patients, with a significant difference in the neutrophil and lymphocyte count (WNND median 48.5% and 51.5%; TBE median 10.0 and 90.0%, respectively). The length of hospital stay was 12 days for WNND and 9 days for TBE. Phylogenetic analysis of detected WNV strains revealed the presence of WNV lineage 2 in eastern Croatia.
Collapse
Affiliation(s)
- Dario Sabadi
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia; (D.S.); (N.V.V.); (M.D.); (B.G.); (I.R.); (P.S.); (B.B.); (M.Z.)
- Department of Infectology and Dermatovenerology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (L.P.); (D.L.)
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Kristian Bodulić
- Research Department, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia;
| | - Vladimir Savić
- Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Nika Vlahović Vlašić
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia; (D.S.); (N.V.V.); (M.D.); (B.G.); (I.R.); (P.S.); (B.B.); (M.Z.)
- Department of Infectology and Dermatovenerology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (L.P.); (D.L.)
| | - Maja Bogdanić
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (I.T.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ljiljana Perić
- Department of Infectology and Dermatovenerology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (L.P.); (D.L.)
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (I.T.)
| | - Dubravka Lišnjić
- Department of Infectology and Dermatovenerology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (L.P.); (D.L.)
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Mario Duvnjak
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia; (D.S.); (N.V.V.); (M.D.); (B.G.); (I.R.); (P.S.); (B.B.); (M.Z.)
- Department of Infectology and Dermatovenerology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (L.P.); (D.L.)
| | - Snježana Židovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia;
| | - Barbara Grubišić
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia; (D.S.); (N.V.V.); (M.D.); (B.G.); (I.R.); (P.S.); (B.B.); (M.Z.)
- Department of Infectology and Dermatovenerology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (L.P.); (D.L.)
| | - Ilija Rubil
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia; (D.S.); (N.V.V.); (M.D.); (B.G.); (I.R.); (P.S.); (B.B.); (M.Z.)
- Department of Infectology and Dermatovenerology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (L.P.); (D.L.)
| | - Ljubo Barbić
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.)
| | - Luka Švitek
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia; (D.S.); (N.V.V.); (M.D.); (B.G.); (I.R.); (P.S.); (B.B.); (M.Z.)
- Department of Infectology and Dermatovenerology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (L.P.); (D.L.)
| | - Vladimir Stevanović
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.)
| | - Petra Smajić
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia; (D.S.); (N.V.V.); (M.D.); (B.G.); (I.R.); (P.S.); (B.B.); (M.Z.)
- Department of Infectology and Dermatovenerology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (L.P.); (D.L.)
| | - Bernarda Berišić
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia; (D.S.); (N.V.V.); (M.D.); (B.G.); (I.R.); (P.S.); (B.B.); (M.Z.)
- Department of Infectology and Dermatovenerology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (L.P.); (D.L.)
| | - Mihaela Zlosa
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia; (D.S.); (N.V.V.); (M.D.); (B.G.); (I.R.); (P.S.); (B.B.); (M.Z.)
- Department of Infectology and Dermatovenerology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (L.P.); (D.L.)
| | - Ivana Rončević
- Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Tatjana Vilibić-Čavlek
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (I.T.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Hennechart-Collette C, Mathews-Martin L, Fourniol L, Fraisse A, Martin-Latil S, Bournez L, Gonzalez G, Perelle S. Development of a cell culture-based method for detecting infectious tick-borne encephalitis virus (TBEV) in milk products. Food Microbiol 2024; 124:104619. [PMID: 39244371 DOI: 10.1016/j.fm.2024.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
Tick-borne encephalitis outbreaks have been reported in Europe after consumption of raw milk products from infected animals. While molecular methods are commonly used in viral foodborne outbreak investigations due to their sensitivity, specificity and rapidity, there are very few methods to detect infectious tick-borne encephalitis virus (TBEV) in milk products for routine use/analyses. To address this gap, we developed a cell culture-based method to detect infectious TBEV in artificially contaminated raw goat milk and raw goat cheese, and evaluated the sensitivity of TBEV infectivity assays. Raw goat milk samples were spiked with TBEV to achieve inoculation levels ranging from 106 to 100 TCID50/mL, and Faisselle and Tomme cheese samples were spiked so their TBEV concentrations ranged from 9.28 × 105 to 9.28 × 101 TCID50 per 2.5g. To detect infectious TBEV, Vero cells were infected by raw goat milk. For cheese samples, after homogenisation and membrane filtration, Vero cells were infected with samples adsorbed on the filter (method A) or with samples eluted from the filter (method B). After 5 days, cytopathic effects (CPEs) were observed and TBEV replication in Vero cells was confirmed by an increase in the number of genome copies/mL that were detected in cell supernatant. Infected Vero cells exhibited CPEs for both milk and cheese samples. Infectious TBEV was detected to 103 TCID50/mL in raw milk samples and to 9.28 × 101 TCID50 from Faisselle samples using both methods A and B. For Tomme samples, method A was able to detect TBEV to 9.28 × 102 TCID50/2.5g and method B to 9.28 × 103 TCID50/2.5g. The number of positive samples detected was slightly higher with method A than with method B. To conclude, this qualitative cell culture-based method can detect infectious TBEV artificially inoculated into raw milk and cheese; it should be further evaluated during foodborne outbreak investigations to detect infectious TBEV from naturally contaminated milk and cheese.
Collapse
Affiliation(s)
| | - Laure Mathews-Martin
- Université Paris-Est, ANSES, Laboratory for Food Safety, F-94700, Maisons-Alfort, France; VetAgro Sup, ENSV-FVI, F-69280, Marcy-L'Étoile, France
| | - Lisa Fourniol
- Université Paris-Est, ANSES, Laboratory for Food Safety, F-94700, Maisons-Alfort, France
| | - Audrey Fraisse
- Université Paris-Est, ANSES, Laboratory for Food Safety, F-94700, Maisons-Alfort, France
| | - Sandra Martin-Latil
- ANSES, INRAE, ENVA, Virology Joint Research Unit, Animal Health Laboratory, F-94700, Maisons-Alfort, France
| | - Laure Bournez
- ANSES, Nancy Laboratory for Rabies and Wildlife, F-54220, Malzéville, France
| | - Gaëlle Gonzalez
- ANSES, INRAE, ENVA, Virology Joint Research Unit, Animal Health Laboratory, F-94700, Maisons-Alfort, France
| | - Sylvie Perelle
- Université Paris-Est, ANSES, Laboratory for Food Safety, F-94700, Maisons-Alfort, France.
| |
Collapse
|
4
|
Yu KM, Park SJ. Tick-borne viruses: Epidemiology, pathogenesis, and animal models. One Health 2024; 19:100903. [PMID: 39391267 PMCID: PMC11465198 DOI: 10.1016/j.onehlt.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
Tick-borne viruses, capable of infecting animals and humans, are expanding geographically and increasing in prevalence, posing significant global public health threats. This review explores the current epidemiology of human pathogenic tick-borne viruses, emphasizing their diversity and the spectrum of symptomatic manifestations in humans, which range from mild to severe. We highlight how the infrequent and unpredictable nature of viral outbreaks complicates the precise identification and understanding of these viruses in human infections. Furthermore, we describe the utility of animal models that accurately mimic human clinical symptoms, facilitating the development of effective control strategies. Our comprehensive analysis provides crucial insights into disease progression and emphasizes the urgent need for continued research. This work aims to provide insight into knowledge gaps to mitigate the health burden of tick-borne infections and open an avenue for further study to enhance our understanding of these emerging infectious diseases.
Collapse
Affiliation(s)
- Kwang-Min Yu
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Su-Jin Park
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Bogdanic M, Savic V, Klobucar A, Barbic L, Sabadi D, Tomljenovic M, Madic J, Hruskar Z, Curman Posavec M, Santini M, Stevanovic V, Petrinic S, Antolasic L, Milasincic L, Al-Mufleh M, Roncevic D, Vilibic-Cavlek T. The Re-Emergence of Neuroinvasive Flaviviruses in Croatia During the 2022 Transmission Season. Microorganisms 2024; 12:2210. [PMID: 39597599 PMCID: PMC11596621 DOI: 10.3390/microorganisms12112210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
(Re-)emerging arboviruses, such as tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and Usutu virus (USUV), are continuously increasing in incidence. We analyzed the epidemiological characteristics of flavivirus infections in humans, sentinel animals, and mosquitoes detected in the 2022 transmission season in Croatia. From April to November 2022, 110 hospitalized patients with neuroinvasive diseases (NID) were tested for the presence of arboviruses. RT-qPCR was used to detect TBEV, WNV, and USUV RNA. An ELISA and virus neutralization tests were used for the detection of flavivirus antibodies. TBEV infection was confirmed in 22 patients with NID. WNV NID was detected in six patients. TBE showed male predominance (81.8%; male-to-female ratio of 4.5:1). All but one WNV patients were males. TBE occurred from April to August, with the majority of patients (83.3%) being detected during the May-June-July period. WNV infections were recorded in August and September. In addition to human cases, asymptomatic WNV infections (IgM positive) were reported in 10 horses. For the first time in Croatia, WNV NID was observed in one horse that presented with neurological symptoms. Furthermore, USUV was confirmed in one dead blackbird that presented with neurological symptoms. A total of 1984 mosquitoes were collected in the City of Zagreb. Two Ae. albopictus pools tested positive for flavivirus RNA: one collected in July (USUV) and the other collected in August (WNV). A phylogenetic analysis of detected human and avian strains confirmed WNV lineage 2 and the USUV Europe 2 lineage. The presented results confirm the endemic presence of neuroinvasive flaviviruses in continental Croatia. The continuous monitoring of virus circulation in humans, sentinel animals, and mosquitoes is needed to reduce the disease burden.
Collapse
Affiliation(s)
- Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (Z.H.); (L.A.); (L.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Ana Klobucar
- Department of Epidemiology, Andrija Stampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (A.K.); (M.C.P.); (S.P.)
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (J.M.); (V.S.)
| | - Dario Sabadi
- Department of Infectious Diseases, Clinical Hospital Center Osijek, 31000 Osijek, Croatia;
- Medical Faculty, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Morana Tomljenovic
- Department of Epidemiology, Primorje-Gorski Kotar Teaching Institute of Public Health, 51000 Rijeka, Croatia; (M.T.); (D.R.)
- Department of Social Medicine and Epidemiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Josip Madic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (J.M.); (V.S.)
| | - Zeljka Hruskar
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (Z.H.); (L.A.); (L.M.)
| | - Marcela Curman Posavec
- Department of Epidemiology, Andrija Stampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (A.K.); (M.C.P.); (S.P.)
| | - Marija Santini
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department for Infections in Immunocompromised Patients, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (J.M.); (V.S.)
| | - Suncica Petrinic
- Department of Epidemiology, Andrija Stampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (A.K.); (M.C.P.); (S.P.)
| | - Ljiljana Antolasic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (Z.H.); (L.A.); (L.M.)
| | - Ljiljana Milasincic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (Z.H.); (L.A.); (L.M.)
| | - Mahmoud Al-Mufleh
- Department of Infectious Diseases, County Hospital Cakovec, 40000 Cakovec, Croatia;
| | - Dobrica Roncevic
- Department of Epidemiology, Primorje-Gorski Kotar Teaching Institute of Public Health, 51000 Rijeka, Croatia; (M.T.); (D.R.)
- Department of Public Health, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia
| | - Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (Z.H.); (L.A.); (L.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
6
|
Parsadanians A, Mirshahabi H, Yavarmanesh M. First detection of tick-borne encephalitis virus (TBEV) in raw milk samples in North-Western Iran. Vet Med Sci 2024; 10:e1477. [PMID: 38896036 PMCID: PMC11186114 DOI: 10.1002/vms3.1477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/13/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a significant cause of flaviviral infections affecting the human central nervous system, primarily transmitted through tick bites and the consumption of unpasteurized milk. This study aimed to assess the prevalence of TBEV and identify new natural foci of TBEV in livestock milk. In this cross-sectional study, unpasteurized milk samples were collected from livestock reared on farms and analysed for the presence and subtyping of TBEV using nested reverse transcription-polymerase chain reaction , alongside the detection of anti-TBEV total IgG antibodies using ELISA. The findings revealed that the highest prevalence of TBEV was observed in goat and sheep milk combined, whereas no TBEV was detected in cow milk samples. All identified strains were of the Siberian subtype. Moreover, the highest prevalence of anti-TBEV antibodies was detected in sheep milk. These results uncover new foci of TBEV in Iran, underscoring the importance of thermal processing (pasteurization) of milk prior to consumption to mitigate the risk of TBEV infection.
Collapse
Affiliation(s)
- Angineh Parsadanians
- Department of Microbiology and VirologyFaculty of MedicineZanjan University of Medical SciencesZanjanIran
| | - Hessam Mirshahabi
- Department of Microbiology and VirologyFaculty of MedicineZanjan University of Medical SciencesZanjanIran
| | - Masoud Yavarmanesh
- Department of Food Science and TechnologyFaculty of AgricultureFerdowsi University of MashhadMashhadIran
| |
Collapse
|
7
|
Mathews-Martin L, Gonzalez G, Dheilly NM, Amaral-Moraes R, Dumarest M, Helle T, Migne C, Caillot C, Lacour SA, Pérelle S, Beck C, Metras R, Bournez L. Exposure of cattle to tick-borne encephalitis virus in the historical endemic zone in north-eastern France. BMC Vet Res 2024; 20:228. [PMID: 38796429 PMCID: PMC11127440 DOI: 10.1186/s12917-024-04079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/13/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Tick-borne encephalitis (TBE) is a severe human neuroinfection caused by TBE virus (TBEV). TBEV is transmitted by tick bites and by the consumption of unpasteurized dairy products from infected asymptomatic ruminants. In France, several food-borne transmission events have been reported since 2020, raising the question of the level of exposure of domestic ungulates to TBEV. In this study, our objectives were (i) to estimate TBEV seroprevalence and quantify antibodies titres in cattle in the historical endemic area of TBEV in France using the micro virus neutralisation test (MNT) and (ii) to compare the performance of two veterinary cELISA kits with MNT for detecting anti-TBEV antibodies in cattle in various epidemiological contexts. A total of 344 cattle sera from four grid cells of 100 km² in Alsace-Lorraine (endemic region) and 84 from western France, assumed to be TBEV-free, were investigated. RESULTS In Alsace-Lorraine, cattle were exposed to the virus with an overall estimated seroprevalence of 57.6% (95% CI: 52.1-62.8%, n = 344), varying locally from 29.9% (95% CI: 21.0-40.0%) to 92.1% (95% CI: 84.5-96.8%). Seroprevalence did not increase with age, with one- to three-year-old cattle being as highly exposed as older ones, suggesting a short-life duration of antibodies. The proportion of sera with MNT titres lower than 1:40 per grid cell decreased with increased seroprevalence. Both cELISA kits showed high specificity (> 90%) and low sensitivity (less than 78.1%) compared with MNT. Sensitivity was lower for sera with neutralising antibodies titres below 1:40, suggesting that sensitivity of these tests varied with local virus circulation intensity. CONCLUSIONS Our results highlight that cattle were highly exposed to TBEV. Screening strategy and serological tests should be carefully chosen according to the purpose of the serological study and with regard to the limitations of each method.
Collapse
Affiliation(s)
- Laure Mathews-Martin
- ANSES, Nancy Laboratory for Rabies and Widlife, Malzéville, F-54220, France.
- VetAgro Sup, ENSV-FVI, Marcy-L'Étoile, F-69280, France.
- ANSES, INRAE, ENVA, UMR Virology, ANSES Animal Health Laboratory, Maisons-Alfort, F-94700, France.
- ANSES, Laboratory for Food Safety, UVE, Maisons-Alfort, F-94700, France.
| | - Gaëlle Gonzalez
- ANSES, INRAE, ENVA, UMR Virology, ANSES Animal Health Laboratory, Maisons-Alfort, F-94700, France
| | - Nolwenn M Dheilly
- ANSES, INRAE, ENVA, UMR Virology, ANSES Animal Health Laboratory, Maisons-Alfort, F-94700, France
| | - Rayane Amaral-Moraes
- ANSES, INRAE, ENVA, UMR Virology, ANSES Animal Health Laboratory, Maisons-Alfort, F-94700, France
| | - Marine Dumarest
- ANSES, INRAE, ENVA, UMR Virology, ANSES Animal Health Laboratory, Maisons-Alfort, F-94700, France
| | - Teheipuaura Helle
- ANSES, INRAE, ENVA, UMR Virology, ANSES Animal Health Laboratory, Maisons-Alfort, F-94700, France
| | - Camille Migne
- ANSES, INRAE, ENVA, UMR Virology, ANSES Animal Health Laboratory, Maisons-Alfort, F-94700, France
| | - Christophe Caillot
- ANSES, Nancy Laboratory for Rabies and Widlife, Malzéville, F-54220, France
| | - Sandrine A Lacour
- ANSES, INRAE, ENVA, UMR Virology, ANSES Animal Health Laboratory, Maisons-Alfort, F-94700, France
| | - Sylvie Pérelle
- ANSES, Laboratory for Food Safety, UVE, Maisons-Alfort, F-94700, France
| | - Cécile Beck
- ANSES, INRAE, ENVA, UMR Virology, ANSES Animal Health Laboratory, Maisons-Alfort, F-94700, France
| | - Raphaëlle Metras
- Sorbonne Université, INSERM, Pierre Louis Institute of Epidemiology and Public Health (IPLESP, UMRS, 1136), Paris, F-75012, France
| | - Laure Bournez
- ANSES, Nancy Laboratory for Rabies and Widlife, Malzéville, F-54220, France.
| |
Collapse
|
8
|
Vilibic-Cavlek T, Krcmar S, Bogdanic M, Tomljenovic M, Barbic L, Roncevic D, Sabadi D, Vucelja M, Santini M, Hunjak B, Stevanovic V, Boljfetic M, Bjedov L, Masovic V, Potocnik-Hunjadi T, Lakoseljac D, Al-Mufleh M, Savic V. An Overview of Tick-Borne Encephalitis Epidemiology in Endemic Regions of Continental Croatia, 2017-2023. Microorganisms 2024; 12:386. [PMID: 38399790 PMCID: PMC10891638 DOI: 10.3390/microorganisms12020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Tick-borne encephalitis (TBE) represents an important public health problem in Europe. We analyzed the epidemiology of TBE based on data from humans, animals, and Ixodes ricinus ticks in endemic regions of continental Croatia. In the period from 2017 to 2023, cerebrospinal fluid (CSF) and serum samples of 684 patients with neuroinvasive diseases, 2240 horse serum samples, and 300 sheep serum samples were tested for TBEV. In addition, 8751 I. ricinus ticks were collected. CSF samples were tested using RT-PCR. Serological tests (serum, CSF) were performed using commercial ELISA, with confirmation of cross-reactive samples by a virus neutralization test. Eighty-four autochthonous human TBEV cases were confirmed. The majority of patients were in the age group of 40-69 years (58.3%) with a male predominance (70.2%). TBE showed a bimodal seasonality with a large peak in April-August and a small one in October-November. In addition to humans, TBEV IgG antibodies were found in 12.2% of horses and 9.7% of sheep. Seasonal tick abundance corresponds to the reported number of human infections. Continental Croatia is still an active natural focus of TBE. Continuous monitoring of infections in humans, sentinel animals, and ticks is needed for the implementation of preventive measures.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Stjepan Krcmar
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia;
| | - Morana Tomljenovic
- Department of Epidemiology, Teaching Institute of Public Health of the Primorje-Gorski Kotar County, 51000 Rijeka, Croatia; (M.T.); (D.R.); (D.L.)
- Department of Social Medicine and Epidemiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (V.M.)
| | - Dobrica Roncevic
- Department of Epidemiology, Teaching Institute of Public Health of the Primorje-Gorski Kotar County, 51000 Rijeka, Croatia; (M.T.); (D.R.); (D.L.)
- Department of Public Health, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia
| | - Dario Sabadi
- Department of Infectious Diseases, Clinical Hospital Center Osijek, 31000 Osijek, Croatia;
- Medical Faculty, University of Osijek, 31000 Osijek, Croatia
| | - Marko Vucelja
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, University of Zagreb, 10000 Zagreb, Croatia; (M.V.); (M.B.); (L.B.)
| | - Marija Santini
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Blazenka Hunjak
- Department of Bacteriology, Croatian Institute of Public Health, 10000 Zagreb, Croatia;
- Department of Microbiology, University of Applied Health Sciences, 10000 Zagreb, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (V.M.)
| | - Marko Boljfetic
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, University of Zagreb, 10000 Zagreb, Croatia; (M.V.); (M.B.); (L.B.)
| | - Linda Bjedov
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, University of Zagreb, 10000 Zagreb, Croatia; (M.V.); (M.B.); (L.B.)
| | - Viktor Masovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (V.M.)
| | | | - Danijela Lakoseljac
- Department of Epidemiology, Teaching Institute of Public Health of the Primorje-Gorski Kotar County, 51000 Rijeka, Croatia; (M.T.); (D.R.); (D.L.)
- Department of Public Health, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia
| | - Mahmoud Al-Mufleh
- Department of Infectious Diseases, County Hospital Cakovec, 40000 Cakovec, Croatia;
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Kapo N, Zuber Bogdanović I, Gagović E, Žekić M, Veinović G, Sukara R, Mihaljica D, Adžić B, Kadriaj P, Cvetkovikj A, Djadjovski I, Potkonjak A, Velo E, Savić S, Tomanović S, Omeragić J, Beck R, Hodžić A. Ixodid ticks and zoonotic tick-borne pathogens of the Western Balkans. Parasit Vectors 2024; 17:45. [PMID: 38297327 PMCID: PMC10832161 DOI: 10.1186/s13071-023-06116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Ixodid ticks are distributed across all countries of the Western Balkans, with a high diversity of species. Many of these species serve as vectors of pathogens of veterinary and medical importance. Given the scattered data from Western Balkan countries, we have conducted a comprehensive review of available literature, including some historical data, with the aim to compile information about all recorded tick species and associated zoonotic pathogens in this region. Based on the collected data, the tick fauna of the Western Balkans encompasses 32 tick species belonging to five genera: Ixodes, Haemaphysalis, Dermacentor, Rhipicephalus and Hyalomma. A range of pathogens responsible for human diseases has also been documented, including viruses, bacteria and parasites. In this review, we emphasize the necessity for integrated surveillance and reporting, urging authorities to foster research by providing financial support. Additionally, international and interdisciplinary collaborations should be encouraged that include the exchange of expertise, experiences and resources. The present collaborative effort can effectively address gaps in our knowledge of ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Naida Kapo
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Ema Gagović
- Department for Bacteriology and Parasitology, Laboratory for Parasitology, Croatian Veterinary Institute, Zagreb, Croatia
| | - Marina Žekić
- Scientific Veterinary Institute "Novi Sad", Novi Sad, Serbia
| | - Gorana Veinović
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ratko Sukara
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Darko Mihaljica
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Adžić
- Diagnostic Veterinary Laboratory, Podgorica, Montenegro
| | - Përparim Kadriaj
- Vector Control Unit, Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Aleksandar Cvetkovikj
- Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Igor Djadjovski
- Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Aleksandar Potkonjak
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Enkelejda Velo
- Vector Control Unit, Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Sara Savić
- Scientific Veterinary Institute "Novi Sad", Novi Sad, Serbia
| | - Snežana Tomanović
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasmin Omeragić
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Relja Beck
- Department for Bacteriology and Parasitology, Laboratory for Parasitology, Croatian Veterinary Institute, Zagreb, Croatia.
| | - Adnan Hodžić
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science (CMESS), University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Vilibic-Cavlek T, Janev-Holcer N, Bogdanic M, Ferenc T, Vujica Ferenc M, Krcmar S, Savic V, Stevanovic V, Ilic M, Barbic L. Current Status of Vector-Borne Diseases in Croatia: Challenges and Future Prospects. Life (Basel) 2023; 13:1856. [PMID: 37763260 PMCID: PMC10532474 DOI: 10.3390/life13091856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Different vector-borne pathogens are present or have (re-)emerged in Croatia. Flaviviruses tick-borne encephalitis (TBEV), West Nile (WNV), and Usutu (USUV) are widely distributed in continental regions, while Toscana virus (TOSV) and sandfly fever viruses are detected at the Croatian littoral. Recently, sporadic clinical cases of Tahyna orthobunyavirus (TAHV) and Bhanja bandavirus infection and seropositive individuals have been reported in continental Croatia. Acute infections and serologic evidence of WNV, TBEV, USUV, and TAHV were also confirmed in sentinel animals and vectors. Autochthonous dengue was reported in 2010 at the Croatian littoral. Lyme borreliosis is the most widely distributed vector-borne bacterial infection. The incidence is very high in northwestern and eastern regions, which correlates with numerous records of Ixodes ricinus ticks. Acute human Anaplasma phagocytophilum infections are reported sporadically, but there are many records of serologic evidence of anaplasmosis in animals. Mediterranean spotted fever (Rickettsia conorii) and murine typhus (Rickettsia typhi) are the main rickettsial infections in Croatia. Human leishmaniasis is notified sporadically, while serologic evidence of leishmaniasis was found in 11.4% of the Croatian population. After the official eradication of malaria in 1964, only imported cases were reported in Croatia. Since vector-borne diseases show a growing trend, continuous monitoring of vectors is required to protect the population from these infections.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Natasa Janev-Holcer
- Environmental Health Department, Croatian Institute of Public Health, 10000 Zagreb, Croatia
- Department of Social Medicine and Epidemiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
| | - Thomas Ferenc
- Department of Diagnostic and Interventional Radiology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Mateja Vujica Ferenc
- Department of Obstetrics and Gynecology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Stjepan Krcmar
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Maja Ilic
- Department of Communicable Disease Epidemiology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Pustijanac E, Buršić M, Talapko J, Škrlec I, Meštrović T, Lišnjić D. Tick-Borne Encephalitis Virus: A Comprehensive Review of Transmission, Pathogenesis, Epidemiology, Clinical Manifestations, Diagnosis, and Prevention. Microorganisms 2023; 11:1634. [PMID: 37512806 PMCID: PMC10383662 DOI: 10.3390/microorganisms11071634] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, can cause serious infection of the central nervous system in humans, resulting in potential neurological complications and fatal outcomes. TBEV is primarily transmitted to humans through infected tick bites, and the viral agent circulates between ticks and animals, such as deer and small mammals. The occurrence of the infection aligns with the seasonal activity of ticks. As no specific antiviral therapy exists for TBEV infection, treatment approaches primarily focus on symptomatic relief and support. Active immunization is highly effective, especially for individuals in endemic areas. The burden of TBEV infections is increasing, posing a growing health concern. Reported incidence rates rose from 0.4 to 0.9 cases per 100,000 people between 2015 and 2020. The Baltic and Central European countries have the highest incidence, but TBE is endemic across a wide geographic area. Various factors, including social and environmental aspects, improved medical awareness, and advanced diagnostics, have contributed to the observed increase. Diagnosing TBEV infection can be challenging due to the non-specific nature of the initial symptoms and potential co-infections. Accurate diagnosis is crucial for appropriate management, prevention of complications, and effective control measures. In this comprehensive review, we summarize the molecular structure of TBEV, its transmission and circulation in natural environments, the pathogenesis of TBEV infection, the epidemiology and global distribution of the virus, associated risk factors, clinical manifestations, and diagnostic approaches. By improving understanding of these aspects, we aim to enhance knowledge and promote strategies for timely and accurate diagnosis, appropriate management, and the implementation of effective control measures against TBEV infections.
Collapse
Affiliation(s)
- Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Moira Buršić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation and the Department of Health Metrics Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dubravka Lišnjić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| |
Collapse
|
12
|
Wójcik-Fatla A, Krzowska-Firych J, Czajka K, Nozdryn-Płotnicka J, Sroka J. The Consumption of Raw Goat Milk Resulted in TBE in Patients in Poland, 2022 "Case Report". Pathogens 2023; 12:pathogens12050653. [PMID: 37242323 DOI: 10.3390/pathogens12050653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The alimentary route is the second most important route of tick-borne encephalitis infection. In Poland, the last TBE case due to the consumption of unpasteurized milk or dairy products of infected animals was recorded in 2017 as the fourth documented outbreak of TBEV infection in the country. In this study, two patients infected with TBEV through consumption of unpasteurized goat's milk from one source are described from a cluster of eight cases. In August and September 2022, a 63- and 67-year-old woman were hospitalized at the Infectious Diseases Clinic of the Institute of Rural Health (Lublin, Poland). The patients denied been recently bitten by a tick, and neither had been vaccinated against TBEV. The disease had a biphasic course. In the first case, the patient suffered from a fever, spine pain, and muscle weakness and paresis of the lower left limb. The second patient suffered from fever, vertigo, headaches, abdominal pain, and diarrhoea. The results of IgM and IgG antibodies were positive in both cases. After three weeks hospitalization, the patients were discharged in good condition. In one case, slight hearing impairment was observed. Vaccination and avoiding the consumption of unpasteurized milk remain the most effective ways to prevent tick-borne encephalitis.
Collapse
Affiliation(s)
- Angelina Wójcik-Fatla
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Joanna Krzowska-Firych
- Infectious Diseases Clinic, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Krzysztof Czajka
- Infectious Diseases Clinic, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | | | - Jacek Sroka
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland
| |
Collapse
|
13
|
Parfut A, Laugel E, Baer S, Gonzalez G, Hansmann Y, Wendling MJ, Fafi-Kremer S, Velay A. Tick-borne encephalitis in pediatrics: An often overlooked diagnosis. Infect Dis Now 2023; 53:104645. [PMID: 36642097 DOI: 10.1016/j.idnow.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Tick-borne encephalitis (TBE) is a vector-borne disease caused by a flavivirus, the tick-borne encephalitis virus (TBEV), and transmitted by the bite of infected Ixodes ricinus ticks. The European subtype (TBEV-Eu) is endemic in 27 European countries. During the last decade, increased TBE incidence was observed in many countries, including some of those believed to be of low endemicity/devoid of TBEV circulation. However, data dealing with TBE in children are far less profuse than with adults. Historically, children are known to have mild TBEV infection with favorable outcomes. That said, recent case reports and observational studies on pediatric cohorts have challenged this point of view. Like adults, children may present severe forms and fail to completely recover following TBE infection, at times leading to long-term cognitive impairment. In this review, we comprehensively describe the incidence, exposure factors, and transmission routes of TBEV in children, as well as the clinical and biological manifestations of TBE and imaging findings in this population. We also harness new data on long-term outcomes and sequelae in pediatric cohorts. Finally, we provide an overview of vaccination recommendations for children in European countries.
Collapse
Affiliation(s)
- Assilina Parfut
- Virology Laboratory, University Hospital of Strasbourg, Strasbourg, F-67000, France
| | - Elodie Laugel
- Virology Laboratory, University Hospital of Strasbourg, Strasbourg, F-67000, France; INSERM, UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Sarah Baer
- CHU de Strasbourg, Service de Pédiatrie Spécialisée et Générale, Unité de Neurologie Pédiatrique, Strasbourg, France
| | - Gaëlle Gonzalez
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Yves Hansmann
- CHU de Strasbourg, Service des maladies infectieuses et tropicales, Strasbourg, France
| | - Marie-Josée Wendling
- Virology Laboratory, University Hospital of Strasbourg, Strasbourg, F-67000, France
| | - Samira Fafi-Kremer
- Virology Laboratory, University Hospital of Strasbourg, Strasbourg, F-67000, France; INSERM, UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Aurélie Velay
- Virology Laboratory, University Hospital of Strasbourg, Strasbourg, F-67000, France; INSERM, UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
14
|
Omazic A, Wallenhammar A, Lahti E, Asghar N, Hanberger A, Hjertqvist M, Johansson M, Albihn A. Dairy milk from cow and goat as a sentinel for tick-borne encephalitis virus surveillance. Comp Immunol Microbiol Infect Dis 2023; 95:101958. [PMID: 36893698 DOI: 10.1016/j.cimid.2023.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/14/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Tick-borne encephalitis (TBE) is one of the most severe human tick-borne diseases in Europe. It is caused by the tick-borne encephalitis virus (TBEV), which is transmitted to humans mainly via bites of Ixodes ricinus or I. persulcatus ticks. The geographical distribution and abundance of I. ricinus is expanding in Sweden as has the number of reported human TBE cases. In addition to tick bites, alimentary TBEV infection has also been reported after consumption of unpasteurized dairy products. So far, no alimentary TBEV infection has been reported in Sweden, but knowledge about its prevalence in Swedish ruminants is scarce. In the present study, a total of 122 bulk tank milk samples and 304 individual milk samples (including 8 colostrum samples) were collected from dairy farms (n = 102) in Sweden. All samples were analysed for the presence of TBEV antibodies by ELISA test and immunoblotting. Participating farmers received a questionnaire about milk production, pasteurization, tick prophylaxis used on animals, tick-borne diseases, and TBE vaccination status. We detected specific anti-TBEV antibodies, i.e., either positive (>126 Vienna Units per ml, VIEU/ml) or borderline (63-126 VIEU/ml) in bulk tank milk from 20 of the 102 farms. Individual milk samples (including colostrum samples) from these 20 farms were therefore collected for further analysis. Our results revealed important information for detection of emerging TBE risk areas. Factors such as consumption of unpasteurized milk, limited use of tick prophylaxis on animals and a moderate coverage of human TBE vaccination, may be risk factors for alimentary TBEV infection in Sweden.
Collapse
Affiliation(s)
- Anna Omazic
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute, SE-751 89 Uppsala, Sweden.
| | - Amélie Wallenhammar
- School of Medical Sciences, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Elina Lahti
- Department of Epidemiology and Disease Control, National Veterinary Institute, SE-751 89 Uppsala, Sweden.
| | - Naveed Asghar
- School of Medical Sciences, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Alexander Hanberger
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden.
| | - Marika Hjertqvist
- Department of Communicable Disease Control and Health Protection, Public Health, Agency of Sweden, SE-171 82 Stockholm, Sweden.
| | - Magnus Johansson
- School of Medical Sciences, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Ann Albihn
- Department of Epidemiology and Disease Control, National Veterinary Institute, SE-751 89 Uppsala, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
15
|
Fatal Case of Imported Tick-Borne Encephalitis in South Serbia. Trop Med Infect Dis 2022; 7:tropicalmed7120434. [PMID: 36548689 PMCID: PMC9784870 DOI: 10.3390/tropicalmed7120434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis (TBE) is vaccine-preventable neglected zoonotic neuroinvasive disease, caused by tick-borne encephalitis virus (TBEV). Many of the Central and Eastern European countries are affected by TBE, which is often poorly perceived by tourists visiting endemic territories. Here we are reporting a fatal case of imported TBE in Serbian resident who was exposed to a tick bite during a visit to Switzerland.
Collapse
|
16
|
Martello E, Gillingham EL, Phalkey R, Vardavas C, Nikitara K, Bakonyi T, Gossner CM, Leonardi-Bee J. Systematic review on the non-vectorial transmission of Tick-borne encephalitis virus (TBEv). Ticks Tick Borne Dis 2022; 13:102028. [PMID: 36030646 DOI: 10.1016/j.ttbdis.2022.102028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis (TBE) is an infection caused by the Tick-borne encephalitis virus (TBEv) and it is common in Europe. The virus is predominantly transmitted by ticks, but other non-vectorial modes of transmission are possible. This systematic review synthesises the epidemiological impact of non-vectorial modes of TBEv transmission in Europe. 41 studies were included comprising of 1308 TBE cases. Alimentary (36 studies), handling infected material (3 studies), blood-borne (1 study), solid organ transplant (1 study) were identified as potential routes of TBEv transmission; however, no evidence of vertical transmission from mother to offspring was reported (2 studies). Consumption of unpasteurised milk/milk products was the most common vehicle of transmission and significantly increased the risk of TBE by three-fold (pooled RR 3.05, 95% CI 1.53 to 6.11; 4 studies). This review also confirms handling infected material, blood-borne and solid organ transplant as potential routes of TBEv transmission. It is important to tracing back to find the vehicle of the viral infection and to promote vaccination as it remains a mainstay for the prevention of TBE.
Collapse
Affiliation(s)
- Elisa Martello
- Centre for Evidence Based Healthcare, School of Medicine, University of Nottingham, Nottingham, UK.
| | | | - Revati Phalkey
- Centre for Evidence Based Healthcare, School of Medicine, University of Nottingham, Nottingham, UK; Climate Change and Health Group, UK Health Security Agency, UK
| | - Constantine Vardavas
- School of Medicine, University of Crete, Heraklion, Crete, Greece; Department of Oral Health Policy and Epidemiology Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | | | - Tamas Bakonyi
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Céline M Gossner
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Jo Leonardi-Bee
- Centre for Evidence Based Healthcare, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
17
|
Zidovec-Lepej S, Vilibic-Cavlek T, Ilic M, Gorenec L, Grgic I, Bogdanic M, Radmanic L, Ferenc T, Sabadi D, Savic V, Hruskar Z, Svitek L, Stevanovic V, Peric L, Lisnjic D, Lakoseljac D, Roncevic D, Barbic L. Quantification of Antiviral Cytokines in Serum, Cerebrospinal Fluid and Urine of Patients with Tick-Borne Encephalitis in Croatia. Vaccines (Basel) 2022; 10:1825. [PMID: 36366333 PMCID: PMC9698853 DOI: 10.3390/vaccines10111825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Tick-borne encephalitis virus (TBEV) is one of the most significant arboviruses affecting the human central nervous system (CNS) in Europe. Data on cytokine response in TBEV infection are limited. METHODS We analyzed the cytokine response in serum, cerebrospinal fluid (CSF) and urine samples of patients with TBE. The control group consisted of patients with 'febrile headache' who had normal CSF cytology. The panel included 12 cytokines: TNF-α, IL-6, Th1 (IL-2, IFN-γ), Th2 (IL-4, IL-5, IL-13), Th9 (IL-9), Th17 (IL-17A, IL-17F), Th22 (IL-22) cytokines and IL-10. RESULTS TBE patients were more likely to have increased levels of IL-6 and IFN-γ in CSF compared to controls (85.7% vs. 58.8% and 85.7% vs. 47.1%, respectively). However, concentrations of IL-6 (the most abundant cytokine in the CSF of both groups), IL-10 and IL-9 were lower in TBEV patients compared with controls, but the difference was statistically significant for IL-9 only (p = 0.001). By analyzing the cytokine levels in different clinical samples, all measured cytokines were detected in the serum, with the highest concentrations found for IFN-γ, TNF-α, IL-10, IL-17F and IL-22. Higher concentrations of cytokines in the CSF compared with serum were observed for IL-5, IL-6 and IL-22. All cytokines except IL-13 were detectable in urine but in a small proportion of patients, except for IL-22, which was detectable in 95.8% of patients. CONCLUSIONS Cytokine composition in different clinical samples of TBE patients reveals a different network of early innate immune response cytokines, Th1, Th2, Th9, Th22, Th17 and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Snjezana Zidovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health,10000 Zagreb, Croatia
- Department of Microbiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Maja Ilic
- Department of Epidemiology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
| | - Lana Gorenec
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Ivana Grgic
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health,10000 Zagreb, Croatia
| | - Leona Radmanic
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Thomas Ferenc
- Clinical Department of Diagnostic and Interventional Radiology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Dario Sabadi
- Clinic for Infectious Diseases, Clinical Hospital Center Osijek, 31000 Osijek, Croatia
- Medical Faculty, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vladimir Savic
- Laboratory for Virology and Serology, Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Zeljka Hruskar
- Department of Virology, Croatian Institute of Public Health,10000 Zagreb, Croatia
| | - Luka Svitek
- Clinic for Infectious Diseases, Clinical Hospital Center Osijek, 31000 Osijek, Croatia
- Medical Faculty, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ljiljana Peric
- Medical Faculty, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dubravka Lisnjic
- Clinic for Infectious Diseases, Clinical Hospital Center Osijek, 31000 Osijek, Croatia
- Medical Faculty, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Danijela Lakoseljac
- Primorje-Gorski Kotar County Teaching Institute of Public Health, 51000 Rijeka, Croatia
| | - Dobrica Roncevic
- Primorje-Gorski Kotar County Teaching Institute of Public Health, 51000 Rijeka, Croatia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
18
|
Tick-Borne Encephalitis Virus Prevalence in Sheep, Wild Boar and Ticks in Belgium. Viruses 2022; 14:v14112362. [PMID: 36366458 PMCID: PMC9699201 DOI: 10.3390/v14112362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 01/31/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is the most important tick-borne zoonotic virus in Europe. In Belgium, antibodies to TBEV have already been detected in wildlife and domestic animals, but up-to-date prevalence data for TBEV are lacking, and no studies have assessed its seroprevalence in sheep. Serum samples of 480 sheep from all over Belgium and 831 wild boar hunted in Flanders (northern Belgium) were therefore screened for TBEV antibodies by ELISA and plaque reduction neutralization test (PRNT), respectively. The specificity of positive samples was assessed by PRNTs for TBEV and the Louping Ill, West Nile, and Usutu viruses. TBEV seroprevalence was 0.42% (2/480, CI 95%: 0.11-1.51) in sheep and 9.27% (77/831, CI 95%: 7.48-11.43) in wild boar. TBEV seroprevalence in wild boar from the province of Flemish Brabant was significantly higher (22.38%, 15/67) compared to Limburg (7.74%, 34/439) and Antwerp (8.61%, 28/325). Oud-Heverlee was the hunting area harboring the highest TBEV seroprevalence (33.33%, 11/33). In an attempt to obtain a Belgian TBEV isolate, 1983 ticks collected in areas showing the highest TBEV seroprevalence in wild boars were tested by real-time qPCR. No TBEV-RNA-positive tick was detected. The results of this study suggest an increase in TBEV prevalence over the last decade and highlight the need for One-Health surveillance in Belgium.
Collapse
|
19
|
Elbaz M, Gadoth A, Shepshelovich D, Shasha D, Rudoler N, Paran Y. Systematic Review and Meta-analysis of Foodborne Tick-Borne Encephalitis, Europe, 1980-2021. Emerg Infect Dis 2022; 28. [PMID: 36149234 PMCID: PMC9514354 DOI: 10.3201/eid2810.220498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most cases were associated with ingesting unpasteurized dairy products from goats; the clinical attack rate was 14%. Tick-borne encephalitis (TBE) is a viral infection of the central nervous system that occurs in many parts of Europe and Asia. Humans mainly acquire TBE through tick bites, but TBE occasionally is contracted through consuming unpasteurized milk products from viremic livestock. We describe cases of TBE acquired through alimentary transmission in Europe during the past 4 decades. We conducted a systematic review and meta-analysis of 410 foodborne TBE cases, mostly from a region in central and eastern Europe. Most cases were reported during the warmer months (April–August) and were associated with ingesting unpasteurized dairy products from goats. The median incubation period was short, 3.5 days, and neuroinvasive disease was common (38.9%). The clinical attack rate was 14% (95% CI 12%–16%), and we noted major heterogeneity. Vaccination programs and public awareness campaigns could reduce the number of persons affected by this potentially severe disease.
Collapse
|
20
|
Tick-Borne Encephalitis Virus RNA Found in Frozen Goat's Milk in a Family Outbreak. Int J Mol Sci 2022; 23:ijms231911632. [PMID: 36232930 PMCID: PMC9570086 DOI: 10.3390/ijms231911632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Tick-borne encephalitis (TBE) is one of the commonest arthropod-borne viral diseases in Middle-East Europe and North Asia. The main reservoir of the virus is comprised of small rodents and domestic mammals with the common tick (Ixodes) being the usual vector. The clinical spectrum of TBE ranges from mild meningitis to severe meningoencephalomyelitis. This disease can lead to severe sequelae and has a mortality up to 2% in Europe. Even though the majority of cases are transmitted through bites of infected ticks, infections through ingestion of contaminated milk and dairy products from farms in endemic areas have been reported. We report a family outbreak of a febrile disease, initially suggestive of human-to-human infection, during the early summertime in Austria. Tick-borne encephalitis was diagnosed following consumption of unpasteurised goat’s milk and the virus was subsequently detected in frozen milk samples. Although this is a rare manifestation of TBE, this case series shows that TBE should be included in the differential diagnosis of an outbreak of febrile disease, and a careful clinical history with reference to unpasteurized dairy products is crucial in order to prevent further disease spread. The best preventive measure is active immunisation of people living in, or travelling to, endemic areas.
Collapse
|
21
|
Detection of Tahyna Orthobunyavirus-Neutralizing Antibodies in Patients with Neuroinvasive Disease in Croatia. Microorganisms 2022; 10:microorganisms10071443. [PMID: 35889162 PMCID: PMC9316594 DOI: 10.3390/microorganisms10071443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Tahyna orthobunyavirus (TAHV) is widely distributed in continental Europe. Very few studies have analyzed TAHV seroprevalence in Croatia. We analyzed the prevalence of TAHV RNA and antibodies in Croatian patients with neuroinvasive disease (NID). Methods: A total of 218 patients with unsolved NID detected during five consecutive arbovirus transmission seasons (April 2017–October 2021) were tested. Cerebrospinal fluid (CSF) and urine samples were tested for TAHV RNA using RT-PCR. In addition, CSF and serum samples were tested for TAHV antibodies using a virus neutralization test (VNT). Results: Clinical presentations in patients with NID were meningitis (141/64.7%), meningoencephalitis (56/25.7%), myelitis (8/3.7%), and ‘febrile headache’ (13/5.9%). TAHV RNA was not detected in any of the tested CSF or urine samples; however, TAHV-neutralizing (NT) antibodies were detected in 22/10.1% of patients. Detection of NT antibodies in the CSF of two patients presenting with meningitis suggested recent TAHV infection. TAHV seropositivity increased significantly with age, from 1.8% to 24.4%. There was no difference in seroprevalence between genders or areas of residence (urban, suburban/rural). The majority of seropositive patients (90.9%) resided in floodplains along the rivers in continental Croatia. Conclusions: The presented results confirm that TAHV is present in Croatia. The prevalence and clinical significance of TAHV infection in the Croatian population have yet to be determined.
Collapse
|
22
|
Kunze M, Banović P, Bogovič P, Briciu V, Čivljak R, Dobler G, Hristea A, Kerlik J, Kuivanen S, Kynčl J, Lebech AM, Lindquist L, Paradowska-Stankiewicz I, Roglić S, Smíšková D, Strle F, Vapalahti O, Vranješ N, Vynograd N, Zajkowska JM, Pilz A, Palmborg A, Erber W. Recommendations to Improve Tick-Borne Encephalitis Surveillance and Vaccine Uptake in Europe. Microorganisms 2022; 10:1283. [PMID: 35889002 PMCID: PMC9322045 DOI: 10.3390/microorganisms10071283] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/18/2023] Open
Abstract
There has been an increase in reported TBE cases in Europe since 2015, reaching a peak in some countries in 2020, highlighting the need for better management of TBE risk in Europe. TBE surveillance is currently limited, in part, due to varying diagnostic guidelines, access to testing, and awareness of TBE. Consequently, TBE prevalence is underestimated and vaccination recommendations inadequate. TBE vaccine uptake is unsatisfactory in many TBE-endemic European countries. This review summarizes the findings of a scientific workshop of experts to improve TBE surveillance and vaccine uptake in Europe. Strategies to improve TBE surveillance and vaccine uptake should focus on: aligning diagnostic criteria and testing across Europe; expanding current vaccine recommendations and reducing their complexity; and increasing public education of the potential risks posed by TBEV infection.
Collapse
Affiliation(s)
- Michael Kunze
- Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria;
| | - Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1525 Ljubljana, Slovenia; (P.B.); (F.S.)
| | - Violeta Briciu
- Department of Infectious Diseases, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400348 Cluj-Napoca, Romania;
| | - Rok Čivljak
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Mirogojska 8, 10000 Zagreb, Croatia; (R.Č.); (S.R.)
- Department for Infectious Diseases, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Gerhard Dobler
- National Reference Laboratory for TBEV, Bundeswehr Institute of Microbiology, 80937 Munich, Germany;
| | - Adriana Hristea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| | - Jana Kerlik
- Department of Epidemiology, Regional Authority of Public Health in Banská Bystrica, 97556 Banská Bystrica, Slovakia;
| | - Suvi Kuivanen
- Department of Virology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.K.); (O.V.)
| | - Jan Kynčl
- Department of Infectious Diseases Epidemiology, National Institute of Public Health, Vinohrady, 10000 Prague, Czech Republic;
- Department of Epidemiology and Biostatistics, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Lars Lindquist
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, 14186 Stockholm, Sweden;
| | - Iwona Paradowska-Stankiewicz
- Department of Epidemiology of Infectious Diseases and Surveillance, National Institute of Public Health, National Institute of Hygiene—National Research Institute, 00791 Warsaw, Poland;
| | - Srđan Roglić
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Mirogojska 8, 10000 Zagreb, Croatia; (R.Č.); (S.R.)
- Department for Infectious Diseases, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Dita Smíšková
- Department of Infectious Diseases, Second Faculty of Medicine, Charles University, 18081 Prague, Czech Republic;
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1525 Ljubljana, Slovenia; (P.B.); (F.S.)
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.K.); (O.V.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Virology and Immunology, HUSLAB, Helsinki University Hospital, 00260 Helsinki, Finland
| | - Nenad Vranješ
- Department for Research & Monitoring of Rabies & Other Zoonoses, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
| | - Nataliya Vynograd
- Department of Epidemiology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Joanna Maria Zajkowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, 15-540 Białystok, Poland;
| | - Andreas Pilz
- Medical and Scientific Affairs, Pfizer Vaccines, 1210 Vienna, Austria;
| | - Andreas Palmborg
- Medical and Scientific Affairs, Pfizer Vaccines, 19138 Stockholm, Sweden;
| | - Wilhelm Erber
- Medical and Scientific Affairs, Pfizer Vaccines, 1210 Vienna, Austria;
| |
Collapse
|
23
|
Gonzalez G, Bournez L, Moraes RA, Marine D, Galon C, Vorimore F, Cochin M, Nougairède A, Hennechart-Collette C, Perelle S, Leparc-Goffart I, Durand GA, Grard G, Bénet T, Danjou N, Blanchin M, Lacour SA, Franck B, Chenut G, Mainguet C, Simon C, Brémont L, Zientara S, Moutailler S, Martin-Latil S, Dheilly NM, Beck C, Lecollinet S. A One-Health Approach to Investigating an Outbreak of Alimentary Tick-Borne Encephalitis in a Non-endemic Area in France (Ain, Eastern France): A Longitudinal Serological Study in Livestock, Detection in Ticks, and the First Tick-Borne Encephalitis Virus Isolation and Molecular Characterisation. Front Microbiol 2022; 13:863725. [PMID: 35479640 PMCID: PMC9037541 DOI: 10.3389/fmicb.2022.863725] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus’ (TBEV) geographic range and the human incidence are increasing throughout Europe, putting a number of non-endemic regions and countries at risk of outbreaks. In spring 2020, there was an outbreak of tick-born encephalitis (TBE) in Ain, Eastern France, where the virus had never been detected before. All patients but one had consumed traditional unpasteurised raw goat cheese from a local producer. We conducted an investigation in the suspected farm using an integrative One Health approach. Our methodology included (i) the detection of virus in cheese and milk products, (ii) serological testing of all animals in the suspected farm and surrounding farms, (iii) an analysis of the landscape and localisation of wooded area, (iv) the capture of questing ticks and small mammals for virus detection and estimating enzootic hazard, and (v) virus isolation and genome sequencing. This approach allowed us to confirm the alimentary origin of the TBE outbreak and witness in real-time the seroconversion of recently exposed individuals and excretion of virus in goat milk. In addition, we identified a wooded focus area where and around which there is a risk of TBEV exposure. We provide the first TBEV isolate responsible for the first alimentary-transmitted TBE in France, obtained its full-length genome sequence, and found that it belongs to the European subtype of TBEV. TBEV is now a notifiable human disease in France, which should facilitate surveillance of its incidence and distribution throughout France.
Collapse
Affiliation(s)
- Gaëlle Gonzalez
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Laure Bournez
- ANSES, Nancy Laboratory for Rabies and Wildlife, Malzéville, France
| | - Rayane Amaral Moraes
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Dumarest Marine
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Clémence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Fabien Vorimore
- Bacterial Zoonosis Unit, Laboratory for Animal Health, ANSES Maisons-Alfort, Paris-Est University, Paris, France
| | - Maxime Cochin
- Unité des Virus Émergents (UVE), Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France
| | - Antoine Nougairède
- Unité des Virus Émergents (UVE), Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France
| | | | - Sylvie Perelle
- ANSES Laboratory for Food Safety, Université Paris-Est, Maisons-Alfort, France
| | - Isabelle Leparc-Goffart
- Unité des Virus Émergents (UVE), Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France.,French National Reference Centre for Arbovirus, Armed Forces Biomedical Research Institute, Marseille, France
| | - Guillaume André Durand
- Unité des Virus Émergents (UVE), Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France.,French National Reference Centre for Arbovirus, Armed Forces Biomedical Research Institute, Marseille, France
| | - Gilda Grard
- Unité des Virus Émergents (UVE), Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France.,French National Reference Centre for Arbovirus, Armed Forces Biomedical Research Institute, Marseille, France
| | - Thomas Bénet
- Santé Publique France, French Public Health Agency, Auvergne-Rhône-Alpes Regional Office, Lyon, France
| | - Nathalie Danjou
- Regional Health Agency (Agence Régionale de Santé), Auvergne-Rhône-Alpes, Lyon, France
| | - Martine Blanchin
- Regional Health Agency (Agence Régionale de Santé), Auvergne-Rhône-Alpes, Lyon, France
| | - Sandrine A Lacour
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Boué Franck
- ANSES, Nancy Laboratory for Rabies and Wildlife, Malzéville, France
| | - Guillaume Chenut
- Local Health Authority, Direction Départementale de la Protection de la Population de l'Ain, Bourg-en-Bresse, France
| | - Catherine Mainguet
- Local Health Authority, Direction Départementale de la Protection de la Population de l'Ain, Bourg-en-Bresse, France
| | - Catherine Simon
- Local Health Authority, Direction Départementale de la Protection de la Population de l'Ain, Bourg-en-Bresse, France
| | - Laurence Brémont
- Local Health Authority, Direction Départementale de la Protection de la Population de l'Ain, Bourg-en-Bresse, France
| | - Stephan Zientara
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sandra Martin-Latil
- ANSES Laboratory for Food Safety, Université Paris-Est, Maisons-Alfort, France
| | - Nolwenn M Dheilly
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Cécile Beck
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sylvie Lecollinet
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
24
|
Abdulhaq AA, Hershan AA, Karunamoorthi K, Al-Mekhlafi HM. Human Alkhumra hemorrhagic Fever: Emergence, history and epidemiological and clinical profiles. Saudi J Biol Sci 2022; 29:1900-1910. [PMID: 35280532 PMCID: PMC8913346 DOI: 10.1016/j.sjbs.2021.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 10/03/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Alkhumra hemorrhagic fever (AHF) is a severe, often fatal hemorrhagic disease in humans. It is caused by Alkhumra hemorrhagic fever virus (AHFV), a newly described flavivirus first isolated in 1995 in Alkhumra district, south of Jeddah City, Saudi Arabia. It is transmitted from infected livestock animals to humans by direct contact with infected animals or by tick bites. In the recent past, the incidence of AHF has increased, with a total of 604 confirmed cases have been reported in Saudi Arabia between 1995 and 2020. Yet, no specific treatment or control strategies have been developed and implemented against this infection. Hence, the likelihood of increased prevalence or the occurrence of outbreaks is high, particularly in the absence of appropriate prevention and control strategies. This narrative review presents an overview of the current knowledge and future concerns about AHF globally.
Collapse
Key Words
- AHF, Alkhumra hemorrhagic fever
- AHFV, Alkhumra hemorrhagic fever virus
- Alkhumra hemorrhagic fever virus
- CCHFV, Crimean-Congo Hemorrhagic fever virus
- CFV, chikungunya fever virus
- DENV, dengue fever virus
- Flaviviruses
- ICTV, International Committee on Taxonomy of Viruses
- Infectious diseases
- KFDV, Kyasanur Forest disease virus
- OHFV, Omsk hemorrhagic fever virus
- RVFV, Rift Valley fever virus
- Saudi Arabia
- YFV, yellow fever virus
Collapse
Affiliation(s)
- Ahmed A Abdulhaq
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia.,Deanship of Scientific Research, Jazan University, Jazan, Kingdom of Saudi Arabia.,Vector-Borne Diseases Research Group, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Almonther A Hershan
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah, Kingdom of Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Kaliyaperumal Karunamoorthi
- Vector-Borne Diseases Research Group, Jazan University, Jazan, Kingdom of Saudi Arabia.,Department of Epidemiology, Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Hesham M Al-Mekhlafi
- Vector-Borne Diseases Research Group, Jazan University, Jazan, Kingdom of Saudi Arabia.,Medical Research Center, Jazan University, Jazan, Kingdom of Saudi Arabia.,Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| |
Collapse
|
25
|
Surveillance of Coxiella burnetii Shedding in Three Naturally Infected Dairy Goat Herds after Vaccination, Focusing on Bulk Tank Milk and Dust Swabs. Vet Sci 2022; 9:vetsci9030102. [PMID: 35324830 PMCID: PMC8950187 DOI: 10.3390/vetsci9030102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/12/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Q fever outbreaks on three dairy goat farms (A–C) were monitored after the animals had been vaccinated with an inactivated Coxiella burnetii phase I vaccine. The antibody response was measured before vaccination by serum samples with two C. burnetii phase-specific ELISAs to characterize the disease status. Shedding was determined by vaginal swabs during three kidding seasons and monthly bulk tank milk (BTM) samples. Dust swabs from one windowsill of each barn and from the milking parlors were collected monthly to evaluate the indoor exposure. These samples were analyzed by qPCR. The phase-specific serology revealed an acute Q fever infection in herd A, whereas herds B and C had an ongoing and past infection, respectively. In all three herds, vaginal shedders were present during three kidding seasons. In total, 50%, 69%, and 15% of all collected BTM samples were C. burnetii positive in herds A, B, and C, respectively. Barn dust contained C. burnetii DNA in 71%, 45%, and 50% of examined swabs collected from farms A, B, and C, respectively. The largest number of C. burnetii positive samples was obtained from the milking parlor (A: 91%, B: 72%, C: 73%), indicating a high risk for humans to acquire Q fever during milking activity.
Collapse
|
26
|
Food-Borne Transmission of Tick-Borne Encephalitis Virus—Spread, Consequences, and Prophylaxis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031812. [PMID: 35162837 PMCID: PMC8835261 DOI: 10.3390/ijerph19031812] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
Tick-borne encephalitis (TBE) is the most common viral neurological disease in Eurasia. It is usually transmitted via tick bites but can also occur through ingestion of TBEV-infected milk and dairy products. The present paper summarises the knowledge of the food-borne TBEV transmission and presents methods for the prevention of its spread. The incidence of milk-borne TBE outbreaks is recorded in central, eastern, and north-eastern Europe, where Ixodes ricinus, Ixodes persulcatus, and/or Dermacentor reticulatus ticks, i.e., the main vectors of TBEV, occur abundantly. The growing occurrence range and population size of these ticks increases the risk of infection of dairy animals, i.e., goats, sheep, and cows, with viruses transmitted by these ticks. Consumers of unpasteurised milk and dairy products purchased from local farms located in TBE endemic areas are the most vulnerable to alimentary TBEV infections. Familial infections with these viruses are frequently recorded, mainly in children. Food-transmitted TBE can be monophasic or biphasic, and some of its neurological and psychiatric symptoms may persist in patients for a long time. Alimentary TBEV infections can be effectively prevented by consumption of pasteurised milk and the use of TBEV vaccines. It is recommended that milk and dairy products should be checked for the presence of TBE viruses prior to distribution. Protection of dairy animals against tick attacks and education of humans regarding the epidemiology and prophylaxis of TBE are equally important.
Collapse
|
27
|
Hennechart-Collette C, Gonzalez G, Fourniol L, Fraisse A, Beck C, Moutailler S, Bournez L, Dheilly NM, Lacour SA, Lecollinet S, Martin-Latil S, Perelle S. Method for tick-borne encephalitis virus detection in raw milk products. Food Microbiol 2022; 104:104003. [DOI: 10.1016/j.fm.2022.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
|
28
|
Krčmar S, Klobučar A, Vucelja M, Boljfetić M, Kučinić M, Madić J, Cvek M, Mađarić BB. DNA barcoding of hard ticks (Ixodidae), notes on distribution of vector species and new faunal record for Croatia. Ticks Tick Borne Dis 2022; 13:101920. [DOI: 10.1016/j.ttbdis.2022.101920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|
29
|
Ličková M, Fumačová Havlíková S, Sláviková M, Klempa B. Alimentary Infections by Tick-Borne Encephalitis Virus. Viruses 2021; 14:56. [PMID: 35062261 PMCID: PMC8779402 DOI: 10.3390/v14010056] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) causes serious the neurological disease, tick-borne encephalitis (TBE). TBEV can be transmitted to humans by ticks as well as by the alimentary route, which is mediated through the consumption of raw milk products from infected ruminants such as sheep, goats, and cows. The alimentary route of TBEV was recognized in the early 1950s and many important experimental studies were performed shortly thereafter. Nowadays, alimentary TBEV infections are recognized as a relevant factor contributing to the overall increase in TBE incidences in Europe. This review aims to summarize the history and current extent of alimentary TBEV infections across Europe, to analyze experimental data on virus secretion in milk, and to review possible alimentary infection preventive measures.
Collapse
Affiliation(s)
| | | | | | - Boris Klempa
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (M.L.); (S.F.H.); (M.S.)
| |
Collapse
|
30
|
Bulk Milk Tank Samples Are Suitable to Assess Circulation of Tick-Borne Encephalitis Virus in High Endemic Areas. Viruses 2021; 13:v13091772. [PMID: 34578353 PMCID: PMC8472847 DOI: 10.3390/v13091772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
A reliable surveillance strategy of tick-borne encephalitis virus (TBEV) is necessary to ensure adequate disease control measures. However, current approaches assessing geographical TBEV circulation are ineffective or have significant limitations. In this study we investigated a total of 1363 goat and 312 sheep bulk tank milk samples for the presence of TBEV. Samples were collected from systematically selected farms in Lithuania every 4–5 days from April to November in 2018 and 2019. To validate results, we additionally tested 2685 questing ticks collected in the vicinity of milk collection sites. We found 4.25% (95% CI 3.25–5.47) and 4.48% (95% CI 2.47–7.41) goat and sheep milk samples to be positive for TBEV, respectively. Furthermore, geographical distribution of TBEV in milk samples coincided with the known TBE endemic zone and was correlated with incidence of TBE in humans in 2019. When sampling time coincides, TBEV detection in milk samples is as good a method as via flagged ticks, however bulk milk samples can be easier to obtain more frequently and regularly than tick samples. The minimal infectious rate (MIR) in ticks was 0.34% (CI 95% 0.15–0.64). Therefore, our results confirm that testing milk serves as a valuable tool to investigate the spatial distribution of TBEV at higher resolution and lower cost.
Collapse
|
31
|
Banović P, Díaz-Sánchez AA, Galon C, Foucault-Simonin A, Simin V, Mijatović D, Papić L, Wu-Chuang A, Obregón D, Moutailler S, Cabezas-Cruz A. A One Health approach to study the circulation of tick-borne pathogens: A preliminary study. One Health 2021; 13:100270. [PMID: 34141849 PMCID: PMC8188046 DOI: 10.1016/j.onehlt.2021.100270] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Tick-borne pathogens (TBPs) have complex life cycles involving tick vectors and vertebrate hosts. However, there is limited empirical evidence on the zoonotic circulation of TBPs. In this study, we used a One Health approach to study the possible circulation of TBPs in ticks, animals and humans within a rural household in the foothills of the Fruška Gora mountain, northern Serbia. The presence of TBP DNA was assessed using microfluidic PCR (25 bacterial species, 7 parasite species, 5 bacterial genera, 3 parasite genera) in animal, human and tick samples and the presence of tick-borne encephalitis virus (TBEV) RNA was screened for using RT-qPCR on tick samples. In addition, Lyme borreliosis serology was assessed in patients sera. Rhipicephalus sanguineus and Ixodes ricinus ticks were identified on dogs and Haemaphysalis punctata was identified on house walls. Rickettsia helvetica was the most common pathogen detected in pooled R. sanguineus and I. ricinus tick samples, followed by Hepatozoon canis. None of the H. punctata tick samples tested positive for the presence of TBPs. Anaplasma phagocytophilum and Rickettsia monacensis were the most frequent pathogens detected in dogs, followed by Rickettsia felis, whereas Anaplasma bovis was the only pathogen found in one of the goats tested. None of the human blood samples collected from family members tested positive for the presence of TBPs. Although microfluidic PCR did not detect Borrelia sp. in any of the tested tick or blood samples, a family member with a history of Lyme disease was seropositive for Borrelia burgdorferi sensu lato (s.l.). We conclude that, despite the presence of TBPs in tick and vertebrate reservoirs, there is no evidence of infection with TBPs across various components of the epidemiological chain in a rural Fruška Gora household.
Collapse
Affiliation(s)
- Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, Novi Sad 21000, Serbia.,Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Adrian Alberto Díaz-Sánchez
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Clemence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Verica Simin
- Department for Microbiological & Other Diagnostics, Pasteur Institute Novi Sad, Novi Sad 21000, Serbia
| | - Dragana Mijatović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, Novi Sad 21000, Serbia
| | - Luka Papić
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad 21000, Serbia
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Dasiel Obregón
- School of Environmental Sciences University of Guelph, Guelph, Ontario N1G 2W1, Canada.,Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo 13400-970, Brazil
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| |
Collapse
|
32
|
Bauer BU, Könenkamp L, Stöter M, Wolf A, Ganter M, Steffen I, Runge M. Increasing awareness for tick-borne encephalitis virus using small ruminants as suitable sentinels: Preliminary observations. One Health 2021; 12:100227. [PMID: 33732862 PMCID: PMC7937955 DOI: 10.1016/j.onehlt.2021.100227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 01/17/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is one of the most common zoonotic vector-borne infections in Europe. An appropriate awareness is crucial to react quickly and efficiently to protect humans from this pathogen. From winter 2017 until spring 2018 serum samples were collected from 71 small ruminant flocks (3174 animals) in five German federal states. The sera were examined for TBEV antibodies by ELISA and serum neutralization test. In the TBEV risk areas, there was a coincidence in 14 districts between seropositive small ruminants and the occurrence of human TBE cases in 2017. In eight districts, the TBEV infection could not be detected in small ruminants although human cases were reported. In contrast, in five districts, small ruminants tested TBEV seropositive without notified human TBE cases in 2017. A changing pattern of TBEV circulation in the environment was observed by the absence of antibodies in a defined high-risk area. In the non-TBE risk areas, seropositive small ruminants were found in five districts. In two districts with a low human incidence the infection was missed by the small ruminant sentinels. An intra-herd prevalence of 12.5% was determined in a goat flock in the non-TBE risk area in 2017, two years prior the first autochthone human case was reported. All sheep and goats in this flock were examined for TBEV antibodies for three years. Individual follow-up of twelve small ruminants was possible and revealed mostly a short lifespan of TBEV antibodies of less than one year. The probability to identify TBEV seropositive sheep flocks was enhanced in flocks kept for landscape conservation or which were shepherded (p < 0.05). Our preliminary observations clearly demonstrated the successful utilization of small ruminants as sentinel animals for TBEV.
Collapse
Affiliation(s)
- Benjamin U. Bauer
- Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Laura Könenkamp
- Institute for Biochemistry and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany
| | - Melanie Stöter
- Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Annika Wolf
- Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Imke Steffen
- Institute for Biochemistry and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany
| | - Martin Runge
- Food and Veterinary Institute Braunschweig/Hannover, Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Eintrachtweg 17, 30173 Hannover, Germany
| |
Collapse
|
33
|
Banović P, Obregón D, Mijatović D, Simin V, Stankov S, Budakov-Obradović Z, Bujandrić N, Grujić J, Sević S, Turkulov V, Díaz-Sánchez AA, Cabezas-Cruz A. Tick-Borne Encephalitis Virus Seropositivity among Tick Infested Individuals in Serbia. Pathogens 2021; 10:301. [PMID: 33807559 PMCID: PMC8001322 DOI: 10.3390/pathogens10030301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Tick-borne encephalitis (TBE), caused by the TBE virus (TBEV), is a life-threatening disease with clinical symptoms ranging from non-specific to severe inflammation of the central nervous system. Despite TBE is a notifiable disease in Serbia since 2004, there is no active TBE surveillance program for the serologic or molecular screening of TBEV infection in humans in the country. This prospective cohort study aimed to assess the TBEV exposure among tick-infested individuals in Serbia during the year 2020. A total of 113 individuals exposed to tick bites were recruited for the study and screened for anti-TBEV antibodies using a commercial indirect fluorescent antibody test (IFA) test. Blood samples from 50 healthy donors not exposed to tick bites were included as a control group. Most of the enrolled patients reported infestations with one tick, being I. ricinus the most frequent tick found in the participants. The TBEV seroprevalence was higher (13.27%, 15 total 113) in tick-infested individuals than in healthy donors (4%, 2 total 50), although the difference was not significant. Notably, male individuals exposed to tick bites showed five times higher relative risk (RR) of being TBEV-seropositive than healthy donors of the same gender (RR= 5.1, CI = 1.6-19; p = 0.007). None of the seropositive individuals developed clinical manifestations of TBE, but the first clinical-stage of Lyme borreliosis (i.e., erythema migrans) was detected in seven of them. Potential TBEV foci were identified in rural areas, mostly in proximity or within the Fruška Gora mountain. We conclude that the Serbian population is at high risk of TBEV exposure. Further epidemiological studies should focus on potential TBEV foci identified in this study. The implementation of active surveillance for TBEV might contribute to evaluating the potential negative impact of TBE in Serbia.
Collapse
Affiliation(s)
- Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.B.-O.); (N.B.); (J.G.); (S.S.); (V.T.)
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP 13400-970, Brazil
| | - Dragana Mijatović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
| | - Verica Simin
- Department of Microbiology, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia; (V.S.); (S.S.)
| | - Srdjan Stankov
- Department of Microbiology, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia; (V.S.); (S.S.)
| | - Zorana Budakov-Obradović
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.B.-O.); (N.B.); (J.G.); (S.S.); (V.T.)
- Blood Transfusion Institute Vojvodina, 21000 Novi Sad, Serbia
| | - Nevenka Bujandrić
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.B.-O.); (N.B.); (J.G.); (S.S.); (V.T.)
- Blood Transfusion Institute Vojvodina, 21000 Novi Sad, Serbia
| | - Jasmina Grujić
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.B.-O.); (N.B.); (J.G.); (S.S.); (V.T.)
- Blood Transfusion Institute Vojvodina, 21000 Novi Sad, Serbia
| | - Siniša Sević
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.B.-O.); (N.B.); (J.G.); (S.S.); (V.T.)
- Clinic for Infectious Diseases, Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Vesna Turkulov
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.B.-O.); (N.B.); (J.G.); (S.S.); (V.T.)
- Clinic for Infectious Diseases, Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | | | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
| |
Collapse
|
34
|
Vilibic-Cavlek T, Barbic L, Mrzljak A, Brnic D, Klobucar A, Ilic M, Janev-Holcer N, Bogdanic M, Jemersic L, Stevanovic V, Tabain I, Krcmar S, Vucelja M, Prpic J, Boljfetic M, Jelicic P, Madic J, Ferencak I, Savic V. Emerging and Neglected Viruses of Zoonotic Importance in Croatia. Pathogens 2021; 10:73. [PMID: 33467617 PMCID: PMC7829938 DOI: 10.3390/pathogens10010073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Several arboviruses have emerged in Croatia in recent years. Tick-borne encephalitis is endemic in continental counties; however, new natural micro-foci have been detected. Two autochthonous dengue cases were reported in 2010. West Nile virus emerged in 2012, followed by emergence of Usutu virus in 2013. Although high seroprevalence rates of Toscana virus have been detected among residents of Croatian littoral, the virus remains neglected, with only a few clinical cases of neuroinvasive infections reported. Lymphocytic choriomeningitis virus is a neglected neuroinvasive rodent-borne virus. So far, there are no reports on human clinical cases; however, the seroprevalence studies indicate the virus presence in the Croatian mainland. Puumala and Dobrava hantaviruses are widely distributing rodent-borne viruses with sporadic and epidemic occurrence. Hepatitis E virus is an emerging food-borne virus in Croatia. After the emergence in 2012, cases were regularly recorded. Seropositivity varies greatly by region and population group. Rotaviruses represent a significant healthcare burden since rotavirus vaccination is not included in the Croatian national immunization program. Additionally, rotaviruses are widely distributed in the Croatian ecosystem. A novel coronavirus, SARS-CoV-2, emerged in February 2020 and spread rapidly throughout the country. This review focuses on emerging and neglected viruses of zoonotic importance detected in Croatia.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (I.T.); (I.F.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (J.M.)
| | - Anna Mrzljak
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Medicine, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Dragan Brnic
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (D.B.); (L.J.); (J.P.)
| | - Ana Klobucar
- Department of Epidemiology, Andrija Stampar Institute of Public Health, 10000 Zagreb, Croatia;
| | - Maja Ilic
- Department of Epidemiology, Croatian Institute of Public Health, 10000 Zagreb, Croatia;
| | - Natasa Janev-Holcer
- Environmental Health Department, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (N.J.-H.); (P.J.)
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (I.T.); (I.F.)
| | - Lorena Jemersic
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (D.B.); (L.J.); (J.P.)
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (J.M.)
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (I.T.); (I.F.)
| | - Stjepan Krcmar
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Marko Vucelja
- Faculty of Forestry, University of Zagreb, 10000 Zagreb, Croatia; (M.V.); (M.B.)
| | - Jelena Prpic
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (D.B.); (L.J.); (J.P.)
| | - Marko Boljfetic
- Faculty of Forestry, University of Zagreb, 10000 Zagreb, Croatia; (M.V.); (M.B.)
| | - Pavle Jelicic
- Environmental Health Department, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (N.J.-H.); (P.J.)
| | - Josip Madic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (J.M.)
| | - Ivana Ferencak
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (I.T.); (I.F.)
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
35
|
Clinical, Virological, and Immunological Findings in Patients with Toscana Neuroinvasive Disease in Croatia: Report of Three Cases. Trop Med Infect Dis 2020; 5:tropicalmed5030144. [PMID: 32937866 PMCID: PMC7557803 DOI: 10.3390/tropicalmed5030144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023] Open
Abstract
Toscana virus (TOSV) is an arthropod-borne virus, transmitted to humans by phlebotomine sandflies. Although the majority of infections are asymptomatic, neuroinvasive disease may occur. We report three cases of neuroinvasive TOSV infection detected in Croatia. Two patients aged 21 and 54 years presented with meningitis, while a 22-year old patient presented with meningoencephalitis and right-sided brachial plexitis. Cerebrospinal fluid (CSF), serum, and urine samples were collected and tested for neuroinvasive arboviruses: tick-borne encephalitis, West Nile, Usutu, TOSV, Tahyna, and Bhanja virus. In addition, CSF and serum samples were tested for the anti-viral cytokine response. High titers of TOSV IgM (1000–3200) and IgG (3200−10,000) antibodies in serum samples confirmed TOSV infection. Antibodies to other phleboviruses (sandfly fever Sicilian/Naples/Cyprus virus) were negative. CSF samples showed high concentrations of interleukin 6 (IL-6; range 162.32−2683.90 pg/mL), interferon gamma (IFN-γ; range 110.12−1568.07 pg/mL), and IL-10 (range 28.08−858.91 pg/mL), while significantly lower cytokine production was observed in serum. Two patients recovered fully. The patient with a brachial plexitis improved significantly at discharge. The presented cases highlight the need of increasing awareness of a TOSV as a possible cause of aseptic meningitis/meningoencephalitis during summer months. Association of TOSV and brachial plexitis with long-term sequelae detected in one patient indicates the possibility of more severe disease, even in young patients.
Collapse
|