1
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
2
|
Mieszała M, Jennings HJ, Drab M, Gamian A. Conjugation of Meningococcal Lipooligosaccharides Through Their Non-Reducing Terminus Results in Improved Induction a Protective Immune Response. Arch Immunol Ther Exp (Warsz) 2019; 67:237-248. [PMID: 31030218 PMCID: PMC6597602 DOI: 10.1007/s00005-019-00542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 04/05/2019] [Indexed: 11/20/2022]
Abstract
The present studies prove that conjugation of meningococcal lipooligosaccharides through their non-reducing terminus conserves their inner epitopes resulting in conjugates potent to induce a protective immune response. Four different oligosaccharides were obtained by specific degradations of the same L7 lipooligosaccharide (L7-LOS), and each was linked to tetanus toxoid by direct reductive amination. Two were truncated oligosaccharides with incomplete inner epitopes and were obtained by mild acid hydrolysis of lipooligosaccharide. The terminal galactose of one oligosaccharide was additionally enzymatically oxidized. These oligosaccharides were conjugated through a newly exposed terminal Kdo in reducing end or through oxidized galactose localized at non-reducing end of the core, respectively. The third was a full-length oligosaccharide obtained by O-deacylation of the L7-LOS and subsequent enzymatic removal of phosphate substituents from its lipid A moiety. The fourth one was also a full-length O-deacylated lipooligosaccharide, but treated with galactose oxidase. This allowed direct conjugation to tetanus toxoid through terminal 2-N-acyl-2-deoxy-d-glucopyranose or through oxidized galactose, respectively. Comparison of the immune performance of four conjugates in mice revealed, that while each was able to induce significant level of L7-LOS-specific IgG antibody, the conjugates made with the full-length saccharides were able to induce antibodies with increased bactericidal activity against homologous meningococci. Only full-length oligosaccharides were good inhibitors of the binding of L7-LOS to the bactericidal antiserum. Moreover, induction of the significant level of the L7-LOS-specific antibody by full-length lipooligosaccharide conjugated from non-reducing end, provided also the direct evidence that internal core epitopes are fully responsible for the immunorecognition and immunoreactivity.
Collapse
Affiliation(s)
- Małgorzata Mieszała
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland.
| | - Harold J Jennings
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, ON, Canada
| | - Marek Drab
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland
| |
Collapse
|
3
|
Salman M, St Michael F, Ali A, Jabbar A, Cairns C, Hayes AC, Rahman M, Iqbal M, Haque A, Cox AD. First characterization of immunogenic conjugates of Vi negative Salmonella Typhi O-specific polysaccharides with rEPA protein for vaccine development. J Immunol Methods 2017; 450:27-33. [PMID: 28735760 DOI: 10.1016/j.jim.2017.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Efficacious typhoid vaccines for young children will significantly reduce the disease burden in developing world. The Vi polysaccharide based conjugate vaccines (Vi-rEPA) against Salmonella Typhi Vi positive strains has shown high efficacy but may be ineffective against Vi negative S. Typhi. In this study, for the first time, we report the synthesis and evaluation of polysaccharide-protein conjugates of Vi negative S. Typhi as potential vaccine candidates. Four different conjugates were synthesized using recombinant exoprotein A of Pseudomonas aeruginosa (rEPA) and human serum albumin (HSA) as the carrier proteins, using either direct reductive amination or an intermediate linker molecule, adipic acid dihydrazide (ADH). Upon injection into mice, a significantly higher antibody titer was observed in mice administrated with conjugate-1 (OSP-HSA) (P=0.0001) and conjugate 2 (OSP-rEPA) (P≤0.0001) as compared to OSP alone. In contrast, the antibody titer elicited by conjugate 3 (OSPADH-HSA) and conjugate 4 (OSPADH-rEPA) were insignificant (P=0.1684 and P=0.3794, respectively). We conclude that reductive amination is the superior method to prepare the S. Typhi OSP glycoconjugate. Moreover, rEPA was a better carrier protein than HSA. Thus OSP-rEPA conjugate seems to be efficacious typhoid vaccines candidate, it may be evaluated further and recommended for the clinical trials.
Collapse
Affiliation(s)
- M Salman
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Canada; Health Biotechnology Division, National Institute for Biotechnology, Faisalabad, Pakistan; Department of Microbiology and Biotechnology, Abasyn University, Peshawar, Pakistan.
| | - F St Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Canada
| | - A Ali
- Health Biotechnology Division, National Institute for Biotechnology, Faisalabad, Pakistan
| | - A Jabbar
- Department of Biotechnology, Mirpur University of Science & Technology (MUST), Mirpur, AJK, Pakistan
| | - C Cairns
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Canada
| | - A C Hayes
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Canada
| | - M Rahman
- Health Biotechnology Division, National Institute for Biotechnology, Faisalabad, Pakistan
| | - M Iqbal
- Health Biotechnology Division, National Institute for Biotechnology, Faisalabad, Pakistan
| | - A Haque
- Faculty of Life Sciences, University of Faisalabad, Faisalabad, Pakistan
| | - A D Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Canada.
| |
Collapse
|
4
|
Cox AD, Williams D, Cairns C, St Michael F, Fleming P, Vinogradov E, Arbour M, Masson L, Zou W. Investigating the candidacy of a capsular polysaccharide-based glycoconjugate as a vaccine to combat Haemophilus influenzae type a disease: A solution for an unmet public health need. Vaccine 2017; 35:6129-6136. [PMID: 28951087 DOI: 10.1016/j.vaccine.2017.09.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/17/2017] [Indexed: 11/29/2022]
Abstract
After the introduction of the glycoconjugate vaccine based upon the capsular polysaccharide ofHaemophilus influenzaetype b in the mid 1980s there was a remarkable decrease in the number of invasive cases reported for this organism. Since the 1990s several groups have observed the emergence ofHaemophilus influenzaetype a (Hia), especially in indigenous communities in the northern regions of Canada and Alaska, to a stage where a solution is warranted to prevent further unnecessary deaths due to this pathogen. A glycoconjugate vaccine solution based upon the type a capsular polysaccharide (CPS) was investigated pre-clinically in an effort to illustrate the proof of concept for this approach. In this study we describe the growth of Hia and the isolation, purification and conjugation of the CPS to several carrier proteins. The resulting glycoconjugates were immunised in mice and rabbits provoking sera that facilitated bactericidal killing against all type a strains that we tested. This study has illustrated the pre-clinical proof of concept of a glycoconjugate vaccine based on the CPS of Hia asa solution to this emerging disease.
Collapse
Affiliation(s)
- Andrew D Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON K1A 0R6, Canada.
| | - Dean Williams
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Chantelle Cairns
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Frank St Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Perry Fleming
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Evgeny Vinogradov
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Mélanie Arbour
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Luke Masson
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Wei Zou
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
5
|
Inhibition of the alternative pathway of nonhuman infant complement by porin B2 contributes to virulence of Neisseria meningitidis in the infant rat model. Infect Immun 2014; 82:2574-84. [PMID: 24686052 DOI: 10.1128/iai.01517-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neisseria meningitidis utilizes capsular polysaccharide, lipooligosaccharide (LOS) sialic acid, factor H binding protein (fHbp), and neisserial surface protein A (NspA) to regulate the alternative pathway (AP) of complement. Using meningococcal mutants that lacked all four of the above-mentioned molecules (quadruple mutants), we recently identified a role for PorB2 in attenuating the human AP; inhibition was mediated by human fH, a key downregulatory protein of the AP. Previous studies showed that fH downregulation of the AP via fHbp or NspA is specific for human fH. Here, we report that PorB2-expressing quadruple mutants also regulate the AP of baby rabbit and infant rat complement. Blocking a human fH binding region on PorB2 of the quadruple mutant of strain 4243 with a chimeric protein that comprised human fH domains 6 and 7 fused to murine IgG Fc enhanced AP-mediated baby rabbit C3 deposition, which provided evidence for an fH-dependent mechanism of nonhuman AP regulation by PorB2. Using isogenic mutants of strain H44/76 that differed only in their PorB molecules, we confirmed a role for PorB2 in resistance to killing by infant rat serum. The PorB2-expressing strain also caused higher levels of bacteremia in infant rats than its isogenic PorB3-expressing counterpart, thus providing a molecular basis for increased survival of PorB2 isolates in this model. These studies link PorB2 expression with infection of infant rats, which could inform the choice of meningococcal strains for use in animal models, and reveals, for the first time, that PorB2-expressing strains of N. meningitidis regulate the AP of baby rabbits and rats.
Collapse
|
6
|
Anderson AS, Jansen KU, Eiden J. New frontiers in meningococcal vaccines. Expert Rev Vaccines 2014; 10:617-34. [DOI: 10.1586/erv.11.50] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Investigating the candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: conjugates based on core oligosaccharides. Glycoconj J 2013; 31:25-39. [DOI: 10.1007/s10719-013-9500-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|
8
|
Sanders H, Kaaijk P, van den Dobbelsteen GP. Preclinical evaluation of MenB vaccines: prerequisites for clinical development. Expert Rev Vaccines 2013; 12:31-42. [PMID: 23256737 DOI: 10.1586/erv.12.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the widespread use of polysaccharide and conjugate vaccines against disease caused by several serogroups of Neisseria meningitidis, vaccines targeting meningococci expressing the serogroup B capsule (MenB) have focused on subcapsular antigens, due to crossreactivity of the polysaccharide with human glycoproteins. Protein vaccines composed of outer membrane vesicles have been used successfully to control epidemics of MenB disease in several countries; however, these are specific for epidemic strains. Currently, a single serogroup B vaccine, aiming to provide comprehensive coverage, has been approved for use, and several others are undergoing clinical trials. Data on potential new vaccine candidates, from discovery to initial preclinical evaluation, are regularly published. In this review, the data required to progress from preclinical to clinical development of MenB vaccines are outlined, with reference to relevant regulatory guidelines. The issues caused by a lack of reliable animal models, particularly with respect to determination of protective efficacy, are also discussed.
Collapse
Affiliation(s)
- Holly Sanders
- Bacterial Vaccines, Crucell Holland, Leiden, The Netherlands
| | | | | |
Collapse
|
9
|
Ulanova M, Tsang R, Altman E. Neglected infectious diseases in Aboriginal communities: Haemophilus influenzae serotype a and Helicobacter pylori. Vaccine 2012; 30:6960-6. [DOI: 10.1016/j.vaccine.2012.09.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/04/2012] [Accepted: 09/25/2012] [Indexed: 12/17/2022]
|
10
|
Altman E, Chandan V, Harrison BA, Veloso-Pita R, Li J, KuoLee R, Chen W, Vérez-Bencomo V. Design and immunological properties of Helicobacter pylori glycoconjugates based on a truncated lipopolysaccharide lacking Lewis antigen and comprising an α-1,6-glucan chain. Vaccine 2012; 30:7332-41. [PMID: 22534169 DOI: 10.1016/j.vaccine.2012.04.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 03/02/2012] [Accepted: 04/10/2012] [Indexed: 12/16/2022]
Abstract
To investigate the vaccine potential of H. pylori lipopolysaccharide (LPS), truncated LPS of H. pylori strain 26695 HP0826::Kan lacking O-chain polysaccharide and comprising an extended α-1,6-linked glucan chain was conjugated to tetanus toxoid (TT) or bovine serum albumin (BSA). Two approaches were used for delipidation or partial delipidation of H. pylori LPS: (1) mild hydrolysis resulting in delipidated LPS (dLPS) and (2) treatment with anhydrous hydrazine resulting in removal of O-linked fatty acids (LPS-OH). Both LPS-OH and dLPS were covalently linked through a 2-keto-3-deoxy-octulosonic acid (Kdo) residue to a diamino group-containing spacer, followed by conjugation to thiolated TT or BSA to give conjugates LPS-OH-TT, dLPS-BSA and dLPS-TT, respectively. The LPS-OH-TT, dLPS-BSA and dLPS-TT conjugates were immunogenic in both rabbits and mice, inducing strong and specific IgG responses against homologous and heterologous strains of H. pylori. Moreover, the rabbit post-immune sera showed cross-reactivity against clinical isolates of H. pylori in a whole-cell indirect ELISA, which was further confirmed by indirect immunofluorescent microscopy. A tenfold stronger IgG immune response to the immunizing antigen was generated in mice and rabbits that received dLPS-containing conjugate. The post-immune sera of rabbits immunized with LPS-OH-TT, dLPS-BSA or dLPS-TT displayed significant bactericidal activity against mutant and wild-type α-1,6-glucan-expressing strains and selected clinical isolates of H. pylori. Finally, partial protection against H. pylori challenge was demonstrated in mice vaccinated with dLPS-TT conjugate adjuvanted with cholera toxin. In summary, this study shows that glycoconjugates based on delipidated or partially delipidated LPS from H. pylori 26695 HP0826::Kan mutant induce broadly cross-reactive functional antibodies in immunized animals and should be considered for further vaccine development and testing.
Collapse
Affiliation(s)
- Eleonora Altman
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Improvement of immunogenicity of meningococcal lipooligosaccharide by coformulation with lipidated transferrin-binding protein B in liposomes: implications for vaccine development. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:711-22. [PMID: 22441387 DOI: 10.1128/cvi.05683-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Among various meningococcal antigens, lipooligosaccharide (LOS) and recombinant lipidated transferrin-binding protein B (rlip-TbpB) are considered to be putative vaccine candidates against group B Neisseria meningitidis. In the present work, we report the development of a new liposome-based vaccine formulation containing both rlip-TbpB and L8 LOS. The endotoxic activity of the liposomal LOS was evaluated in vitro using the Limulus Amebocyte Lysate assay and compared to the endotoxic activity of free LOS. Above a 250:1 lipid/LOS molar ratio, liposomes were shown to effectively detoxify the LOS as the endotoxic activity of the LOS was reduced by more than 99%. Immunogenicity studies in rabbits showed that the presence of rlip-TbpB dramatically increased the immunogenicity of the LOS. While the formulation raised a strong anti-TbpB response, it elicited a higher anti-LOS IgG level than the liposomal LOS alone. Sera from rabbits immunized with rlip-TbpB/liposomal LOS displayed increased ability to recognize LOS on live bacteria expressing the L8 immunotype and increased anti-LOS-specific bactericidal activity compared to sera from rabbits immunized with liposomal LOS alone. Measurement of interleukin-8 (IL-8) produced by HEK293 cells transfected with Toll-like receptor (TLR) after stimulation with rlip-TbpB showed that the protein is a TLR2 agonist, which is in accordance with the structure of its lipid. Furthermore, an in vivo study demonstrated that the lipid moiety is not only required for its adjuvant effect but also has to be linked to the protein. Overall, the rlip-TbpB/LOS liposomal formulation was demonstrated to induce an effective anti-LOS response due to the adjuvant effect of rlip-TbpB on LOS.
Collapse
|
12
|
Ferreira JA, Silva L, Monteiro MA, Coimbra* MA. Helicobacter pyloricell-surface glycans structural features: role in gastric colonization, pathogenesis, and carbohydrate-based vaccines. CARBOHYDRATE CHEMISTRY 2011:160-193. [DOI: 10.1039/9781849732765-00160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Zollinger WD, Babcock JG, Moran EE, Brandt BL, Matyas GR, Wassef NM, Alving CR. Phase I study of a Neisseria meningitidis liposomal vaccine containing purified outer membrane proteins and detoxified lipooligosaccharide. Vaccine 2011; 30:712-21. [PMID: 22138211 DOI: 10.1016/j.vaccine.2011.11.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 11/16/2011] [Accepted: 11/21/2011] [Indexed: 01/09/2023]
Abstract
Purified outer membrane proteins and purified deacylated lipooligosaccharide (dLOS) were formulated for use as a vaccine in three formulations for clinical use. The three vaccine formulations included (1) purified outer membrane proteins (OMPs) and L8-5 dLOS adsorbed to aluminum hydroxide; (2) purified OMPs and L8-5 dLOS incorporated into liposomes; and (3) purified OMPs and L7 dLOS incorporated into proteoliposomes. The vaccines were compared for immunogenicity and safety in a phase 1clinical study. Ten adult volunteers were vaccinated with each of the three vaccine formulations. Two 50 μg doses were given six weeks apart, and serum samples were obtained at 0, 2, 6, 8 and 14 weeks. Volunteers were evaluated for reactogenicity 30 min after vaccination and at days 1, 2, and 14 after each vaccination, and laboratory safety tests were done at 0, 2 and 6 weeks. Overall, the vaccines were well tolerated. Bactericidal assays against a homologous strain showed a four-fold or greater increase in titer in 6 of 7 volunteers in group one, 9 of 10 volunteers in group two, and 5 of 10 volunteers in group three. A quantitative enzyme linked immunosorbant assay showed increases in antibody against both OMPs and LOS antigens. The liposome formulation appeared to be particularly effective in presenting the dLOS as an antigen.
Collapse
Affiliation(s)
- Wendell D Zollinger
- The Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States.
| | | | | | | | | | | | | |
Collapse
|
14
|
Nalbantsoy A, Karabay-Yavasoglu N, Deliloglu-Gurhan I. Determination ofin vivotoxicity andin vitrocytotoxicity of lipopolysaccharide isolated fromSalmonellaEnteritidis and its potential use for production of polyclonal antibody. FOOD AGR IMMUNOL 2011. [DOI: 10.1080/09540105.2011.569883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
15
|
Importance of antibodies to lipopolysaccharide in natural and vaccine-induced serum bactericidal activity against Neisseria meningitidis group B. Infect Immun 2011; 79:4146-56. [PMID: 21768280 DOI: 10.1128/iai.05125-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of the specificity of bactericidal antibodies in normal, convalescent, and postvaccination human sera is important in understanding human immunity to meningococcal infections and can aid in the design of an effective group B vaccine. A collection of human sera, including group C and group B convalescent-phase sera, normal sera with naturally occurring cross-reactive bactericidal activity, and some postvaccination sera, was analyzed to determine the specificity of cross-reactive bactericidal antibodies. Analysis of human sera using a bactericidal antibody depletion assay demonstrated that a significant portion of the bactericidal activity could be removed by purified lipopolysaccharide (LPS). LPS homologous to that expressed on the bactericidal test strain was most effective, but partial depletion by heterologous LPS suggested the presence of antibodies with various degrees of cross-reactivity. Binding of anti-L3,7 LPS bactericidal antibodies was affected by modification of the core structure, suggesting that these functional antibodies recognized epitopes consisting of both core structures and lacto-N-neotetraose (LNnT). When the target strain was grown with 5'-cytidinemonophospho-N-acetylneuraminic acid (CMP-NANA) to increase LPS sialylation, convalescent-phase serum bactericidal titers were decreased by only 2- to 4-fold, and most remaining bactericidal activity was still depleted by LPS. Highly sialylated LPS was ineffective in depleting bactericidal antibodies. We conclude that natural infections caused by strains expressing L3,7 LPS induce persistent, protective bactericidal antibodies and appear to be directed against nonsialylated bacterial epitopes. Additionally, subsets of these bactericidal antibodies are cross-reactive, binding to several different LPS immunotypes, which is a useful characteristic for an effective group B meningococcal vaccine antigen.
Collapse
|
16
|
St. Michael F, Cairns C, Filion AL, Neelamegan D, Lacelle S, Cox AD. Investigating the candidacy of lipopolysaccharide-based glycoconjugates as vaccines to combat Mannheimia haemolytica. Glycoconj J 2011; 28:397-410. [DOI: 10.1007/s10719-011-9339-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/06/2011] [Accepted: 06/09/2011] [Indexed: 11/25/2022]
|
17
|
Ren D, Yu S, Gao S, Peng D, Petralia RS, Muszynski A, Carlson RW, Robbins JB, Tsai CM, Lim DJ, Gu XX. Mutant lipooligosaccharide-based conjugate vaccine demonstrates a broad-spectrum effectiveness against Moraxella catarrhalis. Vaccine 2011; 29:4210-7. [PMID: 21501641 PMCID: PMC3109615 DOI: 10.1016/j.vaccine.2011.03.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 03/20/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
There is no licensed vaccine available against Moraxella catarrhalis, an exclusive human pathogen responsible for otitis media in children and respiratory infections in adults. We previously developed conjugate vaccine candidates based on lipooligosaccharides (LOSs) of M. catarrhalis serotypes A, B, and C, each of which was shown to cover a portion of the clinical strains. To generate conserved LOS antigens and eliminate a potential autoimmune response to a similar epitope between M. catarrhalis LOS moiety Galα1-4Galβ1-4Glc and human P(k) antigen, two LOS mutants from strain O35E were constructed. Mutant O35Elgt5 or O35EgalE revealed a deletion of one or two terminal galactose residues of wild type O35E LOS. Each LOS molecule was purified, characterized, detoxified, and coupled to tetanus toxoid (TT) to form conjugates, namely dLOS-TT. Three subcutaneous immunizations using dLOS-TT from O35Elgt5 or O35EgalE elicited significant increases (a 729- or 1263-fold above the preimmune serum levels) of serum immunoglobulin (Ig)G against O35E LOS in rabbits with an adjuvant or without an adjuvant (an 140- or 140-fold above the preimmune serum levels). Rabbit antisera demonstrated elevated complement-mediated bactericidal activities against the wild type strain O35E. The rabbit sera elicited by O35Elgt5 dLOS-TT were further examined and showed cross bactericidal activity against all additional 19 M. catarrhalis strains and clinical isolates studied. Moreover, the rabbit sera displayed cross-reactivity not only among three serotype strains but also clinical isolates in a whole-cell enzyme-linked immunosorbent assay (ELISA), which was further confirmed under transmission electron microscopy. In conclusion, O35Elgt5 dLOS-TT may act as a vaccine against most M. catarrhalis strains and therefore can be used for further in vivo efficacy studies.
Collapse
Affiliation(s)
- Dabin Ren
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Rockville, Maryland 20850
| | - Shengqing Yu
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Rockville, Maryland 20850
| | - Song Gao
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Rockville, Maryland 20850
| | - Daxin Peng
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Rockville, Maryland 20850
| | - Ronald S. Petralia
- Section on Neurotransmitter Receptor Biology, NIDCD, NIH, Bethesda, Maryland 20892
| | - Artur Muszynski
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Russell W. Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - John B. Robbins
- National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892
| | - Chao-Ming Tsai
- Division of Bacterial, Parasitic, and Allergenic Products, Food and Drug Administration, Bethesda, Maryland 20892
| | - David J. Lim
- Section on Pathogenesis of Ear Diseases, House Ear Institute, Los Angeles, California 90057
| | - Xin-Xing Gu
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Rockville, Maryland 20850
| |
Collapse
|
18
|
Cox AD, St. Michael F, Cairns CM, Lacelle S, Filion AL, Neelamegan D, Wenzel CQ, Horan H, Richards JC. Investigating the potential of conserved inner core oligosaccharide regions of Moraxella catarrhalis lipopolysaccharide as vaccine antigens: accessibility and functional activity of monoclonal antibodies and glycoconjugate derived sera. Glycoconj J 2011; 28:165-82. [DOI: 10.1007/s10719-011-9332-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 10/18/2022]
|
19
|
Nalbantsoy A, Karaboz I, Gurhan ID. Production of Monoclonal Antibodies in a Mouse Model via Lipopolysaccharide Conjugates with Synthetic Polymers Specific toSalmonellaEnteritidis O Antigen. Foodborne Pathog Dis 2010; 7:1521-9. [DOI: 10.1089/fpd.2010.0612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Ismail Karaboz
- Basic and Industrial Microbiology Section, Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | | |
Collapse
|
20
|
Cox AD, St. Michael F, Neelamegan D, Lacelle S, Cairns CM, Giuliani MM, Biolchi A, Hoe JC, Moxon ER, Richards JC. Investigating the candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: immunology of glycoconjugates with high carbohydrate loading. Glycoconj J 2010; 27:643-8. [DOI: 10.1007/s10719-010-9309-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 11/30/2022]
|
21
|
Zollinger WD, Donets MA, Schmiel DH, Pinto VB, Labrie JE, Moran EE, Brandt BL, Ionin B, Marques R, Wu M, Chen P, Stoddard MB, Keiser PB. Design and evaluation in mice of a broadly protective meningococcal group B native outer membrane vesicle vaccine. Vaccine 2010; 28:5057-67. [PMID: 20653107 DOI: 10.1016/j.vaccine.2010.05.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A vaccine based on native outer membrane vesicles (NOMV) that has potential to provide safe, broad based protection against group B strains of Neisseria meningitidis has been developed. Three antigenically diverse group B strains of N. meningitidis were chosen and genetically modified to improve safety and expression of desirable antigens. Safety was enhanced by disabling three genes: synX, lpxL1, and lgtA. The vaccine strains were genetically configured to have three sets of antigens each with potential to induce protective antibodies against a wide range of group B strains. Preliminary immunogenicity studies with combined NOMV from the three strains confirmed the capacity of the vaccine to induce a broad based bactericidal antibody response. Analysis of the bactericidal activity indicated that antibodies to the LOS were responsible for a major portion of the bactericidal activity and that these antibodies may enhance the bactericidal activity of anti-protein antibodies.
Collapse
Affiliation(s)
- Wendell D Zollinger
- Division of Bacterial and Rickettsial Diseases, 503 Robert Grant Ave., Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nalbantsoy A, Karaboz I, Ivanova R, Deliloglu-Gurhan I. Isolation and purification of O and H antigens from Salmonella Enteritidis as diagnostic tool. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0093-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
23
|
Serum antibodies toVibrio vulnificusbiotype 3 lipopolysaccharide and susceptibility to disease caused by the homologousV. vulnificusbiotype. Epidemiol Infect 2010; 139:472-81. [DOI: 10.1017/s0950268810001202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYIn 1996 an outbreak of severe soft tissue infections caused byVibrio vulnificusunexpectedly erupted in fish consumers in Israel with relatively little morbidity in fish farmers. To test the hypothesis that recurrent exposure of fishermen to the virulent strain may have provided protection against severe or symptomatic disease, we investigated the association between the immune response toV. vulnificusbiotype 3 lipopolysaccharide (BT3 LPS) and disease susceptibility in fish farmers and fish consumers. Serum samples were tested for IgA and IgG of anti-BT3 LPS in fishermen and fish consumers who suffered fromV. vulnificusBT3 infections and their matched controls. Pre-existing levels of IgG (IgG0) of anti-BT3 LPS were significantly lower in diseased fishermen who developed disease associated with the homologous biotype, compared to controls. In multivariate analysis, levels of IgG0anti-BT3 LPS remained the only variable significantly associated with disease occurrence in fishermen. Higher levels of pre-existing IgG anti-BT 3 LPS antibodies may be associated with protection against severe or symptomatic disease with the homologous biotype in fishermen but not in subjects from the general public.
Collapse
|
24
|
Investigating the candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: chemical strategies to prepare glycoconjugates with good carbohydrate loading. Glycoconj J 2010; 27:401-17. [DOI: 10.1007/s10719-010-9287-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 11/27/2022]
|
25
|
Abstract
No broadly effective vaccines are available for prevention of group B meningococcal disease, which accounts for >50% of all cases. The group B capsule is an autoantigen and is not a suitable vaccine target. Outer-membrane vesicle vaccines appear to be safe and effective, but serum bactericidal responses in infants are specific for a porin protein, PorA, which is antigenically variable. To broaden protection, outer-membrane vesicle vaccines have been prepared from >1 strain, from mutants with >1 PorA, or from mutants with genetically detoxified endotoxin and overexpressed desirable antigens, such as factor H binding protein. Also, recombinant protein vaccines such as factor H binding protein, given alone or in combination with other antigens, are in late-stage clinical development and may be effective against the majority of group B strains. Thus, the prospects have never been better for developing vaccines for prevention of meningococcal disease, including that caused by group B strains.
Collapse
Affiliation(s)
- Dan M Granoff
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, USA.
| |
Collapse
|
26
|
Sadarangani M, Pollard AJ. Serogroup B meningococcal vaccines—an unfinished story. THE LANCET. INFECTIOUS DISEASES 2010; 10:112-24. [DOI: 10.1016/s1473-3099(09)70324-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Meningococcal outer membrane vesicle vaccines derived from mutant strains engineered to express factor H binding proteins from antigenic variant groups 1 and 2. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 16:156-62. [PMID: 19109451 DOI: 10.1128/cvi.00403-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Meningococcal outer membrane vesicle (OMV) vaccines, which are treated with detergents to decrease endotoxin activity, are safe and effective in humans. However, the vaccines elicit serum bactericidal antibody responses largely directed against PorA, which is antigenically variable. We previously prepared a native (non-detergent-treated) OMV vaccine from a mutant of group B strain H44/76 in which the lpxL1 gene was inactivated, which resulted in penta-acylated lipid A with attenuated endotoxin activity. To enhance protection, we overexpressed factor H binding protein (fHbp) from the antigenic variant 1 group. The vaccine elicited broad serum bactericidal antibody responses in mice against strains with fHbp variant 1 (approximately 70% of group B isolates) but not against strains with variant 2 or 3. In the present study, we constructed a mutant of group B strain NZ98/254 with attenuated endotoxin that expressed both endogenous variant 1 and heterologous fHbp variant 2. A mixture of the two native OMV vaccines from the H44/76 and NZ98/254 mutants stimulated proinflammatory cytokine responses by human peripheral blood mononuclear cells similar to those stimulated by control, detergent-treated OMV vaccines from the wild-type strains. In mice, the mixture of the two native OMV vaccines elicited broad serum bactericidal antibody responses against strains with heterologous PorA and fHbp in the variant 1, 2, or 3 group. By adsorption studies, the principal bactericidal antibody target was determined to be fHbp. Thus, native OMV vaccines from mutants expressing fHbp variants have the potential to be safe for humans and to confer broad protection against meningococcal disease from strains expressing fHbp from each of the antigenic variant groups.
Collapse
|
28
|
Jäkel A, Plested JS, Hoe JC, Makepeace K, Gidney MAJ, Lacelle S, St Michael F, Cox AD, Richards JC, Moxon ER. Naturally-occurring human serum antibodies to inner core lipopolysaccharide epitopes of Neisseria meningitidis protect against invasive meningococcal disease caused by isolates displaying homologous inner core structures. Vaccine 2008; 26:6655-63. [PMID: 18835574 DOI: 10.1016/j.vaccine.2008.09.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/04/2008] [Accepted: 09/04/2008] [Indexed: 11/18/2022]
Abstract
Sera from healthy infants (under 1 year old), toddlers (3-4 years) and adults (18-65 years) were assayed for their ability to bind to inner core (ic) lipopolysaccharide (LPS) epitopes of Neisseria meningitidis. Antibodies (Abs) reacting to inner core structures, including different substitutions of the first heptose (HepI) and second heptose (HepII) residues of the LPS backbone, truncated and fully extended LPS glycoforms, were detected and for each structure, these inner core antibodies showed an age-related pattern of acquisition. A novel column-based methodology was used to affinity purify IgG antibodies in which purified inner core LPS (derived from a mutant MC58) was covalently linked to Sepharose 4B. Comparison of reactivity before and after affinity purification of the pooled sera showed that the purified Abs bound to the surface of N. meningitidis organisms displaying truncated and extended LPS with a homologous inner core region, promoted the deposition of C3b, were opsonophagocytic in vitro and decreased bacteraemia when used to passively protect infants rats. In addition, the purified Abs were bactericidal in vitro against the mutant strain displaying truncated LPS with a homologous inner core region. These results demonstrate that naturally occurring serum human antibodies to N. meningitidis LPS can access inner core epitopes of encapsulated organisms with a fully extended LPS.
Collapse
Affiliation(s)
- Anne Jäkel
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Neisseria meningitidis escape from the bactericidal activity of a monoclonal antibody is mediated by phase variation of lgtG and enhanced by a mutator phenotype. Infect Immun 2008; 76:5038-48. [PMID: 18694967 DOI: 10.1128/iai.00395-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bacteria adapt to environmental changes through high-frequency switches in expression of specific phenotypes. Localized hypermutation mediated by simple sequence repeats is an important mechanism of such phase variation (PV) in Neisseria meningitidis. Loss or gain of nucleotides in a poly(C) tract located in the reading frame results in switches in expression of lgtG and determines whether a glucose or a phosphoethanolamine (PEtn) is added at a specific position in the inner core lipopolysaccharide (LPS). Monoclonal antibody (MAb) B5 is bactericidal for N. meningitidis strain 8047 when PEtn is present in the inner core LPS and lgtG is switched "off." Escape from the bactericidal activity of this antibody was examined by subjecting strain 8047 to multiple cycles of growth in the presence of MAb B5 and human serum. Escape variants with alterations in the lgtG repeat tract rapidly accumulated in bacterial populations during selection with this antibody. Strain 8047 was outcompeted in this assay by the 8047 Delta mutS strain due to the elevated PV rate of this mismatch repair mutant and hence the greater proportion of preexisting phase variants of lgtG in the inoculum. This mutS mutant was also more virulent than strain 8047 during escape from passive protection by MAb B5 in an in vivo infant rat model of bacteremia. These results provide an example of how PV rates can modulate the occurrence and severity of infection and have important implications for understanding the evolution of bacterial fitness in species subject to environmental variations that occur during persistence within and transmission between hosts.
Collapse
|
30
|
Kubler-Kielb J, Vinogradov E, Ben-Menachem G, Pozsgay V, Robbins JB, Schneerson R. Saccharide/protein conjugate vaccines for Bordetella species: preparation of saccharide, development of new conjugation procedures, and physico-chemical and immunological characterization of the conjugates. Vaccine 2008; 26:3587-93. [PMID: 18539367 PMCID: PMC2518646 DOI: 10.1016/j.vaccine.2008.04.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 04/24/2008] [Accepted: 04/30/2008] [Indexed: 11/17/2022]
Abstract
Bordetellae are Gram-negative bacilli causing respiratory tract infections of mammals and birds. Clinically important are B. pertussis, B. parapertussis and B. bronchiseptica. B. pertussis vaccines have been successful in preventing pertussis in infants and children. Veterinary vaccines against B. bronchiseptica are available, but their efficacy and mode of action are not established. There is no vaccine against B. parapertussis. Based on the concept that immunity to non-capsulated Gram-negative bacteria may be conferred by serum IgG anti-LPS we studied chemical, serological and immunological properties of the O-specific polysaccharides (O-SP) of B. bronchiseptica and B. parapertussis obtained by different degradation procedures. One type of the B. parapertussis and two types of B. bronchiseptica O-SP were recognized based on the structure of their non-reducing end saccharide; no cross-reaction between the two B. bronchiseptica types was observed. Competitive inhibition assays showed the immunodominance of the non-reducing end of these O-SP. Conjugates of B. bronchiseptica and B. parapertussis O-SP were prepared by two methods: using the anhydro-Kdo residue exposed by mild acid hydrolysis of the LPS or the 2,5-anhydromannose residue exposed by deamination of the core glucosamine of the LPS, for binding to an aminooxylated protein. Both coupling methods were carried out at a neutral pH, room temperature, and in a short time. All conjugates, injected as saline solutions at a fraction of an estimated human dose, induced antibodies in mice to the homologous O-SP. These methodologies can be applied to prepare O-SP-based vaccines against other Gram-negative bacteria.
Collapse
Affiliation(s)
- Joanna Kubler-Kielb
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Altman E, Chandan V, Larocque S, Aubry A, Logan SM, Vinogradov E, Li J. Effect of the HP0159 ORF mutation on the lipopolysaccharide structure and colonizing ability of Helicobacter pylori. ACTA ACUST UNITED AC 2008; 53:204-13. [PMID: 18430002 DOI: 10.1111/j.1574-695x.2008.00416.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The outer core region of Helicobacter pylori lipopolysaccharide of the majority of isolates contains an alpha-1,6-glucan polymer synthesized by the product of the HP0159 ORF. Structural studies carried out on HP0159 lipopolysaccharide mutants by a combination of chemical methods, mass spectrometry and nuclear magnetic resonance spectroscopy confirmed that insertional inactivation of HP0159 gene in H. pylori strains 26695 and SS1 resulted in formation of a truncated lipopolysaccharide molecule characterized by the presence of a terminal dd-heptose residue in the side-chain outer core fragment and maintaining an inner core backbone structure compared with the wild-type Lewis antigen-expressing strains. Colonization studies with HP0159 mutants of two mouse-colonizing strains, SS1 and M6, confirmed their inability to successfully colonize the murine stomach.
Collapse
Affiliation(s)
- Eleonora Altman
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
32
|
Bisharat N, Amaro C, Fouz B, Llorens A, Cohen DI. Serological and molecular characteristics of Vibrio vulnificus biotype 3: evidence for high clonality. Microbiology (Reading) 2007; 153:847-856. [PMID: 17322205 DOI: 10.1099/mic.0.2006/003723-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio vulnificus biotype 3 has been implicated as the causative pathogen of an ongoing disease outbreak that erupted in Israel in 1996. Recent work based on multi-locus sequence typing (MLST) showed that V. vulnificus biotype 3 is genetically homogeneous. The aim of this study was to investigate the existence of subpopulations within this homogeneous biotype by characterizing the surface antigens and analysing the sequence diversity of selected outer-membrane protein (OMP)-encoding genes. Rabbit antisera were prepared against biotype 1, 2 and 3 strains. The results of the slide-agglutination test, dot-blot assay (using fresh and boiled cells), and immunoblotting of lipopolysaccharides (LPS) and OMPs were evaluated. By slide-agglutination and dot-blot assays all biotype 3 strains agglutinated with the selected biotype 3 strain. This homogeneity was supported by immunoblot analysis of the LPS. Analysis of OMP patterns revealed that all three biotypes share a considerable number of common bands that are antigenically related. Cluster analysis of DNA sequence data from selected OMP-encoding genes showed that biotype 3 strains form a genetically distinct and homogeneous clone. The homogeneity of surface antigens and the lack of any sequence diversity among both housekeeping and OMP-encoding genes reaffirms the highly clonal nature of biotype 3 and suggests that it has only recently descended from the parent population of V. vulnificus.
Collapse
Affiliation(s)
- Naiel Bisharat
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Carmen Amaro
- Departamento de Microbiologia y Ecologia, Campus de Burjassot, Universidad de Valencia, Valencia 46100, Spain
| | - Belén Fouz
- Departamento de Microbiologia y Ecologia, Campus de Burjassot, Universidad de Valencia, Valencia 46100, Spain
| | - Amparo Llorens
- Departamento de Microbiologia y Ecologia, Campus de Burjassot, Universidad de Valencia, Valencia 46100, Spain
| | - Daniel I Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
33
|
Estabrook MM, Jarvis GA, McLeod Griffiss J. Affinity-purified human immunoglobulin G that binds a lacto-N-neotetraose-dependent lipooligosaccharide structure is bactericidal for serogroup B Neisseria meningitidis. Infect Immun 2006; 75:1025-33. [PMID: 17101655 PMCID: PMC1828497 DOI: 10.1128/iai.00882-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite technological advances, no vaccine to prevent serogroup B meningococcal disease is available. The failure to develop a vaccine has shifted the focus to an alternative outer membrane structure, lipooligosaccharide (LOS), because disseminated disease induces bactericidal immunoglobulin G (IgG) that binds LOS. The purpose of this study was to identify the LOS structure(s) that induces human bactericidal IgG by purification and characterization of these antibodies. Human LOS IgG antibodies were affinity purified by passage of intravenous immunoglobulin through purified, type-specific LOS having a known structure coupled to epoxy-activated Sepharose 6B. Pathogenic group B strains representing the major LOS serotypes were used to examine the binding and bactericidal activities of four LOS-specific IgG preparations. All four LOS-specific IgG preparations bound to strains expressing homologous, as well as heterologous, LOS serotypes as determined by flow cytometry and an enzyme-linked immunosorbent assay. With human complement, IgG that was purified with L7 LOS was bactericidal for strains expressing L3,7 and L2,4 LOS, serotypes expressed by the majority of disease-associated group B and C meningococci. In conclusion, we purified human LOS-specific IgG that binds meningococci across LOS glycose-specific serotypes. An antigen that is dependent on the glycose lacto-N-neotetraose induces IgG in humans that is bactericidal for L2, L3, L4, and L7 strains. A vaccine containing this antigen would have the potential to protect against the vast majority of group B meningococcal strains.
Collapse
Affiliation(s)
- Michele M Estabrook
- Department of Pediatrics, Laboratory Medicine, University of California at San Francisco, San Francisco, California 94121, USA.
| | | | | |
Collapse
|
34
|
Bohorov O, Andersson-Sand H, Hoffmann J, Blixt O. Arraying glycomics: a novel bi-functional spacer for one-step microscale derivatization of free reducing glycans. Glycobiology 2006; 16:21C-27C. [PMID: 16971379 DOI: 10.1093/glycob/cwl044] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glycan array development is limited by the complexity of efficiently generating derivatives of free reducing glycans with primary amines or other functional groups. A novel bi-functional spacer with selective reactivity toward the free glycan and a second functionality, a primary amine, was synthesized. We demonstrated an efficient one-step derivatization of various glycans including naturally isolated N-glycans, O-glycans, milk oligosaccharides, and bacterial polysaccharides in microgram scale. No protecting group manipulations or activation of the anomeric center was required. To demonstrate its utility for glycan microarray fabrication, we compared glycans with different amine-spacers for incorporation onto an amine-reactive glass surface. Our study results revealed that glycans conjugated with this bi-functional linker were effectively printed and detected with various lectins and antibodies.
Collapse
Affiliation(s)
- Ognian Bohorov
- Glycan Array Synthesis Core D, Consortium for Functional Glycomics, Department of Molecular Biology, The Scripps Research Institute, CB 248A 10550 N, Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
35
|
Logan SM, Chen W, Aubry A, Gidney MAJ, Lacelle S, St Michael F, Kuolee R, Higgins M, Neufeld S, Cox AD. Production of a d-glycero-d-manno-heptosyltransferase mutant of Mannheimia haemolytica displaying a veterinary pathogen specific conserved LPS structure; development and functionality of antibodies to this LPS structure. Vet Microbiol 2006; 116:175-86. [PMID: 16750602 DOI: 10.1016/j.vetmic.2006.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/13/2006] [Accepted: 04/18/2006] [Indexed: 11/21/2022]
Abstract
Previous structural studies of the lipopolysaccharides from the veterinary pathogens Mannheimia haemolytica (Mh), Actinobacillus pleuropneumoniae (Ap) and Pasteurella multocida (Pm) had identified a conserved inner core oligosaccharide structure that was present in all strains investigated. In order to examine the potential of this inner core structure as a vaccine, a mutagenesis strategy was adopted to interrupt a D-glycero-D-manno-heptosyltransferase gene (losB) of Mh. This gene encodes the enzyme responsible for the addition of a D-glycero-D-manno-heptose residue, the first residue beyond the conserved inner core, and its inactivation exposed the conserved inner core structure as a terminal unit on the mutant LPS molecule. Subsequent analyses confirmed the targeted structure of the mutant LPS had been obtained, and complementation with losB in trans confirmed that the losB gene encodes an alpha-1,6-D-glycero-D-manno-heptosyltransferase. Monoclonal antibodies raised in mice to this LPS structure were found to recognise LPS and whole-cells of the truncated mutant and wild-type Mh. The antibodies were bactericidal against a wild-type Mh strain and were able to passively protect mice in a model of Mh disease. This illustrates that it is possible to raise functional antibodies against the conserved inner core LPS structure.
Collapse
Affiliation(s)
- Susan M Logan
- Institute for Biological Sciences, National Research Council, Ottawa, Ont., Canada K1A 0R6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kahler CM, Lyons-Schindler S, Choudhury B, Glushka J, Carlson RW, Stephens DS. O-Acetylation of the terminal N-acetylglucosamine of the lipooligosaccharide inner core in Neisseria meningitidis. Influence on inner core structure and assembly. J Biol Chem 2006; 281:19939-48. [PMID: 16687398 DOI: 10.1074/jbc.m601308200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-Acetylation is a common decoration on endotoxins derived from many Gram-negative bacterial species, and it has been shown to be instrumental (e.g. in Salmonella typhimurium) in determining the final tertiary structure of the endotoxin and the immunogenicity of the molecule. Structural heterogeneity of endotoxins produced by mucosal pathogens such as Neisseria meningitidis is determined by decorations on the heptose inner core, including O-acetylation of the terminal N-acetylglucosamine (GlcNAc) attached to HepII. In this report, we show that O-acetylation of the meningococcal lipooligosaccharide (LOS) inner core has an important role in determining inner core assembly and immunotype expression. The gene encoding the LOS O-acetyltransferase, lot3, was identified by homology to NodX from Rhizobium leguminosarum. Inactivation of lot3 in strain NMB resulted in the loss of the O-acetyl group located at the C-3 position of the terminal GlcNAc of the LOS inner core. Inactivation of either lot3 or lgtG, which encodes the HepII glucosyltransferase, did not result in the appearance of the O-3-linked phosphoethanolamine (PEA) groups on the LOS inner core. Construction of a double mutant in which both lot3 and lgtG were inactivated resulted in the appearance of O-3-linked PEA groups on the LOS inner core. In conclusion, O-acetylation status of the terminal GlcNAc of the gamma-chain of the meningococcal LOS inner core is an important determinant for the appearance or exclusion of the O-3-linked PEA group on the LOS inner core and contributes to LOS structural diversity. O-Acetylation also likely influences resistance to complement-mediated lysis and may be important in LOS conjugate vaccine design.
Collapse
Affiliation(s)
- Charlene M Kahler
- Department of Microbiology, Monash University, Wellington Road, Victoria 3800, Australia.
| | | | | | | | | | | |
Collapse
|