1
|
Warner BM, Safronetz D, Stein DR. Current perspectives on vaccines and therapeutics for Lassa Fever. Virol J 2024; 21:320. [PMID: 39702419 PMCID: PMC11657583 DOI: 10.1186/s12985-024-02585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Lassa virus, the cause of deadly Lassa fever, is endemic in West Africa, where thousands of cases occur on an annual basis. Nigeria continues to report increasingly severe outbreaks of Lassa Fever each year and there are currently no approved vaccines or therapeutics for the prevention or treatment of Lassa Fever. Given the high burden of disease coupled with the potential for further escalation due to climate change the WHO has listed Lassa virus as a priority pathogen with the potential to cause widespread outbreaks. Several candidate vaccines have received support and have entered clinical trials with promising early results. This review focuses on the current state of vaccine and therapeutic development for LASV disease and the potential of these interventions to advance through clinical trials. The growing burden of LASV disease in Africa highlights the importance of advancing preclinical and clinical testing of vaccines and therapeutics to respond to the growing threat of LASV disease.
Collapse
Affiliation(s)
- Bryce M Warner
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Canada.
| | - David Safronetz
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Derek R Stein
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Cadham Provincial Laboratory, Winnipeg, Canada
| |
Collapse
|
2
|
Su H, Imai K, Jia W, Li Z, DiCioccio RA, Serody JS, Poe JC, Chen BJ, Doan PL, Sarantopoulos S. Alphavirus Replicon Particle Vaccine Breaks B Cell Tolerance and Rapidly Induces IgG to Murine Hematolymphoid Tumor Associated Antigens. Front Immunol 2022; 13:865486. [PMID: 35686131 PMCID: PMC9171395 DOI: 10.3389/fimmu.2022.865486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
De novo immune responses to myeloid and other blood-borne tumors are notably limited and ineffective, making our ability to promote immune responses with vaccines a major challenge. While focus has been largely on cytotoxic cell-mediated tumor eradication, B-cells and the antibodies they produce also have roles in anti-tumor responses. Indeed, therapeutic antibody-mediated tumor cell killing is routinely employed in patients with hematolymphoid cancers, but whether endogenous antibody responses can be incited to blood-born tumors remains poorly studied. A major limitation of immunoglobulin therapies is that cell surface expression of tumor-associated antigen (TAA) targets is dynamic and varied, making promotion of polyclonal, endogenous B cell responses appealing. Since many TAAs are self-antigens, developing tumor vaccines that enable production of antibodies to non-polymorphic antigen targets remains a challenge. As B cell responses to RNA vaccines are known to occur, we employed the Viral Replicon Particles (VRP) which was constructed to encode mouse FLT3. The VRP-FLT3 vaccine provoked a rapid IgG B-cell response to this self-antigen in leukemia and lymphoma mouse models. In addition, IgGs to other TAAs were also produced. Our data suggest that vaccination with RNA viral particle vectors incites a loss of B-cell tolerance that enables production of anti-tumor antibodies. This proof of principle work provides impetus to employ such strategies that lead to a break in B-cell tolerance and enable production of broadly reactive anti-TAA antibodies as potential future therapeutic agents for patients with hematolymphoid cancers.
Collapse
Affiliation(s)
- Hsuan Su
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Kazuhiro Imai
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Wei Jia
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Zhiguo Li
- Biostatistics and Bioinformatics, Basic Science Department, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University, Durham, NC, United States
| | - Rachel A DiCioccio
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonathan C Poe
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Benny J Chen
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University, Durham, NC, United States
| | - Phuong L Doan
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University, Durham, NC, United States
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University, Durham, NC, United States.,Department of Immunology, School of Medicine, Duke University , Durham, NC, United States
| |
Collapse
|
3
|
Lundstrom K. Self-Replicating RNA Viruses for Vaccine Development against Infectious Diseases and Cancer. Vaccines (Basel) 2021; 9:1187. [PMID: 34696295 PMCID: PMC8541504 DOI: 10.3390/vaccines9101187] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022] Open
Abstract
Alphaviruses, flaviviruses, measles viruses and rhabdoviruses are enveloped single-stranded RNA viruses, which have been engineered for recombinant protein expression and vaccine development. Due to the presence of RNA-dependent RNA polymerase activity, subgenomic RNA can replicate close to 106 copies per cell for translation in the cytoplasm providing extreme transgene expression levels, which is why they are named self-replicating RNA viruses. Expression of surface proteins of pathogens causing infectious disease and tumor antigens provide the basis for vaccine development against infectious diseases and cancer. Self-replicating RNA viral vectors can be administered as replicon RNA at significantly lower doses than conventional mRNA, recombinant particles, or DNA plasmids. Self-replicating RNA viral vectors have been applied for vaccine development against influenza virus, HIV, hepatitis B virus, human papilloma virus, Ebola virus, etc., showing robust immune response and protection in animal models. Recently, paramyxovirus and rhabdovirus vector-based SARS-CoV-2 vaccines as well as RNA vaccines based on self-amplifying alphaviruses have been evaluated in clinical settings. Vaccines against various cancers such as brain, breast, lung, ovarian, prostate cancer and melanoma have also been developed. Clinical trials have shown good safety and target-specific immune responses. Ervebo, the VSV-based vaccine against Ebola virus disease has been approved for human use.
Collapse
|
4
|
Crosby EJ, Gwin W, Blackwell K, Marcom PK, Chang S, Maecker HT, Broadwater G, Hyslop T, Kim S, Rogatko A, Lubkov V, Snyder JC, Osada T, Hobeika AC, Morse MA, Lyerly HK, Hartman ZC. Vaccine-Induced Memory CD8 + T Cells Provide Clinical Benefit in HER2 Expressing Breast Cancer: A Mouse to Human Translational Study. Clin Cancer Res 2019; 25:2725-2736. [PMID: 30635338 PMCID: PMC6497539 DOI: 10.1158/1078-0432.ccr-18-3102] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/28/2018] [Accepted: 01/08/2019] [Indexed: 01/23/2023]
Abstract
PURPOSE Immune-based therapy for metastatic breast cancer has had limited success, particularly in molecular subtypes with low somatic mutations rates. Strategies to augment T-cell infiltration of tumors include vaccines targeting established oncogenic drivers such as the genomic amplification of HER2. We constructed a vaccine based on a novel alphaviral vector encoding a portion of HER2 (VRP-HER2). PATIENTS AND METHODS In preclinical studies, mice were immunized with VRP-HER2 before or after implantation of hHER2+ tumor cells and HER2-specific immune responses and antitumor function were evaluated. We tested VRP-HER2 in a phase I clinical trial where subjects with advanced HER2-overexpressing malignancies in cohort 1 received VRP-HER2 every 2 weeks for a total of 3 doses. In cohort 2, subjects received the same schedule concurrently with a HER2-targeted therapy. RESULTS Vaccination in preclinical models with VRP-HER2 induced HER2-specific T cells and antibodies while inhibiting tumor growth. VRP-HER2 was well tolerated in patients and vaccination induced HER2-specific T cells and antibodies. Although a phase I study, there was 1 partial response and 2 patients with continued stable disease. Median OS was 50.2 months in cohort 1 (n = 4) and 32.7 months in cohort 2 (n = 18). Perforin expression by memory CD8 T cells post-vaccination significantly correlated with improved PFS. CONCLUSIONS VRP-HER2 increased HER2-specific memory CD8 T cells and had antitumor effects in preclinical and clinical studies. The expansion of HER2-specific memory CD8 T cells in vaccinated patients was significantly correlated with increased PFS. Subsequent studies will seek to enhance T-cell activity by combining with anti-PD-1.
Collapse
Affiliation(s)
- Erika J Crosby
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - William Gwin
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington
| | - Kimberly Blackwell
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Paul K Marcom
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Serena Chang
- Department of Microbiology and Immunology, Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California
| | - Holden T Maecker
- Department of Microbiology and Immunology, Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California
| | - Gloria Broadwater
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Terry Hyslop
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Sungjin Kim
- Department of Biomedical Sciences, Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Andre Rogatko
- Department of Biomedical Sciences, Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Veronica Lubkov
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - Joshua C Snyder
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Takuya Osada
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - Amy C Hobeika
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - Michael A Morse
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - H Kim Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina.
| | - Zachary C Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
5
|
Vaccine platforms for the prevention of Lassa fever. Immunol Lett 2019; 215:1-11. [PMID: 31026485 PMCID: PMC7132387 DOI: 10.1016/j.imlet.2019.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/19/2022]
Abstract
The epidemiological significance of Lassa fever in West Africa is discussed. Viral ecology, pathology, and immunobiology of Lassa virus infection is described. Multiple vaccine candidates have been tested in pre-clinical models. Lassa fever vaccine candidates have yet to progress to clinical trials. Five platform technologies have been selected for expedited development.
Lassa fever is an acute viral haemorrhagic illness caused by Lassa virus (LASV), which is endemic throughout much of West Africa. The virus primarily circulates in the Mastomys natalensis reservoir and is transmitted to humans through contact with infectious rodents or their secretions; human-to-human transmission is documented as well. With the exception of Dengue fever, LASV has the highest human impact of any haemorrhagic fever virus. On-going outbreaks in Nigeria have resulted in unprecedented mortality. Consequently, the World Health Organization (WHO) has listed LASV as a high priority pathogen for the development of treatments and prophylactics. Currently, there are no licensed vaccines to protect against LASV infection. Although numerous candidates have demonstrated efficacy in animal models, to date, only a single candidate has advanced to clinical trials. Lassa fever vaccine development efforts have been hindered by the high cost of biocontainment requirements, the absence of established correlates of protection, and uncertainty regarding the extent to which animal models are predictive of vaccine efficacy in humans. This review briefly discusses the epidemiology and biology of LASV infection and highlights recent progress in vaccine development.
Collapse
|
6
|
Monette A, Mouland AJ. T Lymphocytes as Measurable Targets of Protection and Vaccination Against Viral Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 342:175-263. [PMID: 30635091 PMCID: PMC7104940 DOI: 10.1016/bs.ircmb.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Continuous epidemiological surveillance of existing and emerging viruses and their associated disorders is gaining importance in light of their abilities to cause unpredictable outbreaks as a result of increased travel and vaccination choices by steadily growing and aging populations. Close surveillance of outbreaks and herd immunity are also at the forefront, even in industrialized countries, where previously eradicated viruses are now at risk of re-emergence due to instances of strain recombination, contractions in viral vector geographies, and from their potential use as agents of bioterrorism. There is a great need for the rational design of current and future vaccines targeting viruses, with a strong focus on vaccine targeting of adaptive immune effector memory T cells as the gold standard of immunity conferring long-lived protection against a wide variety of pathogens and malignancies. Here, we review viruses that have historically caused large outbreaks and severe lethal disorders, including respiratory, gastric, skin, hepatic, neurologic, and hemorrhagic fevers. To observe trends in vaccinology against these viral disorders, we describe viral genetic, replication, transmission, and tropism, host-immune evasion strategies, and the epidemiology and health risks of their associated syndromes. We focus on immunity generated against both natural infection and vaccination, where a steady shift in conferred vaccination immunogenicity is observed from quantifying activated and proliferating, long-lived effector memory T cell subsets, as the prominent biomarkers of long-term immunity against viruses and their associated disorders causing high morbidity and mortality rates.
Collapse
|
7
|
Wang M, Jokinen J, Tretyakova I, Pushko P, Lukashevich IS. Alphavirus vector-based replicon particles expressing multivalent cross-protective Lassa virus glycoproteins. Vaccine 2018; 36:683-690. [PMID: 29287681 PMCID: PMC5806529 DOI: 10.1016/j.vaccine.2017.12.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 11/20/2022]
Abstract
Lassa virus (LASV) is the most prevalent rodent-borne arenavirus circulated in West Africa. With population at risk from Senegal to Nigeria, LASV causes Lassa fever and is responsible for thousands of deaths annually. High genetic diversity of LASV is one of the challenges for vaccine R&D. We developed multivalent virus-like particle vectors (VLPVs) derived from the human Venezuelan equine encephalitis TC-83 IND vaccine (VEEV) as the next generation of alphavirus-based bicistronic RNA replicon particles. The genes encoding VEEV structural proteins were replaced with LASV glycoproteins (GPC) from distantly related clades I and IV with individual 26S promoters. Bicistronic RNA replicons encoding wild-type LASV GPC (GPCwt) and C-terminally deleted, non-cleavable modified glycoprotein (ΔGPfib), were encapsidated into VLPV particles using VEEV capsid and glycoproteins provided in trans. In transduced cells, VLPVs induced simultaneous expression of LASV GPCwt and ΔGPfib from 26S alphavirus promoters. LASV ΔGPfib was predominantly expressed as trimers, accumulated in the endoplasmic reticulum, induced ER stress and apoptosis promoting antigen cross-priming. VLPV vaccines were immunogenic and protective in mice and upregulated CD11c+/CD8+ dendritic cells playing the major role in cross-presentation. Notably, VLPV vaccination resulted in induction of cross-reactive multifunctional T cell responses after stimulation of immune splenocytes with peptide cocktails derived from LASV from clades I-IV. Multivalent RNA replicon-based LASV vaccines can be applicable for first responders, international travelers visiting endemic areas, military and lab personnel.
Collapse
Affiliation(s)
- Min Wang
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA
| | - Jenny Jokinen
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA
| | | | | | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA.
| |
Collapse
|
8
|
Fu Y, Wang T, Xiu L, Shi X, Bian Z, Zhang Y, Ruhan A, Wang X. Levamisole promotes murine bone marrow derived dendritic cell activation and drives Th1 immune response in vitro and in vivo. Int Immunopharmacol 2016; 31:57-65. [DOI: 10.1016/j.intimp.2015.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 11/27/2022]
|
9
|
Bates JT, Pickens JA, Schuster JE, Johnson M, Tollefson SJ, Williams JV, Davis NL, Johnston RE, Schultz-Darken N, Slaughter JC, Smith-House F, Crowe JE. Immunogenicity and efficacy of alphavirus-derived replicon vaccines for respiratory syncytial virus and human metapneumovirus in nonhuman primates. Vaccine 2016; 34:950-6. [PMID: 26772634 DOI: 10.1016/j.vaccine.2015.12.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 12/14/2022]
Abstract
Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are major causes of illness among children, the elderly, and the immunocompromised. No vaccine has been licensed for protection against either of these viruses. We tested the ability of two Venezuelan equine encephalitis virus-based viral replicon particle (VEE-VRP) vaccines that express the hRSV or hMPV fusion (F) protein to confer protection against hRSV or hMPV in African green monkeys. Animals immunized with VEE-VRP vaccines developed RSV or MPV F-specific antibodies and serum neutralizing activity. Compared to control animals, immunized animals were better able to control viral load in the respiratory mucosa following challenge and had lower levels of viral genome in nasopharyngeal and bronchoalveolar lavage fluids. The high level of immunogenicity and protective efficacy induced by these vaccine candidates in nonhuman primates suggest that they hold promise for further development.
Collapse
Affiliation(s)
- John T Bates
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer A Pickens
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer E Schuster
- The Department of Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Monika Johnson
- The Department of Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sharon J Tollefson
- The Department of Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John V Williams
- The Department of Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nancy L Davis
- The Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - James C Slaughter
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Department of Biostatistics of Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Frances Smith-House
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Department of Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Dalmia N, Klimstra WB, Mason C, Ramsay AJ. DNA-Launched Alphavirus Replicons Encoding a Fusion of Mycobacterial Antigens Acr and Ag85B Are Immunogenic and Protective in a Murine Model of TB Infection. PLoS One 2015; 10:e0136635. [PMID: 26317509 PMCID: PMC4552820 DOI: 10.1371/journal.pone.0136635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/06/2015] [Indexed: 11/18/2022] Open
Abstract
There is an urgent need for effective prophylactic measures against Mycobacterium tuberculosis (Mtb) infection, particularly given the highly variable efficacy of Bacille Calmette-Guerin (BCG), the only licensed vaccine against tuberculosis (TB). Most studies indicate that cell-mediated immune responses involving both CD4+ and CD8+ T cells are necessary for effective immunity against Mtb. Genetic vaccination induces humoral and cellular immune responses, including CD4+ and CD8+ T-cell responses, against a variety of bacterial, viral, parasitic and tumor antigens, and this strategy may therefore hold promise for the development of more effective TB vaccines. Novel formulations and delivery strategies to improve the immunogenicity of DNA-based vaccines have recently been evaluated, and have shown varying degrees of success. In the present study, we evaluated DNA-launched Venezuelan equine encephalitis replicons (Vrep) encoding a novel fusion of the mycobacterial antigens α-crystallin (Acr) and antigen 85B (Ag85B), termed Vrep-Acr/Ag85B, for their immunogenicity and protective efficacy in a murine model of pulmonary TB. Vrep-Acr/Ag85B generated antigen-specific CD4+ and CD8+ T cell responses that persisted for at least 10 wk post-immunization. Interestingly, parenterally administered Vrep-Acr/Ag85B also induced T cell responses in the lung tissues, the primary site of infection, and inhibited bacterial growth in both the lungs and spleens following aerosol challenge with Mtb. DNA-launched Vrep may, therefore, represent an effective approach to the development of gene-based vaccines against TB, particularly as components of heterologous prime-boost strategies or as BCG boosters.
Collapse
MESH Headings
- Acyltransferases/genetics
- Acyltransferases/immunology
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Disease Models, Animal
- Encephalitis Virus, Venezuelan Equine/genetics
- Encephalitis Virus, Venezuelan Equine/immunology
- Immunity, Cellular
- Immunity, Humoral
- Mice
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Replicon/immunology
- Tuberculosis Vaccines/genetics
- Tuberculosis Vaccines/immunology
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/pathology
- Tuberculosis, Pulmonary/prevention & control
- Vaccination
- alpha-Crystallins/genetics
- alpha-Crystallins/immunology
Collapse
Affiliation(s)
- Neha Dalmia
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - William B. Klimstra
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carol Mason
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Alistair J. Ramsay
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Recombinant nucleic acids are considered as promising next-generation vaccines. These vaccines express the native antigen upon delivery into tissue, thus mimicking live attenuated vaccines without having the risk of reversion to pathogenicity. They also stimulate the innate immune system, thus potentiating responses. Nucleic acid vaccines are easy to produce at reasonable cost and are stable. During the past years, focus has been on the use of plasmid DNA for vaccination. Now mRNA and replicon vaccines have come into focus as promising technology platforms for vaccine development. This review discusses self-replicating RNA vaccines developed from alphavirus expression vectors. These replicon vaccines can be delivered as RNA, DNA or as recombinant virus particles. All three platforms have been pre-clinically evaluated as vaccines against a number of infectious diseases and cancer. Results have been very encouraging and propelled the first human clinical trials, the results of which have been promising.
Collapse
Affiliation(s)
- Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
12
|
Enhancement of protein expression by alphavirus replicons by designing self-replicating subgenomic RNAs. Proc Natl Acad Sci U S A 2014; 111:10708-13. [PMID: 25002490 DOI: 10.1073/pnas.1408677111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Since the development of infectious cDNA clones of viral RNA genomes and the means of delivery of the in vitro-synthesized RNA into cells, alphaviruses have become an attractive system for expression of heterologous genetic information. Alphaviruses replicate exclusively in the cytoplasm, and their genetic material cannot recombine with cellular DNA. Alphavirus genome-based, self-replicating RNAs (replicons) are widely used vectors for expression of heterologous proteins. Their current design relies on replacement of structural genes, encoded by subgenomic RNAs (SG RNA), with heterologous sequences of interest. The SG RNA is transcribed from a promoter located in the alphavirus-specific RNA replication intermediate and is not further amplified. In this study, we have applied the accumulated knowledge of the mechanism of alphavirus replication and promoter structures, in particular, to increase the expression level of heterologous proteins from Venezuelan equine encephalitis virus (VEEV)-based replicons. During VEEV infection, replication enzymes are produced in excess to RNA replication intermediates, and a large fraction of them are not involved in RNA synthesis. The newly designed constructs encode SG RNAs, which are not only transcribed from the SG promoter, but are additionally amplified by the previously underused VEEV replication enzymes. These replicons produce SG RNAs and encoded proteins of interest 10- to 50-fold more efficiently than those using a traditional design. A modified replicon encoding West Nile virus (WNV) premembrane and envelope proteins efficiently produced subviral particles and, after a single immunization, elicited high titers of neutralizing antibodies, which protected mice from lethal challenge with WNV.
Collapse
|
13
|
An alphavirus-based adjuvant enhances serum and mucosal antibodies, T cells, and protective immunity to influenza virus in neonatal mice. J Virol 2014; 88:9182-96. [PMID: 24899195 DOI: 10.1128/jvi.00327-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED Neonatal immune responses to infection and vaccination are biased toward TH2 at the cost of proinflammatory TH1 responses needed to combat intracellular pathogens. However, upon appropriate stimulation, the neonatal immune system can induce adult-like TH1 responses. Here we report that a new class of vaccine adjuvant is especially well suited to enhance early life immunity. The GVI3000 adjuvant is a safe, nonpropagating, truncated derivative of Venezuelan equine encephalitis virus that targets dendritic cells (DCs) in the draining lymph node (DLN) and produces intracellular viral RNA without propagating to other cells. RNA synthesis strongly activates the innate immune response so that in adult animals, codelivery of soluble protein antigens induces robust humoral, cellular, and mucosal responses. The adjuvant properties of GVI3000 were tested in a neonatal BALB/c mouse model using inactivated influenza virus (iFlu). After a single immunization, mice immunized with iFlu with the GVI3000 adjuvant (GVI3000-adjuvanted iFlu) had significantly higher and sustained influenza virus-specific IgG antibodies, mainly IgG2a (TH1), compared to the mice immunized with antigen only. GVI3000 significantly increased antigen-specific CD4(+) and CD8(+) T cells, primed mucosal immune responses, and enhanced protection from lethal challenge. As seen in adult mice, the GVI3000 adjuvant increased the DC population in the DLNs, caused activation and maturation of DCs, and induced proinflammatory cytokines and chemokines in the DLNs soon after immunization, including gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), and interleukin 6 (IL-6). In summary, the GVI3000 adjuvant induced an adult-like adjuvant effect with an influenza vaccine and has the potential to improve the immunogenicity and protective efficacy of new and existing neonatal vaccines. IMPORTANCE The suboptimal immune responses in early life constitute a significant challenge for vaccine design. Here we report that a new class of adjuvant is safe and effective for early life immunization and demonstrate its ability to significantly improve the protective efficacy of an inactivated influenza virus vaccine in a neonatal mouse model. The GVI3000 adjuvant delivers a truncated, self-replicating viral RNA into dendritic cells in the draining lymph node. Intracellular RNA replication activates a strong innate immune response that significantly enhances adaptive antibody and cellular immune responses to codelivered antigens. A significant increase in protection results from a single immunization. Importantly, this adjuvant also primed a mucosal IgA response, which is likely to be critical for protection during many early life infections.
Collapse
|
14
|
Chimeric GII.4 norovirus virus-like-particle-based vaccines induce broadly blocking immune responses. J Virol 2014; 88:7256-66. [PMID: 24741081 DOI: 10.1128/jvi.00785-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED There is currently no licensed vaccine for noroviruses, and development is hindered, in part, by an incomplete understanding of the host adaptive immune response to these highly heterogeneous viruses and rapid GII.4 norovirus molecular evolution. Emergence of a new predominant GII.4 norovirus strain occurs every 2 to 4 years. To address the problem of GII.4 antigenic variation, we tested the hypothesis that chimeric virus-like particle (VLP)-based vaccine platforms, which incorporate antigenic determinants from multiple strains into a single genetic background, will elicit a broader immune response against contemporary and emergent strains. Here, we compare the immune response generated by chimeric VLPs to that of parental strains and a multivalent VLP cocktail. Results demonstrate that chimeric VLPs induce a more broadly cross-blocking immune response than single parental VLPs and a similar response to a multivalent GII.4 VLP cocktail. Furthermore, we show that incorporating epitope site A alone from one strain into the background of another is sufficient to induce a blockade response against the strain donating epitope site A. This suggests a mechanism by which population-wide surveillance of mutations in a single epitope could be used to evaluate antigenic changes in order to identify potential emergent strains and quickly reformulate vaccines against future epidemic strains as they emerge in human populations. IMPORTANCE Noroviruses are gastrointestinal pathogens that infect an estimated 21 million people per year in the United States alone. GII.4 noroviruses account for >70% of all outbreaks, making them the most clinically important genotype. GII.4 noroviruses undergo a pattern of epochal evolution, resulting in the emergence of new strains with altered antigenicity over time, complicating vaccine design. This work is relevant to norovirus vaccine design as it demonstrates the potential for development of a chimeric VLP-based vaccine platform that may broaden the protective response against multiple GII.4 strains and proposes a potential reformulation strategy to control newly emergent strains in the human population.
Collapse
|
15
|
Steil BP, Jorquera P, Westdijk J, Bakker WAM, Johnston RE, Barro M. A mucosal adjuvant for the inactivated poliovirus vaccine. Vaccine 2013; 32:558-63. [PMID: 24333345 DOI: 10.1016/j.vaccine.2013.11.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/20/2013] [Accepted: 11/27/2013] [Indexed: 12/19/2022]
Abstract
The eradication of poliovirus from the majority of the world has been achieved through the use of two vaccines: the inactivated poliovirus vaccine (IPV) and the live-attenuated oral poliovirus vaccine (OPV). Both vaccines are effective at preventing paralytic poliomyelitis, however, they also have significant differences. Most importantly for this work is the risk of revertant virus from OPV, the greater cost of IPV, and the low mucosal immunity induced by IPV. We and others have previously described the use of an alphavirus-based adjuvant that can induce a mucosal immune response to a co-administered antigen even when delivered at a non-mucosal site. In this report, we describe the use of an alphavirus-based adjuvant (GVI3000) with IPV. The IPV-GVI3000 vaccine significantly increased systemic IgG, mucosal IgG and mucosal IgA antibody responses to all three poliovirus serotypes in mice even when administered intramuscularly. Furthermore, GVI3000 significantly increased the potency of IPV in rat potency tests as measured by poliovirus neutralizing antibodies in serum. Thus, an IPV-GVI3000 vaccine would reduce the dose of IPV needed and provide significantly improved mucosal immunity. This vaccine could be an effective tool to use in the poliovirus eradication campaign without risking the re-introduction of revertant poliovirus derived from OPV.
Collapse
Affiliation(s)
- Benjamin P Steil
- Global Vaccines, Inc., P.O. Box 14827, Research Triangle Park, NC 27709, USA.
| | - Patricia Jorquera
- Global Vaccines, Inc., P.O. Box 14827, Research Triangle Park, NC 27709, USA
| | - Janny Westdijk
- Institute for Translational Vaccinology (Intravacc), P.O. Box 450, 3720AL Bilthoven, The Netherlands
| | - Wilfried A M Bakker
- Institute for Translational Vaccinology (Intravacc), P.O. Box 450, 3720AL Bilthoven, The Netherlands
| | - Robert E Johnston
- Global Vaccines, Inc., P.O. Box 14827, Research Triangle Park, NC 27709, USA
| | - Mario Barro
- Global Vaccines, Inc., P.O. Box 14827, Research Triangle Park, NC 27709, USA
| |
Collapse
|
16
|
Zellweger RM, Miller R, Eddy WE, White LJ, Johnston RE, Shresta S. Role of humoral versus cellular responses induced by a protective dengue vaccine candidate. PLoS Pathog 2013; 9:e1003723. [PMID: 24204271 PMCID: PMC3814346 DOI: 10.1371/journal.ppat.1003723] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/28/2013] [Indexed: 12/22/2022] Open
Abstract
With 2.5 billion people at risk, dengue is a major emerging disease threat and an escalating public health problem worldwide. Dengue virus causes disease ranging from a self-limiting febrile illness (dengue fever) to the potentially fatal dengue hemorrhagic fever/dengue shock syndrome. Severe dengue disease is associated with sub-protective levels of antibody, which exacerbate disease upon re-infection. A dengue vaccine should generate protective immunity without increasing severity of disease. To date, the determinants of vaccine-mediated protection against dengue remain unclear, and additional correlates of protection are urgently needed. Here, mice were immunized with viral replicon particles expressing the dengue envelope protein ectodomain to assess the relative contribution of humoral versus cellular immunity to protection. Vaccination with viral replicon particles provided robust protection against dengue challenge. Vaccine-induced humoral responses had the potential to either protect from or exacerbate dengue disease upon challenge, whereas cellular immune responses were beneficial. This study explores the immunological basis of protection induced by a dengue vaccine and suggests that a safe and efficient vaccine against dengue should trigger both arms of the immune system. Dengue virus is an escalating public health threat for over 2.5 billion people worldwide. The disease caused by dengue virus ranges from mild (dengue fever) to lethal (dengue hemorrhagic fever, dengue shock syndrome). To date, there is no cure or vaccine for dengue. One of the challenges to developing a safe and efficient dengue vaccine is that antibodies, usually induced by vaccines to protect the host from re-infection, can increase the severity of dengue disease if they are not present in sufficient amounts to neutralize the virus. An efficient vaccine is urgently needed to slow down the progression of dengue disease, but little is known about the way the immune system protects the body against dengue re-infection. Using a protective vaccine candidate for dengue, the present study evaluates in mice the relative contribution of T cells and antibodies to protection against dengue. We show that the antibody component of an immune response that is overall protective had the ability, when isolated from the other components of the immune system, to either decrease or increase viral burden, whereas T cells reduced viral burden in all situations tested. Our results suggest that vaccine development efforts should focus on approaches that induce both T cell and antibody responses against dengue virus.
Collapse
Affiliation(s)
- Raphaël M Zellweger
- La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | | | | | | | | | | |
Collapse
|
17
|
Maruggi G, Shaw CA, Otten GR, Mason PW, Beard CW. Engineered alphavirus replicon vaccines based on known attenuated viral mutants show limited effects on immunogenicity. Virology 2013; 447:254-64. [PMID: 24210122 DOI: 10.1016/j.virol.2013.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/02/2013] [Accepted: 07/18/2013] [Indexed: 12/19/2022]
Abstract
The immunogenicity of alphavirus replicon vaccines is determined by many factors including the level of antigen expression and induction of innate immune responses. Characterized attenuated alphavirus mutants contain changes to the genomic 5' UTR and mutations that result in altered non-structural protein cleavage timing leading to altered levels of antigen expression and interferon (IFN) induction. In an attempt to create more potent replicon vaccines, we engineered a panel of Venezuelan equine encephalitis-Sindbis virus chimeric replicons that contained these attenuating mutations. Modified replicons were ranked for antigen expression and IFN induction levels in cell culture and then evaluated in mice. The results of these studies showed that differences in antigen production and IFN induction in vitro did not correlate with large changes in immunogenicity in vivo. These findings indicate that the complex interactions between innate immune response and the replicon's ability to express antigen complicate rational design of more potent alphavirus replicons.
Collapse
Affiliation(s)
- Giulietta Maruggi
- Novartis Vaccines and Diagnostics Inc., 350 Massachusetts Avenue, Cambridge, MA 02139, United States
| | | | | | | | | |
Collapse
|
18
|
Venezuelan equine encephalitis virus replicon particle vaccine protects nonhuman primates from intramuscular and aerosol challenge with ebolavirus. J Virol 2013; 87:4952-64. [PMID: 23408633 DOI: 10.1128/jvi.03361-12] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.
Collapse
|
19
|
Pseudoinfectious Venezuelan equine encephalitis virus: a new means of alphavirus attenuation. J Virol 2012; 87:2023-35. [PMID: 23221545 DOI: 10.1128/jvi.02881-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a reemerging virus that causes a severe and often fatal disease in equids and humans. In spite of a continuous public health threat, to date, no vaccines or antiviral drugs have been developed for human use. Experimental vaccines demonstrate either poor efficiency or severe adverse effects. In this study, we developed a new strategy of alphavirus modification aimed at making these viruses capable of replication and efficient induction of the immune response without causing a progressive infection, which might lead to disease development. To achieve this, we developed a pseudoinfectious virus (PIV) version of VEEV. VEE PIV mimics natural viral infection in that it efficiently replicates its genome, expresses all of the viral structural proteins, and releases viral particles at levels similar to those found in wild-type VEEV-infected cells. However, the mutations introduced into the capsid protein make this protein almost incapable of packaging the PIV genome, and most of the released virions lack genetic material and do not produce a spreading infection. Thus, VEE PIV mimics viral infection in terms of antigen production but is safer due to its inability to incorporate the viral genome into released virions. These genome-free virions are referred to as virus-like particles (VLPs). Importantly, the capsid-specific mutations introduced make the PIV a very strong inducer of the innate immune response and add self-adjuvant characteristics to the designed virus. This unique strategy of virus modification can be applied for vaccine development against other alphaviruses.
Collapse
|
20
|
Carrion R, Bredenbeek P, Jiang X, Tretyakova I, Pushko P, Lukashevich IS. Vaccine Platforms to Control Arenaviral Hemorrhagic Fevers. JOURNAL OF VACCINES & VACCINATION 2012; 3:1000160. [PMID: 23420494 PMCID: PMC3573532 DOI: 10.4172/2157-7560.1000160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Arenaviruses are rodent-borne emerging human pathogens. Diseases caused by these viruses, e.g., Lassa fever (LF) in West Africa and South American hemorrhagic fevers (HFs), are serious public health problems in endemic areas. We have employed replication-competent and replication-deficient strategies to design vaccine candidates potentially targeting different groups "at risk". Our leader LF vaccine candidate, the live reassortant vaccine ML29, is safe and efficacious in all tested animal models including non-human primates. In this study we showed that treatment of fatally infected animals with ML29 two days after Lassa virus (LASV) challenge protected 80% of the treated animals. In endemic areas, where most of the target population is poor and many live far from health care facilities, a single-dose vaccination with ML29 would be ideal solution. Once there is an outbreak, a fast-acting vaccine or post-exposure prophylaxis would be best. The 2(nd) vaccine technology is based on Yellow Fever (YF) 17D vaccine. We designed YF17D-based recombinant viruses expressing LASV glycoproteins (GP) and showed protective efficacy of these recombinants. In the current study we developed a novel technology to clone LASV nucleocapsid within YF17D C gene. Low immunogenicity and stability of foreign inserts must be addressed to design successful LASV/YFV bivalent vaccines to control LF and YF in overlapping endemic areas of West Africa. The 3(rd) platform is based on the new generation of alphavirus replicon virus-like-particle vectors (VLPV). Using this technology we designed VLPV expressing LASV GP with enhanced immunogenicity and bivalent VLPV expressing cross-reactive GP of Junin virus (JUNV) and Machupo virus (MACV), causative agents of Argentinian and Bolivian HF, respectively. A prime-boost regimen required for VLPV immunization might be practical for medical providers, military, lab personnel, and visitors in endemic areas.
Collapse
Affiliation(s)
- Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peter Bredenbeek
- Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiaohong Jiang
- Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA
| |
Collapse
|
21
|
Lukashevich IS. Advanced vaccine candidates for Lassa fever. Viruses 2012; 4:2514-57. [PMID: 23202493 PMCID: PMC3509661 DOI: 10.3390/v4112514] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 12/16/2022] Open
Abstract
Lassa virus (LASV) is the most prominent human pathogen of the Arenaviridae. The virus is transmitted to humans by a rodent reservoir, Mastomys natalensis, and is capable of causing lethal Lassa Fever (LF). LASV has the highest human impact of any of the viral hemorrhagic fevers (with the exception of Dengue Fever) with an estimated several hundred thousand infections annually, resulting in thousands of deaths in Western Africa. The sizeable disease burden, numerous imported cases of LF in non-endemic countries, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Presently there is no licensed vaccine against LF or approved treatment. Recently, several promising vaccine candidates have been developed which can potentially target different groups at risk. The purpose of this manuscript is to review the LASV pathogenesis and immune mechanisms involved in protection. The current status of pre-clinical development of the advanced vaccine candidates that have been tested in non-human primates will be discussed. Major scientific, manufacturing, and regulatory challenges will also be considered.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, and Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Kentucky, USA.
| |
Collapse
|
22
|
Tonkin DR, Whitmore A, Johnston RE, Barro M. Infected dendritic cells are sufficient to mediate the adjuvant activity generated by Venezuelan equine encephalitis virus replicon particles. Vaccine 2012; 30:4532-42. [PMID: 22531556 DOI: 10.1016/j.vaccine.2012.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 03/09/2012] [Accepted: 04/09/2012] [Indexed: 01/09/2023]
Abstract
Replicon particles derived from Venezuelan equine encephalitis virus (VEE) are infectious non-propagating particles which act as a safe and potent systemic, mucosal, and cellular adjuvant when delivered with antigen. VEE and VEE replicon particles (VRP) can target multiple cell types including dendritic cells (DCs). The role of these cell types in VRP adjuvant activity has not been previously evaluated, and for these studies we focused on the contribution of DCs to the response to VRP. By analysis of VRP targeting in the draining lymph node, we found that VRP induced rapid recruitment of TNF-secreting monocyte-derived inflammatory dendritic cells. VRP preferentially infected these inflammatory DCs as well as classical DCs and macrophages, with less efficient infection of other cell types. DC depletion suggested that the interaction of VRP with classical DCs was required for recruitment of inflammatory DCs, induction of high levels of many cytokines, and for stable transport of VRP to the draining lymph node. Additionally, in vitro-infected DCs enhanced antigen-specific responses by CD4 and CD8 T cells. By transfer of VRP-infected DCs into mice we showed that these DCs generated an inflammatory state in the draining lymph node similar to that achieved by VRP injection. Most importantly, VRP-infected DCs were sufficient to establish robust adjuvant activity in mice comparable to that produced by VRP injection. These findings indicate that VRP infect, recruit and activate both classical and inflammatory DCs, and those DCs become mediators of the VRP adjuvant activity.
Collapse
Affiliation(s)
- Daniel R Tonkin
- Global Vaccines Inc, 7020 Kit Creek Rd, Ste. 240, PO Box 14827, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
23
|
A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol 2011; 85:12201-15. [PMID: 21937658 DOI: 10.1128/jvi.06048-11] [Citation(s) in RCA: 389] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is an important emerging virus that is highly pathogenic in aged populations and is maintained with great diversity in zoonotic reservoirs. While a variety of vaccine platforms have shown efficacy in young-animal models and against homologous viral strains, vaccine efficacy has not been thoroughly evaluated using highly pathogenic variants that replicate the acute end stage lung disease phenotypes seen during the human epidemic. Using an adjuvanted and an unadjuvanted double-inactivated SARS-CoV (DIV) vaccine, we demonstrate an eosinophilic immunopathology in aged mice comparable to that seen in mice immunized with the SARS nucleocapsid protein, and poor protection against a nonlethal heterologous challenge. In young and 1-year-old animals, we demonstrate that adjuvanted DIV vaccine provides protection against lethal disease in young animals following homologous and heterologous challenge, although enhanced immune pathology and eosinophilia are evident following heterologous challenge. In the absence of alum, DIV vaccine performed poorly in young animals challenged with lethal homologous or heterologous strains. In contrast, DIV vaccines (both adjuvanted and unadjuvanted) performed poorly in aged-animal models. Importantly, aged animals displayed increased eosinophilic immune pathology in the lungs and were not protected against significant virus replication. These data raise significant concerns regarding DIV vaccine safety and highlight the need for additional studies of the molecular mechanisms governing DIV-induced eosinophilia and vaccine failure, especially in the more vulnerable aged-animal models of human disease.
Collapse
|
24
|
Zhu W, Chen CJ, Thomas CE, Anderson JE, Jerse AE, Sparling PF. Vaccines for gonorrhea: can we rise to the challenge? Front Microbiol 2011; 2:124. [PMID: 21687431 PMCID: PMC3109613 DOI: 10.3389/fmicb.2011.00124] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/19/2011] [Indexed: 12/14/2022] Open
Abstract
Immune responses to the gonococcus after natural infection ordinarily result in little immunity to reinfection, due to antigenic variation of the gonococcus, and redirection or suppression of immune responses. Brinton and colleagues demonstrated that parenteral immunization of male human volunteers with a purified pilus vaccine gave partial protection against infection by the homologous strain. However, the vaccine failed in a clinical trial. Recent vaccine development efforts have focused on the female mouse model of genital gonococcal infection. Here we discuss the state of the field, including our unpublished data regarding efficacy in the mouse model of either viral replicon particle (VRP) vaccines, or outer membrane vesicle (OMV) vaccines. The OMV vaccines failed, despite excellent serum and mucosal antibody responses. Protection after a regimen consisting of a PorB-VRP prime plus recombinant PorB boost was correlated with apparent Th1, but not with antibody, responses. Protection probably was due to powerful adjuvant effects of the VRP vector. New tools including novel transgenic mice expressing human genes required for gonococcal infection should enable future research. Surrogates for immunity are needed. Increasing antimicrobial resistance trends among gonococci makes development of a vaccine more urgent.
Collapse
Affiliation(s)
- Weiyan Zhu
- Department of Medicine, University of North Carolina Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
25
|
Design of chimeric alphaviruses with a programmed, attenuated, cell type-restricted phenotype. J Virol 2011; 85:4363-76. [PMID: 21345954 DOI: 10.1128/jvi.00065-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Alphavirus genus in the Togaviridae family contains a number of human and animal pathogens. The importance of alphaviruses has been strongly underappreciated; however, epidemics of chikungunya virus (CHIKV), causing millions of cases of severe and often persistent arthritis in the Indian subcontinent, have raised their profile in recent years. In spite of a continuous public health threat, to date no licensed vaccines have been developed for alphavirus infections. In this study, we have applied an accumulated knowledge about the mechanism of alphavirus replication and protein function in virus-host interactions to introduce a new approach in designing attenuated alphaviruses. These variants were constructed from genes derived from different, geographically isolated viruses. The resulting viable variants encoded CHIKV envelope and, in contrast to naturally circulating viruses, lacked the important contributors to viral pathogenesis: genes encoding proteins functioning in inhibition of cellular transcription and downregulation of the cellular antiviral response. To make these viruses incapable of transmission by mosquito vectors and to differentially regulate expression of viral structural proteins, their replication was made dependent on the internal ribosome entry sites, derived from other positive-polarity RNA (RNA(+)) viruses. The rational design of the genomes was complemented by selection procedures, which adapted viruses to replication in tissue culture and produced variants which (i) demonstrated different levels of replication and production of the individual structural proteins, (ii) efficiently induced the antiviral response in infected cells, (iii) were incapable of replication in cells of mosquito origin, and (iv) efficiently replicated in Vero cells. This modular approach to genome design is applicable for the construction of other alphaviruses with a programmed, irreversibly attenuated phenotype.
Collapse
|
26
|
The immunosuppressive tumor environment is the major impediment to successful therapeutic vaccination in Neu transgenic mice. J Immunother 2010; 33:482-91. [PMID: 20463599 DOI: 10.1097/cji.0b013e3181d756bb] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We earlier showed that therapeutic vaccination of FVB/N mice with alphaviral replicon particles expressing rat neuET-VRP induced regression of established neu-expressing tumors. In this study, we evaluated the efficacy of neuET-VRPs in a tolerant mouse model using mice with transgenic expression of neu. Using the same approach that induced regression of 70 mm(2) tumors in FVB/N mice, we were unable to inhibit tumor growth in tolerant neu-N mice, despite showing neu-specific B-cell and T-cell responses post vaccination. As neu-N mice have a limited T-cell repertoire specific to neu, we hypothesized that the absence of these T cells led to differences in the vaccine response. However, transfer of neu-specific T cells from vaccinated FVB/N mice was not effective in inducing tumor regression, as these cells did not proliferate in the tumor-draining lymph node. Vaccination given with low-dose cyclophosphamide to deplete regulatory T cells delayed tumor growth but did not result in tumor regression. Finally, we showed that T cells given with vaccination were effective in inhibiting tumor growth, if administered with approaches to deplete myeloid-derived suppressor cells. Our data show that both central deletion of lymphocytes and peripheral immunosuppressive mechanisms are present in neu-N mice. However, the major impediment to successful vaccination is the peripheral tumor-induced immune suppression.
Collapse
|
27
|
Tonkin DR, Jorquera P, Todd T, Beard CW, Johnston RE, Barro M. Alphavirus replicon-based enhancement of mucosal and systemic immunity is linked to the innate response generated by primary immunization. Vaccine 2010; 28:3238-46. [PMID: 20184975 DOI: 10.1016/j.vaccine.2010.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 02/05/2010] [Accepted: 02/08/2010] [Indexed: 11/17/2022]
Abstract
Venezuelan equine encephalitis virus replicon particles (VRP) function as an effective systemic, cellular and mucosal adjuvant when codelivered with antigen, and show promise for use as a component in new and existing human vaccine formulations. We show here that VRP are effective at low dose and by intramuscular delivery, two useful features for implementation of VRP as a vaccine adjuvant. In mice receiving a prime and boost with antigen, we found that VRP are required in prime only to produce a full adjuvant effect. This outcome indicates that the events triggered during prime with VRP are sufficient to establish the nature and magnitude of the immune response to a second exposure to antigen. Events induced by VRP in the draining lymph node after prime include robust secretion of many inflammatory cytokines, upregulation of CD69 on leukocytes, and increased cellularity, with a disproportionate increase of a cell population expressing CD11c, CD11b, and F4/80. We show that antigen delivered 24h after administration of VRP does not benefit from an adjuvant effect, indicating that the events which are critical to VRP-mediated adjuvant activity occur within the first 24h. Further studies of the events induced by VRP will help elucidate the mechanism of VRP adjuvant activity and will advance the safe implementation of this adjuvant in human vaccines.
Collapse
|
28
|
Alphavirus-adjuvanted norovirus-like particle vaccines: heterologous, humoral, and mucosal immune responses protect against murine norovirus challenge. J Virol 2009; 83:3212-27. [PMID: 19176631 DOI: 10.1128/jvi.01650-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The development of an effective norovirus vaccine likely requires the capacity to protect against infection with multiple norovirus strains. Advanced recombinant genetic systems and the recent discovery of a mouse-tropic norovirus strain (MNV) provide robust model systems for vaccine efficacy studies. We coadministered multivalent norovirus-like particle (VLP) vaccines with alphavirus adjuvant particles to mice and evaluated homotypic and heterotypic humoral and protective immunity to human and murine norovirus strains. Multivalent VLP vaccines induced robust receptor-blocking antibody responses to heterologous human strains not included in the vaccine composition. Inclusion of alphavirus adjuvants in the inoculum significantly augmented VLP-induced systemic and mucosal immunity compared to the responses induced by low-dose CpG DNA, validating the utility of such adjuvants with VLP antigens. Furthermore, multivalent vaccination, either including or excluding MNV VLP, resulted in significantly reduced viral loads following MNV challenge. Passive transfer of sera from mice monovalently vaccinated with MNV VLP to immunodeficient or immunocompetent mice protected against MNV infection; however, adoptive transfer of purified CD4(+) or CD8(+) cells did not influence viral loads in murine tissues. Together, these data suggest that humoral immunity induced by multivalent norovirus vaccines may protect against heterologous norovirus challenge.
Collapse
|
29
|
Thompson JM, Whitmore AC, Staats HF, Johnston R. The contribution of type I interferon signaling to immunity induced by alphavirus replicon vaccines. Vaccine 2008; 26:4998-5003. [PMID: 18656518 PMCID: PMC3595171 DOI: 10.1016/j.vaccine.2008.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 05/28/2008] [Accepted: 07/08/2008] [Indexed: 11/19/2022]
Abstract
The type I interferon (IFN) system is critical for protecting the mammalian host from numerous virus infections and plays a key role in shaping the antiviral adaptive immune response. In this report, the importance of type I IFN signaling was assessed in a mouse model of alphavirus-induced humoral immune induction. Venezuelan equine encephalitis virus replicon particles (VRP) expressing the hemagglutinin (HA) gene from influenza virus (HA-VRP) were used to vaccinate both wildtype (wt) and IFN alpha/beta receptor knockout (RKO) mice. HA-VRP vaccination induced equivalent levels of flu-specific systemic IgG, mucosal IgG, and systemic IgA antibodies in both wt and IFN RKO mice. In contrast, HA-VRP vaccination of IFN RKO mice failed to induce significant levels of flu-specific mucosal IgA antibodies at multiple mucosal surfaces. In the VRP adjuvant system, co-delivery of null VRP with ovalbumin (OVA) protein significantly increased the levels of OVA-specific serum IgG, fecal IgG, and fecal IgA antibodies in both wt and RKO mice, suggesting that type I IFN signaling plays a less significant role in the VRP adjuvant effect. Taken together, these results suggest that (1) at least in regard to IFN signaling, the mechanisms which regulate alphavirus-induced immunity differ when VRP are utilized as expression vectors as opposed to adjuvants, and (2) type I IFN signaling is required for the induction of mucosal IgA antibodies directed against VRP-expressed antigen. These results shed new light on the regulatory networks which promote immune induction, and specifically mucosal immune induction, with alphavirus vaccine vectors.
Collapse
Affiliation(s)
- Joseph M. Thompson
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill NC 27599
- Carolina Vaccine Institute, University of North Carolina, Chapel Hill NC 27599
| | - Alan C. Whitmore
- Carolina Vaccine Institute, University of North Carolina, Chapel Hill NC 27599
| | - Herman F. Staats
- Department of Pathology, and Human Vaccine Institute, Duke University Medical Center, Durham NC 27710
| | - Robert Johnston
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill NC 27599
- Carolina Vaccine Institute, University of North Carolina, Chapel Hill NC 27599
| |
Collapse
|