1
|
Shi J, Wu M, Fang S, Liu Z, Liu H, Zhao Y, Liu L, Shao Z. Saponins enhance the stability and cost-efficiency of human embryonic stem cell culture. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:3. [PMID: 39836295 PMCID: PMC11751367 DOI: 10.1186/s13619-024-00220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
The cultivation and differentiation of human embryonic stem cells (hESCs) into organoids are crucial for advancing of new drug development and personalized cell therapies. Despite establishing of chemically defined hESC culture media over the past decade, these media's reliance on growth factors, which are costly and prone to degradation, poses a challenge for sustained and stable cell culture. Here, we introduce an hESC culture system(E6Bs) that facilitates the long-term, genetically stable expansion of hESCs, enabling cells to consistently sustain high levels of pluripotency markers, including NANOG, SOX2, TRA-1-60, and SSEA4, across extended periods. Moreover, organoids derived from hESCs using this medium were successfully established and expanded for at least one month, exhibiting differentiation into cortical organoids, GABAergic precursor organoids and heart-forming organoids. This innovative system offers a robust tool for preserving hESC homeostasis and modeling the nervous system in vitro.
Collapse
Affiliation(s)
- Jingyi Shi
- Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Mei Wu
- Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shi Fang
- Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhuo Liu
- Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Huihui Liu
- Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Linlin Liu
- Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Zhicheng Shao
- Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Zou M, Lei C, Huang D, Liu L, Han Y. Application of plant-derived products as adjuvants for immune activation and vaccine development. Vaccine 2024; 42:126115. [PMID: 38987109 DOI: 10.1016/j.vaccine.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/25/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Vaccines are one of the most important means to prevent and control the epidemic of infectious diseases. Commercial vaccines not only include corresponding antigens, but also need vaccine adjuvants. Immune adjuvants play an increasingly important role in the research, development and manufacture of vaccines. Adjuvants combined with antigens can improve the stability, safety and immune efficiency of vaccines. Some substances that can enhance the immune response have been found in nature(mainly plants) and used as adjuvants in vaccines to improve the immune effect of vaccines. These plant-derived immune adjuvants often have the advantages of low toxicity, high stability, low price, etc., providing more possibilities for vaccine development. We summarized and analyzed the advantages, application research, particulate delivery systems, existing problems and future research focus of botanical adjuvant. It is hoped to provide new ideas for the research and development of immune adjuvants in the future.
Collapse
Affiliation(s)
- Manshu Zou
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Chang Lei
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Dan Huang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Lan Liu
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Yuanshan Han
- The First Hospital, Hunan University of Chinese Medicine, Hunan Province, Changsha 410007, China.
| |
Collapse
|
3
|
Urtecho-Novelo R, Santos-Ricalde R, Sarmiento-Franco L, Torres-Acosta JF, Borges-Árgaez R. Effect of ethanol extract from Enterolobium cyclocarpum fruit on Leghorn chickens exposed to Eimeria. Trop Anim Health Prod 2024; 56:369. [PMID: 39476271 DOI: 10.1007/s11250-024-04209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/14/2024] [Indexed: 12/11/2024]
Abstract
There are concerns about residues of drugs in meat that are used to prevent coccidiosis in chickens. Natural compounds are an alternative to drugs. Two studies investigated the effect of an extract of Enterolobium cyclocarpum fruits (EEC) in the feed of male Leghorn chickens exposed to Eimeria spp. In the first experiment, the administration of EEC after infection with Eimeria spp. was investigated over 16 days. One thousand chickens were randomly housed in 20 pens of 1 m2 each. The pens were randomly assigned to each treatment. Five treatments were administered, containing 150, 300 and 450 mg/kg of EEC in the feed, the fourth treatment (C) contained 0.5 g/kg of a commercial anticoccidial, and the fifth treatment provided no treatment (WA). The second experiment lasted 18 days. Administration of the EEC began five days before the chickens were infected with Eimeria spp. Four hundred and eighty chickens were randomly allocated to 24 pens of 1 m2. The pens were randomly assigned to each treatment. In the second experiment, the same five treatments were tested and one additional treatment containing 300 mg EEC plus 1 g of polyethylene glycol (PEG)/kg of feed (E300PEG). In the experiment one chickens in the EEC treatments had lower faecal oocyst excretion (OE) on day 14 post infection with Eimeria spp., than chickens in the WA treatment (P < 0.05). A reduction in live weight gain (LWG) was observed in the EEC treatments (P < 0.05). In the second experiment, the excretion of oocysts in chickens from the EEC and E300PEG treatments on day 13 post-infection with Eimeria spp. was the same as in the C treatment and lower than in the WA treatment (P < 0.05). LWG was lower in the EEC treatments than in the C treatment (P < 0.05). However, the Chickens in the E300PEG and C treatments had similar LWG (P > 0.05) suggesting that PEG inhibits the negative effect of EEC tannins on LWG. In conclusion, the addition of EEC to chicken feed reduced both OE and LWG. Treatment with EEC and PEG (E300PEG) reduced the excretion of oocysts without negative effects on LWG.
Collapse
Affiliation(s)
- Rosalinda Urtecho-Novelo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico
| | - Ronald Santos-Ricalde
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico
| | - Luis Sarmiento-Franco
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico.
| | - Juan Felipe Torres-Acosta
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico
| | - Rocío Borges-Árgaez
- Centro de Investigación Científica de Yucatán A. C. (CICY), Calle 43 n. 130 x 32 y 34 Chuburná de Hidalgo, Mérida, Yucatán, CP. 97205, Mexico
| |
Collapse
|
4
|
Shams N, Jaydari A, Najafi H, Hataminejad M, Khanizadeh S, Pouladi I. An Overview of the Types of Adjuvants Used in the Vaccination Industry And Their Mechanisms of Action. Viral Immunol 2024; 37:324-336. [PMID: 39172659 DOI: 10.1089/vim.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
The widespread use of efficient vaccines against infectious diseases is regarded as one of the most significant advancements in public health and techniques for preventing and protecting against infectious diseases and cancer. Because the purpose of vaccination is to elicit an appropriate, powerful, and long-lasting immune response against the pathogen, compounds such as adjuvants must be used to enhance these responses. Adjuvants have been widely used since their discovery to boost immune responses, prevent diseases, and activate protective immunity. Today, several types of adjuvants with varying properties are available for specific applications. Adjuvants are supramolecular substances or complexes that strengthen and prolong the immune response to antigens. These compounds have long-term immunological effects and are low in toxicity. They also lower the amount of antigen or the number of immunogenic reactions needed to improve vaccine efficacy and are used in specific populations. This article provides an overview of the adjuvants commonly used in the vaccination industry, their respective mechanisms of action, and discusses how they function to stimulate the immune system. Understanding the mechanisms of action of adjuvants is crucial for the development of effective and safe vaccines.
Collapse
Affiliation(s)
- Nemat Shams
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Amin Jaydari
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Hamideh Najafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Hataminejad
- Department of Parasitology and Mycology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Iman Pouladi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Przybył JL, Stefaniak J, Jaroszewicz A, Gawrońska A, Łapiński M, Bączek KB, Węglarz Z. Determining Antiradical Capacity of Medicinal Plant Extract Individual Constituents Using Post-Column Reaction Method. Int J Mol Sci 2024; 25:5461. [PMID: 38791498 PMCID: PMC11122392 DOI: 10.3390/ijms25105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The post-column reaction method enables the evaluation of the antiradical capacity of individual components in a mixture by separating the components using HPLC and measuring stable free radical (e.g., DPPH●) scavenging that occurs after the chromatography column. The equipment typically consists of two detectors. The first records signals of the analytes leaving the column. The second records radical scavenging by the analytes, which appears as a negative band. The recorded signals are found on two separate chromatograms, which must be combined to interpret the results. In this study, a single DAD detector was used behind the post-column reactor, enabling the simultaneous recording of the analyte bands and negative signals, indicating radical scavenging. The objective of this study was to evaluate the antiradical capacity of key compounds found in two herbal raw materials used in traditional Chinese medicine. Saposhnikovia divaricata roots contain phenolic acids, chromones, and furanocoumarins. Chlorogenic acid, rosmarinic acid, and imperatorin demonstrated strong radical scavenging, while prim-O-glucoslocimifugin showed a weaker response, both in standards and in root extracts. However, scavenging was not observed for cimifugin and 4'-O-β-D-glucosyl-5-O-methylvisamminol. Astragalus mongholicus roots contain astragalosides I-IV (triterpene saponins). None of these showed DPPH● scavenging. Furthermore, additional signals were observed, indicating the presence of unidentified radical scavenging compounds.
Collapse
Affiliation(s)
- Jarosław L. Przybył
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warszawa, Poland (A.J.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Tang R, Wang L, Zhang J, Fei W, Zhang R, Liu J, Lv M, Wang M, Lv R, Nan H, Tao R, Chen Y, Chen Y, Jiang Y, Zhang H. Boosting the immunogenicity of the CoronaVac SARS-CoV-2 inactivated vaccine with Huoxiang Suling Shuanghua Decoction: a randomized, double-blind, placebo-controlled study. Front Immunol 2024; 15:1298471. [PMID: 38633263 PMCID: PMC11021573 DOI: 10.3389/fimmu.2024.1298471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction In light of the public health burden of the COVID-19 pandemic, boosting the safety and immunogenicity of COVID-19 vaccines is of great concern. Numerous Traditional Chinese medicine (TCM) preparations have shown to beneficially modulate immunity. Based on pilot experiments in mice that showed that supplementation with Huoxiang Suling Shuanghua Decoction (HSSD) significantly enhances serum anti-RBD IgG titers after inoculation with recombinant SARS-CoV-2 S-RBD protein, we conducted this randomized, double-blind, placebo-controlled clinical trial aimed to evaluate the potential immunogenicity boosting effect of oral HSSD after a third homologous immunization with Sinovac's CoronaVac SARS-CoV-2 (CVS) inactivated vaccine. Methods A total of 70 participants were randomly assigned (1:1 ratio) to receive a third dose of CVS vaccination and either oral placebo or oral HSSD for 7 days. Safety aspects were assessed by recording local and systemic adverse events, and by blood and urine biochemistry and liver and kidney function tests. Main outcomes evaluated included serum anti-RBD IgG titer, T lymphocyte subsets, serum IgG and IgM levels, complement components (C3 and C4), and serum cytokines (IL-6 and IFN-γ). In addition, metabolomics technology was used to analyze differential metabolite expression after supplementation with HSSD. Results Following a third CVS vaccination, significantly increased serum anti-RBD IgG titer, reduced serum IL-6 levels, increased serum IgG, IgM, and C3 and C4 levels, and improved cellular immunity, evidenced by reduce balance deviations in the distribution of lymphocyte subsets, was observed in the HSSD group compared with the placebo group. No serious adverse events were recorded in either group. Serum metabolomics results suggested that the mechanisms by which HSSD boosted the immunogenicity of the CVS vaccine are related to differential regulation of purine metabolism, vitamin B6 metabolism, folate biosynthesis, arginine and proline metabolism, and steroid hormone biosynthesis. Conclusion Oral HSSD boosts the immunogenicity of the CVS vaccine in young and adult individuals. This trial provides clinical reference for evaluation of TCM immunomodulators to improve the immune response to COVID-19 vaccines.
Collapse
Affiliation(s)
- Ruying Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Fei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinlian Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Meiyu Lv
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mengyao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ruilin Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haipeng Nan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ran Tao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yawen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yanxin Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Shen L, Luo H, Fan L, Tian X, Tang A, Wu X, Dong K, Su Z. Potential Immunoregulatory Mechanism of Plant Saponins: A Review. Molecules 2023; 29:113. [PMID: 38202696 PMCID: PMC10780299 DOI: 10.3390/molecules29010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Saponins are extracted from different parts of plants such as seeds, roots, stems, and leaves and have a variety of biological activities including immunomodulatory, anti-inflammatory effects, and hypoglycemic properties. They demonstrate inherent low immunogenicity and possess the capacity to effectively regulate both the innate and adaptive immune responses. Plant saponins can promote the growth and development of the body's immune organs through a variety of signaling pathways, regulate the activity of a variety of immune cells, and increase the secretion of immune-related cytokines and antigen-specific antibodies, thereby exerting the role of immune activity. However, the chemical structure of plant saponins determines its certain hemolytic and cytotoxicity. With the development of science and technology, these disadvantages can be avoided or reduced by certain technical means. In recent years, there has been a significant surge in interest surrounding the investigation of plant saponins as immunomodulators. Consequently, the objective of this review is to thoroughly examine the immunomodulatory properties of plant saponins and elucidate their potential mechanisms, with the intention of offering a valuable point of reference for subsequent research and advancement within this domain.
Collapse
Affiliation(s)
- Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyu Tian
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anguo Tang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaofeng Wu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke Dong
- Sichuan Yuqiang Herbal Biotechnology Co., Ltd., Chengdu 611130, China
| | - Zhetong Su
- Guangxi Innovates Medical Technology Co., Ltd., Lipu 546600, China
| |
Collapse
|
8
|
Moni SS, Abdelwahab SI, Jabeen A, Elmobark ME, Aqaili D, Ghoal G, Oraibi B, Farasani AM, Jerah AA, Alnajai MMA, Mohammad Alowayni AMH. Advancements in Vaccine Adjuvants: The Journey from Alum to Nano Formulations. Vaccines (Basel) 2023; 11:1704. [PMID: 38006036 PMCID: PMC10674458 DOI: 10.3390/vaccines11111704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Vaccination is a groundbreaking approach in preventing and controlling infectious diseases. However, the effectiveness of vaccines can be greatly enhanced by the inclusion of adjuvants, which are substances that potentiate and modulate the immune response. This review is based on extensive searches in reputable databases such as Web of Science, PubMed, EMBASE, Scopus, and Google Scholar. The goal of this review is to provide a thorough analysis of the advances in the field of adjuvant research, to trace the evolution, and to understand the effects of the various adjuvants. Historically, alum was the pioneer in the field of adjuvants because it was the first to be approved for use in humans. It served as the foundation for subsequent research and innovation in the field. As science progressed, research shifted to identifying and exploiting the potential of newer adjuvants. One important area of interest is nano formulations. These advanced adjuvants have special properties that can be tailored to enhance the immune response to vaccines. The transition from traditional alum-based adjuvants to nano formulations is indicative of the dynamism and potential of vaccine research. Innovations in adjuvant research, particularly the development of nano formulations, are a promising step toward improving vaccine efficacy and safety. These advances have the potential to redefine the boundaries of vaccination and potentially expand the range of diseases that can be addressed with this approach. There is an optimistic view of the future in which improved vaccine formulations will contribute significantly to improving global health outcomes.
Collapse
Affiliation(s)
- Sivakumar S. Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | | | - Aamena Jabeen
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | - Mohamed Eltaib Elmobark
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | - Duaa Aqaili
- Physiology Department, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Gassem Ghoal
- Department of Pediatrics, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Bassem Oraibi
- Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia (B.O.)
| | | | - Ahmed Ali Jerah
- College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Mahdi Mohammed A. Alnajai
- General Directorate of Health Services and University Hospital, Jazan University, Jazan 45142, Saudi Arabia;
| | | |
Collapse
|
9
|
Gamboa Marin OJ, Heis F, Gauthier C. Synthesis of immunostimulatory saponins: A sweet challenge for carbohydrate chemists. Carbohydr Res 2023; 530:108851. [PMID: 37257206 DOI: 10.1016/j.carres.2023.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Saponins are a large family of natural glycosides showing a wide range of biological activities. Current research efforts on saponins as vaccine adjuvants have been mainly focused on the development of synthetic analogs. By mimicking the immunomodulatory saponins from Quillaja saponaria (QS), less complex and readily accessible analogs have been synthesized to improve the industrial applicability and efficacy of saponins as vaccine adjuvants. Through the exploration of several structural modifications on the skeleton of QS saponins, including changes in the sugar and aglycone compositions as well as in the nature and configuration of the glycosidic bonds, structure-activity relationship (SAR) studies developed by Pr. Gin in the early 2010s were taken as a starting point for the development of a new generation of immunomodulatory candidates. In this review, the recent synthetic strategies and SAR studies of mono- and bidesmosidic QS saponins are discussed. Original concepts of vaccination including self-adjuvanticity and the development of saponin-based glycoconjugates are described. The synthesis and semi-synthesis of saponin alternatives to QS, such as Momordica saponin and onjisaponin derivatives, are also discussed in this review.
Collapse
Affiliation(s)
- Oscar Javier Gamboa Marin
- Unité mixte de recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval and Chicoutimi, Canada
| | - Floriane Heis
- Unité mixte de recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval and Chicoutimi, Canada
| | - Charles Gauthier
- Unité mixte de recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval and Chicoutimi, Canada.
| |
Collapse
|
10
|
Dai Z, Wang H, Liu J, Zhang H, Li Q, Yu X, Zhang R, Yang C. Comparison of the Effects of Yucca saponin, Yucca schidigera, and Quillaja saponaria on Growth Performance, Immunity, Antioxidant Capability, and Intestinal Flora in Broilers. Animals (Basel) 2023; 13:ani13091447. [PMID: 37174484 PMCID: PMC10177514 DOI: 10.3390/ani13091447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The purpose of this study is to investigate the effects of Yucca saponin (YSa), Yucca schidigera (YS), and Quillaja Saponaria (QS) on growth performance, nitrogen metabolism, immune ability, antioxidant capability, and intestinal flora of yellow-feather broilers. This study randomly divided a total of 480 1-day yellow-feather broilers into 4 treatment groups. Factors in the 4 groups included CON group (basic diet), YSa group (basic diet mixed with 500 mg/kg YSa), YS group (basic diet mixed with 500 mg/kg YS), and QS group (basic diet mixed with 500 mg/kg QS). Throughout the 56-day study period, YSa, YS, and QS groups had higher average daily gain in broilers than the CON group (p < 0.01). The YS group had a lower feed gain ratio (F: G) in broilers than the CON group (p < 0.05). YSa, YS, and QS showed increased serum immunoglobin A (IgA), immunoglobin Y (IgY), immunoglobin M (IgM), and total antioxidant capacity (T-AOC) levels; enhanced acetic acid, butyric acid, and valeric acid levels of cecal content; and reduced contents of ammonia nitrogen, urea nitrogen, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and malondialdehyde (MDA) in serum in broilers (p < 0.05). The relative abundance of Lachnoclostridium in the QS group was decreased compared with that in the CON group (p < 0.05). Higher IgA and IgY sera contents were observed in the YS group compared to the YSa and QS groups (p < 0.05). In contrast with the QS group, the serum IL-6 concentration of the YS group was reduced (p < 0.05). In conclusion, YSa, YS, and QS promoted growth performance, nitrogen metabolism, immunity, antioxidant capability, and intestinal flora in broilers. Through the comparison of YSa, YS, and QS, it was found that YS is more suitable as a feed additive to ameliorate the healthy growth of broilers.
Collapse
Affiliation(s)
- Zhenglie Dai
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Huixian Wang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Jinsong Liu
- Key Agricultural Research Institute of Veagmax Green Animal Health Products of Zhejiang Province, Anji 313300, China
| | - Haoran Zhang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Qing Li
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Xiaorong Yu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Caimei Yang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| |
Collapse
|
11
|
Trivedi SP, Dwivedi S, Singh S, Khan AA, Kumar M, Shukla A, Dwivedi S, Kumar V, Yadav KK, Tiwari V. Evaluation of immunostimulatory attributes of Asparagus racemosus and Withania somnifera supplemented diets in fish, Channa punctatus (Bloch, 1793). Vet Immunol Immunopathol 2023; 258:110561. [PMID: 36801726 DOI: 10.1016/j.vetimm.2023.110561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
With the progression of aquaculture industry, there has been a spurt in dietary supplementation with economically viable medicinal herbs having enough immunostimulatory potential. This also aids in avoidance of environmentally undesirable therapeutics that are almost inevitable to safeguard fish against an array of diseases in aquaculture practices. The study aims to determine the optimal dose of herbs that can stimulate substantial immune response in fish for reclamation of aquaculture. Immunostimulatory potential of the two medicinal herbs- Asparagus racemosus (Shatavari), Withania somnifera (Ashwagandha), individually, and in combination, with a basal diet was screened up to 60 days in Channa punctatus. 300 laboratory acclimatized healthy fish (14 ± 1 g; 11 ± 1 cm) were divided into ten groups- C, S1, S2, S3, A1, A2, A3, AS1, AS2, and AS3, based on the composition of dietary supplementation, in triplicates, with 10 specimens per group. The hematological index, total protein and lysozyme enzyme activity were performed after 30 and 60 days, while qRT-PCR analysis of lysozyme expression was done after 60 days of the feeding trial. The significant (P < 0.05) increments in hematological indices- (TEC, TLC, DLC, Hb, Hct, MCV, MCH and MCHC), total protein content and serum lysozyme activity, after 30 and 60 days; whereas upregulation of lysozyme transcript levels, both in liver and muscle tissues after 60 days of the feeding trial were recorded in groups- AS1, AS2, and AS3. The maximal increment in lysozyme expression was recorded in AS3, both in liver and muscle tissues, with 3.75 ± 0.13 and 3.21 ± 0.18-folds, respectively. However, increments were non-significant (P > 0.05) for MCV in AS2 and AS3 after 30 days; and for MCHC in AS1 for both the durations; whereas in AS2 and AS3, after 60 days of the feeding trial. A positive correlation (P < 0.05) among lysozyme expression, MCH, lymphocytes, neutrophils, total protein content, and serum lysozyme activity in AS3, after 60 days, conclusively, evinces that a 3% dietary supplementation with both A. racemosus and W. somnifera enhances immunity and health profile of the fish, C. punctatus. The study, thus finds ample scope in augmentation of aquaculture production and also paves the way for more researches for biological screenings of potential immunostimulatory medicinal herbs that can be appropriately incorporated in the fish diet.
Collapse
Affiliation(s)
- Sunil P Trivedi
- Centre of Excellence in Fish Nutrigenomics, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Shikha Dwivedi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Shefalee Singh
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Adeel Ahmad Khan
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Manoj Kumar
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Anubha Shukla
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Shraddha Dwivedi
- Department of Zoology, Government Degree College, Haripur Nihastha, Raebareli 229208, India.
| | - Vivek Kumar
- Department of Zoology, Isabella Thoburn PG College, Lucknow 226007, India.
| | - Kamlesh K Yadav
- Department of Zoology, Government Degree College, Bakkha Kheda, Unnao 209801, India.
| | - Vidyanand Tiwari
- Institute of Food Processing and Technology, University of Lucknow, Lucknow 226007, India.
| |
Collapse
|
12
|
Zhao D, Chen X, Wang L, Zhang J, Lv R, Tan L, Chen Y, Tao R, Li X, Chen Y, He W, He J. Improvement influenza vaccine immune responses with traditional Chinese medicine and its active ingredients. Front Microbiol 2023; 14:1111886. [PMID: 36960292 PMCID: PMC10027775 DOI: 10.3389/fmicb.2023.1111886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
The current influenza vaccines are unable to provide effective protection in many cases, like influenza viruses strain antigenic drift or shift, and the influenza continues to cause significant annual morbidity and mortality. Improving the immune response to influenza vaccination is an unmet need. Traditional Chinese medicine (TCM) and its active ingredients are commonly known to have immunomodulatory properties. We therefore compared influenza vaccination alone or formulated with Astragali Radix (Huangqi in Chinese), and several representative ingredients of TCM, including lentinan (polysaccharide), panax notoginseng saponins (saponin), breviscapine (flavone), andrographolide (terpenoid), and a Chinese herbal compound (kangai) for their potential to enhance immune responses to influenza vaccine in mice. We found that all these TCM-adjuvants were able to increase hemagglutination inhibition (HAI) antibody titers, splenocyte proliferation, splenic T cell differentiation, bone marrow dendritic cell maturity, and both Th1 and Th2 cytokine secretion of influenza vaccine to varying degrees, and that had the characteristics of no excessive inflammatory responses and bidirectional regulation simultaneously. Taken together, our findings show that Astragali Radix exerts a more comprehensive effect on vaccine immunity, on both innate and adaptive immunity. The effects of lentinan and andrographolide on adaptive immunity were more significant, while the effects of breviscapine on innate immunity were stronger, and the other two TCM adjuvants were weaker. As the first report of a comprehensive evaluation of TCM adjuvants in influenza vaccines, the results suggest that TCM and their active ingredients are good candidates for enhancing the immune response of influenza vaccines, and that suitable TCMs can be selected based on the adjuvant requirements of different vaccines.
Collapse
Affiliation(s)
- Danping Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuhong Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Linyuan Wang, ; Jianjun Zhang,
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Linyuan Wang, ; Jianjun Zhang,
| | - Ruilin Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lingyun Tan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yawen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ran Tao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei He
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jing He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Development and Evaluation of a Novel Diammonium Glycyrrhizinate Phytosome for Nasal Vaccination. Pharmaceutics 2022; 14:pharmaceutics14102000. [PMID: 36297436 PMCID: PMC9612344 DOI: 10.3390/pharmaceutics14102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of the present research was to formulate diammonium glycyrrhizinate (DG) into phytosomes (DG-P) to induce nasal immune responses and enhance absorption. Plackett- Burman design was used for process optimization, incorporating specific formulation and process variables to obtain the optimal parameters. Fourier transform infrared spectroscopy (FTIR), X-ray power diffraction (P-XRD), and transmission electron microscopy (TEM) were used for characterization. The adjuvant activity of the DG-P was evaluated by using bone marrow dendritic cells. In vitro nasal mucosal permeation and in situ nasal perfusion were also investigated to evaluate nasal absorption. The DG phytosomes were in the size range of 20~30 nm and zeta-potential range of −30~−40 mV. DG-P demonstrated 4.2-fold increased solubility in n-octanol. Coculturing bone marrow dendritic cells with DG-P led to enhanced dendritic cell maturation. Apparent permeability coefficient of the phytosomal formulation was almost four times higher than that of free DG determined by ex vivo permeation studies on excised porcine mucosa. In situ nasal perfusion studies in rats demonstrated that the nasal absorption of DG-P was significantly higher than that of free DG. Conclusively, the results confirmed that DG-P have potential for use as an adjuvant for nasal vaccine.
Collapse
|
14
|
Jiang C, Dong Q, Xin X, Degen AA, Ding L. Effect of Chinese Herbs on Serum Biochemical Parameters, Immunity Indices, Antioxidant Capacity and Metabolomics in Early Weaned Yak Calves. Animals (Basel) 2022; 12:ani12172228. [PMID: 36077948 PMCID: PMC9455063 DOI: 10.3390/ani12172228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Chinese traditional herbs are used widely as feed supplements to improve the immune response and antioxidant capacity of livestock. Twenty early-weaned 4-month-old yak calves (72.3 ± 3.65 kg) were divided randomly into four groups (n = 5 per group); three groups were provided with supplementary 80 mL/kg DMI of the root water extracts of either Angelica sinensis, Codonopsis pilosula or Glycyrrhiza uralensis, and one group (control) was not provided with a supplement. Compared to control calves, calves consuming the three herbal extracts increased serum concentrations of albumin (ALB) and glutathione peroxidase (GSH-Px), but decreased serum concentrations of free fatty acids (FFAs) and malondialdehyde (MDA) (p < 0.05). Calves consuming A. sinensis decreased (p < 0.05) serum concentration of total cholesterol (TC), and increased (p < 0.05) serum concentration of total proteins (TP). Serum FFA concentrations increased (p = 0.004) linearly with time in the control group, but not in the groups consuming herbs. Serum metabolomic data demonstrated that A. sinensis and C. pilosula regulate mainly amino acid metabolism, while G. uralensis regulates mainly carbon and amino acid metabolism. It was concluded that the three herbal root extracts, as dietary supplements, improved energy and nitrogen metabolism, and enhanced the antioxidant capacity of yak calves.
Collapse
Affiliation(s)
- Cuixia Jiang
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Quanmin Dong
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, Xining 810016, China
| | - Xiaoping Xin
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luming Ding
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
15
|
Jiang W, Tang M, Yang L, Zhao X, Gao J, Jiao Y, Li T, Tie C, Gao T, Han Y, Jiang JD. Analgesic Alkaloids Derived From Traditional Chinese Medicine in Pain Management. Front Pharmacol 2022; 13:851508. [PMID: 35620295 PMCID: PMC9127080 DOI: 10.3389/fphar.2022.851508] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pain is one of the most prevalent health problems. The establishment of chronic pain is complex. Current medication for chronic pain mainly dependent on anticonvulsants, tricyclic antidepressants and opioidergic drugs. However, they have limited therapeutic efficacy, and some even with severe side effects. We turned our interest into alkaloids separated from traditional Chinese medicine (TCM), that usually act on multiple drug targets. In this article, we introduced the best-studied analgesic alkaloids derived from TCM, including tetrahydropalmatine, aloperine, oxysophocarpine, matrine, sinomenine, ligustrazine, evodiamine, brucine, tetrandrine, Stopholidine, and lappaconitine, focusing on their mechanisms and potential clinical applications. To better describe the mechanism of these alkaloids, we adopted the concept of drug-cloud (dCloud) theory. dCloud illustrated the full therapeutic spectrum of multitarget analgesics with two dimensions, which are “direct efficacy”, including inhibition of ion channels, activating γ-Aminobutyric Acid/opioid receptors, to suppress pain signal directly; and “background efficacy”, including reducing neuronal inflammation/oxidative stress, inhibition of glial cell activation, restoring the balance between excitatory and inhibitory neurotransmission, to cure the root causes of chronic pain. Empirical evidence showed drug combination is beneficial to 30–50% chronic pain patients. To promote the discovery of effective analgesic combinations, we introduced an ancient Chinese therapeutic regimen that combines herbal drugs with “Jun”, “Chen”, “Zuo”, and “Shi” properties. In dCloud, “Jun” drug acts directly on the major symptom of the disease; “Chen” drug generates major background effects; “Zuo” drug has salutary and supportive functions; and “Shi” drug facilitates drug delivery to the targeted tissue. Subsequently, using this concept, we interpreted the therapeutic effect of established analgesic compositions containing TCM derived analgesic alkaloids, which may contribute to the establishment of an alternative drug discovery model.
Collapse
Affiliation(s)
- Wei Jiang
- Zhejiang Zhenyuan Pharmaceutical Co., Ltd., Shaoxing, China
| | - Mingze Tang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Limin Yang
- Zhejiang Zhenyuan Pharmaceutical Co., Ltd., Shaoxing, China
| | - Xu Zhao
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medicine Sciences & Peking Union Medical College, Beijing, China
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cai Tie
- State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology, Beijing, China.,School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, China
| | - Tianle Gao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Clinical Application of Bioextracts in Supporting the Reproductive System of Animals and Humans: Potential and Limitations. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4766409. [PMID: 35388312 PMCID: PMC8977292 DOI: 10.1155/2022/4766409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
There is an increasing demand of spices and herbs in developing countries due to the beneficial effects of plants and herbal preparations as medicines. The basic technological process of obtaining extracts from natural raw materials is extraction, consisting in etching with solvents. Plant extracts are extremely complex, multicomponent mixtures obtained from flowers, fruits, leaves, stems, twigs, or seeds of various plant materials. They are a rich source of polyphenols, flavonoids, phytosterols, carotenoids, and vitamins. The search for alternative methods of treatment is increasingly replacing the scientists' excessive focus on the healing properties of bioextracts. Recent research offers great hope for the development of alternative methods to improve the reproductive system. The use of animal models in experimental research has increased knowledge regarding the beneficial effects of bioextracts on both male and female reproductive systems and reproductive cells. Demonstrating the positive effect of plant extracts creates new opportunities for the use of biowaste, which is a by-product in various production sectors. The aim of this review is to present the functional properties of extracts of natural origin, a cross section of modern methods of their preparation, and a discussion of the possibilities of their use in the auxiliary reproductive system.
Collapse
|
17
|
Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:145-178. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.
Collapse
Affiliation(s)
- Farrhana Ziana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
18
|
Leitão SG, Leitão GG, de Oliveira DR. Saracura-Mirá, a Proposed Brazilian Amazonian Adaptogen from Ampelozizyphus amazonicus. PLANTS (BASEL, SWITZERLAND) 2022; 11:191. [PMID: 35050079 PMCID: PMC8781190 DOI: 10.3390/plants11020191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The Amazon Forest is known all over the world for its diversity and exuberance, and for sheltering several indigenous groups and other traditional communities. There, as well as in several other countries, in traditional medical systems, weakness, fatigue and debility are seen as limiting health conditions where medicinal plants are often used in a non-specific way to improve body functions. This review brings together literature data on Ampelozizyphus amazonicus, commonly known in Brazil as "saracura-mirá" and/or "cerveja de índio", as an Amazonian adaptogen, including some contributions from the authors based on their ethnographic and laboratory experiences. Topics such as botany, chemistry, ethnopharmacological and pharmacological aspects that support the adaptogen character of this plant, as well as cultivation, market status and supply chain aspects are discussed, and the gaps to establish "saracura-mirá" as an ingredient for the pharmaceutical purposes identified. The revised data presented good scientific evidence supporting the use of this Amazonian plant as a new adaptogen. Literature data also reveal that a detailed survey on natural populations of this plant is needed, as well as agronomical studies that could furnish A. amazonicus bark as a raw material. Another important issue is the lack of developed quality control methods to assure its quality assessment.
Collapse
Affiliation(s)
- Suzana Guimarães Leitão
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. A2, sl. 10, Rio de Janeiro 21941-902, Brazil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco H, Rio de Janeiro 21941-902, Brazil;
| | - Danilo Ribeiro de Oliveira
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. A2, sl. 10, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
19
|
Yucca schidigera Extract Dietary Supplementation Affects Growth Performance, Hematological and Physiological Status of European Seabass. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The study herein evaluated the effects of dietary supplementation with different yucca (Yucca schidigera) extract levels on rearing water quality, growth performance, protein utilization, hematological and immunological status, and economic benefits of cultured European seabass (Dicentrarchus labrax) juveniles. Yucca extract (YE) was incorporated in an experimental diet at levels of 0, 0.25, 0.50, and 1 g YE kg−1, and offered to fish reared in 70-L glass aquaria (15 fish per aquarium; three replicates each). Dietary YE supplementation significantly (P<0.05) decreased ammonia-nitrogen levels in water. Compared with the control, groups fed 0.50 and 1 g YE kg−1 diets showed improved growth performance (by 26.02% and 36.98%, respectively) and protein efficiency ratio (by 31.39% and 37.29%, respectively). In addition, hematological parameters (red blood cells, hemoglobin, hematocrit, white blood cells and neutrophil) and innate immune parameters (globulin fractions and lysozyme activity) improved with increasing dietary YE levels. Growth, hematological, and immunological parameters increased with a polynomial second-order regression models, with curves peak close to 1 g YE kg−1 diet. The cortisol level decreased significantly (P<0.05) with increasing dietary YE levels. The groups fed the 0.50 and 1 g YE kg−1 diets generated significantly (P<0.05) higher revenue than groups fed the 0.25 g YE kg−1 and the control diets. The using of YE is recommended as a dietary feed additive at a level of 1 g kg−1 for reducing the environmental footprint of fish protein production, accelerating growth, and improving health status of cultured seabass in a short-term feeding period.
Collapse
|
20
|
Alsayari A, Muhsinah AB, Almaghaslah D, Annadurai S, Wahab S. Pharmacological Efficacy of Ginseng against Respiratory Tract Infections. Molecules 2021; 26:molecules26134095. [PMID: 34279434 PMCID: PMC8271507 DOI: 10.3390/molecules26134095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory tract infections are underestimated, as they are mild and generally not incapacitating. In clinical medicine, however, these infections are considered a prevalent problem. By 2030, the third most comprehensive reason for death worldwide will be chronic obstructive pulmonary disease (COPD), according to the World Health Organization. The current arsenal of anti-inflammatory drugs shows little or no benefits against COPD. For thousands of years, herbal drugs have been used to cure numerous illnesses; they exhibit promising results and enhance physical performance. Ginseng is one such herbal medicine, known to alleviate pro-inflammatory chemokines and cytokines (IL-2, IL-4, IFN-γ, TNF-α, IL-5, IL-6, IL-8) formed by macrophages and epithelial cells. Furthermore, the mechanisms of action of ginsenoside are still not fully understood. Various clinical trials of ginseng have exhibited a reduction of repeated colds and the flu. In this review, ginseng’s structural features, the pathogenicity of microbial infections, and the immunomodulatory, antiviral, and anti-bacterial effects of ginseng were discussed. The focus was on the latest animal studies and human clinical trials that corroborate ginseng’s role as a therapy for treating respiratory tract infections. The article concluded with future directions and significant challenges. This review would be a valuable addition to the knowledge base for researchers in understanding the promising role of ginseng in treating respiratory tract infections. Further analysis needs to be re-focused on clinical trials to study ginseng’s efficacy and safety in treating pathogenic infections and in determining ginseng-drug interactions.
Collapse
Affiliation(s)
- Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
- Correspondence: or
| |
Collapse
|
21
|
Sun X, Hong Y, Shu Y, Wu C, Ye G, Chen H, Zhou H, Gao R, Zhang J. The involvement of Parkin-dependent mitophagy in the anti-cancer activity of Ginsenoside. J Ginseng Res 2021; 46:266-274. [PMID: 35509820 PMCID: PMC9058836 DOI: 10.1016/j.jgr.2021.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023] Open
Abstract
Colon cancer, the third most frequent occurred cancer, has high mortality and extremely poor prognosis. Ginsenoside, the active components of traditional Chinese herbal medicine Panax ginseng, exerts antitumor effect in various cancers, including colon cancer. However, the detailed molecular mechanism of Ginsenoside in the tumor suppression have not been fully elucidated. Here, we chose the representative ginsenoside Rg3 and reported for the first time that Rg3 induces mitophagy in human colon cancer cells, which is responsible for its anticancer effect. Rg3 treatment leads to mitochondria damage and the formation of mitophagosome; when autophagy is inhibited, the clearance of damaged mitochondria can be reversed. Next, our results showed that Rg3 treatment activates the PINK1-Parkin signaling pathway and recruits Parkin and ubiquitin proteins to mitochondria to induce mitophagy. GO analysis of Parkin targets showed that Parkin interacts with a large number of mitochondrial proteins and regulates the molecular function of mitochondria. The cellular energy metabolism enzyme GAPDH is validated as a novel substrate of Parkin, which is ubiquitinated by Parkin. Moreover, GAPDH participates in the Rg3-induced mitophagy and regulates the translocation of Parkin to mitochondria. Functionally, Rg3 exerts the inhibitory effect through regulating the nonglycolytic activity of GAPDH, which could be associated with the cellular oxidative stress. Thus, our results revealed GAPDH ubiquitination by Parkin as a crucial mechanism for mitophagy induction that contributes to the tumor-suppressive function of ginsenoside, which could be a novel treatment strategy for colon cancer.
Collapse
Affiliation(s)
- Xin Sun
- Department of Oncology, Cancer Center of Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | | | - Yuhan Shu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Caixia Wu
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Guiqin Ye
- Hangzhou Medical College, Hangzhou, China
| | | | - Hongying Zhou
- Department of Oncology, Cancer Center of Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ruilan Gao
- Institution of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Corresponding author. Institution of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jianbin Zhang
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Corresponding author. Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
22
|
Chen L, Chen MY, Shao L, Zhang W, Rao T, Zhou HH, Huang WH. Panax notoginseng saponins prevent colitis-associated colorectal cancer development: the role of gut microbiota. Chin J Nat Med 2021; 18:500-507. [PMID: 32616190 DOI: 10.1016/s1875-5364(20)30060-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 02/07/2023]
Abstract
Gut microbiota dysbiosis is a risk factor for colorectal cancer (CRC) in inflammatory bowel disease (IBD). In this study, the effects of Panax notoginseng saponins (PNS) on colitis-associated CRC progression were evaluated on an azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model. In vivo, PNS significantly relieved AOM/DSS-induced colon tumorigenesis and development by reducing the disease activity index (DAI) scores and colon tumor load. The 16S rRNA data of fecal samples showed that the microbiome community was obviously destructed, while PNS could recover the richness and diversity of gut microbiota. Especially, PNS could increase the abundance of Akkermansia spp. which was significantly decreased in model group and negatively correlated with the progression of CRC. Moreover, ginsenoside compound K (GC-K) was evaluated on the effects of human CRC cells, which was the main bio-transformed metabolite of PNS by gut microbiota. Our data showed that PNS played important role in the prevention of the progression of CRC, due to their regulation on the microbiome balance and microbial bio-converted product with anti-CRC activity.
Collapse
Affiliation(s)
- Ling Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Li Shao
- Department of Pharmacognosy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410128, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
23
|
Chen J, Cen X, Shi J. Vitiligo-like depigmentation associated with Xuesaitong capsule treatment. Australas J Dermatol 2020; 62:e338-e339. [PMID: 33338255 DOI: 10.1111/ajd.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Jialing Chen
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xintao Cen
- Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianqiang Shi
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
24
|
Wang XJ, Ding LM, Wei HY, Jiang CX, Yan Q, Hu CS, Jia GX, Zhou YQ, Henkin Z, Degen AA. Astragalus membranaceus root supplementation improves average daily gain, rumen fermentation, serum immunity and antioxidant indices of Tibetan sheep. Animal 2020; 15:100061. [PMID: 33516026 DOI: 10.1016/j.animal.2020.100061] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/28/2022] Open
Abstract
The use of antibiotics as supplements in animal feed is restricted due to possible health hazards associated with them. Consequently, there is increasing interest in exploiting natural products to improve health and production of livestock with no detrimental side effects. In this study, we examined the effect of Astragalus membranaceus root (AMT) supplementation on DM intake, growth performance, rumen fermentation and immunity of Tibetan sheep. Twenty-four male Tibetan sheep (31 ± 1.4 kg; 9 months old) were assigned randomly to one of four dietary treatments with different levels of AMT: 0, 20, 50 and 80 g/kg DM (A0, A2, A5 and A8, respectively) in addition to their basal diets. A0 acted as a control group, and measurements were recorded over a 56-d feeding period. Sheep fed with AMT had a higher average daily gain and a lower feed:gain ratio than controls (P < 0.001). Rumen concentrations of NH3-N (P < 0.001), total volatile fatty acids (P = 0.028), acetate (P = 0.017) and propionate (P = 0.031) in A5 and A8 were higher than those in A0. The addition of AMT in the feed significantly increased serum antioxidant and immunity factors of the sheep and increased the concentrations of serum interleukin, immunoglobulin and tumour necrosis factor-α (P = 0.010). We concluded that AMT can be used as a feed additive to improve growth performance and rumen fermentation and enhance the immunity of Tibetan sheep. Some responses exhibited a dose-dependent response, whereas other did not exhibit a pattern, with an increase in AMT. The addition of 50 and 80 g/kg AMT of total DM intake showed the most promising results.
Collapse
Affiliation(s)
- X J Wang
- State Key Laboratory of Grassland Agro-ecosystem, Engineering Research Center of Arid Agriculture and Ecological Remediation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - L M Ding
- State Key Laboratory of Grassland Agro-ecosystem, Engineering Research Center of Arid Agriculture and Ecological Remediation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China; Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, Xining, Qinghai 810016, China.
| | - H Y Wei
- State Key Laboratory of Grassland Agro-ecosystem, Engineering Research Center of Arid Agriculture and Ecological Remediation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - C X Jiang
- State Key Laboratory of Grassland Agro-ecosystem, Engineering Research Center of Arid Agriculture and Ecological Remediation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Q Yan
- State Key Laboratory of Grassland Agro-ecosystem, Engineering Research Center of Arid Agriculture and Ecological Remediation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - C S Hu
- State Key Laboratory of Grassland Agro-ecosystem, Engineering Research Center of Arid Agriculture and Ecological Remediation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - G X Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| | - Y Q Zhou
- Haibei Comprehensive Experimental Station of National Beef Cattle & Yak Industrial Technology System, Haibei 810299, China
| | - Z Henkin
- Beef Cattle Section, Department of Natural Resources, Agricultural Research Organization, Newe-Ya'ar Research Center, POB 1021, Ramat Yishay, 30095, Israel
| | - A A Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
25
|
Cholesterol-binding ability of saponin from Japanese starfish. Journal of Food Science and Technology 2020; 58:3056-3064. [PMID: 34294968 DOI: 10.1007/s13197-020-04809-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Steroidal gylcosides are the predominant metabolites of starfish and are responsible for various biological activities. Some of these activities are recognized as a part of self-defense mechanism of starfish. Cholesterol-binding ability was evaluated with seven starfish crude extracts, where significantly (p < 0.05) highest ability (34%) was observed in Asterias amurensis and the lowest (16%) was attributed in Distolasterias nippon. To characterize the active compound exists in crude saponin from A. amurensis, the extract was subjected to thin layer chromatography following silica gel column chromatography. As the results, seven fractions (fr. A-G) were separated and frs. D and F demonstrated the highest cholesterol-binding ability (32% and 33%, respectively), equivalent to that of the A. amurensis extract. The isolated component (fr. F) was further separated (fr. F1-F3) for structural analysis. Based on cholesterol-binding ability result (29%), fr. F2 was analysed by matrix-assisted laser desorption ionization-time-of-flight mass spectroscopy (MALDI-TOF MS) and then nuclear magnetic resonance spectroscopy (NMR). The compound was identified as thornasteroside A, one of the major bioactive compounds already found in A. amurensis. The discovery of a saponin with cholesterol-binding ability has important implications not only for the utilization of starfish but also for food and pharmaceutical research.
Collapse
|
26
|
Luca T, Napoli E, Privitera G, Musso N, Ruberto G, Castorina S. Antiproliferative Effect and Cell Cycle Alterations Induced by Salvia officinalis Essential Oil and Its Three Main Components in Human Colon Cancer Cell Lines. Chem Biodivers 2020; 17:e2000309. [PMID: 32531144 DOI: 10.1002/cbdv.202000309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
Colon cancer is one of the most common human malignancies, and chemotherapy cannot yet prevent recurrence in all patients. Essential oils are phytocomplexes with antiproliferative properties. In this study, we elucidated the antiproliferative properties and the effect on cell cycle progression of Sicilian Salvia officinalis essential oil and its three main compounds, α-thujone, 1,8-cineole (eucalyptol) and camphor, on three human colon cancer cell lines. The essential oil was obtained by hydrodistillation and analyzed by gas chromatography. Cell proliferation was evaluated by MTT assay, and the cell cycle distribution was determined by flow cytometry. Thirty-four compounds were identified in the tested essential oil. Growth inhibition was observed after 72 h, with an impact on cell cycle progression and no effect on the viability of normal colonic epithelial cells. The study shows that S. officinalis essential oil and its three main components have an in vitro antiproliferative effect on colon cancer cells.
Collapse
Affiliation(s)
- Tonia Luca
- Fondazione Mediterranea 'G.B. Morgagni', Via del Bosco 105, 95125, Catania, Italy
| | - Edoardo Napoli
- Institute of Biomolecular Chemistry, Italian National Research Council ICB-CNR, 95126, Catania, Italy
| | - Giovanna Privitera
- Fondazione Mediterranea 'G.B. Morgagni', Via del Bosco 105, 95125, Catania, Italy
| | - Nicolò Musso
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, 95123, Catania, Italy
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, Italian National Research Council ICB-CNR, 95126, Catania, Italy
| | - Sergio Castorina
- Fondazione Mediterranea 'G.B. Morgagni', Via del Bosco 105, 95125, Catania, Italy.,Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95123, Catania, Italy
| |
Collapse
|
27
|
Jiang M, Li Z, Zhu G. Immunological regulatory effect of flavonoid baicalin on innate immune toll-like receptors. Pharmacol Res 2020; 158:104890. [PMID: 32389860 DOI: 10.1016/j.phrs.2020.104890] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/01/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
As an essential component of the innate immune system, Toll-like receptors (TLRs) are a family of well-recognized ligand-binding receptors found in various organisms and initiate host immune responses. Activation of TLRs signaling pathways lead to the induction of numerous genes that function in host defense. Baicalin is a natural compound from the dry raw root of Scutellaria baicalensis (S. baicalensis) and it has been found to exhibit several pharmaceutical actions, such as anti-inflammation, anti-tumor and antivirus. These biological activities are mainly related to the regulatory effect of baicalin on the host immune response. In this review, we provide an overview of the regulation of baicalin on TLRs signaling pathways in various pathological conditions, and highlight potential targets for the development of the regulatory effect of natural compound from traditional Chinese medicine on innate immune system.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Zhuoneng Li
- Centers for Disease Control and Prevention of Wuhan, China
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
28
|
Naveed G, Ehtisham-Ul-Haque S, Khan I, Rahman SU, Anam S, Usman M, Shakir MZ, Naveed A, Abbas G, Anjum FR. Enhancement in humoral response against inactivated Newcastle disease vaccine in broiler chickens administered orally with plant-derived soyasaponin. Poult Sci 2020; 99:1921-1927. [PMID: 32241472 PMCID: PMC7587664 DOI: 10.1016/j.psj.2019.11.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/12/2023] Open
Abstract
The present study aimed to evaluate the immunopotentiating effect of plant-derived soyasaponin and its immunogenicity in chickens challenged with Newcastle disease virus (NDV). Soyasaponin was extracted from soybean seeds and detected using the phytochemical tests, followed by quantification through the dry-weight method. One-day-old broiler chicks (n = 90) were divided into 3 groups, named as A, B, and C. Group A birds were orally administrated with soyasaponin (5 mg/kg), followed by immunization with inactivated ND vaccine intramuscularly (IM), whereas group B birds were vaccinated with inactivated ND vaccine alone. Group C birds were kept unvaccinated. A booster dose on day 21 was also administered IM to group A and B birds. At day 35, all 3 groups were challenged with NDV. To determine the immunogenicity potential of soyasaponin, antibody titer was measured using the hemagglutination inhibition test before and after the NDV challenge. Histochemical examination was performed to determine the pathological changes associated with NDV infection. Foam formation and hemolytic activity confirmed the presence of saponin in soya bean extract. Group A birds showed a higher antibody response compared with group B and C birds. The disease challenge study showed that soyasaponin-adjuvanted NDV vaccine provided complete protection to group A birds against ND. Moreover, no side effects of soyasaponin were observed on the growth performance of birds during the experiment. Therefore, we can conclude that soyasaponin is a potential immunogenic agent and therefore could be a promising candidate to launch a protective humoral response against ND in chickens.
Collapse
Affiliation(s)
- Ghania Naveed
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Syed Ehtisham-Ul-Haque
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Iahtasham Khan
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan.
| | - Sidra Anam
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Usman
- Department of Anatomy, Faculty of veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | | | - Ahsan Naveed
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Ghazanfar Abbas
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
29
|
Iqbal H, Rhee DK. Ginseng alleviates microbial infections of the respiratory tract: a review. J Ginseng Res 2020; 44:194-204. [PMID: 32148400 PMCID: PMC7031735 DOI: 10.1016/j.jgr.2019.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/26/2022] Open
Abstract
The detrimental impact of air pollution as a result of frequent exposure to fine particles posed a global public health risk mainly to the pulmonary disorders in pediatric and geriatric population. Here, we reviewed the current literature regarding the role of ginseng and/or its components as antimicrobials, especially against pathogens that cause respiratory infections in animal and in vitro models. Some of the possible mechanisms for ginseng-mediated viral inhibition suggested are improvements in systemic and mucosa-specific antibody responses, serum hemagglutinin inhibition, lymphocyte proliferation, cell survival rate, and viral clearance in the lungs. In addition, ginseng reduces the expression levels of proinflammatory cytokines (IFN-γ, TNF-α, IL-2, IL-4, IL-5, IL-6, IL-8) and chemokines produced by airway epithelial cells and macrophages, thus preventing weight loss. In case of bacterial infections, ginseng acts by alleviating inflammatory cytokine production, increasing survival rates, and activating phagocytes and natural killer cells. In addition, ginseng inhibits biofilm formation and induces the dispersion and dissolution of mature biofilms. Most clinical trials revealed that ginseng, at various dosages, is a safe and effective method of seasonal prophylaxis, relieving the symptoms and reducing the risk and duration of colds and flu. Taken together, these findings support the efficacy of ginseng as a therapeutic and prophylactic agent for respiratory infections.
Collapse
Key Words
- ARI, acute respiratory illness
- Bacteria
- COPD, chronic obstructive pulmonary disease
- Clinical trials
- GSLS, ginseng stem–leaf saponins
- Ginseng
- HRV, human rhinovirus
- IFN, interferon
- IL, interleukin
- IgA, immunoglobulin A
- PD, protopanaxadiol
- PT, protopanaxatriol
- ROS, reactive oxygen species
- RSV, respiratory syncytial virus
- RTIs, respiratory tract infections
- Respiratory tract infections
- TNF-α, tumor necrosis factor-alpha
- Virus
Collapse
Affiliation(s)
| | - Dong-kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
30
|
Hardi EH, Nugroho RA, Isnansetyo A, Agriandini M, Kusuma IW, Sidik AS. Simultaneous Administration of <i>Boesenbergia pandurata</i> Extract and Vaccination to Stimulate Immune Response in Tilapia, <i>Oreochromis niloticus</i>. Pak J Biol Sci 2020; 22:419-426. [PMID: 31930872 DOI: 10.3923/pjbs.2019.419.426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE The use of adjuvants or immunostimulants is often necessary to increase vaccine efficacy, in this study we evaluated the improvement of the immune response in tilapia treated by either oral and immersion administration with vaccine and Boesenbergia pandurata extract (BPE). MATERIALS AND METHODS The initial concentration of BPE and the cell density of vaccine were 900 mg L-1 and 104 CFU mL-1 for oral administration while 106 CFU mL-1 for immersion, respectively. The extract and vaccine were mixed homogeneously in a ratio of 1:1. Further, the mixture was supplemented to feed at 1 mL g-1 feed. Tilapia with average initial body weight of 15 g were fed containing vaccine and BPE 3 times a day. The other group of fish was immersed with vaccine and BPE for 20 min. After 7th (d7), 14th (d14) and21th (d21) days of treatment, a challenge test was conducted by intramuscularly injection of 0.1 mL of Aeromonas hydrophila and Pseudomonas fluorescens mixture (1:1) at a density of 105 CFU mL-1. Antibody levels, total white blood cell (WBC) and phagocytic activity (PA) were evaluated to determine the immune improvement of the fish. Furthermore, relative percent survival (RPS) and the survival rate (SR) were evaluated at week 2 and 4 after challenge test. RESULT Results indicated that the all parameters of tilapia immune system were increased (p<0.05) after 2-4 weeks of both administration methods. Meanwhile, the efficacy of the vaccine has increased by combining BPE treatment using immersion method better than oral method. The RPS of vaccination plus extract by immersion was 83-100% and by oral administration was 83-87%. CONCLUSION The present results implied that B. pandurata extract boost the efficacy of the Pseudomonas sp. vaccine by increasing the immune system and diseases resistance in tilapia.
Collapse
|
31
|
Chen H, Zhang X, Liu L, Cai M, Guo Z, Qiu L. Application of red clover isoflavone extract as an adjuvant in mice. Exp Ther Med 2019; 19:1175-1182. [PMID: 32010286 PMCID: PMC6966154 DOI: 10.3892/etm.2019.8315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
In the present study, the safety of red clover isoflavone extract (RCIE) and its potential adjuvant effects on the cellular and humoral immune responses to ovalbumin (OVA) were evaluated using an ICR mouse model. On day 1, the mice were first subcutaneously immunized with 100 µg OVA, 100 µg OVA + 200 µg aluminum hydroxide gel (alum) or OVA + 50, 100 or 200 µg RCIE (RCIE + OVA), following which booster immunization was performed on day 15. After 2 weeks, the stimulation of splenocyte proliferation and levels of serum antibodies were measured. No notable stress responses were observed after the initial and booster immunization. Splenocyte proliferation was significantly increased in mice immunized with OVA + 100 µg RCIE (P<0.01). The levels of IgG, IgG1 and IgG2a antibodies in serum were also significantly increased in OVA + RCIE groups compared with the OVA control group (P<0.05). In the OVA + RCIE groups, serum levels of interleukin (IL)-2, interferon-γ (IFN-γ) and IL-10 were increased, and the mRNA expression levels of IL-2, IFN-γ, IL-4, IL-10, T-bet and GATA-3 were also significantly increased compared with the OVA control group (P<0.05) in splenocytes. In addition, as an adjuvant, RCIE significantly increased the survival rates of mice inoculated with an E. coli vaccine and enhanced the early immune protection against pathogenic E. coli. In conclusion, these findings suggest that RCIE can be used as a safe vaccine adjuvant and supports its use in clinical applications.
Collapse
Affiliation(s)
- Hongbo Chen
- Department of Veterinary Medicine, School of Life Sciences, Longyan University, Longyan, Fujian 364012, P.R. China.,Fujian Provincial Key Laboratory for The Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, Fujian 364012, P.R. China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan, Fujian 364012, P.R. China
| | - Xue Zhang
- Department of Veterinary Medicine, School of Life Sciences, Longyan University, Longyan, Fujian 364012, P.R. China
| | - Longsi Liu
- Department of Veterinary Medicine, School of Life Sciences, Longyan University, Longyan, Fujian 364012, P.R. China
| | - Mingqin Cai
- Department of Veterinary Medicine, School of Life Sciences, Longyan University, Longyan, Fujian 364012, P.R. China
| | - Zhijun Guo
- Department of Veterinary Medicine, School of Life Sciences, Longyan University, Longyan, Fujian 364012, P.R. China
| | - Longxin Qiu
- Department of Veterinary Medicine, School of Life Sciences, Longyan University, Longyan, Fujian 364012, P.R. China.,Fujian Provincial Key Laboratory for The Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, Fujian 364012, P.R. China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan, Fujian 364012, P.R. China
| |
Collapse
|
32
|
Shabani SH, Zakeri S, Mortazavi Y, Mehrizi AA. Immunological evaluation of two novel engineered Plasmodium vivax circumsporozoite proteins formulated with different human-compatible vaccine adjuvants in C57BL/6 mice. Med Microbiol Immunol 2019; 208:731-745. [PMID: 31025102 DOI: 10.1007/s00430-019-00606-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/01/2019] [Indexed: 12/28/2022]
Abstract
A vaccine targeting Plasmodium vivax signifies an additional necessary tool when considering the malaria elimination/eradication goal. In this study, in vivo immunological evaluation of two novel engineered proteins of P. vivax circumsporozoite (PvCS127 and PvCS712) with two different arrangements of the repeat sequences of VK210 and VK247 was assessed. The immunological properties of the Escherichia coli-expressed chimeric proteins were evaluated by the immunization of C57BL/6 mice administered in NLX, CpG-ODNs, and QS21, alone or in combination as adjuvants. A significant increase in anti-rPvCS127 and -rPvCS712 IgG antibodies was observed in all the vaccine groups after the first boost, and the predominant isotypes were high-avidity cytophilic antibodies, IgG2b, and IgG2c. The highest ratio of IgG2b/IgG1 (2.74) and IgG2c/IgG1 (2.1) levels was detected in mouse groups immunized with rPvCS712 + NLX-CpG-QS21. The lowest level of IFN-γ (mean: 441 and 588 pg/mL, respectively) was produced by the mouse group, which received both antigens without any adjuvant, while significant levels of IFN-γ were detected in the mouse groups immunized with rPvCS127- or rPvCS712-NLX-CpG-QS21 formulation (mean: 1200 and 3092 pg/mL, respectively). The current results indicated that in C57BL/6 mice, both recombinant antigens were efficient immunogens and could induce humoral and cellular immune responses and their combination with three Th1 potent adjuvants had an impact on the magnitude and the quality of humoral responses (specific antibody subclasses, titer, and high avidity). Although the overall response was marginally higher for rPvCS712 than rPvCS127, all immunized mice induced some immune responses against both proteins, and the present findings indicate that rPvCS127 and rPvCS712 meet the criteria to be potentially useful vaccine candidates against P. vivax malaria.
Collapse
Affiliation(s)
- Samaneh H Shabani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. BOX 1316943551, Tehran, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. BOX 1316943551, Tehran, Iran.
| | - Yousef Mortazavi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Akram A Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. BOX 1316943551, Tehran, Iran
| |
Collapse
|
33
|
Guo YP, Chen MY, Shao L, Zhang W, Rao T, Zhou HH, Huang WH. Quantification of Panax notoginseng saponins metabolites in rat plasma with in vivo gut microbiota-mediated biotransformation by HPLC-MS/MS. Chin J Nat Med 2019; 17:231-240. [PMID: 30910060 DOI: 10.1016/s1875-5364(19)30026-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Panax notoginseng saponins (PNS) are the major components of Panax notoginseng, with multiple pharmacological activities but poor oral bioavailability. PNS could be metabolized by gut microbiota in vitro, while the exact role of gut microbiota of PNS metabolism in vivo remains poorly understood. In this study, pseudo germ-free rat models were constructed by using broad-spectrum antibiotics to validate the gut microbiota-mediated transformation of PNS in vivo. Moreover, a high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was developed for quantitative analysis of four metabolites of PNS, including ginsenoside F1 (GF1), ginsenoside Rh2 (GRh2), ginsenoside compound K (GCK) and protopanaxatriol (PPT). The results showed that the four metabolites could be detected in the control rat plasma, while they could not be determined in pseudo germ-free rat plasma. The results implied that PNS could not be biotransformed effectively when gut microbiota was disrupted. In conclusion, gut microbiota plays an important role in biotransformation of PNS into metabolites in vivo.
Collapse
Affiliation(s)
- Yin-Ping Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Li Shao
- Department of Pharmacognosy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410128, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| |
Collapse
|
34
|
Singh D, Jayashankar B, Mishra KP, Tanwar H, Madhusudana SN, Belludi AY, Tulsawani R, Singh SB, Ganju L. Adjuvant activity of ethanol extract of Hippophae rhamnoides leaves with inactivated rabies virus antigen. PHARMACEUTICAL BIOLOGY 2018; 56:25-31. [PMID: 29235395 PMCID: PMC6130554 DOI: 10.1080/13880209.2017.1413662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/25/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Hippophae rhamnoides L. (Elaeagnaceae), commonly known as seabuckthorn (SBT), is known for its medicinal and nutritional properties. OBJECTIVE Evaluation of in vivo adjuvant activity of SBT leaf extract (SBTE) with inactivated rabies virus antigen (Rb). MATERIALS AND METHODS Swiss albino mice were immunized with aqueous-alcoholic SBTE (100 mg/kg body weight) or algel (aluminium hydroxide gel) with or without Rb (5% v/v). After priming, booster was administered on day 14. Rabies virus neutralizing antibody (RVNA) titers were estimated by rapid fluorescent focus inhibition test in sera samples collected on days 7, 14, 21, 28 and 35. Effect of adjuvant administration on cytotoxic T lymphocytes (CTLs), memory T cells, plasma and CD11c+ cells was studied by flow cytometry. In vitro hemolysis was assayed in human RBC. RESULTS RVNA titers were significantly enhanced (p < 0.05) after booster administration in mice immunized with SBTE + Rb as compared to the controls. In combination, SBTE, algel and Rb, enhanced the RVNA titers. CTLs significantly increased (p < 0.05) in SBTE + Rb immunized mice. Memory T cells and plasma cells were 27.9 and 15.9%, respectively, in SBTE + Rb immunized mice as compared to that of 20.3 and 11.3%, respectively, in Rb immunized group. SBTE + Rb enhanced peritoneal CD11c+ cells (25.8%) as compared to 9.4% cells in Rb immunized mice, showed 3.2-fold increment in LPS induced IL-1β. No RBC hemolysis was observed with SBTE. CONCLUSIONS This study demonstrates the potential adjuvant activity of SBTE with Rb by increasing RVNA titers and CTL response.
Collapse
Affiliation(s)
- D. Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - B. Jayashankar
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - K. P. Mishra
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - H. Tanwar
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - S. N. Madhusudana
- National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - A. Y. Belludi
- National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - R. Tulsawani
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - S. B. Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - L. Ganju
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| |
Collapse
|
35
|
Aranha I, Venkatesh YP. Humoral immune and adjuvant responses of mucosally-administered Tinospora cordifolia immunomodulatory protein in BALB/c mice. J Ayurveda Integr Med 2018; 11:140-146. [PMID: 30455069 PMCID: PMC7329723 DOI: 10.1016/j.jaim.2017.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
Background In traditional medicine, guduchi (Tinospora cordifolia) is considered as an adaptogen with immunomodulatory prowess. A 25 kDa protein from guduchi stem has been characterized as an immunomodulatory protein (ImP). Objectives The aim of this study was to evaluate the intrinsic immunogenicity of guduchi ImP and adjuvant activity using ovalbumin (OVA) as antigen in BALB/c mice. Materials and Methods Mice were given guduchi ImP (30 and 60 μg) by intranasal administration to respective groups (n = 6) on days 1, 14 and thereafter weekly till day 42. Immunogenic response was monitored by serum IgG/IgA levels (days 14, 35 and 50). The adjuvant activity was measured by serum anti-OVA IgG/IgA responses to administration of 30 μg OVA with guduchi ImP. The effect of guduchi ImP on the spleen status was examined by splenic weight (day 50). Results Guduchi ImP administration displayed a significant increase in anti-guduchi ImP IgG (5–7 fold) and anti-guduchi ImP IgA (3–4 fold) on day 50 vs. control. Guduchi ImP showed a significant increase in anti-OVA IgG (6–7 fold) and anti-OVA IgA (4–5 fold) on day 50 vs. control. The splenic index of guduchi ImP group increased significantly in both the immune and adjuvant response groups; however, the splenic index in the adjuvant response group was markedly higher. Conclusion The results indicate that guduchi ImP is a strong immunogen by itself and enhances the immunogenicity of mucosally-administered antigen in BALB/c mice. Based on the results of this animal study, it appears that guduchi ImP shows a potential for future studies in humans. Evaluated the immune responses of guduchi immunomodulatory protein (ImP) in BALB/c mice. Guduchi ImP (30/60 μg) given intranasally on days 1, 14; thereafter, weekly till day 42. Increase in anti-guduchi ImP IgG (5–7 fold) and anti-guduchi ImP IgA (3–4 fold) on day 50. Increase in ovalbumin-specific IgG (6–7 fold) and IgA (4–5 fold) on day 50 vs. control. Splenic index of guduchi ImP group increased in the immune/adjuvant response groups.
Collapse
Affiliation(s)
- Ivan Aranha
- Department of Biochemistry and Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, India
| | - Yeldur P Venkatesh
- Department of Biochemistry and Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, India.
| |
Collapse
|
36
|
Cheng Q, Tong F, Shen Y, He C, Wang C, Ding F. Achyranthes bidentata polypeptide k improves long-term neurological outcomes through reducing downstream microvascular thrombosis in experimental ischemic stroke. Brain Res 2018; 1706:166-176. [PMID: 30414726 DOI: 10.1016/j.brainres.2018.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023]
Abstract
Achyranthes bidentata Bl. (A. bidentata) occupies an important position in traditional Chinese medicine owing to the property of promoting the circulation of blood and removing stasis. Achyranthes bidentata polypeptide k (ABPPk) is one of the active components isolated from A. bidentata. We previously demonstrated that ABPPk has potent neuroprotective effects against neuronal apoptosis both in vitro and in vivo, but the roles and mechanisms of ABPPk on long-term functional recovery after ischemic stroke remain unknown. In the current study, we investigated the neuroprotective effects of ABPPk on filament transient middle cerebral artery occlusion (tMCAO) rats and found that ABPPk reduced the infarct volume and maintained the neuronal integrity in the ischemic penumbra. Moreover, we found that ABPPk might reduce the formation of downstream microthrombus through preventing ischemic-induced oxidative damage of brain endothelial cells and activation of tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1), and NF-κB. ABPPk also inhibited polymorphonuclear leukocytes (PMNs) infiltration and matrix metalloproteinase-2/-9 (MMP-2/-9) activation in the ischemic penumbra. Morris water maze, foot fault test, and modified neurological severity score were assessed for a period of 6 weeks following tMCAO. ABPPk improved long-term recognition abilities and neurological outcomes after stroke compared with saline-treated rats. Taken together, these results suggested that ABPPk is beneficial to the improvement of long-term outcomes after transient cerebral ischemia injury and can be used as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Qiong Cheng
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fang Tong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chunjiao He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
37
|
Tong YN, Yang LY, Yang Y, Song Z, Peng LS, Gao JN, Zeng H, Zou QM, Sun HW, Mao XH. An immunopotentiator, ophiopogonin D, encapsulated in a nanoemulsion as a robust adjuvant to improve vaccine efficacy. Acta Biomater 2018; 77:255-267. [PMID: 30031164 DOI: 10.1016/j.actbio.2018.07.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Abstract
As an ingredient of vaccines, adjuvants are indispensable for enhancing and directly inducing robust and extensive adaptive immune responses associated with vaccine antigens. In this study, we initially determined that a new molecular immunopotentiator, ophiopogonin D (OP-D), enhanced the antibody response to antigen. Because OP-D has certain disadvantages, including poor solubility, we next encapsulated OP-D in a nanoemulsion adjuvant (nanoemulsion-encapsulated OP-D, NOD) using low-energy emulsification methods. The NOD thus produced was small, with an average size of 76.45 nm, and exhibited good distribution (PdI value 0.16), significantly increasing the solubility of OP-D. Furthermore, NOD exhibited reduced cellular toxicity and acute toxicity. Our results showed that a fusion antigen of MRSA (HlaH35LIsdB348-465) formulated with NOD significantly improved humoral and cellular immune responses compared to those observed in the antigen/OP-D and antigen/AlPO4 groups. Compared with antigen/OP-D, the antigen formulated with NOD more effectively promoted antigen uptake by dendritic cells (DCs) and the activation of antigen-presenting cells (APCs). Moreover, the NOD-formulated antigen had ideal protective efficacy in a MRSA sepsis model by inducing more potent antibody responses and a Th1/Th17-biased CD4+ T cell immune response. Therefore, these results suggest that NOD is a promising and robust adjuvant platform for a MRSA vaccine. STATEMENT OF SIGNIFICANCE We first identified a new powerful immunopotentiator, Ophiopogonin D, among dozens of natural products and then used nanotechnology to construct a highly efficient and low toxic adjuvant system (NOD). Our approach intersects natural medicinal chemistry, nanomaterials and immunology, revealing that a strong adjuvant activity of this adjuvant system was verified in vitro and in vivo, and the application of MRSA subunit vaccine model for survival experiments achieved a 100% protection rate. This research illustrate that NOD is a promising and robust adjuvant platform for subunit vaccines.
Collapse
|
38
|
Zhang XP, Li YD, Luo LL, Liu YQ, Li Y, Guo C, Li ZD, Xie XR, Song HX, Yang LP, Sun SB, An FY. Astragalus Saponins and Liposome Constitute an Efficacious Adjuvant Formulation for Cancer Vaccines. Cancer Biother Radiopharm 2018; 33:25-31. [PMID: 29466034 DOI: 10.1089/cbr.2017.2369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer vaccines mostly aim to induce cytotoxic T lymphocytes (CTLs) against tumors. An appropriate adjuvant is of fundamental importance for inducing cellular immune response. Since the antigen in particulate form is substantially more immunogenic than soluble form antigen, it is beneficial to interact with antigen-presenting cells membrane to induce robust CD8+ T cell activation following vaccination. Based on previous research, we designed an adjuvant formulation by combining Astragalus saponins, cholesterol, and liposome to incorporate antigen into a particulate delivery system, so as to enhance cellular immune response. Meanwhile, angiogenesis contributes to tumor growth and metastasis, and basic fibroblast growth factor (bFGF) is involved in tumor angiogenesis. Therefore, using lipo-saponins adjuvant formulation and a human recombinant bFGF antigen protein, we tried to induce bFGF-specific CTL response to inhibit tumor angiogenesis to achieve antitumor activity. After five immunizations, the lipo-saponins/bFGF complex elicited robust antibody response and markedly higher amount of interferon-γ in BALB/c mice, resulting in superior antitumor activities. Decreased microvessel density in CD31 immunohistochemistry and the lysis of vascular endothelial cells by the T lymphocytes from the immunized mice indicated that the immunity inhibited the angiogenesis of tumors and further led to the inhibition of tumors. Our data suggest that the approach to construct adjuvant formulation between liposome and Astragalus saponins appeared highly desirable, and that Astragalus saponins may be utilized as a valuable additive for enhancing the effectiveness of vaccines and stimulating an appropriate immune response that can benefit tumor therapy.
Collapse
Affiliation(s)
- Xiao-Ping Zhang
- 1 Institute of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine , Lanzhou, China
| | - Ying-Dong Li
- 1 Institute of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine , Lanzhou, China
| | - Lu-Lu Luo
- 2 Affiliated Hospital, Gansu University of Chinese Medicine , Lanzhou, China
| | - Yong-Qi Liu
- 1 Institute of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine , Lanzhou, China
| | - Yang Li
- 1 Institute of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine , Lanzhou, China
| | - Chao Guo
- 1 Institute of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine , Lanzhou, China
| | - Zhen-Dong Li
- 3 Department of Ultrasound, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Xiao-Rong Xie
- 1 Institute of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine , Lanzhou, China
| | - Hai-Xia Song
- 4 Department of Radiotherapy, Tumor Hospital of Gansu Province , Lanzhou, China
| | - Li-Ping Yang
- 5 Department of Oncology, The First Hospital of Lanzhou University , Lanzhou, China
| | - Shao-Bo Sun
- 1 Institute of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine , Lanzhou, China
| | - Fang-Yu An
- 1 Institute of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine , Lanzhou, China
| |
Collapse
|
39
|
Durazzo A, D'Addezio L, Camilli E, Piccinelli R, Turrini A, Marletta L, Marconi S, Lucarini M, Lisciani S, Gabrielli P, Gambelli L, Aguzzi A, Sette S. From Plant Compounds to Botanicals and Back: A Current Snapshot. Molecules 2018; 23:E1844. [PMID: 30042375 PMCID: PMC6222869 DOI: 10.3390/molecules23081844] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 02/07/2023] Open
Abstract
This work aims at giving an updated picture of the strict interaction between main plant biologically active compounds and botanicals. The main features of the emerging class of dietary supplements, the botanicals, are highlighted. Focus is also on the definition of actual possibilities of study approach and research strategies. Examples of innovative directions are given: assessment of interaction of bioactive compounds, chemometrics and the new goal of biorefineries. Current models of existing databases, such as plant metabolic pathways, food composition, bioactive compounds, dietary supplements, and dietary markers, are described as usable tools for health research. The need for categorization of botanicals as well as for the implementation of specific and dedicated databases emerged, based on both analytical data and collected data taken from literature throughout a harmonized and standardized approach for the evaluation of an adequate dietary intake.
Collapse
Affiliation(s)
| | - Laura D'Addezio
- CREA-Research Centre for Food and Nutrition, 00178 Rome, Italy.
| | | | | | - Aida Turrini
- CREA-Research Centre for Food and Nutrition, 00178 Rome, Italy.
| | - Luisa Marletta
- CREA-Research Centre for Food and Nutrition, 00178 Rome, Italy.
| | | | | | - Silvia Lisciani
- CREA-Research Centre for Food and Nutrition, 00178 Rome, Italy.
| | - Paolo Gabrielli
- CREA-Research Centre for Food and Nutrition, 00178 Rome, Italy.
| | | | - Altero Aguzzi
- CREA-Research Centre for Food and Nutrition, 00178 Rome, Italy.
| | - Stefania Sette
- CREA-Research Centre for Food and Nutrition, 00178 Rome, Italy.
| |
Collapse
|
40
|
Kumaran T, Thirumalaikumar E, Lelin C, Palanikumar P, Michaelbabu M, Citarasu T. Physicochemical properties of anti Vibrio harveyi egg yolk antibody (IgY) and its immunological influence in Indian white shrimp Fenneropenaeus indicus. FISH & SHELLFISH IMMUNOLOGY 2018; 74:349-362. [PMID: 29307631 DOI: 10.1016/j.fsi.2017.12.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/22/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
Edible antibodies specific to host pathogens is an attractive approach to establish protective immunity, especially against gastrointestinal pathogens both in humans and animals. The edible antibody of anti-Vibrio harveyi IgY (anti-V. h IgY) was produced by antigen mixed with immunoadjuvant Asparagus racemosus and Glycine max. Hens were immunized and eggs were collected five weeks after the immunization. Anti-V. harveyi IgY stability in different digestive enzymes such as trypsin and chymotrypsin were evaluated to determine its ability to withstand in the gastrointestinal tract of F. indicus. Specific binding activity and concentration (average 9.5% of total IgY content) of the anti-V. h IgY were determined by the ELISA using V. harveyi antigen. Further the anti-V. h IgY diets including V.h wo, V.h A, V.h G and control diets were fed to F. indicus for 60 days. After 30 and 60 of feeding, group of shrimps were challenged with virulent V. harveyi. After the respective days of feeding, haematological and immunological changes were studied. The parameters including total haemocyte count (THC), coagulase activity, oxyhaemocyanin level, prophenoloxidase, intracellular superoxide anion production, lysozyme, phagocytosis and bacterial agglutinin had significantly (P ≤ .001) increased in the experimental groups in comparission with the control diet fed shrimps. The anti-V. h IgY coated diets helped to reduce the Vibrio load and boosted the immune system in F. indicus's against V. harveyi challenge. The research work shows the potential applications of egg yolk antibodies as anti-bacterial prophylactic uses for infectious diseases and suggests an edible antibody concept as an alternative to conventional antibiotics.
Collapse
Affiliation(s)
- Thankamani Kumaran
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District 629502, India
| | - Eswaramoorthy Thirumalaikumar
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District 629502, India
| | - Chinnadurai Lelin
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District 629502, India
| | - Pandi Palanikumar
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District 629502, India
| | - Mariavincent Michaelbabu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District 629502, India
| | - Thavasimuthu Citarasu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District 629502, India.
| |
Collapse
|
41
|
Zhao JH, Zhang QB, Liu B, Piao XH, Yan YL, Hu XG, Zhou K, Zhang YT, Feng NP. Enhanced immunization via dissolving microneedle array-based delivery system incorporating subunit vaccine and saponin adjuvant. Int J Nanomedicine 2017; 12:4763-4772. [PMID: 28740383 PMCID: PMC5503490 DOI: 10.2147/ijn.s132456] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To enhance the immunogenicity of the model subunit vaccine, ovalbumin (OVA) was combined with platycodin (PD), a saponin adjuvant. To reduce the toxicity of PD, OVA, and adjuvant were loaded together into liposomes before being incorporated into a dissolving microneedle array. Methods OVA- and PD-loaded liposomes (OVA-PD-Lipos) were prepared using the film dispersion method. Their uptake behavior, toxicity to mouse bone marrow dendritic cells (BMDCs), and hemolytic activity to rabbit red blood cells (RBCs) were evaluated. The OVA-PD-Lipos were incorporated into a dissolving microneedle array. The chemical stability of OVA and the physical stability of OVA-PD-Lipos in microneedle arrays were investigated. The immune response of Institute of Cancer Research mice and potential skin irritation reaction of rabbits to OVA-PD-Lipos-MNs were evaluated. Results The uptake of OVA by mouse BMDCs was greatly enhanced when OVA was prepared as OVA-PD-Lipos, and in this form, the toxicity of PD was dramatically reduced. OVA was chemically stable as OVA-PD-Lipos, when OVA-PD-Lipos was incorporated into a dissolving microneedle array. Institute of Cancer Research mice treated with OVA-PD-Lipos-MNs showed a significantly enhanced immune response. PD combined with OVA elicited a balanced Th1 and Th2 humoral immune response in mice, with minimal irritation in rabbit skin. Conclusion The dissolving microneedle array-based system is a promising delivery vehicle for subunit vaccine and its adjuvant.
Collapse
Affiliation(s)
- Ji-Hui Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Qi-Bo Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Bao Liu
- Anethesiology Department, Augusta University, Augusta, GA, USA
| | - Xiang-Hua Piao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yu-Lu Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiao-Ge Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Kuan Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yong-Tai Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Nian-Ping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
42
|
Ding L, Wang Y, Wu Z, Liu W, Li R, Wang Y. A novel technology coupling extraction and foam fractionation for separating the total saponins from Achyranthes bidentata. Prep Biochem Biotechnol 2017; 46:666-72. [PMID: 26771277 DOI: 10.1080/10826068.2015.1135448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A novel technology coupling extraction and foam fractionation was developed for separating the total saponins from Achyranthes bidentata. In the developed technology, the powder of A. bidentata was loaded in a nylon filter cloth pocket with bore diameter of 180 µm. The pocket was fixed in the bulk liquid phase for continuously releasing saponins. Under the optimal conditions, the concentration and the extraction rate of the total saponins in the foamate by the developed technology were 73.5% and 416.2% higher than those by the traditional technology, respectively. The foamates obtained by the traditional technology and the developed technology were analyzed by ultraperformance liquid chromatography-mass spectrometry to determine their ingredients, and the results appeared that the developed technology exhibited a better performance for separating saponins than the traditional technology. The study is expected to develop a novel technology for cost effectively separating plant-derived materials with surface activity.
Collapse
Affiliation(s)
- Linlin Ding
- a Department of Chemical Engineering and Technology, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin , China
| | - Yanji Wang
- a Department of Chemical Engineering and Technology, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin , China
| | - Zhaoliang Wu
- a Department of Chemical Engineering and Technology, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin , China
| | - Wei Liu
- a Department of Chemical Engineering and Technology, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin , China
| | - Rui Li
- a Department of Chemical Engineering and Technology, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin , China
| | - Yanyan Wang
- b Lianyungang TCM Branch of Jiangsu Union Technical Institute , Jiangsu Lianyungang , China
| |
Collapse
|
43
|
Chauhan N, Tiwari S, Iype T, Jain U. An overview of adjuvants utilized in prophylactic vaccine formulation as immunomodulators. Expert Rev Vaccines 2017; 16:491-502. [DOI: 10.1080/14760584.2017.1306440] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nidhi Chauhan
- Amity Institute of Nanotechnology, Amity University, Noida, India
| | - Sukirti Tiwari
- Amity Institute of Nanotechnology, Amity University, Noida, India
| | - Tessy Iype
- R & D Division, MagGenome Technologies Pvt. Ltd., Kochi, India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology, Amity University, Noida, India
| |
Collapse
|
44
|
Cho YK, Kim JE. Effect of Korean Red Ginseng intake on the survival duration of human immunodeficiency virus type 1 patients. J Ginseng Res 2017; 41:222-226. [PMID: 28413328 PMCID: PMC5386125 DOI: 10.1016/j.jgr.2016.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/21/2016] [Accepted: 12/08/2016] [Indexed: 12/22/2022] Open
Abstract
Background Long-term ginseng intake can increase longevity in healthy individuals. Here, we examined if long-term treatment with Panax ginseng Meyer (Korean Red Ginseng, KRG) can also enhance survival duration (SD) in patients with human immunodeficiency virus type 1 (HIV-1) infection. Methods We retrospectively analyzed 252 HIV-1 patients diagnosed from 1986 to 2013 prior to the initiation of antiretroviral therapy. Overall, 162 patients were treated with KRG (3,947 ± 4,943 g) for 86 ± 63 mo. The effects of KRG on SD were analyzed according to the KRG intake level and the length of the follow-up period. Results There were significant correlations between the total amount of KRG and SD in the KRG intake group (r = 0.64, p < 0.0001) as well as between total amount of KRG and mean annual decrease in CD4+ T-cell count in all 252 patients (r = −0.17, p < 0.01). The annual decrease in CD4+ T-cell count (change in cells/μL) was significantly slower in KRG-treated patients than in patients receiving no KRG (48 ± 40 vs. 106 ± 162; p < 0.001). The SD (in months) was also significantly longer in the KRG group than in the no-KRG group (101 ± 64 vs. 59 ± 40, p < 0.01). Conclusion KRG prolongs survival in HIV-1 patients, possibly by slowing the decrease in CD4+ T-cell count.
Collapse
Affiliation(s)
- Young-Keol Cho
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung-Eun Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Smułek W, Zdarta A, Pacholak A, Zgoła-Grześkowiak A, Marczak Ł, Jarzębski M, Kaczorek E. Saponaria officinalis L. extract: Surface active properties and impact on environmental bacterial strains. Colloids Surf B Biointerfaces 2016; 150:209-215. [PMID: 27918965 DOI: 10.1016/j.colsurfb.2016.11.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/03/2016] [Accepted: 11/25/2016] [Indexed: 11/28/2022]
Abstract
Plant-derived surfactants are characterised by low toxicity, high biodegradability and environmental compatibility. They therefore have many applications; for instance, they can be used in bioremediation to accelerate biodegradation processes, especially of hydrophobic pollutants. This paper analyses the properties of an extract from Saponaria officinalis L. containing saponins and its impact on bacterial strains isolated from soil, as well as its potential for application in hydrocarbon bioremediation. The tested extract from Saponaria officinalis L. contains gypsogenin, hederagenin, hydroxyhederagenin and quillaic acid aglycone structures and demonstrates good emulsification properties. Contact with the extract led to modification of bacterial cell surface properties. A decrease in cell surface hydrophobicity and an increase in membrane permeability were recorded in the experiments. An increase of up to 63% in diesel oil biodegradation was also recorded for Pseudomonas putida DA1 on addition of 1gL-1 of saponins from Saponaria officinalis L. Saponaria extract showed no toxic impact on the tested environmental bacterial strains at the concentration used in the biodegradation process.
Collapse
Affiliation(s)
- Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Agata Zdarta
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Łukasz Marczak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Maciej Jarzębski
- NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland; Department of Physical Chemistry and Physicochemical Basis of Environmental Engineering Institute of Environmental Engineering Off-Campus Faculty of Low and Social Sciences in Stalowa Wola Catholic University of Lublin, Kwiatkowskiego 3A, 37-450 Stalowa Wola, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
46
|
Çokçalışkan C, Türkoğlu T, Sareyyüpoğlu B, Uzunlu E, Babak A, Özbilge BB, Gülyaz V. QS-21 enhances the early antibody response to oil adjuvant foot-and-mouth disease vaccine in cattle. Clin Exp Vaccine Res 2016; 5:138-47. [PMID: 27489804 PMCID: PMC4969278 DOI: 10.7774/cevr.2016.5.2.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/25/2016] [Accepted: 03/05/2016] [Indexed: 12/27/2022] Open
Abstract
Purpose One of the most important tools against foot-and-mouth disease, a highly contagious and variable viral disease of cloven-hoofed animals, is vaccination. However, the effectiveness of foot-and-mouth disease vaccines on slowing the spread of the disease is questionable. In contrast, high potency vaccines providing early protection may solve issues with the spread of the disease, escaping mutants, and persistency. To increase the potency of the vaccine, additives such as saponin and aluminium hydroxide are used. However, the use of saponin with an oil adjuvant is not common and is sometimes linked to toxicity. QS-21, which is less toxic than Quil A, has been presented as an alternative for use with saponin. In this study, the addition of QS-21 to a commercially available foot-and-mouth disease water-in-oil-in-water emulsion vaccine was evaluated in cattle. Materials and Methods After vaccination, serum samples were collected periodically over 3 months. Sera of the QS-21 and normal oil vaccine groups were compared via serum virus neutralization antibody titre and liquid phase blocking enzyme-linked immunosorbent assay antibody titre. Results The results showed that there was a significant early antibody increase in the QS-21 group. Conclusion Strong early virus neutralizing antibody response will be useful for emergency or ring vaccinations against foot-and-mouth disease in target animals.
Collapse
Affiliation(s)
- Can Çokçalışkan
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Tunçer Türkoğlu
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Beyhan Sareyyüpoğlu
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Ergün Uzunlu
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Ayca Babak
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Directorate-General for Agriculture and Rural Development, Ankara, Turkey
| | - Banu B Özbilge
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Veli Gülyaz
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| |
Collapse
|
47
|
Drobnik J. Chinese vegetative materia medica in a venereological treatise by Jean Astruc from 1740. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:293-301. [PMID: 27132716 DOI: 10.1016/j.jep.2016.04.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Historical medical sources can be still queried for forgotten cures and remedies. Traditional Chinese medicine has dealt with lues venerea (syphilis) since the Five Dynasties period (10th century). Chinese indigenous materia medica and remedies recorded, studied or imported by the Europeans can reveal known or quite unknown medicinal plants. The studied Jean Astruc's work is a published ethnopharmacological survey carried out in Beijing in the 1730s and it deserves a modern interpretation. AIM OF THE STUDY This is the first proposal to identify historical Chinese medicinal plants listed in a scarcely known medical treatise De Morbis venereis… ('On venereal diseases…') by Jean Astruc from 1740. I searched for the current uses and position of the taxonomically identified herbal stock in both traditional Chinese and official medical knowledge, with special attention to syphilis. MATERIAL AND METHODS Chinese names of drugs and their botanical identities (originally expressed by means of pre-Linnaean polynomials, and now interpreted as accepted binomials) were independently cross-checked with younger till most recent taxonomical and ethnopharmacological sources. Plants and drugs identified this way were queried for their modern applications in traditional Chinese and official medicine with special attention to sexually transmitted diseases (STD) and other uses which are similar to the 18th-century understanding of venereology. RESULTS For 24 items of medicinal stock, 34 medicinal plants have been identified or suspected: Acacia catechu, Achyranthes bidentata, Akebia quinata, Angelica dahurica, A. sinensis, Aquilaria sinensis, Aralia cordata, Aristolochia fangchi, Chaenomeles sinensis, Ch. speciosa, Clematis vitalba, Coix lacryma-jobi, Commiphora myrrha, Cydonia oblonga, Daemonorops draco, D. jenkinsiana, Dictamnus dasycarpus, Dryobalanops sumatrensis, Forsythia suspensa, Glycyrrhiza uralensis, Lonicera confusa, L. hypoglauca, L. japonica, Ligusticum striatum (=L. chuanxiong), Piper kadsura, Pterocarpus officinalis, Saposhnikovia divaricata, Sassafras tzumu, Smilax china, S. glabra, Stephania tetrandra, Styphnolobium japonicum, Trichosanthes japonica, T. kirilowii; China wax is also mentioned. Out of them, only Lonicera japonica is being used in China in late syphilis, Achyranthes bidentata in gonorrhoea, and Dictamnus dasycarpus in gynaecological problems. In the Astruc's study, 3 medicinal plant species and 5 further plant genera are correctly determined; other plant parts were misidentified. CONCLUSIONS Antisyphilitic actions ascribed to the Chinese medical formulas and their constituents studied by Astruc, seem to have come from Hg or As compounds rather than from vegetative materia medica. The formulas contained only one species still known in TCM as a remedy for syphilis.
Collapse
Affiliation(s)
- Jacek Drobnik
- Department of Pharmaceutical Botany, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, ul. Ostrogórska 30, 41-200 Sosnowiec, Poland.
| |
Collapse
|
48
|
Joshi SS, Barnett B, Doerrer NG, Glenn K, Herman RA, Herouet-Guicheney C, Hunst P, Kough J, Ladics GS, McClain S, Papineni S, Poulsen LK, Rascle JB, Tao AL, van Ree R, Ward J, Bowman CC. Assessment of potential adjuvanticity of Cry proteins. Regul Toxicol Pharmacol 2016; 79:149-155. [PMID: 27105772 DOI: 10.1016/j.yrtph.2016.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Genetically modified (GM) crops have achieved success in the marketplace and their benefits extend beyond the overall increase in harvest yields to include lowered use of insecticides and decreased carbon dioxide emissions. The most widely grown GM crops contain gene/s for targeted insect protection, herbicide tolerance, or both. Plant expression of Bacillus thuringiensis (Bt) crystal (Cry) insecticidal proteins have been the primary way to impart insect resistance in GM crops. Although deemed safe by regulatory agencies globally, previous studies have been the basis for discussions around the potential immuno-adjuvant effects of Cry proteins. These studies had limitations in study design. The studies used animal models with extremely high doses of Cry proteins, which when given using the ig route were co-administered with an adjuvant. Although the presumption exists that Cry proteins may have immunostimulatory activity and therefore an adjuvanticity risk, the evidence shows that Cry proteins are expressed at very low levels in GM crops and are unlikely to function as adjuvants. This conclusion is based on critical review of the published literature on the effects of immunomodulation by Cry proteins, the history of safe use of Cry proteins in foods, safety of the Bt donor organisms, and pre-market weight-of-evidence-based safety assessments for GM crops.
Collapse
Affiliation(s)
- Saurabh S Joshi
- Monsanto Company, 800 North Lindbergh Blvd., St. Louis, MO 63167, USA.
| | - Brian Barnett
- BASF Plant Science, 26 Davis Drive, Research Triangle Park, NC 27709, USA.
| | - Nancy G Doerrer
- ILSI Health and Environmental Sciences Institute, 1156 Fifteenth St., NW, Suite 200, Washington, DC 20005, USA.
| | - Kevin Glenn
- Monsanto Company, 800 North Lindbergh Blvd., St. Louis, MO 63167, USA.
| | - Rod A Herman
- Dow AgroSciences, 9330 Zionsville Rd, Indianapolis, IN 46268, USA.
| | | | - Penny Hunst
- Bayer CropScience, 2 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA.
| | - John Kough
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Ariel Rios Building, MC 7511P, 1200 Pennsylvania Avenue, NW, Washington, DC 20460, USA.
| | - Gregory S Ladics
- DuPont Haskell Global Centers for Health and Environmental Sciences, 1090 Elkton Road, Newark, DE 19711, USA.
| | - Scott McClain
- Syngenta Crop Protection, LLC, 3054 E. Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Sabitha Papineni
- Dow AgroSciences, 9330 Zionsville Rd, Indianapolis, IN 46268, USA.
| | - Lars K Poulsen
- Allergy Clinic, Copenhagen University Hospital at Gentofte, Niels Andersens Vej 65, Dept. 22, 1st Floor, DK-2900 Hellerup, Denmark.
| | - Jean-Baptiste Rascle
- Bayer SAS, Bayer CropScience, 355 Rue Dostoïevski, 06903 Sophia Antipolis Cedex, France.
| | - Ai-Lin Tao
- Guangzhou Medical University, 250 Changgang Road East, Guangzhou 510260, People's Republic of China.
| | - Ronald van Ree
- Departments of Experimental Immunology and Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room K0-130, 1105 AZ Amsterdam, The Netherlands.
| | - Jason Ward
- Monsanto Company, 800 North Lindbergh Blvd., St. Louis, MO 63167, USA.
| | - Christal C Bowman
- Bayer CropScience, 2 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA.
| |
Collapse
|
49
|
Wang Y, Wang X, Huang J, Li J. Adjuvant Effect of Quillaja saponaria Saponin (QSS) on Protective Efficacy and IgM Generation in Turbot (Scophthalmus maximus) upon Immersion Vaccination. Int J Mol Sci 2016; 17:325. [PMID: 26950114 PMCID: PMC4813187 DOI: 10.3390/ijms17030325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022] Open
Abstract
The adjuvant effect of Quillaja saponaria saponin (QSS) on protection of turbot fry was investigated with immersion vaccination of formalin-killed Vibrio anguillarum O1 and various concentrations of QSS (5, 25, 45 and 65 mg/L). Fish were challenged at days 7, 14 and 28 post-vaccination. Significantly high relative percent of survival (RPS) ((59.1 ± 13.6)%, (81.7 ± 8.2)%, (77.8 ± 9.6)%) were recorded in the fish that received bacterins immersion with QSS at 45 mg/L, which is comparable to the positive control group vaccinated by intraperitoneal injection (IP). Moreover, a remarkably higher serum antibody titer was also demonstrated after 28 days in the vaccinated fish with QSS (45 mg/L) than those vaccinated fish without QSS (p < 0.05), but lower than the IP immunized fish (p < 0.05). Significant upregulation of IgM gene expression has also been identified in the tissues of skin, gill, spleen and kidney from the immunized fish in comparison to the control fish. Taken together, the present study indicated that QSS was able to dramatically evoke systemic and mucosal immune responses in immunized fish. Therefore, QSS might be a promising adjuvant candidate for fish vaccination via an immersion administering route.
Collapse
Affiliation(s)
- Yujuan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Xiuhua Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jun Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI 49783, USA.
| |
Collapse
|
50
|
Affiliation(s)
- Daming Zhu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 5640 Fishers Lane, Rockville, MD 20852, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|