1
|
Senpuku K, Kataoka-Nakamura C, Kunishima Y, Hirai T, Yoshioka Y. An inactivated whole-virion vaccine for Enterovirus D68 adjuvanted with CpG ODN or AddaVax elicits potent protective immunity in mice. Vaccine 2024; 42:2463-2474. [PMID: 38472067 DOI: 10.1016/j.vaccine.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Enterovirus D68 (EV-D68), a pathogen that causes respiratory symptoms, mainly in children, has been implicated in acute flaccid myelitis, which is a poliomyelitis-like paralysis. Currently, there are no licensed vaccines or treatments for EV-D68 infections. Here, we investigated the optimal viral inactivation reagents, vaccine adjuvants, and route of vaccination in mice to optimize an inactivated whole-virion (WV) vaccine against EV-D68. We used formalin, β-propiolactone (BPL), and hydrogen peroxide as viral inactivation reagents and compared their effects on antibody responses. Use of any of these three viral inactivation reagents effectively induced neutralizing antibodies. Moreover, the antibody response induced by the BPL-inactivated WV vaccine was enhanced when adjuvanted with cytosine phosphoguanine oligodeoxynucleotide (CpG ODN) or AddaVax (MF59-like adjuvant), but not with aluminum hydroxide (alum). Consistent with the antibody response results, the protective effect of the inactivated WV vaccine against the EV-D68 challenge was enhanced when adjuvanted with CpG ODN or AddaVax, but not with alum. Further, while the intranasal inactivated WV vaccine induced EV-D68-specific IgA antibodies in the respiratory tract, it was less protective against EV-D68 challenge than the injectable vaccine. Thus, an injectable inactivated EV-D68 WV vaccine prepared with appropriate viral inactivation reagents and an optimal adjuvant is a promising EV-D68 vaccine.
Collapse
Affiliation(s)
- Kota Senpuku
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chikako Kataoka-Nakamura
- The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuta Kunishima
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiro Hirai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Nguyen TTT, Shahin K, Allan B, Sarfraz M, Wheler C, Gerdts V, Köster W, Dar A. Enhancement of protective efficacy of innate immunostimulant based formulations against yolk sac infection in young chicks. Poult Sci 2022; 101:102119. [PMID: 36087444 PMCID: PMC9468504 DOI: 10.1016/j.psj.2022.102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
This study was conducted to characterize and compare the protective effects of various innate immune stimulants against yolk sac infection (YSI) caused by an avian pathogenic Escherichia coli in young chicks. The immune stimulants were administered alone or in various combinations of unmethylated CpG oligodeoxynucleotides (CpG), polyinosinic:polycytidylic acid (Poly I:C), and avian antimicrobial peptides (AMPs). Routes included in ovo or in ovo followed by a subcutaneous (S/C) injection. CpG alone and in combination with Poly I:C, truncated avian cathelicidin (CATH)-1(6-26), avian beta defensin (AvBD)1, and CATH-1(6-26) + AvBD1, were administered in ovo to 18-day-old embryonated eggs for gene expression and challenge studies. Next, CpG alone and the potentially effective formulation of CpG + Poly I:C, were administrated via the in ovo route using 40 embryonated eggs. At 1 day post-hatch, half of each group also received their respective treatments via the S/C route. Four hours later, all chicks were challenged using E. coli strain EC317 and mortalities were recorded for 14 d. The first challenge study revealed that amongst the single use and combinations of CpG with different innate immune stimulants, a higher protection and a lower clinical score were offered by the combination of CpG + Poly I:C. The second challenge study showed that this combination (CpG + Poly I:C) provides an even higher level of protection when a second dose is administered via the S/C route at 1 day post-hatch. The current research highlights the efficacy of a combination of CpG + Poly I:C administered either in ovo or in ovo along with a S/C injection and its potential use as an alternative to antibiotics against yolk sac infection in young chicks.
Collapse
Affiliation(s)
- Thuy Thi Thu Nguyen
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada.
| | - Khalid Shahin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Brenda Allan
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Mishal Sarfraz
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Colette Wheler
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Arshud Dar
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| |
Collapse
|
3
|
Comparison of adjuvant properties of chitosan during oral and subcutaneous immunization of mice with BSA. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vaccination is the best method to prevent the spread of infectious diseases, its disadvantages are side effects. Potentially safe DNA, RNA or protein molecules possess antigenic properties, but are low-immunogenic and therefore require conjugation with an adjuvant. The aim of the research was to evaluate Chitosan (CS) potency as an adjuvant and compare its effectiveness depending on the route of drug administration. The experiments were carried out on 3 groups of BALB/c mice. Mice of the first group were injected subcutaneously with 20 µl of a mixture of CS (3.3 mg/kg) and BSA (1.7 mg/kg). The mixture of CS and BSA at the same doses and volume was administered orally to mice of the second experimental group. The third group – control – unvaccinated mice. Anti-BSA antibody levels were measured by ELISA. Aspartate aminotransferase, alanine aminotransferase activity and cholesterol, creatinine and urea levels were determined in the serum. It was found that both subcutaneous and mucosal immunizations provided a 2-fold increase in anti-BSA antibody titers against the background of maintaining all biochemical blood parameters at the level of the physiological norm. However, AST activity in the serum of oral-immunized mice was elevated as compared to subcutaneous-immunized mice. Serum cholesterol level in the group of subcutaneously immunized mice and creatinine and urea levels in both experimental groups were reduced compared to the control. It is concluded that oral immunization with CS is the optimal route for antigen-specific IgG antibody response induction.
Collapse
|
4
|
dos-Santos JS, Firmino-Cruz L, da Fonseca-Martins AM, Oliveira-Maciel D, Perez GG, Roncaglia-Pereira VA, Dumard CH, Guedes-da-Silva FH, Santos ACV, Leandro MDS, Ferreira JRM, Guimarães-Pinto K, Conde L, Rodrigues DAS, Silva MVDM, Alvim RGF, Lima TM, Marsili FF, Abreu DPB, Ferreira Jr. OC, Mohana Borges RDS, Tanuri A, Souza TML, Rossi-Bergmann B, Vale AM, Silva JL, de Oliveira AC, Filardy AD, Gomes AMO, de Matos Guedes HL. Immunogenicity of SARS-CoV-2 Trimeric Spike Protein Associated to Poly(I:C) Plus Alum. Front Immunol 2022; 13:884760. [PMID: 35844561 PMCID: PMC9281395 DOI: 10.3389/fimmu.2022.884760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022] Open
Abstract
The SARS-CoV-2 pandemic has had a social and economic impact worldwide, and vaccination is an efficient strategy for diminishing those damages. New adjuvant formulations are required for the high vaccine demands, especially adjuvant formulations that induce a Th1 phenotype. Herein we assess a vaccination strategy using a combination of Alum and polyinosinic:polycytidylic acid [Poly(I:C)] adjuvants plus the SARS-CoV-2 spike protein in a prefusion trimeric conformation by an intradermal (ID) route. We found high levels of IgG anti-spike antibodies in the serum by enzyme linked immunosorbent assay (ELISA) and high neutralizing titers against SARS-CoV-2 in vitro by neutralization assay, after two or three immunizations. By evaluating the production of IgG subtypes, as expected, we found that formulations containing Poly(I:C) induced IgG2a whereas Alum did not. The combination of these two adjuvants induced high levels of both IgG1 and IgG2a. In addition, cellular immune responses of CD4+ and CD8+ T cells producing interferon-gamma were equivalent, demonstrating that the Alum + Poly(I:C) combination supported a Th1 profile. Based on the high neutralizing titers, we evaluated B cells in the germinal centers, which are specific for receptor-binding domain (RBD) and spike, and observed that more positive B cells were induced upon the Alum + Poly(I:C) combination. Moreover, these B cells produced antibodies against both RBD and non-RBD sites. We also studied the impact of this vaccination preparation [spike protein with Alum + Poly(I:C)] in the lungs of mice challenged with inactivated SARS-CoV-2 virus. We found a production of IgG, but not IgA, and a reduction in neutrophil recruitment in the bronchoalveolar lavage fluid (BALF) of mice, suggesting that our immunization scheme reduced lung inflammation. Altogether, our data suggest that Alum and Poly(I:C) together is a possible adjuvant combination for vaccines against SARS-CoV-2 by the intradermal route.
Collapse
Affiliation(s)
- Júlio Souza dos-Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luan Firmino-Cruz
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alessandra Marcia da Fonseca-Martins
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Oliveira-Maciel
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gustavo Guadagnini Perez
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Victor A. Roncaglia-Pereira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos H. Dumard
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Francisca H. Guedes-da-Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ana C. Vicente Santos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Monique dos Santos Leandro
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Kamila Guimarães-Pinto
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luciana Conde
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Danielle A. S. Rodrigues
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Renata G. F. Alvim
- Cell Culture Engineering Lab., Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tulio M. Lima
- Cell Culture Engineering Lab., Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Federico F. Marsili
- Cell Culture Engineering Lab., Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniel P. B. Abreu
- Cell Culture Engineering Lab., Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | | | - Amilcar Tanuri
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Thiago Moreno L. Souza
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Bartira Rossi-Bergmann
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - André M. Vale
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jerson Lima Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Andréa Cheble de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Andre M. O. Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Herbert Leonel de Matos Guedes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Interdisciplinary Medical Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Beheshtirouy S, Khani E, Khiali S, Entezari-Maleki T. Investigational antiviral drugs for the treatment of COVID-19 patients. Arch Virol 2022; 167:751-805. [PMID: 35138438 DOI: 10.1007/s00705-022-05368-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
In the current pandemic of coronavirus disease 2019 (COVID-19), antiviral drugs are at the center of attention because of their critical role against severe acute respiratory disease syndrome coronavirus 2 (SARS-CoV-2). In addition to designing new antivirals against SARS-COV-2, a drug repurposing strategy is a practical approach for treating COVID-19. A brief insight about antivirals would help clinicians to choose the best medication for the treatment of COVID-19. In this review, we discuss both novel and repurposed investigational antivirals, focusing on in vitro, in vivo, and clinical trial studies.
Collapse
Affiliation(s)
- Samineh Beheshtirouy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Khani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Khiali
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Ong GH, Lian BSX, Kawasaki T, Kawai T. Exploration of Pattern Recognition Receptor Agonists as Candidate Adjuvants. Front Cell Infect Microbiol 2021; 11:745016. [PMID: 34692565 PMCID: PMC8526852 DOI: 10.3389/fcimb.2021.745016] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Adjuvants are used to maximize the potency of vaccines by enhancing immune reactions. Components of adjuvants include pathogen-associated molecular patterns (PAMPs) and damage-associate molecular patterns (DAMPs) that are agonists for innate immune receptors. Innate immune responses are usually activated when pathogen recognition receptors (PRRs) recognize PAMPs derived from invading pathogens or DAMPs released by host cells upon tissue damage. Activation of innate immunity by PRR agonists in adjuvants activates acquired immune responses, which is crucial to enhance immune reactions against the targeted pathogen. For example, agonists for Toll-like receptors have yielded promising results as adjuvants, which target PRR as adjuvant candidates. However, a comprehensive understanding of the type of immunological reaction against agonists for PRRs is essential to ensure the safety and reliability of vaccine adjuvants. This review provides an overview of the current progress in development of PRR agonists as vaccine adjuvants, the molecular mechanisms that underlie activation of immune responses, and the enhancement of vaccine efficacy by these potential adjuvant candidates.
Collapse
Affiliation(s)
- Guang Han Ong
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Benedict Shi Xiang Lian
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takumi Kawasaki
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
7
|
Yaqinuddin A, Shafqat A, Kashir J, Alkattan K. Effect of SARS-CoV-2 Mutations on the Efficacy of Antibody Therapy and Response to Vaccines. Vaccines (Basel) 2021; 9:914. [PMID: 34452039 PMCID: PMC8402590 DOI: 10.3390/vaccines9080914] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 causes severe acute respiratory syndrome, which has led to significant morbidity and mortality around the world. Since its emergence, extensive prophylactic and therapeutic countermeasures have been employed to successfully prevent the spread of COVID-19. Extensive work has been undertaken on using monoclonal antibody therapies, mass vaccination programs, and antiviral drugs to prevent and treat COVID-19. However, since antiviral drugs could take years to become widely available, immunotherapy and vaccines currently appear to be the most feasible option. In December 2020, the first vaccine against SARS-CoV-2 was approved by the World Health Organization (WHO) and, subsequently, many other vaccines were approved for use by different international regulators in different countries. Most monoclonal antibodies (mAbs) and vaccines target the SARS-CoV-2 surface spike (S) protein. Recently, mutant (or variant) SARS-CoV-2 strains with increased infectivity and virulence that evade protective host antibodies present either due to infection, antibody therapy, or vaccine administration have emerged. In this manuscript, we discuss the different monoclonal antibody and vaccine therapies available against COVID-19 and how the efficacy of these therapies is affected by the emergence of variants of SARS-CoV-2. We also discuss strategies that might help society cope with variants that could neutralize the effects of immunotherapy and escape the protective immunity conferred by vaccines.
Collapse
Affiliation(s)
- Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (J.K.); (K.A.)
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (J.K.); (K.A.)
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (J.K.); (K.A.)
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11533, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (J.K.); (K.A.)
| |
Collapse
|
8
|
The potential of neuraminidase as an antigen for nasal vaccines to increase cross-protection against influenza viruses. J Virol 2021; 95:e0118021. [PMID: 34379511 DOI: 10.1128/jvi.01180-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the availability of vaccines that efficiently reduce the severity of clinical symptoms, influenza viruses still cause substantial morbidity and mortality worldwide. In this regard, nasal influenza vaccines-because they induce virus-specific IgA-may be more effective than traditional parenteral formulations in preventing infection of the upper respiratory tract. In addition, the neuraminidase (NA) of influenza virus has shown promise as a vaccine antigen to confer broad cross-protection, in contrast to hemagglutinin (HA), the target of most current vaccines, which undergoes frequent antigenic changes leading to vaccine ineffectiveness against mismatched heterologous strains. However, the usefulness of NA as an antigen for nasal vaccines is unclear. Here, we compared NA and HA as antigens for nasal vaccines in mice. Intranasal immunization with recombinant NA (rNA) plus adjuvant protected mice against not only homologous but also heterologous virus challenge in the upper respiratory tract, whereas intranasal immunization with rHA failed to protect against heterologous challenge. In addition, intranasal immunization with rNA, but not rHA, conferred cross-protection even in the absence of adjuvant in virus infection-experienced mice; this strong cross-protection was due to the broader binding capacity of NA-specific antibodies to heterologous virus. Furthermore, the NA-specific IgA in the upper respiratory tract that was induced through rNA intranasal immunization recognized more epitopes than did the NA-specific IgG and IgA in plasma, again increasing cross-protection. Together, our findings suggest the potential of NA as an antigen for nasal vaccines to provide broad cross-protection against both homologous and heterologous influenza viruses. IMPORTANCE Because mismatch between vaccine strains and epidemic strains cannot always be avoided, the development of influenza vaccines that induce broad cross-protection against antigenically mismatched heterologous strains is needed. Although the importance of NA-specific antibodies to cross-protection in humans and experimental animals is becoming clear, the potential of NA as an antigen for providing cross-protection through nasal vaccines is unknown. We show here that intranasal immunization with NA confers broad cross-protection in the upper respiratory tract, where virus transmission is initiated, by inducing NA-specific IgA that recognizes a wide range of epitopes. These data shed new light on NA-based nasal vaccines as powerful anti-influenza tools that confer broad cross-protection.
Collapse
|
9
|
Seyfoori A, Shokrollahi Barough M, Mokarram P, Ahmadi M, Mehrbod P, Sheidary A, Madrakian T, Kiumarsi M, Walsh T, McAlinden KD, Ghosh CC, Sharma P, Zeki AA, Ghavami S, Akbari M. Emerging Advances of Nanotechnology in Drug and Vaccine Delivery against Viral Associated Respiratory Infectious Diseases (VARID). Int J Mol Sci 2021; 22:6937. [PMID: 34203268 PMCID: PMC8269337 DOI: 10.3390/ijms22136937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Viral-associated respiratory infectious diseases are one of the most prominent subsets of respiratory failures, known as viral respiratory infections (VRI). VRIs are proceeded by an infection caused by viruses infecting the respiratory system. For the past 100 years, viral associated respiratory epidemics have been the most common cause of infectious disease worldwide. Due to several drawbacks of the current anti-viral treatments, such as drug resistance generation and non-targeting of viral proteins, the development of novel nanotherapeutic or nano-vaccine strategies can be considered essential. Due to their specific physical and biological properties, nanoparticles hold promising opportunities for both anti-viral treatments and vaccines against viral infections. Besides the specific physiological properties of the respiratory system, there is a significant demand for utilizing nano-designs in the production of vaccines or antiviral agents for airway-localized administration. SARS-CoV-2, as an immediate example of respiratory viruses, is an enveloped, positive-sense, single-stranded RNA virus belonging to the coronaviridae family. COVID-19 can lead to acute respiratory distress syndrome, similarly to other members of the coronaviridae. Hence, reviewing the current and past emerging nanotechnology-based medications on similar respiratory viral diseases can identify pathways towards generating novel SARS-CoV-2 nanotherapeutics and/or nano-vaccines.
Collapse
Affiliation(s)
- Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mahdieh Shokrollahi Barough
- Department of Immunology, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran 1316943551, Iran;
| | - Alireza Sheidary
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Mohammad Kiumarsi
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Tavia Walsh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
| | - Kielan D. McAlinden
- Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Chandra C. Ghosh
- Roger Williams Medical Center, Immuno-Oncology Institute (Ix2), Providence, RI 02908, USA;
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Amir A. Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, U.C. Davis Lung Center, Davis School of Medicine, University of California, Davis, CA 95817, USA;
- Veterans Affairs Medical Center, Mather, CA 95817, USA
| | - Saeid Ghavami
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
10
|
Liu QN, Tang YY, Zhou MJ, Luo S, Li YT, Wang G, Zhang DZ, Yang H, Tang BP, He WF. Differentially expressed genes involved in immune pathways from yellowhead catfish (Tachysurus fulvidraco) after poly (I:C) challenge. Int J Biol Macromol 2021; 183:340-345. [PMID: 33932411 DOI: 10.1016/j.ijbiomac.2021.04.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/11/2023]
Abstract
Yellowhead catfish (Tachysurus fulvidraco) is an important aquaculture fish species in China with a high market value. Infectious diseases pose serious threats in farmed fish species, and although vaccines can prevent certain infections, they rely on potent adjuvants. In this study, we analyzed the transcriptomic profiles of spleens from poly (I:C)-treated T. fulvidraco. We obtained 46,362,922 reads corresponding to 490,926 transcripts and 318,059 genes. Gene annotation using different databases and subsequent differential gene expression analyses led to the identification of 5587 differentially expressed genes (DEGs), of which 2473 were up-regulated and 3114 were down-regulated in poly (I:C)-treated fish. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs revealed the significant dysregulation of immune- and cancer-related genes in the spleens of poly (I:C)-treated fish. Notably, several components of JAK-STAT, MAPK, and p53 signaling pathways were significantly dysregulated in response to poly (I:C) treatment. Quantitative real-time PCR (qRT-PCR) analysis of 11 randomly selected immune response genes confirmed the reliability of our findings. In conclusion, our findings provide novel insight into the immune responses of T. fulvidraco and suggest that poly (I:C) may represent a promising adjuvant of fish vaccines.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Ying-Yu Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Meng-Jiao Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Sha Luo
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Yue-Tian Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, People's Republic of China.
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Wen-Fei He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
11
|
Stephens LM, Ross KA, Waldstein KA, Legge KL, McLellan JS, Narasimhan B, Varga SM. Prefusion F-Based Polyanhydride Nanovaccine Induces Both Humoral and Cell-Mediated Immunity Resulting in Long-Lasting Protection against Respiratory Syncytial Virus. THE JOURNAL OF IMMUNOLOGY 2021; 206:2122-2134. [PMID: 33827894 DOI: 10.4049/jimmunol.2100018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 11/19/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in both young children and in older adults. Despite the morbidity, mortality, and high economic burden caused by RSV worldwide, no licensed vaccine is currently available. We have developed a novel RSV vaccine composed of a prefusion-stabilized variant of the fusion (F) protein (DS-Cav1) and a CpG oligodeoxynucleotide adjuvant encapsulated within polyanhydride nanoparticles, termed RSVNanoVax. A prime-boost intranasal administration of RSVNanoVax in BALB/c mice significantly alleviated weight loss and pulmonary dysfunction in response to an RSV challenge, with protection maintained up to at least 6 mo postvaccination. In addition, vaccinated mice exhibited rapid viral clearance in the lungs as early as 2 d after RSV infection in both inbred and outbred populations. Vaccination induced tissue-resident memory CD4 and CD8 T cells in the lungs, as well as RSV F-directed neutralizing Abs. Based on the robust immune response elicited and the high level of durable protection observed, our prefusion RSV F nanovaccine is a promising new RSV vaccine candidate.
Collapse
Affiliation(s)
- Laura M Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA
| | - Kathleen A Ross
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA.,Nanovaccine Institute, Ames, IA
| | - Kody A Waldstein
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA
| | - Kevin L Legge
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA.,Nanovaccine Institute, Ames, IA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA.,Department of Pathology, University of Iowa, Iowa City, IA; and
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA.,Nanovaccine Institute, Ames, IA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA; .,Nanovaccine Institute, Ames, IA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA.,Department of Pathology, University of Iowa, Iowa City, IA; and
| |
Collapse
|
12
|
Jang YH, Seong BL. Immune Responses Elicited by Live Attenuated Influenza Vaccines as Correlates of Universal Protection against Influenza Viruses. Vaccines (Basel) 2021; 9:vaccines9040353. [PMID: 33916924 PMCID: PMC8067561 DOI: 10.3390/vaccines9040353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Influenza virus infection remains a major public health challenge, causing significant morbidity and mortality by annual epidemics and intermittent pandemics. Although current seasonal influenza vaccines provide efficient protection, antigenic changes of the viruses often significantly compromise the protection efficacy of vaccines, rendering most populations vulnerable to the viral infection. Considerable efforts have been made to develop a universal influenza vaccine (UIV) able to confer long-lasting and broad protection. Recent studies have characterized multiple immune correlates required for providing broad protection against influenza viruses, including neutralizing antibodies, non-neutralizing antibodies, antibody effector functions, T cell responses, and mucosal immunity. To induce broadly protective immune responses by vaccination, various strategies using live attenuated influenza vaccines (LAIVs) and novel vaccine platforms are under investigation. Despite superior cross-protection ability, very little attention has been paid to LAIVs for the development of UIV. This review focuses on immune responses induced by LAIVs, with special emphasis placed on the breadth and the potency of individual immune correlates. The promising prospect of LAIVs to serve as an attractive and reliable vaccine platforms for a UIV is also discussed. Several important issues that should be addressed with respect to the use of LAIVs as UIV are also reviewed.
Collapse
Affiliation(s)
- Yo Han Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University, Andong 1375, Korea;
- Vaccine Industry Research Institute, Andong National University, Andong 1375, Korea
| | - Baik L. Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2123-7416
| |
Collapse
|
13
|
Stephens LM, Varga SM. Nanoparticle vaccines against respiratory syncytial virus. Future Virol 2020; 15:763-778. [PMID: 33343684 PMCID: PMC7737143 DOI: 10.2217/fvl-2020-0174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of respiratory disease in infants, the elderly and immunocompromised individuals. Despite the global burden, there is no licensed vaccine for RSV. Recent advances in the use of nanoparticle technology have provided new opportunities to address some of the limitations of conventional vaccines. Precise control over particle size and surface properties enhance antigen stability and prolong antigen release. Particle size can also be modified to target specific antigen-presenting cells in order to induce specific types of effector T-cell responses. Numerous nanoparticle-based vaccines are currently being evaluated for RSV including inorganic, polymeric and virus-like particle-based formulations. Here, we review the potential advantages of using different nanoparticle formulations in a vaccine for RSV, and discuss many examples of safe, and effective vaccines currently in both preclinical and clinical stages of testing.
Collapse
Affiliation(s)
- Laura M Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
14
|
Sasaki E, Hamaguchi I, Mizukami T. Pharmacodynamic and safety considerations for influenza vaccine and adjuvant design. Expert Opin Drug Metab Toxicol 2020; 16:1051-1061. [PMID: 32772723 DOI: 10.1080/17425255.2020.1807936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION A novel adjuvant evaluation system for safety and immunogenicity is needed. Vaccination is important for infection prevention, for example, from influenza viruses. Adjuvants are considered critical for improving the effectiveness of influenza vaccines. Adjuvant development is an important issue in influenza vaccine design. AREAS COVERED A conventional in vivo evaluation method for vaccine safety has been limited in analyzing phenotypic and pathological changes. Therefore, it is difficult to obtain information on the changes at the molecular level. This review aims to explain the recently developed genomics analysis-based vaccine adjuvant safety evaluation tools verified by AddaVaxTM and polyinosinic-polycytidylic acid (poly I:C) using 18 biomarker genes and whole-virion inactivated influenza vaccine as a toxicity control. Genomics analyzes would help provide safety and efficacy information regarding influenza vaccine design by facilitating appropriate adjuvant selection. EXPERT OPINION The efficacy and safety profiles of influenza vaccines and adjuvants using genomics technologies provide useful information regarding immunogenicity, which is related to safety and efficacy. This approach provides important information to select appropriate inoculation routes, combinations of vaccine antigens and adjuvants, and dosing amounts. The efficacy of vaccine adjuvant evaluation by genomics analysis should be verified by various studies using various vaccines in the future.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases , Tokyo, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases , Tokyo, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases , Tokyo, Japan
| |
Collapse
|
15
|
Tanishita S, Ukawa M, Tomono T, Yoshida Y, Tsujioka T, Miyata K, Tobita E, Uto T, Baba M, Sakuma S. Cross-Protective Abilities of Hyaluronic Acid Modified with Tetraglycine-l-octaarginine as a Mucosal Adjuvant against Infection with Heterologous Influenza Viruses. Bioconjug Chem 2019; 30:3028-3037. [PMID: 31738536 DOI: 10.1021/acs.bioconjchem.9b00644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mucosal vaccination, which secretion of immunoglobulin A (IgA) on the mucosa is accompanied by induction of immunoglobulin G (IgG) in the blood, is one of the most effective ways to circumvent influenza epidemics caused by incorrect prediction of epidemic viral strains or viral mutation. Secreted IgA is expected to prevent hosts from being infected with heterologous viruses because this antibody cross-reacts to strains other than those used for immunization. Our previous mouse experiments revealed that intranasal IgA with cross-reactivity was induced through nasal inoculation with inactivated whole viral particles of the H1N1 A/New Caledonia/20/99 IVR116 (NCL) strain in the presence of hyaluronic acid modified with tetraglycine-l-octaarginine. In the present study, heterologous influenza virus challenge was performed to validate a potential of the hyaluronic acid derivative as a mucosal adjuvant with cross-protective abilities. Serious weight loss was observed when mice were nasally inoculated with inactivated NCL viruses alone and subsequently exposed to mouse-adapted infectious viruses of the H1N1 A/Puerto Rico/8/34 (PR8) strain. The symptom associated with virus infection was hardly ever observed for mice inoculated with a mixture of the viral antigens and tetraglycine-l-octaarginine-linked hyaluronic acid, presumably due to high induction of IgG and IgA capable of cross-reacting to PR8 viruses. Less proliferation of PR8 viruses in those mice was also supported by an insignificant elevation of antibody levels through virus exposure. Our polysaccharide derivative enabled hosts to acquire adaptive immunity with cross-protective abilities against heterologous virus infection.
Collapse
Affiliation(s)
- Sohei Tanishita
- Faculty of Pharmaceutical Sciences , Setsunan University , 45-1, Nagaotoge-cho , Hirakata, Osaka 573-0101 , Japan
| | - Masami Ukawa
- Faculty of Pharmaceutical Sciences , Setsunan University , 45-1, Nagaotoge-cho , Hirakata, Osaka 573-0101 , Japan
| | - Takumi Tomono
- Faculty of Pharmaceutical Sciences , Setsunan University , 45-1, Nagaotoge-cho , Hirakata, Osaka 573-0101 , Japan
| | - Yuki Yoshida
- Faculty of Pharmaceutical Sciences , Setsunan University , 45-1, Nagaotoge-cho , Hirakata, Osaka 573-0101 , Japan
| | - Takumi Tsujioka
- Faculty of Pharmaceutical Sciences , Setsunan University , 45-1, Nagaotoge-cho , Hirakata, Osaka 573-0101 , Japan
| | - Kohei Miyata
- Life Science Materials Laboratory , ADEKA Company, Limited , 7-2-34, Higashiogu , Arakawa-ku, Tokyo 116-8553 , Japan
| | - Etsuo Tobita
- Life Science Materials Laboratory , ADEKA Company, Limited , 7-2-34, Higashiogu , Arakawa-ku, Tokyo 116-8553 , Japan
| | - Tomofumi Uto
- Faculty of Medicine , University of Miyazaki , Kihara 5200, Kiyotake , Miyazaki 889-1692 , Japan
| | - Masanori Baba
- Division of Antiviral Chemotherapy, Joint Research Center for Human Retrovirus Infection , Kagoshima University , 8-35-1, Sakuragaoka , Kagoshima 890-8544 , Japan
| | - Shinji Sakuma
- Faculty of Pharmaceutical Sciences , Setsunan University , 45-1, Nagaotoge-cho , Hirakata, Osaka 573-0101 , Japan
| |
Collapse
|
16
|
Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Nanoparticle-Based Vaccines Against Respiratory Viruses. Front Immunol 2019; 10:22. [PMID: 30733717 PMCID: PMC6353795 DOI: 10.3389/fimmu.2019.00022] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
The respiratory mucosa is the primary portal of entry for numerous viruses such as the respiratory syncytial virus, the influenza virus and the parainfluenza virus. These pathogens initially infect the upper respiratory tract and then reach the lower respiratory tract, leading to diseases. Vaccination is an affordable way to control the pathogenicity of viruses and constitutes the strategy of choice to fight against infections, including those leading to pulmonary diseases. Conventional vaccines based on live-attenuated pathogens present a risk of reversion to pathogenic virulence while inactivated pathogen vaccines often lead to a weak immune response. Subunit vaccines were developed to overcome these issues. However, these vaccines may suffer from a limited immunogenicity and, in most cases, the protection induced is only partial. A new generation of vaccines based on nanoparticles has shown great potential to address most of the limitations of conventional and subunit vaccines. This is due to recent advances in chemical and biological engineering, which allow the design of nanoparticles with a precise control over the size, shape, functionality and surface properties, leading to enhanced antigen presentation and strong immunogenicity. This short review provides an overview of the advantages associated with the use of nanoparticles as vaccine delivery platforms to immunize against respiratory viruses and highlights relevant examples demonstrating their potential as safe, effective and affordable vaccines.
Collapse
Affiliation(s)
- Soultan Al-Halifa
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
| | - Laurie Gauthier
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| | - Dominic Arpin
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| | - Steve Bourgault
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| | - Denis Archambault
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| |
Collapse
|
17
|
Takeda Y, Takaki H, Fukui-Miyazaki A, Yoshida S, Matsumoto M, Seya T. Vaccine adjuvant ARNAX promotes mucosal IgA production in influenza HA vaccination. Biochem Biophys Res Commun 2018; 506:1019-1025. [PMID: 30404733 DOI: 10.1016/j.bbrc.2018.10.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
Abstract
Adjuvant stimulates pattern-recognition receptors (PRRs) expressed by dendritic cells, which causes immune-enhancing of T lymphocytes. Adjuvant also induces innate immune response in whole-body cells via PRRs to evoke cytokinemia. A cytokine-mediated immune response is important for the systemic protection of a host from microbial infections. Using an influenza subcomponent vaccine in a mouse model, we intranasally administered a TLR3-specific adjuvant ARNAX + HA split vaccine to mice. ARNAX efficiently induced mucosal IgA and systemic IgG production by nasal drop. Moreover, ARNAX + HA simultaneously induced CD8 and CD4 T cell activation. We have previously shown that ARNAX does not induce harmful systemic cytokine production. Thus, our findings indicate that the ARNAX + HA vaccine is a harmless prophylactic vaccine for flu that induces HA-specific T cell activation and IgA/IgG production. These results suggested that ARNAX + antigen enhanced the immune response without inducing inflammatory toxicity for vaccination against infectious diseases.
Collapse
Affiliation(s)
- Yohei Takeda
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Hiromi Takaki
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Aya Fukui-Miyazaki
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Sumito Yoshida
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Misako Matsumoto
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Tsukasa Seya
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
| |
Collapse
|
18
|
Toll-like receptor 3 in nasal CD103 + dendritic cells is involved in immunoglobulin A production. Mucosal Immunol 2018; 11:82-96. [PMID: 28612840 DOI: 10.1038/mi.2017.48] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/23/2017] [Indexed: 02/04/2023]
Abstract
Intranasal inoculation with influenza hemagglutinin subunit with polyinosine-polycytidylic (polyI:C), a synthetic analog for double-stranded RNA, enhances production of vaccine-specific immunoglobulin (Ig) A, which is superior to IgG in prophylactic immunity. The mechanism whereby polyI:C skews to IgA production in the nasal-associated lymph tissue (NALT) was investigated in mouse models. Nasally instilled polyI:C was endocytosed into CD103+ dendritic cells (DCs) and induced T-cell activation, including interferon (IFN)-γ production. According to knockout mouse studies, polyI:C activated the Toll-like receptor 3 signal via the adapter TICAM-1 (also called TRIF), that mainly caused T-cell-dependent IgA production. Nasal CD103+ DCs activated transforming growth factor-β signaling and activation-induced cytidine deaminase upon polyI:C stimulation. IgA rather than IgG production was impaired in Batf3-/- mice, where CD103+ DCs are defective. Genomic recombination occurred in IgA-producing cells in association with polyI:C-stimulated DCs and nasal microenvironment. PolyI:C induced B-cell-activating factor expression and weakly triggered T-cell-independent IgA production. PolyI:C simultaneously activated mitochondrial antiviral signaling and then type I IFN receptor pathways, which only minimally participated in IgA production. Taken together, CD103+ DCs in NALT are indispensable for the adjuvant activity of polyI:C in enhancing vaccine-specific IgA induction and protective immunity against influenza viruses.
Collapse
|
19
|
cGAMP Promotes Germinal Center Formation and Production of IgA in Nasal-Associated Lymphoid Tissue. Med Sci (Basel) 2017; 5:medsci5040035. [PMID: 29258267 PMCID: PMC5753664 DOI: 10.3390/medsci5040035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
Induction of immunoglobulin (Ig) A in the mucosa of the upper respiratory tract and the nasal cavity protects against influenza virus infection. Cyclic dinucleotides (CDNs) are used as mucosal adjuvants to enhance the immunogenicity of intranasal influenza hemagglutinin (HA) vaccines. The adjuvant activity of 2'3' cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) on Ig production was investigated in nasal-associated lymphoid tissue (NALT), serum of wild-type C57BL/6J, and stimulator of interferon genes (STING)-deficient mice, which do not recognize cGAMP. Mice were vaccinated intranasally with a HA vaccine with or without the cGAMP adjuvant. IgA and IgG production, T-cell responses, germinal center formation, and cytokine expression in NALT were assayed. cGAMP enhanced IgA and IgG production, and promoted T-cell responses. Intranasal administration of cGAMP activated both NALT and systemic immune cells, induced a favorable cytokine environment for IgA induction, and promoted germinal center formation. The cGAMP effect was STING-dependent. Taken together, cGAMP as an HA vaccine adjuvant promoted a STING-dependent NALT environment suitable for the enhancement of IgA production.
Collapse
|
20
|
Zhang A, Lai H, Xu J, Huang W, Liu Y, Zhao D, Chen R. Evaluation of the Protective Efficacy of Poly I:C as an Adjuvant for H9N2 Subtype Avian Influenza Inactivated Vaccine and Its Mechanism of Action in Ducks. PLoS One 2017; 12:e0170681. [PMID: 28135294 PMCID: PMC5279746 DOI: 10.1371/journal.pone.0170681] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/09/2017] [Indexed: 01/07/2023] Open
Abstract
Current commercial H9 avian influenza vaccines cannot provide satisfactory protective immunity against antigenic variant influenza viruses in ducks. Poly I:C, when used as an adjuvant, improves humoral and cellular immunity in many animals but has not been tested in ducks. In this study, we investigated the protective efficacy of Poly I:C as an adjuvant for an inactivated H9N2 Avian influenza vaccine in ducks. We found that an H9N2 vaccine administered with poly I:C (H9-PIC vaccine) induced a significantly more rapid response with higher anti-influenza antibody titers than those of the vaccine alone (H9 vaccine). Moreover, virus shedding was reduced in ducks immunized with the H9-PIC vaccine after challenge with an H9 subtype antigenic variant viruses. IFN-α, IFN-γ, IL-6 and MHC-II mRNA levels were all elevated in ducks receiving the H9-PIC vaccine. In addition, lower expression level of MHC-I may be a reason for inefficient protective ability against heterologous influenza viruses in H9-PIC vaccination of ducks. In conclusion, poly I:C adjuvant enhanced both humoral and cellular immune responses in ducks induced by immunization of inactivated H9N2 vaccine.
Collapse
Affiliation(s)
- Aiguo Zhang
- College of Veterinary Medicine, South China Agricultural University, Tianhe District, Guangzhou, Guangdong Province, China
| | - Hanzhang Lai
- Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biologics, Guangdong, Zhaoqing, Guangdong Province, China
| | - Jiahua Xu
- Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biologics, Guangdong, Zhaoqing, Guangdong Province, China
| | - Wenke Huang
- Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biologics, Guangdong, Zhaoqing, Guangdong Province, China
| | - Yufu Liu
- College of Veterinary Medicine, South China Agricultural University, Tianhe District, Guangzhou, Guangdong Province, China
| | - Dawei Zhao
- College of Veterinary Medicine, South China Agricultural University, Tianhe District, Guangzhou, Guangdong Province, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Tianhe District, Guangzhou, Guangdong Province, China
- * E-mail:
| |
Collapse
|
21
|
Wu H, Bao Y, Wang X, Zhou D, Wu W. Alkyl polyglycoside, a highly promising adjuvant in intranasal split influenza vaccines. Hum Vaccin Immunother 2017; 13:1-9. [PMID: 28129034 DOI: 10.1080/21645515.2016.1278098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Influenza viral infections are significant global public health concerns due to the morbidity and mortality associated with acute respiratory disease, secondary complications, and pandemic threats; thus, continuous efforts have been made to develop potent influenza vaccines. In this study, 3 different mucosal adjuvants-alkyl polyglycoside (APG), gellan gum, and chitosan (CS)-were evaluated for their efficacy in intranasal A/H1N1 or B split influenza vaccines administered to BALB/c mice. Protective immunity was monitored by serum analysis for IgG, hemagglutination inhibition (HI), and neutralizing antibody levels, as well as mucosal IgA levels in nasal and pulmonary lavage fluids. Survival, body weight, lung viral titer, and pulmonary immunopathology were also examined following lethal influenza challenge. Notably, all adjuvants amplified the IgG and IgA immune responses (not detected in immunization of influenza B) and increased survival rate compared with controls administered adjuvant-free intranasal vaccines. Alternatively, intramuscular immunization stimulated IgG production, but had no effect on IgA levels. Our collective analysis identified that APG was the most effective intranasal adjuvant, as all mice survived influenza challenge with limited body weight loss, viral titer, and pulmonary pathology, similar to those observed with intramuscular vaccination. This evidence supports that APG can elicit both systemic and mucosal immunity, and may be an effective adjuvant in intranasal split influenza A/H1N1 and B vaccines.
Collapse
Affiliation(s)
- Hui Wu
- a National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry , Shanghai , China
| | - Yuanyuan Bao
- a National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry , Shanghai , China
| | - Xiang Wang
- b Vaccine Research Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai , China
| | - Dongming Zhou
- b Vaccine Research Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai , China
| | - Wenzhe Wu
- a National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry , Shanghai , China
| |
Collapse
|
22
|
Consecutive inoculations of influenza virus vaccine and poly(I:C) protects mice against homologous and heterologous virus challenge. Vaccine 2017; 35:1001-1007. [PMID: 28111142 DOI: 10.1016/j.vaccine.2017.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/19/2016] [Accepted: 01/11/2017] [Indexed: 11/21/2022]
Abstract
Mucosal immunity induced through natural infection by influenza virus has potent cross-protective activity, compared to subcutaneous vaccination-induced systemic immunity. Compared to natural infection with influenza virus, however, a single intranasal vaccination with an inactivated influenza virus vaccine and poly(I:C) is not sufficient to induce primary immune response in naïve animals. The reasons for this moderate effect are not fully understood. Here, we demonstrated that intranasal vaccination with formalin-inactivated influenza virus vaccine and poly(I:C) for five consecutive days elicits high levels of virus-specific nasal IgA and serum IgG responses, while vaccination without poly(I:C) induced little response. Mice immunized with influenza virus vaccine and poly(I:C) for five consecutive days sustained high levels of virus-specific IgA in nasal wash and IgG in serum until at least 6months after vaccination. Furthermore, intranasal vaccination with influenza virus vaccine and poly(I:C) protected mice against homologous and heterologous influenza virus challenge. These results suggest that consecutive inoculations of influenza virus vaccine and poly(I:C) is an alternative method to induce primary immune responses in naïve subjects.
Collapse
|
23
|
Kusakabe T, Ozasa K, Kobari S, Momota M, Kishishita N, Kobiyama K, Kuroda E, Ishii KJ. Intranasal hydroxypropyl-β-cyclodextrin-adjuvanted influenza vaccine protects against sub-heterologous virus infection. Vaccine 2016; 34:3191-3198. [PMID: 27160037 DOI: 10.1016/j.vaccine.2016.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/26/2016] [Accepted: 04/01/2016] [Indexed: 12/31/2022]
Abstract
Intranasal vaccination with inactivated influenza viral antigens is an attractive and valid alternative to currently available influenza (flu) vaccines; many of which seem to need efficient and safe adjuvant, however. In this study, we examined whether hydroxypropyl-β-cyclodextrin (HP-β-CD), a widely used pharmaceutical excipient to improve solubility and drug delivery, can act as a mucosal adjuvant for intranasal flu vaccines. We found that intranasal immunization of mice with hemagglutinin split- as well as inactivated whole-virion influenza vaccine with HP-β-CD resulted in secretion of antigen-specific IgA and IgGs in the airway mucosa and the serum as well. As a result, both HP-β-CD adjuvanted-flu intranasal vaccine protected mice against lethal challenge with influenza virus, equivalent to those induced by experimental cholera toxin-adjuvanted ones. Of note, intranasal use of HP-β-CD as an adjuvant induced significantly lower antigen-specific IgE responses than that induced by aluminum salt adjuvant. These results suggest that HP-β-CD may be a potent mucosal adjuvant for seasonal and pandemic influenza vaccine.
Collapse
Affiliation(s)
- Takato Kusakabe
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Koji Ozasa
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Shingo Kobari
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Masatoshi Momota
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Natsuko Kishishita
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Kouji Kobiyama
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
24
|
Zhang L, Wang W, Wang S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev Vaccines 2015; 14:1509-23. [PMID: 26313239 DOI: 10.1586/14760584.2015.1081067] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The many factors impacting the efficacy of a vaccine can be broadly divided into three categories: features of the vaccine itself, including immunogen design, vaccine type, formulation, adjuvant and dosing; individual variations among vaccine recipients and vaccine administration-related parameters. While much literature exists related to vaccines, and recently systems biology has started to dissect the impact of individual subject variation on vaccine efficacy, few studies have focused on the role of vaccine administration-related parameters on vaccine efficacy. Parenteral and mucosal vaccinations are traditional approaches for licensed vaccines; novel vaccine delivery approaches, including needless injection and adjuvant formulations, are being developed to further improve vaccine safety and efficacy. This review provides a brief summary of vaccine administration-related factors, including vaccination approach, delivery route and method of administration, to gain a better understanding of their potential impact on the safety and immunogenicity of candidate vaccines.
Collapse
Affiliation(s)
- Lu Zhang
- a 1 Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.,b 2 China-US Vaccine Research Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Wei Wang
- c 3 Wang Biologics, LLC, Chesterfield, MO 63017, USA ; Current affiliation: Bayer HealthCare, Berkeley, CA 94710, USA
| | - Shixia Wang
- d 4 Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
25
|
Soema PC, Kompier R, Amorij JP, Kersten GFA. Current and next generation influenza vaccines: Formulation and production strategies. Eur J Pharm Biopharm 2015; 94:251-63. [PMID: 26047796 DOI: 10.1016/j.ejpb.2015.05.023] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Vaccination is the most effective method to prevent influenza infection. However, current influenza vaccines have several limitations. Relatively long production times, limited vaccine capacity, moderate efficacy in certain populations and lack of cross-reactivity are important issues that need to be addressed. We give an overview of the current status and novel developments in the landscape of influenza vaccines from an interdisciplinary point of view. The feasibility of novel vaccine concepts not only depends on immunological or clinical outcomes, but also depends on biotechnological aspects, such as formulation and production methods, which are frequently overlooked. Furthermore, the next generation of influenza vaccines is addressed, which hopefully will bring cross-reactive influenza vaccines. These developments indicate that an exciting future lies ahead in the influenza vaccine field.
Collapse
Affiliation(s)
- Peter C Soema
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; Division of Drug Delivery and Technology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Ronald Kompier
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; FluConsult, Noordwijk, The Netherlands
| | - Jean-Pierre Amorij
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| | - Gideon F A Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; Division of Drug Delivery and Technology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| |
Collapse
|
26
|
Lin J, Kang H, Liang J, Fu J, Yu Q, Yang Q. CpG oligonucleotides and Astragalus polysaccharides are effective adjuvants in cultures of avian bone-marrow-derived dendritic cells. Br Poult Sci 2015; 56:30-8. [PMID: 25403700 DOI: 10.1080/00071668.2014.981146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1. The potential use of CpG oligodeoxynucleotides and/or Astragalus polysaccharide (APS) as adjuvants for the culture of chicken bone-marrow-derived dendritic cells (chBM-DCs) was investigated. 2. Chicken dendritic cells (DCs) were isolated and cultured in the presence of recombinant chicken granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4. The chBM-DC displayed typical DC morphology and expressed DC surface markers (MHC-II and CD11c). 3. Cultured chBM-DC showed effective T-cell activation in vitro, based on a mixed lymphocyte response (MLR). Flow cytometry analysis showed an increased proportion of cells expressing CD40 and CD80 in the APS-stimulated culture, compared to the control culture. In the MLR, the APS- and CpG-stimulated chBM-DC could activate T-cells more than control chBM-DC. Real-time PCR assays showed that CpG can activate the TLR21 and an inflammatory response, while APS just reduced the expression of IRF-3. 4. The results demonstrated that in vitro the adjuvant CpG can stimulate chBM-DC to mature by activation of the TLR-signalling pathway, whereas the adjuvant APS stimulates maturation of chBM-DC in vitro to a lesser degree and by another mechanism.
Collapse
Affiliation(s)
- J Lin
- a Key Lab of Animal Physiology and Biochemistry , Nanjing Agricultural University , Nanjing , Jiangsu , PR China
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Lin J, Yin YY, Qin T, Zhu LQ, Yu QH, Yang Q. Enhanced immune response of BMDCs pulsed with H9N2 AIV and CpG. Vaccine 2014; 32:6783-90. [PMID: 25454862 DOI: 10.1016/j.vaccine.2014.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/02/2014] [Accepted: 10/03/2014] [Indexed: 12/25/2022]
Abstract
Dendritic cells (DCs), professional antigen presenting cells, have demonstrated effective in controlling the initial of innate immune, while CpG could improve the performance of immune system. To explore the mechanism of CpG enhancing the immune response, we compared different stimulated mouse DCs with systemic approach microarrays. Analysis revealed 1840 differentially expressed genes in H9N2 stimulated group, more than 1728 altered genes in inactive H9N2 group. Investigation also proved that CpG/inactive H9N2 co-stimulation changed 2140 genes, more than that in H9N2 group, strongly demonstrated that CpG improved the performance of inactive H9N2 vaccination. Pathways analysis founded that DCs response rapid to shift in their maturation state, which involved Toll-like receptor (TLR) pathway significantly. Microarrays results were also verified by qRT-PCR with 14 elected representative genes. Further analysis proved that co-stimulatory molecules (CD40, CD80, CD86 and MHC-II), regulatory protein (IRF-7 and TRAF-6) and pro-inflammatory cytokines (IL-1, IL-6 and IL-12) were all changed and involved in DCs maturation. At last we demonstrated TLR signalling pathway in chicken bone marrow-derived dendritic cells (chBM-DCs) stimulated with CpG. The distinct transcriptional profiles of DCs pulsed with various stimuli expanded our understanding of how DCs respond and recognize influenza.
Collapse
Affiliation(s)
- Jian Lin
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, China; Nanjing Agricultural University, Wei gang 1, Jiangsu, PR China
| | - Yin Y Yin
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, China; Nanjing Agricultural University, Wei gang 1, Jiangsu, PR China
| | - Tao Qin
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, China; Nanjing Agricultural University, Wei gang 1, Jiangsu, PR China
| | - Li Q Zhu
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, China; Nanjing Agricultural University, Wei gang 1, Jiangsu, PR China
| | - Qing H Yu
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, China; Nanjing Agricultural University, Wei gang 1, Jiangsu, PR China
| | - Qian Yang
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, China.
| |
Collapse
|
29
|
Martins KAO, Bavari S, Salazar AM. Vaccine adjuvant uses of poly-IC and derivatives. Expert Rev Vaccines 2014; 14:447-59. [PMID: 25308798 DOI: 10.1586/14760584.2015.966085] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pathogen-associated molecular patterns (PAMPs) are stand-alone immunomodulators or 'danger signals,' that are increasingly recognized as critical components of many modern vaccines. Polyinosinic-polycytidylic acid (poly-IC) is a synthetic dsRNA that can activate multiple elements of the host defense in a pattern that parallels that of a viral infection. When properly combined with an antigen, it can be utilized as a PAMP-adjuvant, resulting in modulation and optimization of the antigen-specific immune response. We briefly review the preclinical and clinical uses of poly-IC and two poly-IC derivatives, poly-IC12U (Ampligen) and poly-ICLC (Hiltonol), as vaccine adjuvants.
Collapse
|
30
|
Abstract
The goal of the influenza vaccine is to prevent influenza virus infection and control the yearly seasonal epidemic and pandemic. However, the presently available parenteral influenza vaccine induces only systemic humoral immunity, which does not prevent influenza virus infection on the mucosal surface. Secretary IGA antibodies play an important role in preventing natural infection. Moreover, the IgA antibody response mediates cross-protection against variant viruses in animal models. Thus, a mucosal influenza vaccine that induces mucosal immunity would be a powerful tool to protect individuals from the influenza virus. Although the function of the mucosal immune system, especially in the respiratory tract, is not completely understood, there are several studies underway to develop mucosal influenza vaccines. Here, we will review current knowledge concerning the induction of IgA, the role of B-cell production of influenza virus specific IgA antibodies in anti-influenza immunity, and the role of humoral memory responses induced upon vaccination.
Collapse
|
31
|
Azegami T, Yuki Y, Kiyono H. Challenges in mucosal vaccines for the control of infectious diseases. Int Immunol 2014; 26:517-28. [DOI: 10.1093/intimm/dxu063] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Ju Y, Fan H, Liu J, Hu J, Li X, Li C, Chen L, Gao Q, Gao GF, Meng S. Heat shock protein gp96 adjuvant induces T cell responses and cross-protection to a split influenza vaccine. Vaccine 2014; 32:2703-11. [PMID: 24699472 DOI: 10.1016/j.vaccine.2014.03.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/06/2014] [Accepted: 03/13/2014] [Indexed: 01/09/2023]
Abstract
The commonly used inactivated or split influenza vaccines induce only induce minimal T cell responses and are less effective in preventing heterologous virus infection. Thus, developing cross-protective influenza vaccines against the spread of a new influenza virus is an important strategy against pandemic emergence. Here we demonstrated that immunization with heat shock protein gp96 as adjuvant led to a dramatic increased antigen-specific T cell response to a pandemic H1N1 split vaccine. Notably, gp96 elicited a cross-protective CD8(+) T cell response to the internal conserved viral protein NP. Although the split pH1N1vaccine alone has low cross-protective efficiency, adding gp96 as an adjuvant effectively improved the cross-protection against challenge with a heterologous virus in mice. Our study reveals the novel property of gp96 in boosting the T cell response against conserved epitopes of influenza virus and its potential use as an adjuvant for human pre-pandemic inactivated influenza vaccines against different viral subtypes.
Collapse
Affiliation(s)
- Ying Ju
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Hongxia Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Jun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Jun Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Xinghui Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Lizhao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Qiang Gao
- Sinovac Biotech Co., Ltd, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
33
|
Kang H, Wang H, Yu Q, Yang Q. A novel combined adjuvant strongly enhances mucosal and systemic immunity to low pathogenic avian influenza after oral immunization in ducks. Poult Sci 2013; 92:1543-51. [PMID: 23687150 DOI: 10.3382/ps.2012-03000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As natural reservoirs of avian influenza viruses, waterfowl play an important role in the generation, spread, and enzootic transmission of avian influenza. To prevent avian influenza in waterfowl through a simple, noninvasive, and needle-free route, ducks were immunized orally with an inactivated avian influenza virus (H9N2, IAIV) combined with CpG DNA and high-dose glucose, and then the local and systemic immune responses of these ducks were investigated. In addition, the immune protection was assayed after viral challenge. After the oral administration of IAIV combined with CpG DNA and glucose, the expression levels of interleukin-2 and interleukin-6 in the small intestine tissues increased significantly in the early period after booster immunization relative to the levels after immunization with IAIV and a single adjuvant. Significant increases were also observed in the IgA and IgG antibody levels in the local intestinal tract tissues and serum at wk 3, 5, and 7 after the first immunization. Furthermore, enhanced hemagglutination inhibition titers were also detected in serum samples taken between the third and seventh weeks after immunization with IAIV and both adjuvants. In the viral challenge and transmission study, the prior administration of IAIV combined with both CpG DNA and glucose reduced the viral titers observed for the cloaca swabs and colon tissues of challenged ducks and prevented virus transmission between ducks. Our study suggests that the combination of CpG DNA and high-dose glucose can improve immunization with inactivated H9N2 virus by enhancing the local and systemic immune responses and reducing viral shedding.
Collapse
Affiliation(s)
- Haihong Kang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, P.R. China
| | | | | | | |
Collapse
|
34
|
Protection of Chinese painted quails (Coturnix chinensis) against a highly pathogenic H5N1 avian influenza virus strain after vaccination. Arch Virol 2013; 158:2577-81. [PMID: 23771736 PMCID: PMC3830747 DOI: 10.1007/s00705-013-1754-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/27/2013] [Indexed: 12/02/2022]
Abstract
Chinese painted quails immunized with a single dose (6 μg HA) of inactivated H5N1 (clade 1) influenza vaccine NIBRG-14 and challenged with 100 LD50 of the heterologous A/Swan/Nagybaracska/01/06(H5N1) (clade 2.2) strain were protected, whereas unvaccinated quails died after challenge. No viral antigens or RNA were detected in cloacal swabs from immunized animals. Sera obtained post-immunization gave low titres in serological assays against the vaccine and the challenge viruses. Our results demonstrate the protective efficacy of the NIBRG-14 strain against the challenge virus and the usefulness of these small birds in protection studies of influenza vaccines.
Collapse
|
35
|
Kaur P, Chu JJH. Chikungunya virus: an update on antiviral development and challenges. Drug Discov Today 2013; 18:969-83. [PMID: 23684571 PMCID: PMC7108317 DOI: 10.1016/j.drudis.2013.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/23/2013] [Accepted: 05/07/2013] [Indexed: 12/23/2022]
Abstract
Chikungunya virus (CHIKV) has re-emerged as a significant public health threat since the 2005 chikungunya fever epidemic in La Réunion. Driven by the medical importance of this virus, as well as the lack of approved antivirals, research into the field of CHIKV antivirals has recently intensified. Potential therapeutics that have been reported to show anti-CHIKV activity in vitro range from known broad-spectrum antivirals like chloroquine to novel strategies involving RNA silencing technology. Although most of the earlier efforts focused on compounds that target host components, some recent studies have reported viral targets such as nonstructural proteins. This article examines the reported in vitro and in vivo efficacies, as well as the therapeutic potential of these antiviral compounds.
Collapse
Affiliation(s)
- Parveen Kaur
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, MD4, Level 5, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore
| | | |
Collapse
|
36
|
Kobayashi T, Fukushima K, Sannan T, Saito N, Takiguchi Y, Sato Y, Hasegawa H, Ishikawa K. Evaluation of the effectiveness and safety of chitosan derivatives as adjuvants for intranasal vaccines. Viral Immunol 2013; 26:133-42. [PMID: 23509985 DOI: 10.1089/vim.2012.0057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intranasal immunization is currently used to deliver live virus vaccines such as influenza. However, to develop an intranasal vaccine to deliver inactivated virus, a safe and effective adjuvant is necessary to enhance the mucosal immune response. Here, we demonstrate the effectiveness of a chitosan microparticle (1-20 μm, 50 kDa, degree of deacetylation=85%) and a cationized chitosan (1000 kDa, degree of deacetylation=85%) derived from natural crab shells as adjuvants for an intranasal vaccine candidate. We examined the effectiveness of chitosan derivatives as an adjuvant by co-administering them with ovalbumin (OVA) intranasally in BALB/c mice, polymeric Ig receptor knockout (pIgR-KO) mice, and cynomolgus monkeys (Macaca fascicularis). pIgR-KO mice were used to evaluate S-IgA production on the mucosal surface without nasal swab collection. Administration of OVA with chitosan microparticles or cationized chitosan induced a high OVA-specific IgA response in the serum of pIgR-KO mice and a high IgG response in the serum of BALB/c mice and cynomolgus monkeys. We also found that administration of chitosan derivatives did not have a detrimental effect on cynomolgus monkeys as determined by complete blood count, blood chemistries, and gross pathology results. These results suggest that chitosan derivatives are safe and effective mucosal adjuvants for intranasal vaccination.
Collapse
Affiliation(s)
- Takashi Kobayashi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Intranasal administration of dsRNA analog poly(I:C) induces interferon-α receptor-dependent accumulation of antigen experienced T cells in the airways. PLoS One 2012; 7:e51351. [PMID: 23236482 PMCID: PMC3517467 DOI: 10.1371/journal.pone.0051351] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/31/2012] [Indexed: 11/19/2022] Open
Abstract
Polyriboinosinic-polyribocytoidylic acid (pIC), a synthetic dsRNA, acts as an adjuvant that boosts immune responses and protection. Intranasal (IN) administration of pIC has recently been used to adjuvant influenza virus vaccines; however, the effects of IN pIC administration on pulmonary T cell responses remain unclear. Here we show that a single IN administered dose of dsRNA into mice induced local Th1 chemokine production in the lungs and airways, and generated a biphasic and sustained migration of T lymphocytes to the airways. Furthermore, IN pIC-induced chemokine production and T cell recruitment to the airways were interferon-α receptor (IFNAR) signaling dependent. The effect of dsRNA on T cell recruitment to the airways was also dependent on the presence of high molecular weight (HMW) pIC, as a low molecular weight (LMW) pIC preparation known to only interact with TLR3 did not elicit the same effect on T cell migration to the airways, suggesting that the observed effects were dependent upon dsRNA recognition by multiple pattern recognition receptors (PPRs). IN pIC was additionally capable of stimulating low levels of T cell proliferation in the draining lymph nodes approximately 4–6 days after treatment that preceded a small population of de-novo T cells found in the airways by day 10. Taken together, these results demonstrate that the adjuvant effect of IN pIC that results in enhanced T cell proliferation and sustained T cell recruitment to the airways requires multiple PRRs and IFNAR signaling.
Collapse
|
38
|
Zonneveld-Huijssoon E, van Wijk F, Roord S, Delemarre E, Meerding J, de Jager W, Klein M, Raz E, Albani S, Kuis W, Boes M, Prakken BJ. TLR9 agonist CpG enhances protective nasal HSP60 peptide vaccine efficacy in experimental autoimmune arthritis. Ann Rheum Dis 2012; 71:1706-15. [PMID: 22562976 DOI: 10.1136/annrheumdis-2011-201131] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Peptide-based immune tolerance induction is considered an attractive treatment option for autoimmune diseases. The authors have developed a novel method that can enhance the induction of protective peptide-specific T-cell responses, using a rat arthritis model. The authors focused on the Toll-like receptor 9 ligand CpG, which was shown to stimulate regulatory T-cell proliferation when added to plasmacytoid dendritic cells (pDC) using in-vitro cultures. METHODS The peptide used is a heat shock protein 60 epitope (p1) that elicits tolerogenic peptide-specific immune responses in human arthritis patients and was recently shown to have protective capacity as a bystander antigen in the rat adjuvant arthritis model. Rats were treated with three nasal doses of p1, CpG or a combination of p1 and CpG. Antigen-presenting cells were studied in nose-draining lymph nodes (mandibular lymph nodes; MLN) after nasal treatment, and T-cell responses were analysed in joint-draining lymph nodes after arthritis induction. RESULTS Nasal co-administration of p1/CpG significantly augmented the arthritis-protective effect of p1, while CpG treatment alone did not. Co-treatment of p1/CpG increased both the number and activation status of pDC in draining MLN, which was accompanied by amplified p1-specific T-cell proliferation and interleukin (IL)-10 production. During early arthritis, p1-specific IL-10 production was identified at the site of inflammation. P1 and p1/CpG-treated rats showed a greater amount of CD4+FoxP3+ regulatory T cells in the joint-draining lymph nodes, which correlated with lower arthritis scores. CONCLUSIONS These clinical and immunological data suggest the use of CpG as a potent adjuvant for mucosal peptide-specific immune therapy in arthritis.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Arthritis, Experimental/immunology
- Arthritis, Rheumatoid/immunology
- Chaperonin 60/administration & dosage
- Chaperonin 60/immunology
- Dendritic Cells/immunology
- Disease Models, Animal
- Epitopes, T-Lymphocyte/immunology
- Lymphocyte Activation/immunology
- Male
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/immunology
- Rats
- Rats, Inbred Lew
- T-Lymphocytes, Regulatory/immunology
- Toll-Like Receptor 9/agonists
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Evelien Zonneveld-Huijssoon
- Department of Pediatric Immunology, University Medical Centre Utrecht, Centre for Molecular and Cellular Intervention, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jiang S, Lu L, Liu Q, Xu W, Du L. Receptor-binding domains of spike proteins of emerging or re-emerging viruses as targets for development of antiviral vaccines. Emerg Microbes Infect 2012; 1:e13. [PMID: 26038424 PMCID: PMC3630917 DOI: 10.1038/emi.2012.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 03/10/2012] [Accepted: 03/12/2012] [Indexed: 12/13/2022]
Abstract
A number of emerging and re-emerging viruses have caused epidemics or pandemics of infectious diseases leading to major devastations throughout human history. Therefore, developing effective and safe vaccines against these viruses is clearly important for the protection of at-risk populations. Our previous studies have shown that the receptor-binding domain (RBD) in the spike protein of severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) is a key target for the development of SARS vaccines. In this review, we highlight some key advances in the development of antiviral vaccines targeting the RBDs of spike proteins of emerging and re-emerging viruses, using SARS-CoV, influenza virus, Hendra virus (HeV) and Nipah virus (NiV) as examples.
Collapse
Affiliation(s)
- Shibo Jiang
- MOE/MOH Key Laboratory of Medical Molecular Virology, Shanghai Medical College and Institute of Medical Microbiology, Fudan University , Shanghai 200032, China ; Lindsley F. Kimball Research Institute, New York Blood Center , New York, NY 10065, USA
| | - Lu Lu
- MOE/MOH Key Laboratory of Medical Molecular Virology, Shanghai Medical College and Institute of Medical Microbiology, Fudan University , Shanghai 200032, China
| | - Qi Liu
- MOE/MOH Key Laboratory of Medical Molecular Virology, Shanghai Medical College and Institute of Medical Microbiology, Fudan University , Shanghai 200032, China ; Department of Medical Microbiology and Immunology, School of Basic Medicine, Dali University , Dali 671000, China
| | - Wei Xu
- MOE/MOH Key Laboratory of Medical Molecular Virology, Shanghai Medical College and Institute of Medical Microbiology, Fudan University , Shanghai 200032, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center , New York, NY 10065, USA
| |
Collapse
|
40
|
van Riet E, Ainai A, Suzuki T, Hasegawa H. Mucosal IgA responses in influenza virus infections; thoughts for vaccine design. Vaccine 2012; 30:5893-900. [DOI: 10.1016/j.vaccine.2012.04.109] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
|
41
|
Li YG, Siripanyaphinyo U, Tumkosit U, Noranate N, A-Nuegoonpipat A, Pan Y, Kameoka M, Kurosu T, Ikuta K, Takeda N, Anantapreecha S. Poly (I:C), an agonist of toll-like receptor-3, inhibits replication of the Chikungunya virus in BEAS-2B cells. Virol J 2012; 9:114. [PMID: 22698190 PMCID: PMC3490739 DOI: 10.1186/1743-422x-9-114] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 06/01/2012] [Indexed: 11/29/2022] Open
Abstract
Background Double-stranded RNA (dsRNA) and its mimic, polyinosinic acid: polycytidylic acid [Poly (I:C)], are recognized by toll-like receptor 3 (TLR3) and induce interferon (IFN)-β in many cell types. Poly (I:C) is the most potent IFN inducer. In in vivo mouse studies, intraperitoneal injection of Poly (I:C) elicited IFN-α/β production and natural killer (NK) cells activation. The TLR3 pathway is suggested to contribute to innate immune responses against many viruses, including influenza virus, respiratory syncytial virus, herpes simplex virus 2, and murine cytomegalovirus. In Chikungunya virus (CHIKV) infection, the viruses are cleared within 7–10 days postinfection before adaptive immune responses emerge. The innate immune response is important for CHIKV clearance. Results The effects of Poly (I:C) on the replication of CHIKV in human bronchial epithelial cells, BEAS-2B, were studied. Poly (I:C) suppressed cytopathic effects (CPE) induced by CHIKV infection in BEAS-2B cells in the presence of Poly (I:C) and inhibited the replication of CHIKV in the cells. The virus titers of Poly (I:C)-treated cells were much lower compared with those of untreated cells. CHIKV infection and Poly (I:C) treatment of BEAS-2B cells induced the production of IFN-β and increased the expression of anti-viral genes, including IFN-α, IFN-β, MxA, and OAS. Both Poly (I:C) and CHIKV infection upregulate the expression of TLR3 in BEAS-2B cells. Conclusions CHIKV is sensitive to innate immune response induced by Poly (I:C). The inhibition of CHIKV replication by Poly (I:C) may be through the induction of TLR3, which triggers the production of IFNs and other anti-viral genes. The innate immune response is important to clear CHIKV in infected cells.
Collapse
Affiliation(s)
- Yong-Gang Li
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Olive C. Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev Vaccines 2012; 11:237-56. [PMID: 22309671 DOI: 10.1586/erv.11.189] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The innate immune system plays an essential role in the host's first line of defense against microbial invasion, and involves the recognition of distinct pathogen-associated molecular patterns by pattern recognition receptors (PRRs). Activation of PRRs triggers cell signaling leading to the production of proinflammatory cytokines, chemokines and Type 1 interferons, and the induction of antimicrobial and inflammatory responses. These innate responses are also responsible for instructing the development of an appropriate pathogen-specific adaptive immune response. In this review, the focus is on different classes of PRRs that have been identified, including Toll-like receptors, nucleotide-binding oligomerization domain-like receptors, and the retinoic acid-inducible gene-I-like receptors, and their importance in host defense against infection. The role of PRR cooperation in generating optimal immune responses required for protective immunity and the potential of targeting PRRs in the development of a new generation of vaccine adjuvants is also discussed.
Collapse
Affiliation(s)
- Colleen Olive
- The Queensland Institute of Medical Research, Locked Bag 2000, Royal Brisbane Hospital, Herston, Brisbane, Queensland 4006, Australia.
| |
Collapse
|
43
|
Mazaleuskaya L, Veltrop R, Ikpeze N, Martin-Garcia J, Navas-Martin S. Protective role of Toll-like Receptor 3-induced type I interferon in murine coronavirus infection of macrophages. Viruses 2012; 4:901-23. [PMID: 22754655 PMCID: PMC3386628 DOI: 10.3390/v4050901] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/12/2012] [Accepted: 05/23/2012] [Indexed: 12/24/2022] Open
Abstract
Toll-like Receptors (TLRs) sense viral infections and induce production of type I interferons (IFNs), other cytokines, and chemokines. Viral recognition by TLRs and other pattern recognition receptors (PRRs) has been proven to be cell-type specific. Triggering of TLRs with selected ligands can be beneficial against some viral infections. Macrophages are antigen-presenting cells that express TLRs and have a key role in the innate and adaptive immunity against viruses. Coronaviruses (CoVs) are single-stranded, positive-sense RNA viruses that cause acute and chronic infections and can productively infect macrophages. Investigation of the interplay between CoVs and PRRs is in its infancy. We assessed the effect of triggering TLR2, TLR3, TLR4, and TLR7 with selected ligands on the susceptibility of the J774A.1 macrophage cell line to infection with murine coronavirus (mouse hepatitis virus, [MHV]). Stimulation of TLR2, TLR4, or TLR7 did not affect MHV production. In contrast, pre-stimulation of TLR3 with polyinosinic-polycytidylic acid (poly I:C) hindered MHV infection through induction of IFN-β in macrophages. We demonstrate that activation of TLR3 with the synthetic ligand poly I:C mediates antiviral immunity that diminishes (MHV-A59) or suppresses (MHV-JHM, MHV-3) virus production in macrophages.
Collapse
Affiliation(s)
- Liudmila Mazaleuskaya
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA; (L.M.); (R.V.); (N.I.); (J.M.-G.)
- Pharmacology and Physiology Graduate Program, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Rogier Veltrop
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA; (L.M.); (R.V.); (N.I.); (J.M.-G.)
| | - Nneka Ikpeze
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA; (L.M.); (R.V.); (N.I.); (J.M.-G.)
| | - Julio Martin-Garcia
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA; (L.M.); (R.V.); (N.I.); (J.M.-G.)
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Sonia Navas-Martin
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA; (L.M.); (R.V.); (N.I.); (J.M.-G.)
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
44
|
Kang H, Wang H, Yu Q, Yang Q. Effect of intranasal immunization with inactivated avian influenza virus on local and systemic immune responses in ducks. Poult Sci 2012; 91:1074-80. [DOI: 10.3382/ps.2011-01817] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
45
|
Intranasal administration of a flagellin-adjuvanted inactivated influenza vaccine enhances mucosal immune responses to protect mice against lethal infection. Vaccine 2011; 30:466-74. [PMID: 22051136 DOI: 10.1016/j.vaccine.2011.10.058] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/16/2011] [Accepted: 10/22/2011] [Indexed: 11/21/2022]
Abstract
The influenza virus, a mucosal pathogen that infects the respiratory tract, is a major global health issue. There have been attempts to mucosally administer inactivated influenza vaccines to induce both mucosal and systemic immune responses. However, mucosally administered inactivated influenza vaccine has low immunogenicity, which is partially due to the lack of an effective mucosal adjuvant. The development of a safe and effective mucosal adjuvant is a prerequisite to the practical use of a mucosal inactivated influenza vaccine. We have previously demonstrated that a bacterial flagellin, Vibrio vulnificus FlaB, when mixed with antigen and administered intranasally, exerts a strong mucosal adjuvant activity by stimulating the Toll-like receptor 5 (TLR5). In this study, we tested whether the FlaB protein could serve as an effective mucosal adjuvant for an inactivated trivalent influenza vaccine (TIV) manufactured for humans; in a murine vaccination model, this vaccine consists of A/Brisbane/59/07 (H1N1 subtype), A/Uruguay/716/07 (H3N2 subtype), and B/Florida/4/06 (B type). Intranasal co-administration of the TIV with FlaB induced prominent humoral responses as demonstrated by high influenza-specific IgA levels in both the mucosal secretions and serum and significant specific IgG induction in the systemic compartment. The FlaB protein significantly potentiated influenza-specific cytokine production by draining lymph node cells and splenocytes. The FlaB mucosal adjuvant conferred excellent protection against a lethal challenge with a live virulent virus with high hemagglutination inhibition (HAI) antibody (Ab) titers. The FlaB did not accumulate in the olfactory nerve and epithelium, guaranteeing against a retrograde uptake into the central nervous system. These results suggest that FlaB can be used as a promising mucosal adjuvant for nasal inactivated influenza vaccine development.
Collapse
|
46
|
Nakao R, Hasegawa H, Ochiai K, Takashiba S, Ainai A, Ohnishi M, Watanabe H, Senpuku H. Outer membrane vesicles of Porphyromonas gingivalis elicit a mucosal immune response. PLoS One 2011; 6:e26163. [PMID: 22022548 PMCID: PMC3193504 DOI: 10.1371/journal.pone.0026163] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/21/2011] [Indexed: 12/11/2022] Open
Abstract
We previously reported that mutation of galE in Porphyromonas gingivalis has pleiotropic effects, including a truncated lipopolysaccharide (LPS) O-antigen and deglycosylation of the outer membrane protein OMP85 homolog. In the present study, further analysis of the galE mutant revealed that it produced little or no outer membrane vesicles (OMVs). Using three mouse antisera raised against whole cells of the P. gingivalis wild type strain, we performed ELISAs to examine the reactivity of these antisera with whole cells of the wild type or the galE mutant. All three antisera had significantly lower reactivity against the galE mutant compared to wild type. OMVs, but not LPS, retained the immunodominant determinant of P. gingivalis, as determined by ELISAs (with wild type LPS or OMVs as antigen) and absorption assays. In addition, we assessed the capacity of OMVs as a vaccine antigen by intranasal immunization to BALB/c mice. Synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid [Poly (I∶C)], an agonist of Toll-like receptor 3 (TLR3), was used as the mucosal adjuvant. Vaccination with OMV elicited dramatically high levels of P. gingivalis-specific IgA in nasal washes and saliva, as well as serum IgG and IgA. In conclusion, the OMVs of P. gingivalis have an important role in mucosal immunogenicity as well as in antigenicity. We propose that P. gingivalis OMV is an intriguing immunogen for development of a periodontal disease vaccine.
Collapse
Affiliation(s)
- Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruo Watanabe
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| |
Collapse
|
47
|
Luci C, Anjuère F. IFN-λs and BDCA3+/CD8α+ dendritic cells: towards the design of novel vaccine adjuvants? Expert Rev Vaccines 2011; 10:159-61. [PMID: 21332265 DOI: 10.1586/erv.10.168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
IFN-λs are related to type I interferons but their receptor has a more cell-restricted pattern of expression. Consequently, one can expect that IFN-λs have antiviral and anti-tumoral activities as well as immunomodulatory properties with less adverse side-effects than type I interferons. However, their roles in physiopathology and immunoregulation remain to be fully elucidated. The study under evaluation identifies that murine CD8α(+) dendritic cells and their recently described human equivalent, BDCA3(+) dendritic cells, are the major producers of IFN-λs in response to dsRNA poly I:C. This study illustrates a new function for a DC subset conserved between species. These findings may impact the development of vaccine or therapeutic strategies based on DC targeting.
Collapse
Affiliation(s)
- Carmelo Luci
- INSERM, UMR 634, Faculté de Médecine Pasteur, 28 Avenue de Valombrose, 06107 Nice cedex 2, France
| | | |
Collapse
|
48
|
Abstract
The current vaccine market is gaining momentum in the development of alternative administration routes namely intranasal, oral, topical, pulmonary, vaginal, and rectal; the nasal route offers the most promising opportunity for vaccine administration. It can enhance convenience, safety, elicit both local and systemic immune responses; thus potentially provide protection from pathogens at the site of entry. Nasal vaccine innovation comes with both opportunities and challenges. The innovative strategies used by industry and researchers to overcome the hurdles are discussed in this article: these include live-attenuated vaccines, adjuvants, mucoadhesives, particulate delivery systems, virus-like particles, vaccine manufacture, challenges of regulatory authorities, and the nasal vaccine impact on market potential. Critical issues for effective nasal vaccination are the antigen-retention period that enables its interaction with the lymphatic system and choice of an adjuvant that is nontoxic and induces the required immune response. Co-adjuvanting by means of a mucoadhesive technology addresses some of these issues. ChiSys(®), a natural bioadhesive with proven intranasal safety profile, has already demonstrated efficacy for several nasally delivered vaccines including norovirus. With the looming threat of a pandemic, alternatives such as intranasal vaccination will ultimately facilitate greater public compliance and rapid mass global vaccination.
Collapse
Affiliation(s)
- Inderjit Jabbal-Gill
- Archimedes Development Ltd., Albert Einstein Centre, Nottingham Science & Technology Park, University Boulevard, Nottingham, UK.
| |
Collapse
|
49
|
Torrieri-Dramard L, Lambrecht B, Ferreira HL, Van den Berg T, Klatzmann D, Bellier B. Intranasal DNA vaccination induces potent mucosal and systemic immune responses and cross-protective immunity against influenza viruses. Mol Ther 2010; 19:602-11. [PMID: 20959813 DOI: 10.1038/mt.2010.222] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The induction of potent virus-specific immune responses at mucosal surfaces where virus transmission occurs is a major challenge for vaccination strategies. In the case of influenza vaccination, this has been achieved only by intranasal delivery of live-attenuated vaccines that otherwise pose safety problems. Here, we demonstrate that potent mucosal and systemic immune responses, both cellular and humoral, are induced by intranasal immunization using formulated DNA. We show that formulation with the DNA carrier polyethylenimine (PEI) improved by a 1,000-fold the efficiency of gene transfer in the respiratory track following intranasal administration of luciferase-coding DNA. Using PEI formulation, intranasal vaccination with DNA-encoding hemagglutinin (HA) from influenza A H5N1 or (H1N1)2009 viruses induced high levels of HA-specific immunoglobulin A (IgA) antibodies that were detected in bronchoalveolar lavages (BALs) and the serum. No mucosal responses could be detected after parenteral or intranasal immunization with naked-DNA. Furthermore, intranasal DNA vaccination with HA from a given H5N1 virus elicited full protection against the parental strain and partial cross-protection against a distinct highly pathogenic H5N1 strain that could be improved by adding neuraminidase (NA) DNA plasmids. Our observations warrant further investigation of intranasal DNA as an effective vaccination route.
Collapse
|
50
|
Jin B, Sun T, Yu XH, Liu CQ, Yang YX, Lu P, Fu SF, Qiu HB, Yeo AET. Immunomodulatory effects of dsRNA and its potential as vaccine adjuvant. J Biomed Biotechnol 2010; 2010:690438. [PMID: 20671921 PMCID: PMC2910503 DOI: 10.1155/2010/690438] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 05/09/2010] [Indexed: 02/07/2023] Open
Abstract
dsRNA can be detected by pattern recognition receptors, for example, TLR3, MDA-5, NLRP3 to induce proinflammatory cytokines responsible for innate/adaptive immunity. Recognized by endosomal TLR3 in myeloid DCs (mDCs), dsRNA can activate mDCs into mature antigen presenting cells (mAPCs) which in turn present antigen epitopes with MHC-I molecules to naïve T cells. Coadministration of protein and synthetic dsRNA analogues can elicit an antigen-specific Th1-polarized immune response which stimulates the CD8+ CTL response and possibly dampen Th17 response. Synthetic dsRNA analogues have been tested as vaccine adjuvant against viral infections in animal models. However, a dsRNA receptor, TLR3 can be expressed in tumor cells while other members of TLR family, for example, TLR4 and TLR2 have been shown to promote tumor progression, metastasis, and chemoresistance. Thus, the promising potential of dsRNA analogues as a tumor therapeutic vaccine adjuvant should be evaluated cautiously.
Collapse
Affiliation(s)
- Bo Jin
- Department of Digestive Diseases, Naval General Hospital, 6 Fucheng Rd., Beijing 100048, China.
| | | | | | | | | | | | | | | | | |
Collapse
|