1
|
Vujicic I, Rusevski A, Stankov O, Popov Z, Dimovski A, Davalieva K. Potential Role of Seven Proteomics Tissue Biomarkers for Diagnosis and Prognosis of Prostate Cancer in Urine. Diagnostics (Basel) 2022; 12:diagnostics12123184. [PMID: 36553191 PMCID: PMC9777474 DOI: 10.3390/diagnostics12123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
As the currently available tests for the clinical management of prostate cancer (PCa) are still far from providing precise diagnosis and risk stratification, the identification of new molecular marker(s) remains a pertinent clinical need. Candidate PCa biomarkers from the published proteomic comparative studies of prostate tissue (2002-2020) were collected and systematically evaluated. AZGP1, MDH2, FABP5, ENO1, GSTP1, GSTM2, and EZR were chosen for further evaluation in the urine of 85 PCa patients and controls using ELISA. Statistically significant differences in protein levels between PCa and BPH showed FABP5 (p = 0.019) and ENO1 (p = 0.015). A biomarker panel based on the combination of FABP5, ENO1, and PSA provided the highest accuracy (AUC = 0.795) for PCa detection. The combination of FABP5, EZR, AZGP1, and MDH2 showed AUC = 0.889 in PCa prognosis, with 85.29% of the samples correctly classified into low and high Gleason score (GS) groups. The addition of PSA to the panel slightly increased the AUC to 0.914. AZGP1, FABP5, and EZR showed significant correlation with GS, stage, and percentage of positive biopsy cores. Although validation using larger patient cohorts will be necessary to establish the credibility of the proposed biomarker panels in a clinical context, this study opens a way for the further testing of more high-quality proteomics biomarkers, which could ultimately add value to the clinical management of PCa.
Collapse
Affiliation(s)
- Ivo Vujicic
- University Clinic for Urology, University Clinical Centre “Mother Theresa”, 1000 Skopje, North Macedonia
| | - Aleksandar Rusevski
- Research Centre for Genetic Engineering and Biotechnology “Georgi D Efremov”, Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia
| | - Oliver Stankov
- University Clinic for Urology, University Clinical Centre “Mother Theresa”, 1000 Skopje, North Macedonia
| | - Zivko Popov
- Clinical Hospital “Acibadem Sistina”, 1000 Skopje, North Macedonia
- Medical Faculty, University “St. Cyril and Methodius”, 1000 Skopje, North Macedonia
- Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia
| | - Aleksandar Dimovski
- Research Centre for Genetic Engineering and Biotechnology “Georgi D Efremov”, Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia
- Faculty of Pharmacy, University “St. Cyril and Methodius”, 1000 Skopje, North Macedonia
| | - Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology “Georgi D Efremov”, Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia
- Correspondence:
| |
Collapse
|
2
|
Phan TKT, Do TL, Tachibana K, Kihara T. Alpha-mangostin dephosphorylates ERM to induce adhesion and decrease surface stiffness in KG-1 cells. Hum Cell 2021; 35:189-198. [PMID: 34817798 DOI: 10.1007/s13577-021-00651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022]
Abstract
Surface stiffness is a unique indicator of various cellular states and events and needs to be tightly controlled. α-Mangostin, a natural compound with numerous bioactivities, reduces the mechanical stiffness of various cells; however, the mechanism by which it affects the actin cytoskeleton remains unclear. We aimed to elucidate the mechanism underlying α-mangostin activity on the surface stiffness of leukocytes. We treated spherical non-adherent myelomonocytic KG-1 cells with α-mangostin; it clearly reduced their surface stiffness and disrupted their microvilli. The α-mangostin-induced reduction in surface stiffness was inhibited by calyculin A, a protein phosphatase inhibitor. α-Mangostin also induced KG-1 cell adhesion to a fibronectin-coated surface. In KG-1 cells, a decrease in surface stiffness and the induction of cell adhesion are largely attributed to the dephosphorylation of ezrin/radixin/moesin proteins (ERMs); α-mangostin reduced the levels of phosphorylated ERMs. It further increased protein kinase C (PKC) activity. α-Mangostin-induced KG-1 cell adhesion and cell surface softness were inhibited by the PKC inhibitor GF109203X. The results of the present study suggest that α-mangostin decreases stiffness and induces adhesion of KG-1 cells via PKC activation and ERM dephosphorylation.
Collapse
Affiliation(s)
- Thi Kieu Trang Phan
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung, Hanoi, Vietnam
| | - Thi Ly Do
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Kouichi Tachibana
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Department of Hematology and Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Takanori Kihara
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan.
| |
Collapse
|
3
|
Takasawa K, Takasawa A, Akimoto T, Magara K, Aoyama T, Kitajima H, Murakami T, Ono Y, Kyuno D, Suzuki H, Osanai M. Regulatory roles of claudin-1 in cell adhesion and microvilli formation. Biochem Biophys Res Commun 2021; 565:36-42. [PMID: 34090208 DOI: 10.1016/j.bbrc.2021.05.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Aberrant expression of tight junction proteins has recently been focused on in the cancer research field. We previously showed that claudin-1 is aberrantly expressed from an early stage of uterine cervical adenocarcinoma and contributes to malignant potentials. To elucidate the molecular mechanisms underlying tumor-promoting roles of claudin-1, we established and analyzed claudin-1 knockout cells. Knockout of claudin-1 suppressed conventional tight junctional functions, barrier and fence functions, and expression of cell adhesion-associated proteins including E-cadherin. Comparative proteome analysis revealed that expression of claudin-1 affected expression of a wide range of proteins, especially proteins that are associated with cell adhesion and actin cytoskeleton remodeling. Interactome analysis of the identified proteins revealed that E-cadherin and focal adhesion kinase play central roles in the claudin-1-dependently affected protein network. Moreover, knockout of claudin-1 significantly suppressed microvilli formation and activity of Ezrin/Radixin/Moesin. Taken together, the results indicate that expression of claudin-1 affects not only conventional tight junction function but also expression and activity of a wide range of proteins, especially proteins that are associated with cell adhesion and actin cytoskeleton remodeling, to contribute to malignant potentials and microvilli formation in cervical adenocarcinoma cells.
Collapse
Affiliation(s)
- Kumi Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan.
| | - Taishi Akimoto
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kazufumi Magara
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Tomoyuki Aoyama
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Taro Murakami
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Yusuke Ono
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Daisuke Kyuno
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| |
Collapse
|
4
|
Cui D, Sui L, Han X, Zhang M, Guo Z, Chen W, Yu X, Sun Q, Dong M, Ma T, Kong Y. Aquaporin-3 mediates ovarian steroid hormone-induced motility of endometrial epithelial cells. Hum Reprod 2019; 33:2060-2073. [PMID: 30285121 PMCID: PMC6195804 DOI: 10.1093/humrep/dey290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/07/2018] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION How does aquaporin-3 (AQP3) affect endometrial receptivity? SUMMARY ANSWER AQP3, which is regulated by the combination and estrogen (E2) and progesterone (P4), induces epithelial-mesenchymal transition (EMT) of endometrial epithelial cells. WHAT IS KNOWN ALREADY Embryo implantation is an extremely complex process, and endometrial receptivity is essential for successful embryo implantation. Estrogen and progesterone regulate endometrial receptivity. AQP3, which is regulated by estrogen (E2), increases cell migration and invasion ability by regulating the expression of EMT-related factors and influencing the reorganization of the actin cytoskeleton. STUDY DESIGN, SIZE, DURATION This study investigated the pathophysiological significance of AQP3 in human endometrial function during different phases of the menstrual cycle. PARTICIPANTS/MATERIALS, SETTING, METHODS AQP3 expression levels during different phases of the menstrual cycle were measured using immunohistochemical assays. In cells of different receptivity (high-receptive RL95-2 cells and low-receptive HEC-1A cells), the expression of AQP3 was measured using western blotting, qRT-PCR and immunofluorescence assays. Activities of AQP3, and its regulation by E2 and P4, were studied through in-vitro experiments using RL95-2 cells. MAIN RESULTS AND THE ROLE OF CHANCE AQP3 expression in the mid- and late-secretory phases of the human endometrium is significantly higher than in other phases. Since AQP3 expression levels were higher in RL95-2 cells than in HEC-1A cells, mechanisms of AQP3 regulation by E2 and P4 were studied using RL95-2 cells. We provided the first report that P4 up-regulates AQP3 by directly targeting the promoter of the AQP3 gene. The up-regulation of AQP3 expression by a combination of E2 and P4 is significantly higher than that caused by either E2 or P4 alone. Together E2 and P4 promote RL95-2 cell migration and invasion by inducing EMT through AQP3. We also found that AQP3 co-localizes with ezrin and affects the formation of filopodia and lamellipodia during the E2 and P4-induced EMT process but has no effect on the expression of ezrin and F-actin. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION It is still unclear whether AQP3 is a main regulator of endometrial receptivity or one of several factors influencing the process. WIDER IMPLICATIONS OF THE FINDINGS Further investigation on AQP3 may contribute to a greater understanding of endometrial receptivity. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Scientific Grants of China (No. 31570798), the Program for Liaoning Excellent Talents in University (LR2017042), the Doctoral Scientific Research Foundation of Liaoning province (201601236), and the Liaoning Provincial Program for Top Discipline of Basic Medical Sciences. There are no conflicts of interest.
Collapse
Affiliation(s)
- Dan Cui
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Linlin Sui
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Xiao Han
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Man Zhang
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Zhenzhen Guo
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Wanfang Chen
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Xinxin Yu
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Qiannan Sun
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Ming Dong
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Tonghui Ma
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Ying Kong
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| |
Collapse
|
5
|
Abstract
Comprehensive theory explaining the relationship between estrogen (E2) and ezrin in metastasis of thyroid cancer remains non-elicited. In vitro results revealed that E2 could stimulate the expression and phosphorylation of ezrin in a time and dose dependent manner. Our data clearly showed that E2 enhanced the migration and invasion of cells, which was reversed by the transfection of cells with ezrin specific siRNA. Further, we observed that Phosphoinositide 3-kinase (PI3K) ROCK-2 are among the kinases responsible for E2 induced phosphorylation of ezrin. Clinical validation of ezrin/phospho-ezrin revealed that phospho-ezrin was intensely expressed in follicular thyroid carcinoma (FTC) and follicular variant of papillary thyroid carcinoma (FVPTC), while it was completely absent in follicular adenoma (FA) lesions in which the differentiation of the follicular neoplasms remains subtle. When histology of different carcinomas is correlated with benign FA with respect to phospho-ezrin, we observed that the marker was highly significant (p = 0.0001). 100% sensitivity, specificity and diagnostic accuracy of the above marker in the histological association of FTC, FVPTC with FA, enables us to suggest phospho-ezrin as a diagnostic marker to differentiate the follicular neoplasms. These data are the first to suggest the dynamic regulation of ezrin phosphorylation during metastasis in FTC.
Collapse
|
6
|
Mesenchymal stem cells enhance tumorigenic properties of human glioblastoma through independent cell-cell communication mechanisms. Oncotarget 2018; 9:24766-24777. [PMID: 29872504 PMCID: PMC5973871 DOI: 10.18632/oncotarget.25346] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/23/2018] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cells (MSC) display tumor tropism and have been addressed as vehicles for delivery of anti-cancer agents. As cellular components of the tumor microenvironment, MSC also influence tumor progression. However, the contribution of MSC in brain cancer is not well understood since either oncogenic or tumor suppressor effects have been reported for these cells. Here, MSC were found capable of stimulating human Glioblastoma (GBM) cell proliferation through a paracrine effect mediated by TGFB1. Moreover, when in direct cell-cell contact with GBM cells, MSC elicited an increased proliferative and invasive tumor cell behavior under 3D conditions, as well as accelerated tumor development in nude mice, independently of paracrine TGFB1. A secretome profiling of MSC-GBM co-cultures identified 126 differentially expressed proteins and 10 proteins exclusively detected under direct cell-cell contact conditions. Most of these proteins are exosome cargos and are involved in cell motility and tissue development. These results indicate a dynamic interaction between MSC and GBM cells, favoring aggressive tumor cell traits through alternative and independent mechanisms. Overall, these findings indicate that MSC may exert pro-tumorigenic effects when in close contact with tumor cells, which must be carefully considered when employing MSC in targeted cell therapy protocols against cancer.
Collapse
|
7
|
Mori K, Toiyama Y, Otake K, Ide S, Imaoka H, Okigami M, Okugawa Y, Fujikawa H, Saigusa S, Hiro J, Kobayashi M, Ohi M, Tanaka K, Inoue Y, Kobayashi Y, Mohri Y, Kobayashi I, Goel A, Kusunoki M. Successful identification of a predictive biomarker for lymph node metastasis in colorectal cancer using a proteomic approach. Oncotarget 2017; 8:106935-106947. [PMID: 29291001 PMCID: PMC5739786 DOI: 10.18632/oncotarget.22149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/29/2017] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC)-associated mortality is primarily caused by lymph node (LN) and distant metastasis, highlighting the need for biomarkers that predict LN metastasis and facilitate better therapeutic strategies. We used an Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-based comparative proteomics approach to identify novel biomarkers for predicting LN metastasis in CRC patients. We analyzed five paired samples of CRC with or without LN metastasis, adjacent normal mucosa, and normal colon mucosa, and differentially expressed proteins were identified and subsequently validated at the protein and/or mRNA levels by immunohistochemistry and qRT-PCR, respectively. We identified 55 proteins specifically associated with LN metastasis, from which we selected ezrin for further analysis and functional assessment. Expression of ezrin at both the protein and mRNA levels was significantly higher in CRC tissues than in adjacent normal colonic mucosa. In univariate analysis, high ezrin expression was significantly associated with tumor progression and poor prognosis, which was consistent with our in vitro findings that ezrin promotes the metastatic capacity of CRC cells by enabling cell invasion and migration. In multivariate analysis, high levels of ezrin protein and mRNA in CRC samples were independent predictors of LN metastasis. Our data thus identify ezrin as a novel protein and mRNA biomarker for predicting LN metastasis in CRC patients.
Collapse
Affiliation(s)
- Koichiro Mori
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kohei Otake
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shozo Ide
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hiroki Imaoka
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masato Okigami
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hiroyuki Fujikawa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Susumu Saigusa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Junichiro Hiro
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Minako Kobayashi
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki Ohi
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Koji Tanaka
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yuhko Kobayashi
- Center for Molecular Biology and Genetics, Mie University, Mie, Japan
| | - Yasuhiko Mohri
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Issei Kobayashi
- Center for Molecular Biology and Genetics, Mie University, Mie, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research & Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX USA
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
8
|
Chen Y, Chuan HL, Yu SY, Li CZ, Wu ZB, Li GL, Zhang YZ. A Novel Invasive-Related Biomarker in Three Subtypes of Nonfunctioning Pituitary Adenomas. World Neurosurg 2017; 100:514-521. [PMID: 28093347 DOI: 10.1016/j.wneu.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To identify biomarkers key to invasiveness of the 3 subtypes of nonfunctioning pituitary adenomas (NFPAs) and provide a guidance for therapeutic decision making and identification of potential adjuvant drugs. METHODS Fifty NFPA tumor tissues obtained from transsphenoidal surgery were used in the study. Three invasive NFPAs and 4 noninvasive NFPAs were used for gene expression microarray analyses. In addition, there are 5 invasive NFPAs and 4 noninvasive NFPAs used for proteomic analyses. Invasive-related biomarkers were identified by bioinformatics analysis by integrating the transcriptomics and proteomics data sets. All 3 subtypes of NFPAs (null cell adenomas, oncocytomas, and gonadotroph adenomas) were used to validate differentially expressed candidate biomarkers by means of quantitative real-time reverse transcription polymerase chain reaction and Western blot. The level of EZR was downregulated in pituitary adenoma cell line GH3 to investigate the invasive effect of EZR on GH3 cells by using the RNA interference technique. RESULTS Eight genes involved in the invasion function were found by bioinformatics analysis, and the EZR gene was identified as a novel invasive-related biomarker in the 3 subtypes of NFPAs. The expression level of EZR was found higher in terms of invasiveness than the noninvasive ones of the 3 subtypes of NFPAs. Moreover, the knockdown of EZR inhibited the invasion of GH3 cells in vitro. CONCLUSIONS EZR is a novel biomarker in terms of invasion among the 3 subtypes of NFPAs, and it is a promising guide for therapeutic decision making as well.
Collapse
Affiliation(s)
- Yong Chen
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong-Li Chuan
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sheng-Yuan Yu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chu-Zhong Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhe-Bao Wu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gui-Lin Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Ya-Zhuo Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
CXCR6-CXCL16 axis promotes prostate cancer by mediating cytoskeleton rearrangement via Ezrin activation and αvβ3 integrin clustering. Oncotarget 2016; 7:7343-53. [PMID: 26799186 PMCID: PMC4872790 DOI: 10.18632/oncotarget.6944] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/06/2016] [Indexed: 11/25/2022] Open
Abstract
Cytoskeletal rearrangement is required for migration and invasion, which are the key steps of cancer metastasis. Ezrin and integrin co-ordinate these processes by regulating cellular adhesion and cytoskeletal polymerization-depolymerization. It is also well established that chemokine-chemokine receptor axis plays a crucial role in regulating cancer cell migration and invasion. In this study, we show involvement of CXC chemokine receptor 6 (CXCR6) and its only natural ligand CXCL16 in pathobiology of prostate cancer (PCa). CXCR6 is highly expressed in PCa tissues and cell lines (LNCaP and PC3), relative to normal tissue and cells. CXCR6 expression in PCa tissues correlated with higher Gleason score. Similarly, aggressive PCa cells (PC3) show high CXCR6 compared to less aggressive LNCaP. Besides, PC3 cells show higher MMPs expression compared to LNCaP cells following CXCL16 stimulation. Intriguingly, CXCR6-CXCL16 interaction in PCa cells promotes Ezrin activation, αvβ3 integrin clustering and capping at the leading edge in FAK/PI3K/PKC dependent manner, thereby modifying cellular adhesion as well as motility. Together these results demonstrate that CXCL16 stimulation changes cytoskeletal dynamics resulting in enhanced migration, invasion and adhesion to endothelial cells, ultimately enabling PCa cells to achieve their metastatic goal.
Collapse
|
10
|
Abstract
In all eukaryotes, the plasma membrane is critically important as it maintains the architectural integrity of the cell. Proper anchorage and interaction between the plasma membrane and the cytoskeleton is critical for normal cellular processes. The ERM (ezrin-radixin-moesin) proteins are a class of highly homologous proteins involved in linking the plasma membrane to the cortical actin cytoskeleton. This review takes a succinct look at the biology of the ERM proteins including their structure and function. Current reports on their regulation that leads to activation and deactivation was examined before taking a look at the different interacting partners. Finally, emerging roles of each of the ERM family members in cancer was highlighted.
Collapse
Affiliation(s)
- Godwin A Ponuwei
- Cell migration laboratory, Molecular and Cellular Medicine Unit, Department of Biomedical Sciences, School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights, Berkshire, UK. .,Molecular and Cellular Medicine unit, Department of Biomedical sciences, School of Life Sciences, Hopkins Building, Whiteknights Campus, University of Reading, Reading, Berkshire, UK.
| |
Collapse
|
11
|
Flores-Téllez TNJ, Lopez TV, Vásquez Garzón VR, Villa-Treviño S. Co-Expression of Ezrin-CLIC5-Podocalyxin Is Associated with Migration and Invasiveness in Hepatocellular Carcinoma. PLoS One 2015; 10:e0131605. [PMID: 26135398 PMCID: PMC4489913 DOI: 10.1371/journal.pone.0131605] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/03/2015] [Indexed: 11/18/2022] Open
Abstract
Background and Aim Prognostic markers are important for predicting the progression and staging of hepatocellular carcinoma (HCC). Ezrin (EZR) and Podocalyxin (PODXL) are proteins associated with invasion, migration and poor prognosis in various types of cancer. Recently, it has been observed that chloride intracellular channel 5 (CLIC5) forms a complex with EZR and PODXL and that it is required for podocyte structure and function. In this study, we evaluated the overexpression of EZR, PODXL and CLIC5 in HCC. Methods The modified resistant hepatocyte model (MRHR), human biopsies and HCC cell lines (HepG2, Huh7 and SNU387) were used in this study. Gene and protein expression levels were evaluated in the MRHR by qRT-PCR, Western blot and immunohistochemistry analyses, and protein expression in the human biopsies was evaluated by immunohistochemistry. Protein expression in the HCC cell lines was evaluated by immunofluorescence and Western blot, also the migration and invasive abilities of Huh7 cells were evaluated using shRNA-mediated inhibition. Results Our results indicated that these genes and proteins were overexpressed in HCC. Moreover, when the expression of CLIC5 and PODXL was inhibited in Huh7 cells, we observed decreased migration and invasion. Conclusion This study suggested that EZR, CLIC5 and PODXL could be biological markers to predict the prognosis of HCC and that these proteins participate in migration and invasion processes.
Collapse
Affiliation(s)
- Teresita N. J. Flores-Téllez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco, México 14, CP 07360, México, Distrito Federal
| | - Tania V. Lopez
- Instituto Nacional De Medicina Genómica (INMEGEN), Periférico Sur 4809, Arenal Tepepan, Tlalpan, 14610 Ciudad de México, Distrito Federal
- * E-mail: (TVL); (SVT)
| | - Verónica Rocío Vásquez Garzón
- Facultad de Medicina y Cirugía, Universidad Benito Juárez de Oaxaca. Av Universidad S/N, Col. 5 Señores. C.P. 68120, México, Oaxaca
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco, México 14, CP 07360, México, Distrito Federal
- * E-mail: (TVL); (SVT)
| |
Collapse
|
12
|
Abstract
Members of the ezrin-radixin-moesin (ERM) family of proteins are involved in multiple aspects of cell migration by acting both as crosslinkers between the membrane, receptors and the actin cytoskeleton, and as regulators of signalling molecules that are implicated in cell adhesion, cell polarity and migration. Increasing evidence suggests that the regulation of cell signalling and the cytoskeleton by ERM proteins is crucial during cancer progression. Thus, both their expression levels and subcellular localisation would affect tumour progression. High expression of ERM proteins has been shown in a variety of cancers. Mislocalisation of ERM proteins reduces the ability of cells to form cell-cell contacts and, therefore, promotes an invasive phenotype. Similarly, mislocalisation of ERM proteins impairs the formation of receptor complexes and alters the transmission of signals in response to growth factors, thereby facilitating tumour progression. In this Commentary, we address the structure, function and regulation of ERM proteins under normal physiological conditions as well as in cancer progression, with particular emphasis on cancers of epithelial origin, such as those from breast, lung and prostate. We also discuss any recent developments that have added to the understanding of the underlying molecular mechanisms and signalling pathways these proteins are involved in during cancer progression.
Collapse
Affiliation(s)
- Jarama Clucas
- Division of Biomedical Sciences, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | | |
Collapse
|
13
|
Mao J, Yuan XR, Xu SS, Jiang XC, Zhao XT. Expression and functional significance of ezrin in human brain astrocytoma. Cell Biochem Biophys 2014; 67:1507-11. [PMID: 23712870 DOI: 10.1007/s12013-013-9653-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ezrin is overexpressed in a variety of neoplastic cells and is involved in the later stages of tumor progression and metastasis. The present study investigated the expression and functional significance of ezrin in human brain astrocytoma. Ezrin expression was examined in specimens from healthy human brains (10 autopsies) or human astrocytoma (107 cases) by immunohistochemistry. All healthy specimens were negative for ezrin expression, while this expression was positive in a great majority of human astrocytoma tissues (96/107; 89.7%; p < 0.05 vs. healthy). Ezrin expression was positively correlated with tumor grade (r = 0.551, p < 0.01). Analysis of clinicopathologic data revealed that the post-operation disease-free survival times were significantly (p < 0.001) different between those with a strong positive ezrin expression and those with a weak or negative expression. Specifically, median DFS in patients with a strongly positive ezrin expression was 13 months (range 2-46 months), while it was significantly (p < 0.001) longer in patients with weakly positive or negative expression (median of 28 months, range 6-56 months). In conclusion, there is a strong association between ezrin expression and increased malignancy in astrocytoma. Thus, enhanced ezrin expression may play an important role in the development of astrocytoma. Our results further indicate that ezrin may be useful for grading of astrocytoma and as a molecular marker for the prognosis.
Collapse
Affiliation(s)
- Jie Mao
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, 2 West Zheshan Road, Wuhu, 241001, People's Republic of China,
| | | | | | | | | |
Collapse
|
14
|
Increase in ezrin expression from benign to malignant breast tumours. Cell Oncol (Dordr) 2013; 36:485-91. [DOI: 10.1007/s13402-013-0153-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2013] [Indexed: 10/26/2022] Open
|
15
|
Lenka G, Weng WH, Chuang CK, Ng KF, Pang ST. Aberrant expression of the PRAC gene in prostate cancer. Int J Oncol 2013; 43:1960-6. [PMID: 24100630 DOI: 10.3892/ijo.2013.2117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/23/2013] [Indexed: 11/06/2022] Open
Abstract
Identification of aberrant expression patterns of genes in prostate cancer (PCa) is a key step towards the development of effective therapies. Prostate-specific antigen (PSA) levels are commonly measured for the early detection of PCa, but which itself is still not an ideal biomarker. We analysed the expression patterns of prostate cancer susceptibility candidate (PRAC) in prostate cancer. The PRAC gene is known to be commonly expressed in prostate tissue, rectum and colon. To provide clear insights into the expression patterns of PRAC in PCa, we examined the gene expression by quantitative real-time PCR (qRT-PCR), western blot analysis and immunohistochemistry (IHC). The results showed that PRAC expression levels in androgen‑insensitive cells (DU145 and PC3) are lower than those in androgen-sensitive cell lines (LNCaP, LNCaP-R and CW22R). However, treatment of the LNCaP cell line with androgen and anti-androgen demonstrated that PRAC is expressed in an androgen-independent manner. Further, PRAC expression was restored upon treatment of DU145 and PC3 cells with the methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-aza-CdR), which indicates the effect of methylation in the control of PRAC expression. In addition, IHC analysis revealed a significantly decreased immunoreactivity of PRAC protein in PCa tissues compared to benign prostatic hyperplasia (BPH) (p<0.0001). Thus, our findings suggest that the pathogenesis of PCa may be due to the expression levels of PRAC protein, and this protein can serve as a potential biomarker for the management of PCa.
Collapse
Affiliation(s)
- Govinda Lenka
- Department of Chemical Engineering and Biotechnology, Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan, R.O.C
| | | | | | | | | |
Collapse
|
16
|
The ezrin metastatic phenotype is associated with the initiation of protein translation. Neoplasia 2012; 14:297-310. [PMID: 22577345 DOI: 10.1593/neo.11518] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 03/13/2012] [Accepted: 03/16/2012] [Indexed: 12/14/2022] Open
Abstract
We previously associated the cytoskeleton linker protein, Ezrin, with the metastatic phenotype of pediatric sarcomas, including osteosarcoma and rhabdomyosarcoma. These studies have suggested that Ezrin contributes to the survival of cancer cells after their arrival at secondary metastatic locations. To better understand this role in metastasis, we undertook two noncandidate analyses of Ezrin function including a microarray subtraction of high-and low-Ezrin-expressing cells and a proteomic approach to identify proteins that bound the N-terminus of Ezrin in tumor lysates. Functional analyses of these data led to a novel and unifying hypothesis that Ezrin contributes to the efficiency of metastasis through regulation of protein translation. In support of this hypothesis, we found Ezrin to be part of the ribonucleoprotein complex to facilitate the expression of complex messenger RNA in cells and to bind with poly A binding protein 1 (PABP1; PABPC1). The relevance of these findings was supported by our identification of Ezrin and components of the translational machinery in pseudopodia of highly metastatic cells during the process of cell invasion. Finally, two small molecule inhibitors recently shown to inhibit the Ezrin metastatic phenotype disrupted the Ezrin/PABP1 association. Taken together, these results provide a novel mechanistic basis by which Ezrin may contribute to metastasis.
Collapse
|
17
|
Guo YD, Li XN, Bai GH. Clinical significance of expression of Ezrin and HER2 proteins in gastric cancer. Shijie Huaren Xiaohua Zazhi 2012; 20:1559-1563. [DOI: 10.11569/wcjd.v20.i17.1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of Ezrin and human epidermal growth factor receptor 2 (HER2) proteins in normal gastric mucosa and gastric cancer tissues and to analyze their correlation with tumor invasion and metastasis.
METHODS: Immunohistochemistry was performed to detect Ezrin and HER2 protein expression using tissue microarray (TMA) containing paraffin-embedded normal gastric mucosa and gastric cancer tissue samples. Of 485 primary gastric adenocarcinoma samples detected, 19 had well differentiated caner, 235 had moderately differentiated cancer, and 231 had poorly differentiated cancer; 353 had lymph node metastasis; 166 had TNM stage I to II cancer, 319 had stage III to IV cancer. Forty paraffin-embedded tissue blocks of normal gastric epithelium were used as controls.
RESULTS: Ezrin and HER2 protein expression in gastric cancer was significantly higher than in normal gastric mucosa. Ezrin and HER2 protein expression was closely associated with Lauren's histological type and tumor differentiation (χ2 = 17.625, 20.386, both P = 0.000; χ2 = 9.474, P = 0.009, χ2 = 13.377, P = 0.010). Ezrin protein expression was also closely associated with Japanese histological type, TNM stage, depth of invasion and lymph node metastasis (χ2 = 37.542, 12.237, 21.194, 9.868; P = 0.000, 0.002, 0.002, 0.007). The expression of Ezrin was positively correlated to that of HER2 in gastric cancer (r = 0.129, P = 0.004).
CONCLUSION: Ezrin protein may be a useful marker for predicting the invasion and metastasis of gastric cancer. Combined detection of expression of Ezrin and HER2 proteins can help predict prognosis and devise individualized treatment in patients with gastric cancer.
Collapse
|
18
|
Jiang QY, Xia JM, Ding HG, Fei XW, Lin J, Wu RJ. RNAi-mediated blocking of ezrin reduces migration of ectopic endometrial cells in endometriosis. Mol Hum Reprod 2012; 18:435-41. [PMID: 22544491 DOI: 10.1093/molehr/gas019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ezrin is a member of the ezrin-radixin-moesin (ERM) family of membrane-cytoskeletal linkage proteins. It is important for maintenance of cell shape, adhesion, migration and division. The overexpression of ezrin in some tumours is associated with increased cell migration that is mediated by the Rho/ROCK family of small GTPases. To investigate the role of ezrin in the migration of ectopic endometrial cells in endometriosis, we conducted real-time quantitative RT-PCR analysis of the eutopic and ectopic endometrium from women with endometriosis compared with those without the disease. RNAi, wound healing assays and western blot analysis of endometriotic cells were also included in this research. We found significantly higher levels of mRNA expression of ezrin (0.42 versus 0.27, P < 0.05), RhoA (0.99 versus 0.74, P < 0.05), RhoC (0.79 versus 0.43, P < 0.005) and ROCK1 (0.68 versus 0.38, P < 0.005) in the ectopic endometrial cells compared with the eutopic endometrial cells in endometriosis. Blocking ezrin with small-interfering RNA reduced the migration of ectopic endometrial cells with decreased expression of RhoA (42.68%), RhoC (58.42%) and ROCK1 (59.88%). Our results indicate that the over-expression of ezrin in endometriosis may play a significant role in the migration of endometrial cells of endometriosis, and the RhoC/Rock pathway may provide a promising treatment target.
Collapse
Affiliation(s)
- Qiao-Ying Jiang
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, No. 1 Xueshi Road, Hangzhou, Zhejiang Province 310006, People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Valderrama F, Thevapala S, Ridley AJ. Radixin regulates cell migration and cell-cell adhesion through Rac1. J Cell Sci 2012; 125:3310-9. [DOI: 10.1242/jcs.094383] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ERM proteins ezrin, radixin and moesin are adaptor proteins that link plasma membrane receptors to the actin cytoskeleton. Ezrin and moesin have been implicated in cell polarization and cell migration, but little is known about the involvement of radixin in these processes. Here we show that radixin is required for migration of PC3 prostate cancer cells, and that radixin, but not ezrin or moesin, depletion by RNAi increases cell spread area and cell-cell adhesion mediated by adherens junctions. Radixin depletion also alters actin organization and distribution of active phosphorylated ezrin and moesin. Similar effects were observed in MDA-MB-231 breast cancer cells. The phenotype of radixin-depleted cells is similar to that induced by constitutively active Rac1, and Rac1 is required for the radixin knockdown phenotype. Radixin depletion also increases the activity of Rac1 but not Cdc42 or RhoA. Analysis of Rac guanine nucleotide exchange factors (GEFs) suggests that radixin affects the activity of Vav GEFs. Indeed, Vav GEF depletion reverts the phenotype of radixin knockdown and reduces the effect of radixin knockdown on Rac1 activity. Our results indicate that radixin plays an important role in promoting cell migration by regulating Rac1-mediated epithelial polarity and formation of adherens junctions through Vav GEFs.
Collapse
|
20
|
Abdou AG, Maraee AH, El-Sayed EMM, Elnaidany NF. Immunohistochemical expression of ezrin in cutaneous basal and squamous cell carcinomas. Ann Diagn Pathol 2011; 15:394-401. [PMID: 21849257 DOI: 10.1016/j.anndiagpath.2011.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 02/01/2023]
Abstract
Ezrin is a member of the ezrin-radixin-moesin family of proteins, which link the actin-containing cytoskeleton to the plasma membrane. Overexpression of ezrin protein is correlated with the metastatic potential in several cancers. Little is known about the distribution of ezrin in normal epidermis and nonmelanoma skin cancer; therefore, in the current study, we examined the immunohistochemical expression of ezrin in normal skin (10 biopsies) and epithelial skin tumors (25 basal cell carcinoma [BCC] and 20 squamous cell carcinoma [SCC]). Ezrin was expressed in epidermis of all normal controls with a prominent membranous pattern compared with 93.3% positivity in malignant cases with a significant higher intensity (assessed by H score) in favor of the latter (P = .002). Cytoplasmic expression of ezrin either alone or associated with membranous expression was both seen in BCC and SCC. The median value of H score in SCC (160) cases was higher than that in BCC (60). H score values of ezrin expression in BCC was significantly higher in tumors arising in sites other than the head and neck (P = .04). In SCC, the intensity of ezrin expression tended to be associated with advanced stage (P = .08). Our study demonstrated the probable tumorigenic role of ezrin in epithelial skin tumor formation. It may enhance local invasion or metastasis of epithelial skin tumors, which necessitates further larger study to clarify. The intensity rather than the pattern of ezrin expression had a more probable impact on the tumor behavior.
Collapse
Affiliation(s)
- Asmaa Gaber Abdou
- Pathology Department, Faculty of Medicine, Menofiya university, Shebein Elkom, 32511 Egypt.
| | | | | | | |
Collapse
|
21
|
Xie JJ, Zhang FR, Tao LH, Lü Z, Xu XE, Jian-Shen, Xu LY, Li EM. Expression of ezrin in human embryonic, fetal, and normal adult tissues. J Histochem Cytochem 2011; 59:1001-8. [PMID: 21832146 DOI: 10.1369/0022155411418661] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ezrin, which cross-links the cytoskeleton and plasma membrane, was involved in a wide variety of cellular processes. Here, to investigate the distribution of ezrin, tissue microarray technology was employed to perform immunohistochemical experiments on human embryos, fetuses at 4 to 22 weeks' gestation, and adult tissue specimens. Results showed that ezrin was widely expressed in the gastrointestinal tract throughout the human developmental stages studied. At 6 to 8 weeks' gestation, ezrin was found in epithelial cells, and this staining pattern was particularly pronounced in the brush border of mature absorptive cells lining the villus in later developmental stages and adult tissues. Throughout neural development, ezrin was only expressed in the neural tube at 4 weeks' gestation. Ezrin was also detected in the cortex and medulla of the adrenal gland at 8 to 12 weeks' gestation, whereas its immunoreactivity was increased from the zona glomerulosa through the zona reticularis and was essentially undetectable in the adrenal medulla of adult tissues. Significant expression of ezrin was seen throughout development in the kidney, spleen, lymph nodes, and cells of stratified squamous epithelia. However, ezrin was undetectable in lung, liver, heart, and blood vessels. These results demonstrated that the expression pattern of ezrin was highly time specific and tissue specific.
Collapse
Affiliation(s)
- Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, Guangdong Province, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Small molecule inhibitors of ezrin inhibit the invasive phenotype of osteosarcoma cells. Oncogene 2011; 31:269-81. [PMID: 21706056 DOI: 10.1038/onc.2011.245] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ezrin is a multifunctional protein that connects the actin cytoskeleton to the extracellular matrix through transmembrane proteins. High ezrin expression is associated with lung metastasis and poor survival in cancer. We screened small molecule libraries for compounds that directly interact with ezrin protein using surface plasmon resonance to identify lead compounds. The secondary functional assays used for lead compound selection included ezrin phosphorylation as measured by immunoprecipitation and in vitro kinase assays, actin binding, chemotaxis, invasion into an endothelial cell monolayer, zebrafish and Xenopus embryonic development, mouse lung organ culture and an in vivo lung metastasis model. Two molecules, NSC305787 and NSC668394, that directly bind to ezrin with low micromolar affinity were selected based on inhibition of ezrin function in multiple assays. They inhibited ezrin phosphorylation, ezrin-actin interaction and ezrin-mediated motility of osteosarcoma (OS) cells in culture. NSC305787 mimicked the ezrin morpholino phenotype, and NSC668394 caused a unique developmental defect consistent with reduced cell motility in zebrafish. Following tail vein injection of OS cells into mice, both molecules inhibited lung metastasis of ezrin-sensitive cells, but not ezrin-resistant cells. The small molecule inhibitors NSC305787 and NSC668394 demonstrate a novel targeted therapy that directly inhibits ezrin protein as an approach to prevent tumor metastasis.
Collapse
|
23
|
Schulz WA, Ingenwerth M, Djuidje CE, Hader C, Rahnenführer J, Engers R. Changes in cortical cytoskeletal and extracellular matrix gene expression in prostate cancer are related to oncogenic ERG deregulation. BMC Cancer 2010; 10:505. [PMID: 20860828 PMCID: PMC2955608 DOI: 10.1186/1471-2407-10-505] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/22/2010] [Indexed: 12/30/2022] Open
Abstract
Background The cortical cytoskeleton network connects the actin cytoskeleton to various membrane proteins, influencing cell adhesion, polarity, migration and response to extracellular signals. Previous studies have suggested changes in the expression of specific components in prostate cancer, especially of 4.1 proteins (encoded by EPB41 genes) which form nodes in this network. Methods Expression of EPB41L1, EPB41L2, EPB41L3 (protein: 4.1B), EPB41L4B (EHM2), EPB41L5, EPB49 (dematin), VIL2 (ezrin), and DLG1 (summarized as „cortical cytoskeleton" genes) as well as ERG was measured by quantitative RT-PCR in a well-characterized set of 45 M0 prostate adenocarcinoma and 13 benign tissues. Hypermethylation of EPB41L3 and GSTP1 was compared in 93 cancer tissues by methylation-specific PCR. Expression of 4.1B was further studied by immunohistochemistry. Results EPB41L1 and EPB41L3 were significantly downregulated and EPB41L4B was upregulated in cancer tissues. Low EPB41L1 or high EPB41L4B expression were associated with earlier biochemical recurrence. None of the other cortical cytoskeleton genes displayed expression changes, in particular EPB49 and VIL2, despite hints from previous studies. EPB41L3 downregulation was significantly associated with hypermethylation of its promoter and strongly correlated with GSTP1 hypermethylation. Protein 4.1B was detected most strongly in the basal cells of normal prostate epithelia. Its expression in carcinoma cells was similar to the weaker one in normal luminal cells. EPB41L3 downregulation and EPB41L4B upregulation were essentially restricted to the 22 cases with ERG overexpression. Expression changes in EPB41L3 and EPB41L4B closely paralleled those previously observed for the extracellular matrix genes FBLN1 and SPOCK1, respectively. Conclusions Specific changes in the cortical cytoskeleton were observed during prostate cancer progression. They parallel changes in the expression of extracellular matrix components and all together appear to be associated with oncogenic ERG overexpression. We hypothesize that these alterations may contribute to the increased invasivity conferred to prostate cancer cells by ERG deregulation.
Collapse
Affiliation(s)
- Wolfgang A Schulz
- Department of Urology, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The forced overexpression of c-Myc in mouse prostate and in normal human prostate epithelial cells results in tumor transformation with an invasive phenotype. How c-Myc regulates cell invasion is poorly understood. In this study, we have investigated the interplay of c-Myc and androgens in the regulation of prostate cancer cell invasion. We found that c-Myc induces cell invasion and anchorage-independent growth by regulating ezrin protein expression in the presence of androgens. The activity of the ezrin promoter is controlled by androgens through c-Myc, which binds to a phylogenetically conserved E-Box located in the proximal promoter region. Besides, we also show that ezrin is an important regulator of c-Myc protein levels. These effects are achieved through androgen-induced changes in ezrin phosphorylation, which results in the regulation of downstream signals. These downstream signals involve the modulation of Akt and GSK-3beta activity resulting in increased c-Myc protein synthesis and inhibition of its degradation. In summary, we have shown a key role for ezrin as a mediator of c-Myc-induced tumorigenesis in prostate cancer cells.
Collapse
|
25
|
Brambilla D, Fais S. The Janus-faced role of ezrin in "linking" cells to either normal or metastatic phenotype. Int J Cancer 2009; 125:2239-45. [PMID: 19588507 DOI: 10.1002/ijc.24734] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the majority of eukaryotic cells, the ezrin, radixin and moesin (ERM) proteins are involved in many physiologic functions including regulation of actin cytoskeleton, control of cell shape, adhesion, motility and modulation of signal transduction pathways. In a previous study, we used a dominant negative ezrin-mutant to address ezrin involvement in remodeling of actin cytoskeleton and subsequently we depicted ezrin key role in melanoma cell migration and progression. Herein, we highlight recent advances on ezrin involvement in the metastatic phenomenon, including also some more neglected ezrin-related functions. Novel molecular processes driven by ezrin activation include: phagocytosis, acquisition of resistance to chemotherapeutics and triggering of programmed cell death signals. Recent data support an integrated role of ezrin also in development of tumor malignancy. On one hand, ezrin may be responsible of deranged execution of specific known functions such as adhesion and motility and on the other, it may also participate to unique metastatic determinants, through the establishment of aberrant linkages with tumor-related proteins. For instance, ezrin misslocalization, absence or deranged activity has started to be correlated with tumor progression in many tumors of different species, including humans. Concomitantly, ezrin may act simultaneously as a regulatory or deregulatory chaperon in both normal and tumor cells. It is still to be established whether this Janus-faced feature of ezrin is due to some unknown transforming Zelig-like property or to the fact that a tumor-associated molecule preferentially links to ezrin thus distracting it from its normal connections. However, the contribution of ezrin functional deregulation to the acquisition of the metastatic phenotype appears clear and ezrin or ezrin aberrant associations may represent good candidates for future anti-tumor therapies.
Collapse
Affiliation(s)
- Daria Brambilla
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | | |
Collapse
|
26
|
Yeh CN, Pang ST, Chen TW, Wu RC, Weng WH, Chen MF. Expression of ezrin is associated with invasion and dedifferentiation of hepatitis B related hepatocellular carcinoma. BMC Cancer 2009; 9:233. [PMID: 19604375 PMCID: PMC2716370 DOI: 10.1186/1471-2407-9-233] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 07/15/2009] [Indexed: 11/10/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the fifth most common malignancy in the world and constitutes the leading cause of cancer-related death among men, and second among women in Taiwan. Liver cirrhosis and HCC are relatively prevalent, and 80% to 85% of the patients with these conditions have positive results for hepatitis B surface antigen in Taiwan. Only 5% of the general population is seronegative for all hepatititis B virus (HBV) markers. This is the first study to determine the role of ezrin upon HBV HCC cell and patients with HBV HCC undergoing hepatectomy Methods Immunohistochemical study with ezrin in 104 human HBV-HCC cases were carried out to investigate its association with the clinicopathological features and the outcomes of 104 HBV-HCC patients undergoing hepatetomy. In addition, DNA constructs including the wild type ezrin (wt-ezrin) and mutant ezrin Tyr353 (Y353) were transfected into Hep3B cell to study its role in tumor invasion and differentiation. Results HBV HCC patients with ezrin over-expression independently have smaller tumor size, cirrhotic liver background, poor tumor differentiation, and more vascular invasion. Ezrin expression status has no impact on survival for HBV-HCC patients undergoing hepatectomy. The in vitro assay showed that wt-ezrin Hep3B cells have a significant higher level of AFP secretion and higher invasion ability as compared with the control and Y353- ezrin Hep3B cells. Conclusion Ezrin over-expression contributed to de-differentiation and invasion of HBV-HCC cell. HBV-HCC patients with ezrin over-expression were independently associated with tumor with smaller size, cirrhotic liver background, poor differentiation, and vascular invasion.
Collapse
Affiliation(s)
- Chun-Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital; Chang Gung University, Taoyuan, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
27
|
Wang HJ, Zhu JS, Zhang Q, Sun Q, Guo H. High level of ezrin expression in colorectal cancer tissues is closely related to tumor malignancy. World J Gastroenterol 2009; 15:2016-9. [PMID: 19399936 PMCID: PMC2675094 DOI: 10.3748/wjg.15.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the ezrin expression in normal colorectal mucosa and colorectal cancer tissues, and study the correlation between ezrin expression in colorectal cancer tissues and tumor invasion and metastasis.
METHODS: Eighty paraffin-embedded cancer tissue samples were selected from primary colorectal adenocarcinoma. Twenty-eight patients had well-differentiated, 22 had moderately differentiated and 30 had poorly differentiated adenocarcinoma. Forty-five patients and 35 patients had lymph node metastasis. Forty-five patients were of Dukes A to B stage, and 35 were of C to D stage. Another 22 paraffin-embedded tissue blocks of normal colorectal epithelium (> 5 cm away from the edge of the tumor) were selected as the control group. All patients with colorectal cancer were treated surgically and diagnosed histologically, without preoperative chemotherapy or radiotherapy. The immunohistochemistry was used to detect the ezrin expression in paraffin-embedded normal colorectal mucosa tissues and colorectal cancer tissue samples.
RESULTS: Ezrin expression in colorectal cancer was significantly higher than in normal colorectal mucosa (75.00% vs 9.09%, P < 0.01), and there was a close relationship between ezrin expression and the degree of tumor differentiation, lymph node metastasis and Dukes stage (88.46% vs 50.00%, P < 0.01; 94.28% vs 51.11%, P < 0.01; 94.28% vs 51.11%, P < 0.01).
CONCLUSION: Ezrin expression is obviously higher in colorectal cancer tissues than in normal colorectal mucosa tissues, and the high level of ezrin expression is closely related to the colorectal cancer invasion and metastasis process.
Collapse
|
28
|
Osawa H, Smith CA, Ra YS, Kongkham P, Rutka JT. The role of the membrane cytoskeleton cross-linker ezrin in medulloblastoma cells. Neuro Oncol 2008; 11:381-93. [PMID: 19088174 DOI: 10.1215/15228517-2008-110] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Medulloblastoma is a highly malignant brain tumor that occurs predominantly in children. The molecular pathogenesis of medulloblastoma is under investigation. Previously, we used complementary DNA microarray analysis to compare patterns of gene expression in medulloblastoma samples versus normal cerebellum. The cytoskeletal protein ezrin was found to be overexpressed in medulloblastoma compared with normal cerebellum, an observation that was further validated by immunohistochemistry and real-time PCR analysis. To assess the role of ezrin in medulloblastoma, we studied ezrin's role in medulloblastoma migration, invasion, and adhesion. Western blotting and immunofluorescence showed high expression of ezrin in four medulloblastoma cell lines, and ezrin was primarily localized to filopodia. Ezrin-specific small interfering RNA suppressed the formation of filopodia and in vitro migration, invasion, and adhesion. We also used a stably transfected medulloblastoma cell line to study the effect of ezrin overexpression. We showed that high expression of ezrin promotes filopodia formation and in vitro invasion. Finally, athymic mice implanted with ezrin-overexpressing DAOY medullo-blastoma cell clones in the cerebellum showed shortened survival compared with controls. These findings suggest that, in addition to other cytoskeletal proteins, ezrin plays an important role in medulloblastoma adhesion, migration, and invasion.
Collapse
Affiliation(s)
- Hirokatsu Osawa
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | | | | | | | | |
Collapse
|
29
|
The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC. Oncogene 2008; 28:792-802. [PMID: 19060919 DOI: 10.1038/onc.2008.437] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ezrin is a member of the ERM (ezrin, radixin, moesin) protein family and links F-actin to the cell membrane following phosphorylation. Ezrin has been associated with tumor progression and metastasis in several cancers including the pediatric solid tumors, osteosarcoma and rhabdomyosarcoma. In this study, we were surprised to find that ezrin was not constitutively phosphorylated but rather was dynamically regulated during metastatic progression in osteosarcoma. Metastatic osteosarcoma cells expressed phosphorylated ERM early after their arrival in the lung, and then late in progression, only at the invasive front of larger metastatic lesions. To pursue mechanisms for this regulation, we found that inhibitors of PKC (protein kinase C) blocked phosphorylation of ezrin, and that ezrin coimmunoprecipitated in cells with PKCalpha, PKCiota and PKCgamma. Furthermore, phosphorylated forms of ezrin and PKC had identical expression patterns at the invasive front of pulmonary metastatic lesions in murine and human patient samples. Finally, we showed that the promigratory effects of PKC were linked to ezrin phosphorylation. These data are the first to suggest a dynamic regulation of ezrin phosphorylation during metastasis and to connect the PKC family members with this regulation.
Collapse
|
30
|
Palou J, Algaba F, Vera I, Rodriguez O, Villavicencio H, Sanchez-Carbayo M. Protein expression patterns of ezrin are predictors of progression in T1G3 bladder tumours treated with nonmaintenance bacillus Calmette-Guérin. Eur Urol 2008; 56:829-36. [PMID: 18926620 DOI: 10.1016/j.eururo.2008.09.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 09/30/2008] [Indexed: 11/25/2022]
Abstract
BACKGROUND Bacillus Calmette-Guérin (BCG) is a standard treatment for reducing tumour recurrence and delaying progression of high-risk, non-muscle-invasive bladder tumours. However, it is not clear yet which patients are more likely to be responders to BCG. OBJECTIVE To evaluate the role of ezrin expression in bladder cancer (BCa) progression in T1G3 bladder tumours treated with BCG. DESIGN, SETTING, AND PARTICIPANTS Ezrin protein expression patterns were analysed on tumour specimens belonging to 92 patients with T1G3 non-muscle-invasive BCa undergoing nonmaintenance BCG treatment. Re-resection was not performed. The median follow-up was 90.5 mo (range: 3.0-173.0). A specific tissue array was created containing three representative cores of each of the tumour specimens belonging to these patients. MEASUREMENTS Ezrin protein expression patterns were assessed by immunohistochemistry on this tissue array. Proliferation rates were assessed by means of Ki67 staining. Recurrence, progression into muscle-invasive tumours, and disease-specific overall survival (OS) rates were analysed using univariate and multivariate tests. RESULTS AND LIMITATIONS Among the 92 patients analysed, 40 recurred (43.5%), 17 progressed (18.5%), and 14 died of the disease (15.2%). Log-rank survival analyses revealed that an ezrin membrane expression <20% was significantly associated with increased progression (p=0.009) and shorter disease-specific OS (p=0.006). Multivariate analyses showed that ezrin was an independent prognostic marker of progression (p=0.031) and disease-specific survival (p=0.035). Interestingly, the low ezrin membrane expression correlated with high proliferation rates (p=0.033). CONCLUSIONS Immunohistochemistry analyses revealed that the membrane expression of ezrin is associated with the clinical outcome of patients with T1G3 tumours undergoing BCG treatment. Protein expression patterns of ezrin were associated with tumour progression in T1G3 disease. The differential expression of ezrin distinguished patients responding to BCG from those who may require a more aggressive therapeutic approach.
Collapse
|
31
|
Ornek T, Fadiel A, Tan O, Naftolin F, Arici A. Regulation and activation of ezrin protein in endometriosis. Hum Reprod 2008; 23:2104-12. [DOI: 10.1093/humrep/den215] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Salas S, Bartoli C, Deville JL, Gaudart J, Fina F, Calisti A, Bollini G, Curvale G, Gentet JC, Duffaud F, Figarella-Branger D, Bouvier C. Ezrin and alpha-smooth muscle actin are immunohistochemical prognostic markers in conventional osteosarcomas. Virchows Arch 2007; 451:999-1007. [PMID: 17786474 DOI: 10.1007/s00428-007-0474-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/09/2007] [Indexed: 11/24/2022]
Abstract
Ezrin is a cytoskeleton linker protein that is actively involved in the metastatic process of cancer cells. We have searched for a prognostic value of ezrin and some of its partners: alpha-smooth muscle actin and CD44H in 37 patients with an osteosarcoma. Automate immunohistochemistry (IHC) with anti-ezrin, alpha-smooth muscle actin and CD44H antibodies was performed in 66 specimens: 37 biopsies before chemotherapy, 16 resected tumours of "poor" responders and 13 metastases. The messenger RNA (mRNA) levels of ezrin of 13 frozen biopsies and 4 metastases were evaluated by real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR). All results were correlated to the following clinical data. Ezrin expression by IHC was found in 62% of 37 biopsies in the different histological subtypes. A good correlation was found between positive or negative samples by IHC and mRNA levels. Ezrin expression was recorded in 84.5% of metastastic samples. The mean expression of ezrin was higher in metastases than biopsies (p = 0.024). In multivariate analysis, ezrin was an independent prognostic marker for event-free survival and overall survival (OS) with p < 0.001 and p = 0.003, respectively, and alpha-smooth muscle actin for OS only (p = 0.024). Our findings suggest that ezrin and alpha-smooth muscle actin are predictive IHC prognostic markers for patients with an osteosarcoma.
Collapse
Affiliation(s)
- Sébastien Salas
- Service d'Oncologie Médicale Adulte CHU Timone, APHM, Marseilles, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Slater M, Cooper M, Murphy CR. The cytoskeletal proteins alpha-actinin, Ezrin, and talin are De-expressed in endometriosis and endometrioid carcinoma compared with normal uterine epithelium. Appl Immunohistochem Mol Morphol 2007; 15:170-4. [PMID: 17525629 DOI: 10.1097/01.pai.0000194762.78889.26] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this retrospective study on banked tissue, we found that alpha-actinin and talin were completely de-expressed in both endometriosis and endometrioid carcinoma tissue. Some patchy, depolarized labeling for ezrin was noted in the endometrioid carcinoma but not in endometriosis. The loss of these proteins in both endometriosis and endometrioid carcinoma tissue indicates a significant change in the integrity of these tissues compared with normal and the possibility that individual cells may break away from the parent histology due to loss of cell adhesion. It also indicates a similarity between endometrioid cancer and endometriosis with respect to epithelial cell function and adhesion.
Collapse
Affiliation(s)
- Michael Slater
- Department of Anatomy and Histology, School of Biomedical Sciences, The University of Sydney, NSW, Australia.
| | | | | |
Collapse
|
34
|
Egevad L. Editorial comment on: Immunohistochemical expression of endothelin-1 and endothelin-a and endothelin-b receptors in high-grade prostatic intraepithelial neoplasia and prostate cancer. Eur Urol 2007; 52:1689-90. [PMID: 17368712 DOI: 10.1016/j.eururo.2007.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Chuan YC, Pang ST, Cedazo-Minguez A, Norstedt G, Pousette A, Flores-Morales A. Androgen Induction of Prostate Cancer Cell Invasion Is Mediated by Ezrin. J Biol Chem 2006; 281:29938-48. [PMID: 16873375 DOI: 10.1074/jbc.m602237200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ezrin is a key signaling molecule that regulates cell survival, adhesion migration, and invasion. We have previously shown that ezrin is regulated by androgen in rat prostate and that its expression is increased in prostate cancer and in prostate intraepithelial neoplasia. We have used the androgen-sensitive cell line LNCaP-FGC to investigate the role of ezrin in androgen-induced cell invasion. We found that androgen treatment of LNCaP-FGC cells induces ezrin expression, an effect that is inhibited by the androgen receptor antagonist, bicalutamide. In addition, androgen treatment induces the phosphorylation of ezrin in Thr-567 and Tyr-353 in a sequential manner. This is mediated through protein kinase C alpha and Src tyrosine kinase, respectively. Androgen treatment induces the translocation of both protein kinase C alpha and ezrin to the cell membrane and their association. Inhibition of ezrin function using short interference RNA or the overexpression of T567A and Y353F-ezrin mutants significantly reduces androgen-induced Matrigel invasion but does not affect cell proliferation or cell adhesion. Matrigel invasion of the androgen-insensitive prostate cancer cell lines PC-3 and LNCaP-R is also dependent on ezrin. In summary, we have shown that androgens regulate ezrin at transcriptional and posttranscriptional levels. Hormonal regulation of ezrin phosphorylation is required for androgen-induced cell invasion.
Collapse
Affiliation(s)
- Yin-Choy Chuan
- Department of Molecular Medicine and Surgery, Section of Experimental Geriatrics, Karolinska Institute, Neurotec, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Mhawech-Fauceglia P, Dulguerov P, Beck A, Bonet M, Allal AS. Value of ezrin, maspin and nm23-H1 protein expressions in predicting outcome of patients with head and neck squamous-cell carcinoma treated with radical radiotherapy. J Clin Pathol 2006; 60:185-9. [PMID: 16698950 PMCID: PMC1860631 DOI: 10.1136/jcp.2006.036624] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Prognostic factors in predicting outcomes in patients with head and neck squamous-cell carcinoma (HNSCC) are limited to the clinical-pathological parameters, including lymph node metastasis, location, grade and stage of the disease. AIM To determine whether the expression of these proteins has a value in predicting patient outcome. METHODS Ezrin, maspin and nm23-H1 immunohistochemistry in tissue samples of 120 patients with HNSCC were evaluated using the microarray technique. RESULTS In determining the association among each of the three proteins and the clinical-pathological parameters, low maspin expression was the only one found to be significantly associated with high tumour grade (p = 0.007); all others showed no significant associations. In univariate analysis, patients with tumours expressing high ezrin had a shorter disease-free survival (DFS) of 51% than those with low ezrin expression (DFS 84%; p = 0.08). In multivariate analysis, tumours with the combination of loss of maspin and low histological grade had longer DFS (83%) compared with those with high maspin and high histological grade (DFS 42%; p = 0.08). CONCLUSION Our study is the first to determine the value of ezrin and maspin in HNSCC in a large series of patients with long follow-up. Ezrin and maspin seem to have a potential prognostic value in patients with HNSCC but results should be confirmed with further studies.
Collapse
|
37
|
Sarrió D, Rodríguez-Pinilla SM, Dotor A, Calero F, Hardisson D, Palacios J. Abnormal ezrin localization is associated with clinicopathological features in invasive breast carcinomas. Breast Cancer Res Treat 2006; 98:71-9. [PMID: 16538541 DOI: 10.1007/s10549-005-9133-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 12/04/2005] [Indexed: 01/26/2023]
Abstract
The membrane-cytoskeleton crosslinker ezrin is associated with malignant progression and metastasis in human neoplasias. To study the role of ezrin in breast cancer, we first assessed ezrin expression in a panel of breast cancer cell lines by western blot and confocal microscopy. Western blot revealed no differences in total ezrin levels among these breast cell lines. However, immunofluorescence staining revealed that Estrogen receptor (ER)-positive, noninvasive and nontumorigenic cell lines concentrated ezrin at the apical surface, whereas invasive cell lines localized ezrin in motile structures (membrane ruffles and filopodia) but also had more diffuse cytoplasmic staining. We next studied ezrin expression in 509 breast carcinomas using tissue microarrays. Immunohistochemical staining for ezrin, p53, Ki-67, phospho-Akt, HER2, and hormonal receptors was performed. Ezrin staining in normal breast epithelium localized at the apical, but not lateral, cell surface, whereas, in most breast tumor cases (331, 70.3%), it localized in the cytoplasm. Complete membranous staining occurred in 89 (18.9%) samples, and apical staining was seen in 51 (10.8%) cases. There were significant positive associations between cytoplasmic ezrin localization and adverse tumor characteristics such as high grade, high level of Ki-67 expression, hormonal-receptor negativity, and lymph-node metastases. Apical ezrin staining was associated with favorable clinicopathological features and node-negative tumors. Membranous ezrin staining was associated with high grade, strong HER2 and p-Akt expression. In conclusion, the switch of ezrin localization from the apical membrane to either the complete membrane or to the cytoplasm is correlated with dedifferentiation and adverse features in invasive breast tumors and cancer cell lines.
Collapse
Affiliation(s)
- David Sarrió
- Breast and Gynaecological Cancer Group, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Casey G, Neville PJ, Liu X, Plummer SJ, Cicek MS, Krumroy LM, Curran AP, McGreevy MR, Catalona WJ, Klein EA, Witte JS. Podocalyxin variants and risk of prostate cancer and tumor aggressiveness. Hum Mol Genet 2006; 15:735-41. [PMID: 16434482 DOI: 10.1093/hmg/ddi487] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We previously reported linkage of a prostate cancer tumor aggressiveness locus to chromosome 7q32-q33, a region also associated with a high frequency of allelic imbalance in prostate tumors. The smallest region of allelic imbalance contains the podocalyxin-like (PODXL) gene, which we evaluate here as a candidate prostate cancer aggressiveness gene mapping to 7q32-q33. DNA from probands of linked families was examined for germ-line mutations in PODXL. A variable in-frame deletion, four missense variants and two nonsense variants were identified in linked men. Variants that affected amino acid sequence were further evaluated for association with risk of prostate cancer and tumor aggressiveness in a family-based case-control population (439 cases and 479 sibling controls). The presence of any single in-frame deletion was positively associated with prostate cancer [odds ratio (OR)=2.14, 95% confidence interval (95%CI)=1.09-4.20, P=0.03] and the presence of two copies of any deletion further increased risk (OR=2.58, 95%CI=1.23-5.45, P=0.01). This finding was strengthened when stratifying among men with more aggressive disease (high grade or stage): OR=3.04 for one deletion (95%CI=1.01-9.15) and OR=4.42 for two deletions (95%CI=1.32-14.85, P=0.02). A weak positive association was also observed between prostate cancer risk and PODXL variant 340A (in linkage disequilibrium with another variant, 587T) (OR=1.48, 95%CI=1.02-2.14, P=0.04). These results implicate PODXL as a candidate prostate cancer tumor aggressiveness gene mapping to chromosome 7q32-q33.
Collapse
Affiliation(s)
- Graham Casey
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Weng WH, Ahlén J, Aström K, Lui WO, Larsson C. Prognostic impact of immunohistochemical expression of ezrin in highly malignant soft tissue sarcomas. Clin Cancer Res 2005; 11:6198-204. [PMID: 16144921 DOI: 10.1158/1078-0432.ccr-05-0548] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Ezrin is a cytoskeleton linker protein that is actively involved in regulating the growth and metastatic capacity of cancer cells. It has recently been reported to be involved in dissemination of pediatric soft tissue sarcoma (STS). EXPERIMENTAL DESIGN To further evaluate the prognostic value of ezrin in STS progression, we screened 50 primary STSs of high malignancy grade using immunohistochemistry. At the initial surgery, all patients were without local or distant metastasis. The expression was then compared with the outcome during follow-up for at least 4 years or until the patients' death. RESULTS Twenty-five of the 50 STSs analyzed (50%) showed ezrin immunoreactivity in the membrane and cytoplasm of the tumor cells. A significant association was shown between positive expressions of ezrin and death in disease as well as overall survival (P = 0.014 and 0.007, respectively). Similarly, ezrin expression was significantly associated with development of distant metastasis during follow-up (P = 0.031), also excluding locally recurrent disease (P = 0.049). The relative abundance of metastasis in ezrin-positive cases was observed both over time and irrespective of time. In comparison with clinical, histopathologic, and genetic characteristics of the STSs, ezrin expression was found to correlate significantly with an infiltrative growth pattern outside the tumor capsule as well as with copy number gain of chromosomal region 9cen-q22. CONCLUSION Our findings suggest that ezrin immunoreactivity could be valuable as an additional prognostic marker in highly malignant STSs and support a causative role of ezrin in STS tumor dissemination.
Collapse
Affiliation(s)
- Wen-Hui Weng
- Department of Molecular Medicine, Karolinska University Hospital-Solna, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|