1
|
Zhao Y, Liu J, Peng C, Guo S, Wang B, Chen L, Wang Y, Tang H, Liu L, Pan Q, Li S, Wang J, Yang D, Du E. Cross-protection against homo and heterologous influenza viruses via intranasal administration of an HA chimeric multiepitope nanoparticle vaccine. J Nanobiotechnology 2025; 23:77. [PMID: 39905416 PMCID: PMC11792681 DOI: 10.1186/s12951-025-03122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Influenza A viruses (IAVs) cause seasonal influenza epidemics and pose significant threats to public health. However, seasonal influenza vaccines often elicit strain-specific immune responses and confer little protection against mismatched strains. There is an urgent need to develop universal influenza vaccines against emerging and potentially re-emerging influenza virus infections. Multiepitope vaccines combining multiple conserved epitopes can induce more robust and broader immune responses and provide a potential solution. RESULTS Here, we demonstrated that an HA chimeric multiepitope nanoparticle vaccine, delivered intranasally conferred broad protection against challenges with various influenza viruses in mice. The nanoparticle vaccine co-expresses the ectodomain of haemagglutinin (H), three repeated highly conserved ectodomains of matrix protein 2 (M), and the M-cell-targeting ligand Co4B (C) in a baculovirus-insect cell system. These elements (C, H and M) were presented on the surface of self-assembling ferritin (f) in tandem to generate a nanoparticle denoted as CHM-f. Intranasal vaccination with CHM-f nanoparticles elicited robust humoral and cellular immune responses, conferring complete protection against a variety of IAVs, including the A/PR8/34 H1N1 strain, the swine flu H3N2 strain, the avian flu H5N8 strain, and H9N2. When CHM-f nanoparticles adjuvanted with CpG IAMA-002, the weight loss protective effect, cellular immune responses and mucosal IgA responses were significantly augmented. Compared with controls, mice immunized with CHM-f nanoparticles with or without CpG IAMA-002 showed significant reductions in weight loss, lung viral titres and pathological changes. CONCLUSIONS These results suggest that CHM-f nanoparticle with or without CpG IAMA-002 is a promising candidate as a universal influenza vaccine.
Collapse
Affiliation(s)
- Yongqiang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chun Peng
- Chengdu NanoVAX Biotechnology Co., Ltd., Chengdu, Sichuan, 610219, China
| | - Shuangshuang Guo
- Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Bo Wang
- Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Longping Chen
- Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Yating Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haiwen Tang
- Chengdu NanoVAX Biotechnology Co., Ltd., Chengdu, Sichuan, 610219, China
| | - Liming Liu
- Nanjing JSIAMA Biopharmaceuticals Ltd., Nanjing, Jiangsu, 210000, China
| | - Qi Pan
- Nanjing JSIAMA Biopharmaceuticals Ltd., Nanjing, Jiangsu, 210000, China
| | - Shiren Li
- Chengdu NanoVAX Biotechnology Co., Ltd., Chengdu, Sichuan, 610219, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dongni Yang
- Chengdu NanoVAX Biotechnology Co., Ltd., Chengdu, Sichuan, 610219, China.
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Antiviral CD19 +CD27 + Memory B Cells Are Associated with Protection from Recurrent Asymptomatic Ocular Herpesvirus Infection. J Virol 2022; 96:e0205721. [PMID: 34985998 DOI: 10.1128/jvi.02057-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactivation of herpes simplex virus 1 (HSV-1) from latently infected neurons of the trigeminal ganglia (TG) leads to blinding recurrent herpetic disease in symptomatic (SYMP) individuals. Although the role of T cells in herpes immunity seen in asymptomatic (ASYMP) individuals is heavily explored, the role of B cells is less investigated. In the present study, we evaluated whether B cells are associated with protective immunity against recurrent ocular herpes. The frequencies of circulating HSV-specific memory B cells and of memory follicular helper T cells (CD4+ Tfh cells), which help B cells produce antibodies, were compared between HSV-1-infected SYMP and ASYMP individuals. The levels of IgG/IgA and neutralizing antibodies were compared in SYMP and ASYMP individuals. We found that (i) the ASYMP individuals had increased frequencies of HSV-specific CD19+CD27+ memory B cells, and (ii) high frequencies of HSV-specific switched IgG+CD19+CD27+ memory B cells detected in ASYMP individuals were directly proportional to high frequencies of CD45R0+CXCR5+CD4+ memory Tfh cells. However, no differences were detected in the level of HSV-specific IgG/IgA antibodies in SYMP and ASYMP individuals. Using the UV-B-induced HSV-1 reactivation mouse model, we found increased frequencies of HSV-specific antibody-secreting plasma HSV-1 gD+CD138+ B cells within the TG and circulation of ASYMP mice compared to those of SYMP mice. In contrast, no significant differences in the frequencies of B cells were found in the cornea, spleen, and bone-marrow. Our findings suggest that circulating antibody-producing HSV-specific memory B cells recruited locally to the TG may contribute to protection from symptomatic recurrent ocular herpes. IMPORTANCE Reactivation of herpes simplex virus 1 (HSV-1) from latently infected neurons of the trigeminal ganglia (TG) leads to blinding recurrent herpetic disease in symptomatic (SYMP) individuals. Although the role of T cells in herpes immunity against blinding recurrent herpetic disease is heavily explored, the role of B cells is less investigated. In the present study, we found that in both asymptomatic (ASYMP) individuals and ASYMP mice, there were increased frequencies of HSV-specific memory B cells that were directly proportional to high frequencies of memory Tfh cells. Moreover, following UV-B-induced reactivation, we found increased frequencies of HSV-specific antibody-secreting plasma B cells within the TG and circulation of ASYMP mice compared to those of SYMP mice. Our findings suggest that circulating antibody-producing HSV-specific memory B cells recruited locally to the TG may contribute to protection from recurrent ocular herpes.
Collapse
|
3
|
Dhanushkodi NR, Srivastava R, Coulon PGA, Prakash S, Roy S, Bagnol D, David ED, BenMohamed L. Healing of Ocular Herpetic Disease Following Treatment With an Engineered FGF-1 Is Associated With Increased Corneal Anti-Inflammatory M2 Macrophages. Front Immunol 2021; 12:673763. [PMID: 34054858 PMCID: PMC8158292 DOI: 10.3389/fimmu.2021.673763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects the cornea and caused blinding ocular disease. In the present study, we evaluated whether and how a novel engineered version of fibroblast growth factor-1 (FGF-1), designated as TTHX1114, would reduce the severity of HSV-1-induced and recurrent ocular herpes in the mouse model. The efficacy of TTHX1114 against corneal keratopathy was assessed in B6 mice following corneal infection with HSV-1, strain McKrae. Starting day one post infection (PI), mice received TTHX1114 for 14 days. The severity of primary stromal keratitis and blepharitis were monitored up to 28 days PI. Inflammatory cell infiltrating infected corneas were characterized up to day 21 PI. The severity of recurrent herpetic disease was quantified in latently infected B6 mice up to 30 days post-UVB corneal exposure. The effect of TTHX1114 on M1 and M2 macrophage polarization was determined in vivo in mice and in vitro on primary human monocytes-derived macrophages. Compared to HSV-1 infected non-treated mice, the infected and TTHX1114 treated mice exhibited significant reduction of primary and recurrent stromal keratitis and blepharitis, without affecting virus corneal replication. The therapeutic effect of TTHX1114 was associated with a significant decrease in the frequency of M1 macrophages infiltrating the cornea, which expressed significantly lower levels of pro-inflammatory cytokines and chemokines. This polarization toward M2 phenotype was confirmed in vitro on human primary macrophages. This pre-clinical finding suggests use of this engineered FGF-1 as a novel immunotherapeutic regimen to reduce primary and recurrent HSV-1-induced corneal disease in the clinic.
Collapse
Affiliation(s)
- Nisha R Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States
| | - Pierre-Gregoire A Coulon
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States
| | - Didier Bagnol
- Trefoil Therapeutics, Inc., San Diego, CA, United States
| | | | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States.,Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, United States.,School of Medicine, Institute for Immunology, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Abstract
CpG Oligonucleotides (ODN) are immunomodulatory synthetic oligonucleotides specifically designed to stimulate Toll-like receptor 9. TLR9 is expressed on human plasmacytoid dendritic cells and B cells and triggers an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. This chapter reviews recent progress in understanding the mechanism of action of CpG ODN and provides an overview of human clinical trial results using CpG ODN to improve vaccines for the prevention/treatment of cancer, allergy, and infectious disease.
Collapse
Affiliation(s)
| | | | - Dennis M Klinman
- National Cancer Institute, NIH, Frederick, MD, USA.
- Leitman Klinman Consulting, Potomac, MD, USA.
| |
Collapse
|
5
|
Human Asymptomatic Epitope Peptide/CXCL10-Based Prime/Pull Vaccine Induces Herpes Simplex Virus-Specific Gamma Interferon-Positive CD107 + CD8 + T Cells That Infiltrate the Corneas and Trigeminal Ganglia of Humanized HLA Transgenic Rabbits and Protect against Ocular Herpes Challenge. J Virol 2018; 92:JVI.00535-18. [PMID: 29899087 DOI: 10.1128/jvi.00535-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a prevalent human pathogen that infects the cornea, causing potentially blinding herpetic disease. A clinical herpes vaccine is still lacking. In the present study, a novel prime/pull vaccine was tested in a human leukocyte antigen (HLA) transgenic rabbit model of ocular herpes (HLA Tg rabbits). Three peptide epitopes were selected, from the HSV-1 membrane glycoprotein C (UL44400-408), the DNA replication binding helicase (UL9196-204), and the tegument protein (UL25572-580), all preferentially recognized by CD8+ T cells from "naturally protected" HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who never had recurrent corneal herpetic disease). HLA Tg rabbits were immunized with a mixture of these three ASYMP CD8+ T cell peptide epitopes (UL44400-408, UL9196-204, and UL25572-580), which were delivered subcutaneously with CpG2007 adjuvant (prime). Fifteen days later, half of the rabbits received a topical ocular treatment with a recombinant neurotropic adeno-associated virus type 8 (AAV8) vector expressing the T cell-attracting CXCL10 chemokine (pull). The frequency and function of HSV-specific CD8+ T cells induced by the prime/pull vaccine were assessed in the peripheral blood, cornea, and trigeminal ganglion (TG). Compared to the cells generated in response to peptide immunization alone, the peptide/CXCL10 prime/pull vaccine generated frequent polyfunctional gamma interferon-positive (IFN-γ+) CD107+ CD8+ T cells that infiltrated both the cornea and TG. CD8+ T cell mobilization into the cornea and TG of prime/pull-vaccinated rabbits was associated with a significant reduction in corneal herpesvirus infection and disease following an ocular HSV-1 (strain McKrae) challenge. These findings draw attention to the novel prime/pull vaccine strategy for mobilizing antiviral CD8+ T cells into tissues to protect against herpesvirus infection and disease.IMPORTANCE There is an urgent need for a vaccine against widespread herpes simplex virus infections. The present study demonstrates that immunization of HLA transgenic rabbits with a peptide/CXCL10 prime/pull vaccine triggered mobilization of HSV-specific CD8+ T cells locally into the cornea and TG, the sites of acute and latent herpesvirus infections, respectively. Mobilization of antiviral CD8+ T cells into the cornea and TG of rabbits that received the prime/pull vaccine was associated with protection against ocular herpesvirus infection and disease following an ocular HSV-1 challenge. These results highlight the importance of the prime/pull vaccine strategy to bolster the number and function of protective CD8+ T cells within infected tissues.
Collapse
|
6
|
Laser Adjuvant-Assisted Peptide Vaccine Promotes Skin Mobilization of Dendritic Cells and Enhances Protective CD8 + T EM and T RM Cell Responses against Herpesvirus Infection and Disease. J Virol 2018; 92:JVI.02156-17. [PMID: 29437976 DOI: 10.1128/jvi.02156-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/01/2018] [Indexed: 01/14/2023] Open
Abstract
There is an urgent need for chemical-free and biological-free safe adjuvants to enhance the immunogenicity of vaccines against widespread viral pathogens, such as herpes simplex virus 2 (HSV-2), that infect a large proportion of the world human population. In the present study, we investigated the safety, immunogenicity, and protective efficacy of a laser adjuvant-assisted peptide (LAP) vaccine in the B6 mouse model of genital herpes. This LAP vaccine and its laser-free peptide (LFP) vaccine analog contain the immunodominant HSV-2 glycoprotein B CD8+ T cell epitope (HSV-gB498-505) covalently linked with the promiscuous glycoprotein D CD4+ T helper cell epitope (HSV-gD49-89). Prior to intradermal delivery of the LAP vaccine, the lower-flank shaved skin of B6 or CD11c/eYFP transgenic mice received a topical skin treatment with 5% imiquimod cream and then was exposed for 60 s to a laser, using the FDA-approved nonablative diode. Compared to the LFP vaccine, the LAP vaccine (i) triggered mobilization of dendritic cells (DCs) in the skin, which formed small spots along the laser-treated areas, (ii) induced phenotypic and functional maturation of DCs, (iii) stimulated long-lasting HSV-specific effector memory CD8+ T cells (TEM cells) and tissue-resident CD8+ T cells (TRM cells) locally in the vaginal mucocutaneous tissues (VM), and (iv) induced protective immunity against genital herpes infection and disease. As an alternative to currently used conventional adjuvants, the chemical- and biological-free laser adjuvant offers a well-tolerated, simple-to-produce method to enhance mass vaccination for widespread viral infections.IMPORTANCE Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect a large proportion of the world population. There is an urgent need for chemical-free and biological-free safe adjuvants that would advance mass vaccination against the widespread herpes infections. The present study demonstrates that immunization with a laser-assisted herpes peptide vaccine triggered skin mobilization of dendritic cells (DCs) that stimulated strong and long-lasting HSV-specific effector memory CD8+ T cells (TEM cells) and tissue-resident CD8+ T cells (TRM cells) locally in the vaginal mucocutaneous tissues. The induced local CD8+ T cell response was associated with protection against genital herpes infection and disease. These results draw attention to chemical- and biological-free laser adjuvants as alternatives to currently used conventional adjuvants to enhance mass vaccination for widespread viral infections, such as those caused by HSV-1 and HSV-2.
Collapse
|
7
|
Royer DJ, Carr MM, Gurung HR, Halford WP, Carr DJJ. The Neonatal Fc Receptor and Complement Fixation Facilitate Prophylactic Vaccine-Mediated Humoral Protection against Viral Infection in the Ocular Mucosa. THE JOURNAL OF IMMUNOLOGY 2017; 199:1898-1911. [PMID: 28760885 DOI: 10.4049/jimmunol.1700316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
The capacity of licensed vaccines to protect the ocular surface against infection is limited. Common ocular pathogens, such as HSV-1, are increasingly recognized as major contributors to visual morbidity worldwide. Humoral immunity is an essential correlate of protection against HSV-1 pathogenesis and ocular pathology, yet the ability of Ab to protect against HSV-1 is deemed limited due to the slow IgG diffusion rate in the healthy cornea. We show that a live-attenuated HSV-1 vaccine elicits humoral immune responses that are unparalleled by a glycoprotein subunit vaccine vis-à-vis Ab persistence and host protection. The live-attenuated vaccine was used to assess the impact of the immunization route on vaccine efficacy. The hierarchical rankings of primary immunization route with respect to efficacy were s.c. ≥ mucosal > i.m. Prime-boost vaccination via sequential s.c. and i.m. administration yielded greater efficacy than any other primary immunization route alone. Moreover, our data support a role for complement in prophylactic protection, as evidenced by intracellular deposition of C3d in the corneal epithelium of vaccinated animals following challenge and delayed viral clearance in C3-deficient mice. We also identify that the neonatal Fc receptor (FcRn) is upregulated in the cornea following infection or injury concomitant with increased Ab perfusion. Lastly, selective small interfering RNA-mediated knockdown of FcRn in the cornea impeded protection against ocular HSV-1 challenge in vaccinated mice. Collectively, these findings establish a novel mechanism of humoral protection in the eye involving FcRn and may facilitate vaccine and therapeutic development for other ocular surface diseases.
Collapse
Affiliation(s)
- Derek J Royer
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Meghan M Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Hem R Gurung
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - William P Halford
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794
| | - Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; .,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| |
Collapse
|
8
|
Inic-Kanada A, Stojanovic M, Marinkovic E, Becker E, Stein E, Lukic I, Djokic R, Schuerer N, Hegemann JH, Barisani-Asenbauer T. A Probiotic Adjuvant Lactobacillus rhamnosus Enhances Specific Immune Responses after Ocular Mucosal Immunization with Chlamydial Polymorphic Membrane Protein C. PLoS One 2016; 11:e0157875. [PMID: 27636704 PMCID: PMC5026373 DOI: 10.1371/journal.pone.0157875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/06/2016] [Indexed: 11/19/2022] Open
Abstract
Recent advances in the development of chlamydia vaccines, using live-attenuated or ultraviolet light-inactivated chlamydia, are paving the way for new possibilities to oppose the societal challenges posed by chlamydia-related diseases, such as blinding trachoma. An effective subunit vaccine would mitigate the risks associated with the use of a whole-cell vaccine. Our rationale for the design of an efficient subunit vaccine against Chlamydia trachomatis (Ct) is based on the membrane proteins involved in the initial Ct-host cell contact and on the route of immunization that mimics the natural infection process (i.e., via the ocular mucosa). The first aim of our study was to characterize the specific conjunctival and vaginal immune responses following eye drop immunization in BALB/c mice, using the N-terminal portion of the Ct serovar E polymorphic membrane protein C (N-PmpC) as the subunit vaccine antigen. Second, we aimed to examine the adjuvant properties of the probiotic Lactobacillus rhamnosus (LB) when formulated with N-PmpC. N-PmpC applied alone stimulated the production of N-PmpC- and Ct serovar B-specific antibodies in serum, tears and vaginal washes, whereas the combination with LB significantly enhanced these responses. The N-PmpC/LB combination initiated a T cell response characterized by an elevated percentage of CD25+ T cells and CD8+ effector T cells, enhanced CD4+ T-helper 1 skewing, and increased regulatory T cell responses. Together, these results show that eye drop vaccination with combined use of N-PmpC and a live probiotic LB stimulates specific cellular and humoral immune responses, not only locally in the conjunctiva but also in the vaginal mucosa, which could be a promising approach in Ct vaccine development.
Collapse
Affiliation(s)
- Aleksandra Inic-Kanada
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marijana Stojanovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Emilija Marinkovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Elisabeth Becker
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Gebäude 25.02.U1, 40225, Düsseldorf, Germany
| | - Elisabeth Stein
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ivana Lukic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Radmila Djokic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Nadine Schuerer
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes H. Hegemann
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Gebäude 25.02.U1, 40225, Düsseldorf, Germany
| | - Talin Barisani-Asenbauer
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
9
|
Farid M, Agrawal A, Fremgen D, Tao J, Chuyi H, Nesburn AB, BenMohamed L. Age-related Defects in Ocular and Nasal Mucosal Immune System and the Immunopathology of Dry Eye Disease. Ocul Immunol Inflamm 2016; 24:327-47. [PMID: 25535823 PMCID: PMC4478284 DOI: 10.3109/09273948.2014.986581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dry eye disease (DED) is a prevalent public health concern that affects up to 30% of adults and is particularly chronic and severe in the elderly. Two interconnected mechanisms cause DED: (1) an age-related dysfunction of lacrimal and meibomian glands, which leads to decreased tear production and/or an increase in tear evaporation; and (2) an age-related uncontrolled inflammation of the surface of the eye triggered by yet-to-be-determined internal immunopathological mechanisms, independent of tear deficiency and evaporation. In this review we summarize current knowledge on animal models that mimic both the severity and chronicity of inflammatory DED and that have been reliably used to provide insights into the immunopathological mechanisms of DED, and we provide an overview of the opportunities and limitations of the rabbit model in investigating the role of both ocular and nasal mucosal immune systems in the immunopathology of inflammatory DED and in testing novel immunotherapies aimed at delaying or reversing the uncontrolled age-related inflammatory DED.
Collapse
Affiliation(s)
- Marjan Farid
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Daniel Fremgen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Jeremiah Tao
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - He Chuyi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
- Department of Molecular Biology, University of California Irvine, School of Medicine, Irvine, California, USA
- Biochemistry and Institute for Immunology, University of California Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
10
|
The Herpes Simplex Virus Latency-Associated Transcript Gene Is Associated with a Broader Repertoire of Virus-Specific Exhausted CD8+ T Cells Retained within the Trigeminal Ganglia of Latently Infected HLA Transgenic Rabbits. J Virol 2016; 90:3913-3928. [PMID: 26842468 DOI: 10.1128/jvi.02450-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/21/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Persistent pathogens, such as herpes simplex virus 1 (HSV-1), have evolved a variety of immune evasion strategies to avoid being detected and destroyed by the host's immune system. A dynamic cross talk appears to occur between the HSV-1 latency-associated transcript (LAT), the only viral gene that is abundantly transcribed during latency, and the CD8(+)T cells that reside in HSV-1 latently infected human and rabbit trigeminal ganglia (TG). The reactivation phenotype of TG that are latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT(+)TG) is significantly higher than TG latently infected with LAT-null mutant (i.e., LAT(-)TG). Whether LAT promotes virus reactivation by selectively shaping a unique repertoire of HSV-specific CD8(+)T cells in LAT(+)TG is unknown. In the present study, we assessed the frequency, function, and exhaustion status of TG-resident CD8(+)T cells specific to 40 epitopes derived from HSV-1 gB, gD, VP11/12, and VP13/14 proteins, in human leukocyte antigen (HLA-A*0201) transgenic rabbits infected ocularly with LAT(+)versus LAT(-)virus. Compared to CD8(+)T cells from LAT(-)TG, CD8(+)T cells from LAT(+)TG (i) recognized a broader selection of nonoverlapping HSV-1 epitopes, (ii) expressed higher levels of PD-1, TIM-3, and CTLA-4 markers of exhaustion, and (iii) produced less tumor necrosis factor alpha, gamma interferon, and granzyme B. These results suggest a novel immune evasion mechanism by which the HSV-1 LAT may contribute to the shaping of a broader repertoire of exhausted HSV-specific CD8(+)T cells in latently infected TG, thus allowing for increased viral reactivation. IMPORTANCE A significantly larger repertoire of dysfunctional (exhausted) HSV-specific CD8(+)T cells were found in the TG of HLA transgenic rabbits latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT(+)TG) than in a more restricted repertoire of functional HSV-specific CD8(+)T cells in the TG of HLA transgenic rabbits latently infected with LAT-null mutant (i.e., LAT(-)TG). These findings suggest that the HSV-1 LAT locus interferes with the host cellular immune response by shaping a broader repertoire of exhausted HSV-specific CD8(+)T cells within the latency/reactivation TG site.
Collapse
|
11
|
Srivastava R, Khan AA, Huang J, Nesburn AB, Wechsler SL, BenMohamed L. A Herpes Simplex Virus Type 1 Human Asymptomatic CD8+ T-Cell Epitopes-Based Vaccine Protects Against Ocular Herpes in a "Humanized" HLA Transgenic Rabbit Model. Invest Ophthalmol Vis Sci 2015; 56:4013-28. [PMID: 26098469 DOI: 10.1167/iovs.15-17074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE A clinical vaccine that protects from ocular herpes simplex virus type 1 (HSV-1) infection and disease still is lacking. In the present study, preclinical vaccine trials of nine asymptomatic (ASYMP) peptides, selected from HSV-1 glycoproteins B (gB), and tegument proteins VP11/12 and VP13/14, were performed in the "humanized" HLA-transgenic rabbit (HLA-Tg rabbit) model of ocular herpes. We recently reported that these peptides are highly recognized by CD8+ T cells from "naturally" protected HSV-1-seropositive healthy ASYMP individuals (who have never had clinical herpes disease). METHODS Mixtures of three ASYMP CD8+ T-cell peptides derived from either HSV-1 gB, VP11/12, or VP13/14 were delivered subcutaneously to different groups of HLA-Tg rabbits (n = 10) in incomplete Freund's adjuvant, twice at 15-day intervals. The frequency and function of HSV-1 epitope-specific CD8+ T cells induced by these peptides and their protective efficacy, in terms of survival, virus replication in the eye, and ocular herpetic disease were assessed after an ocular challenge with HSV-1 (strain McKrae). RESULTS All mixtures elicited strong and polyfunctional IFN-γ- and TNF-α-producing CD107+CD8+ cytotoxic T cells, associated with a significant reduction in death, ocular herpes infection, and disease (P < 0.015). CONCLUSIONS The results of this preclinical trial support the screening strategy used to select the HSV-1 ASYMP CD8+ T-cell epitopes, emphasize their valuable immunogenic and protective efficacy against ocular herpes, and provide a prototype vaccine formulation that may be highly efficacious for preventing ocular herpes in humans.
Collapse
Affiliation(s)
- Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Arif A Khan
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Jiawei Huang
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Anthony B Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Steven L Wechsler
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, United States 2Department of Microbiology and Molecular Genetics, University of California Irvine, Schoo
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, United States 4Department of Molecular Biology & Biochemistry 5Institute for Immunology, University of C
| |
Collapse
|
12
|
Therapeutic immunization with a mixture of herpes simplex virus 1 glycoprotein D-derived “asymptomatic” human CD8+ T-cell epitopes decreases spontaneous ocular shedding in latently infected HLA transgenic rabbits: association with low frequency of local PD-1+ TIM-3+ CD8+ exhausted T cells. J Virol 2015; 89:6619-32. [PMID: 25878105 DOI: 10.1128/jvi.00788-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Most blinding ocular herpetic disease is due to reactivation of herpes simplex virus 1 (HSV-1) from latency rather than to primary acute infection. No herpes simplex vaccine is currently available for use in humans. In this study, we used the HLA-A*02:01 transgenic (HLA Tg) rabbit model of ocular herpes to assess the efficacy of a therapeutic vaccine based on HSV-1 gD epitopes that are recognized mainly by CD8(+) T cells from "naturally" protected HLA-A*02:01-positive, HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease). Three ASYMP CD8(+) T-cell epitopes (gD(53-61), gD(70-78), and gD(278-286)) were linked with a promiscuous CD4(+) T-cell epitope (gD(287-317)) to create 3 separate pairs of CD4-CD8 peptides, which were then each covalently coupled to an Nε-palmitoyl-lysine moiety, a Toll-like receptor 2 (TLR-2) ligand. This resulted in the construction of 3 CD4-CD8 lipopeptide vaccines. Latently infected HLA Tg rabbits were immunized with a mixture of these 3 ASYMP lipopeptide vaccines, delivered as eye drops in sterile phosphate-buffered saline (PBS). The ASYMP therapeutic vaccination (i) induced HSV-specific CD8(+) T cells that prevent HSV-1 reactivation ex vivo from latently infected explanted trigeminal ganglia (TG), (ii) significantly reduced HSV-1 shedding detected in tears, (iii) boosted the number and function of HSV-1 gD epitope-specific CD8(+) T cells in draining lymph nodes (DLN), conjunctiva, and TG, and (iv) was associated with fewer exhausted HSV-1 gD-specific PD-1(+) TIM-3+ CD8(+) T cells. The results underscore the potential of an ASYMP CD8(+) T-cell epitope-based therapeutic vaccine strategy against recurrent ocular herpes. IMPORTANCE Seventy percent to 90% of adults harbor herpes simplex virus 1 (HSV-1), which establishes lifelong latency in sensory neurons of the trigeminal ganglia. This latent state sporadically switches to spontaneous reactivation, resulting in viral shedding in tears. Most blinding herpetic disease in humans is due to reactivation of HSV-1 from latency rather than to primary acute infection. To date, there is no licensed therapeutic vaccine that can effectively stop or reduce HSV-1 reactivation from latently infected sensory ganglia and the subsequent shedding in tears. In the present study, we demonstrated that topical ocular therapeutic vaccination of latently infected HLA transgenic rabbits with a lipopeptide vaccine that contains exclusively human “asymptomatic” CD8(+) T-cell epitopes successfully decreased spontaneous HSV-1 reactivation, as judged by a significant reduction in spontaneous shedding in tears. The findings should guide the clinical development of a safe and effective T-cell-based therapeutic herpes vaccine.
Collapse
|
13
|
Kuo T, Wang C, Badakhshan T, Chilukuri S, BenMohamed L. The challenges and opportunities for the development of a T-cell epitope-based herpes simplex vaccine. Vaccine 2014; 32:6733-45. [PMID: 25446827 DOI: 10.1016/j.vaccine.2014.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/26/2014] [Accepted: 10/01/2014] [Indexed: 01/29/2023]
Abstract
Herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) infections have been prevalent since the ancient Greek times. To this day, they still affect a staggering number of over a billion individuals worldwide. HSV-1 infections are predominant than HSV-2 infections and cause potentially blinding ocular herpes, oro-facial herpes and encephalitis. HSV-2 infections cause painful genital herpes, encephalitis, and death in newborns. While prophylactic and therapeutic HSV vaccines remain urgently needed for centuries, their development has been difficult. During the most recent National Institute of Health (NIH) workshop titled "Next Generation Herpes Simplex Virus Vaccines: The Challenges and Opportunities", basic researchers, funding agencies, and pharmaceutical representatives gathered: (i) to assess the status of herpes vaccine research; and (ii) to identify the gaps and propose alternative approaches in developing a safe and efficient herpes vaccine. One "common denominator" among previously failed clinical herpes vaccine trials is that they either used a whole virus or a whole viral protein, which contain both "pathogenic symptomatic" and "protective asymptomatic" antigens and epitopes. In this report, we continue to advocate developing "asymptomatic" epitope-based sub-unit vaccine strategies that selectively incorporate "protective asymptomatic" epitopes which: (i) are exclusively recognized by effector memory CD4(+) and CD8(+) T cells (TEM cells) from "naturally" protected seropositive asymptomatic individuals; and (ii) protect human leukocyte antigen (HLA) transgenic animal models of ocular and genital herpes. We review the role of animal models in herpes vaccine development and discuss their current status, challenges, and prospects.
Collapse
Affiliation(s)
- Tiffany Kuo
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375, USA
| | - Christine Wang
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375, USA
| | - Tina Badakhshan
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375, USA
| | - Sravya Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375, USA; Department of Molecular Biology & Biochemistry, University of California Irvine, School of Medicine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CA 92697, USA.
| |
Collapse
|
14
|
Accardo A, Vitiello M, Tesauro D, Galdiero M, Finamore E, Martora F, Mansi R, Ringhieri P, Morelli G. Self-assembled or mixed peptide amphiphile micelles from Herpes simplex virus glycoproteins as potential immunomodulatory treatment. Int J Nanomedicine 2014; 9:2137-48. [PMID: 24855352 PMCID: PMC4019629 DOI: 10.2147/ijn.s57656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The use of micelle aggregates formed from peptide amphiphiles (PAs) as potential synthetic self-adjuvant vaccines to treat Herpes simplex virus (HSV) infection are reported here. The PAs were based on epitopes gB409–505 and gD301–309, selected from HSV envelope glycoprotein B (gB) and glycoprotein D (gD), that had their N-terminus modified with hydrophobic moieties containing two C18 hydrocarbon chains. Pure and mixed micelles of gB and/or gD peptide epitopes were easily prepared after starting with the synthesis of corresponding PAs by solid phase methods. Structural characterization of the aggregates confirmed that they were sufficiently stable and compatible with in vivo use: critical micelle concentration values around 4.0 ⋅ 10−7 mol ⋅ Kg−1; hydrodynamic radii (RH) between 50–80 nm, and a zeta potential (ζ) around − 40 mV were found for all aggregates. The in vitro results indicate that both peptide epitopes and micelles, at 10 μM, triggered U937 and RAW 264.7 cells to release appreciable levels of cytokines. In particular, interleukin (IL)-23-, IL-6-, IL-8- or macrophage inflammatory protein (MIP)-2-, and tumor necrosis factor (TNF)-α-release increased considerably when cells were treated with the gB-micelles or gD-micelles compared with the production of the same cytokines when the stimulus was the single gB or gD peptide.
Collapse
Affiliation(s)
- Antonella Accardo
- Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy
| | - Mariateresa Vitiello
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy ; Department of Clinical Pathology and Transfusion Medicine, University Hospital "Ruggi d'Aragona", Salerno, Italy
| | - Diego Tesauro
- Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy
| | - Marilena Galdiero
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy
| | - Emiliana Finamore
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy
| | - Francesca Martora
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy
| | - Rosalba Mansi
- Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy
| | - Paola Ringhieri
- Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy
| |
Collapse
|
15
|
Samandary S, Kridane-Miledi H, Sandoval JS, Choudhury Z, Langa-Vives F, Spencer D, Chentoufi AA, Lemonnier FA, BenMohamed L. Associations of HLA-A, HLA-B and HLA-C alleles frequency with prevalence of herpes simplex virus infections and diseases across global populations: implication for the development of an universal CD8+ T-cell epitope-based vaccine. Hum Immunol 2014; 75:715-29. [PMID: 24798939 DOI: 10.1016/j.humimm.2014.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 02/01/2023]
Abstract
A significant portion of the world's population is infected with herpes simplex virus type 1 and/or type 2 (HSV-1 and/or HSV-2), that cause a wide range of diseases including genital herpes, oro-facial herpes, and the potentially blinding ocular herpes. While the global prevalence and distribution of HSV-1 and HSV-2 infections cannot be exactly established, the general trends indicate that: (i) HSV-1 infections are much more prevalent globally than HSV-2; (ii) over a half billion people worldwide are infected with HSV-2; (iii) the sub-Saharan African populations account for a disproportionate burden of genital herpes infections and diseases; (iv) the dramatic differences in the prevalence of herpes infections between regions of the world appear to be associated with differences in the frequencies of human leukocyte antigen (HLA) alleles. The present report: (i) analyzes the prevalence of HSV-1 and HSV-2 infections across various regions of the world; (ii) analyzes potential associations of common HLA-A, HLA-B and HLA-C alleles with the prevalence of HSV-1 and HSV-2 infections in the Caucasoid, Oriental, Hispanic and Black major populations; and (iii) discusses how our recently developed HLA-A, HLA-B, and HLA-C transgenic/H-2 class I null mice will help validate HLA/herpes prevalence associations. Overall, high prevalence of herpes infection and disease appears to be associated with high frequency of HLA-A(∗)24, HLA-B(∗)27, HLA-B(∗)53 and HLA-B(∗)58 alleles. In contrast, low prevalence of herpes infection and disease appears to be associated with high frequency of HLA-B(∗)44 allele. The finding will aid in developing a T-cell epitope-based universal herpes vaccine and immunotherapy.
Collapse
Affiliation(s)
- Sarah Samandary
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Hédia Kridane-Miledi
- UNITE INSERM 1016, Institut Cochin, Hôpital Saint-Vincent-de-Paul, 82, Avenue Denfert-Rochereau, 75674 Paris Cedex 14, France
| | - Jacqueline S Sandoval
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Zareen Choudhury
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Francina Langa-Vives
- Plate-Forme Technologique, Centre d'Ingénierie Génétique Murine, Département de Biologie du Développement, Institut Pasteur, 75015 Paris, France
| | - Doran Spencer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Aziz A Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - François A Lemonnier
- UNITE INSERM 1016, Institut Cochin, Hôpital Saint-Vincent-de-Paul, 82, Avenue Denfert-Rochereau, 75674 Paris Cedex 14, France
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
16
|
Khan AA, Srivastava R, Lopes PP, Wang C, Pham TT, Cochrane J, Thai NTU, Gutierrez L, Benmohamed L. Asymptomatic memory CD8+ T cells: from development and regulation to consideration for human vaccines and immunotherapeutics. Hum Vaccin Immunother 2014; 10:945-63. [PMID: 24499824 DOI: 10.4161/hv.27762] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Generation and maintenance of high quantity and quality memory CD8(+) T cells determine the level of protection from viral, bacterial, and parasitic re-infections, and hence constitutes a primary goal for T cell epitope-based human vaccines and immunotherapeutics. Phenotypically and functionally characterizing memory CD8(+) T cells that provide protection against herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) infections, which cause blinding ocular herpes, genital herpes, and oro-facial herpes, is critical for better vaccine design. We have recently categorized 2 new major sub-populations of memory symptomatic and asymptomatic CD8(+) T cells based on their phenotype, protective vs. pathogenic function, and anatomical locations. In this report we are discussing a new direction in developing T cell-based human herpes vaccines and immunotherapeutics based on the emerging new concept of "symptomatic and asymptomatic memory CD8(+) T cells."
Collapse
Affiliation(s)
- Arif Azam Khan
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA
| | - Patricia Prado Lopes
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA; Department of Molecular Biology & Biochemistry; University of California Irvine; School of Medicine; Irvine, CA USA
| | - Christine Wang
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA
| | - Thanh T Pham
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA
| | - Justin Cochrane
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA
| | - Nhi Thi Uyen Thai
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA
| | - Lucas Gutierrez
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA
| | - Lbachir Benmohamed
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA; Department of Molecular Biology & Biochemistry; University of California Irvine; School of Medicine; Irvine, CA USA; Institute for Immunology; University of California Irvine; School of Medicine; Irvine, CA USA
| |
Collapse
|
17
|
Manuja A, Manuja BK, Kaushik J, Singha H, Singh RK. Immunotherapeutic potential of CpG oligodeoxynucleotides in veterinary species. Immunopharmacol Immunotoxicol 2013; 35:535-44. [PMID: 23981003 DOI: 10.3109/08923973.2013.828743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Innate immunity plays a critical role in host defense against infectious diseases by discriminating between self and infectious non-self. The recognition of infectious non-self involves germ-line encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs). The PAMPs are the components of pathogenic microbes which include not only the cell wall constituents but also the unmethylated 2'-deoxy-ribo-cytosine-phosphate-guanosine (CpG) motifs. These CpG motifs present within bacterial and viral DNA are recognized by toll-like receptor 9 (TLR9), and signaling by this receptor triggers a proinflammatory cytokine response which, in turn, influences both innate and adaptive immune responses. The activation of TLR9 with synthetic CpG oligodeoxynucleotides (ODNs) induces powerful Th1-like immune responses. It has been shown to provide protection against infectious diseases, allergy and cancer in laboratory animal models and some domestic animal species. With better understanding of the basic biology and immune mechanisms, it would be possible to exploit the potential of CpG motifs for animal welfare. The research developments in the area of CpG and TLR9 and the potential applications in animal health have been reviewed in this article.
Collapse
Affiliation(s)
- Anju Manuja
- Department of Veterinary Medicine, National Research Centre on Equines, Hisar , Haryana , India
| | | | | | | | | |
Collapse
|
18
|
Nanotechnological Approaches for Genetic Immunization. DNA AND RNA NANOBIOTECHNOLOGIES IN MEDICINE: DIAGNOSIS AND TREATMENT OF DISEASES 2013. [PMCID: PMC7121080 DOI: 10.1007/978-3-642-36853-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Genetic immunization is one of the important findings that provide multifaceted immunological response against infectious diseases. With the advent of r-DNA technology, it is possible to construct vector with immunologically active genes against specific pathogens. Nevertheless, site-specific delivery of constructed genetic material is an important contributory factor for eliciting specific cellular and humoral immune response. Nanotechnology has demonstrated immense potential for the site-specific delivery of biomolecules. Several polymeric and lipidic nanocarriers have been utilized for the delivery of genetic materials. These systems seem to have better compatibility, low toxicity, economical and capable to delivering biomolecules to intracellular site for the better expression of desired antigens. Further, surface engineering of nanocarriers and targeting approaches have an ability to offer better presentation of antigenic material to immunological cells. This chapter gives an overview of existing and emerging nanotechnological approaches for the delivery of genetic materials.
Collapse
|
19
|
Galdiero S, Vitiello M, Finamore E, Mansi R, Galdiero M, Morelli G, Tesauro D. Activation of monocytic cells by immunostimulatory lipids conjugated to peptide antigens. MOLECULAR BIOSYSTEMS 2013; 8:3166-77. [PMID: 22710358 DOI: 10.1039/c2mb25064k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial derived lipoproteins constitute potent macrophage activators in vivo and are effective stimuli, enhancing the immune response especially with respect to low or non-immunogenic compounds. In the present study we have prepared branched lipopeptide constructs in which different (B- and T-cell) epitopes of Herpes simplex virus type 1, derived from glycoproteins B (gB) and D (gD), are linked to a synthetic lipid core. The ability of the lipid core peptide (LCP) constructs (LCP-gB and LCP-gD) to induce cytokine expression and activate the mitogen-activated protein kinase cascade has been evaluated and compared with the behaviour of the isolated epitopes and the lipid core. In this respect, the use of LCP technology coupled with the use of three different gB or gD peptide epitopes in the same branched constructs could represent an interesting approach in order to obtain efficient delivery systems in the development of a synthetic multiepitopic vaccine for the prevention of viral infections.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Biological Sciences, Division of Biostructures, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi - University of Naples "Federico II", Istituto di Biostrutture e Bioimmagini - CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Chentoufi AA, BenMohamed L. Mucosal herpes immunity and immunopathology to ocular and genital herpes simplex virus infections. Clin Dev Immunol 2012; 2012:149135. [PMID: 23320014 PMCID: PMC3540975 DOI: 10.1155/2012/149135] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 02/08/2023]
Abstract
Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) are amongst the most common human infectious viral pathogens capable of causing serious clinical diseases at every stage of life, from fatal disseminated disease in newborns to cold sores genital ulcerations and blinding eye disease. Primary mucocutaneous infection with HSV-1 & HSV-2 is followed by a lifelong viral latency in the sensory ganglia. In the majority of cases, herpes infections are clinically asymptomatic. However, in symptomatic individuals, the latent HSV can spontaneously and frequently reactivate, reinfecting the muco-cutaneous surfaces and causing painful recurrent diseases. The innate and adaptive mucosal immunities to herpes infections and disease remain to be fully characterized. The understanding of innate and adaptive immune mechanisms operating at muco-cutaneous surfaces is fundamental to the design of next-generation herpes vaccines. In this paper, the phenotypic and functional properties of innate and adaptive mucosal immune cells, their role in antiherpes immunity, and immunopathology are reviewed. The progress and limitations in developing a safe and efficient mucosal herpes vaccine are discussed.
Collapse
Affiliation(s)
- Aziz Alami Chentoufi
- Pathology and Clinical Laboratory Medicine, Department of Immunology, King Fahad Medical City, P.O. Box 59046, Riyadh 11525, Saudi Arabia
- Faculty of Medicine, King Fahad Medical City and King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
- Institute for Immunology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
21
|
Zhou X, Wei H, Sun P, Wu X, Wan M, Zhang P, Guo S, Zhao T, Yu Y, Wang L. Recombinant hepatitis B virus surface antigen formulated with B-type CpG oligodeoxynucleotide induces therapeutic immunity against hepatitis B virus surface antigen-expressing liver cancer cells in mice. Cancer Biother Radiopharm 2012; 27:234-42. [PMID: 22537404 DOI: 10.1089/cbr.2011.1127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To develop a therapeutic vaccine against hepatitis B virus surface antigen (HBsAg)-expressing liver cancer, we tried to prepare a vaccine by formulating recombinant HBsAg with BW006, a B type CpG oligodeoxynucleotide (ODN) with Th1-biasing activity, and examined its potency of inducing therapeutic immunity against HBsAg-expressing liver cancer cells in mice. When applied therapeutically, BW006 could assist HBsAg to induce vigorous immune responses capable of inhibiting the growth of HBsAg-expressing liver cancer cells and prolonging the survival of mice bearing HBsAg-expressing liver cancer cells. In vivo and in vitro experiments showed that the BW006-adjuvanted HBsAg enhanced the production of IgG2a antibodies, interferon-γ, and interleukin-12 and facilitated the generation of specific cytotoxic T lymphocyte that killed the HBsAg-expressing liver cancer cells. These results suggest that the BW006-adjuvanted HBsAg might be developed into a candidate tumor vaccine for the treatment of HBsAg-expressing liver cancer.
Collapse
Affiliation(s)
- Xiaojing Zhou
- Department of Molecular Biology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Immunodominant "asymptomatic" herpes simplex virus 1 and 2 protein antigens identified by probing whole-ORFome microarrays with serum antibodies from seropositive asymptomatic versus symptomatic individuals. J Virol 2012; 86:4358-69. [PMID: 22318137 DOI: 10.1128/jvi.07107-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) and HSV-2 are medically significant pathogens. The development of an effective HSV vaccine remains a global public health priority. HSV-1 and HSV-2 immunodominant "asymptomatic" antigens (ID-A-Ags), which are strongly recognized by B and T cells from seropositive healthy asymptomatic individuals, may be critical to be included in an effective immunotherapeutic HSV vaccine. In contrast, immunodominant "symptomatic" antigens (ID-S-Ags) may exacerbate herpetic disease and therefore must be excluded from any HSV vaccine. In the present study, proteome microarrays of 88 HSV-1 and 84 HSV-2 open reading frames(ORFs) (ORFomes) were constructed and probed with sera from 32 HSV-1-, 6 HSV-2-, and 5 HSV-1/HSV-2-seropositive individuals and 47 seronegative healthy individuals (negative controls). The proteins detected in both HSV-1 and HSV-2 proteome microarrays were further classified according to their recognition by sera from HSV-seropositive clinically defined symptomatic (n = 10) and asymptomatic (n = 10) individuals. We found that (i) serum antibodies recognized an average of 6 ORFs per seropositive individual; (ii) the antibody responses to HSV antigens were diverse among HSV-1- and HSV-2-seropositive individuals; (iii) panels of 21 and 30 immunodominant antigens (ID-Ags) were identified from the HSV-1 and HSV-2 ORFomes, respectively, as being highly and frequently recognized by serum antibodies from seropositive individuals; and (iv) interestingly, four HSV-1 and HSV-2 cross-reactive asymptomatic ID-A-Ags, US4, US11, UL30, and UL42, were strongly and frequently recognized by sera from 10 of 10 asymptomatic patients but not by sera from 10 of 10 symptomatic patients (P < 0.001). In contrast, sera from symptomatic patients preferentially recognized the US10 ID-S-Ag (P < 0.001). We have identified previously unreported immunodominant HSV antigens, among which were 4 ID-A-Ags and 1 ID-S-Ag. These newly identified ID-A-Ags could lead to the development of an efficient "asymptomatic" vaccine against ocular, orofacial, and genital herpes.
Collapse
|
23
|
Dasgupta G, BenMohamed L. Of mice and not humans: how reliable are animal models for evaluation of herpes CD8(+)-T cell-epitopes-based immunotherapeutic vaccine candidates? Vaccine 2011; 29:5824-36. [PMID: 21718746 PMCID: PMC3159167 DOI: 10.1016/j.vaccine.2011.06.083] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 11/23/2022]
Abstract
Herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2)-specific CD8(+) T cells that reside in sensory ganglia, appear to control recurrent herpetic disease by aborting or reducing spontaneous and sporadic reactivations of latent virus. A reliable animal model is the ultimate key factor to test the efficacy of therapeutic vaccines that boost the level and the quality of sensory ganglia-resident CD8(+) T cells against spontaneous herpes reactivation from sensory neurons, yet its relevance has been often overlooked. Herpes vaccinologists are hesitant about using mouse as a model in pre-clinical development of therapeutic vaccines because they do not adequately mimic spontaneous viral shedding or recurrent symptomatic diseases, as occurs in human. Alternatives to mouse models are rabbits and guinea pigs in which reactivation arise spontaneously with clinical herpetic features relevant to human disease. However, while rabbits and guinea pigs develop spontaneous HSV reactivation and recurrent ocular and genital disease none of them can mount CD8(+) T cell responses specific to Human Leukocyte Antigen- (HLA-)restricted epitopes. In this review, we discuss the advantages and limitations of these animal models and describe a novel "humanized" HLA transgenic rabbit, which shows spontaneous HSV-1 reactivation, recurrent ocular disease and mounts CD8(+) T cell responses to HLA-restricted epitopes. Adequate investments are needed to develop reliable preclinical animal models, such as HLA class I and class II double transgenic rabbits and guinea pigs to balance the ethical and financial concerns associated with the rising number of unsuccessful clinical trials for therapeutic vaccine formulations tested in unreliable mouse models.
Collapse
Affiliation(s)
- Gargi Dasgupta
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375
- Institute for Immunology, University of California Irvine, Irvine, CA 92697-1450
| |
Collapse
|
24
|
Abstract
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs trigger cells that express Toll-like receptor 9 (including human plasmacytoid dendritic cells and B cells) to mount an innate immune response characterized by the production of Th1 and proinflammatory cytokines. When used as vaccine adjuvants, CpG ODNs improve the function of professional antigen-presenting cells and boost the generation of humoral and cellular vaccine-specific immune responses. These effects are optimized by maintaining ODNs and vaccine in close proximity. The adjuvant properties of CpG ODNs are observed when administered either systemically or mucosally, and persist in immunocompromised hosts. Preclinical studies indicate that CpG ODNs improve the activity of vaccines targeting infectious diseases and cancer. Clinical trials demonstrate that CpG ODNs have a good safety profile and increase the immunogenicity of coadministered vaccines.
Collapse
Affiliation(s)
- Christian Bode
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Gan Zhao
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Folkert Steinhagen
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Takeshi Kinjo
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Dennis M Klinman
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
25
|
Seo KY, Han SJ, Cha HR, Seo SU, Song JH, Chung SH, Kweon MN. Eye mucosa: an efficient vaccine delivery route for inducing protective immunity. THE JOURNAL OF IMMUNOLOGY 2010; 185:3610-9. [PMID: 20709955 DOI: 10.4049/jimmunol.1000680] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The external part of the eye shares mucosa-associated common characteristics and is an obvious entry site for foreign Ags. We assessed the potential of eyedrop vaccination for effective delivery of vaccines against viral or bacterial infection in mice. Both OVA-specific IgG Ab in serum and IgA Ab in mucosal compartments were induced by eyedrops of OVA with cholera toxin (CT). Eyedrop vaccination of influenza A/PR/8 virus (H1N1) induced both influenza virus-specific systemic and mucosal Ab responses and protected mice completely against respiratory infection with influenza A/PR/8 virus. In addition, eyedrop vaccination of attenuated Salmonella vaccine strains induced LPS-specific Ab and complete protection against oral challenge of virulent Salmonella. Unlike with the intranasal route, eyedrop vaccinations did not redirect administered Ag into the CNS in the presence of CT. When mice were vaccinated by eyedrop, even after the occlusion of tear drainage from eye to nose, Ag-specific systemic IgG and mucosal IgA Abs could be induced effectively. Of note, eyedrops with OVA plus CT induced organogenesis of conjunctiva-associated lymphoid tissue and increased microfold cell-like cells on the conjunctiva-associated lymphoid tissue in the nictitating membrane on conjunctiva, the mucosal side of the external eye. On the basis of these findings, we propose that the eyedrop route is an alternative to mucosal routes for administering vaccines.
Collapse
Affiliation(s)
- Kyoung Yul Seo
- Institute for Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Hu J, Cladel N, Balogh K, Christensen N. Mucosally delivered peptides prime strong immunity in HLA-A2.1 transgenic rabbits. Vaccine 2010; 28:3706-13. [PMID: 20332046 PMCID: PMC2879011 DOI: 10.1016/j.vaccine.2010.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/05/2010] [Accepted: 03/09/2010] [Indexed: 12/22/2022]
Abstract
DNA vaccines delivered subcutaneously by gene-gun have generated strong protective and therapeutic immunity in rabbits. Recent studies have shown that peptides delivered by the mucosal routes also stimulate local and systemic immune responses. Since mucosal delivery is easier to administer and more cost-effective when compared to gene-gun delivery, we were interested to learn whether mucosally delivered peptides would prime protective immunity comparable to that of gene-gun-delivered DNA in rabbits. Our newly developed HLA-A2.1 transgenic rabbit model was used to test the hypothesis. We chose an HLA-A2.1 restricted cottontail rabbit papillomavirus (CRPV) E1 epitope (E1/303-311, MLQEKPFQL) for the peptide immunization studies because it provided complete protection when used as a DNA vaccine. Adjuvant has been widely used to boost immunity for vaccines. In this study, three adjuvants reported to be effective for rabbits (TT helper motif, PADRE and CpG2007) were tested with the peptide vaccine. Peptide alone or fused to TT helper or PADRE to create chimeric peptides was delivered by two mucosal routes (ocular and intranasal) together. Partial protection was found in HLA-A2.1 transgenic rabbits when peptide was delivered mucosally in the presence of adjuvant. When a subsequent booster of a half-dose of the corresponding DNA vaccine was delivered, complete protections were achieved. We conclude that mucosal peptide immunization can be combined with a single DNA vaccination to provide strong protective immunity in rabbits.
Collapse
Affiliation(s)
- Jiafen Hu
- Jake Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA. <>
| | | | | | | |
Collapse
|
27
|
Chentoufi AA, Dasgupta G, Christensen ND, Hu J, Choudhury ZS, Azeem A, Jester JV, Nesburn AB, Wechsler SL, BenMohamed L. A novel HLA (HLA-A*0201) transgenic rabbit model for preclinical evaluation of human CD8+ T cell epitope-based vaccines against ocular herpes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:2561-71. [PMID: 20124097 PMCID: PMC3752373 DOI: 10.4049/jimmunol.0902322] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We introduced a novel humanized HLA-A*0201 transgenic (HLA Tg) rabbit model to assess the protective efficacy of a human CD8(+) T cell epitope-based vaccine against primary ocular herpes infection and disease. Each of the three immunodominant human CD8(+) T cell peptide epitopes from HSV-1 glycoprotein D (gD(53-61), gD(70-78), and gD(278-286)) were joined with a promiscuous human CD4(+) T cell peptide epitope (gD(49-82)) to construct three separate pairs of CD4-CD8 peptides. Each CD4-CD8 peptide pair was then covalently linked to an N(epsilon)-palmitoyl-lysine residue via a functional base lysine amino group to construct CD4-CD8 lipopeptides. HLA Tg rabbits were immunized s.c. with a mixture of the three CD4-CD8 HSV-1 gD lipopeptides. The HSV-gD-specific T cell responses induced by the mixture of CD4-CD8 lipopeptide vaccine and the protective efficacy against acute virus replication and ocular disease were determined. Immunization induced HSV-gD(49-82)-specific CD4(+) T cells in draining lymph node (DLN); induced HLA-restricted HSV-gD(53-61), gD(70-78), and gD(278-286)-specific CD8(+) T cells in DLN, conjunctiva, and trigeminal ganglia and reduced HSV-1 replication in tears and corneal eye disease after ocular HSV-1 challenge. In addition, the HSV-1 epitope-specific CD8(+) T cells induced in DLNs, conjunctiva, and the trigeminal ganglia were inversely proportional with corneal disease. The humanized HLA Tg rabbits appeared to be a useful preclinical animal model for investigating the immunogenicity and protective efficacy of human CD8(+) T cell epitope-based prophylactic vaccines against ocular herpes. The relevance of HLA Tg rabbits for future investigation of human CD4-CD8 epitope-based therapeutic vaccines against recurrent HSV-1 is discussed.
Collapse
Affiliation(s)
- Aziz A. Chentoufi
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | - Gargi Dasgupta
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | | | - Jiafen Hu
- Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033
| | - Zareen S. Choudhury
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | - Arfan Azeem
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | - James V. Jester
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | - Steven L. Wechsler
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697
- The Center for Virus Research, University of California Irvine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
- Institute for Immunology, University of California Irvine, Irvine, CA 92697
| |
Collapse
|
28
|
Nasolacrimal duct closure modulates ocular mucosal and systemic CD4(+) T-cell responses induced following topical ocular or intranasal immunization. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:342-53. [PMID: 20089796 DOI: 10.1128/cvi.00347-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Both topical ocular and topical intranasal immunizations have been reported to stimulate the ocular mucosal immune system (OMIS) and the systemic immune system. Nasolacrimal ducts (NLDs) are the connecting bridges between the OMIS and nasal cavity-associated lymphoid tissue (NALT). These ducts drain topical ocularly administrated solutions into the inferior meatus of the nose to reach the NALT. Inversely, NLDs also drain intranasally administrated solutions to the mucosal surface of the eye and thus the OMIS. This unique anatomical connection between the OMIS and NALT systems provoked us to test whether the OMIS and NALT are immunologically interdependent. In this report, we show that both topical ocular administration and topical intranasal administration of a mixture of immunodominant CD4(+) T-cell epitope peptides from herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) emulsified with the CpG(2007) mucosal adjuvant are capable of inducing local (in conjunctiva) as well as systemic (in spleen) HSV-peptide-specific CD4(+) T-cell responses. Interestingly, surgical closure of NLDs did not significantly alter local ocular mucosal CD4(+) T-cell responses induced following topical ocular immunization but did significantly enhance systemic CD4(+) T-cell responses (as measured by both T-cell proliferation and gamma interferon (IFN-gamma) production; P < 0.005). In contrast, NLD closure significantly decreased ocular mucosal, but not systemic, CD4(+) T-cell responses following intranasal administration of the same vaccine solution (P < 0.001). The study suggests that NALT and the OMIS are immunologically interconnected.
Collapse
|
29
|
Dasgupta G, Chentoufi AA, Nesburn AB, Wechsler SL, BenMohamed L. New concepts in herpes simplex virus vaccine development: notes from the battlefield. Expert Rev Vaccines 2009; 8:1023-35. [PMID: 19627185 PMCID: PMC2760836 DOI: 10.1586/erv.09.60] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The recent discovery that T cells recognize different sets of herpes simplex virus type 1 and type 2 epitopes from seropositive symptomatic and asymptomatic individuals might lead to a fundamental immunologic advance in vaccine development against herpes infection and diseases. The newly introduced needle-free mucosal (i.e., topical ocular and intravaginal) lipopeptide vaccines provide a novel strategy that might target ocular and genital herpes and possibly provide 'heterologous protection' from HIV-1. Indeed, mucosal self-adjuvanting lipopeptide vaccines are easy to manufacture, simple to characterize, extremely pure, cost-effective, highly immunogenic and safe. In this review, we bring together recent published and unpublished data that illuminates the status of epitope-based herpes vaccine development and present an overview of our recent approach to an 'asymptomatic epitope'-based lipopeptide vaccine.
Collapse
Affiliation(s)
- Gargi Dasgupta
- The Gavin S Herbert Eye Institute, Cellular and Molecular Immunology Laboratory, Department of Ophthalmology, University of California, Irvine, College of Medicine, Irvine, CA 92697-4375, USA, Tel.: +1 714 456 6465, Fax: +1 714 456 5073,
| | - Aziz A Chentoufi
- The Gavin S Herbert Eye Institute, Cellular and Molecular Immunology Laboratory, Department of Ophthalmology, University of California, Irvine, College of Medicine, Irvine, CA 92697-4375, USA, Tel.: +1 714 456 6465, Fax: +1 714 456 5073,
| | - Anthony B Nesburn
- The Gavin S Herbert Eye Institute, Cellular and Molecular Immunology Laboratory, Department of Ophthalmology, University of California, Irvine, College of Medicine, Irvine, CA 92697-4375, USA, Tel.: +1 714 456 6465, Fax: +1 714 456 5073,
| | - Steven L Wechsler
- The Gavin S Herbert Eye Institute, Cellular and Molecular Immunology Laboratory, Department of Ophthalmology, and Department of Microbiology and Molecular Genetics, University of California, Irvine, College of Medicine, Irvine, CA 92697-4375, USA, Tel.: +1 714 456 6465, Fax: +1 714 456 5073,
| | - Lbachir BenMohamed
- The Gavin S Herbert Eye Institute, Cellular and Molecular Immunology Laboratory, University of California Irvine, College of Medicine, Building 55, Room 202, Orange, CA 92868, USA and Center for Immunology, University of California, Irvine, Irvine, CA 92697-1450, USA, Tel.: +1 714 456 7371, Fax: +1 714 456 5073,
| |
Collapse
|
30
|
Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 2009; 61:195-204. [PMID: 19211030 DOI: 10.1016/j.addr.2008.12.008] [Citation(s) in RCA: 444] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2008] [Indexed: 12/21/2022]
Abstract
Toll-like receptor 9 (TLR9) agonists have demonstrated substantial potential as vaccine adjuvants, and as mono- or combination therapies for the treatment of cancer and infectious and allergic diseases. Commonly referred to as CpG oligodeoxynucleotides (ODN), TLR9 agonists directly induce the activation and maturation of plasmacytoid dendritic cells and enhance differentiation of B cells into antibody-secreting plasma cells. Preclinical and early clinical data support the use of TLR9 agonists as vaccine adjuvants, where they can enhance both the humoral and cellular responses to diverse antigens. In mouse tumor models TLR9 agonists have shown activity not only as monotherapy, but also in combination with multiple other therapies including vaccines, antibodies, cellular therapies, other immunotherapies, antiangiogenic agents, radiotherapy, cryotherapy, and some chemotherapies. Phase I and II clinical trials have indicated that these agents have antitumor activity as single agents and enhance the development of antitumor T-cell responses when used as therapeutic vaccine adjuvants. CpG ODN have shown benefit in multiple rodent and primate models of asthma and other allergic diseases, with encouraging results in some early human clinical trials. Although their potential clinical contributions are enormous, the safety and efficacy of these TLR9 agonists in humans remain to be determined.
Collapse
|
31
|
Zhang X, Chentoufi AA, Dasgupta G, Nesburn AB, Wu M, Zhu X, Carpenter D, Wechsler SL, You S, BenMohamed L. A genital tract peptide epitope vaccine targeting TLR-2 efficiently induces local and systemic CD8+ T cells and protects against herpes simplex virus type 2 challenge. Mucosal Immunol 2009; 2:129-143. [PMID: 19129756 PMCID: PMC4509510 DOI: 10.1038/mi.2008.81] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The next generation of needle-free mucosal vaccines is being rationally designed according to rules that govern the way in which the epitopes are recognized by and stimulate the genital mucosal immune system. We hypothesized that synthetic peptide epitopes extended with an agonist of Toll-like receptor 2 (TLR-2), that are abundantly expressed by dendritic and epithelial cells of the vaginal mucosa, would lead to induction of protective immunity against genital herpes. To test this hypothesis, we intravaginally (IVAG) immunized wild-type B6, TLR-2 (TLR2(-/-)) or myeloid differentiation factor 88 deficient (MyD88(-/-)) mice with a herpes simplex virus type 2 (HSV-2) CD8+ T-cell peptide epitope extended by a palmitic acid moiety (a TLR-2 agonist). IVAG delivery of the lipopeptide generated HSV-2-specific memory CD8+ cytotoxic T cells both locally in the genital tract draining lymph nodes and systemically in the spleen. Moreover, lipopeptide-immunized TLR2(-/-) and MyD88(-/-) mice developed significantly less HSV-specific CD8+ T-cell response, earlier death, faster disease progression, and higher vaginal HSV-2 titers compared to lipopeptide-immunized wild-type B6 mice. IVAG immunization with self-adjuvanting lipid-tailed peptides appears to be a novel mucosal vaccine approach, which has attractive practical and immunological features.
Collapse
Affiliation(s)
- X Zhang
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - AA Chentoufi
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - G Dasgupta
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - AB Nesburn
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - M Wu
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - X Zhu
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - D Carpenter
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - SL Wechsler
- Laboratory of Virology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA,Department of Microbiology and Molecular Genetics, University of California Irvine, School of Medicine, Irvine, CA, USA,The Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - S You
- INSERM U580, University Paris Descartes, Paris, France
| | - L BenMohamed
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA,Center for Immunology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
32
|
Gender-dependent HLA-DR-restricted epitopes identified from herpes simplex virus type 1 glycoprotein D. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1436-49. [PMID: 18667634 DOI: 10.1128/cvi.00123-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent clinical trials, a herpes simplex virus (HSV) recombinant glycoprotein D (gD) vaccine was more efficacious in woman than in men. Here we report six HLA-DR-restricted T-cell gD epitope peptides that bind to multiple HLA-DR (DR1, DR4, DR7, DR13, DR15, and DRB5) molecules that represent a large proportion of the human population. Four of these peptides recalled naturally primed CD4(+) T cells in up to 45% of the 46 HSV-seropositive, asymptomatic individuals studied. For the gD(49-82), gD(77-104), and gD(121-152) peptides, the CD4(+) T-cell responses detected in HSV-seropositive, asymptomatic women were higher and more frequent than the responses detected in men. Immunization of susceptible DRB1*0101 transgenic mice with a mixture of three newly identified, gender-dependent, immunodominant epitope peptides (gD(49-82), gD(77-104), and gD(121-152)) induced a gender- and CD4(+) T-cell-dependent immunity against ocular HSV type 1 challenge. These results revealed a gender-dependent T-cell response to a discrete set of gD epitopes and suggest that while a T-cell epitope-based HSV vaccine that targets a large percentage of the human population may be feasible with a limited number of immunodominant promiscuous HLA-DR-restricted epitopes, gender should be taken into account during evaluations of such vaccines.
Collapse
|
33
|
Nesburn AB, Bettahi I, Dasgupta G, Chentoufi AA, Zhang X, You S, Morishige N, Wahlert AJ, Brown DJ, Jester JV, Wechsler SL, BenMohamed L. Functional Foxp3+ CD4+ CD25(Bright+) "natural" regulatory T cells are abundant in rabbit conjunctiva and suppress virus-specific CD4+ and CD8+ effector T cells during ocular herpes infection. J Virol 2007; 81:7647-61. [PMID: 17475646 PMCID: PMC1933381 DOI: 10.1128/jvi.00294-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the phenotype and distribution of "naturally" occurring CD4(+) CD25(+) T regulatory cells (CD4(+) CD25(+) nT(reg) cells) resident in rabbit conjunctiva, the main T-cell inductive site of the ocular mucosal immune system, and we investigated their suppressive capacities using herpes simplex virus type 1 (HSV-1)-specific effector T (T(eff)) cells induced during ocular infection. The expression of CD4, CD25, CTLA4, GITR, and Foxp3 was examined by reverse transcription-PCR, Western blotting, and fluorescence-activated cell sorter analysis in CD45(+) pan-leukocytes isolated from conjunctiva, spleen, and peripheral blood monocyte cells (PBMC) of HSV-1-infected and uninfected rabbits. Normal conjunctiva showed a higher frequency of CD4(+) CD25((Bright+)) T cells than did spleen and PBMC. These cells expressed high levels of Foxp3, GITR, and CTLA4 molecules. CD4(+) CD25((Bright+)) T cells were localized continuously along the upper and lower palpebral and bulbar conjunctiva, throughout the epithelium and substantia propria. Conjunctiva-derived CD4(+) CD25((Bright+)) T cells, but not CD4(+) CD25((low)) T cells, efficiently suppressed HSV-specific CD4(+) and CD8(+) T(eff) cells. The CD4(+) CD25((Bright+)) T-cell-mediated suppression was effective on both peripheral blood and conjunctiva infiltrating T(eff) cells and was cell-cell contact dependent but independent of interleukin-10 and transforming growth factor beta. Interestingly, during an ocular herpes infection, there was a selective increase in the frequency and suppressive capacity of Foxp3(+) CD4(+) CD25((Bright+)) T cells in conjunctiva but not in the spleen or in peripheral blood. Altogether, these results provide the first evidence that functional Foxp3(+) CD4(+) CD25((Bright+)) T(reg) cells accumulate in the conjunctiva. It remains to be determined whether conjunctiva CD4(+) CD25(+) nT(reg) cells affect the topical/mucosal delivery of subunit vaccines that stimulate the ocular mucosal immune system.
Collapse
Affiliation(s)
- Anthony B Nesburn
- Cellular and Molecular Immunology Laboratory, The Eye Institute, University of California, Irvine, CA 92697-4375, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nesburn AB, Bettahi I, Zhang X, Zhu X, Chamberlain W, Afifi RE, Wechsler SL, BenMohamed L. Topical/mucosal delivery of sub-unit vaccines that stimulate the ocular mucosal immune system. Ocul Surf 2007; 4:178-87. [PMID: 17146573 DOI: 10.1016/s1542-0124(12)70164-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mucosal vaccination is proving to be one of the greatest challenges in modern vaccine development. Although ocular mucosal immunity is highly beneficial for achieving protective immunity, the induction of ocular mucosal immunity against ocular infectious pathogens, particularly herpes simplex virus type 1 (HSV-1), which is the leading cause of infectious corneal blindness, remains difficult. Recent developments in cellular and molecular immunology of the ocular mucosal immune system (OMIS) may help in the design of more effective and optimal immunization strategies against ocular pathogens. In this review, we highlight ocular mucosal immunoprophylactic and immunotherapeutic vaccine strategies that have been evaluated to control the many pathogens that attack the surface of the eye. Next, we describe the current understandings of the OMIS and elucidate the structure and the function of the humoral and cellular immune system that protects the surface of the eye. Results from our recent experiments using topical ocular delivery of peptides-CpG and lipopeptide-based vaccines against HSV-1 infection are presented. The future challenges and issues related to the ocular mucosal delivery of molecularly defined sub-unit vaccines are discussed.
Collapse
Affiliation(s)
- Anthony B Nesburn
- Laboratory of Cellular and Molecular Immunology, Department of Ophthalmology, University of California Irvine, Irvine, California 92868-4380, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
McCluskie MJ, Krieg AM. Enhancement of infectious disease vaccines through TLR9-dependent recognition of CpG DNA. Curr Top Microbiol Immunol 2006; 311:155-78. [PMID: 17048708 DOI: 10.1007/3-540-32636-7_6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adaptive immune system-with its remarkable ability to generate antigen-specific antibodies and T lymphocytes against pathogens never before "seen" by an organism-is one of the marvels of evolution. However, to generate these responses, the adaptive immune system requires activation by the innate immune system. Toll-like receptors (TLRs) are perhaps the best-understood family of innate immune receptors for detecting infections and stimulating adaptive immune responses. TLR9 appears to have evolved to recognize infections by a subtle structural difference between eukaryotic and prokaryotic/viral DNA; only the former frequently methylates CpG dinucleotides. Used as vaccine adjuvants, synthetic oligodeoxynucleotide (ODN) ligands for TLR9--CpG ODN--greatly enhance the speed and strength of the immune responses to vaccination.
Collapse
Affiliation(s)
- M J McCluskie
- Coley Pharmaceutical Group, Inc., 93 Worcester Street, Suite 101, Wellesley, MA 02481, USA
| | | |
Collapse
|
36
|
Bettahi I, Zhang X, Afifi RE, BenMohamed L. Protective immunity to genital herpes simplex virus type 1 and type 2 provided by self-adjuvanting lipopeptides that drive dendritic cell maturation and elicit a polarized Th1 immune response. Viral Immunol 2006; 19:220-36. [PMID: 16817765 DOI: 10.1089/vim.2006.19.220] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genital herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) infections are a significant health problem worldwide. While it is believed that CD4+ Th1 cells are among the effectors to herpes immunity, developing an epitope-based clinical vaccine capable of inducing an effective anti-herpes CD4+ Th1-mediated protection is still under investigation. Few molecules achieve this target without the aid of external immuno-adjuvant. The present study was undertaken to examine the immunogenicity in mice of five CD4+ T cell epitope peptides (gD1-29, gD49-82, gD146-179, gD228-257, and gD332-358), recently identified from the HSV-1 glycoprotein D (gD), covalently linked to a palmitic acid moiety (lipopeptides) using the high-yielding chemoselective ligation method and delivered subcutaneously in free-adjuvant saline. Their protective efficacy was evaluated in a progestin-induced susceptibility mouse model of genital herpes following intravaginal challenge with either HSV-1 or HSV-2. Four out of five gD lipopeptides effectively induced virus-specific CD4+ Th1 responses associated with a reduction of virus replication in the genital tract and protection from overt signs of genital disease. A cocktail of three highly immunogenic lipopeptides provoked maturation of dendritic cells, induced interferon gamma (IFN-gamma)-producing CD4+ T cells, and protected against both HSV- 1 and HSV-2 infections. Depletion of specific T cell subsets from lipopeptideimmunized mice before intravaginal HSV challenges demonstrated that CD4+ T cells were primarily responsible for this protection. The strength of induced T cell immunity, together with the ease of construction and safety of these totally synthetic self-adjuvanting lipopeptides, provide a molecularly defined formulation that could combat genital herpes and other human viral infections for which induction of Th1 immunity is crucial.
Collapse
Affiliation(s)
- Ilham Bettahi
- Cellular and Molecular Immunology Laboratory, The Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | | | | | | |
Collapse
|
37
|
Abstract
In the decade since the discovery that mouse B cells respond to certain unmethylated CpG dinucleotides in bacterial DNA, a specific receptor for these 'CpG motifs' has been identified, Toll-like receptor 9 (TLR9), and a new approach to immunotherapy has moved into the clinic based on the use of synthetic oligodeoxynucleotides (ODN) as TLR9 agonists. This review highlights the current understanding of the mechanism of action of these CpG ODN, and provides an overview of the preclinical data and early human clinical trial results using these drugs to improve vaccines and treat cancer, infectious disease and allergy/asthma.
Collapse
Affiliation(s)
- Arthur M Krieg
- Coley Pharmaceutical Group, Inc., 93 Worcester Street, Suite 101, Wellesley, Massachusetts 02481, USA.
| |
Collapse
|
38
|
Zhang X, Issagholian A, Berg EA, Fishman JB, Nesburn AB, BenMohamed L. Th-cytotoxic T-lymphocyte chimeric epitopes extended by Nepsilon-palmitoyl lysines induce herpes simplex virus type 1-specific effector CD8+ Tc1 responses and protect against ocular infection. J Virol 2006; 79:15289-301. [PMID: 16306600 PMCID: PMC1316035 DOI: 10.1128/jvi.79.24.15289-15301.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Molecularly defined vaccine formulations capable of inducing antiviral CD8+ T-cell-specific immunity in a manner compatible with human delivery are limited. Few molecules achieve this target without the support of an appropriate immunological adjuvant. In this study, we investigate the potential of totally synthetic palmitoyl-tailed helper-cytotoxic-T-lymphocyte chimeric epitopes (Th-CTL chimeric lipopeptides) to induce herpes simplex virus type 1 (HSV-1)-specific CD8+ T-cell responses. As a model antigen, the HSV-1 glycoprotein B498-505 (gB498-505) CD8+ CTL epitope was synthesized in line with the Pan DR peptide (PADRE), a universal CD4+ Th epitope. The peptide backbone, composed solely of both epitopes, was extended by N-terminal attachment of one (PAM-Th-CTL), two [(PAM)2-Th-CTL], or three [(PAM)3-Th-CTL] palmitoyl lysines and delivered to H2b mice in adjuvant-free saline. Potent HSV-1 gB498-505-specific antiviral CD8+ T-cell effector type 1 responses were induced by each of the palmitoyl-tailed Th-CTL chimeric epitopes, irrespective of the number of lipid moieties. The palmitoyl-tailed Th-CTL chimeric epitopes provoked cell surface expression of major histocompatibility complex and costimulatory molecules and production of interleukin-12 and tumor necrosis factor alpha proinflammatory cytokines by immature dendritic cells. Following ocular HSV-1 challenge, palmitoyl-tailed Th-CTL-immunized mice exhibited a decrease of virus replication in the eye and in the local trigeminal ganglion and reduced herpetic blepharitis and corneal scarring. The rational of the molecularly defined vaccine approach presented in this study may be applied to ocular herpes and other viral infections in humans, providing steps are taken to include appropriate Th and CTL epitopes and lipid groups.
Collapse
Affiliation(s)
- Xiuli Zhang
- Laboratory of Cellular and Molecular Immunology, University of California, Irvine, College of Medicine, Bldg. 55, Room 202, Orange, CA 92868, USA
| | | | | | | | | | | |
Collapse
|
39
|
Pepose JS, Keadle TL, Morrison LA. Ocular herpes simplex: changing epidemiology, emerging disease patterns, and the potential of vaccine prevention and therapy. Am J Ophthalmol 2006; 141:547-557. [PMID: 16490506 DOI: 10.1016/j.ajo.2005.10.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 09/29/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE To review the changing epidemiology of herpes simplex virus infection, emerging patterns of herpetic ocular disease, and the challenges and promise of herpes simplex virus vaccine therapy. DESIGN Perspective. METHODS Literature review. RESULTS An epidemic increase in genital herpes simplex type 2 infection is reflected in a 30% increase in HSV-2 antibodies in the United States since 1976. Approximately one in four people in the United States over age 30 is infected with HSV-2. Primary acquisition of herpes simplex type 1 is becoming progressively delayed in many industrialized countries, in contrast to developing nations where the virus is acquired early in life and is ubiquitous. Changes in sexual behavior among young adults have been associated with a recent increase in genital HSV-1 infection, resulting from oral-genital rather than genital-genital contact. Clinical trials of HSV vaccines using selected herpes simplex virus type 2 proteins mixed in adjuvant have shown limited efficacy in seronegative women, but not in men. CONCLUSIONS The recent epidemic of genital herpes simplex type 2 infection is likely to result in an increase in neonatal ocular herpes and in delayed cases of acute retinal necrosis syndrome. The increase in genital HSV-1 may lead to industry production of vaccines that contain components of both HSV-1 and HSV-2 targeted toward limiting genital disease and transmission. As newer herpes simplex vaccines become available, ophthalmologists must be vigilant that a boost in immunity against HSV does not have a paradoxical effect in exacerbating break-through cases that develop immune-mediated herpes simplex stromal keratitis.
Collapse
Affiliation(s)
- Jay S Pepose
- Pepose Vision Institute, 16216 Baxter Road, Ste. 205, Chesterfield, MO 63107, USA.
| | | | | |
Collapse
|