1
|
Rajput BK, Ikram SF, Tripathi BN. Harnessing the potential of microalgae for the production of monoclonal antibodies and other recombinant proteins. PROTOPLASMA 2024; 261:1105-1125. [PMID: 38970700 DOI: 10.1007/s00709-024-01967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Monoclonal antibodies (mAbs) have become indispensable tools in various fields, from research to therapeutics, diagnostics, and industries. However, their production, primarily in mammalian cell culture systems, is cost-intensive and resource-demanding. Microalgae, diverse photosynthetic microorganisms, are gaining attention as a favorable option for manufacturing mAbs and various other recombinant proteins. This review explores the potential of microalgae as a robust expression system for biomanufacturing high-value proteins. It also highlights the diversity of microalgae species suitable for recombinant protein. Nuclear and chloroplast genomes of some microalgae have been engineered to express mAbs and other valuable proteins. Codon optimization, vector construction, and other genetic engineering techniques have significantly improved recombinant protein expression in microalgae. These accomplishments demonstrate the potential of microalgae for biopharmaceutical manufacturing. Microalgal biotechnology holds promise for revolutionizing the production of mAbs and other therapeutic proteins, offering a sustainable and cost-effective solution to address critical healthcare needs.
Collapse
Affiliation(s)
- Balwinder Kaur Rajput
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Sana Fatima Ikram
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Bhumi Nath Tripathi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India.
| |
Collapse
|
2
|
Bolaños-Martínez OC, Malla A, Rosales-Mendoza S, Vimolmangkang S. Harnessing the advances of genetic engineering in microalgae for the production of cannabinoids. Crit Rev Biotechnol 2023; 43:823-834. [PMID: 35762029 DOI: 10.1080/07388551.2022.2071672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/24/2022] [Accepted: 04/16/2022] [Indexed: 11/03/2022]
Abstract
Cannabis is widely recognized as a medicinal plant owing to bioactive cannabinoids. However, it is still considered a narcotic plant, making it hard to be accessed. Since the biosynthetic pathway of cannabinoids is disclosed, biotechnological methods can be employed to produce cannabinoids in heterologous systems. This would pave the way toward biosynthesizing any cannabinoid compound of interest, especially minor substances that are less produced by a plant but have a high medicinal value. In this context, microalgae have attracted increasing scientific interest given their unique potential for biopharmaceutical production. In the present review, the current knowledge on cannabinoid production in different hosts is summarized and the biotechnological potential of microalgae as an emerging platform for synthetic production is put in perspective. A critical survey of genetic requirements and various transformation approaches are also discussed.
Collapse
Affiliation(s)
- Omayra C Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Ashwini Malla
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Zadabbas Shahabadi H, Akbarzadeh A, Ofoghi H, Kadkhodaei S. Site-specific gene knock-in and bacterial phytase gene expression in Chlamydomonas reinhardtii via Cas9 RNP-mediated HDR. FRONTIERS IN PLANT SCIENCE 2023; 14:1150436. [PMID: 37275253 PMCID: PMC10235511 DOI: 10.3389/fpls.2023.1150436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 06/07/2023]
Abstract
In the present study, we applied the HDR (homology-directed DNA repair) CRISPR-Cas9-mediated knock-in system to accurately insert an optimized foreign bacterial phytase gene at a specific site of the nitrate reductase (NR) gene (exon 2) to achieve homologous recombination with the stability of the transgene and reduce insertion site effects or gene silencing. To this end, we successfully knocked-in the targeted NR gene of Chlamydomonas reinhardtii using the bacterial phytase gene cassette through direct delivery of the CRISPR/Cas9 system as the ribonucleoprotein (RNP) complex consisting of Cas9 protein and the specific single guide RNAs (sgRNAs). The NR insertion site editing was confirmed by PCR and sequencing of the transgene positive clones. Moreover, 24 clones with correct editing were obtained, where the phytase gene cassette was located in exon 2 of the NR gene, and the editing efficiency was determined to be 14.81%. Additionally, site-specific gene expression was analyzed and confirmed using RT-qPCR. Cultivation of the positive knocked-in colonies on the selective media during 10 generations indicated the stability of the correct editing without gene silencing or negative insertion site effects. Our results demonstrated that CRISPR-Cas9-mediated knock-in could be applied for nuclear expression of the heterologous gene of interest, and also confirmed its efficacy as an effective tool for site-specific gene knock-in, avoiding nuclear positional effects and gene silencing in C. reinhardtii. These findings could also provide a new perspective on the advantageous application of RNP-CRISPR/Cas9 gene-editing to accelerate the commercial production of complex recombinant proteins in the food-grade organism "C. reinhardtii".
Collapse
Affiliation(s)
- Hassan Zadabbas Shahabadi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
- Agricultural Biotechnology Research Institute of Iran (ABRII), Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Arash Akbarzadeh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Hamideh Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Saeid Kadkhodaei
- Agricultural Biotechnology Research Institute of Iran (ABRII), Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| |
Collapse
|
4
|
Production of Recombinant Biopharmaceuticals in Chlamydomonas reinhardtii. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This review aimed to present Chlamydomonas reinhardtii as an alternative for heterologous protein production, especially for biopharmaceuticals, and its general characteristics when compared with other expression systems. The need to produce heterologous proteins for industrial interest, therapeutic ends, and diagnostic kits has led to the development of recombinant microalgal technology. This technology presents some interesting features, such as rapid growth and low transgene dispersion compared to plants, the ability to fold complex proteins compared to bacteria, and low production costs compared to other expression systems, such as yeast and mammalian cells. Overall, C. reinhardtii heterologous protein expression is coming of age with several research groups focused on developing an optimal producer strain.
Collapse
|
5
|
Dunaliella salina as a Potential Biofactory for Antigens and Vehicle for Mucosal Application. Processes (Basel) 2022. [DOI: 10.3390/pr10091776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The demand for effective, low-cost vaccines increases research in next-generation biomanufacturing platforms and the study of new vaccine delivery systems (e.g., mucosal vaccines). Applied biotechnology in antigen production guides research toward developing genetic modification techniques in different biological models to achieve the expression of heterologous proteins. These studies are based on various transformation protocols, applied in prokaryotic systems such as Escherichia coli to eukaryotic models such as yeasts, insect cell cultures, animals, and plants, including a particular type of photosynthetic organisms: microalgae, demonstrating the feasibility of recombinant protein expression in these biological models. Microalgae are one of the recombinant protein expression models with the most significant potential and studies in the last decade. Unicellular photosynthetic organisms are widely diverse with biological and growth-specific characteristics. Some examples of the species with commercial interest are Chlamydomonas, Botryococcus, Chlorella, Dunaliella, Haematococcus, and Spirulina. The production of microalgae species at an industrial level through specialized equipment for this purpose allows for proposing microalgae as a basis for producing recombinant proteins at a commercial level. A specie with a particular interest in biotechnology application due to growth characteristics, composition, and protein production capacity is D. salina, which can be cultivated under industrial standards to obtain βcarotene of high interest to humans. D saline currently has advantages over other microalgae species, such as its growth in culture media with a high salt concentration which reduces the risk of contamination, rapid growth, generally considered safe (GRAS), recombinant protein biofactory, and a possible delivery vehicle for mucosal application. This review discusses the status of microalgae D. salina as a platform of expression of recombinant production for its potential mucosal application as a vaccine delivery system, taking an advance on the technology for its production and cultivation at an industrial level.
Collapse
|
6
|
Bolaños-Martínez OC, Mahendran G, Rosales-Mendoza S, Vimolmangkang S. Current Status and Perspective on the Use of Viral-Based Vectors in Eukaryotic Microalgae. Mar Drugs 2022; 20:md20070434. [PMID: 35877728 PMCID: PMC9318342 DOI: 10.3390/md20070434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
During the last two decades, microalgae have attracted increasing interest, both commercially and scientifically. Commercial potential involves utilizing valuable natural compounds, including carotenoids, polysaccharides, and polyunsaturated fatty acids, which are widely applicable in food, biofuel, and pharmaceutical industries. Conversely, scientific potential focuses on bioreactors for producing recombinant proteins and developing viable technologies to significantly increase the yield and harvest periods. Here, viral-based vectors and transient expression strategies have significantly contributed to improving plant biotechnology. We present an updated outlook covering microalgal biotechnology for pharmaceutical application, transformation techniques for generating recombinant proteins, and genetic engineering tactics for viral-based vector construction. Challenges in industrial application are also discussed.
Collapse
Affiliation(s)
- Omayra C. Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ganesan Mahendran
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico;
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a Sección, San Luis Potosí 78210, Mexico
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-8358
| |
Collapse
|
7
|
Nawkarkar P, Chugh S, Sharma S, Jain M, Kajla S, Kumar S. Characterization of the Chloroplast Genome Facilitated the Transformation of Parachlorella kessleri-I, A Potential Marine Alga for Biofuel Production. Curr Genomics 2021; 21:610-623. [PMID: 33414682 PMCID: PMC7770631 DOI: 10.2174/1389202921999201102164754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 11/22/2022] Open
Abstract
Introduction The microalga Parachlorella kessleri-I produces high biomass and lipid content that could be suitable for producing economically viable biofuel at a commercial scale. Sequencing the complete chloroplast genome is crucial for the construction of a species-specific chloroplast transformation vector. Methods In this study, the complete chloroplast genome sequence (cpDNA) of P. kessleri-I was assembled; annotated and genetic transformation of the chloroplast was optimized. For the chloroplast transformation, we have tested two antibiotic resistance makers, aminoglycoside adenine transferase (aadA) gene and Sh-ble gene conferring resistance to spectinomycin and zeocin, respectively. Transgene integration and homoplasty determination were confirmed using PCR, Southern blot and Droplet Digital PCR. Results The chloroplast genome (109,642 bp) exhibited a quadripartite structure with two reverse repeat regions (IRA and IRB), a long single copy (LSC), and a small single copy (SSC) region. The genome encodes 116 genes, with 80 protein-coding genes, 32 tRNAs and 4 rRNAs. The cpDNA provided essential information like codons, UTRs and flank sequences for homologous recombination to make a species-specific vector that facilitated the transformation of P. kessleri-I chloroplast. The transgenic algal colonies were retrieved on a TAP medium containing 400 mg. L-1 spectinomycin, but no transgenic was recovered on the zeocin-supplemented medium. PCR and Southern blot analysis ascertained the transgene integration into the chloroplast genome, via homologous recombination. The chloroplast genome copy number in wildtype and transgenic P. kessleri-I was determined using Droplet Digital PCR. Conclusion The optimization of stable chloroplast transformation in marine alga P. kessleri-I should open a gateway for directly engineering the strain for carbon concentration mechanisms to fix more CO2, improving the photosynthetic efficiency and reducing the overall biofuels production cost.
Collapse
Affiliation(s)
- Prachi Nawkarkar
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Sagrika Chugh
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Surbhi Sharma
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Mukesh Jain
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Sachin Kajla
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Shashi Kumar
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| |
Collapse
|
8
|
Kwon KC, Lamb A, Fox D, Porphy Jegathese SJ. An evaluation of microalgae as a recombinant protein oral delivery platform for fish using green fluorescent protein (GFP). FISH & SHELLFISH IMMUNOLOGY 2019; 87:414-420. [PMID: 30703550 DOI: 10.1016/j.fsi.2019.01.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 05/15/2023]
Abstract
Recombinant proteins produced by biological systems such as bacteria, yeasts, mammalian and insect cell cultures are widely used for clinical or industrial purposes. Most therapeutic protein drugs require purification, cold chain, and injection, which make them prohibitively expensive and hinders their widespread use. Here, we describe a new economical oral vaccination platform using algae and evaluated its potential for the delivery of recombinant drugs using GFP expressed in the chloroplast of algal cells. The transplastomic algae expressing recombinant GFPs were freeze-dried for long-term storage at ambient temperature and for easy handling in feeding. GFPs bioencapsulated by lyophilized Chlamydomonas reinhardtii were found intact without degradation for several months at ambient temperature. The expression level of GFP in the lyophilized algae was estimated at 0.47 μg/mg dry weight. The GFPs bioencapsulated and orally delivered to Danio rerio were immunostained and observed in the intestinal tissues using a confocal microscope. Furthermore, the uptaken GFPs in the intestine were detected in the blood using ELISA and the detected level was 5.4 ng of GFP/μl of serum. These results demonstrate that microalgae can be a viable protein production and oral delivery system to vaccinate fish. The results give greater justification to continue exploring the concept of microalgal-based oral vaccines. The potential of the technology would greatly benefit aquaculture farmers by providing them with affordable, environmentally sustainable, and user-friendly vaccines.
Collapse
Affiliation(s)
- Kwang-Chul Kwon
- MicroSynbiotiX Ltd, 11011 N Torrey Pines Rd Ste. #135, La Jolla, CA, 92037, USA.
| | - Antonio Lamb
- MicroSynbiotiX Ltd, 11011 N Torrey Pines Rd Ste. #135, La Jolla, CA, 92037, USA
| | - David Fox
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Simon Jegan Porphy Jegathese
- MicroSynbiotiX Ltd, University College, Cork, Food Science Building, Level 4, Lab 442, Microbiology Department, Cork, Republic of Ireland
| |
Collapse
|
9
|
Norzagaray-Valenzuela CD, Germán-Báez LJ, Valdez-Flores MA, Hernández-Verdugo S, Shelton LM, Valdez-Ortiz A. Establishment of an efficient genetic transformation method in Dunaliella tertiolecta mediated by Agrobacterium tumefaciens. J Microbiol Methods 2018; 150:9-17. [PMID: 29777738 DOI: 10.1016/j.mimet.2018.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022]
Abstract
Microalgae are photosynthetic microorganisms widely used for the production of highly valued compounds, and recently they have been shown to be promising as a system for the heterologous expression of proteins. Several transformation methods have been successfully developed, from which the Agrobacterium tumefaciens-mediated method remains the most promising. However, microalgae transformation efficiency by A. tumefaciens is shown to vary depending on several transformation conditions. The present study aimed to establish an efficient genetic transformation system in the green microalgae Dunaliella tertiolecta using the A. tumefaciens method. The parameters assessed were the infection medium, the concentration of the A. tumefaciens and co-culture time. As a preliminary screening, the expression of the gusA gene and the viability of transformed cells were evaluated and used to calculate a novel parameter called Transformation Efficiency Index (TEI). The statistical analysis of TEI values showed five treatments with the highest gusA gene expression. To ensure stable transformation, transformed colonies were cultured on selective medium using hygromycin B and the DNA of resistant colonies were extracted after five subcultures and molecularly analyzed by PCR. Results revealed that treatments which use solid infection medium, A. tumefaciens OD600 = 0.5 and co-culture times of 72 h exhibited the highest percentage of stable gusA expression. Overall, this study established an efficient, optimized A. tumefaciens-mediated genetic transformation of D. tertiolecta, which represents a relatively easy procedure with no expensive equipment required. This simple and efficient protocol opens the possibility for further genetic manipulation of this commercially-important microalgae for biotechnological applications.
Collapse
Affiliation(s)
- Claudia D Norzagaray-Valenzuela
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortiz S/N, Culiacán, Sinaloa C.P. 80030, Mexico
| | - Lourdes J Germán-Báez
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortiz S/N, Culiacán, Sinaloa C.P. 80030, Mexico
| | - Marco A Valdez-Flores
- Centro de Investigación Asociado a la Salud Pública, Facultad de Medicina, Universidad Autónoma de Sinaloa, Campo 2. Av. Cedros y Calle Sauces, Culiacán, Sinaloa C.P. 80019, Mexico
| | | | - Luke M Shelton
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Angel Valdez-Ortiz
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortiz S/N, Culiacán, Sinaloa C.P. 80030, Mexico.
| |
Collapse
|
10
|
Mathieu-Rivet E, Lerouge P, Bardor M. Chlamydomonas reinhardtii: Protein Glycosylation and Production of Biopharmaceuticals. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-66360-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Proteomic approaches in microalgae: perspectives and applications. 3 Biotech 2017; 7:197. [PMID: 28667637 DOI: 10.1007/s13205-017-0831-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
Biofuels are the promising sources which are produced by various microalgae or in the form of metabolic by-products from organic or food waste products. Microalgae have been widely reported for the production of biofuels since these have a high storage of lipids as triacylglycerides, which can mainly be converted into biofuels. Recently, products such as biodiesel, bioethanol and biogas have renewed the interest toward the microalgae. The proteomics alone will not pave the way toward finding an ideal alga which will fulfill the current energy demands, but a combined approach of proteomics, genomics and bioinformatics can be pivotal for a sustainable solution. The present review emphasizes various technologies currently involved in algal proteomics for the efficient production of biofuels.
Collapse
|
12
|
Brasil BDSAF, de Siqueira FG, Salum TFC, Zanette CM, Spier MR. Microalgae and cyanobacteria as enzyme biofactories. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.04.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Jha D, Jain V, Sharma B, Kant A, Garlapati VK. Microalgae-based Pharmaceuticals and Nutraceuticals: An Emerging Field with Immense Market Potential. CHEMBIOENG REVIEWS 2017. [DOI: 10.1002/cben.201600023] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Durga Jha
- Jaypee University of Information Technology; Department of Biotechnology and Bioinformatics; 173 234 Waknaghat, Himachal Pradesh India
| | - Vishakha Jain
- Jaypee University of Information Technology; Department of Biotechnology and Bioinformatics; 173 234 Waknaghat, Himachal Pradesh India
| | - Brinda Sharma
- Jaypee University of Information Technology; Department of Biotechnology and Bioinformatics; 173 234 Waknaghat, Himachal Pradesh India
| | - Anil Kant
- Jaypee University of Information Technology; Department of Biotechnology and Bioinformatics; 173 234 Waknaghat, Himachal Pradesh India
| | - Vijay Kumar Garlapati
- Jaypee University of Information Technology; Department of Biotechnology and Bioinformatics; 173 234 Waknaghat, Himachal Pradesh India
| |
Collapse
|
14
|
Faè M, Accossato S, Cella R, Fontana F, Goldschmidt-Clermont M, Leelavathi S, Reddy VS, Longoni P. Comparison of transplastomic Chlamydomonas reinhardtii and Nicotiana tabacum expression system for the production of a bacterial endoglucanase. Appl Microbiol Biotechnol 2017; 101:4085-4092. [PMID: 28190097 DOI: 10.1007/s00253-017-8164-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 11/28/2022]
Abstract
The bulk production of recombinant enzymes by either prokaryotic or eukaryotic organisms might contribute to replace environmentally non-friendly chemistry-based industrial processes with enzyme-based biocatalysis, provided the cost of enzyme production is low. In this context, it is worth noting that the production of recombinant proteins by photosynthetic organisms offer both eukaryotic (nuclear) and prokaryotic (chloroplast) alternatives, along with the advantage of an autotrophic nutrition. Compared to nuclear transformation, chloroplast transformation generally allows a higher level of accumulation of the recombinant protein of interest. Furthermore, among the photosynthetic organisms, there is a choice of using either multicellular or unicellular ones. Tobacco, being a non-food and non-feed plant, has been considered as a good choice for producing enzymes with applications in technical industry, using a transplastomic approach. Also, unicellular green algae, in particular Chlamydomonas reinhardtii, have been proposed as candidate organisms for the production of recombinant proteins. In the light of the different features of these two transplastomic systems, we decided to make a direct comparison of the efficiency of production of a bacterial endoglucanase. With respect to the amount obtained, 14 mg g-1 of biomass fresh weight equivalent to 8-10% of the total protein content and estimated production cost, 1.5-2€ kg-1, tobacco proved to be far more favorable for bulk enzyme production when compared to C. reinhardtii which accumulated this endoglucanase at 0.003% of the total protein.
Collapse
Affiliation(s)
- Matteo Faè
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Sonia Accossato
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
- Laboratory of Plant Physiology, University of Neuchâtel, Rue Emilie-Argand 11, CH-2000, Neuchâtel, Switzerland
| | - Rino Cella
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Fabrizia Fontana
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, Sciences III, CH-1211, Genève, Switzerland
| | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, Sciences III, CH-1211, Genève, Switzerland
| | - Sadhu Leelavathi
- Plant Transformation Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vanga Siva Reddy
- Plant Transformation Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Paolo Longoni
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, Sciences III, CH-1211, Genève, Switzerland.
| |
Collapse
|
15
|
Development of phytase-expressing chlamydomonas reinhardtii for monogastric animal nutrition. BMC Biotechnol 2016; 16:29. [PMID: 26969115 PMCID: PMC4788879 DOI: 10.1186/s12896-016-0258-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 03/07/2016] [Indexed: 11/10/2022] Open
Abstract
Background In plant-derived animal feedstuffs, nearly 80 % of the total phosphorus content is stored as phytate. However, phytate is poorly digested by monogastric animals such as poultry, swine and fish, as they lack the hydrolytic enzyme phytase; hence it is regarded as a nutritionally inactive compound from a phosphate bioavailability point of view. In addition, it also chelates important dietary minerals and essential amino acids. Therefore, dietary supplementation with bioavailable phosphate and exogenous phytases are required to achieve optimal animal growth. In order to simplify the obtaining and application processes, we developed a phytase expressing cell-wall deficient Chlamydomonas reinhardtii strain. Results In this work, we developed a transgenic microalgae expressing a fungal phytase to be used as a food supplement for monogastric animals. A codon optimized Aspergillus niger PhyA E228K phytase (mE228K) with improved performance at pH 3.5 was transformed into the plastid genome of Chlamydomonas reinhardtii in order to achieve optimal expression. We engineered a plastid-specific construction harboring the mE228K gene, which allowed us to obtain high expression level lines with measurable in vitro phytase activity. Both wild-type and cell-wall deficient strains were selected, as the latter is a suitable model for animal digestion. The enzymatic activity of the mE228K expressing lines were approximately 5 phytase units per gram of dry biomass at pH 3.5 and 37 °C, similar to physiological conditions and economically competitive for use in commercial activities. Conclusions A reference basis for the future biotechnological application of microalgae is provided in this work. A cell-wall deficient transgenic microalgae with phytase activity at gastrointestinal pH and temperature and suitable for pellet formation was developed. Moreover, the associated microalgae biomass costs of this strain would be between US$5 and US$60 per ton of feedstuff, similar to the US$2 per ton of feedstuffs of commercially available phytases. Our data provide evidence of phytate-hydrolyzing microalgae biomass for use as a food additive without the need for protein purification.
Collapse
|
16
|
Dejtisakdi W, Miller SM. Overexpression of Calvin cycle enzyme fructose 1,6-bisphosphatase in Chlamydomonas reinhardtii has a detrimental effect on growth. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Banerjee C, Singh PK, Shukla P. Microalgal bioengineering for sustainable energy development: Recent transgenesis and metabolic engineering strategies. Biotechnol J 2016; 11:303-14. [DOI: 10.1002/biot.201500284] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/15/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Chiranjib Banerjee
- Department of Environmental Science & Engineering; Indian School of Mines; Dhanbad Jharkhand India
| | - Puneet Kumar Singh
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology; Maharshi Dayanand University; Rohtak Haryana India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology; Maharshi Dayanand University; Rohtak Haryana India
| |
Collapse
|
18
|
Doron L, Segal N, Shapira M. Transgene Expression in Microalgae-From Tools to Applications. FRONTIERS IN PLANT SCIENCE 2016; 7:505. [PMID: 27148328 PMCID: PMC4840263 DOI: 10.3389/fpls.2016.00505] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/29/2016] [Indexed: 05/17/2023]
Abstract
Microalgae comprise a biodiverse group of photosynthetic organisms that reside in water sources and sediments. The green microalgae Chlamydomonas reinhardtii was adopted as a useful model organism for studying various physiological systems. Its ability to grow under both photosynthetic and heterotrophic conditions allows efficient growth of non-photosynthetic mutants, making Chlamydomonas a useful genetic tool to study photosynthesis. In addition, this green alga can grow as haploid or diploid cells, similar to yeast, providing a powerful genetic system. As a result, easy and efficient transformation systems have been developed for Chlamydomonas, targeting both the chloroplast and nuclear genomes. Since microalgae comprise a rich repertoire of species that offer variable advantages for biotech and biomed industries, gene transfer technologies were further developed for many microalgae to allow for the expression of foreign proteins of interest. Expressing foreign genes in the chloroplast enables the targeting of foreign DNA to specific sites by homologous recombination. Chloroplast transformation also allows for the introduction of genes encoding several enzymes from a complex pathway, possibly as an operon. Expressing foreign proteins in the chloroplast can also be achieved by introducing the target gene into the nuclear genome, with the protein product bearing a targeting signal that directs import of the transgene-product into the chloroplast, like other endogenous chloroplast proteins. Integration of foreign genes into the nuclear genome is mostly random, resulting in large variability between different clones, such that extensive screening is required. The use of different selection modalities is also described, with special emphasis on the use of herbicides and metabolic markers which are considered to be friendly to the environment, as compared to drug-resistance genes that are commonly used. Finally, despite the development of a wide range of transformation tools and approaches, expression of foreign genes in microalgae suffers from low efficiency. Thus, novel tools have appeared in recent years to deal with this problem. Finally, while C. reinhardtii was traditionally used as a model organism for the development of transformation systems and their subsequent improvement, similar technologies can be adapted for other microalgae that may have higher biotechnological value.
Collapse
|
19
|
Heining M, Buchholz R. Photobioreactors with internal illumination - A survey and comparison. Biotechnol J 2015; 10:1131-7. [DOI: 10.1002/biot.201400572] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/19/2015] [Accepted: 02/25/2015] [Indexed: 12/11/2022]
|
20
|
Abstract
Chlamydomonas reinhardtii has many advantages as a photosynthetic model organism. One of these is facile, targeted chloroplast transformation by particle bombardment. Functional recombinant proteins can be expressed to significant levels in this system, potentially outperforming higher plants in speed of scaling, cost, and space requirements. Several strategies and regulatory regions can be used for achieving transgene expression. Here we present two of those strategies: one makes use of the psbD promoter for expressing moderate levels of the recombinant protein in a photosynthetic background. The other strategy is based on the strong psbA promoter for obtaining high yields of the recombinant product in a non-photosynthetic strain. We herein describe the vectors, transformation procedures, and screening methods associated with these two strategies.
Collapse
|
21
|
Gimpel JA, Hyun JS, Schoepp NG, Mayfield SP. Production of recombinant proteins in microalgae at pilot greenhouse scale. Biotechnol Bioeng 2014; 112:339-45. [DOI: 10.1002/bit.25357] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/19/2014] [Accepted: 07/22/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Javier A. Gimpel
- California Center for Algae Biotechnology, Division of Biological Sciences; University of California; San Diego, 9500 Gilman Dr. La Jolla CA 92093-0368 California
| | - James S. Hyun
- California Center for Algae Biotechnology, Division of Biological Sciences; University of California; San Diego, 9500 Gilman Dr. La Jolla CA 92093-0368 California
| | - Nathan G. Schoepp
- California Center for Algae Biotechnology, Division of Biological Sciences; University of California; San Diego, 9500 Gilman Dr. La Jolla CA 92093-0368 California
| | - Stephen P. Mayfield
- California Center for Algae Biotechnology, Division of Biological Sciences; University of California; San Diego, 9500 Gilman Dr. La Jolla CA 92093-0368 California
| |
Collapse
|
22
|
The potential of transgenic green microalgae; a robust photobioreactor to produce recombinant therapeutic proteins. World J Microbiol Biotechnol 2014; 30:2783-96. [PMID: 25115849 DOI: 10.1007/s11274-014-1714-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/30/2014] [Indexed: 02/01/2023]
Abstract
Microalgae have been used in food, cosmetic, and biofuel industries as a natural source of lipids, vitamins, pigments and antioxidants for a long time. Green microalgae, as potent photobioreactors, can be considered as an economical expression system to produce recombinant therapeutical proteins at large-scale due to low cost of production and scaling-up capitalization owning to the inexpensive medium requirement, fast growth rate, and the ease of manipulation. These microalgae possess all benefit eukaryotic expression systems including the ability of post-translational modifications required for proper folding and stability of active proteins. Among the many items regarded as recombinant protein production, this review compares the different expression systems with green microalgae like Dunaliella by viewing the nuclear/chloroplast transformation challenges/benefits, related selection markers/reporter genes, and crucial factors/strategies affecting the increase of foreign protein expression in microalgae transformants. Some important factors were discussed regarding the increase of protein yielding in microalgae transformants including: transformation-associated genotypic modifications, endogenous regulatory factors, promoters, codon optimization, enhancer elements, and milking of recombinant protein.
Collapse
|
23
|
Light-Induced Production of An Antibody Fragment and Malaria Vaccine Antigen from Chlamydomonas reinhardtii. Processes (Basel) 2014. [DOI: 10.3390/pr2030625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Crommelin DJA, Sindelar RD, Meibohm B. Genomics, Other “Omic” Technologies, Personalized Medicine, and Additional Biotechnology-Related Techniques. PHARMACEUTICAL BIOTECHNOLOGY 2013. [PMCID: PMC7122419 DOI: 10.1007/978-1-4614-6486-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The products resulting for biotechnologies continue to grow at an exponential rate, and the expectations are that an even greater percentage of drug development will be in the area of the biologics. In 2011, worldwide there were over 800 new biotech drugs and treatments in development including 23 antisense, 64 cell therapy, 50 gene therapy, 300 monoclonal antibodies, 78 recombinant proteins, and 298 vaccines (PhRMA 2012). Pharmaceutical biotechnology techniques are at the core of most methodologies used today for drug discovery and development of both biologics and small molecules. While recombinant DNA technology and hybridoma techniques were the major methods utilized in pharmaceutical biotechnology through most of its historical timeline, our ever-widening understanding of human cellular function and disease processes and a wealth of additional and innovative biotechnologies have been, and will continue to be, developed in order to harvest the information found in the human genome. These technological advances will provide a better understanding of the relationship between genetics and biological function, unravel the underlying causes of disease, explore the association of genomic variation and drug response, enhance pharmaceutical research, and fuel the discovery and development of new and novel biopharmaceuticals. These revolutionary technologies and additional biotechnology-related techniques are improving the very competitive and costly process of drug development of new medicinal agents, diagnostics, and medical devices. Some of the technologies and techniques described in this chapter are both well established and commonly used applications of biotechnology producing potential therapeutic products now in development including clinical trials. New techniques are emerging at a rapid and unprecedented pace and their full impact on the future of molecular medicine has yet to be imagined.
Collapse
Affiliation(s)
- Daan J. A. Crommelin
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, Utrecht The Netherlands
| | - Robert D. Sindelar
- Department of Pharmaceutical Sciences and Department of Medicine, The University of British Columbia, Vancouver, British Columbia Canada
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, College of Pharmacy, Memphis, Tennessee USA
| |
Collapse
|
25
|
Green factory: Plants as bioproduction platforms for recombinant proteins. Biotechnol Adv 2012; 30:1171-84. [DOI: 10.1016/j.biotechadv.2011.08.020] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 12/15/2022]
|
26
|
Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 2012; 7:e43349. [PMID: 22937037 PMCID: PMC3427385 DOI: 10.1371/journal.pone.0043349] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/19/2012] [Indexed: 02/06/2023] Open
Abstract
Microalgae have recently received attention as a potential low-cost host for the production of recombinant proteins and novel metabolites. However, a major obstacle to the development of algae as an industrial platform has been the poor expression of heterologous genes from the nuclear genome. Here we describe a nuclear expression strategy using the foot-and-mouth-disease-virus 2A self-cleavage peptide to transcriptionally fuse heterologous gene expression to antibiotic resistance in Chlamydomonas reinhardtii. We demonstrate that strains transformed with ble-2A-GFP are zeocin-resistant and accumulate high levels of GFP that is properly ‘cleaved’ at the FMDV 2A peptide resulting in monomeric, cytosolic GFP that is easily detectable by in-gel fluorescence analysis or fluorescent microscopy. Furthermore, we used our ble2A nuclear expression vector to engineer the heterologous expression of the industrial enzyme, xylanase. We demonstrate that linking xyn1 expression to ble2A expression on the same open reading frame led to a dramatic (∼100-fold) increase in xylanase activity in cells lysates compared to the unlinked construct. Finally, by inserting an endogenous secretion signal between the ble2A and xyn1 coding regions, we were able to target monomeric xylanase for secretion. The novel microalgae nuclear expression strategy described here enables the selection of transgenic lines that are efficiently expressing the heterologous gene-of-interest and should prove valuable for basic research as well as algal biotechnology.
Collapse
|
27
|
Haematococcus as a promising cell factory to produce recombinant pharmaceutical proteins. Mol Biol Rep 2012; 39:9931-9. [DOI: 10.1007/s11033-012-1861-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
|
28
|
Rosales-Mendoza S, Paz-Maldonado LMT, Soria-Guerra RE. Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. PLANT CELL REPORTS 2012; 31:479-94. [PMID: 22080228 DOI: 10.1007/s00299-011-1186-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 05/03/2023]
Abstract
Chlamydomonas reinhardtii has many advantages compared with traditional systems for the molecular farming of recombinant proteins. These include low production costs, rapid scalability at pilot level, absence of human pathogens and the ability to fold and assemble complex proteins accurately. Currently, the successful expression of several proteins with pharmaceutical relevance has been reported from the nuclear and the chloroplastic genome of this alga, demonstrating its usefulness for biotechnological applications. However, several factors affect the level of recombinant protein expression in Chlamydomonas such as enhancer elements, codon dependency, sensitivity to proteases and transformation-associated genotypic modification. The present review outlines a number of strategies to increase protein yields and summarizes recent achievements in algal protein production including biopharmaceuticals such as vaccines, antibodies, hormones and enzymes with implications on health-related approaches. The current status of bioreactor developments for algal culture and the challenges of scale-up and optimization processes are also discussed.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, SLP, Mexico.
| | | | | |
Collapse
|
29
|
Hempel F, Lau J, Klingl A, Maier UG. Algae as protein factories: expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum. PLoS One 2011; 6:e28424. [PMID: 22164289 PMCID: PMC3229587 DOI: 10.1371/journal.pone.0028424] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 11/08/2011] [Indexed: 12/29/2022] Open
Abstract
Microalgae are thought to offer great potential as expression system for various industrial, therapeutic and diagnostic recombinant proteins as they combine high growth rates with all benefits of eukaryotic expression systems. Moreover, microalgae exhibit a phototrophic lifestyle like land plants, hence protein expression is fuelled by photosynthesis, which is CO2-neutral and involves only low production costs. So far, however, research on algal bioreactors for recombinant protein expression is very rare calling for further investigations in this highly promising field. In this study, we present data on the expression of a monoclonal human IgG antibody against the Hepatitis B surface protein and the respective antigen in the diatom Phaeodactylum tricornutum. Antibodies are fully-assembled and functional and accumulate to 8.7% of total soluble protein, which complies with 21 mg antibody per gram algal dry weight. The Hepatitis B surface protein is functional as well and is recognized by algae-produced and commercial antibodies.
Collapse
Affiliation(s)
- Franziska Hempel
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| | | | | | | |
Collapse
|
30
|
Gong Y, Hu H, Gao Y, Xu X, Gao H. Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J Ind Microbiol Biotechnol 2011; 38:1879-90. [PMID: 21882013 DOI: 10.1007/s10295-011-1032-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/19/2011] [Indexed: 12/19/2022]
Abstract
Over the last few years microalgae have gained increasing interest as a natural source of valuable compounds and as bioreactors for recombinant protein production. Natural high-value compounds including pigments, long-chain polyunsaturated fatty acids, and polysaccharides, which have a wide range of applications in the food, feed, cosmetics, and pharmaceutical industries, are currently produced with nontransgenic microalgae. However, transgenic microalgae can be used as bioreactors for the production of therapeutic and industrially relevant recombinant proteins. This technology shows great promise to simplify the production process and significantly decrease the production costs. To date, a variety of recombinant proteins have been produced experimentally from the nuclear or chloroplast genome of transgenic Chlamydomonas reinhardtii. These include monoclonal antibodies, vaccines, hormones, pharmaceutical proteins, and others. In this review, we outline recent progress in the production of recombinant proteins with transgenic microalgae as bioreactors, methods for genetic transformation of microalgae, and strategies for highly efficient expression of heterologous genes. In particular, we highlight the importance of maximizing the value of transgenic microalgae through producing recombinant proteins together with recovery of natural high-value compounds. Finally, we outline some important issues that need to be addressed before commercial-scale production of high-value recombinant proteins and compounds from transgenic microalgae can be realized.
Collapse
Affiliation(s)
- Yangmin Gong
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, Hubei, China
| | | | | | | | | |
Collapse
|
31
|
Coragliotti AT, Beligni MV, Franklin SE, Mayfield SP. Molecular factors affecting the accumulation of recombinant proteins in the Chlamydomonas reinhardtii chloroplast. Mol Biotechnol 2011; 48:60-75. [PMID: 21113690 PMCID: PMC3068253 DOI: 10.1007/s12033-010-9348-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an effort to develop microalgae as a robust system for the production of valuable proteins, we analyzed some of the factors affecting recombinant protein expression in the chloroplast of the green alga Chlamydomonas reinhardtii. We monitored mRNA accumulation, protein synthesis, and protein turnover for three codon-optimized transgenes including GFP, bacterial luciferase, and a large single chain antibody. GFP and luciferase proteins were quite stable, while the antibody was less so. Measurements of protein synthesis, in contrast, clearly showed that translation of the three chimeric mRNAs was greatly reduced when compared to endogenous mRNAs under control of the same atpA promoter/UTR. Only in a few conditions this could be explained by limited mRNA availability since, in most cases, recombinant mRNAs accumulated quite well when compared to the atpA mRNA. In vitro toeprint and in vivo polysome analyses suggest that reduced ribosome association might contribute to limited translational efficiency. However, when recombinant polysome levels and protein synthesis are analyzed as a whole, it becomes clear that other steps, such as inefficient protein elongation, are likely to have a considerable impact. Taken together, our results point to translation as the main step limiting the expression of heterologous proteins in the C. reinhardtii chloroplast.
Collapse
Affiliation(s)
- Anna T Coragliotti
- The Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
32
|
Obembe OO, Popoola JO, Leelavathi S, Reddy SV. Advances in plant molecular farming. Biotechnol Adv 2010; 29:210-22. [PMID: 21115109 DOI: 10.1016/j.biotechadv.2010.11.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/12/2010] [Accepted: 11/12/2010] [Indexed: 01/01/2023]
Abstract
Plant molecular farming (PMF) is a new branch of plant biotechnology, where plants are engineered to produce recombinant pharmaceutical and industrial proteins in large quantities. As an emerging subdivision of the biopharmaceutical industry, PMF is still trying to gain comparable social acceptance as the already established production systems that produce these high valued proteins in microbial, yeast, or mammalian expression systems. This article reviews the various cost-effective technologies and strategies, which are being developed to improve yield and quality of the plant-derived pharmaceuticals, thereby making plant-based production system suitable alternatives to the existing systems. It also attempts to overview the different novel plant-derived pharmaceuticals and non-pharmaceutical protein products that are at various stages of clinical development or commercialization. It then discusses the biosafety and regulatory issues, which are crucial (if strictly adhered to) to eliminating potential health and environmental risks, which in turn is necessary to earning favorable public perception, thus ensuring the success of the industry.
Collapse
Affiliation(s)
- Olawole O Obembe
- Department of Biological Sciences, Covenant University, PMB 1023 Ota, Ogun State, Nigeria.
| | | | | | | |
Collapse
|
33
|
Specht E, Miyake-Stoner S, Mayfield S. Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 2010; 32:1373-83. [PMID: 20556634 PMCID: PMC2941057 DOI: 10.1007/s10529-010-0326-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/07/2010] [Indexed: 12/03/2022]
Abstract
A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins.
Collapse
Affiliation(s)
- Elizabeth Specht
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368 USA
| | - Shigeki Miyake-Stoner
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368 USA
| | - Stephen Mayfield
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368 USA
| |
Collapse
|
34
|
Specht E, Miyake-Stoner S, Mayfield S. Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 2010; 32:1373-1383. [PMID: 20556634 DOI: 10.1007/s10529-010-0326-325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/07/2010] [Indexed: 05/28/2023]
Abstract
A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins.
Collapse
Affiliation(s)
- Elizabeth Specht
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368, USA
| | | | | |
Collapse
|
35
|
Franconi R, Demurtas OC, Massa S. Plant-derived vaccines and other therapeutics produced in contained systems. Expert Rev Vaccines 2010; 9:877-92. [PMID: 20673011 DOI: 10.1586/erv.10.91] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The use of contained plant systems for the production of biopharmaceuticals represents a powerful alternative to current methods, combining the benefits of whole-plant systems and cell cultures. In vitro contained production systems include plant cell suspensions, hairy root cultures, novel plants grown in contained conditions and microalgae. These systems show intrinsic advantages, such as control over growth conditions, production in compliance with good manufacturing practice and avoidance of political resistance to the release of genetically modified field crops. At present, one of the two plant-produced vaccine-related products that have gone all the way through production and regulatory hurdles derives from tobacco cell suspensions, and the second is a human therapeutic enzyme, which is expected to reach commercial development soon and derives from carrot suspension cells. In the future, several other products from contained systems are expected to reach the clinical trial stage.
Collapse
Affiliation(s)
- Rosella Franconi
- Italian National Agency for New Technologies, UTBIORAD, CR Casaccia, Rome, Italy.
| | | | | |
Collapse
|
36
|
Rybicki EP. Plant-made vaccines for humans and animals. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:620-37. [PMID: 20233333 PMCID: PMC7167690 DOI: 10.1111/j.1467-7652.2010.00507.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 05/17/2023]
Abstract
The concept of using plants to produce high-value pharmaceuticals such as vaccines is 20 years old this year and is only now on the brink of realisation as an established technology. The original reliance on transgenic plants has largely given way to transient expression; proofs of concept for human and animal vaccines and of efficacy for animal vaccines have been established; several plant-produced vaccines have been through Phase I clinical trials in humans and more are scheduled; regulatory requirements are more clear than ever, and more facilities exist for manufacture of clinic-grade materials. The original concept of cheap edible vaccines has given way to a realisation that formulated products are required, which may well be injectable. The technology has proven its worth as a means of cheap, easily scalable production of materials: it now needs to find its niche in competition with established technologies. The realised achievements in the field as well as promising new developments will be reviewed, such as rapid-response vaccines for emerging viruses with pandemic potential and bioterror agents.
Collapse
Affiliation(s)
- Edward P Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa. ed.rybicki@ uct.ac.za
| |
Collapse
|
37
|
Johanningmeier U, Fischer D. Perspective for the Use of Genetic Transformants in Order to Enhance the Synthesis of the Desired Metabolites: Engineering Chloroplasts of Microalgae for the Production of Bioactive Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 698:144-51. [DOI: 10.1007/978-1-4419-7347-4_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Weisser NE, Hall JC. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 2009; 27:502-20. [PMID: 19374944 DOI: 10.1016/j.biotechadv.2009.04.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/03/2009] [Accepted: 04/04/2009] [Indexed: 11/18/2022]
Abstract
Antibodies (Abs) are some of the most powerful tools in therapy and diagnostics and are currently one of the fastest growing classes of therapeutic molecules. Recombinant antibody (rAb) fragments are becoming popular therapeutic alternatives to full length monoclonal Abs since they are smaller, possess different properties that are advantageous in certain medical applications, can be produced more economically and are easily amendable to genetic manipulation. Single-chain variable fragment (scFv) Abs are one of the most popular rAb format as they have been engineered into larger, multivalent, bi-specific and conjugated forms for many clinical applications. This review will show the tremendous versatility and importance of scFv fragments as they provide the basic antigen binding unit for a multitude of engineered Abs for use as human therapeutics and diagnostics.
Collapse
Affiliation(s)
- Nina E Weisser
- Department of Environmental Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | | |
Collapse
|
39
|
Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M. Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. PLANTA 2009; 229:873-83. [PMID: 19127370 DOI: 10.1007/s00425-008-0879-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 12/17/2008] [Indexed: 05/20/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has been identified as a promising organism for the production of recombinant proteins. While during the last years important improvements have been developed for the production of proteins within the chloroplast, the expression levels of transgenes from the nuclear genome were too low to be of biotechnological importance. In this study, we integrated endogenous intronic sequences into the expression cassette to enhance the expression of transgenes in the nucleus. The insertion of one or more copies of intron sequences from the Chlamydomonas RBCS2 gene resulted in increased expression levels of a Renilla-luciferase gene used as a reporter. Although any of the three RBCS2 introns alone had a positive effect on expression, their integration in their physiological number and order created an over-proportional stimulating effect observed in all transformants. The secretion of the luciferase protein into the medium was achieved by using the export sequence of the Chlamydomonas ARS2 gene in a cell wall deficient strain and Renilla-luciferase could be successfully concentrated with the help of attached C-terminal protein tags. Similarly, a codon adapted gene variant for human erythropoietin (crEpo) was expressed as a protein of commercial relevance. Extracellular erythropoietin produced in Chlamydomonas showed a molecular mass of 33 kDa probably resulting from post-translational modifications. Both, the increased expression levels of transgenes by integration of introns and the isolation of recombinant proteins from the culture medium are important steps towards an extended biotechnological use of this alga.
Collapse
Affiliation(s)
- Alke Eichler-Stahlberg
- Center of Excellence for Fluorescent Bioanalysis, University of Regensburg, Josef-Engert-Str. 9, 93053, Regensburg, Germany
| | | | | | | |
Collapse
|
40
|
Sourrouille C, Marshall B, Liénard D, Faye L. From Neanderthal to nanobiotech: from plant potions to pharming with plant factories. Methods Mol Biol 2009; 483:1-23. [PMID: 19183890 DOI: 10.1007/978-1-59745-407-0_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plants were the main source for human drugs until the beginning of the nineteenth century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. During the last decades of the twentieth century, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. After a temporary decrease in interest, plants are rapidly moving back into human pharmacopoeia, with the recent development of plant-based recombinant protein production systems offering a safe and extremely cost-effective alternative to microbial and mammalian cell cultures. In this short review, we will illustrate that current improvements in plant expression systems are making them suitable as alternative factories for the production of either simple or highly complex therapeutic proteins.
Collapse
|
41
|
Influence of Codon Bias on the Expression of Foreign Genes in Microalgae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 616:46-53. [DOI: 10.1007/978-0-387-75532-8_5] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 2008; 19:430-6. [DOI: 10.1016/j.copbio.2008.07.008] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/24/2008] [Accepted: 07/29/2008] [Indexed: 12/16/2022]
|
43
|
Marín-Navarro J, Manuell AL, Wu J, P Mayfield S. Chloroplast translation regulation. PHOTOSYNTHESIS RESEARCH 2007; 94:359-74. [PMID: 17661159 DOI: 10.1007/s11120-007-9183-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 04/19/2007] [Indexed: 05/16/2023]
Abstract
Chloroplast gene expression is primarily controlled during the translation of plastid mRNAs. Translation is regulated in response to a variety of biotic and abiotic factors, and requires a coordinate expression with the nuclear genome. The translational apparatus of chloroplasts is related to that of bacteria, but has adopted novel mechanisms in order to execute the specific roles that this organelle performs within a eukaryotic cell. Accordingly, plastid ribosomes contain a number of chloroplast-unique proteins and domains that may function in translational regulation. Chloroplast translation regulation involves cis-acting RNA elements (located in the mRNA 5' UTR) as well as a set of corresponding trans-acting protein factors. While regulation of chloroplast translation is primarily controlled at the initiation steps through these RNA-protein interactions, elongation steps are also targets for modulating chloroplast gene expression. Translation of chloroplast mRNAs is regulated in response to light, and the molecular mechanisms underlying this response involve changes in the redox state of key elements related to the photosynthetic electron chain, fluctuations of the ADP/ATP ratio and the generation of a proton gradient. Photosynthetic complexes also experience assembly-related autoinhibition of translation to coordinate the expression of different subunits of the same complex. Finally, the localization of all these molecular events among the different chloroplast subcompartments appear to be a crucial component of the regulatory mechanisms of chloroplast gene expression.
Collapse
Affiliation(s)
- Julia Marín-Navarro
- Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
44
|
Abstract
This review examines the challenges of segregating biopharmed crops expressing pharmaceutical or veterinary agents from mainstream crops, particularly those destined for food or feed use. The strategy of using major food crops as production vehicles for the expression of pharmaceutical or veterinary agents is critically analysed in the light of several recent episodes of contamination of the human food chain by non-approved crop varieties. Commercially viable strategies to limit or avoid biopharming intrusion into the human food chain require the more rigorous segregation of food and non-food varieties of the same crop species via a range of either physical or biological methods. Even more secure segregation is possible by the use of non-food crops, non-crop plants or in vitro plant cultures as production platforms for biopharming. Such platforms already under development range from outdoor-grown Nicotiana spp. to glasshouse-grown Arabidopsis, lotus and moss. Amongst the more effective methods for biocontainment are the plastid expression of transgenes, inducible and transient expression systems, and physical containment of plants or cell cultures. In the current atmosphere of heightened concerns over food safety and biosecurity, the future of biopharming may be largely determined by the extent to which the sector is able to maintain public confidence via a more considered approach to containment and security of its plant production systems.
Collapse
Affiliation(s)
- Denis J Murphy
- Biotechnology Unit, Division of Biological Sciences, University of Glamorgan, Treforest, CF37 1DL, UK.
| |
Collapse
|
45
|
Abstract
Biolistic delivery of DNA initiated plastid transformation research and still is the most widelyused approach to generate transplastomic lines in both algae and higher plants. The principal designof transformation vectors is similar in both phylogenetic groups. Although important additions tothe list of species transformed in their plastomes have been made in algae and in higher plants, thekey organisms in the area are still the two species, in which stable plastid transformation was initiallysuccessful, i.e., Chlamydomonas reinhardtii and tobacco. Basicresearch into organelle biology has substantially benefited from the homologous recombination-basedcapability to precisely insert at predetermined loci, delete, disrupt, or exchange plastid genomesequences. Successful expression of recombinant proteins, including pharmaceutical proteins, hasbeen demonstrated in Chlamydomonas as well as in higher plants,where some interesting agronomic traits were also engineered through plastid transformation.
Collapse
|
46
|
Mayfield SP, Manuell AL, Chen S, Wu J, Tran M, Siefker D, Muto M, Marin-Navarro J. Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Opin Biotechnol 2007; 18:126-33. [PMID: 17317144 DOI: 10.1016/j.copbio.2007.02.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/05/2007] [Accepted: 02/08/2007] [Indexed: 11/19/2022]
Abstract
Protein-based therapeutics are the fastest growing sector of drug development, mainly because of the high sensitivity and specificity of these molecules. Their high specificity leads to few side effects and excellent success rates in drug development. However, the inherent complexity of these molecules restricts their synthesis to living cells, making recombinant proteins expensive to produce. In addition to therapeutic uses, recombinant proteins also have a variety of industrial applications and are important research reagents. Eukaryotic algae offer the potential to produce high yields of recombinant proteins more rapidly and at much lower cost than traditional cell culture. Additionally, transgenic algae can be grown in complete containment, reducing any risk of environmental contamination. This system might also be used for the oral delivery of therapeutic proteins, as green algae are edible and do not contain endotoxins or human viral or prion contaminants.
Collapse
Affiliation(s)
- Stephen P Mayfield
- Department of Cell Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Griesbeck C, Kobl I, Heitzer M. Chlamydomonas reinhardtii: a protein expression system for pharmaceutical and biotechnological proteins. Mol Biotechnol 2007; 34:213-23. [PMID: 17172667 DOI: 10.1385/mb:34:2:213] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Recombinant proteins have become more and more important for the pharmaceutical and chemical industry. Although various systems for protein expression have been developed, there is an increasing demand for inexpensive methods of large-scale production. Eukaryotic algae could serve as a novel option for the manufacturing of recombinant proteins, as they can be cultivated in a cheap and easy manner and grown to high cell densities. Being a model organism, the unicellular green alga Chlamydomonas reinhardtii has been studied intensively over the last decades and offers now a complete toolset for genetic manipulation. Recently, the successful expression of several proteins with pharmaceutical relevance has been reported from the nuclear and the chloroplastic genome of this alga, demonstrating its ability for biotechnological applications.
Collapse
Affiliation(s)
- Christoph Griesbeck
- Center of Excellence for Fluorescent Bioanalysis, Josef-Engert-Str. 9, D-93053 Regensburg, Germany.
| | | | | |
Collapse
|
48
|
Liénard D, Sourrouille C, Gomord V, Faye L. Pharming and transgenic plants. BIOTECHNOLOGY ANNUAL REVIEW 2007; 13:115-47. [PMID: 17875476 DOI: 10.1016/s1387-2656(07)13006-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plant represented the essence of pharmacopoeia until the beginning of the 19th century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. In the last decades, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. More recently, molecular farming has rapidly pushed towards plants among the major players in recombinant protein production systems. Indeed, therapeutic protein production is safe and extremely cost-effective in plants. Unlike microbial fermentation, plants are capable of carrying out post-translational modifications and, unlike production systems based on mammalian cell cultures, plants are devoid of human infective viruses and prions. Furthermore, a large panel of strategies and new plant expression systems are currently developed to improve the plant-made pharmaceutical's yields and quality. Recent advances in the control of post-translational maturations in transgenic plants will allow them, in the near future, to perform human-like maturations on recombinant proteins and, hence, make plant expression systems suitable alternatives to animal cell factories.
Collapse
Affiliation(s)
- David Liénard
- Université de Rouen, CNRS UMR 6037, IFRMP 23, GDR 2590, Faculté des Sciences, Bât. Ext. Biologie, 76821 Mont-Saint-Aignan cedex, France
| | | | | | | |
Collapse
|
49
|
Yang Z, Li Y, Chen F, Li D, Zhang Z, Liu Y, Zheng D, Wang Y, Shen G. Expression of human soluble TRAIL in Chlamydomonas reinhardtii chloroplast. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-006-2041-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Abstract
In recent years, with the development of genetics molecular biology and plant biotechnology, the vaccination (e.g. genetic engineering subunit vaccine, living vector vaccine, nucleic acid vaccine) programs are taking on a prosperous evolvement. In particular, the technology of the use of transgenic plants to produce human or animal therapeutic vaccines receives increasing attention. Expressing vaccine candidates in vegetables and fruits open up a new avenue for producing oral/edible vaccines. Transgenic plant vaccine disquisitions exhibit a tempting latent exploiting foreground. There are a lot of advantages for transgenic plant vaccines, such as low cost, easiness of storage, and convenient immune-inoculation. Some productions converged in edible tissues, so they can be consumed directly without isolation and purification. Up to now, many transgenic plant vaccine productions have been investigated and developed. In this review, recent advances on plant-derived recombinant protein expression systems, infectious targets, and delivery systems are presented. Some issues of high concern such as biosafety and public health are also discussed. Special attention is given to the prospects and limitations on transgenic plant vaccines.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Bioreactors
- Carica/immunology
- Carica/metabolism
- Edible Grain/immunology
- Edible Grain/metabolism
- Eukaryota/immunology
- Eukaryota/metabolism
- Fruit/immunology
- Fruit/metabolism
- Genetic Vectors
- Humans
- Musa/immunology
- Musa/metabolism
- Plant Viruses/immunology
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Recombinant Proteins/biosynthesis
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/biosynthesis
- Vaccines, Edible/genetics
- Vaccines, Edible/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/biosynthesis
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vegetables/immunology
- Vegetables/metabolism
Collapse
Affiliation(s)
- Mei Han
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | | | | | | |
Collapse
|