1
|
Salah AN, Hashem AH, Zaki MB, Abulsoud AI, Atta AM, Elkalla WS, Moustafa HAM, El-Dakroury WA, El-Tokhy FS, ElBoghdady JA, Rizk NI, Abdel Mageed SS, Mohammed OA, Abdel-Reheim MA, Alghamdi HO, Doghish AS. Targeted Therapies: The Role of Monoclonal Antibodies in Disease Management. J Biochem Mol Toxicol 2025; 39:e70163. [PMID: 39887821 DOI: 10.1002/jbt.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/28/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Monoclonal antibodies (mAbs) are a key class of biotherapeutic medicines used to treat a wide range of diseases, such as cancer, infectious diseases, autoimmune disorders, cardiovascular diseases, and hemophilia. They can be engineered for greater effectiveness and specific applications while maintaining their structural elements for immune targeting. Traditional immunoglobulin treatments have limited therapeutic uses and various adverse effects. That makes mAbs show rapid growth in the pharmaceutical market, with over 250 mAbs in clinical studies. Although mAbs offer higher specificity, they are less effective against complex antigens. They have become essential in treating diseases with limited medical options, providing innovative solutions that improve patients' quality of life through increasing survival rates, shortening the length of stay in hospitals with an improved treatment outcome, and reducing side effects. This review outlines the mechanisms, applications, and advancements of mAbs, highlighting their transformative role in modern medicine and their potential to shape future therapeutic interventions.
Collapse
Affiliation(s)
- Akram N Salah
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menofia, 32897, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, km Cairo-Alexandria Agricultural Road, Menofia, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Asmaa M Atta
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
| | - Wagiha S Elkalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Fatma Sa'eed El-Tokhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Jasmine A ElBoghdady
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Huda O Alghamdi
- College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Egypt
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
2
|
Agrez M, Chandler C, Thurecht KJ, Fletcher NL, Liu F, Subramaniam G, Howard CB, Parker S, Turner D, Rzepecka J, Knox G, Nika A, Hall AM, Gooding H, Gallagher L. A novel immunomodulating peptide with potential to complement oligodeoxynucleotide-mediated adjuvanticity in vaccination strategies. Sci Rep 2024; 14:26737. [PMID: 39501043 PMCID: PMC11538426 DOI: 10.1038/s41598-024-78150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
The identification of adjuvants to improve vaccination efficacy is a major unmet need. One approach is to augment the functionality of dendritic cells (DCs) by using Toll-like receptor-9 (TLR9) agonists such as cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) as adjuvants. Another approach is adjuvant selection based on production of bioactive interleukin-12 (IL-12). We report a D-peptide isomer, designated D-15800, that induces monocyte differentiation to the DC phenotype in vitro and more effectively stimulates IL-12p70 production upon T cell receptor (TCR) activation than the L-isomer. In the absence of TCR activation and either IL-12p70 or interleukin-2 production, only D-15800 activates CD4+ T and natural killer cells. In the presence of CpG ODN, D-15800 synergistically enhances production of interferon-alpha (IFN-α). Taken together with its biostability in human serum and depot retention upon injection, co-delivery of D-15800 with TLR9 agonists could serve to improve vaccine efficacy.
Collapse
Affiliation(s)
- Michael Agrez
- InterK Peptide Therapeutics Limited, Lane Cove West, NSW, Australia.
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia.
| | | | - Kristofer J Thurecht
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Feifei Liu
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Gayathri Subramaniam
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Stephen Parker
- InterK Peptide Therapeutics Limited, Lane Cove West, NSW, Australia
| | | | | | - Gavin Knox
- Concept Life Sciences, Edinburgh, Scotland
| | | | | | | | | |
Collapse
|
3
|
Croitoru GA, Pîrvulescu DC, Niculescu AG, Epistatu D, Rădulescu M, Grumezescu AM, Nicolae CL. Nanomaterials in Immunology: Bridging Innovative Approaches in Immune Modulation, Diagnostics, and Therapy. J Funct Biomater 2024; 15:225. [PMID: 39194663 DOI: 10.3390/jfb15080225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The intersection of immunology and nanotechnology has provided significant advancements in biomedical research and clinical applications over the years. Immunology aims to understand the immune system's defense mechanisms against pathogens. Nanotechnology has demonstrated its potential to manipulate immune responses, as nanomaterials' properties can be modified for the desired application. Research has shown that nanomaterials can be applied in diagnostics, therapy, and vaccine development. In diagnostics, nanomaterials can be used for biosensor development, accurately detecting biomarkers even at very low concentrations. Therapeutically, nanomaterials can act as efficient carriers for delivering drugs, antigens, or genetic material directly to targeted cells or tissues. This targeted delivery improves therapeutic efficacy and reduces the adverse effects on healthy cells and tissues. In vaccine development, nanoparticles can improve vaccine durability and extend immune responses by effectively delivering adjuvants and antigens to immune cells. Despite these advancements, challenges regarding the safety, biocompatibility, and scalability of nanomaterials for clinical applications are still present. This review will cover the fundamental interactions between nanomaterials and the immune system, their potential applications in immunology, and their safety and biocompatibility concerns.
Collapse
Affiliation(s)
- George-Alexandru Croitoru
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| | - Diana-Cristina Pîrvulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Dragoș Epistatu
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| | - Marius Rădulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Carmen-Larisa Nicolae
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| |
Collapse
|
4
|
Nagel R, Pohle K, Jordán L, Tuponja I, Stainfield C, Toscani C, Fox-Clarke C, Costantini D, Czirják GÁ, Forcada J, Hoffman JI. Life-history stage influences immune investment and oxidative stress in response to environmental heterogeneity in Antarctic fur seals. Commun Biol 2024; 7:788. [PMID: 38951600 PMCID: PMC11217341 DOI: 10.1038/s42003-024-06499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Immune defenses are crucial for survival but costly to develop and maintain. Increased immune investment is therefore hypothesized to trade-off with other life-history traits. Here, we examined innate and adaptive immune responses to environmental heterogeneity in wild Antarctic fur seals. In a fully crossed, repeated measures design, we sampled 100 pups and their mothers from colonies of contrasting density during seasons of contrasting food availability. Biometric and cortisol data as well as blood for the analysis of 13 immune and oxidative status markers were collected at two key life-history stages. We show that immune responses of pups are more responsive than adults to variation in food availability, but not population density, and are modulated by cortisol and condition. Immune investment is associated with different oxidative status markers in pups and mothers. Our results suggest that early life stages show greater sensitivity to extrinsic and intrinsic effectors, and that immunity may be a strong target for natural selection even in low-pathogen environments such as Antarctica.
Collapse
Affiliation(s)
- Rebecca Nagel
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, 33501, Bielefeld, Germany.
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany.
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK.
| | - Katja Pohle
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| | - Lilla Jordán
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| | - Iva Tuponja
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, 33501, Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
| | - Claire Stainfield
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
- Scotland's Rural College, Craibstone Estate, Ferguson Building, Aberdeen, AB21 9YA, UK
| | - Camille Toscani
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Cameron Fox-Clarke
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - David Costantini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100, Viterbo, Italy
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| | - Jaume Forcada
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Joseph I Hoffman
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, 33501, Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
- Center for Biotechnology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment, Bielefeld University and University of Münster, 33501, Bielefeld, Germany
| |
Collapse
|
5
|
Abdel-Haq H. Feasibility of Using a Type I IFN-Based Non-Animal Approach to Predict Vaccine Efficacy and Safety Profiles. Vaccines (Basel) 2024; 12:583. [PMID: 38932312 PMCID: PMC11209158 DOI: 10.3390/vaccines12060583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Animal-based tests are used for the control of vaccine quality. However, because highly purified and safe vaccines are now available, alternative approaches that can replace or reduce animal use for the assessment of vaccine outcomes must be established. In vitro tests for vaccine quality control exist and have already been implemented. However, these tests are specifically designed for some next-generation vaccines, and this makes them not readily available for testing other vaccines. Therefore, universal non-animal tests are still needed. Specific signatures of the innate immune response could represent a promising approach to predict the outcome of vaccines by non-animal methods. Type I interferons (IFNs) have multiple immunomodulatory activities, which are exerted through effectors called interferon stimulated genes (ISGs), and are one of the most important immune signatures that might provide potential candidate molecular biomarkers for this purpose. This paper will mainly examine if this idea might be feasible by analyzing all relevant published studies that have provided type I IFN-related biomarkers for evaluating the safety and efficacy profiles of vaccines using an advanced transcriptomic approach as an alternative to the animal methods. Results revealed that such an approach could potentially provide biomarkers predictive of vaccine outcomes after addressing some limitations.
Collapse
Affiliation(s)
- Hanin Abdel-Haq
- Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
6
|
Rudd SE, Noor A, Morgan KA, Donnelly PS. Diagnostic Positron Emission Tomography Imaging with Zirconium-89 Desferrioxamine B Squaramide: From Bench to Bedside. Acc Chem Res 2024; 57:1421-1433. [PMID: 38666539 DOI: 10.1021/acs.accounts.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Molecular imaging with antibodies radiolabeled with positron-emitting radionuclides combines the affinity and selectivity of antibodies with the sensitivity of Positron Emission Tomography (PET). PET imaging allows the visualization and quantification of the biodistribution of the injected radiolabeled antibody, which can be used to characterize specific biological interactions in individual patients. This characterization can provide information about the engagement of the antibody with a molecular target such as receptors present in elevated levels in tumors as well as providing insight into the distribution and clearance of the antibody. Potential applications of clinical PET with radiolabeled antibodies include identifying patients for targeted therapies, characterization of heterogeneous disease, and monitoring treatment response.Antibodies often take several days to clear from the blood pool and localize in tumors, so PET imaging with radiolabeled antibodies requires the use of a radionuclide with a similar radioactive half-life. Zirconium-89 is a positron-emitting radionuclide that has a radioactive half-life of 78 h and relatively low positron emission energy that is well suited to radiolabeling antibodies. It is essential that the zirconium-89 radionuclide be attached to the antibody through chemistry that provides an agent that is stable in vivo with respect to the dissociation of the radionuclide without compromising the biological activity of the antibody.This Account focuses on our research using a simple derivative of the bacterial siderophore desferrioxamine (DFO) with a squaramide ester functional group, DFO-squaramide (DFOSq), to link the chelator to antibodies. In our work, we produce conjugates with an average ∼4 chelators per antibody, and this does not compromise the binding of the antibody to the target. The resulting antibody conjugates of DFOSq are stable and can be easily radiolabeled with zirconium-89 in high radiochemical yields and purity. Automated methods for the radiolabeling of DFOSq-antibody conjugates have been developed to support multicenter clinical trials. Evaluation of several DFOSq conjugates with antibodies and low molecular weight targeting agents in tumor mouse models gave PET images with high tumor uptake and low background. The promising preclinical results supported the translation of this chemistry to human clinical trials using two different radiolabeled antibodies. The potential clinical impact of these ongoing clinical trials is discussed.The use of DFOSq to radiolabel relatively low molecular weight targeting molecules, peptides, and peptide mimetics is also presented. Low molecular weight molecules typically clear the blood pool and accumulate in target tissue more rapidly than antibodies, so they are usually radiolabeled with positron-emitting radionuclides with shorter radioactive half-lives such as fluorine-18 (t1/2 ∼ 110 min) or gallium-68 (t1/2 ∼ 68 min). Radiolabeling peptides and peptide mimetics with zirconium-89, with its longer radioactive half-life (t1/2 = 78 h), could facilitate the centralized manufacture and distribution of radiolabeled tracers. In addition, the ability to image patients at later time points with zirconium-89 based agents (e.g. 4-24 h after injection) may also allow the delineation of small or low-uptake disease sites as the delayed imaging results in increased clearance of the tracer from nontarget tissue and lower background signal.
Collapse
Affiliation(s)
- Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
7
|
Szachniewicz MM, Neustrup MA, van Meijgaarden KE, Jiskoot W, Bouwstra JA, Haks MC, Geluk A, Ottenhoff THM. Intrinsic immunogenicity of liposomes for tuberculosis vaccines: Effect of cationic lipid and cholesterol. Eur J Pharm Sci 2024; 195:106730. [PMID: 38382622 DOI: 10.1016/j.ejps.2024.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024]
Abstract
Tuberculosis (TB) is still among the deadliest infectious diseases, hence there is a pressing need for more effective TB vaccines. Cationic liposome subunit vaccines are excellent vaccine candidates offering effective protection with a better safety profile than live vaccines. In this study, we aim to explore intrinsic adjuvant properties of cationic liposomes to maximize immune activation while minimizing aspecific cytotoxicity. To achieve this, we developed a rational strategy to select liposomal formulation compositions and assessed their physicochemical and immunological properties in vitro models using human monocyte-derived dendritic cells (MDDCs). A broad selection of commercially available cationic compounds was tested to prepare liposomes containing Ag85B-ESAT6-Rv2034 (AER) fusion protein antigen. 1,2-Dioleoyl-sn‑glycero-3-ethylphosphocholine (EPC)-based liposomes exhibited the most advantageous activation profile in MDDCs as assessed by cell surface activation markers, cellular uptake, antigen-specific T-cell activation, cytokine production, and cellular viability. The addition of cholesterol to 20 mol% improved the performance of the tested formulations compared to those without it; however, when its concentration was doubled there was no further benefit, resulting in reduced cell viability. This study provides new insights into the role of cationic lipids and cholesterol in liposomal subunit vaccines.
Collapse
Affiliation(s)
- M M Szachniewicz
- Department of Infectious Diseases, Leiden University Medical Center (LUMC), Postzone C5-P, PO Box 9600, Leiden, RC 2300, the Netherlands.
| | - M A Neustrup
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - K E van Meijgaarden
- Department of Infectious Diseases, Leiden University Medical Center (LUMC), Postzone C5-P, PO Box 9600, Leiden, RC 2300, the Netherlands
| | - W Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - J A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - M C Haks
- Department of Infectious Diseases, Leiden University Medical Center (LUMC), Postzone C5-P, PO Box 9600, Leiden, RC 2300, the Netherlands
| | - A Geluk
- Department of Infectious Diseases, Leiden University Medical Center (LUMC), Postzone C5-P, PO Box 9600, Leiden, RC 2300, the Netherlands
| | - T H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center (LUMC), Postzone C5-P, PO Box 9600, Leiden, RC 2300, the Netherlands
| |
Collapse
|
8
|
Fan KQ, Huang T, Yu JS, Li YY, Jin J. The clinical features and potential mechanisms of cognitive disorders in peripheral autoimmune and inflammatory diseases. FUNDAMENTAL RESEARCH 2024; 4:226-236. [PMID: 38933510 PMCID: PMC11197673 DOI: 10.1016/j.fmre.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022] Open
Abstract
According to a study from World Health Organization's Global Burden of Disease, mental and neurological disorders have accounted for 13% of global diseases in recent years and are on the rise. Neuropsychiatric conditions or neuroinflammatory disorders are linked by the presence of an exaggerated immune response both peripherally and in the central nervous system (CNS). Cognitive dysfunction (CD) encompasses a complex group of diseases and has frequently been described in the field of autoimmune diseases, especially in multiple non-CNS-related autoimmune diseases. Recent studies have provided various hypotheses regarding the occurrence of cognitive impairment in autoimmune diseases, including that abnormally activated immune cells can disrupt the integrity of the blood-brain barrier (BBB) to trigger a central neuroinflammatory response. When the BBB is intact, autoantibodies and pro-inflammatory molecules in peripheral circulation can enter the brain to activate microglia, inducing CNS inflammation and CD. However, the mechanisms explaining the association between the immune system and neural function and their contribution to diseases are uncertain. In this review, we used clinical statistics to illustrate the correlation between CD and autoimmune diseases that do not directly affect the CNS, summarized the clinical features and mechanisms by which autoimmune diseases trigger cognitive impairment, and explored existing knowledge regarding the link between CD and autoimmune diseases from the perspective of the field of neuroimmunology.
Collapse
Affiliation(s)
- Ke-qi Fan
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Sir Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Tao Huang
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Sir Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Jian-shuai Yu
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yi-yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Sir Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
9
|
Quadrini M, Ferrari C. Exploiting the Role of Features for Antigens-Antibodies Interaction Site Prediction. Methods Mol Biol 2024; 2780:303-325. [PMID: 38987475 DOI: 10.1007/978-1-0716-3985-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Antibodies are a class of proteins that recognize and neutralize pathogens by binding to their antigens. They are the most significant category of biopharmaceuticals for both diagnostic and therapeutic applications. Understanding how antibodies interact with their antigens plays a fundamental role in drug and vaccine design and helps to comprise the complex antigen binding mechanisms. Computational methods for predicting interaction sites of antibody-antigen are of great value due to the overall cost of experimental methods. Machine learning methods and deep learning techniques obtained promising results.In this work, we predict antibody interaction interface sites by applying HSS-PPI, a hybrid method defined to predict the interface sites of general proteins. The approach abstracts the proteins in terms of hierarchical representation and uses a graph convolutional network to classify the amino acids between interface and non-interface. Moreover, we also equipped the amino acids with different sets of physicochemical features together with structural ones to describe the residues. Analyzing the results, we observe that the structural features play a fundamental role in the amino acid descriptions. We compare the obtained performances, evaluated using standard metrics, with the ones obtained with SVM with 3D Zernike descriptors, Parapred, Paratome, and Antibody i-Patch.
Collapse
Affiliation(s)
- Michela Quadrini
- School of Science and Technology, University of Camerino, Camerino, Italy.
| | - Carlo Ferrari
- Department of Information Engineering, University of Padua, Padua, Italy
| |
Collapse
|
10
|
Apuzzo E, Agazzi M, Herrera SE, Picco A, Rizzo G, Chavero C, Bianchi D, Smaldini P, Cortez ML, Marmisollé WA, Padula G, Seoane A, Alomar ML, Denofrio MP, Docena G, Azzaroni O. Poly(allylamine)-tripolyphosphate Ionic Assemblies as Nanocarriers: Friend or Foe? ACS APPLIED BIO MATERIALS 2023; 6:4714-4727. [PMID: 37863908 DOI: 10.1021/acsabm.3c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Designing effective drug nanocarriers that are easy to synthesize, robust, and nontoxic is a significant challenge in nanomedicine. Polyamine-multivalent molecule nanocomplexes are promising drug carriers due to their simple and all-aqueous manufacturing process. However, these systems can present issues of colloidal instability over time and cellular toxicity due to the cationic polymer. In this study, we finely modulate the formation parameters of poly(allylamine-tripolyphosphate) complexes to jointly optimize the robustness and safety. Polyallylamine was ionically assembled with tripolyphosphate anions to form liquid-like nanocomplexes with a size of around 200 nm and a zeta potential of -30 mV. We found that nanocomplexes exhibit tremendous long-term stability (9 months of storage) in colloidal dispersion and that they are suitable as protein-loading agents. Moreover, the formation of nanocomplexes induced by tripolyphosphate anions produces a switch-off in the toxicity of the system by altering the overall charge from positive to negative. In addition, we demonstrate that nanocomplexes can be internalized by bone-marrow-derived macrophage cells. Altogether, these nanocomplexes have attractive and promising properties as delivery nanoplatforms for potential therapies based on the immune system activation.
Collapse
Affiliation(s)
- Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| | - Maximiliano Agazzi
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), (UNRC, CONICET), Ruta Nacional 36 KM 601, 5800 Río Cuarto, Córdoba, Argentina
| | - Santiago E Herrera
- Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), (UBA, CONICET), C1428EGA Buenos Aires, Argentina
| | - Agustín Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| | - Gastón Rizzo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP, CONICET), asociado a CIC-PBA, 1900 La Plata, Buenos Aires ,Argentina
| | - Camila Chavero
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP, CONICET), asociado a CIC-PBA, 1900 La Plata, Buenos Aires ,Argentina
| | - Daiana Bianchi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP, CONICET), asociado a CIC-PBA, 1900 La Plata, Buenos Aires ,Argentina
| | - Paola Smaldini
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP, CONICET), asociado a CIC-PBA, 1900 La Plata, Buenos Aires ,Argentina
| | - María Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| | - Gisel Padula
- Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout" (IGEVET), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo (FCNyM), (UNLP, CONICET), 1900 La Plata, Buenos Aires ,Argentina
| | - Analía Seoane
- Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout" (IGEVET), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| | - Maria Lis Alomar
- Instituto Tecnológico de Chascomús (INTECH), (UNSAM, CONICET) 7130, Chascomús, Buenos Aires ,Argentina
| | - Maria Paula Denofrio
- Instituto Tecnológico de Chascomús (INTECH), (UNSAM, CONICET) 7130, Chascomús, Buenos Aires ,Argentina
| | - Guillermo Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP, CONICET), asociado a CIC-PBA, 1900 La Plata, Buenos Aires ,Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
11
|
Lin Y, Sakuraba S, Massilamany C, Reddy J, Tanaka Y, Miyake S, Yamamura T. Harnessing autoimmunity with dominant self-peptide: Modulating the sustainability of tissue-preferential antigen-specific Tregs by governing the binding stability via peptide flanking residues. J Autoimmun 2023; 140:103094. [PMID: 37716077 DOI: 10.1016/j.jaut.2023.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/18/2023]
Abstract
Sensitization to self-peptides induces various immunological responses, from autoimmunity to tumor immunity, depending on the peptide sequence; however, the underlying mechanisms remain unclear, and thus, curative therapeutic options considering immunity balance are limited. Herein, two overlapping dominant peptides of myelin proteolipid protein, PLP136-150 and PLP139-151, which induce different forms of experimental autoimmune encephalomyelitis (EAE), monophasic and relapsing EAE, respectively, were investigated. Mice with monophasic EAE exhibited highly resistant to EAE re-induction with any encephalitogenic peptides, whereas mice with relapsing EAE were susceptible, and progressed, to EAE re-induction. This resistance to relapse and re-induction in monophasic EAE mice was associated with the maintenance of potent CD69+CD103+CD4+CD25high regulatory T-cells (Tregs) enriched with antigen specificity, which expanded preferentially in the central nervous system with sustained suppressive activity. This tissue-preferential sustainability of potent antigen-specific Tregs was correlated with the antigenicity of PLP136-150, depending on its flanking residues. That is, the flanking residues of PLP136-150 enable to form pivotally arranged strong hydrogen bonds that secured its binding stability to MHC-class II. These potent Tregs acting tissue-preferentially were induced only by sensitization of PLP136-150, not by its tolerance induction, independent of EAE development. These findings suggest that, for optimal therapy, "benign autoimmunity" can be critically achieved through inverse vaccination with self-peptides by manipulating their flanking residues.
Collapse
Affiliation(s)
- Youwei Lin
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan; Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan.
| | - Shun Sakuraba
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Chiba, 263-0024, Japan.
| | | | - Jayagopala Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki, 852-8588, Japan.
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan.
| |
Collapse
|
12
|
Reyes A, Ortiz G, Duarte LF, Fernández C, Hernández-Armengol R, Palacios PA, Prado Y, Andrade CA, Rodriguez-Guilarte L, Kalergis AM, Simon F, Carreño LJ, Riedel CA, Cáceres M, González PA. Contribution of viral and bacterial infections to senescence and immunosenescence. Front Cell Infect Microbiol 2023; 13:1229098. [PMID: 37753486 PMCID: PMC10518457 DOI: 10.3389/fcimb.2023.1229098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Cellular senescence is a key biological process characterized by irreversible cell cycle arrest. The accumulation of senescent cells creates a pro-inflammatory environment that can negatively affect tissue functions and may promote the development of aging-related diseases. Typical biomarkers related to senescence include senescence-associated β-galactosidase activity, histone H2A.X phosphorylation at serine139 (γH2A.X), and senescence-associated heterochromatin foci (SAHF) with heterochromatin protein 1γ (HP-1γ protein) Moreover, immune cells undergoing senescence, which is known as immunosenescence, can affect innate and adaptative immune functions and may elicit detrimental effects over the host's susceptibility to infectious diseases. Although associations between senescence and pathogens have been reported, clear links between both, and the related molecular mechanisms involved remain to be determined. Furthermore, it remains to be determined whether infections effectively induce senescence, the impact of senescence and immunosenescence over infections, or if both events coincidently share common molecular markers, such as γH2A.X and p53. Here, we review and discuss the most recent reports that describe cellular hallmarks and biomarkers related to senescence in immune and non-immune cells in the context of infections, seeking to better understand their relationships. Related literature was searched in Pubmed and Google Scholar databases with search terms related to the sections and subsections of this review.
Collapse
Affiliation(s)
- Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gerardo Ortiz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Christian Fernández
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Rosario Hernández-Armengol
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Yolanda Prado
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Catalina A. Andrade
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodriguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Kodila A, Franko N, Sollner Dolenc M. A review on immunomodulatory effects of BPA analogues. Arch Toxicol 2023; 97:1831-1846. [PMID: 37204436 PMCID: PMC10256647 DOI: 10.1007/s00204-023-03519-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Bisphenol A (BPA) is a known endocrine disruptor found in many consumer products that humans come into contact with on a daily basis. Due to increasing concerns about the safety of BPA and the introduction of new legislation restricting its use, industry has responded by adopting new, less studied BPA analogues that have similar polymer-forming properties. Some BPA analogues have already been shown to exhibit effects similar to BPA, for example, contributing to endocrine disruption through agonistic or antagonistic behaviour at various nuclear receptors such as estrogen (ER), androgen (AR), glucocorticoid (GR), aryl hydrocarbon (AhR), and pregnane X receptor (PXR). Since the European Food Safety Authority (EFSA) issued a draft re-evaluation of BPA and drastically reduced the temporary tolerable daily intake (t-TDI) of BPA from 4 mg/kg body weight/day to 0.2 ng/kg body weight/day due to increasing concern about the toxic properties of BPA, including its potential to disrupt immune system processes, we conducted a comprehensive review of the immunomodulatory activity of environmentally abundant BPA analogues. The results of the review suggest that BPA analogues may affect both the innate and acquired immune systems and can contribute to various immune-mediated conditions such as hypersensitivity reactions, allergies, and disruption of the human microbiome.
Collapse
Affiliation(s)
- Anja Kodila
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Nina Franko
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Marija Sollner Dolenc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
14
|
THEME: "Vaccines and Vaccine Adjuvants/Immunomodulators for Infectious Diseases". Vaccines (Basel) 2023; 11:vaccines11020383. [PMID: 36851261 PMCID: PMC9965514 DOI: 10.3390/vaccines11020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
The discovery of vaccines has enabled the successful prevention of many deadly infectious diseases, decreased the overall mortality rate, and improved life expectancy worldwide [...].
Collapse
|
15
|
Patel L, Keshvani N, Pandey A. Are post-influenza vaccine reactions truly 'adverse'? Eur J Heart Fail 2023; 25:311-312. [PMID: 36597827 DOI: 10.1002/ejhf.2765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Lajjaben Patel
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Neil Keshvani
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ambarish Pandey
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
16
|
Peikert A, Claggett BL, Kim K, Udell JA, Joseph J, Desai AS, Farkouh ME, Hegde SM, Hernandez AF, Bhatt DL, Gaziano JM, Talbot HK, Yancy C, Anand I, Mao L, Cooper LS, Solomon SD, Vardeny O. Association of post-vaccination adverse reactions after influenza vaccine with mortality and cardiopulmonary outcomes in patients with high-risk cardiovascular disease: the INVESTED trial. Eur J Heart Fail 2023; 25:299-310. [PMID: 36335639 DOI: 10.1002/ejhf.2716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
AIMS Influenza vaccination is associated with reduced cardiopulmonary morbidity and mortality among patients with heart failure or recent myocardial infarction. The immune response to vaccination frequently results in mild adverse reactions (AR), which leads to vaccine hesitancy. This post hoc analysis explored the association between vaccine-related AR and morbidity and mortality in patients with high-risk cardiovascular disease. METHODS AND RESULTS The INVESTED trial randomized 5260 patients with recent heart failure hospitalization or acute myocardial infarction to high-dose trivalent or standard-dose quadrivalent inactivated influenza vaccine. We examined the association between vaccine-related AR and adverse clinical outcomes across both treatment groups in propensity-adjusted models. Among 5210 participants with available information on post-vaccination symptoms, 1968 participants (37.8%) experienced a vaccine-related AR. Compared to those without AR, post-vaccination AR, most commonly injection site pain (60.3%), were associated with lower risk for the composite of all-cause death or cardiopulmonary hospitalization (hazard ratio [HR] 0.83, 95% confidence interval [CI] 0.75-0.92, p < 0.001), cardiopulmonary hospitalizations (HR 0.85 [95% CI 0.76-0.95], p = 0.003), all-cause death (HR 0.77 [95% CI 0.62-0.96], p = 0.02), cardiovascular hospitalizations (HR 0.88 [95% CI 0.78-0.99], p = 0.03) and non-cardiopulmonary hospitalizations (HR 0.80 [95% CI 0.69-0.92], p = 0.003). While mild (76.4%) and moderate (20.6%) AR were most common and together associated with lower risk for the primary outcome (HR 0.81 [95% CI 0.74-0.90], p < 0.001), severe AR (2.9%) were related to increased risk (HR 1.68 [95% CI 1.17-2.42], p = 0.005). CONCLUSION Mild to moderate post-vaccination reactions after influenza vaccine were associated with reduced risk of cardiopulmonary hospitalizations and all-cause mortality in patients with high-risk cardiovascular disease, while severe reactions may indicate increased risk. Mild to moderate AR to influenza vaccination may be a marker of immune response and should not deter future vaccinations.
Collapse
Affiliation(s)
- Alexander Peikert
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian L Claggett
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacob A Udell
- Peter Munk Cardiac Centre, University Health Network and Women's College Hospital, University of Toronto, Toronto, ONT, Canada
| | - Jacob Joseph
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Boston, MA, USA
| | - Akshay S Desai
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael E Farkouh
- Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, ONT, Canada
| | - Sheila M Hegde
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Deepak L Bhatt
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - J Michael Gaziano
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Boston, MA, USA
| | - H Keipp Talbot
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Clyde Yancy
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Inder Anand
- Department of Medicine, University of Minnesota, Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Lu Mao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Lawton S Cooper
- National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Orly Vardeny
- Department of Medicine, University of Minnesota, Minneapolis VA Health Care System, Minneapolis, MN, USA
| |
Collapse
|
17
|
Li J, Wu Y, Xiang J, Wang H, Zhuang Q, Wei T, Cao Z, Gu Q, Liu Z, Peng R. Fluoroalkane modified cationic polymers for personalized mRNA cancer vaccines. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 456:140930. [PMID: 36531858 PMCID: PMC9743697 DOI: 10.1016/j.cej.2022.140930] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/12/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Messenger RNA (mRNA) vaccines, while demonstrating great successes in the fight against COVID-19, have been extensively studied in other areas such as personalized cancer immunotherapy based on tumor neoantigens. In addition to the design of mRNA sequences and modifications, the delivery carriers are also critical in the development of mRNA vaccines. In this work, we synthesized fluoroalkane-grafted polyethylenimine (F-PEI) for mRNA delivery. Such F-PEI could promote intracellular delivery of mRNA and activate the Toll-like receptor 4 (TLR4)-mediated signaling pathway. The nanovaccine formed by self-assembly of F-PEI and the tumor antigen-encoding mRNA, without additional adjuvants, could induce the maturation of dendritic cells (DCs) and trigger efficient antigen presentation, thereby eliciting anti-tumor immune responses. Using the mRNA encoding the model antigen ovalbumin (mRNAOVA), our F-PEI-based mRNAOVA cancer vaccine could delay the growth of established B16-OVA melanoma. When combined with immune checkpoint blockade therapy, the F-PEI-based MC38 neoantigen mRNA cancer vaccine was able to suppress established MC38 colon cancer and prevent tumor reoccurrence. Our work presents a new tool for mRNA delivery, promising not only for personalized cancer vaccines but also for other mRNA-based immunotherapies.
Collapse
Affiliation(s)
- Junyan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
| | - Yuanyuan Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
| | - Jian Xiang
- WuXi AppTec (Suzhou) Co., Ltd., 1336 Wuzhong Avenue, Wuzhong District, Suzhou 215104, China
| | - Hairong Wang
- Children's Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Qi Zhuang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
| | - Ting Wei
- InnoBM Pharmaceuticals Co., Ltd., Suzhou, Jiangsu 215000, China
| | - Zhiqin Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
| | - Qingyang Gu
- WuXi AppTec (Suzhou) Co., Ltd., 1336 Wuzhong Avenue, Wuzhong District, Suzhou 215104, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu 215123, China
| |
Collapse
|
18
|
Laupèze B, Doherty TM. Maintaining a 'fit' immune system: the role of vaccines. Expert Rev Vaccines 2023; 22:256-266. [PMID: 36864769 DOI: 10.1080/14760584.2023.2185223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
INTRODUCTION Conventionally, vaccines are thought to induce a specific immune response directed against a target pathogen. Long recognized but poorly understood nonspecific benefits of vaccination, such as reduced susceptibility to unrelated diseases or cancer, are now being investigated and may be due in part to "trained immunity'. AREAS COVERED We discuss 'trained immunity' and whether vaccine-induced 'trained immunity' could be leveraged to prevent morbidity due to a broader range of causes. EXPERT OPINION The prevention of infection i.e. maintaining homeostasis by preventing the primary infection and resulting secondary illnesses, is the pivotal strategy used to direct vaccine design and may have long-term, positive impacts on health at all ages. In the future, we anticipate that vaccine design will change to not only prevent the target infection (or related infections) but to generate positive modifications to the immune response that could prevent a wider range of infections and potentially reduce the impact of immunological changes associated with aging. Despite changing demographics, adult vaccination has not always been prioritized. However, the SARS-CoV-2 pandemic has demonstrated that adult vaccination can flourish given the right circumstances, demonstrating that harnessing the potential benefits of life-course vaccination is achievable for all.
Collapse
|
19
|
Franczyk B, Gluba-Brzózka A, Rysz-Górzyńska M, Rysz J. The Role of Inflammation and Oxidative Stress in Rheumatic Heart Disease. Int J Mol Sci 2022; 23:ijms232415812. [PMID: 36555452 PMCID: PMC9781220 DOI: 10.3390/ijms232415812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatic heart disease (RHD), an acquired valvular disease, remains an important cause of morbidity and mortality in developing countries. This chronic illness starts from untreated streptococcal throat infection, resulting in acute rheumatic fever (ARF) in susceptible individuals. Repeated infections lead to a chronic phase characterized by the damage of heart valves. Inflammation has been found to play important role in the development of this disease. All the studies presented in this review clearly show the involvement of the inflammatory state in the progression of this disease. However, the exact role of cytokines in inflammation sites remains to be examined, since most studies have so far focused on peripheral blood. Such analysis would provide information on inflammatory mechanisms in situ.
Collapse
Affiliation(s)
- Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskiego Street, 90-549 Lodz, Poland
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskiego Street, 90-549 Lodz, Poland
- Correspondence:
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 113 Żeromskiego Street, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskiego Street, 90-549 Lodz, Poland
| |
Collapse
|
20
|
Faber E, Tshilwane SI, Van Kleef M, Pretorius A. The impact of Escherichia coli contamination products present in recombinant African horse sickness virus serotype 4 proteins on the innate and humoral immune responses. Mol Immunol 2022; 152:1-13. [DOI: 10.1016/j.molimm.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
|
21
|
Kahlon G, Waheed F, Owens MT. What College Biology Students Know about How Vaccines Work. CBE LIFE SCIENCES EDUCATION 2022; 21:ar75. [PMID: 36206329 PMCID: PMC9727621 DOI: 10.1187/cbe.20-12-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 08/15/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Vaccines are an important and societally relevant biology topic, but it is unclear how much college biology students know about how vaccines work and what inaccurate ideas they have about that process. Therefore, we asked more than 600 college students taking biology courses at various levels to explain, "How does a vaccine work?" in a free-response format. Based on authoritative sources and responses from immunology and other biology faculty, we created a rubric to gauge the basic knowledge and accuracy present in student responses. Basic knowledge was defined as knowing that vaccines mimic the pathogen, elicit an active immune response, and provide protection against future infection. Accuracy was defined as the absence of scientifically inaccurate ideas. We found that advanced biology majors score significantly higher in basic knowledge and accuracy when compared with all other student groups, but there were no differences between entering biology majors, pre-health majors, and non-pre-health majors. We also uncovered a variety of inaccurate ideas, with the most common being that vaccines contain the original, unmodified pathogen. These results provide a new way to gauge college student understanding of how a vaccine works and enrich our understanding of what college students know about this process.
Collapse
Affiliation(s)
- Gavina Kahlon
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093
| | - Fareshta Waheed
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093
| | - Melinda T. Owens
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093
- Joint Doctoral Program in Math & Science Education, University of California, San Diego and San Diego State University, La Jolla, CA 92093
| |
Collapse
|
22
|
Yang MM, Taylor KE, Paez D, Carividi A, Demissie E, Pawar N, El-Qunni AA, McMorrow LE, Schriefer RE, Huang K, Kinnett B, Klebert M, Haile A, O'Halloran JA, Presti RM, Kim W, Ellebedy AH, Ciorba MA, Paley MA, Deepak P, Kim AHJ, Katz P, Matloubian M, Nakamura M, Gensler LS. Reactogenicity of the Messenger RNA SARS-CoV-2 Vaccines Associated With Immunogenicity in Patients With Autoimmune and Inflammatory Disease. Arthritis Care Res (Hoboken) 2022; 74:1953-1960. [PMID: 35412029 PMCID: PMC9073989 DOI: 10.1002/acr.24894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Little is known regarding the reactogenicity and related SARS-CoV-2 vaccine response in patients with chronic inflammatory disease (CID). Our objective was to characterize the adverse event profile of CID patients following SARS-CoV-2 vaccination and understand the relationship between reactogenicity and immunogenicity of SARS-CoV-2 vaccines. METHODS CID patients and healthy controls eligible to receive messenger RNA (mRNA) SARS-CoV-2 vaccines participated in 3 study visits (pre-vaccine, after dose 1, and after dose 2) in which blood and clinical data were collected. Assessment of adverse events were solicited within 7 days of receiving each dose. Serum anti-SARS-CoV-2 spike IgG ± antibody titers were quantified following vaccination. Statistical analysis was performed utilizing mixed models and tobit regressions, with adjustment for covariates. RESULTS The present study included 441 participants (322 CID patients and 119 control subjects). Compared to controls, CID patients reported greater symptom severity after dose 1 (P = 0.0001), including more myalgia and fatigue (P < 0.05). For immunogenicity, a higher symptom severity after dose 1 and a higher number of symptoms after dose 2 was associated with higher antibody titers (P ≤ 0.05). Each increase of 1 symptom was associated with a 15.1% increase in antibody titer. Symptom association was strongest with site pain after dose 1 (105%; P = 0.03) and fatigue after dose 2 (113%; P = 0.004). CONCLUSION Patients with CID have a distinct reactogenicity profile following SARS-CoV-2 vaccination compared to controls. Furthermore, there is an association between increased reactogenicity and increased vaccine response. This finding may speak to the more variable immunogenicity in CID patients and may be an important indicator of vaccine response to the novel SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alia A El-Qunni
- Washington University School of Medicine, St. Louis, Missouri
| | - Lily E McMorrow
- Washington University School of Medicine, St. Louis, Missouri
| | | | - Katherine Huang
- Washington University School of Medicine, St. Louis, Missouri
| | - Baylee Kinnett
- Washington University School of Medicine, St. Louis, Missouri
| | - Michael Klebert
- Washington University School of Medicine, St. Louis, Missouri
| | - Alem Haile
- Washington University School of Medicine, St. Louis, Missouri
| | | | - Rachel M Presti
- Washington University School of Medicine, St. Louis, Missouri
| | - Wooseob Kim
- Washington University School of Medicine, St. Louis, Missouri
| | - Ali H Ellebedy
- Washington University School of Medicine, St. Louis, Missouri
| | | | - Michael A Paley
- Washington University School of Medicine, St. Louis, Missouri
| | - Parakkal Deepak
- Washington University School of Medicine, St. Louis, Missouri
| | - Alfred H J Kim
- Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Mary Nakamura
- University of California, San Francisco and San Francisco Veterans Administration Health Care System, San Francisco, California
| | - Lianne S Gensler
- University of California, San Francisco and San Francisco Veterans Administration Health Care System, San Francisco, California
| |
Collapse
|
23
|
Comparative Safety, Immunogenicity, and Efficacy of CEF Cell-Based and DF-1 Cell Line Adapted Infectious Bursal Disease Vaccines in Specific-Pathogen-Free Chickens. J Immunol Res 2022; 2022:5392033. [PMID: 36285182 PMCID: PMC9588362 DOI: 10.1155/2022/5392033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 08/31/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Infectious bursal disease (IBD) is an immunosuppressive and economically important disease of young chickens caused by infectious bursal disease virus (IBDV). The National Veterinary Institute (Bishoftu, Ethiopia) produces intermediate IBDV vaccine using primary chicken embryo fibroblast (CEF) cells, a method with technical and economical cumbersome. This study assessed the safety, immunogenicity, and efficacy of DF-1 cell line-adapted IBDV LC–75 vaccine strain in reference to the CEF-based vaccine. Confluent monolayer of DF-1 cells was infected with IBDV and cells with cytopathic effects were passaged until 3rd passage. Viral growth was confirmed using a one-step RT-PCR targeting IBDV VP2 gene. Viral titer increased from 1st passage through 3rd passage. Safety was assessed in 30 specific-pathogen-free chickens (15 chickens/group) injected with 10-fold field dose of each vaccine intraocularly and monitored for 21 days. For immunogenicity and efficacy, 60 specific-pathogen-free chickens were grouped into 3 (20 chickens/group). First and 2nd group received DF-1 cell and CEF-based IBDV vaccines, respectively. The 3rd group served as unvaccinated control. Antibody response was measured using iELISA. Chickens were challenged 4 weeks postvaccination with very virulent IBDV (vvIBDV) intraocularly and followed-up for 10 days. Vaccination did not cause any adverse reactions during the 21 days of follow-up. In addition, both vaccines induced higher antibody titer 14 and 24 days-post-vaccination as compared to unvaccinated controls (p < 0.05). Moreover, DF-1 and CEF-based IBDV LC–75 vaccines rendered a complete protection against vvIBDV. Contrarily, morbidity and mortality in unvaccinated chickens was 50% and 30%, respectively. The results indicated that DF-1 and CEF cell-based IBDV vaccines are comparably immunogenic and efficacious. Therefore, DF-1 cell-line can be considered an affordable and convenient alternative to the CEF-based approach. The suitability of DF-1 cells to grow other IBDV strains and safety of these vaccines on bursa of Fabricius should further be investigated.
Collapse
|
24
|
Think like a Virus: Toward Improving Nanovaccine Development against SARS-CoV-2. Viruses 2022; 14:v14071553. [PMID: 35891532 PMCID: PMC9318803 DOI: 10.3390/v14071553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
There is no doubt that infectious diseases present global impact on the economy, society, health, mental state, and even political aspects, causing a long-lasting dent, and the situation will surely worsen if and when the viral spread becomes out of control, as seen during the still ongoing coronavirus disease 2019 (COVID-19) pandemic. Despite the considerable achievements made in viral prevention and treatment, there are still significant challenges that can be overcome through careful understanding of the viral mechanism of action to establish common ground for innovating new preventative and treatment strategies. Viruses can be regarded as devil nanomachines, and one innovative approach to face and stop the spread of viral infections is the development of nanoparticles that can act similar to them as drug/vaccine carriers. Moreover, we can use the properties that different viruses have in designing nanoparticles that reassemble the virus conformational structures but that do not present the detrimental threats to human health that native viruses possess. This review discusses the current preventative strategies (i.e., vaccination) used in facing viral infections and the associated limitations, highlighting the importance of innovating new approaches to face viral infectious diseases and discussing the current nanoapplications in vaccine development and the challenges that still face the nanovaccine field.
Collapse
|
25
|
Choi SI, La IJ, Han X, Men X, Lee SJ, Oh G, Kwon HY, Kim YD, Seong GS, Kim SH, Lee OH. Immunomodulatory Effect of Polysaccharide from Fermented Morinda citrifolia L. (Noni) on RAW 264.7 Macrophage and Balb/c Mice. Foods 2022; 11:1925. [PMID: 35804740 PMCID: PMC9266266 DOI: 10.3390/foods11131925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023] Open
Abstract
This study aims to determine the immunomodulatory effects of a polysaccharide fraction from fermented M. citrifolia L. (FMP) in RAW 264.7 macrophages and Balb/c mice. M. citrifolia was fermented for 72 h using Lactobacillus brevis; polysaccharides were extracted using ethanol precipitation. The RAW 264.7 cells exposed to FMP (50, 100, and 200 μg/mL) for 24 h showed increased NO production, proinflammatory cytokine (IL-1β, IL-6, and TNF-α) release, and COX-2 and iNOS protein expression. FMP (100, 200 mg/kg) and deacetylasperulosidic acid (DAA) (20 mg/kg) administered orally to Balb/c mice for 14 days upregulated NO production and NK cytotoxicity in abdominal cavity and spleen, respectively. Th1 and Th2 cytokines production and immune cell numbers increased in spleen, mesenteric lymph nodes (MLN), peritoneal exudate cells (PEC), Peyer's patches (PP), and peripheral blood mononuclear cells (PBMC). Therefore, FMP containing DAA can be used as materials for health functional foods to enhance immune responses.
Collapse
Affiliation(s)
- Sun-Il Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea; (S.-I.C.); (X.H.); (X.M.); (S.-J.L.); (G.O.)
| | - Im-Joung La
- Atomy R&D Center, 3526, Charyeong-ro, Jeongan-myeon, Gongju-si 32511, Korea;
| | - Xionggao Han
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea; (S.-I.C.); (X.H.); (X.M.); (S.-J.L.); (G.O.)
| | - Xiao Men
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea; (S.-I.C.); (X.H.); (X.M.); (S.-J.L.); (G.O.)
| | - Se-Jeong Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea; (S.-I.C.); (X.H.); (X.M.); (S.-J.L.); (G.O.)
| | - Geon Oh
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea; (S.-I.C.); (X.H.); (X.M.); (S.-J.L.); (G.O.)
| | - Hee-Yeon Kwon
- NSTBIO Co., Ltd., 32, Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Korea; (H.-Y.K.); (Y.-D.K.)
| | - Yong-Deok Kim
- NSTBIO Co., Ltd., 32, Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Korea; (H.-Y.K.); (Y.-D.K.)
| | - Geum-Su Seong
- Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun 55365, Korea;
| | - Seung-Hyung Kim
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 34520, Korea;
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea; (S.-I.C.); (X.H.); (X.M.); (S.-J.L.); (G.O.)
| |
Collapse
|
26
|
Fulop T, Larbi A, Pawelec G, Cohen AA, Provost G, Khalil A, Lacombe G, Rodrigues S, Desroches M, Hirokawa K, Franceschi C, Witkowski JM. Immunosenescence and Altered Vaccine Efficiency in Older Subjects: A Myth Difficult to Change. Vaccines (Basel) 2022; 10:vaccines10040607. [PMID: 35455356 PMCID: PMC9030923 DOI: 10.3390/vaccines10040607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Organismal ageing is associated with many physiological changes, including differences in the immune system of most animals. These differences are often considered to be a key cause of age-associated diseases as well as decreased vaccine responses in humans. The most often cited vaccine failure is seasonal influenza, but, while it is usually the case that the efficiency of this vaccine is lower in older than younger adults, this is not always true, and the reasons for the differential responses are manifold. Undoubtedly, changes in the innate and adaptive immune response with ageing are associated with failure to respond to the influenza vaccine, but the cause is unclear. Moreover, recent advances in vaccine formulations and adjuvants, as well as in our understanding of immune changes with ageing, have contributed to the development of vaccines, such as those against herpes zoster and SARS-CoV-2, that can protect against serious disease in older adults just as well as in younger people. In the present article, we discuss the reasons why it is a myth that vaccines inevitably protect less well in older individuals, and that vaccines represent one of the most powerful means to protect the health and ensure the quality of life of older adults.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
- Correspondence: (T.F.); (S.R.)
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore;
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, 72072 Tübingen, Germany;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Alan A. Cohen
- Groupe de Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4, Canada;
| | | | - Abedelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
| | - Guy Lacombe
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, 48009 Bilbao, Spain;
- BCAM—The Basque Center for Applied Mathematics, 48009 Bilbao, Spain
- Correspondence: (T.F.); (S.R.)
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, CEDEX, 06902 Sophia Antipolis, France;
- The Jean Alexandre Dieudonné Laboratory, Université Côte d’Azur, CEDEX 2, 06108 Nice, France
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
- Department of Applied Mathematics and Laboratory of Systems Biology of Healthy Aging, Lobachevsky State University, 603000 Nizhny Novgorod, Russia
| | - Jacek M. Witkowski
- Department of Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| |
Collapse
|
27
|
Xi X, Ye Q, Fan D, Cao X, Wang Q, Wang X, Zhang M, Xu Y, Xiao C. Polycyclic Aromatic Hydrocarbons Affect Rheumatoid Arthritis Pathogenesis via Aryl Hydrocarbon Receptor. Front Immunol 2022; 13:797815. [PMID: 35392076 PMCID: PMC8981517 DOI: 10.3389/fimmu.2022.797815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA), the most common autoimmune disease, is characterized by symmetrical synovial inflammation of multiple joints with the infiltration of pro-inflammatory immune cells and increased cytokines (CKs) levels. In the past few years, numerous studies have indicated that several factors could affect RA, such as mutations in susceptibility genes, epigenetic modifications, age, and race. Recently, environmental factors, particularly polycyclic aromatic hydrocarbons (PAHs), have attracted increasing attention in RA pathogenesis. Therefore, exploring the specific mechanisms of PAHs in RA is vitally critical. In this review, we summarize the recent progress in understanding the mechanisms of PAHs and aryl hydrocarbon receptors (AHRs) in RA. Additionally, the development of therapeutic drugs that target AHR is also reviewed. Finally, we discuss the challenges and perspectives on AHR application in the future.
Collapse
Affiliation(s)
- Xiaoyu Xi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qinbin Ye
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qiong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of Traditional Chinese Medicine (TCM) Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
28
|
Abstract
Immune principles formulated by Jenner, Pasteur, and early immunologists served as fundamental propositions for vaccine discovery against many dreadful pathogens. However, decisive success in the form of an efficacious vaccine still eludes for diseases such as tuberculosis, leishmaniasis, and trypanosomiasis. Several antileishmanial vaccine trials have been undertaken in past decades incorporating live, attenuated, killed, or subunit vaccination, but the goal remains unmet. In light of the above facts, we have to reassess the principles of vaccination by dissecting factors associated with the hosts' immune response. This chapter discusses the pathogen-associated perturbations at various junctures during the generation of the immune response which inhibits antigenic processing, presentation, or remodels memory T cell repertoire. This can lead to ineffective priming or inappropriate activation of memory T cells during challenge infection. Thus, despite a protective primary response, vaccine failure can occur due to altered immune environments in the presence of pathogens.
Collapse
Affiliation(s)
| | - Sunil Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
| | | | - Bhaskar Saha
- National Centre for Cell Science, Pune, Maharashtra, India.
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
29
|
Zhu S, Liu Y, Li Y, Yi J, Yang B, Li Y, Ouyang Z, Liu B, Shang P, Mehmood K, Abbas RZ, Ahmed S, Chang YF, Guo J, Pan J, Hu L, Tang Z, Li Y, Zhang H. The potential risks of herbicide butachlor to immunotoxicity via induction of autophagy and apoptosis in the spleen. CHEMOSPHERE 2022; 286:131683. [PMID: 34351278 DOI: 10.1016/j.chemosphere.2021.131683] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Butachlor being an important member of chloroacetanilide herbicides, is frequently used in agriculture to control unwanted weeds. Exposure to butachlor can induce cancer, human lymphocyte aberration, and immunotoxic effects in animals. The current experimental trial was executed to determine the potential risks of herbicide butachlor to immunotoxicity and its mechanism of adverse effects on the spleen. For this purpose, mice were exposed to 8 mg/kg butachlor for 28 days, and the toxicity of butachlor on the spleen of mice was evaluated. We found that butachlor exposure led to an increase in serum ALB, GLU, TC, TG, and TP and changes in the morphological structure of the spleen of mice. More importantly, results showed that butachlor significantly increased the expression level of ATG-5, decreased the protein expression of LC3B and M-TOR, and significantly decreased the mRNA content of M-TOR and p62. Results revealed that the mRNA contents of APAF-1, CYTC, and CASP-9 related genes were significantly decreased after butachlor treatment. Subsequently, the mRNA levels of inflammatory cytokines (IL-1β, TNF-α, IL-10) were reduced in the spleen of treated mice. This study suggested that butachlor induce spleen toxicity and activate the immune response of spleen tissue by targeting the CYTC/BCL2/M-TOR pathway and caspase cascading activation of spleen autophagy and apoptosis pathways which may ultimately lead to immune system disorders.
Collapse
Affiliation(s)
- Shanshan Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yingwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yangwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bijing Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhuanxu Ouyang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bingxian Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China.
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture Faisalabad, Pakistan
| | - Shakeel Ahmed
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, 5090000, Chile
| | - Yung-Fu Chang
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
30
|
The effect of toll-like receptor ligands on energy metabolism and myokine expression and secretion in cultured human skeletal muscle cells. Sci Rep 2021; 11:24219. [PMID: 34930972 PMCID: PMC8688447 DOI: 10.1038/s41598-021-03730-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle plays an important role in glycaemic control and metabolic homeostasis, making it a tissue of interest with respect to type 2 diabetes mellitus. The aim of the present study was to determine if ligands of Toll-like receptors (TLRs) could have an impact on energy metabolism and myokine expression and secretion in cultured human skeletal muscle cells. The myotubes expressed mRNA for TLRs 1–6. TLR3, TLR4, TLR5 and TLR6 ligands (TLRLs) increased glucose metabolism. Furthermore, TLR4L and TLR5L increased oleic acid metabolism. The metabolic effects of TLRLs were not evident until after at least 24 h pre-incubation of the cells and here the metabolic effects were more evident for the metabolism of glucose than oleic acid, with a shift towards effects on oleic acid metabolism after chronic exposure (168 h). However, the stimulatory effect of TLRLs on myokine expression and secretion was detected after only 6 h, where TLR3-6L stimulated secretion of interleukin-6 (IL-6). TLR5L also increased secretion of interleukin-8 (IL-8), while TLR6L also increased secretion of granulocyte–macrophage colony stimulating factor (GM-CSF). Pre-incubation of the myotubes with IL-6 for 24 h increased oleic acid oxidation but had no effect on glucose metabolism. Thus IL-6 did not mimic all the metabolic effects of the TLRLs, implying metabolic effects beyond the actions of this myokine.
Collapse
|
31
|
Sun H, Chen N, Yang X, Xia Y, Wu D. Effects induced by polyethylene microplastics oral exposure on colon mucin release, inflammation, gut microflora composition and metabolism in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112340. [PMID: 34015635 DOI: 10.1016/j.ecoenv.2021.112340] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/22/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Microplastics are plastic fragments widely distributed in the environment and accumulate in the organisms. However, the research on microplastics effects in mammals is limited. Polyethylene is the main kind of microplastics in the environment. We hypothesized that polyethylene exposure disrupts host intestine metabolism by modifying intestine microflora composition and then lipopolysaccharide (LPS) pathway. Female mice were orally exposed to 0, 0.002 and 0.2 μg/g/d polyethylene microplastics (PE MPs) for 30 days. Colon mucin density was quantized after AB-PAS staining. Mucin 2 (MUC2), inflammatory factors (IL-1β, IL-6, IL-8 and IL-10), short-chain fatty acid receptors (GPR41 and GPR43), LPS receptors (TLR4 and MyD88) and LPS pathway downstream genes (ERK1 and NF-κB) mRNA levels in colon were measured. Feces were collected on the 15th day of exposure for gut microflora analysis. Blood biochemical analysis was performed. Results showed that 0.2 μg/g/d PE MPs exposure significantly decreased colon mucin expression (p < 0.05), decreased IL-1β (p < 0.05) and increased IL-8 and IL-10 levels (p < 0.01 and p < 0.001 respectively). Microflora data showed that in 0.2 μg/g/d PE MPs group the number of Firmicutes decreased and the number of Bacteroides increased (both p < 0.01). Predicted KEGG metabolic pathways by piecrust method indicated that PE MPs enhanced amino acids metabolism in microflora. ERK1 and NF-κB mRNA were significantly lower in 0.2 μg/g/d PE MPs group (both p < 0.001). Blood total protein, albumin and globulin levels significantly increased after 0.2 μg/g/d PE MPs exposure (p < 0.01, p < 0.01 and p < 0.05 respectively). These results indicate that PE MPs exposure induced decreased mucin production, a slight immune response and increased the microflora amino acid metabolism in the mice colon by modifying colon microflora composition. SUMMARY: Polyethylene microplastics exposure decreased colon mucin release and increased amino acid metabolism by modifying colon microflora composition.
Collapse
Affiliation(s)
- Hanqing Sun
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Na Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaona Yang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
32
|
Deng P, Yang T, Zhang H, Zhou F, Xue C, Fei Y, Gao Y. Prospective clinical trial of hepatitis B vaccination for children with hematological malignancies: a study on the safety and immunogenicity efficacy. Hum Vaccin Immunother 2021; 17:4578-4586. [PMID: 34403292 DOI: 10.1080/21645515.2021.1953303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Children with hematological malignancies are at increased risk of hepatitis B virus infection. This study assessed the immunogenicity and safety profile of HBV vaccination in pediatric hemato-oncological children. A nonrandomized interventional study was conducted from January 2017 to February 2020 in Shanghai, China. Seventy-three pediatric hemato-oncological children with hepatitis B surface antibody (anti-HBs) titers <10 mIU/ml were recruited. The participants received three doses of recombinant HBV vaccine according to the 0-, 1-, and 6- month immunization schedule. Adverse events following immunization and anti-HBs titers (at baseline, 1 month, and 6 months after inoculation) were recorded. Forty-three males and thirty females with median ages of 9.12 and 9.60 years, respectively, were included. The mean anti-HBs titer was 4.88 ± 2.61 mIU/ml, 893.12 ± 274.12 mIU/ml, and 711.45 ± 337.88 mIU/ml at baseline, one month, and six months after inoculation, respectively (P< .001). A total of fourteen adverse events following immunization were reported, and among them, 5 (6.85%), 5 (6.85%), and 4 (5.48%) events were reported after the first, second, and third inoculation, respectively (P= .927). In conclusions, the HBV vaccine is immunogenic and safe in children with hematological malignancies. It is worth noting that the anti-HBs titer was decreased at the 6-month follow-up, and periodic monitoring of the anti-HBs titer accompanied by timely booster vaccination should be carefully considered.Abbreviations: AEFI: Adverse events following immunization; HBV: Hepatitis B virus; Anti-HBs: Antibody against hepatitis B surface antigen; HBsAg: Hepatitis B surface antigen; APC: Antigen-presenting cell; HSCT: Hemopoietic stem cell transplantation; COVID-19: Corona Virus Disease 2019.
Collapse
Affiliation(s)
- Pengfei Deng
- Department of Immunology, Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China
| | - Tian Yang
- Department of Immunology, Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China
| | - Hua Zhang
- Department of Hematology and Oncology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fen Zhou
- Department of Hematology and Oncology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Caoyi Xue
- Department of Immunology, Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China
| | - Yi Fei
- Department of Immunology, Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China
| | - Yijin Gao
- Department of Hematology and Oncology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Béné MC, Bittencourt MDC, Chevallier P. Post-SARS-CoV-2 vaccination specific antibody decrease : Let's get the half-full glass perspective. J Infect 2021; 84:94-118. [PMID: 34332018 PMCID: PMC8318667 DOI: 10.1016/j.jinf.2021.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 01/17/2023]
Affiliation(s)
- Marie C Béné
- Hematology Biology, Nantes University Hospital, Nantes, France; CRCINA, Inserm, Nantes, France.
| | - Marcelo de Carvalho Bittencourt
- Immunology Laboratory, Nancy University Hospital, Nancy, France; CNRS UMR 7365, IMoPA, Université de Lorraine, Nancy, France
| | - Patrice Chevallier
- CRCINA, Inserm, Nantes, France; Hematology Clinic, Nantes University Hospital, Nantes, France
| |
Collapse
|
34
|
Cid R, Bolívar J. Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies. Biomolecules 2021; 11:1072. [PMID: 34439738 PMCID: PMC8394948 DOI: 10.3390/biom11081072] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.
Collapse
Affiliation(s)
- Raquel Cid
- ADL Bionatur Solutions S.A., Av. del Desarrollo Tecnológico 11, 11591 Jerez de la Frontera, Spain
| | - Jorge Bolívar
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Campus Universitario de Puerto Real, University of Cadiz, 11510 Puerto Real, Spain
| |
Collapse
|
35
|
Wørzner K, Hvannastein J, Schmidt ST, Foged C, Rosenkrands I, Pedersen GK, Christensen D. Adsorption of protein antigen to the cationic liposome adjuvant CAF®01 is required for induction of Th1 and Th17 responses but not for antibody induction. Eur J Pharm Biopharm 2021; 165:293-305. [PMID: 34044110 PMCID: PMC8212872 DOI: 10.1016/j.ejpb.2021.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/20/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022]
Abstract
The degree of antigen adsorption to adjuvants in subunit vaccines may significantly influence the immune responses they induce upon vaccination. Commonly used approaches for studying how the level of adsorption affects the induction of antigen-specific immune responses include (i) using adjuvants with different abilities to adsorb antigens, and (ii) comparing different antigens selected based on their ability to adsorb to the adjuvant. A weakness of these approaches is that not only the antigen adsorption level is varied, but also other important functional factors such as adjuvant composition and/or the B/T cell epitopes, which may affect immunogenicity. Hence, we investigated how changing the adsorption capabilities of a single antigen to an adjuvant influenced the vaccine-induced immune responses. The model antigen lysozyme, which displays a positive net charge at physiological pH due to an isoelectric point (pI) of 11, was succinylated to different extents, resulting in a reduction of the pI value to 4.4–5.9, depending on the degree of succinylation. A pronounced inverse correlation was found between the pI value of the succinylated lysozyme analogues and the degree of adsorption to a cationic liposomal adjuvant consisting of dimethyldioctadecylammonium bromide (DDA) and trehalose dibehenate (TDB) (CAF®01). Furthermore, increased adsorption to this adjuvant correlated directly with the magnitude of lysozyme-specific Th1/Th17 immune responses induced by the vaccine in mice, while there was an inverse correlation with antibody induction. However, high lysozyme-specific antibody titers were induced with an increased antigen dose, even upon vaccination with a strongly adsorbed succinylated lysozyme analogue. Hence, these data illustrate that the degree of lysozyme adsorption to CAF®01 strongly affects the quality of the resulting immune responses.
Collapse
Affiliation(s)
- Katharina Wørzner
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Jóhanna Hvannastein
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Signe Tandrup Schmidt
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Ida Rosenkrands
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Gabriel Kristian Pedersen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Dennis Christensen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| |
Collapse
|
36
|
Blunck BN, Rezende W, Piedra PA. Profile of respiratory syncytial virus prefusogenic fusion protein nanoparticle vaccine. Expert Rev Vaccines 2021; 20:351-364. [PMID: 33733995 DOI: 10.1080/14760584.2021.1903877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Respiratory Syncytial Virus (RSV) is a leading cause of acute lower respiratory infections worldwide. The RSV fusion (F) glycoprotein is a major focus of vaccine development. Despite over 60 years of research, there is no licensed vaccine for RSV. AREAS COVERED The primary focus of this review is a novel RSV-F recombinant nanoparticle vaccine from Novavax utilizing the F protein, a conserved and immunodominant surface glycoprotein. This RSV F recombinant nanoparticle vaccine adsorbed to 0.4 mg of aluminum phosphate was ultimately administered by a single intramuscular injection during the third trimester of pregnancy in an effort to induce passive immunity in newborns. Its mechanism, performance in clinical trials, and place in RSV vaccine history are discussed. EXPERT OPINION The vaccine was safe and well tolerated in pregnant women and the results suggest potential benefits with respect to other medically relevant end-point events involving RSV-associated respiratory and all-cause disease in infants. However, the RSV-F recombinant nanoparticle vaccine did not meet the pre-specified primary success criteria for efficacy against RSV-associated, medically significant lower respiratory tract infection in infants up to 90 days of life. The potential benefits to infants from maternal immunization and excellent safety profile warrant further confirmatory studies.
Collapse
Affiliation(s)
- Brittani N Blunck
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, USA
| | - Wanderson Rezende
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| |
Collapse
|
37
|
Steel RP, Bishop NC, Taylor IM. The Relationship Between Multidimensional Motivation and Endocrine-Related Responses: A Systematic Review. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2021; 16:614-638. [PMID: 33513308 PMCID: PMC8114335 DOI: 10.1177/1745691620958008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multidimensional motivational theories postulate that the type of motivation is as important as the quantity of motivation, with implications for human functioning and well-being. An extensive amount of research has explored how constructs contained within these theories relate to the activation of the endocrine system. However, research is fragmented across several theories, and determining the current state of the science is complicated. In line with contemporary trends for theoretical integration, this systematic review aims to evaluate the association between multidimensional motivational constructs and endocrine-related responses to determine which theories are commonly used and what inferences can be made. Forty-one studies were identified incorporating five distinct motivation theories and multiple endocrine-related responses. There was evidence across several theories that high-quality motivation attenuated the cortisol response in evaluative environments. There was also evidence that motivational needs for power and affiliation were associated with lower and higher levels of salivary immunoglobulin A, respectively. The need for power may play a role in increasing testosterone when winning a contest; however, this evidence was not conclusive. Overall, this review can shape the future integration of motivational theories by characterizing the nature of physiological responses to motivational processes and examining the implications for well-being.
Collapse
Affiliation(s)
| | | | - Ian M. Taylor
- Department of Sport, Exercise, and Health Sciences, Loughborough University
| |
Collapse
|
38
|
Faber E, Tshilwane SI, Kleef MV, Pretorius A. Virulent African horse sickness virus serotype 4 interferes with the innate immune response in horse peripheral blood mononuclear cells in vitro. INFECTION GENETICS AND EVOLUTION 2021; 91:104836. [PMID: 33798756 DOI: 10.1016/j.meegid.2021.104836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
African horse sickness (AHS) is caused by African horse sickness virus (AHSV), a double stranded RNA (dsRNA) virus of the genus Orbivirus, family Reoviridae. For the development of new generation AHS vaccines or antiviral treatments, it is crucial to understand the host immune response against the virus and the immune evasion strategies the virus employs. To achieve this, the current study used transcriptome analysis of RNA sequences to characterize and compare the innate immune responses activated during the attenuated AHSV serotype 4 (attAHSV4) (in vivo) and the virulent AHSV4 (virAHSV4) (in vitro) primary and secondary immune responses in horse peripheral blood mononuclear cells (PBMC) after 24 h. The pro-inflammatory cytokine and chemokine responses were negatively regulated by anti-inflammatory cytokines, whereas the parallel type I and type III IFN responses were maintained downstream of nucleic acid sensing pattern recognition receptor (PRR) signalling pathways during the attAHSV4 primary and secondary immune responses. It appeared that after translation, virAHSV4 proteins were able to interfere with the C-terminal IRF association domain (IAD)-type 1 (IAD1) containing IRFs, which inhibited the expression of type I and type III IFNs downstream of PRR signalling during the virAHSV4 primary and secondary immune responses. Viral interference resulted in an impaired innate immune response that was not able to eliminate virAHSV4-infected PBMC and gave rise to prolonged expression of pro-inflammatory cytokines and chemokines during the virAHSV4 induced primary immune response. Indicating that virAHSV4 interference with the innate immune response may give rise to an excessive inflammatory response that causes immunopathology, which could be a major contributing factor to the pathogenesis of AHS in a naïve horse. Viral interference was overcome by the fast kinetics and increased effector responses of innate immune cells due to trained innate immunity and memory T cells and B cells during the virAHSV4 secondary immune response.
Collapse
Affiliation(s)
- Erika Faber
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa; Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| | - Selaelo Ivy Tshilwane
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Mirinda Van Kleef
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa; Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Alri Pretorius
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa; Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
39
|
Jindal A, Sarkar S, Alam A. Nanomaterials-Mediated Immunomodulation for Cancer Therapeutics. Front Chem 2021; 9:629635. [PMID: 33708759 PMCID: PMC7940769 DOI: 10.3389/fchem.2021.629635] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy holds great promise in overcoming the limitations of conventional regimens for cancer therapeutics. There is growing interest among researchers and clinicians to develop novel immune-strategies for cancer diagnosis and treatment with better specificity and lesser adversity. Immunomodulation-based cancer therapies are rapidly emerging as an alternative approach that employs the host's own defense mechanisms to recognize and selectively eliminate cancerous cells. Recent advances in nanotechnology have pioneered a revolution in the field of cancer therapy. Several nanomaterials (NMs) have been utilized to surmount the challenges of conventional anti-cancer treatments like cytotoxic chemotherapy, radiation, and surgery. NMs offer a plethora of exceptional features such as a large surface area to volume ratio, effective loading, and controlled release of active drugs, tunable dimensions, and high stability. Moreover, they also possess the inherent property of interacting with living cells and altering the immune responses. However, the interaction between NMs and the immune system can give rise to unanticipated adverse reactions such as inflammation, necrosis, and hypersensitivity. Therefore, to ensure a successful and safe clinical application of immunomodulatory nanomaterials, it is imperative to acquire in-depth knowledge and a clear understanding of the complex nature of the interactions between NMs and the immune system. This review is aimed at providing an overview of the recent developments, achievements, and challenges in the application of immunomodulatory nanomaterials (iNMs) for cancer therapeutics with a focus on elucidating the mechanisms involved in the interplay between NMs and the host's immune system.
Collapse
Affiliation(s)
- Ajita Jindal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sounik Sarkar
- Flowcytometry Facility, Modern Biology Department, University of Calcutta, Kolkata, India
| | - Aftab Alam
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Clare Hall, University of Cambridge, Cambridge, United Kingdom
- Charles River Laboratories, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
40
|
Haidere MF, Ratan ZA, Nowroz S, Zaman SB, Jung YJ, Hosseinzadeh H, Cho JY. COVID-19 Vaccine: Critical Questions with Complicated Answers. Biomol Ther (Seoul) 2021; 29:1-10. [PMID: 33372165 PMCID: PMC7771841 DOI: 10.4062/biomolther.2020.178] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 has caused extensive human casualties with significant economic impacts around the globe, and has imposed new challenges on health systems worldwide. Over the past decade, SARS, Ebola, and Zika also led to significant concerns among the scientific community. Interestingly, the SARS and Zika epidemics ended before vaccine development; however, the scholarly community and the pharmaceutical companies responded very quickly at that time. Similarly, when the genetic sequence of SARSCoV-2 was revealed, global vaccine companies and scientists have stepped forward to develop a vaccine, triggering a race toward vaccine development that the whole world is relying on. Similarly, an effective and safe vaccine could play a pivotal role in eradicating COVID-19. However, few important questions regarding SARS-CoV-2 vaccine development are explored in this review.
Collapse
Affiliation(s)
| | - Zubair Ahmed Ratan
- School of Health & Society, University of Wollongong, NSW 2500, Australia
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | - Senjuti Nowroz
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Sojib Bin Zaman
- Department of Medicine, School of Clinical Sciences, Monash University, Victoria 3800, Australia
| | - You-Jung Jung
- Biological Resources Utilization Department, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | | | - Jae Youl Cho
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
41
|
Wang HP, Wang ZG, Liu SL. Current status and future trends of vaccine development against viral infection and disease. NEW J CHEM 2021. [DOI: 10.1039/d1nj00996f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper focuses on the classification and representative studies of viral vaccines and future directions of vaccine design.
Collapse
Affiliation(s)
- Hong-Peng Wang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- and School of Medicine
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- and School of Medicine
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- and School of Medicine
| |
Collapse
|
42
|
Ansell SM. Fundamentals of immunology for understanding immunotherapy for lymphoma. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:585-589. [PMID: 33275742 PMCID: PMC7727535 DOI: 10.1182/hematology.2020002537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An effective antitumor immune response in patients with lymphoma would eradicate the malignant B cells and cure the patient of the disease. This, however, does not occur, and a suboptimal antitumor response results in persistence and subsequent progression of the patient's disease. The goals of immunotherapy are therefore to restore an effective antitumor immune response by promoting immune recognition, optimizing immune activation, and supporting persistence of the immune response resulting in subsequent immunological memory. Multiple mechanisms, however, are present within the tumor microenvironment that account for an inadequate immune response. These include loss of major histocompatibility complex expression on tumor cells and subsequent inadequate antigen presentation, increased expression of immunosuppressive ligands on malignant cells, populations of immune cells with suppressive function present in the tumor, and cytokines secreted by the malignant cell or other cells in the microenvironment that promote immune exhaustion or suppress the immune response. Successful immunotherapeutic strategies are specifically addressing these issues by promoting antigen presentation, improving recognition of the malignant cell, directly activating T cells and natural killer cells, and blocking immune checkpoint signaling that would suppress the immune response. Many of these approaches have proven highly successful in patients with various subtypes of lymphoma and are now being incorporated into standard clinical practice.
Collapse
|
43
|
A novel lamprey antibody sequence to multimerize and increase the immunogenicity of recombinant viral and bacterial vaccine antigens. Vaccine 2020; 38:7905-7915. [PMID: 33153770 DOI: 10.1016/j.vaccine.2020.10.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Abstract
Hemagglutinin, the major surface protein of influenza viruses, was recombinantly expressed in eukaryotic cells as a monomer instead of its native trimer, and was only immunogenic when administered with an adjuvant [Pion et al. 2014]. In order to multimerize this antigen to increase its immunogenicity, a cysteine-rich peptide sequence found at the extreme C-terminus of lamprey variable lymphocyte receptor (VLR)-B antibodies was fused to various recombinant hemagglutinin (rHA) proteins from A and B influenza virus strains. The rHA-Lamp fusion (rHA fused to the lamprey sequence) protein was expressed in Leishmania tarentolae and Chinese hamster ovary (CHO) cells and shown to produce several multimeric forms. The multimers produced were very stable and more immunogenic in mice than monomeric rHA. The lamprey VLR-B sequence was also used to multimerize the neuraminidase (NA) of influenza viruses expressed in CHO cells. For some viral strains, the NA was expressed as a tetramer like the native viral NA form. In addition, the lamprey VLR-B sequence was fused with two surface antigens of Shigella flexneri 2a, the invasion plasmid antigen D and a double mutated soluble form of the membrane expression of the invasion plasmid antigen H namely MxiH. The fusion proteins were expressed in Escherichia coli to produce the respective multimer protein forms. The resulting proteins had similar multimeric forms as rHA-Lamp protein and were more immunogenic in mice than the monomer forms. In conclusion, the VLR-B sequence can be used to increase the immunogenicity of recombinant viral and bacterial antigens, thus negating the need for adjuvants.
Collapse
|
44
|
Ansell SM. Fundamentals of immunology for understanding immunotherapy for lymphoma. Blood Adv 2020; 4:5863-5867. [PMID: 33232478 PMCID: PMC7686892 DOI: 10.1182/bloodadvances.2020002537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/11/2020] [Indexed: 02/08/2023] Open
Abstract
An effective antitumor immune response in patients with lymphoma would eradicate the malignant B cells and cure the patient of the disease. This, however, does not occur, and a suboptimal antitumor response results in persistence and subsequent progression of the patient's disease. The goals of immunotherapy are therefore to restore an effective antitumor immune response by promoting immune recognition, optimizing immune activation, and supporting persistence of the immune response resulting in subsequent immunological memory. Multiple mechanisms, however, are present within the tumor microenvironment that account for an inadequate immune response. These include loss of major histocompatibility complex expression on tumor cells and subsequent inadequate antigen presentation, increased expression of immunosuppressive ligands on malignant cells, populations of immune cells with suppressive function present in the tumor, and cytokines secreted by the malignant cell or other cells in the microenvironment that promote immune exhaustion or suppress the immune response. Successful immunotherapeutic strategies are specifically addressing these issues by promoting antigen presentation, improving recognition of the malignant cell, directly activating T cells and natural killer cells, and blocking immune checkpoint signaling that would suppress the immune response. Many of these approaches have proven highly successful in patients with various subtypes of lymphoma and are now being incorporated into standard clinical practice.
Collapse
|
45
|
Zhang X, Zeng X, Sun Y, Wang Y, Zhang Z. Enhanced Immune Protection of Mud Crab Scylla paramamosain in Response to the Secondary Challenge by Vibrio parahaemolyticus. Front Immunol 2020; 11:565958. [PMID: 33193336 PMCID: PMC7606287 DOI: 10.3389/fimmu.2020.565958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/12/2020] [Indexed: 11/23/2022] Open
Abstract
“Immune priming” plays a vital part in the immune system of invertebrates, protecting against recurrent infections by pathogens, and can provide some ideas for the prevention and treatment of invertebrate diseases. Many invertebrates have been demonstrated recently to have immune priming, but the relevant mechanisms are not known. Expression of immune system–related genes in the hemocytes and hepatopancreas of the mud crab (Scylla paramamosain) before and after repeated stimulation with Vibrio parahaemolyticus were analyzed by real-time fluorescence quantitative polymerase chain reaction. Some molecules that may participate in the immune priming of S. paramamosain were screened out, and their possible roles in immune priming were interpreted. Crabs injected first with heat-killed V. parahaemolyticus (HkVp group) or physiologic (0.9%) saline (PS group) were rechallenged at 168 h with live V. parahaemolyticus (HkVp+Vp group and PS+Vp group, respectively). The log-rank test shows a significant difference in survival rate between the HkVp+Vp group and the other groups after the ICH (p < 0.05). Expression of genes involved in the toll-like receptor (TLR) signaling pathway and some antimicrobial peptide genes were detected. By, respectively, comparing gene quantification at different time points in hemocytes and the hepatopancreas, the molecules that may play a part in the early stage of the immune priming of S. paramamosain in the hemocytes are found to be down syndrome cell adhesion molecule (Dscam), Hyastatin, Cactus, Arasin, antilipopolysaccharide factor 3 (ALF3), ALF4, ALF5, and ALF6 as well as later acting molecules, such as Crustin, Dorsal, Pelle, and myeloid differentiation factor 88 (MyD88). The molecules that functioned throughout the entire period are TLR and Spaetzle. In the hepatopancreas, the molecules that may play a part in the early stages of immune priming are Dscam, Hyastatin, Arasin, ALF6, Pelle, Spaetzle, Dorsal and, in the later stage, ALF4. The molecules that functioned throughout the entire period are TLR, Crustin, Cactus, MyD88, ALF3, and ALF5. In summary, the immune function of S. paramamosain is enhanced after it receives the same repetitive stimulation by V. parahaemolyticus, indicating immune priming in S. paramamosain. Our study enriches research on immune priming in invertebrates and lays the foundation for further studies revealing the molecular mechanism of immune priming in crabs.
Collapse
Affiliation(s)
- Xin Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Xinyang Zeng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Yulong Sun
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yilei Wang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Marine Biotechnology of Fujian Province, College of Animal Science, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
46
|
Kheirollahpour M, Mehrabi M, Dounighi NM, Mohammadi M, Masoudi A. Nanoparticles and Vaccine Development. Pharm Nanotechnol 2020; 8:6-21. [PMID: 31647394 DOI: 10.2174/2211738507666191024162042] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/23/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
Abstract
In spite of the progress of conventional vaccines, improvements are required due to concerns about the low immunogenicity of the toxicity, instability, and the need for multiple administrations of the vaccines. To overcome the mentioned problems, nanotechnology has recently been incorporated into vaccine development. Nanotechnology increasingly plays an important role in vaccine development nanocarrier-based delivery systems that offer an opportunity to increase the cellular and humoral immune responses. The use of nanoparticles in vaccine formulations allows not only enhanced immunogenicity and stability of antigen, but also targeted delivery and slow release. Over the past decade, nanoscale size materials such as virus-like particles, liposomes, ISCOMs, polymeric, inorganic nanoparticles and emulsions have gained attention as potential delivery vehicles for vaccine antigens, which can both stabilize vaccine antigens and act as adjuvants. This advantage is attributable to the nanoscale particle size, which facilitates uptake by Antigen- Presenting Cells (APCs), then leading to efficient antigen recognition and presentation. Modifying the surfaces of nanoparticles with different targeting moieties permits the delivery of antigens to specific receptors on the cell surface, thereby stimulating selective and specific immune responses. This review provides an overview of recent advances in nanovaccinology.
Collapse
Affiliation(s)
- Mehdi Kheirollahpour
- Department of Human Vaccine and Serum, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.,Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14334-186, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Naser Mohammadpour Dounighi
- Department of Human Vaccine and Serum, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Mohammadi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Alireza Masoudi
- Department of Pharmacology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
47
|
Di Sotto A, Vitalone A, Di Giacomo S. Plant-Derived Nutraceuticals and Immune System Modulation: An Evidence-Based Overview. Vaccines (Basel) 2020; 8:E468. [PMID: 32842641 PMCID: PMC7563161 DOI: 10.3390/vaccines8030468] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Immunomodulators are agents able to affect the immune system, by boosting the immune defences to improve the body reaction against infectious or exogenous injuries, or suppressing the abnormal immune response occurring in immune disorders. Moreover, immunoadjuvants can support immune system acting on nonimmune targets, thus improving the immune response. The modulation of inflammatory pathways and microbiome can also contribute to control the immune function. Some plant-based nutraceuticals have been studied as possible immunomodulating agents due to their multiple and pleiotropic effects. Being usually more tolerable than pharmacological treatments, their adjuvant contribution is approached as a desirable nutraceutical strategy. In the present review, the up to date knowledge about the immunomodulating properties of polysaccharides, fatty acids and labdane diterpenes have been analyzed, in order to give scientific basic and clinical evidence to support their practical use. Since promising evidence in preclinical studies, limited and sometimes confusing results have been highlighted in clinical trials, likely due to low methodological quality and lacking standardization. More investigations of high quality and specificity are required to describe in depth the usefulness of these plant-derived nutraceuticals in the immune system modulation, for health promoting and disease preventing purposes.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Annabella Vitalone
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | | |
Collapse
|
48
|
Ambari AM, Setianto B, Santoso A, Radi B, Dwiputra B, Susilowati E, Tulrahmi F, Doevendans PA, Cramer MJ. Angiotensin Converting Enzyme Inhibitors (ACEIs) Decrease the Progression of Cardiac Fibrosis in Rheumatic Heart Disease Through the Inhibition of IL-33/sST2. Front Cardiovasc Med 2020; 7:115. [PMID: 32850979 PMCID: PMC7399157 DOI: 10.3389/fcvm.2020.00115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatic heart disease (RHD) is common in developing countries and poses a big medical challenge and burden. The pathogenesis of RHD is influenced by the triad of host, agent, and environment. Autoantigens generated from Group A Streptococcus (GAS) infection are captured by the resident dendritic cells (DCs) in the heart's valvular endothelium. DCs differentiate into antigen presenting cells (APC) in the valve interstices. APC induces activation of autoreactive T cells, which triggers inflammation and tissue fibrosis. Cardiac fibrosis is promoted through the activation of Mitogen activated protein kinases (MAPKs) and its downstream signaling, including its interaction with transforming growth factor-β (TGF-β) and Smad proteins. TGF-β-induced phosphorylation of Smad2 complexes with Smad3 and Smad4, and translocates into the nucleus. Angiotensin II enhances the migration, maturation, and presentation of DC. In RHD, Angiotensin II induces fibrosis via the stimulation of TGF-β, which further increases the binding of IL-33 to sST2 but not ST2L, resulting in the upregulation of Angiotensin II and progression of cardiac fibrosis. This cascade of inflammation and valvular fibrosis causes calcification and stiffening of the heart valves in RHD. Angiotensin converting enzyme inhibitors (ACEIs) inhibit Angiotensin II production, which in turn decreases TGF-β expression and the onset of overt inflammatory response. This condition leads to a reduction in the sST2 as the decoy receptor to "steal" IL-33, and IL-33 binds to ST2L and results in cardioprotection against cardiac fibrosis in the pathogenesis of RHD.
Collapse
Affiliation(s)
- Ade M. Ambari
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, National Cardiovascular Center Harapan Kita, University of Indonesia, Jakarta, Indonesia
| | - Budhi Setianto
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, National Cardiovascular Center Harapan Kita, University of Indonesia, Jakarta, Indonesia
| | - Anwar Santoso
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, National Cardiovascular Center Harapan Kita, University of Indonesia, Jakarta, Indonesia
| | - Basuni Radi
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, National Cardiovascular Center Harapan Kita, University of Indonesia, Jakarta, Indonesia
| | - Bambang Dwiputra
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, National Cardiovascular Center Harapan Kita, University of Indonesia, Jakarta, Indonesia
| | - Eliana Susilowati
- Research Assistants of Preventive Cardiology, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Fadilla Tulrahmi
- Research Assistants of Preventive Cardiology, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Pieter A. Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Cardiovascular Departement, The Netherlands Heart Institute Utrecht, Utrecht, Netherlands
| | - Maarten J. Cramer
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
49
|
Daberdaku S, Ferrari C. Antibody interface prediction with 3D Zernike descriptors and SVM. Bioinformatics 2020; 35:1870-1876. [PMID: 30395191 DOI: 10.1093/bioinformatics/bty918] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 09/21/2018] [Accepted: 11/01/2018] [Indexed: 12/23/2022] Open
Abstract
MOTIVATION Antibodies are a class of proteins capable of specifically recognizing and binding to a virtually infinite number of antigens. This binding malleability makes them the most valuable category of biopharmaceuticals for both diagnostic and therapeutic applications. The correct identification of the antigen-binding residues in the antibody is crucial for all antibody design and engineering techniques and could also help to understand the complex antigen binding mechanisms. However, the antibody-binding interface prediction field appears to be still rather underdeveloped. RESULTS We present a novel method for antibody interface prediction from their experimentally solved structures based on 3D Zernike Descriptors. Roto-translationally invariant descriptors are computed from circular patches of the antibody surface enriched with a chosen subset of physico-chemical properties from the AAindex1 amino acid index set, and are used as samples for a binary classification problem. An SVM classifier is used to distinguish interface surface patches from non-interface ones. The proposed method was shown to outperform other antigen-binding interface prediction software. AVAILABILITY AND IMPLEMENTATION Linux binaries and Python scripts are available at https://github.com/sebastiandaberdaku/AntibodyInterfacePrediction. The datasets generated and/or analyzed during the current study are available at https://doi.org/10.6084/m9.figshare.5442229. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sebastian Daberdaku
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Carlo Ferrari
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
50
|
Adam MEAE, Osman SME, Abdalrasoul DIA, Yagoup IAO, Hussein MMA, Haron MDY, Mahmoud ZIT, Ahmed AA. Echocardiography Effectiveness in Improving Diagnosis of Rheumatic Heart Disease in North Darfur: A Hospital-based Study. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2020; 000:1-8. [DOI: 10.14218/erhm.2019.00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|