1
|
Liao JB, Dai JY, Reichow JL, Lim JB, Hitchcock-Bernhardt KM, Stanton SE, Salazar LG, Gooley TA, Disis ML. Magnitude of antigen-specific T-cell immunity the month after completing vaccination series predicts the development of long-term persistence of antitumor immune response. J Immunother Cancer 2024; 12:e010251. [PMID: 39521614 PMCID: PMC11552009 DOI: 10.1136/jitc-2024-010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND For best efficacy, vaccines must provide long-lasting immunity. To measure longevity, memory from B and T cells are surrogate endpoints for vaccine efficacy. When antibodies are insufficient for protection, the immune response must rely on T cells. The magnitude and differentiation of effective, durable immune responses depend on antigen-specific precursor frequencies. However, development of vaccines that induce durable T-cell responses for cancer treatment has remained elusive. METHODS To address long-lasting immunity, patients with HER2+ (human epidermal growth factor receptor 2) advanced stage cancer received HER2/neu targeted vaccines. Interferon-gamma (IFN-γ) enzyme-linked immunosorbent spot measuring HER2/neu IFN-γ T cells were analyzed from 86 patients from three time points: baseline, 1 month after vaccine series, and long-term follow-up at 1 year, following one in vitro stimulation. The baseline and 1-month post-vaccine series responses were correlated with immunity at long-term follow-up by logistic regression. Immunity was modeled by non-linear functions using generalized additive models. RESULTS Antigen-specific T-cell responses at baseline were associated with a 0.33-log increase in response at long-term follow-up, 95% CI (0.11, 0.54), p=0.003. 63% of patients that had HER2/neu specific T cells at baseline continued to have responses at long-term follow-up. Increased HER2/neu specific T-cell response 1 month after the vaccine series was associated with a 0.47-log increase in T-cell response at long-term follow-up, 95% CI (0.27, 0.67), p=2e-5. 74% of patients that had an increased IFN-γ HER2 response 1 month after vaccines retained immunity long-term. As the 1-month post-vaccination series precursor frequency of HER2+IFN-γ T-cell responses increased, the probability of retaining these responses long-term increased (OR=1.49 for every one natural log increase of precursor frequency, p=0.0002), reaching an OR of 20 for a precursor frequency of 1:3,000 CONCLUSIONS: Patients not destined to achieve long-term immunity can be identified immediately after completing the vaccine series. Log-fold increases in antigen-specific precursor frequencies after vaccinations correlate with increased odds of retaining long-term HER2 immune responses. Further vaccine boosting or immune checkpoint inhibitors or other immune stimulator therapy should be explored in patients that do not develop antigen-specific T-cell responses to improve overall response rates.
Collapse
Affiliation(s)
- John B Liao
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - James Y Dai
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jessica L Reichow
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Jong-Baeck Lim
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Katie M Hitchcock-Bernhardt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | | | - Lupe G Salazar
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
- Medicine/Division of Oncology, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
- Medicine/Division of Oncology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
2
|
Kibwana E, Kapulu M. Controlled Human Malaria Infection Studies in Africa-Past, Present, and Future. Curr Top Microbiol Immunol 2024; 445:337-365. [PMID: 35704094 PMCID: PMC7616462 DOI: 10.1007/82_2022_256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlled human infection studies have contributed significantly to the understanding of pathogeneses and treatment of infectious diseases. In malaria, deliberately infecting humans with malaria parasites was used as a treatment for neurosyphilis in the early 1920s. More recently, controlled human malaria infection (CHMI) has become a valuable, cost-effective tool to fast-track the development and evaluation of new anti-malarial drugs and/or vaccines. CHMI studies have also been used to define host/parasite interactions and immunological correlates of protection. CHMI involves infecting a small number of healthy volunteers with malaria parasites, monitoring their parasitemia and providing anti-malarial treatment when a set threshold is reached. In this review we discuss the introduction, development, and challenges of modern-day Plasmodium falciparum CHMI studies conducted in Africa, and the impact of naturally acquired immunity on infectivity and vaccine efficacy. CHMIs have shown to be an invaluable tool particularly in accelerating malaria vaccine research. Although there are limitations of CHMI studies for estimating public health impacts and for regulatory purposes, their strength lies in proof-of-concept efficacy data at an early stage of development, providing a faster way to select vaccines for further development and providing valuable insights in understanding the mechanisms of immunity to malarial infection.
Collapse
Affiliation(s)
- Elizabeth Kibwana
- Bioscience Department, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| | - Melissa Kapulu
- Bioscience Department, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| |
Collapse
|
3
|
Abstract
Malaria is a mosquito-borne disease caused by protozoan parasites of the genus Plasmodium. Despite significant declines in malaria-attributable morbidity and mortality over the last two decades, it remains a major public health burden in many countries. This underscores the critical need for improved strategies to prevent, treat and control malaria if we are to ultimately progress towards the eradication of this disease. Ideally, this will include the development and deployment of a highly effective malaria vaccine that is able to induce long-lasting protective immunity. There are many malaria vaccine candidates in development, with more than a dozen of these in clinical development. RTS,S/AS01 (also known as Mosquirix) is the most advanced malaria vaccine and was shown to have modest efficacy against clinical malaria in phase III trials in 5- to 17-month-old infants. Following pilot implementation trials, the World Health Organisation has recommended it for use in Africa in young children who are most at risk of infection with P. falciparum, the deadliest of the human malaria parasites. It is well recognised that more effective malaria vaccines are needed. In this review, we discuss malaria vaccine candidates that have progressed into clinical evaluation and highlight the most advanced candidates: Sanaria's irradiated sporozoite vaccine (PfSPZ Vaccine), the chemoattenuated sporozoite vaccine (PfSPZ-CVac), RTS,S/AS01 and the novel malaria vaccine candidate, R21, which displayed promising, high-level efficacy in a recent small phase IIb trial in Africa.
Collapse
Affiliation(s)
- Danielle I Stanisic
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| |
Collapse
|
4
|
Yihunie W, Kebede B, Tegegne BA, Getachew M, Abebe D, Aschale Y, Belew H, Bahiru B. Systematic Review of Safety of RTS,S with AS01 and AS02 Adjuvant Systems Using Data from Randomized Controlled Trials in Infants, Children, and Adults. Clin Pharmacol 2023; 15:21-32. [PMID: 36941908 PMCID: PMC10024506 DOI: 10.2147/cpaa.s400155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Background Emergence of antimalarial drugs and insecticides resistance alarms scientists to develop a safe and effective malaria vaccine. A pre-erythrocytic malaria vaccine called RTS,S has made great strides. Aim The review was aimed to assess the safety of the candidate malaria vaccine RTS,S with AS01 and AS02 adjuvants using data from Phase I-III randomized controlled clinical trials (RCTs). Methods This systematic review was conducted based on PRISMA 2020. Regardless of time of publication year, all articles related with safety of RTS,S, RCTs published in the English language were included in the study. The last search of databases, and registry was conducted on 30 May, 2022. Pubmed, Google Scholar, Cochrane Library, Wiley Online Library, and Clinical trials.gov were thoroughly searched for accessible RCTs on the safety of RTS,S malaria vaccine. The studies were screened in three steps: duplicate removal, title and abstract screening, and full-text review. The included studies' bias risk was assessed using the Cochrane risk of bias tool for RCTs. This systematic review is registered at Prospero (registration number: CRD42021285888). The qualitative descriptive findings from the included published studies were reported stratified by clinical trial phases. Findings A total of thirty-five eligible safety studies were identified. Injection site pain and swelling, febrile convulsion, fever, headache, meningitis, fatigue, gastroenteritis, myalgia, pneumonia, reactogenicity, and anemia were the most commonly reported adverse events. Despite few clinical trials reported serious adverse events, none of them were related to vaccination. Conclusion Most of the adverse events observed from RTS,S/AS01 and RTS,S/AS02 malaria vaccines were reported in the control group and shared by other vaccines. Hence, the authors concluded that both RTS,S/AS01 and RTS,S/AS02 malaria vaccines are safe.
Collapse
Affiliation(s)
- Wubetu Yihunie
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bekalu Kebede
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Dehnnet Abebe
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Belew
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bereket Bahiru
- Department of Pharmacy, College of Medicine and health sciences, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
5
|
Vigdorovich V, Patel H, Watson A, Raappana A, Reynolds L, Selman W, Beeman S, Edlefsen PT, Kappe SHI, Sather DN. Coimmunization with Preerythrocytic Antigens alongside Circumsporozoite Protein Can Enhance Sterile Protection against Plasmodium Sporozoite Infection. Microbiol Spectr 2023; 11:e0379122. [PMID: 36847573 PMCID: PMC10100930 DOI: 10.1128/spectrum.03791-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
Malaria-causing Plasmodium parasites have a complex life cycle and present numerous antigen targets that may contribute to protective immune responses. The currently recommended vaccine-RTS,S-functions by targeting the Plasmodium falciparum circumsporozoite protein (CSP), which is the most abundant surface protein of the sporozoite form responsible for initiating infection of the human host. Despite showing only moderate efficacy, RTS,S has established a strong foundation for the development of next-generation subunit vaccines. Our previous work characterizing the sporozoite surface proteome identified additional non-CSP antigens that may be useful as immunogens individually or in combination with CSP. In this study, we examined eight such antigens using the rodent malaria parasite Plasmodium yoelii as a model system. We demonstrate that despite conferring weak protection individually, coimmunizing each of several of these antigens alongside CSP could significantly enhance the sterile protection achieved by CSP immunization alone. Thus, our work provides compelling evidence that a multiantigen preerythrocytic vaccine approach may enhance protection compared to CSP-only vaccines. This lays the groundwork for further studies aimed at testing the identified antigen combinations in human vaccination trials that assess efficacy with controlled human malaria infection. IMPORTANCE The currently approved malaria vaccine targets a single parasite protein (CSP) and results in only partial protection. We tested several additional vaccine targets in combination with CSP to identify those that could enhance protection from infection upon challenge in the mouse malaria model. In identifying several such enhancing vaccine targets, our work indicates that a multiprotein immunization approach may be a promising avenue to achieving higher levels of protection from infection. Our work identified several candidate leads for follow-up in the models relevant for human malaria and provides an experimental framework for efficiently carrying out such screens for other combinations of vaccine targets.
Collapse
Affiliation(s)
- Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Alexander Watson
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Andrew Raappana
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Laura Reynolds
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - William Selman
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Suzannah Beeman
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Abstract
The enzyme-linked immunospot (ELISpot) is a highly sensitive immunoassay that measures the frequency of cytokine-secreting cells at the single-cell level. The secreted molecules are detected by using a detection antibody system similar to that used in the enzyme-linked immunosorbent assay (ELISA). The ELISpot assay is carried out in a 96-well plate and an automated ELISpot reader is used for analysis. The assay is easy to perform, robust and allows rapid analysis of a large number of samples and is not limited to measurement of cytokines; it is suitable for almost any secreted protein where single-cell analysis is of interest.
Collapse
|
7
|
Bonam SR, Rénia L, Tadepalli G, Bayry J, Kumar HMS. Plasmodium falciparum Malaria Vaccines and Vaccine Adjuvants. Vaccines (Basel) 2021; 9:1072. [PMID: 34696180 PMCID: PMC8541031 DOI: 10.3390/vaccines9101072] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria-a parasite vector-borne disease-is a global health problem, and Plasmodium falciparum has proven to be the deadliest among Plasmodium spp., which causes malaria in humans. Symptoms of the disease range from mild fever and shivering to hemolytic anemia and neurological dysfunctions. The spread of drug resistance and the absence of effective vaccines has made malaria disease an ever-emerging problem. Although progress has been made in understanding the host response to the parasite, various aspects of its biology in its mammalian host are still unclear. In this context, there is a pressing demand for the development of effective preventive and therapeutic strategies, including new drugs and novel adjuvanted vaccines that elicit protective immunity. The present article provides an overview of the current knowledge of anti-malarial immunity against P. falciparum and different options of vaccine candidates in development. A special emphasis has been made on the mechanism of action of clinically used vaccine adjuvants.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, F-75006 Paris, France;
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, 8A Biomedical Grove, Singapore 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Ganesh Tadepalli
- Vaccine Immunology Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India;
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Halmuthur Mahabalarao Sampath Kumar
- Vaccine Immunology Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India;
| |
Collapse
|
8
|
Vijayan K, Visweswaran GRR, Chandrasekaran R, Trakhimets O, Brown SL, Watson A, Zuck M, Dambrauskas N, Raappana A, Carbonetti S, Kelnhofer-Millevolte L, Glennon EKK, Postiglione R, Sather DN, Kaushansky A. Antibody interference by a non-neutralizing antibody abrogates humoral protection against Plasmodium yoelii liver stage. Cell Rep 2021; 36:109489. [PMID: 34348141 DOI: 10.1016/j.celrep.2021.109489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/14/2021] [Accepted: 07/14/2021] [Indexed: 01/23/2023] Open
Abstract
Both subunit and attenuated whole-sporozoite vaccination strategies against Plasmodium infection have shown promising initial results in malaria-naive westerners but less efficacy in malaria-exposed individuals in endemic areas. Here, we demonstrate proof of concept by using a rodent malaria model in which non-neutralizing antibodies (nNAbs) can directly interfere with protective anti-circumsporozoite protein (CSP) humoral responses. We characterize a monoclonal antibody, RAM1, against Plasmodium yoelii sporozoite major surface antigen CSP. Unlike the canonical PyCSP repeat domain binding and neutralizing antibody (NAb) 2F6, RAM1 does not inhibit sporozoite traversal or entry of hepatocytes in vitro or infection in vivo. Although 2F6 and RAM1 bind non-overlapping regions of the CSP-repeat domain, pre-treatment with RAM1 abrogates the capacity of NAb to block sporozoite traversal and invasion in vitro. Importantly, RAM1 reduces the efficacy of the polyclonal humoral response against PyCSP in vivo. Collectively, our data provide a proof of concept that nNAbs can alter the efficacy of malaria vaccination.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meghan Zuck
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | | | | | | | | | - D Noah Sather
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Alexis Kaushansky
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Brotman Baty Research Institute, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA.
| |
Collapse
|
9
|
Suscovich TJ, Fallon JK, Das J, Demas AR, Crain J, Linde CH, Michell A, Natarajan H, Arevalo C, Broge T, Linnekin T, Kulkarni V, Lu R, Slein MD, Luedemann C, Marquette M, March S, Weiner J, Gregory S, Coccia M, Flores-Garcia Y, Zavala F, Ackerman ME, Bergmann-Leitner E, Hendriks J, Sadoff J, Dutta S, Bhatia SN, Lauffenburger DA, Jongert E, Wille-Reece U, Alter G. Mapping functional humoral correlates of protection against malaria challenge following RTS,S/AS01 vaccination. Sci Transl Med 2021; 12:12/553/eabb4757. [PMID: 32718991 DOI: 10.1126/scitranslmed.abb4757] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
Vaccine development has the potential to be accelerated by coupling tools such as systems immunology analyses and controlled human infection models to define the protective efficacy of prospective immunogens without expensive and slow phase 2b/3 vaccine studies. Among human challenge models, controlled human malaria infection trials have long been used to evaluate candidate vaccines, and RTS,S/AS01 is the most advanced malaria vaccine candidate, reproducibly demonstrating 40 to 80% protection in human challenge studies in malaria-naïve individuals. Although antibodies are critical for protection after RTS,S/AS01 vaccination, antibody concentrations are inconsistently associated with protection across studies, and the precise mechanism(s) by which vaccine-induced antibodies provide protection remains enigmatic. Using a comprehensive systems serological profiling platform, the humoral correlates of protection against malaria were identified and validated across multiple challenge studies. Rather than antibody concentration, qualitative functional humoral features robustly predicted protection from infection across vaccine regimens. Despite the functional diversity of vaccine-induced immune responses across additional RTS,S/AS01 vaccine studies, the same antibody features, antibody-mediated phagocytosis and engagement of Fc gamma receptor 3A (FCGR3A), were able to predict protection across two additional human challenge studies. Functional validation using monoclonal antibodies confirmed the protective role of Fc-mediated antibody functions in restricting parasite infection both in vitro and in vivo, suggesting that these correlates may mechanistically contribute to parasite restriction and can be used to guide the rational design of an improved vaccine against malaria.
Collapse
Affiliation(s)
- Todd J Suscovich
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | | | - Jishnu Das
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Allison R Demas
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan Crain
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Caitlyn H Linde
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Ashlin Michell
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Harini Natarajan
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Claudia Arevalo
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Thomas Broge
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Thomas Linnekin
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Viraj Kulkarni
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Richard Lu
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Matthew D Slein
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | | | - Meghan Marquette
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sandra March
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Scott Gregory
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | | | - Yevel Flores-Garcia
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Fidel Zavala
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Elke Bergmann-Leitner
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jenny Hendriks
- Janssen Vaccines & Prevention B.V., 2333CN Leiden, Netherlands
| | - Jerald Sadoff
- Janssen Vaccines & Prevention B.V., 2333CN Leiden, Netherlands
| | - Sheetij Dutta
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.,Broad Institute, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Douglas A Lauffenburger
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Galit Alter
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Feng G, Wines BD, Kurtovic L, Chan JA, Boeuf P, Mollard V, Cozijnsen A, Drew DR, Center RJ, Marshall DL, Chishimba S, McFadden GI, Dent AE, Chelimo K, Boyle MJ, Kazura JW, Hogarth PM, Beeson JG. Mechanisms and targets of Fcγ-receptor mediated immunity to malaria sporozoites. Nat Commun 2021; 12:1742. [PMID: 33741975 PMCID: PMC7979888 DOI: 10.1038/s41467-021-21998-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
A highly protective vaccine will greatly facilitate achieving and sustaining malaria elimination. Understanding mechanisms of antibody-mediated immunity is crucial for developing vaccines with high efficacy. Here, we identify key roles in humoral immunity for Fcγ-receptor (FcγR) interactions and opsonic phagocytosis of sporozoites. We identify a major role for neutrophils in mediating phagocytic clearance of sporozoites in peripheral blood, whereas monocytes contribute a minor role. Antibodies also promote natural killer cell activity. Mechanistically, antibody interactions with FcγRIII appear essential, with FcγRIIa also required for maximum activity. All regions of the circumsporozoite protein are targets of functional antibodies against sporozoites, and N-terminal antibodies have more activity in some assays. Functional antibodies are slowly acquired following natural exposure to malaria, being present among some exposed adults, but uncommon among children. Our findings reveal targets and mechanisms of immunity that could be exploited in vaccine design to maximize efficacy.
Collapse
Affiliation(s)
- Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
- Department of Medicine and Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Bruce D Wines
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Liriye Kurtovic
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jo-Anne Chan
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Philippe Boeuf
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
- Department of Medicine and Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Vanessa Mollard
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Anton Cozijnsen
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
| | - Rob J Center
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
- Department of Medicine and Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Daniel L Marshall
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sandra Chishimba
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
- Department of Medicine and Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Geoffrey I McFadden
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Arlene E Dent
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Kiprotich Chelimo
- Department of Biomedical Science and Technology, Maseno University, Kisumu, Kenya
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
- Department of Immunology, IMR-Berghofer Institute, Herston, QLD, Australia
| | - James W Kazura
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - P Mark Hogarth
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia.
- Department of Medicine and Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia.
- Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Department of Microbiology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Kurtovic L, Wetzel D, Reiling L, Drew DR, Palmer C, Kouskousis B, Hanssen E, Wines BD, Hogarth PM, Suckow M, Jenzelewski V, Piontek M, Chan JA, Beeson JG. Novel Virus-Like Particle Vaccine Encoding the Circumsporozoite Protein of Plasmodium falciparum Is Immunogenic and Induces Functional Antibody Responses in Mice. Front Immunol 2021; 12:641421. [PMID: 33815393 PMCID: PMC8010251 DOI: 10.3389/fimmu.2021.641421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/01/2021] [Indexed: 01/10/2023] Open
Abstract
RTS,S is the leading malaria vaccine in development, but has demonstrated only moderate protective efficacy in clinical trials. RTS,S is a virus-like particle (VLP) that uses the human hepatitis B virus as scaffold to display the malaria sporozoite antigen, circumsporozoite protein (CSP). Particle formation requires four-fold excess scaffold antigen, and as a result, CSP represents only a small portion of the final vaccine construct. Alternative VLP or nanoparticle platforms that reduce the amount of scaffold antigen and increase the amount of the target CSP antigen present in particles may enhance vaccine immunogenicity and efficacy. Here, we describe the production and characterization of a novel VLP that uses the small surface antigen (dS) of duck hepatitis B virus to display CSP. The CSP-dS fusion protein successfully formed VLPs without the need for excess scaffold antigen, and thus CSP represented a larger portion of the vaccine construct. CSP-dS formed large particles approximately 31-74 nm in size and were confirmed to display CSP on the surface. CSP-dS VLPs were highly immunogenic in mice and induced antibodies to multiple regions of CSP, even when administered at a lower vaccine dosage. Vaccine-induced antibodies demonstrated relevant functional activities, including Fc-dependent interactions with complement and Fcγ-receptors, previously identified as important in malaria immunity. Further, vaccine-induced antibodies had similar properties (epitope-specificity and avidity) to monoclonal antibodies that are protective in mouse models. Our novel platform to produce VLPs without excess scaffold protein has wide implications for the future development of vaccines for malaria and other infectious diseases.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Departments of Immunology and Pathology and Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Linda Reiling
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
| | - Damien R. Drew
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
| | | | | | - Eric Hanssen
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Bruce D. Wines
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Departments of Immunology and Pathology and Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - P. Mark Hogarth
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Departments of Immunology and Pathology and Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | | | | | | | - Jo-Anne Chan
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Departments of Immunology and Pathology and Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - James G. Beeson
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Departments of Immunology and Pathology and Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Moon JE, Ockenhouse C, Regules JA, Vekemans J, Lee C, Chuang I, Traskine M, Jongert E, Ivinson K, Morelle D, Komisar JL, Lievens M, Sedegah M, Garver LS, Sikaffy AK, Waters NC, Ballou WR, Ofori-Anyinam O. A Phase IIa Controlled Human Malaria Infection and Immunogenicity Study of RTS,S/AS01E and RTS,S/AS01B Delayed Fractional Dose Regimens in Malaria-Naive Adults. J Infect Dis 2021; 222:1681-1691. [PMID: 32687161 PMCID: PMC7552430 DOI: 10.1093/infdis/jiaa421] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023] Open
Abstract
Background A previous RTS,S/AS01B vaccine challenge trial demonstrated that a 3-dose (0-1-7–month) regimen with a fractional third dose can produce high vaccine efficacy (VE) in adults challenged 3 weeks after vaccination. This study explored the VE of different delayed fractional dose regimens of adult and pediatric RTS,S/AS01 formulations. Methods A total of 130 participants were randomized into 5 groups. Four groups received 3 doses of RTS,S/AS01B or RTS,S/AS01E on a 0-1-7–month schedule, with the final 1 or 2 doses being fractional (one-fifth dose volume). One group received 1 full (month 0) and 1 fractional (month 7) dose of RTS,S/AS01E. Immunized and unvaccinated control participants underwent Plasmodium falciparum–infected mosquito challenge (controlled human malaria infection) 3 months after immunization, a timing chosen to potentially discriminate VEs between groups. Results The VE of 3-dose formulations ranged from 55% (95% confidence interval, 27%–72%) to 76% (48%–89%). Groups administered equivalent formulations of RTS,S/AS01E and RTS,S/AS01B demonstrated comparable VE. The 2-dose group demonstrated lower VE (29% [95% confidence interval, 6%–46%]). All regimens were well tolerated and immunogenic, with trends toward higher anti-circumsporozoite antibody titers in participants protected against infection. Conclusions RTS,S/AS01E can provide VE comparable to an equivalent RTS,S/AS01B regimen in adults, suggesting a universal formulation may be considered. Results also suggest that the 2-dose regimen is inferior to the 3-dose regimens evaluated. Clinical Trial Registration NCT03162614
Collapse
Affiliation(s)
- James E Moon
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Jason A Regules
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Cynthia Lee
- PATH-Malaria Vaccine Initiative, Washington, DC, USA
| | - Ilin Chuang
- Naval Medical Research Center, Silver Spring, Maryland, USA
| | | | | | - Karen Ivinson
- PATH-Malaria Vaccine Initiative, Washington, DC, USA
| | | | - Jack L Komisar
- Naval Medical Research Center, Silver Spring, Maryland, USA
| | | | - Martha Sedegah
- Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Lindsey S Garver
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - April K Sikaffy
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Norman C Waters
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Introduction: An effective vaccine against malaria forms a global health priority. Both naturally acquired immunity and sterile protection induced by irradiated sporozoite immunization were described decades ago. Still no vaccine exists that sufficiently protects children in endemic areas. Identifying immunological correlates of vaccine efficacy can inform rational vaccine design and potentially accelerate clinical development.Areas covered: We discuss recent research on immunological correlates of malaria vaccine efficacy, including: insights from state-of-the-art omics platforms and systems vaccinology analyses; functional anti-parasitic assays; pre-immunization predictors of vaccine efficacy; and comparison of correlates of vaccine efficacy against controlled human malaria infections (CHMI) and against naturally acquired infections.Expert Opinion: Effective vaccination may be achievable without necessarily understanding immunological correlates, but the relatively disappointing efficacy of malaria vaccine candidates in target populations is concerning. Hypothesis-generating omics and systems vaccinology analyses, alongside assessment of pre-immunization correlates, have the potential to bring about paradigm-shifts in malaria vaccinology. Functional assays may represent in vivo effector mechanisms, but have scarcely been formally assessed as correlates. Crucially, evidence is still meager that correlates of vaccine efficacy against CHMI correspond with those against naturally acquired infections in target populations. Finally, the diversity of immunological assays and efficacy endpoints across malaria vaccine trials remains a major confounder.
Collapse
Affiliation(s)
| | - Matthew B B McCall
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
14
|
Tissues: the unexplored frontier of antibody mediated immunity. Curr Opin Virol 2021; 47:52-67. [PMID: 33581646 DOI: 10.1016/j.coviro.2021.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
Pathogen-specific immunity evolves in the context of the infected tissue. However, current immune correlates analyses and vaccine efficacy metrics are based on immune functions from peripheral cells. Less is known about tissue-resident mechanisms of immunity. While antibodies represent the primary correlate of immunity following most clinically approved vaccines, how antibodies interact with localized, compartment-specific immune functions to fight infections, remains unclear. Emerging data demonstrate a unique community of immune cells that reside within different tissues. These tissue-specific immunological communities enable antibodies to direct both expected and unexpected local attack strategies to control, disrupt, and eliminate infection in a tissue-specific manner. Defining the full breadth of antibody effector functions, how they selectively contribute to control at the site of infection may provide clues for the design of next-generation vaccines able to direct the control, elimination, and prevention of compartment specific diseases of both infectious and non-infectious etiologies.
Collapse
|
15
|
Mo AXY, Pesce J, Augustine AD, Bodmer JL, Breen J, Leitner W, Hall BF. Understanding vaccine-elicited protective immunity against pre-erythrocytic stage malaria in endemic regions. Vaccine 2020; 38:7569-7577. [PMID: 33071001 DOI: 10.1016/j.vaccine.2020.09.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
Recent malaria vaccine trials in endemic areas have yielded disparate results compared to studies conducted in non-endemic areas. A workshop was organized to discuss the differential pre-erythrocytic stage malaria vaccine (Pre-E-Vac) efficacies and underlying protective immunity under various conditions. It was concluded that many factors, including vaccine technology platforms, host genetics or physiologic conditions, and parasite and mosquito vector variations, may all contribute to Pre-E-Vac efficacy. Cross-disciplinary approaches are needed to decipher the multi-dimensional variables that contribute to the observed vaccine hypo-responsiveness. The malaria vaccine community has an opportunity to leverage recent advances in immunology, systems vaccinology, and high dimensionality data science methodologies to generate new clinical datasets with unprecedented levels of functional resolution as well as capitalize on existing datasets for comprehensive and aggregate analyses. These approaches would help to unlock our understanding of Pre-E-Vac immunology and to translate new candidates from the laboratory to the field more predictably.
Collapse
Affiliation(s)
- Annie X Y Mo
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA.
| | - John Pesce
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA
| | - Alison Deckhut Augustine
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA
| | | | - Joseph Breen
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA
| | - Wolfgang Leitner
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA
| | - B Fenton Hall
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA
| |
Collapse
|
16
|
Thompson HA, Hogan AB, Walker PGT, White MT, Cunnington AJ, Ockenhouse CF, Ghani AC. Modelling the roles of antibody titre and avidity in protection from Plasmodium falciparum malaria infection following RTS,S/AS01 vaccination. Vaccine 2020; 38:7498-7507. [PMID: 33041104 PMCID: PMC7607256 DOI: 10.1016/j.vaccine.2020.09.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/21/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
Models capturing key malaria life-cycle stages can help us evaluate vaccine candidates. Model fitting revealed antibody avidity to be an important determinant of RTS,S vaccine efficacy. High avidity and titre were associated with increased levels of vaccine efficacy. Did not identify any thresholds of protection for either immune marker.
Anti-circumsporozoite antibody titres have been established as an essential indicator for evaluating the immunogenicity and protective capacity of the RTS,S/AS01 malaria vaccine. However, a new delayed-fractional dose regime of the vaccine was recently shown to increase vaccine efficacy, from 62.5% (95% CI 29.4–80.1%) under the original dosing schedule to 86.7% (95% CI, 66.8–94.6%) without a corresponding increase in antibody titres. Here we reanalyse the antibody data from this challenge trial to determine whether IgG avidity may help to explain efficacy better than IgG titre alone by adapting a within-host mathematical model of sporozoite inoculation. We demonstrate that a model incorporating titre and avidity provides a substantially better fit to the data than titre alone. These results also suggest that in individuals with a high antibody titre response that also show high avidity (both metrics in the top tercile of observed values) delayed-fractional vaccination provided near perfect protection upon first challenge (98.2% [95% Credible Interval 91.6–99.7%]). This finding suggests that the quality of the vaccine induced antibody response is likely to be an important determinant in the development of highly efficacious pre-erythrocytic vaccines against malaria.
Collapse
Affiliation(s)
- Hayley A Thompson
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom.
| | - Alexandra B Hogan
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Patrick G T Walker
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Michael T White
- Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | | | | | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Antibody Feedback Limits the Expansion of B Cell Responses to Malaria Vaccination but Drives Diversification of the Humoral Response. Cell Host Microbe 2020; 28:572-585.e7. [PMID: 32697938 DOI: 10.1016/j.chom.2020.07.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/02/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Generating sufficient antibody to block infection is a key challenge for vaccines against malaria. Here, we show that antibody titers to a key target, the repeat region of the Plasmodium falciparum circumsporozoite protein (PfCSP), plateaued after two immunizations in a clinical trial of the radiation-attenuated sporozoite vaccine. To understand the mechanisms limiting vaccine responsiveness, we developed immunoglobulin (Ig)-knockin mice with elevated numbers of PfCSP-binding B cells. We determined that recall responses were inhibited by antibody feedback, potentially via epitope masking of the immunodominant PfCSP repeat region. Importantly, the amount of antibody that prevents boosting is below the amount of antibody required for protection. Finally, while antibody feedback limited responses to the PfCSP repeat region in vaccinated volunteers, potentially protective subdominant responses to PfCSP C-terminal regions expanded with subsequent boosts. These data suggest that antibody feedback drives the diversification of immune responses and that vaccination for malaria will require targeting multiple antigens.
Collapse
|
18
|
Abstract
Zika virus (ZIKV), a previously little known arbovirus, caused an unprecedented outbreak in Latin America and the Caribbean throughout 2015 and 2016. The virus has been associated with the congenital Zika syndrome (CZS), which can occur with maternal ZIKV infection during any trimester and can result from asymptomatic infection. There is concern that even low levels of viremia can result in CZS, meaning an effective vaccine will need to induce very high levels of protection. Controlled human infection models (CHIMs), in which subjects are infected with a pathogen of interest, have been used to down-select vaccine candidates and have provided efficacy data in support of vaccine licensure.A ZIKV CHIM could be instrumental in determining which of the many ZIKV vaccine candidates provides the highest degree of protection and should be advanced in clinical development. The development of a ZIKV CHIM is not without challenges. The ZIKV, unlike other flaviviruses, is sexually and mosquito-transmitted, and an increase in the incidence of Guillain-Barré syndrome was reported in some countries during the ZIKV outbreak. These obstacles can be overcome with thoughtful study design to ensure maximal risk mitigation. If successful, a ZIKV CHIM could de-risk and accelerate ZIKV vaccine development.
Collapse
Affiliation(s)
- Anna P Durbin
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Friedman-Klabanoff DJ, Laurens MB, Berry AA, Travassos MA, Adams M, Strauss KA, Shrestha B, Levine MM, Edelman R, Lyke KE. The Controlled Human Malaria Infection Experience at the University of Maryland. Am J Trop Med Hyg 2019; 100:556-565. [PMID: 30675854 PMCID: PMC6402913 DOI: 10.4269/ajtmh.18-0476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/03/2018] [Indexed: 11/07/2022] Open
Abstract
Controlled human malaria infection (CHMI) is a powerful tool to evaluate the efficacy of malaria vaccines and pharmacologics. Investigators at the University of Maryland, Baltimore, Center for Vaccine Development (UMB-CVD) pioneered the technique in the 1970s and continue to advance the frontiers of CHMI research. We reviewed the records of 338 malaria-naive volunteers who underwent CHMI at UMB-CVD with Plasmodium falciparum from 1971 until 2017. These 338 volunteers underwent 387 CHMI events, including 60 via intradermal injection or direct venous inoculation (DVI) of purified, cryopreserved sporozoites. No volunteer suffered an unplanned hospitalization or required intravenous therapy related to CHMI. Median prepatency period was longer in challenges using NF54 (9 days) than in those using 7G8 (8 days), P = 0.0006 by the log-rank test. With dose optimization of DVI, the prepatent period did not differ between DVI and mosquito bite challenge (log-rank test, P = 0.66). Polymerase chain reaction (PCR) detected P. falciparum infection 3 days earlier than thick smears (P < 0.001), and diagnosis by ultrasensitive PCR was associated with less severe symptoms than smear-based diagnosis (39% versus 0%, P = 0.0003). Historical studies with NF54 showed a shorter median prepatency period of 10.3 days than more recent studies (median 11.0 days, P = 0.02) despite significantly lower salivary gland scores in earlier studies, P = 0.0001. The 47-year experience of CHMI at UMB-CVD has led to advancements in sporozoite delivery, diagnostics, and use of heterologous challenge. Additional studies on new challenge strains and genomic data to reflect regional heterogeneity will help advance the use of CHMI as supporting data for vaccine licensure.
Collapse
Affiliation(s)
- DeAnna J. Friedman-Klabanoff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea A. Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mark A. Travassos
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kathy A. Strauss
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Biraj Shrestha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Myron M. Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Robert Edelman
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Kurtovic L, Agius PA, Feng G, Drew DR, Ubillos I, Sacarlal J, Aponte JJ, Fowkes FJI, Dobaño C, Beeson JG. Induction and decay of functional complement-fixing antibodies by the RTS,S malaria vaccine in children, and a negative impact of malaria exposure. BMC Med 2019; 17:45. [PMID: 30798787 PMCID: PMC6388494 DOI: 10.1186/s12916-019-1277-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Leading malaria vaccine, RTS,S, is based on the circumsporozoite protein (CSP) of sporozoites. RTS,S confers partial protection against malaria in children, but efficacy wanes relatively quickly after primary immunization. Vaccine efficacy has some association with anti-CSP IgG; however, it is unclear how these antibodies function, and how functional antibodies are induced and maintained over time. Recent studies identified antibody-complement interactions as a potentially important immune mechanism against sporozoites. Here, we investigated whether RTS,S vaccine-induced antibodies could function by interacting with complement. METHODS Serum samples were selected from children in a phase IIb trial of RTS,S/AS02A conducted at two study sites of high and low malaria transmission intensity in Manhiça, Mozambique. Samples following primary immunization and 5-year post-immunization follow-up time points were included. Vaccine-induced antibodies were characterized by isotype, subclass, and epitope specificity, and tested for the ability to fix and activate complement. We additionally developed statistical methods to model the decay and determinants of functional antibodies after vaccination. RESULTS RTS,S vaccination induced anti-CSP antibodies that were mostly IgG1, with some IgG3, IgG2, and IgM. Complement-fixing antibodies were effectively induced by vaccination, and targeted the central repeat and C-terminal regions of CSP. Higher levels of complement-fixing antibodies were associated with IgG that equally recognized both the central repeat and C-terminal regions of CSP. Older age and higher malaria exposure were significantly associated with a poorer induction of functional antibodies. There was a marked decay in functional complement-fixing antibodies within months after vaccination, as well as decays in IgG subclasses and IgM. Statistical modeling suggested the decay in complement-fixing antibodies was mostly attributed to the waning of anti-CSP IgG1, and to a lesser extent IgG3. CONCLUSIONS We demonstrate for the first time that RTS,S can induce complement-fixing antibodies in young malaria-exposed children. The short-lived nature of functional responses mirrors the declining vaccine efficacy of RTS,S over time. The negative influence of age and malaria exposure on functional antibodies has implications for understanding vaccine efficacy in different settings. These findings provide insights into the mechanisms and longevity of vaccine-induced immunity that will help inform the future development of highly efficacious and long-lasting malaria vaccines.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Paul A Agius
- Burnet Institute, Melbourne, Australia.,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia
| | | | | | - Itziar Ubillos
- ISGlobal, Hospital Clínic Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Jahit Sacarlal
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Faculdade de Medicina, Universidade Eduardo Mondlane (UEM), Maputo, Mozambique
| | - John J Aponte
- ISGlobal, Hospital Clínic Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Freya J I Fowkes
- Burnet Institute, Melbourne, Australia.,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - James G Beeson
- Burnet Institute, Melbourne, Australia. .,Department of Immunology and Pathology, Monash University, Melbourne, Australia. .,Department of Microbiology, Monash University, Clayton, Australia. .,Department of Medicine, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
21
|
Abstract
Following successful phase 1 and 2 trials, RTS,S/AS01 was evaluated in a large phase 3 trial in 7 African countries in which 8922 young children and 6537 infants were enrolled and followed for a median of 48 and 38 months, respectively. The vaccine efficacy against uncomplicated malaria in children was 28% without booster and 36% with booster. The vaccine received the approval of the European Medical Agency in 2015, but two WHO expert committees requested more data before the programmatic use of RTS,S/AS01 in African children can be recommended. To provide such data, a very large, cluster randomized trial is currently in progress in three African countries. The integration of RTS,S/AS01 in national childhood vaccination programs will benefit the individual vaccinated child but is unlikely to make an impact on malaria transmission. Mass vaccination campaigns that include all age groups over short periods are more likely to harness the short but high protection afforded by RTS,S/AS01.
Collapse
Affiliation(s)
- Lorenz von Seidlein
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
22
|
McCall MBB, Kremsner PG, Mordmüller B. Correlating efficacy and immunogenicity in malaria vaccine trials. Semin Immunol 2018; 39:52-64. [PMID: 30219621 DOI: 10.1016/j.smim.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
Abstract
The availability of an effective and appropriately implemented malaria vaccine would form a crucial cornerstone of public health efforts to fight this disease. Despite many decades of research, however, no malaria vaccine has yet shown satisfactory protective efficacy or been rolled-out. Validated immunological substitute endpoints have the potential to accelerate clinical vaccine development by reducing the required complexity, size, duration and cost of clinical trials. Besides facilitating clinical development of existing vaccine candidates, understanding immunological mechanisms of protection may drive the development of fundamentally new vaccination approaches. In this review we focus on correlates of protection in malaria vaccine development: Does immunogenicity predict malaria vaccine efficacy and why is this question particularly difficult? Have immunological correlates accelerated malaria vaccine development in the past and will they facilitate it in the future? Does Controlled Human Malaria Infection represent a valid model for identifying such immunological correlates, or a correlate of protection against naturally-acquired malaria in itself?
Collapse
Affiliation(s)
- Matthew B B McCall
- Institut für Tropenmedizin, Universität Tübingen and Deutsches Zentrum für Infektionsforschung, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.
| | - Peter G Kremsner
- Institut für Tropenmedizin, Universität Tübingen and Deutsches Zentrum für Infektionsforschung, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Universität Tübingen and Deutsches Zentrum für Infektionsforschung, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
23
|
Safety and Immunogenicity of Seven Dosing Regimens of the Candidate RTS,S/AS01E Malaria Vaccine Integrated Within an Expanded Program on Immunization Regimen: A Phase II, Single-Center, Open, Controlled Trial in Infants in Malawi. Pediatr Infect Dis J 2018; 37:483-491. [PMID: 29432383 DOI: 10.1097/inf.0000000000001937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND In a phase III trial, the RTS,S/AS01 malaria vaccine produced lower anti-circumsporozoite (CS) antibody titers when co-administered with Expanded Programme on Immunization vaccines (0-, 1- and 2-month schedule) at 6 to 12 weeks compared with 5 to 17 months at first vaccination. Alternative infant immunization schedules within the Expanded Programme on Immunization were investigated. METHODS This phase II, open, single-site (Blantyre, Malawi) trial was conducted in infants 1 to 7 days of age. Subjects were equally randomized across 7 groups to receive 3 doses of RTS,S/AS01E at time points that included ≤7 days, 6, 10, 14 and 26 weeks, and 9 months. All RTS,S/AS01E groups plus a control group (without RTS,S/AS01E) received Bacillus Calmette-Guérin + oral poliovirus vaccine at ≤7 days, diphtheria, tetanus, whole-cell pertussis, hepatitis B and Haemophilus influenzae type b vaccine + oral poliovirus vaccine at 6, 10, and 14 weeks and measles vaccine at 9 months; one RTS,S/AS01E group and the control additionally received hepatitis B vaccination at ≤7 days. Serum anti-CS antibody geometric mean concentration (GMC; enzyme-linked immunosorbent assay) and safety were assessed up to age 18 months. RESULTS Of the 480 infants enrolled, 391 completed the study. No causally related serious adverse event was reported. A higher frequency of fever within 7 days of RTS,S/AS01E vaccination compared with control was observed. Compared with the standard 6-, 10-, 14-week schedule, anti-CS antibody GMC ratios post-dose 3 were significantly higher in the 10-, 14- and 26-week group only (ratio 1.80; 95% confidence interval, 1.24-2.60); RTS,S/AS01E vaccination at ≤7 days and 10 and 14 weeks produced significantly lower anti-CS GMCs (ratio 0.59; 95% confidence interval, 0.38-0.92). CONCLUSIONS Initiation of RTS,S/AS01E vaccination above 6 weeks of age tended to improve anti-CS antibody responses. Neonatal vaccination was well tolerated but produced a comparatively lower immune response.
Collapse
|
24
|
RTS,S malaria vaccine efficacy and immunogenicity during Plasmodium falciparum challenge is associated with HLA genotype. Vaccine 2018; 36:1637-1642. [PMID: 29439870 PMCID: PMC5843576 DOI: 10.1016/j.vaccine.2018.01.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/04/2018] [Accepted: 01/29/2018] [Indexed: 11/30/2022]
Abstract
Although RTS,S remains the most advanced malaria vaccine, the factors influencing differences in vaccine immunogenicity or efficacy between individuals or populations are still poorly characterised. The analyses of genetic determinants of immunogenicity have previously been restricted by relatively small sample sizes from individual trials. Here we combine data from six Phase II RTS,S trials and evaluate the relationship between HLA allele groups and RTS,S-mediated protection in controlled human malaria infections (CHMI), using multivariate logistic or linear regression. We observed significant associations between three allele groups (HLA-A∗01, HLA-B∗08, and HLA-DRB1∗15/∗16) and protection, while another three allele groups (HLA-A∗03, HLA-B∗53, and HLA-DRB1∗07) were significantly associated with lack of protection. It is noteworthy that these ‘protective’ allele groups are thought to be at a lower prevalence in sub-Saharan African populations than in the UK or USA where these Phase II trials occurred. Taken together, the analyses presented here give an indication that HLA genotype may influence RTS,S-mediated protective efficacy against malaria infection.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Great progress has been made in reducing malaria morbidity and mortality, yet the parasite continues to cause a startling 200 million infections and 500 000 deaths annually. Malaria vaccine development is pushing new boundaries by steady advancement toward a licensed product. RECENT FINDINGS Despite 50 years of research, the complexity of Plasmoidum falciparum confounds all attempts to eradicate the organism. This very complexity has pushed the boundaries of vaccine development to new heights, yet it remains to be seen if an affordable vaccine can provide durable and high-level protection. Novel vaccines such as RTS,S/AS01E are on the edge of licensure, but old techniques have resurged with the ability to deliver vialed, whole organism vaccines. Novel adjuvants, multistage/multiantigen approaches and transmission blocking vaccines all contribute to a multipronged battle plan to conquer malaria. SUMMARY Vaccines are the most cost-effective tools to control infectious diseases, yet the complexity of malaria has frustrated all attempts to develop an effective product. This review concentrates on recent advances in malaria vaccine development that lend hope that a vaccine can be produced and malaria eradicated.
Collapse
|
26
|
Abstract
Controlled human malaria infection (CHMI) entails deliberate infection with malaria parasites either by mosquito bite or by direct injection of sporozoites or parasitized erythrocytes. When required, the resulting blood-stage infection is curtailed by the administration of antimalarial drugs. Inducing a malaria infection via inoculation with infected blood was first used as a treatment (malariotherapy) for neurosyphilis in Europe and the United States in the early 1900s. More recently, CHMI has been applied to the fields of malaria vaccine and drug development, where it is used to evaluate products in well-controlled early-phase proof-of-concept clinical studies, thus facilitating progression of only the most promising candidates for further evaluation in areas where malaria is endemic. Controlled infections have also been used to immunize against malaria infection. Historically, CHMI studies have been restricted by the need for access to insectaries housing infected mosquitoes or suitable malaria-infected individuals. Evaluation of vaccine and drug candidates has been constrained in these studies by the availability of a limited number of Plasmodium falciparum isolates. Recent advances have included cryopreservation of sporozoites, the manufacture of well-characterized and genetically distinct cultured malaria cell banks for blood-stage infection, and the availability of Plasmodium vivax-specific reagents. These advances will help to accelerate malaria vaccine and drug development by making the reagents for CHMI more widely accessible and also enabling a more rigorous evaluation with multiple parasite strains and species. Here we discuss the different applications of CHMI, recent advances in the use of CHMI, and ongoing challenges for consideration.
Collapse
|
27
|
Moris P, Jongert E, van der Most RG. Characterization of T-cell immune responses in clinical trials of the candidate RTS,S malaria vaccine. Hum Vaccin Immunother 2017; 14:17-27. [PMID: 28934066 PMCID: PMC5791571 DOI: 10.1080/21645515.2017.1381809] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The candidate malaria vaccine RTS,S has demonstrated 45.7% efficacy over 18 months against all clinical disease in a phase-III field study of African children. RTS,S targets the circumsporozoite protein (CSP), which is expressed on the Plasmodium sporozoite during the pre-erythrocyte stage of its life-cycle; the stage between mosquito bite and liver infection. Early in the development of RTS,S, it was recognized that CSP-specific cell-mediated immunity (CMI) was required to complement CSP-specific antibody-mediated immunity. In reviewing RTS,S clinical studies, associations between protection and various types of CMI (CSP-specific CD4+ T cells and INF-γ ELISPOTs) have been identified, but not consistently. It is plausible that certain CD4+ T cells support antibody responses or co-operate with other immune-cell types to potentially elicit protection. However, the identities of vaccine correlates of protection, implicating either CSP-specific antibodies or T cells remain elusive, suggesting that RTS,S clinical trials may benefit from additional immunogenicity analyses that can be informed by the results of controlled human malaria infection studies.
Collapse
|
28
|
Sack B, Kappe SHI, Sather DN. Towards functional antibody-based vaccines to prevent pre-erythrocytic malaria infection. Expert Rev Vaccines 2017; 16:403-414. [PMID: 28277097 DOI: 10.1080/14760584.2017.1295853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION An effective malaria vaccine would be considered a milestone of modern medicine, yet has so far eluded research and development efforts. This can be attributed to the extreme complexity of the malaria parasites, presenting with a multi-stage life cycle, high genome complexity and the parasite's sophisticated immune evasion measures, particularly antigenic variation during pathogenic blood stage infection. However, the pre-erythrocytic (PE) early infection forms of the parasite exhibit relatively invariant proteomes, and are attractive vaccine targets as they offer multiple points of immune system attack. Areas covered: We cover the current state of and roadblocks to the development of an effective, antibody-based PE vaccine, including current vaccine candidates, limited biological knowledge, genetic heterogeneity, parasite complexity, and suboptimal preclinical models as well as the power of early stage clinical models. Expert commentary: PE vaccines will need to elicit broad and durable immunity to prevent infection. This could be achievable if recent innovations in studying the parasites' infection biology, rational vaccine selection and design as well as adjuvant formulation are combined in a synergistic and multipronged approach. Improved preclinical assays as well as the iterative testing of vaccine candidates in controlled human malaria infection trials will further accelerate this effort.
Collapse
Affiliation(s)
- Brandon Sack
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA
| | - Stefan H I Kappe
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA.,b Department of Global Health , University of Washington , Seattle , WA , USA
| | - D Noah Sather
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA
| |
Collapse
|
29
|
Regules JA, Cicatelli SB, Bennett JW, Paolino KM, Twomey PS, Moon JE, Kathcart AK, Hauns KD, Komisar JL, Qabar AN, Davidson SA, Dutta S, Griffith ME, Magee CD, Wojnarski M, Livezey JR, Kress AT, Waterman PE, Jongert E, Wille-Reece U, Volkmuth W, Emerling D, Robinson WH, Lievens M, Morelle D, Lee CK, Yassin-Rajkumar B, Weltzin R, Cohen J, Paris RM, Waters NC, Birkett AJ, Kaslow DC, Ballou WR, Ockenhouse CF, Vekemans J. Fractional Third and Fourth Dose of RTS,S/AS01 Malaria Candidate Vaccine: A Phase 2a Controlled Human Malaria Parasite Infection and Immunogenicity Study. J Infect Dis 2016; 214:762-71. [PMID: 27296848 DOI: 10.1093/infdis/jiw237] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/26/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses. METHODS In a phase 2a, controlled, open-label, study of healthy malaria-naive adults, 16 subjects vaccinated with a 0-, 1-, and 2-month full-dose regimen (012M) and 30 subjects who received a 0-, 1-, and 7-month regimen, including a fractional third dose (Fx017M), underwent CHMI 3 weeks after the last dose. Plasmablast heavy and light chain immunoglobulin messenger RNA sequencing and antibody avidity were evaluated. Protection against repeat CHMI was evaluated after 8 months. RESULTS A total of 26 of 30 subjects in the Fx017M group (vaccine efficacy [VE], 86.7% [95% confidence interval [CI], 66.8%-94.6%]; P < .0001) and 10 of 16 in the 012M group (VE, 62.5% [95% CI, 29.4%-80.1%]; P = .0009) were protected against infection, and protection differed between schedules (P = .040, by the log rank test). The fractional dose boosting increased antibody somatic hypermutation and avidity and sustained high protection upon rechallenge. DISCUSSIONS A delayed third fractional vaccine dose improved immunogenicity and protection against infection. Optimization of the RTS,S/AS01 immunization regimen may lead to improved approaches against malaria. CLINICAL TRIALS REGISTRATION NCT01857869.
Collapse
Affiliation(s)
- Jason A Regules
- Malaria Vaccine Branch Military Malaria Research Program Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Jason W Bennett
- Malaria Vaccine Branch Military Malaria Research Program Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Patrick S Twomey
- Experimental Therapeutics Branch Military Malaria Research Program
| | - James E Moon
- Malaria Vaccine Branch Military Malaria Research Program
| | | | - Kevin D Hauns
- Malaria Vaccine Branch Military Malaria Research Program
| | - Jack L Komisar
- Malaria Vaccine Branch Military Malaria Research Program
| | - Aziz N Qabar
- Malaria Vaccine Branch Military Malaria Research Program
| | - Silas A Davidson
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring
| | - Sheetij Dutta
- Malaria Vaccine Branch Military Malaria Research Program
| | - Matthew E Griffith
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Charles D Magee
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | - Adrian T Kress
- Experimental Therapeutics Branch Military Malaria Research Program
| | | | | | | | | | | | | | | | | | - Cynthia K Lee
- PATH Malaria Vaccine Initiative, Seattle, Washington
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fonseca JA, Cabrera-Mora M, Kashentseva EA, Villegas JP, Fernandez A, Van Pelt A, Dmitriev IP, Curiel DT, Moreno A. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine. PLoS One 2016; 11:e0154819. [PMID: 27128437 PMCID: PMC4851317 DOI: 10.1371/journal.pone.0154819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/19/2016] [Indexed: 12/20/2022] Open
Abstract
A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective efficacy of adenoviral based malaria vaccines.
Collapse
Affiliation(s)
- Jairo Andres Fonseca
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Elena A. Kashentseva
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John Paul Villegas
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Alejandra Fernandez
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Amelia Van Pelt
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Igor P. Dmitriev
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David T. Curiel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
31
|
Affiliation(s)
- Virander Singh Chauhan
- International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
32
|
Agnandji ST, Fernandes JF, Bache EB, Ramharter M. Clinical development of RTS,S/AS malaria vaccine: a systematic review of clinical Phase I-III trials. Future Microbiol 2015; 10:1553-78. [PMID: 26437872 DOI: 10.2217/fmb.15.90] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first clinical Phase III trial evaluating a malaria vaccine was completed in December 2013 at 11 sites from seven sub-Saharan African countries. This systematic review assesses data of Phase I-III trials including malaria-naive adults and adults, children and infants from malaria endemic settings in sub-Saharan Africa. The main endpoint of this systematic review was an analysis of the consistency of efficacy and immunogenicity data from respective Phase I-III trials. In addition, safety data from a pooled analysis of RTS/AS Phase II trials and RTS,S/AS01 Phase III trial were reviewed. The RTS,S/AS01 malaria vaccine may become available on the market in the coming year. If so, further strategies should address challenges on how to optimize vaccine efficacy and implementation of RTS,S/AS01 vaccine within the framework of established malaria control measures.
Collapse
Affiliation(s)
- Selidji T Agnandji
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon, Hôpital Albert Schweitzer BP 118, Lambaréné, Gabon.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Germany, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - José F Fernandes
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon, Hôpital Albert Schweitzer BP 118, Lambaréné, Gabon.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Germany, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Emmanuel B Bache
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon, Hôpital Albert Schweitzer BP 118, Lambaréné, Gabon.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Germany, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Michael Ramharter
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon, Hôpital Albert Schweitzer BP 118, Lambaréné, Gabon.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Germany, Wilhelmstraße 27, 72074 Tübingen, Germany.,Department of Medicine I, Division of Infectious Diseases & Tropical Medicine, Medical University of Vienna, Austria, Währinger Gürtel 18-20, 1190 Vienna, Austria
| |
Collapse
|
33
|
Sauerwein RW, Bousema T. Transmission blocking malaria vaccines: Assays and candidates in clinical development. Vaccine 2015; 33:7476-82. [PMID: 26409813 DOI: 10.1016/j.vaccine.2015.08.073] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 12/20/2022]
Abstract
Stimulated by recent advances in malaria control and increased funding, the elimination of malaria is now considered to be an attainable goal for an increasing number of malaria-endemic regions. This has boosted the interest in transmission-reducing interventions including vaccines that target sexual, sporogenic, and/or mosquito-stage antigens to interrupt malaria transmission (SSM-VIMT). SSM-VIMT aim to prevent human malaria infection in vaccinated communities by inhibiting parasite development within the mosquito after a blood meal taken from a gametocyte carrier. Only a handful of target antigens are in clinical development and progress has been slow over the years. Major stumbling blocks include (i) the expression of appropriately folded target proteins and their downstream purification, (ii) insufficient induction of sustained functional blocking antibody titers by candidate vaccines in humans, and (iii) validation of a number of (bio)-assays as correlate for blocking activity in the field. Here we discuss clinical manufacturing and testing of current SSM-VIMT candidates and the latest bio-assay development for clinical evaluation. New testing strategies are discussed that may accelerate the evaluation and application of SSM-VIMT.
Collapse
Affiliation(s)
- R W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, PO Box 9101 (268), Geert Grooteplein 28, 6500 HB Nijmegen, The Netherlands.
| | - T Bousema
- Department of Medical Microbiology, Radboud University Medical Center, PO Box 9101 (268), Geert Grooteplein 28, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
34
|
Dunachie S, Berthoud T, Hill AVS, Fletcher HA. Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model. Vaccine 2015; 33:5321-31. [PMID: 26256523 PMCID: PMC4582771 DOI: 10.1016/j.vaccine.2015.07.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/16/2015] [Accepted: 07/28/2015] [Indexed: 11/05/2022]
Abstract
Malaria remains one of the world's major killers. Partially effective vaccines against malaria are in development. We profiled global gene expression after two candidate vaccine regimens. Key pathways of vaccine response include interferon induced genes and the proteasome. Global immune profiling approaches are necessary to improve candidate malaria vaccines.
Introduction The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. Methods We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Results Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. Conclusions These results represent novel insights into the immune repertoires involved in malaria vaccination.
Collapse
Affiliation(s)
- Susanna Dunachie
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK; Mahidol-Oxford Tropical Medicine Research Unit, 3rd Floor, 60th Anniversary Chalermprakiat Building, 420/6 Ratchawithi Road, Bangkok 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, UK.
| | - Tamara Berthoud
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Adrian V S Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Helen A Fletcher
- London School of Hygiene & Tropical Medicine, London W1CE 7HT, UK; The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| |
Collapse
|
35
|
Penny MA, Galactionova K, Tarantino M, Tanner M, Smith TA. The public health impact of malaria vaccine RTS,S in malaria endemic Africa: country-specific predictions using 18 month follow-up Phase III data and simulation models. BMC Med 2015; 13:170. [PMID: 26219380 PMCID: PMC4518512 DOI: 10.1186/s12916-015-0408-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/25/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The RTS,S/AS01 malaria vaccine candidate recently completed Phase III trials in 11 African sites. Recommendations for its deployment will partly depend on predictions of public health impact in endemic countries. Previous predictions of these used only limited information on underlying vaccine properties and have not considered country-specific contextual data. METHODS Each Phase III trial cohort was simulated explicitly using an ensemble of individual-based stochastic models, and many hypothetical vaccine profiles. The true profile was estimated by Bayesian fitting of these models to the site- and time-specific incidence of clinical malaria in both trial arms over 18 months of follow-up. Health impacts of implementation via two vaccine schedules in 43 endemic sub-Saharan African countries, using country-specific prevalence, access to care, immunisation coverage and demography data, were predicted via weighted averaging over many simulations. RESULTS The efficacy against infection of three doses of vaccine was initially approximately 65 % (when immunising 6-12 week old infants) and 80 % (children 5-17 months old), with a 1 year half-life (exponential decay). Either schedule will avert substantial disease, but predicted impact strongly depends on the decay rate of vaccine effects and average transmission intensity. CONCLUSIONS For the first time Phase III site- and time-specific data were available to estimate both the underlying profile of RTS,S/AS01 and likely country-specific health impacts. Initial efficacy will probably be high, but decay rapidly. Adding RTS,S to existing control programs, assuming continuation of current levels of malaria exposure and of health system performance, will potentially avert 100-580 malaria deaths and 45,000 to 80,000 clinical episodes per 100,000 fully vaccinated children over an initial 10-year phase.
Collapse
Affiliation(s)
- Melissa A Penny
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Katya Galactionova
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Michael Tarantino
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Marcel Tanner
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Thomas A Smith
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
36
|
Gupta A, Das S, Schanen B, Seal S. Adjuvants in micro- to nanoscale: current state and future direction. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:61-84. [PMID: 26053286 DOI: 10.1002/wnan.1354] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 12/19/2022]
Abstract
Adjuvants have been used in vaccines for over 70 years to promote long-lived and sterilizing immunity. Since then, various adjuvant systems were developed by combining nanotechnology with natural and/or synthetic immunomodulatory molecules. These systems are biocompatible, immunogenic, and possess higher antigen carrying capacity. This article showcases advancements made in the adjuvant systems formulations, their synthesis routes, and the improvement of these adjuvants have brought in response to combat against ongoing global health threats such as malaria, hepatitis C, universal influenza, and human immunodeficiency virus. This review also highlights the interaction of adjuvants with the delivery of antigens to cells and unfolds mechanism of actions. In addition, this review discusses the physicochemical factors responsible for the efficient interaction of nanoadjuvants with antigen receptors to develop more effective, less reactogenic, and multifunctional systems for the next generation vaccines.
Collapse
Affiliation(s)
- Ankur Gupta
- Advanced Materials Processing and Analysis Center, NanoScience Technology Center and Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Soumen Das
- Advanced Materials Processing and Analysis Center, NanoScience Technology Center and Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | | | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, NanoScience Technology Center and Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA.,College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
37
|
Local tolerance and systemic toxicity of single and repeated intramuscular administrations of two different formulations of the RTS,S malaria candidate vaccine in rabbits. Regul Toxicol Pharmacol 2015; 71:269-78. [DOI: 10.1016/j.yrtph.2014.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/01/2014] [Accepted: 12/19/2014] [Indexed: 11/22/2022]
|
38
|
Flow Cytometry-Based Assessment of Antibody Function Against Malaria Pre-erythrocytic Infection. Methods Mol Biol 2015; 1325:49-58. [PMID: 26450378 DOI: 10.1007/978-1-4939-2815-6_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of new interventional strategies against pre-erythrocytic malaria is hampered by the lack of standardized approaches to assess inhibition of sporozoite infection of hepatocytes. The following methodology, based on flow cytometry, can be used to quantitatively assess P. falciparum sporozoite infection in vitro in medium throughput. In addition to assessing the efficacy of antibodies, this assay has a wide variety of applications for investigating basic science questions about the malaria liver stage. This approach is easily applied in a variety of laboratory settings, assesses the functionality of antibody responses against malaria sporozoites, and can be adapted for the limited quantities of sample which are typically available from clinical investigations.
Collapse
|
39
|
A phase Ia study to assess the safety and immunogenicity of new malaria vaccine candidates ChAd63 CS administered alone and with MVA CS. PLoS One 2014; 9:e115161. [PMID: 25522180 PMCID: PMC4270740 DOI: 10.1371/journal.pone.0115161] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 11/16/2014] [Indexed: 01/23/2023] Open
Abstract
Background Plasmodium falciparum (P. falciparum) malaria remains a significant cause of mortality and morbidity throughout the world. Development of an effective vaccine would be a key intervention to reduce the considerable social and economic impact of malaria. Methodology We conducted a Phase Ia, non-randomized, clinical trial in 24 healthy, malaria-naïve adults of the chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) replication-deficient viral vectored vaccines encoding the circumsporozoite protein (CS) of P. falciparum. Results ChAd63-MVA CS administered in a heterologous prime-boost regime was shown to be safe and immunogenic, inducing high-level T cell responses to CS. With a priming ChAd63 CS dose of 5×109 vp responses peaked at a mean of 1947 SFC/million PBMC (median 1524) measured by ELIspot 7 days after the MVA boost and showed a mixed CD4+/CD8+ phenotype. With a higher priming dose of ChAd63 CS dose 5×1010 vp T cell responses did not increase (mean 1659 SFC/million PBMC, median 1049). Serum IgG responses to CS were modest and peaked at day 14 post ChAd63 CS (median antibody concentration for all groups at day 14 of 1.3 µg/ml (range 0–11.9), but persisted throughout late follow-up (day 140 median antibody concentration groups 1B & 2B 0.9 µg/ml (range 0–4.7). Conclusions ChAd63-MVA is a safe and highly immunogenic delivery platform for the CS antigen in humans which warrants efficacy testing. Trial Registration ClinicalTrials.gov NCT01450280
Collapse
|
40
|
Olotu A, Clement F, Jongert E, Vekemans J, Njuguna P, Ndungu FM, Marsh K, Leroux-Roels G, Bejon P. Avidity of anti-circumsporozoite antibodies following vaccination with RTS,S/AS01E in young children. PLoS One 2014; 9:e115126. [PMID: 25506706 PMCID: PMC4266636 DOI: 10.1371/journal.pone.0115126] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/18/2014] [Indexed: 01/03/2023] Open
Abstract
Background The nature of protective immune responses elicited by immunization with the candidate malaria vaccine RTS,S is still incompletely understood. Antibody levels correlate with protection against malaria infection, but considerable variation in outcome is unexplained (e.g., children may experience malaria despite high anti-circumsporozoite [CS] titers). Methods and Findings We measured the avidity index (AI) of the anti-CS antibodies raised in subgroup of 5–17 month old children in Kenya who were vaccinated with three doses of RTS,S/AS01E between March and August 2007. We evaluated the association between the AI and the subsequent risk of clinical malaria. We selected 19 cases (i.e., with clinical malaria) and 42 controls (i.e., without clinical malaria), matching for anti-CS antibody levels and malaria exposure. We assessed their sera collected 1 month after the third dose of the vaccine, in March 2008 (range 4–10 months after the third vaccine), and at 12 months after the third vaccine dose. The mean AI was 45.2 (95% CI: 42.4 to 48.1), 45.3 (95% CI: 41.4 to 49.1) and 46.2 (95% CI; 43.2 to 49.3) at 1 month, in March 2008 (4–10 months), and at 12 months after the third vaccination, respectively (p = 0.9 by ANOVA test for variation over time). The AI was not associated with protection from clinical malaria (OR = 0.90; 95% CI: 0.49 to 1.66; p = 0.74). The AI was higher in children with high malaria exposure, as measured using the weighted local prevalence of malaria, compared to those with low malaria exposure at 1 month post dose 3 (p = 0.035). Conclusion Our data suggest that in RTS,S/AS01E-vaccinated children residing in malaria endemic countries, the avidity of anti-circumsporozoite antibodies, as measured using an elution ELISA method, was not associated with protection from clinical malaria. Prior natural malaria exposure might have primed the response to RTS,S/AS01E vaccination.
Collapse
Affiliation(s)
- Ally Olotu
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
- Ifakara Health Institute, Bagamoyo, Tanzania
- * E-mail:
| | | | | | | | - Patricia Njuguna
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | - Francis M. Ndungu
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | | | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| |
Collapse
|
41
|
Schwenk R, DeBot M, Porter M, Nikki J, Rein L, Spaccapelo R, Crisanti A, Wightman PD, Ockenhouse CF, Dutta S. IgG2 antibodies against a clinical grade Plasmodium falciparum CSP vaccine antigen associate with protection against transgenic sporozoite challenge in mice. PLoS One 2014; 9:e111020. [PMID: 25343487 PMCID: PMC4208815 DOI: 10.1371/journal.pone.0111020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/19/2014] [Indexed: 12/26/2022] Open
Abstract
The availability of a highly purified and well characterized circumsporozoite protein (CSP) is essential to improve upon the partial success of recombinant CSP-based malaria vaccine candidates. Soluble, near full-length, Plasmodium falciparum CSP vaccine antigen (CS/D) was produced in E. coli under bio-production conditions that comply with current Good Manufacturing Practices (cGMP). A mouse immunogenicity study was conducted using a stable oil-in-water emulsion (SE) of CS/D in combination with the Toll-Like Receptor 4 (TLR4) agonist Glucopyranosyl Lipid A (GLA/SE), or one of two TLR7/8 agonists: R848 (un-conjugated) or 3M-051 (covalently conjugated). Compared to Alum and SE, GLA/SE induced higher CS/D specific antibody response in Balb/c mice. Subclass analysis showed higher IgG2:IgG1 ratio of GLA/SE induced antibodies as compared to Alum and SE. TLR synergy was not observed when soluble R848 was mixed with GLA/SE. Antibody response of 3M051 formulations in Balb/c was similar to GLA/SE, except for the higher IgG2:IgG1 ratio and a trend towards higher T cell responses in 3M051 containing groups. However, no synergistic enhancement of antibody and T cell response was evident when 3M051 conjugate was mixed with GLA/SE. In C57Bl/6 mice, CS/D adjuvanted with 3M051/SE or GLA/SE induced higher CSP repeat specific titers compared to SE. While, 3M051 induced antibodies had high IgG2c:IgG1 ratio, GLA/SE promoted high levels of both IgG1 and IgG2c. GLA/SE also induced more potent T-cell responses compared to SE in two independent C57/BL6 vaccination studies, suggesting a balanced and productive TH1/TH2 response. GLA and 3M-051 similarly enhanced the protective efficacy of CS/D against challenge with a transgenic P. berghei parasite and most importantly, high levels of cytophilic IgG2 antibodies were associated with protection in this model. Our data indicated that the cGMP-grade, soluble CS/D antigen combined with the TLR4-containing adjuvant GLA/SE warrants further evaluation for protective responses in humans.
Collapse
Affiliation(s)
- Robert Schwenk
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Margot DeBot
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Michael Porter
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Jennifer Nikki
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Lisa Rein
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Roberta Spaccapelo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Paul D. Wightman
- 3M Drug Delivery Systems, St. Paul, MN, United States of America
| | - Christian F. Ockenhouse
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Sheetij Dutta
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- * E-mail:
| |
Collapse
|
42
|
Yadava A, Hall CE, Sullivan JS, Nace D, Williams T, Collins WE, Ockenhouse CF, Barnwell JW. Protective efficacy of a Plasmodium vivax circumsporozoite protein-based vaccine in Aotus nancymaae is associated with antibodies to the repeat region. PLoS Negl Trop Dis 2014; 8:e3268. [PMID: 25329054 PMCID: PMC4199514 DOI: 10.1371/journal.pntd.0003268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/12/2014] [Indexed: 11/18/2022] Open
Abstract
We have previously reported that Vivax Malaria Protein 001 (VMP001), a vaccine candidate based on the circumsporozoite protein of Plasmodium vivax, is immunogenic in mice and rhesus monkeys in the presence of various adjuvants. In the present study, we evaluated the immunogenicity and efficacy of VMP001 formulated with a TLR9 agonist in a water-in-oil emulsion. Following immunization, the vaccine efficacy was assessed by challenging Aotus nancymaae monkeys with P. vivax sporozoites. Monkeys from both the low- and high-dose vaccine groups generated strong humoral immune responses to the vaccine (peak median titers of 291,622), and its subunits (peak median titers to the N-term, central repeat and C-term regions of 22,188; 66,120 and 179,947, respectively). 66.7% of vaccinated monkeys demonstrated sterile protection following challenge. Protection was associated with antibodies directed against the central repeat region. The protected monkeys had a median anti-repeat titer of 97,841 compared to 14,822 in the non-protected monkeys. This is the first report demonstrating P. vivax CSP vaccine-induced protection of Aotus monkeys challenged with P. vivax sporozoites. Plasmodium vivax is responsible for causing malaria in large parts of the globe, including regions with temperate climates not suited for the transmission of other Plasmodium species. In addition, P. vivax has the propensity to form dormant forms, known as hypnozoites, that can remain latent for weeks to months and reactive periodically to cause recurrent infections. Prevention of P. vivax malaria, more than any other form, will require a vaccine-based intervention due to limitations in treatment options. To this end, we tested the efficacy in non-human primates, of a vaccine based on circumsporozoite protein, a preerythrocytic stage antigen, of P. vivax. Aotus monkeys were immunized with clinical-grade antigen, combined with two immunomodulators, and then challenged with P. vivax sporozoites. Following challenge 66.7% of monkeys were protected. Analysis of serum samples indicated that protection was associated with antibodies to the central repeat region of the molecule, and that protection was lost upon waning of these antibodies. This is the first report demonstrating that active immunization with a recombinant protein can lead to complete protection in monkeys following sporozoite challenge, while also demonstrating a protective associate. Our data can help serve as a benchmark for down-selection of future vaccine formulations for P. vivax.
Collapse
Affiliation(s)
- Anjali Yadava
- Malaria Vaccine Branch, Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Cysha E. Hall
- Malaria Vaccine Branch, Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - JoAnn S. Sullivan
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Douglas Nace
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Tyrone Williams
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - William E. Collins
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Christian F. Ockenhouse
- Malaria Vaccine Branch, Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - John W. Barnwell
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
43
|
Protective CD8+ T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation. Nat Commun 2014; 4:2836. [PMID: 24284865 PMCID: PMC3868203 DOI: 10.1038/ncomms3836] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 10/29/2013] [Indexed: 02/01/2023] Open
Abstract
Induction of antigen-specific CD8(+) T cells offers the prospect of immunization against many infectious diseases, but no subunit vaccine has induced CD8(+) T cells that correlate with efficacy in humans. Here we demonstrate that a replication-deficient chimpanzee adenovirus vector followed by a modified vaccinia virus Ankara booster induces exceptionally high frequency T-cell responses (median >2400 SFC/10(6) peripheral blood mononuclear cells) to the liver-stage Plasmodium falciparum malaria antigen ME-TRAP. It induces sterile protective efficacy against heterologous strain sporozoites in three vaccinees (3/14, 21%), and delays time to patency through substantial reduction of liver-stage parasite burden in five more (5/14, 36%), P=0.008 compared with controls. The frequency of monofunctional interferon-γ-producing CD8(+) T cells, but not antibodies, correlates with sterile protection and delay in time to patency (P(corrected)=0.005). Vaccine-induced CD8(+) T cells provide protection against human malaria, suggesting that a major limitation of previous vaccination approaches has been the insufficient magnitude of induced T cells.
Collapse
|
44
|
Chen L, Keitany GJ, Peng X, Gibson C, Mohar I, Vignali M, Crispe IN, Huang F, Wang R. Identification of pre-erythrocytic malaria antigens that target hepatocytes for killing in vivo and contribute to protection elicited by whole-parasite vaccination. PLoS One 2014; 9:e102225. [PMID: 25025375 PMCID: PMC4099202 DOI: 10.1371/journal.pone.0102225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/17/2014] [Indexed: 11/19/2022] Open
Abstract
Pre-erythrocytic malaria vaccines, including those based on whole-parasite approaches, have shown protective efficacy in animal and human studies. However few pre-erythocytic antigens other than the immunodominant circumsporozoite protein (CSP) have been studied in depth with the goal of developing potent subunit malaria vaccines that are suited for use in endemic areas. Here we describe a novel technique to identify pre-erythrocytic malaria antigens that contribute to protection elicited by whole-parasite vaccination in the mouse model. Our approach combines immunization with genetically attenuated parasites and challenge with DNA plasmids encoding for potential protective pre-erythrocytic malaria antigens as luciferase fusions by hydrodynamic tail vein injection. After optimizing the technique, we first showed that immunization with Pyfabb/f−, a P. yoelii genetically attenuated parasite, induces killing of CSP-presenting hepatocytes. Depletion of CD8+ but not CD4+ T cells diminished the killing of CSP-expressing hepatocytes, indicating that killing is CD8+ T cell-dependent. Finally we showed that the use of heterologous prime/boost immunization strategies that use genetically attenuated parasites and DNA vaccines enabled the characterization of a novel pre-erythrocytic antigen, Tmp21, as a contributor to Pyfabb/f− induced protection. This technique will be valuable for identification of potentially protective liver stage antigens and has the potential to contribute to the understanding of immunity elicited by whole parasite vaccination, as well as the development of effective subunit malaria vaccines.
Collapse
Affiliation(s)
- Lin Chen
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, China
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Gladys J. Keitany
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Xiaohong Peng
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, China
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Claire Gibson
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Isaac Mohar
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Marissa Vignali
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Ian N. Crispe
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Fusheng Huang
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, China
- * E-mail: (FH); (RW)
| | - Ruobing Wang
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail: (FH); (RW)
| |
Collapse
|
45
|
Kester KE, Gray Heppner D, Moris P, Ofori-Anyinam O, Krzych U, Tornieporth N, McKinney D, Delchambre M, Ockenhouse CF, Voss G, Holland C, Beckey JP, Ballou WR, Cohen J. Sequential Phase 1 and Phase 2 randomized, controlled trials of the safety, immunogenicity and efficacy of combined pre-erythrocytic vaccine antigens RTS,S and TRAP formulated with AS02 Adjuvant System in healthy, malaria naïve adults. Vaccine 2014; 32:6683-91. [PMID: 24950358 DOI: 10.1016/j.vaccine.2014.06.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/26/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
In an attempt to improve the efficacy of the candidate malaria vaccine RTS,S/AS02, two studies were conducted in 1999 in healthy volunteers of RTS,S/AS02 in combination with recombinant Plasmodium falciparum thrombospondin-related anonymous protein (TRAP). In a Phase 1 safety and immunogenicity study, volunteers were randomized to receive TRAP/AS02 (N=10), RTS,S/AS02 (N=10), or RTS,S+TRAP/AS02 (N=20) at 0, 1 and 6-months. In a Phase 2 challenge study, subjects were randomized to receive either RTS,S+TRAP/AS02 (N=25) or TRAP/AS02 (N=10) at 0 and 1-month, or to a challenge control group (N=8). In both studies, the combination vaccine had an acceptable safety profile and was acceptably tolerated. Antigen-specific antibodies, lymphoproliferative responses, and IFN-γ production by ELISPOT assay elicited with the combination vaccine were qualitatively similar to those generated by the single component vaccines. However, post-dose 2 anti-CS antibodies in the RTS,S+TRAP/AS02 vaccine recipients were lower than in the RTS,S/AS02 vaccine recipients. After challenge, 10 of 11 RTS,S+TRAP/AS02 vaccinees, 5 of 5 TRAP/AS02 vaccinees, and 8 of 8 infectivity controls developed parasitemia, with median pre-patent periods of 13.0, 11.0, and 12.0 days, respectively. The absence of any prevention or delay of parasitemia by TRAP/AS02 suggests no apparent added value of TRAP/AS02 as a candidate vaccine. The absence of significant protection or delay of parasitemia in the 11 RTS,S+TRAP/AS02 vaccine recipients contrasts with previous 2 dose studies of RTS,S/AS02. The small sample size did not permit identifying statistically significant differences between the study arms. However, we speculate, within the constraints of the challenge study, that the presence of the TRAP antigen may have interfered with the vaccine efficacy previously observed with this regimen of RTS,S/AS02, and that any future TRAP-based vaccines should consider employing alternative vaccine platforms.
Collapse
Affiliation(s)
- Kent E Kester
- Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - D Gray Heppner
- Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | | - Urszula Krzych
- Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | - Denise McKinney
- Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | | - Gerald Voss
- GlaxoSmithKline Biologicals, Rixensart, Belgium.
| | - Carolyn Holland
- Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | - W Ripley Ballou
- Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Joe Cohen
- GlaxoSmithKline Biologicals, Rixensart, Belgium.
| | | |
Collapse
|
46
|
Spring M, Polhemus M, Ockenhouse C. Controlled Human Malaria Infection. J Infect Dis 2014; 209 Suppl 2:S40-5. [DOI: 10.1093/infdis/jiu063] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
47
|
Bergmann-Leitner ES, Leitner WW. Adjuvants in the Driver's Seat: How Magnitude, Type, Fine Specificity and Longevity of Immune Responses Are Driven by Distinct Classes of Immune Potentiators. Vaccines (Basel) 2014; 2:252-96. [PMID: 26344620 PMCID: PMC4494256 DOI: 10.3390/vaccines2020252] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/20/2014] [Accepted: 03/28/2014] [Indexed: 12/16/2022] Open
Abstract
The mechanism by which vaccine adjuvants enhance immune responses has historically been considered to be the creation of an antigen depot. From here, the antigen is slowly released and provided to immune cells over an extended period of time. This "depot" was formed by associating the antigen with substances able to persist at the injection site, such as aluminum salts or emulsions. The identification of Pathogen-Associated Molecular Patterns (PAMPs) has greatly advanced our understanding of how adjuvants work beyond the simple concept of extended antigen release and has accelerated the development of novel adjuvants. This review focuses on the mode of action of different adjuvant classes in regards to the stimulation of specific immune cell subsets, the biasing of immune responses towards cellular or humoral immune response, the ability to mediate epitope spreading and the induction of persistent immunological memory. A better understanding of how particular adjuvants mediate their biological effects will eventually allow them to be selected for specific vaccines in a targeted and rational manner.
Collapse
Affiliation(s)
- Elke S Bergmann-Leitner
- US Military Malaria Research Program, Malaria Vaccine Branch, 503 Robert Grant Ave, 3W65, Silver Spring, MD 20910, USA.
| | - Wolfgang W Leitner
- Division on Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 6610 Rockledge Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Behet MC, Foquet L, van Gemert GJ, Bijker EM, Meuleman P, Leroux-Roels G, Hermsen CC, Scholzen A, Sauerwein RW. Sporozoite immunization of human volunteers under chemoprophylaxis induces functional antibodies against pre-erythrocytic stages of Plasmodium falciparum. Malar J 2014; 13:136. [PMID: 24708526 PMCID: PMC4113136 DOI: 10.1186/1475-2875-13-136] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/26/2014] [Indexed: 11/24/2022] Open
Abstract
Background Long-lasting and sterile protective immunity against Plasmodium falciparum can be achieved by immunization of malaria-naive human volunteers under chloroquine prophylaxis with sporozoites delivered by mosquito bites (CPS-immunization). Protection is mediated by sporozoite/liver-stage immunity. In this study, the capacity of CPS-induced antibodies to interfere with sporozoite functionality and development was explored. Methods IgG was purified from plasma samples obtained before and after CPS-immunization from two separate clinical trials. The functionality of these antibodies was assessed in vitro in gliding and human hepatocyte traversal assays, and in vivo in a human liver-chimeric mouse model. Results Whereas pre-treatment of sporozoites with 2 mg/ml IgG in the majority of the volunteers did not have an effect on in vitro sporozoite gliding motility, CPS-induced IgG showed a distinct inhibitory effect in the sporozoite in vitro traversal assay. Pre-treatment of P. falciparum sporozoites with post-immunization IgG significantly inhibited sporozoite traversal through hepatocytes in 9/9 samples when using 10 and 1 mg/ml IgG, and was dose-dependent, resulting in an average 16% and 37% reduction with 1 mg/ml IgG (p = 0.003) and 10 mg/ml IgG (p = 0.002), respectively. In vivo, CPS-induced IgG reduced liver-stage infection and/or development after a mosquito infection in the human liver-chimeric mouse model by 91.05% when comparing 11 mice receiving post-immunization IgG to 11 mice receiving pre-immunization IgG (p = 0.0008). Conclusions It is demonstrated for the first time that CPS-immunization induces functional antibodies against P. falciparum sporozoites, which are able to reduce parasite-host cell interaction by inhibiting parasite traversal and liver-stage infection. These data highlight the functional contribution of antibody responses to pre-erythrocytic immunity after whole-parasite immunization against P. falciparum malaria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robert W Sauerwein
- Radboud University Medical Center, Department of Medical Microbiology, Geert Grooteplein 28, Microbiology 268, Nijmegen, HB 6500, The Netherlands.
| |
Collapse
|
49
|
Regules JA, Cummings JF, Ockenhouse CF. The RTS,S vaccine candidate for malaria. Expert Rev Vaccines 2014; 10:589-99. [DOI: 10.1586/erv.11.57] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Abstract
Malaria, which is caused by Plasmodium spp., starts with an asymptomatic phase, during which sporozoites, the parasite form that is injected into the skin by a mosquito, develop into merozoites, the form that infects erythrocytes. This pre-erythrocytic phase is still the most enigmatic in the parasite life cycle, but has long been recognized as an attractive vaccination target. In this Review, we present what has been learned in recent years about the natural history of the pre-erythrocytic stages, mainly using intravital imaging in rodents. We also consider how this new knowledge is in turn changing our understanding of the immune response mounted by the host against the pre-erythrocytic forms.
Collapse
|