1
|
Garling A, Goursat C, Seguy C, Martin P, Goman A, Nougayrède JP, Oswald É, Auvray F, Branchu P. Development of intimin-enriched outer membrane vesicles (OMVs) as a vaccine to control intestinal carriage of Enterohemorrhagic Escherichia coli. Vaccine 2025; 52:126899. [PMID: 39985970 DOI: 10.1016/j.vaccine.2025.126899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are foodborne pathogens causing severe human infections including hemorrhagic colitis and hemolytic uremic syndrome, particularly in children. Ruminants are the main reservoir of EHEC which colonize their intestinal tract through a mechanism involving the bacterial adhesin intimin. Vaccination of cattle has shown efficacy in reducing EHEC O157:H7 shedding in feces. However, most of these vaccines rely on purified proteins and/or adjuvants, making them expensive and not used by breeders. This study introduced the development of a new type of vaccine based on Outer Membrane Vesicles (OMVs) carrying the C-terminal domain of intimin (Int280). A vaccine which combines OMVs carrying luminal Int280 and OMVs displaying surface-exposed Int280 was produced using two addressing systems based on PelB peptide signal and Lpp-OmpA hybrid protein, respectively. Dot blot experiments on OMVs combined with FAS assay with bacteria confirmed the correct localization of the fusion proteins and the functionality of Lpp-OmpA-Int280, respectively. As a proof of concept, the efficiency of the mixed vaccine was tested in a mouse model using the pathogen Citrobacter rodentium which shares a similar intimin-based adhesion mechanism with EHEC. Intraperitoneal vaccination of mice, at two-week intervals with 1 μg of the mixture of OMV-Int280, elicited a strong anti-intimin IgG response. Interestingly, we observed a shortened C. rodentium fecal shedding duration in immunized mice compared to the control unvaccinated group, with significant reduction of C. rodentium colonization from day 14 (q < 0.0001) to day 18 (q = 0.0068). This OMV-Int280 vaccine therefore represents a promising candidate for the control of EHEC intestinal carriage and fecal shedding in ruminants.
Collapse
Affiliation(s)
- Asja Garling
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Cécile Goursat
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Carine Seguy
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Patricia Martin
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Audrey Goman
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | | | - Éric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France; CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Frédéric Auvray
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Priscilla Branchu
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.
| |
Collapse
|
2
|
Ramírez H, Vilte DA, Hozbor D, Zurita E, Bottero D, Casabonne MC, Cataldi ÁA, Wigdorovitz A, Larzábal M. A Novel Vaccine for Bovine Diarrhea Complex Utilizing Recombinant Enterotoxigenic Escherichia coli and Salmonella Expressing Surface-Displayed Chimeric Antigens from Enterohemorrhagic Escherichia coli O157:H7. Vaccines (Basel) 2025; 13:124. [PMID: 40006671 PMCID: PMC11860786 DOI: 10.3390/vaccines13020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Enterohemorrhagic Escherichia coli (EHEC) O157:H7, a zoonotic pathogen primarily found in cattle, causes Hemolytic Uremic Syndrome (HUS) in humans, often through contaminated food. Its Type Three Secretion System (T3SS) facilitates gut colonization. In contrast, neonatal calf diarrhea (NCD) is mainly caused by pathogens like enterotoxigenic Escherichia coli (ETEC), Salmonella spp., Bovine Coronavirus (BCoV), and Bovine Rotavirus type A (BRoVA). This study engineered a chimeric protein combining EspB and Int280γ, two T3SS components, expressed in the membranes of Salmonella Dublin and ETEC. METHODS Immune responses in vaccinated mice and guinea pigs were assessed through ELISA assays. RESULTS Successful membrane anchorage and stability of the chimera were confirmed. Immune evaluations showed no enhancement from combining recombinant bacteria, indicating either bacterium suffices in a single formulation. Chimeric expression yielded immunogenicity equivalent to 10 µg of recombinant protein, with similar antibody titers. IgG1/IgG2a levels and Th1, Th2, and Th17 markers indicated a mixed immune response, providing broad humoral and cellular protection. Responses to BCoV, BRoVA, ETEC, and Salmonella antigens remained strong and did not interfere with chimera-specific responses, potentially boosting NCD vaccine efficacy. CONCLUSIONS The chimera demonstrated robust immunogenicity, supporting its potential as a viable vaccine candidate against EHEC O157:H7. This approach could enhance NCD vaccine valency by offering broader protection against calf diarrhea while reducing HUS transmission risks to humans.
Collapse
Affiliation(s)
| | - Daniel A. Vilte
- Instituto de Patobiología Veterinaria (IPVet) INTA-CONICET, Hurlingham B1686, Argentina
| | - Daniela Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata B1900, Argentina
| | - Eugenia Zurita
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata B1900, Argentina
| | - Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata B1900, Argentina
| | - María C. Casabonne
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Hurlingham B1686, Argentina
| | - Ángel A. Cataldi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Hurlingham B1686, Argentina
| | - Andrés Wigdorovitz
- Bioinnovo S.A., Hurlingham B1686, Argentina; (H.R.)
- INCUINTA Instituto de Virología e Innovaciones Tecnológicas (IVIT) INTA-CONICET, Hurlingham B1686, Argentina
| | - Mariano Larzábal
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Hurlingham B1686, Argentina
| |
Collapse
|
3
|
Samiei H, Nazarian S, Hajizade A, Kordbacheh E. In silico design, production and immunization evaluation of a recombinant bivalent fusion protein candidate vaccine against E. coli O157:H7. Int Immunopharmacol 2023; 114:109464. [PMID: 36450206 DOI: 10.1016/j.intimp.2022.109464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/20/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022]
Abstract
In silico techniques are highly suited for both the discovery of new and development of available vaccines. Escherichia coli O157: H7, a main cause of food poisoning can infect humans through the consumption of contaminated water or food. Vaccination is a choice strategy to combat the bacterium. In the present study, we designed, expressed and purified a chimeric protein comprising two antigens of Escherichia coli O157: H7, including intimin and flagellin proteins, as a vaccine candidate and evaluated its immunization ability in mice. Thein silicoresults showed that the proposed antigen has a high antigenicity and conformation to be used as a potent vaccine candidate. The protein was successfully expressed in E. coli expression system with a proper level of expression (0/8g/L). Immunization evaluation showed that the protein is able to evoke the mice's humoral immunity and can confer a protective immunity against E. coli O157:H7, so that 80 % of the immunized animals were survived following the intraperitoneal injection of 100 LD50 of the live bacteria. Shedding analysis also showed the protectivity power of the protein. Bacterial excretion in control animals remained stable at about 108 CFU after 15 days, while the excreted bacteria in the feces of immunized mice's decreased to about 102 after the same time. According to the results, the proposed protein is able to stimulate the immune responses of mice and protect them against E. coli O157:H7.
Collapse
Affiliation(s)
- Hossein Samiei
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences Mashhad, Iran
| | - Shahram Nazarian
- (b)Faculty of Science, Department of Biology, Imam Hossein University, Tehran, Iran.
| | - Abass Hajizade
- (b)Faculty of Science, Department of Biology, Imam Hossein University, Tehran, Iran.
| | - Emad Kordbacheh
- (b)Faculty of Science, Department of Biology, Imam Hossein University, Tehran, Iran
| |
Collapse
|
4
|
Hotinger JA, Morris ST, May AE. The Case against Antibiotics and for Anti-Virulence Therapeutics. Microorganisms 2021; 9:2049. [PMID: 34683370 PMCID: PMC8537500 DOI: 10.3390/microorganisms9102049] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
Although antibiotics have been indispensable in the advancement of modern medicine, there are downsides to their use. Growing resistance to broad-spectrum antibiotics is leading to an epidemic of infections untreatable by first-line therapies. Resistance is exacerbated by antibiotics used as growth factors in livestock, over-prescribing by doctors, and poor treatment adherence by patients. This generates populations of resistant bacteria that can then spread resistance genes horizontally to other bacterial species, including commensals. Furthermore, even when antibiotics are used appropriately, they harm commensal bacteria leading to increased secondary infection risk. Effective antibiotic treatment can induce bacterial survival tactics, such as toxin release and increasing resistance gene transfer. These problems highlight the need for new approaches to treating bacterial infection. Current solutions include combination therapies, narrow-spectrum therapeutics, and antibiotic stewardship programs. These mediate the issues but do not address their root cause. One emerging solution to these problems is anti-virulence treatment: preventing bacterial pathogenesis instead of using bactericidal agents. In this review, we discuss select examples of potential anti-virulence targets and strategies that could be developed into bacterial infection treatments: the bacterial type III secretion system, quorum sensing, and liposomes.
Collapse
Affiliation(s)
| | | | - Aaron E. May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23219, USA; (J.A.H.); (S.T.M.)
| |
Collapse
|
5
|
Early immune innate hallmarks and microbiome changes across the gut during Escherichia coli O157: H7 infection in cattle. Sci Rep 2020; 10:21535. [PMID: 33299023 PMCID: PMC7726576 DOI: 10.1038/s41598-020-78752-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
The zoonotic enterohemorrhagic Escherichia coli (EHEC) O157: H7 bacterium causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS) in humans. Cattle are primary reservoirs and EHEC O157: H7; the bacteria predominately inhabit the colon and recto-anal junctions (RAJ). The early innate immune reactions in the infected gut are critical in the pathogenesis of EHEC O157: H7. In this study, calves orally inoculated with EHEC O157: H7 showed infiltration of neutrophils in the lamina propria of ileum and RAJ at 7 and 14 days post-infection. Infected calves had altered mucin layer and mast cell populations across small and large intestines. There were differential transcription expressions of key bovine β defensins, tracheal antimicrobial peptide (TAP) in the ileum, and lingual antimicrobial peptide (LAP) in RAJ. The main Gram-negative bacterial/LPS signaling Toll-Like receptor 4 (TLR4) was downregulated in RAJ. Intestinal infection with EHEC O157: H7 impacted the gut bacterial communities and influenced the relative abundance of Negativibacillus and Erysipelotrichaceae in mucosa-associated bacteria in the rectum. Thus, innate immunity in the gut of calves showed unique characteristics during infection with EHEC O157: H7, which occurred in the absence of major clinical manifestations but denoted an active immunological niche.
Collapse
|
6
|
Menge C. The Role of Escherichia coli Shiga Toxins in STEC Colonization of Cattle. Toxins (Basel) 2020; 12:toxins12090607. [PMID: 32967277 PMCID: PMC7551371 DOI: 10.3390/toxins12090607] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/20/2022] Open
Abstract
Many cattle are persistently colonized with Shiga toxin-producing Escherichia coli (STEC) and represent a major source of human infections with human-pathogenic STEC strains (syn. enterohemorrhagic E. coli (EHEC)). Intervention strategies most effectively protecting humans best aim at the limitation of bovine STEC shedding. Mechanisms enabling STEC to persist in cattle are only partialy understood. Cattle were long believed to resist the detrimental effects of Shiga toxins (Stxs), potent cytotoxins acting as principal virulence factors in the pathogenesis of human EHEC-associated diseases. However, work by different groups, summarized in this review, has provided substantial evidence that different types of target cells for Stxs exist in cattle. Peripheral and intestinal lymphocytes express the Stx receptor globotriaosylceramide (Gb3syn. CD77) in vitro and in vivo in an activation-dependent fashion with Stx-binding isoforms expressed predominantly at early stages of the activation process. Subpopulations of colonic epithelial cells and macrophage-like cells, residing in the bovine mucosa in proximity to STEC colonies, are also targeted by Stxs. STEC-inoculated calves are depressed in mounting appropriate cellular immune responses which can be overcome by vaccination of the animals against Stxs early in life before encountering STEC. Considering Stx target cells and the resulting effects of Stxs in cattle, which significantly differ from effects implicated in human disease, may open promising opportunities to improve existing yet insufficient measures to limit STEC carriage and shedding by the principal reservoir host.
Collapse
Affiliation(s)
- Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, D-07743 Jena, Germany
| |
Collapse
|
7
|
The potential for vaccines against scour worms of small ruminants. Int J Parasitol 2020; 50:533-553. [PMID: 32569640 DOI: 10.1016/j.ijpara.2020.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023]
Abstract
This review addresses the research landscape regarding vaccines against scour worms, particularly Trichostrongylus spp. and Teladorsagia circumcincta. The inability of past research to deliver scour-worm vaccines with reliable and reproducible efficacy has been due in part to gaps in knowledge concerning: (i) host-parasite interactions leading to development of type-2 immunity, (ii) definition of an optimal suite of parasite antigens, and (iii) rational formulation and administration to induce protective immunity against gastrointestinal nematodes (GIN) at the site of infestation. Recent 'omics' developments enable more systematic analyses. GIN genomes are reaching completion, facilitating "reverse vaccinology" approaches that have been used successfully for the Rhipicephalus australis vaccine for cattle tick, while methods for gene silencing and editing in GIN enable identification and validation of potential vaccine antigens. We envisage that any efficacious scour worm vaccine(s) would be adopted similarly to "Barbervax™" within integrated parasite management schemes. Vaccines would therefore effectively parallel the use of resistant animals, and reduce the frequency of drenching and pasture contamination. These aspects of integration, efficacy and operation require updated models and validation in the field. The conclusion of this review outlines an approach to facilitate an integrated research program.
Collapse
|
8
|
Heterologous expression of Intimin and IpaB fusion protein in Lactococcus lactis and its mucosal delivery elicit protection against pathogenicity of Escherichia coli O157 and Shigella flexneri in a murine model. Int Immunopharmacol 2020; 85:106617. [PMID: 32464569 DOI: 10.1016/j.intimp.2020.106617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022]
Abstract
Escherichia coli O157:H7 and Shigella flexneri are the predominant diarrhoeal pathogens and those strains producing Shiga toxins cause life-threatening sequelae including hemolytic uremic syndrome (HUS) upon their entry into the host. Intimate adherence of E. coli O157 and invasion of S. flexneri in the host intestinal epithelial cells is mainly mediated by Intimin and IpaB proteins, respectively. In this study, we have synthesized chimera of immunodominant regions of Intimin (eae) and IpaB (ipaB) designated as EI and expressed it in Lactococcus lactis (LL-EI) to develop a combinatorial oral vaccine candidate. Immune parameters and protective efficacy of orally administered LL-EI were assessed in the murine model. Significant EI-specific serum IgG, IgA, and fecal IgA antibody titer were observed in the LL-EI group. Considerable increase in EI-specific splenocyte proliferation and a concurrent upregulation of both Th1 and Th2 cytokines was observed in LL-EI immunized mice. Flow cytometry analysis also revealed a significant increase in CD4 and CD8 cell counts in LL-EI immunized group compared to PBS, LL control group.In vitro studies using LL-EI immunized mice sera showed substantial protection against bacterial adhesion and invasion caused by E. coli O157 and Shigella flexneri¸ respectively. LL-EI immunized group challenged with E. coli O157 ceased fecal shedding within 6 days, and mice challenged with S. flexneri showed 93% survival with minimal bacterial load in the lungs. Our results indicate that LL-EI immunization elicits systemic, mucosal and cell-mediated immune responses, and can be a promising candidate for oral vaccine development against these pathogens.
Collapse
|
9
|
Mir RA, Schaut RG, Allen HK, Looft T, Loving CL, Kudva IT, Sharma VK. Cattle intestinal microbiota shifts following Escherichia coli O157:H7 vaccination and colonization. PLoS One 2019; 14:e0226099. [PMID: 31805148 PMCID: PMC6894827 DOI: 10.1371/journal.pone.0226099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022] Open
Abstract
Vaccination-induced Escherichia coli O157:H7-specific immune responses have been shown to reduce E. coli O157:H7 shedding in cattle. Although E. coli O157:H7 colonization is correlated with perturbations in intestinal microbial diversity, it is not yet known whether vaccination against E. coli O157:H7 could cause shifts in bovine intestinal microbiota. To understand the impact of E. coli O157:H7 vaccination and colonization on intestinal microbial diversity, cattle were vaccinated with two doses of different E. coli O157:H7 vaccine formulations. Six weeks post-vaccination, the two vaccinated groups (Vx-Ch) and one non-vaccinated group (NonVx-Ch) were orally challenged with E. coli O157:H7. Another group was neither vaccinated nor challenged (NonVx-NonCh). Fecal microbiota analysis over a 30-day period indicated a significant (FDR corrected, p <0.05) association of bacterial community structure with vaccination until E. coli O157:H7 challenge. Shannon diversity index and species richness were significantly lower in vaccinated compared to non-vaccinated groups after E. coli O157:H7 challenge (p < 0.05). The Firmicutes:Bacteroidetes ratio (p > 0.05) was not associated with vaccination but the relative abundance of Proteobacteria was significantly lower (p < 0.05) in vaccinated calves after E. coli O157:H7 challenge. Similarly, Vx-Ch calves had higher relative abundance of Paeniclostridium spp. and Christenellaceae R7 group while Campylobacter spp., and Sutterella spp. were more abundant in NonVx-Ch group post-E. coli O157:H7 challenge. Only Vx-Ch calves had significantly higher (p < 0.001) E. coli O157:H7-specific serum IgG but no detectable E. coli O157:H7-specific IgA. However, E. coli O157:H7-specific IL-10-producing T cells were detected in vaccinated animals prior to challenge, but IFN-γ-producing T cells were not detected. Neither E. coli O157:H7-specific IgG nor IgA were detected in blood or feces, respectively, of NonVx-Ch and NonVx-NonCh groups prior to or post vaccinations. Both Vx-Ch and NonVx-Ch animals shed detectable levels of challenge strain during the course of the study. Despite the lack of protection with the vaccine formulations there were detectable shifts in the microbiota of vaccinated animals before and after challenge with E. coli O157:H7.
Collapse
Affiliation(s)
- Raies A. Mir
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, United States of America
- Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN, United States of America
| | - Robert G. Schaut
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, United States of America
- Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN, United States of America
| | - Heather K. Allen
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, United States of America
| | - Torey Looft
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, United States of America
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, United States of America
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, United States of America
- * E-mail: (VKS); (ITK)
| | - Vijay K. Sharma
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, United States of America
- * E-mail: (VKS); (ITK)
| |
Collapse
|
10
|
Schaut RG, Boggiatto PM, Loving CL, Sharma VK. Cellular and Mucosal Immune Responses Following Vaccination with Inactivated Mutant of Escherichia coli O157:H7. Sci Rep 2019; 9:6401. [PMID: 31024031 PMCID: PMC6483982 DOI: 10.1038/s41598-019-42861-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Shiga toxin-producing Escherichia coli O157:H7 (O157) can cause mild to severe gastrointestinal disease in humans. Cattle are the primary reservoir for O157, which colonizes the intestinal tract without inducing any overt clinical symptoms. Parenteral vaccination can reduce O157 shedding in cattle after challenge and limit zoonotic transmission to humans, although the impact of vaccination and vaccine formulation on cellular and mucosal immune responses are undetermined. To better characterize the cattle immune response to O157 vaccination, cattle were vaccinated with either water-in-oil-adjuvanted, formalin-inactivated hha deletion mutant of Shiga toxin 2 negative (stx2-) O157 (Adj-Vac); non-adjuvanted (NoAdj-Vac); or non-vaccinated (NoAdj-NoVac) and peripheral T cell and mucosal antibody responses assessed. Cattle in Adj-Vac group had a higher percentage of O157-specific IFNγ producing CD4+ and γδ+ T cells in recall assays compared to the NoAdj-Vac group. Furthermore, O157-specific IgA levels detected in feces of the Adj-Vac group were significantly lower in NoAdj-Vac group. Extracts prepared only from Adj-Vac group feces blocked O157 adherence to epithelial cells. Taken together, these data suggest parenteral administration of adjuvanted, inactivated whole-cell vaccines for O157 can induce O157-specific cellular and mucosal immune responses that may be an important consideration for a successful vaccination scheme.
Collapse
Affiliation(s)
- Robert G Schaut
- USDA-ARS, National Animal Disease Center, Ames, IA, USA.,Food Safety and Enteric Pathogens Research Unit, Ames, IA, USA.,Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN, USA
| | - Paola M Boggiatto
- USDA-ARS, National Animal Disease Center, Ames, IA, USA.,Infectious Bacterial Diseases Research Unit, Ames, IA, USA
| | - Crystal L Loving
- USDA-ARS, National Animal Disease Center, Ames, IA, USA.,Food Safety and Enteric Pathogens Research Unit, Ames, IA, USA
| | - Vijay K Sharma
- USDA-ARS, National Animal Disease Center, Ames, IA, USA. .,Food Safety and Enteric Pathogens Research Unit, Ames, IA, USA.
| |
Collapse
|
11
|
Shekar A, Ramlal S, Jeyabalaji JK, Sripathy MH. Intranasal co-administration of recombinant active fragment of Zonula occludens toxin and truncated recombinant EspB triggers potent systemic, mucosal immune responses and reduces span of E. coli O157:H7 fecal shedding in BALB/c mice. Med Microbiol Immunol 2019; 208:89-100. [PMID: 30209565 DOI: 10.1007/s00430-018-0559-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
Abstract
Escherichia coli O157:H7 with its traits such as intestinal colonization and fecal-oral route of transmission demands mucosal vaccine development. E. coli secreted protein B (EspB) is one of the key type III secretory system (TTSS) targets for mucosal candidate vaccine due to its indispensable role in the pathogenesis of E. coli O157:H7. However, mucosally administered recombinant proteins have low immunogenicity which could be overcome by the use of mucosal adjuvants. The quest for safe, potent mucosal adjuvant has recognized ΔG fragment of Zonula occludens toxin of Vibrio cholerae with such properties. ΔG enhances mucosal permeability via the paracellular route by altering epithelial tight junction structure in a reversible, ephemeral and non-toxic manner. Therefore, we tested whether recombinant ΔG intranasally co-administered with truncated EspB (EspB + ΔG) could serve as an effective mucosal adjuvant. Results showed that EspB + ΔG group induced higher systemic IgG and mucosal IgA than EspB alone. Moreover, EspB alone developed Th2 type response with IgG1/IgG2a ratio (1.64) and IL-4, IL-10 cytokines whereas that of EspB + ΔG group generated mixed Th1/Th2 type immune response evident from IgG1/IgG2a ratio (1.17) as well as IL-4, IL-10 and IFN-γ cytokine levels compared to control. Sera of EspB + ΔG group inhibited TTSS mediated haemolysis of murine RBCs more effectively compared to EspB, control group and sera of both EspB + ΔG, EspB group resulted in similar levels of efficacious reduction in E. coli O157:H7 adherence to Caco-2 cells compared to control. Moreover, vaccination with EspB + ΔG resulted in significant reduction in E. coli O157:H7 fecal shedding compared to EspB and control group in experimentally challenged streptomycin-treated mice. These results demonstrate mucosal adjuvanticity of ΔG co-administered with EspB in enhancing overall immunogenicity to reduce E. coli O157:H7 shedding.
Collapse
Affiliation(s)
- Aravind Shekar
- Department of Microbiology, Defence Food Research Laboratory, Siddartha Nagar, Mysuru, Karnataka State, 570011, India
| | - Shylaja Ramlal
- Department of Microbiology, Defence Food Research Laboratory, Siddartha Nagar, Mysuru, Karnataka State, 570011, India
| | - Joseph Kingston Jeyabalaji
- Department of Microbiology, Defence Food Research Laboratory, Siddartha Nagar, Mysuru, Karnataka State, 570011, India
| | - Murali Harishchandra Sripathy
- Department of Microbiology, Defence Food Research Laboratory, Siddartha Nagar, Mysuru, Karnataka State, 570011, India.
- , RCE Layout, Bogadi 2nd stage, Mysuru, Karnataka, 570026, India.
| |
Collapse
|
12
|
Da Silva WM, Bei J, Amigo N, Valacco MP, Amadio A, Zhang Q, Wu X, Yu T, Larzabal M, Chen Z, Cataldi A. Quantification of enterohemorrhagic Escherichia coli O157:H7 protein abundance by high-throughput proteome. PLoS One 2018; 13:e0208520. [PMID: 30596662 PMCID: PMC6312284 DOI: 10.1371/journal.pone.0208520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a human pathogen responsible for diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS). To promote a comprehensive insight into the molecular basis of EHEC O157:H7 physiology and pathogenesis, the combined proteome of EHEC O157:H7 strains, Clade 8 and Clade 6 isolated from cattle in Argentina, and the standard EDL933 (clade 3) strain has been analyzed. From shotgun proteomic analysis a total of 2,644 non-redundant proteins of EHEC O157:H7 were identified, which correspond approximately 47% of the predicted proteome of this pathogen. Normalized spectrum abundance factor analysis was performed to estimate the protein abundance. According this analysis, 50 proteins were detected as the most abundant of EHEC O157:H7 proteome. COG analysis showed that the majority of the most abundant proteins are associated with translation processes. A KEGG enrichment analysis revealed that Glycolysis / Gluconeogenesis was the most significant pathway. On the other hand, the less abundant detected proteins are those related to DNA processes, cell respiration and prophage. Among the proteins that composed the Type III Secretion System, the most abundant protein was EspA. Altogether, the results show a subset of important proteins that contribute to physiology and pathogenicity of EHEC O157:H7.
Collapse
Affiliation(s)
- Wanderson Marques Da Silva
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
| | - Jinlong Bei
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Natalia Amigo
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
| | - María Pía Valacco
- CEQUIBIEM (Mass Spectrometry Facility), Faculty of Exact and Natural Sciences, University of Buenos Aires and CONICET (National Research Council), Buenos Aires, Argentina
| | - Ariel Amadio
- Rafaela Experimental Station, National Institute of Agricultural Technology, Rafaela, Santa Fe, Argentina
| | - Qi Zhang
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Xiuju Wu
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Ting Yu
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Mariano Larzabal
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
| | - Zhuang Chen
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Angel Cataldi
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
13
|
Fingermann M, Avila L, De Marco MB, Vázquez L, Di Biase DN, Müller AV, Lescano M, Dokmetjian JC, Fernández Castillo S, Pérez Quiñoy JL. OMV-based vaccine formulations against Shiga toxin producing Escherichia coli strains are both protective in mice and immunogenic in calves. Hum Vaccin Immunother 2018; 14:2208-2213. [PMID: 29923791 PMCID: PMC6183318 DOI: 10.1080/21645515.2018.1490381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strains of Shiga toxin-producing Escherichia coli (STEC) can cause the severe Hemolytic Uremic Syndrome (HUS). Shiga toxins are protein toxins that bind and kill microvascular cells, damaging vital organs. No specific therapeutics or vaccines have been licensed for use in humans yet. The most common route of infection is by consumption of dairy or farm products contaminated with STEC. Domestic cattle colonized by STEC strains represent the main reservoir, and thus a source of contamination. Outer Membrane Vesicles (OMV) obtained after detergent treatment of gram-negative bacteria have been used over the past decades for producing many licensed vaccines. These nanoparticles are not only multi-antigenic in nature but also potent immunopotentiators and immunomodulators. Formulations based on chemical-inactivated OMV (OMVi) obtained from a virulent STEC strain (O157:H7 serotype) were found to protect against pathogenicity in a murine model and to be immunogenic in calves. These initial studies suggest that STEC-derived OMV has a potential for the formulation of both human and veterinary vaccines.
Collapse
Affiliation(s)
| | - Lucía Avila
- a INPB, ANLIS "Dr. Carlos G. Malbrán" , Buenos Aires , Argentina
| | | | - Luciana Vázquez
- b UOCCB, ANLIS "Dr. Carlos G. Malbrán" , Buenos Aires , Argentina
| | | | | | - Mirta Lescano
- a INPB, ANLIS "Dr. Carlos G. Malbrán" , Buenos Aires , Argentina
| | | | | | | |
Collapse
|
14
|
Martorelli L, Garimano N, Fiorentino GA, Vilte DA, Garbaccio SG, Barth SA, Menge C, Ibarra C, Palermo MS, Cataldi A. Efficacy of a recombinant Intimin, EspB and Shiga toxin 2B vaccine in calves experimentally challenged with Escherichia coli O157:H7. Vaccine 2018; 36:3949-3959. [PMID: 29807709 DOI: 10.1016/j.vaccine.2018.05.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022]
Abstract
Escherichia coli O157:H7 is a zoonotic pathogen of global importance and the serotype of Shiga toxin-producing E.coli (STEC) most frequently associated with Hemolytic Uremic Syndrome (HUS) in humans. The main STEC reservoir is cattle. Vaccination of calves with the carboxy-terminal fraction of Intimin γ (IntC280) and EspB can reduce E.coli O157:H7 fecal shedding after experimental challenge. Shiga toxin (Stx) exerts local immunosuppressive effects in the bovine intestine and Stx2B fused to Brucella lumazine synthase (BLS-Stx2B) induces Stx2-neutralizing antibodies. To determine if an immune response against Stx could improve a vaccine's effect on fecal shedding, groups of calves were immunized with EspB + IntC280, with EspB + IntC280 + BLS-Stx2B, or kept as controls. At 24 days post vaccination calves were challenged with E.coli O157:H7. Shedding of E.coli O157:H7 was assessed in recto-anal mucosal swabs by direct plating and enrichment followed by immunomagnetic separation and multiplex PCR. Calves were euthanized 15 days after the challenge and intestinal segments were obtained to assess mucosal antibodies. Vaccination induced a significant increase of IntC280 and EspB specific antibodies in serum and intestinal mucosa in both vaccinated groups. Antibodies against Stx2B were detected in serum and intestinal mucosa of animals vaccinated with 3 antigens. Sera and intestinal homogenates were able to neutralize Stx2 verocytotoxicity compared to the control and the 2-antigens vaccinated group. Both vaccines reduced E.coli O157:H7 shedding compared to the control group. The addition of Stx2B to the vaccine formulation did not result in a superior level of protection compared to the one conferred by IntC280 and EspB alone. It remains to be determined if the inclusion of Stx2B in the vaccine alters E.coli O157:H7 shedding patterns in the long term and after recurrent low dose exposure as occurring in cattle herds.
Collapse
Affiliation(s)
- Luisina Martorelli
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Nicolás Garimano
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela A Fiorentino
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Daniel A Vilte
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Sergio G Garbaccio
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Stefanie A Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marina S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Angel Cataldi
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina.
| |
Collapse
|
15
|
Immunization of pregnant cows with Shiga toxin-2 induces high levels of specific colostral antibodies and lactoferrin able to neutralize E. coli O157:H7 pathogenicity. Vaccine 2018; 36:1728-1735. [DOI: 10.1016/j.vaccine.2018.02.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/30/2018] [Accepted: 02/15/2018] [Indexed: 12/24/2022]
|
16
|
1,25-Dihydroxyvitamin D3 modulates the phenotype and function of Monocyte derived dendritic cells in cattle. BMC Vet Res 2017; 13:390. [PMID: 29237505 PMCID: PMC5729451 DOI: 10.1186/s12917-017-1309-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023] Open
Abstract
Background The active form of the vitamin D3, 1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) has been shown to have major effects not only on physiological processes but also on the regulation of the immune system of vertebrates. Dendritic cells are specialised antigen presenting cells which are in charge of the initiation of T-cell dependant immune responses and as such are key regulators of responses towards pathogens. In this study we set out to evaluate the effects of 1,25-(OH)2D3 on the phenotype of cattle monocyte-derived dendritic cells (MoDCs) and how the conditioning with this vitamin affects the function of these myeloid cells. Results MoDCs were generated from CD14+ monocytes with bovine IL-4 and GM-CSF with or without 1,25-(OH)2D3 supplementation for 10 days. Vitamin D conditioned MoDCs showed a reduced expression of co-stimulatory and antigen presenting molecules, as well as a reduced capability of endocytose ovalbumin. Furthermore, the capacity of MoDCs to induce proliferation in an allogeneic mixed leukocyte reaction was abolished when MoDCs were generated in presence of 1,25-(OH)2D3. LPS induced maturation of 1,25-(OH)2D3conditioned MoDCs resulted in lower secretion of IL-12 and higher IL-10 than that observed in MoDCs. Conclusions The typical immunotolerant phenotype observed in cattle DCs after exposure to 1,25-(OH)2D3 has a significant effect on the functionality of these immune cells, inhibiting the T-cell stimulatory capacity of MoDCs. This could have profound implications on how the bovine immune system deals with pathogens, particularly in diseases such as tuberculosis or paratuberculosis.
Collapse
|
17
|
Martorelli L, Albanese A, Vilte D, Cantet R, Bentancor A, Zolezzi G, Chinen I, Ibarra C, Rivas M, Mercado EC, Cataldi A. Shiga toxin-producing Escherichia coli (STEC) O22:H8 isolated from cattle reduces E. coli O157:H7 adherence in vitro and in vivo. Vet Microbiol 2017; 208:8-17. [PMID: 28888654 DOI: 10.1016/j.vetmic.2017.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 01/05/2023]
Abstract
PROBLEM ADDRESSED Shiga toxin-producing Escherichia coli (STEC) are a group of bacteria responsible for food-associated diseases. Clinical features include a wide range of symptoms such as diarrhea, hemorrhagic colitis and the hemolytic uremic syndrome (HUS), a life-threatening condition. OBJECTIVE Our group has observed that animals naturally colonized with STEC strains of unknown serotype were not efficiently colonized with E. coli O157:H7 after experimental infection. In order to assess the basis of the interference, three STEC strains were isolated from STEC persistently-colonized healthy cattle from a dairy farm in Buenos Aires, Argentina. METHODS AND RESULTS The three isolated strains are E. coli O22:H8 and carry the stx1 and stx2d genes. The activatable activity of Stx2d was demonstrated in vitro. The three strains carry the adhesins iha, ehaA and lpfO113. E. coli O22:H8 formed stronger biofilms in abiotic surface than E. coli O157:H7 (eae+, stx2+) and displayed a more adherent phenotype in vitro towards HeLa cells. Furthermore, when both serotypes were cultured together O22:H8 could reduce O157:H7 adherence in vitro. When calves were intragastrically pre-challenged with 108 CFU of a mixture of the three STEC strains and two days later challenged with the same dose of the strain E. coli O157:H7 438/99, the shedding of the pathogen was significantly reduced. CONCLUSIONS These results suggest that E. coli O22:H8, a serotype rarely associated with human illness, might compete with O157:H7 at the bovine recto-anal junction, making non-O157 carrying-calves less susceptible to O157:H7 colonization and shedding of the bacteria to the environment.
Collapse
Affiliation(s)
- L Martorelli
- Instituto de Patobiología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham 1686, Argentina
| | - A Albanese
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - D Vilte
- Instituto de Patobiología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham 1686, Argentina
| | - R Cantet
- Facultad de Agronomía, Universidad de Buenos Aires-CONICET, Buenos Aires 1427, Argentina
| | - A Bentancor
- Cátedra de Microbiología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires 1427, Argentina
| | - G Zolezzi
- Servicio Fisiopatogenia, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires 1282, Argentina
| | - I Chinen
- Servicio Fisiopatogenia, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires 1282, Argentina
| | - C Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - M Rivas
- Servicio Fisiopatogenia, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires 1282, Argentina
| | - E C Mercado
- Instituto de Patobiología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham 1686, Argentina
| | - A Cataldi
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham 1686, Argentina.
| |
Collapse
|
18
|
Caetano BA, Rocha LB, Carvalho E, Piazza RMF, Luz D. Immunogenic Domains and Secondary Structure of Escherichia coli Recombinant Secreted Protein Escherichia coli-Secreted Protein B. Front Immunol 2017; 8:477. [PMID: 28484467 PMCID: PMC5402224 DOI: 10.3389/fimmu.2017.00477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/05/2017] [Indexed: 11/24/2022] Open
Abstract
Several pathogenic bacteria are able to induce the attaching and effacing (A/E) lesion. The A/E lesion is caused by effector proteins, such as Escherichia coli-secreted protein B (EspB), responsible together with Escherichia coli-secreted protein D for forming a pore structure on the host cell, which allows the translocation of effector proteins. Different variants of this protein can be found in E. coli strains, and during natural infection or when this protein is injected, this leads to variant-specific production of antibodies, which may not be able to recognize other variants of this bacterial protein. Herein, we describe the production of a hybrid recombinant EspB toxin that comprises all known variants of this protein. This recombinant protein could be useful as an antigen for the production of antibodies with broad-range detection of EspB-bearing bacteria, or as an antigen that could be used in vaccine formulation to generate antibodies against different EspB variants, thereby increasing immunization potential. In addition, the recombinant protein allowed us to analyze its secondary structure, to propose the immunogenic regions of EspB variants, and also to characterize anti-EspB antibodies. Our results suggest that this hybrid protein or a protein composed of the conserved immunogenic regions could be used for a variety of clinical applications.
Collapse
Affiliation(s)
- Bruna Alves Caetano
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - Eneas Carvalho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Novinrooz A, Zahraei Salehi T, Firouzi R, Arabshahi S, Derakhshandeh A. In-silico design, expression, and purification of novel chimeric Escherichia coli O157:H7 OmpA fused to LTB protein in Escherichia coli. PLoS One 2017; 12:e0173761. [PMID: 28296951 PMCID: PMC5351874 DOI: 10.1371/journal.pone.0173761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/27/2017] [Indexed: 01/03/2023] Open
Abstract
E. coli O157:H7, one of the major EHEC serotypes, is capable of developing bloody diarrhea, hemorrhagic colitis (HC), and fatal hemolytic uremic syndrome (HUS) and is accompanied by high annual economic loss worldwide. Due to the increased risk of HC and HUS development following antibiotic therapy, the prevention of infections caused by this pathogen is considered to be one of the most effective ways of avoiding the consequences of this infection. The main aim of the present study was to design, express, and purify a novel chimeric protein to develope human vaccine candidate against E. coli O157:H7 containing loop 2–4 of E. coli O157:H7, outer membrane protein A (OmpA), and B subunit of E. coli heat labile enterotoxin (LTB) which are connected by a flexible peptide linker. Several online databases and bioinformatics software were utilized to choose the peptide linker among 537 analyzed linkers, design the chimeric protein, and optimize the codon of the relative gene encoding this protein. Subsequently, the recombinant gene encoding OmpA-LTB was synthesized and cloned into pET-24a (+) expression vector and transferred to E. coli BL21(DE3) cells. The expression of OmpA-LTB chimeric protein was then carried out by induction of cultured E. coli Bl21 (DE3) cells with 1mM isopropyl-β-D-thiogalactopyranoside (IPTG). The purification of OmpA-LTB was then performed by nickel affinity chromatography. Expression and purification were analyzed by sodium dodecyl sulphate poly acrylamide gel electrophoresis. Moreover, the identity of the expressed protein was analyzed by western blotting. SDS-PAGE and western immunoblotting confirmed the successful expression of a 27 KDa recombinant protein after 24 hours at 37°C post-IPTG induction. OmpA-LTB was then successfully purified, using nickel affinity chromatography under denaturing conditions. The yield of purification was 12 mg per liter of culture media. Ultimately, we constructed the successful design and efficient expression and purification of OmpA-LTB divalent under the above-mentioned conditions.
Collapse
Affiliation(s)
- Aytak Novinrooz
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- * E-mail:
| | - Roya Firouzi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sina Arabshahi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
20
|
Martorelli L, Garbaccio S, Vilte DA, Albanese AA, Mejías MP, Palermo MS, Mercado EC, Ibarra CE, Cataldi AA. Immune Response in Calves Vaccinated with Type Three Secretion System Antigens and Shiga Toxin 2B Subunit of Escherichia coli O157:H7. PLoS One 2017; 12:e0169422. [PMID: 28046078 PMCID: PMC5207737 DOI: 10.1371/journal.pone.0169422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/17/2016] [Indexed: 12/03/2022] Open
Abstract
Ruminants are the primary reservoir of Shiga-toxin producing Escherichia coli (STEC) O157:H7 and the main source of infection for humans. The aim of this study was to assess the immunogenic properties of a candidate vaccine consisting on the recombinant proteins of E. coli O157:H7 IntiminC280, the carboxy-terminal fraction of Intimin γ, EspB and the fusion protein between the B subunit of Stx2 and Brucella Lumazine Synthase (BLS)(BLS-Stx2B), in Holstein Fresian calves.To accomplish this goal we vaccinated calves with two doses of different vaccine formulations: 2 antigens (IntiminC280, EspB), 3 antigens (IntiminC280, EspB, BLS-Stx2B), BLS-Stx2B alone and a control non-vaccinated group. All antigens were expressed as recombinant proteins in E. coli. Specific IgG titres increased in vaccinated calves and the inclusion of BLS-Stx2B in the formulation seems to have a stimulatory effect on the humoral response to IntiminC280 and EspB after the booster. The neutralizing activity of antibodies against these two antigens was assessed in Red Blood Cell lysis assays and adherence to Hep-2 cells as a correlate of T3SS activity. Both sera from animals vaccinated with 2 or 3 antigens inhibited both virulence properties. Serological response to Stx2 was observed in animals vaccinated only with BLS-Stx2B and with 3 antigens and neutralization of Stx2 cytotoxicity was also observed in both groups. In conclusion, immunization of calves with BLS-Stx2B, IntiminC280 and EspB elicited a potent humoral response able to neutralize Shiga toxin 2 cytotoxity and the T3SS virulence properties in vitro. These results suggest that this formulation is a good candidate vaccine to reduce STEC shedding in cattle and needs to be further assessed in vivo.
Collapse
Affiliation(s)
- Luisina Martorelli
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Sergio Garbaccio
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Daniel A. Vilte
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Adriana A. Albanese
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María P. Mejías
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marina S. Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Elsa C. Mercado
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Cristina E. Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angel A. Cataldi
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| |
Collapse
|
21
|
Kieckens E, Rybarczyk J, Li RW, Vanrompay D, Cox E. Potential immunosuppressive effects of Escherichia coli O157:H7 experimental infection on the bovine host. BMC Genomics 2016; 17:1049. [PMID: 28003017 PMCID: PMC5178093 DOI: 10.1186/s12864-016-3374-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/05/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Enterohaemorrhagic Escherichia coli (EHEC), like E. coli O157:H7 are frequently detected in bovine faecal samples at slaughter. Cattle do not show clinical symptoms upon infection, but for humans the consequences after consuming contaminated beef can be severe. The immune response against EHEC in cattle cannot always clear the infection as persistent colonization and shedding in infected animals over a period of months often occurs. In previous infection trials, we observed a primary immune response after infection which was unable to protect cattle from re-infection. These results may reflect a suppression of certain immune pathways, making cattle more prone to persistent colonization after re-infection. To test this, RNA-Seq was used for transcriptome analysis of recto-anal junction tissue and ileal Peyer's patches in nine Holstein-Friesian calves in response to a primary and secondary Escherichia coli O157:H7 infection with the Shiga toxin (Stx) negative NCTC12900 strain. Non-infected calves served as controls. RESULTS In tissue of the recto-anal junction, only 15 genes were found to be significantly affected by a first infection compared to 1159 genes in the ileal Peyer's patches. Whereas, re-infection significantly changed the expression of 10 and 17 genes in the recto-anal junction tissue and the Peyer's patches, respectively. A significant downregulation of 69 immunostimulatory genes and a significant upregulation of seven immune suppressing genes was observed. CONCLUSIONS Although the recto-anal junction is a major site of colonization, this area does not seem to be modulated upon infection to the same extent as ileal Peyer's patches as the changes in gene expression were remarkably higher in the ileal Peyer's patches than in the recto-anal junction during a primary but not a secondary infection. We can conclude that the main effect on the transcriptome was immunosuppression by E. coli O157:H7 (Stx-) due to an upregulation of immune suppressive effects (7/12 genes) or a downregulation of immunostimulatory effects (69/94 genes) in the ileal Peyer's patches. These data might indicate that a primary infection promotes a re-infection with EHEC by suppressing the immune function.
Collapse
Affiliation(s)
- E. Kieckens
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - J. Rybarczyk
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - R. W. Li
- USDA-ARS, Bovine Functional Genomics Laboratory, Beltsville, MD USA
| | - D. Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - E. Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
22
|
Corbishley A, Connelley TK, Wolfson EB, Ballingall K, Beckett AE, Gally DL, McNeilly TN. Identification of epitopes recognised by mucosal CD4(+) T-cell populations from cattle experimentally colonised with Escherichia coli O157:H7. Vet Res 2016; 47:90. [PMID: 27590451 PMCID: PMC5010706 DOI: 10.1186/s13567-016-0374-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022] Open
Abstract
Vaccines targeting enterohaemorrhagic Escherichia coli (EHEC) O157:H7 shedding in cattle are only partially protective. The correlates of protection of these vaccines are unknown, but it is probable that they reduce bacterial adherence at the mucosal surface via the induction of blocking antibodies. Recent studies have indicated a role for cellular immunity in cattle during colonisation, providing an impetus to understand the bacterial epitopes recognised during this response. This study mapped the epitopes of 16 EHEC O157:H7 proteins recognised by rectal lymph node CD4(+) T-cells from calves colonised with Shiga toxin producing EHEC O157:H7 strains. 20 CD4(+) T-cell epitopes specific to E. coli from 7 of the proteins were identified. The highly conserved N-terminal region of Intimin, including the signal peptide, was consistently recognised by mucosal CD4(+) T-cell populations from multiple animals of different major histocompatibility complex class II haplotypes. These T-cell epitopes are missing from many Intimin constructs used in published vaccine trials, but are relatively conserved across a range of EHEC serotypes, offering the potential to develop cross protective vaccines. Antibodies recognising H7 flagellin have been consistently identified in colonised calves; however CD4(+) T-cell epitopes from H7 flagellin were not identified in this study, suggesting that H7 flagellin may act as a T-cell independent antigen. This is the first time that the epitopes recognised by CD4(+) T-cells following colonisation with an attaching and effacing pathogen have been characterised in any species. The findings have implications for the design of antigens used in the next generation of EHEC O157:H7 vaccines.
Collapse
Affiliation(s)
- Alexander Corbishley
- Farm Animal Practice, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,Division of Immunity and Infection, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Timothy K Connelley
- Division of Immunity and Infection, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Eliza B Wolfson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Keith Ballingall
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Amy E Beckett
- Division of Immunity and Infection, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - David L Gally
- Division of Immunity and Infection, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK.
| |
Collapse
|
23
|
Rabinovitz BC, Larzábal M, Vilte DA, Cataldi A, Mercado EC. The intranasal vaccination of pregnant dams with Intimin and EspB confers protection in neonatal mice from Escherichia coli (EHEC) O157:H7 infection. Vaccine 2016; 34:2793-7. [PMID: 27129423 DOI: 10.1016/j.vaccine.2016.04.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/31/2016] [Accepted: 04/19/2016] [Indexed: 12/30/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for intestinal disease and hemolytic uremic syndrome (HUS), a serious systemic complication which particularly affects children. In this study, we evaluated whether passive immunization protects from EHEC O157:H7 colonization and renal damage, by using a weaned BALB/c mouse model of infection. Recombinant proteins EspB and the carboxyl-terminal fragment of 280 amino acids of γ-intimin (γ-IntC280) were used in combination with a macrophage-activating lipopeptide-2 (MALP) adjuvant to immunize pregnant mice by the intranasal route. Neonatal mice were allowed to suckle vaccinated or sham-vaccinated dams until weaning when they were challenged by the oral route with a suspension of an E. coli O157:H7 Stx2+ strain. The excretion of the inoculated strain was followed for 72h. All vaccinated dams exhibited elevated serum IgG response against both γ-Int C280 and EspB. Passive immunization of newborn mice resulted in a significant increase in serum IgG titers against γ-Int C280 and a slight increase in EspB-specific antibodies. The neonates from vaccinated dams showed a significant reduction in EHEC O157:H7 colonization 48h post challenge. In addition, the level of plasma urea concentration, a marker of renal failure, was significantly higher in offsprings of sham-vaccinated mice. In conclusion, vaccination of pregnant dams with γ-Int C280 and EspB could reduce colonization and systemic toxicity of EHEC O157:H7 in their suckling offsprings.
Collapse
Affiliation(s)
- B C Rabinovitz
- Instituto de Patobiología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
| | - M Larzábal
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
| | - D A Vilte
- Instituto de Patobiología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
| | - A Cataldi
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina.
| | - E C Mercado
- Instituto de Patobiología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
24
|
Su F, Patel GB, Hu S, Chen W. Induction of mucosal immunity through systemic immunization: Phantom or reality? Hum Vaccin Immunother 2016; 12:1070-9. [PMID: 26752023 DOI: 10.1080/21645515.2015.1114195] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Generation of protective immunity at mucosal surfaces can greatly assist the host defense against pathogens which either cause disease at the mucosal epithelial barriers or enter the host through these surfaces. Although mucosal routes of immunization, such as intranasal and oral, are being intensely explored and appear promising for eliciting protective mucosal immunity in mammals, their application in clinical practice has been limited due to technical and safety related challenges. Most of the currently approved human vaccines are administered via systemic (such as intramuscular and subcutaneous) routes. Whereas these routes are acknowledged as being capable to elicit antigen-specific systemic humoral and cell-mediated immune responses, they are generally perceived as incapable of generating IgA responses or protective mucosal immunity. Nevertheless, currently licensed systemic vaccines do provide effective protection against mucosal pathogens such as influenza viruses and Streptococcus pneumoniae. However, whether systemic immunization induces protective mucosal immunity remains a controversial topic. Here we reviewed the current literature and discussed the potential of systemic routes of immunization for the induction of mucosal immunity.
Collapse
Affiliation(s)
- Fei Su
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada.,b Department of Veterinary Medicine, College of Animal Sciences , Zhejiang University , Hangzhou , Zhejiang , PR China
| | - Girishchandra B Patel
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada
| | - Songhua Hu
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada
| | - Wangxue Chen
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada.,c Department of Biology, Brock University , St. Catharines , Ontario , Canada
| |
Collapse
|
25
|
Desin TS, Townsend HG, Potter AA. Antibodies Directed against Shiga-Toxin Producing Escherichia coli Serotype O103 Type III Secreted Proteins Block Adherence of Heterologous STEC Serotypes to HEp-2 Cells. PLoS One 2015; 10:e0139803. [PMID: 26451946 PMCID: PMC4599963 DOI: 10.1371/journal.pone.0139803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/17/2015] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) serotype O103 is a zoonotic pathogen that is capable of causing hemorrhagic colitis and hemolytic uremic syndrome (HUS) in humans. The main animal reservoir for STEC is ruminants and hence reducing the levels of this pathogen in cattle could ultimately lower the risk of STEC infection in humans. During the process of infection, STECO103 uses a Type III Secretion System (T3SS) to secrete effector proteins (T3SPs) that result in the formation of attaching and effacing (A/E) lesions. Vaccination of cattle with STEC serotype O157 T3SPs has previously been shown to be effective in reducing shedding of STECO157 in a serotype-specific manner. In this study, we tested the ability of rabbit polyclonal sera against individual STECO103 T3SPs to block adherence of the organism to HEp-2 cells. Our results demonstrate that pooled sera against EspA, EspB, EspF, NleA and Tir significantly lowered the adherence of STECO103 relative to pre-immune sera. Likewise, pooled anti-STECO103 sera were also able to block adherence by STECO157. Vaccination of mice with STECO103 recombinant proteins induced strong IgG antibody responses against EspA, EspB, NleA and Tir but not against EspF. However, the vaccine did not affect fecal shedding of STECO103 compared to the PBS vaccinated group over the duration of the experiment. Cross reactivity studies using sera against STECO103 recombinant proteins revealed a high degree of cross reactivity with STECO26 and STECO111 proteins implying that sera against STECO103 proteins could potentially provide neutralization of attachment to epithelial cells by heterologous STEC serotypes.
Collapse
Affiliation(s)
- Taseen S. Desin
- Vaccine & Infectious Disease Organization–International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| | - Hugh G. Townsend
- Vaccine & Infectious Disease Organization–International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andrew A. Potter
- Vaccine & Infectious Disease Organization–International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
26
|
Ghunaim H, Desin TS. Potential Impact of Food Safety Vaccines on Health Care Costs. Foodborne Pathog Dis 2015; 12:733-40. [PMID: 26111256 DOI: 10.1089/fpd.2014.1924] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Foodborne pathogens continue to cause several outbreaks every year in many parts of the world. Among the bacterial pathogens involved, Shiga toxin-producing Escherichia coli, Campylobacter jejuni, and nontyphoidal Salmonella species cause a significant number of human infections worldwide, resulting in a huge annual economic burden that amounts to millions of dollars in health care costs. Human infections are primarily caused by the consumption of contaminated food. Vaccination of food-producing animals is an attractive, cost-effective strategy to lower the levels of these pathogens that will ultimately result in a safer food supply and fewer human infections. However, producers are often reluctant to routinely vaccinate animals against these pathogens since they do not cause any detectable clinical symptoms. This review highlights recent approaches used to develop effective food safety vaccines and the potential impact these vaccines might have on health care costs.
Collapse
Affiliation(s)
- Haitham Ghunaim
- 1 Department of Health Sciences, College of Arts and Science, Qatar University , Doha, Qatar
| | - Taseen S Desin
- 2 Basic Sciences Department, College of Science & Health Professions, King Saud bin Abdulaziz University for Health Sciences , Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Impact of Infection Dose and Previous Serum Antibodies against the Locus of Enterocyte Effacement Proteins on Escherichia coli O157:H7 Shedding in Calves following Experimental Infection. BIOMED RESEARCH INTERNATIONAL 2015; 2015:290679. [PMID: 26167480 PMCID: PMC4475743 DOI: 10.1155/2015/290679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 11/26/2022]
Abstract
Escherichia coli O157:H7 is the main causative agent of haemolytic uremic syndrome. Cattle are the main reservoir of these bacteria, and have been shown to develop immune response to colonization. Our aim was to investigate the faecal shedding pattern of E. coli O157:H7 in calves challenged intragastrically with either 108 or 1010 CFU, as well as the ability of specific preexisting antibodies to reduce shedding of the pathogen. Shedding was analysed by direct counting as well as enrichment of rectoanal mucosal swabs. Statistical analysis was performed using a linear model for repeated measures with and without the inclusion of preexisting antibodies against the carboxy-terminal fraction of intimin-γ (γ-intimin C280) as a covariable. Results suggest that there is a statistical difference in the area under the shedding curves between both doses for 14 as well as 28 days after challenge (p = 0.0069 and 0.0209, resp.). This difference is increased when the prechallenge antibodies are taken into account (p = 0.0056 and 0.0185). We concluded that the bacterial dose influences shedding on calves experimentally challenged and that preexisting antibodies against E. coli O157:H7 γ-intimin C280 could partially reduce faecal excretion.
Collapse
|
28
|
McNeilly TN, Mitchell MC, Corbishley A, Nath M, Simmonds H, McAteer SP, Mahajan A, Low JC, Smith DGE, Huntley JF, Gally DL. Optimizing the Protection of Cattle against Escherichia coli O157:H7 Colonization through Immunization with Different Combinations of H7 Flagellin, Tir, Intimin-531 or EspA. PLoS One 2015; 10:e0128391. [PMID: 26020530 PMCID: PMC4447243 DOI: 10.1371/journal.pone.0128391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/24/2015] [Indexed: 11/19/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are important human pathogens, causing hemorrhagic colitis and hemolytic uraemic syndrome in humans. E. coli O157:H7 is the most common serotype associated with EHEC infections worldwide, although other non-O157 serotypes cause life-threatening infections. Cattle are a main reservoir of EHEC and intervention strategies aimed at limiting EHEC excretion from cattle are predicted to lower the risk of human infection. We have previously shown that immunization of calves with recombinant versions of the type III secretion system (T3SS)-associated proteins EspA, intimin and Tir from EHEC O157:H7 significantly reduced shedding of EHEC O157 from experimentally-colonized calves, and that protection could be augmented by the addition of H7 flagellin to the vaccine formulation. The main aim of the present study was to optimize our current EHEC O157 subunit vaccine formulations by identifying the key combinations of these antigens required for protection. A secondary aim was to determine if vaccine-induced antibody responses exhibited cross-reactive potential with antigens from other EHEC serotypes. Immunization with EspA, intimin and Tir resulted in a reduction in mean EHEC O157 shedding following challenge, but not the mean proportion of calves colonized. Removal of Tir resulted in more prolonged shedding compared with all other groups, whereas replacement of Tir with H7 flagellin resulted in the highest levels of protection, both in terms of reducing both mean EHEC O157 shedding and the proportion of colonized calves. Immunization of calves with recombinant EHEC O157 EspA, intimin and Tir resulted in the generation of antibodies capable of cross-reacting with antigens from non-O157 EHEC serotypes, suggesting that immunization with these antigens may provide a degree of cross-protection against other EHEC serotypes. Further studies are now required to test the efficacy of these vaccines in the field, and to formally test the cross-protective potential of the vaccines against other non-O157 EHEC.
Collapse
Affiliation(s)
- Tom N. McNeilly
- Moredun Research Institute, Edinburgh, United Kingdom
- * E-mail:
| | | | - Alexander Corbishley
- Moredun Research Institute, Edinburgh, United Kingdom
- Division of Immunity and Infection, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Mintu Nath
- Biomathematics and Statistics Scotland, Edinburgh, United Kingdom
| | - Hannah Simmonds
- Division of Immunity and Infection, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sean P. McAteer
- Division of Immunity and Infection, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Arvind Mahajan
- Division of Immunity and Infection, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - J. Christopher Low
- Division of Immunity and Infection, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David G. E. Smith
- Moredun Research Institute, Edinburgh, United Kingdom
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | - David L. Gally
- Division of Immunity and Infection, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Abstract
ABSTRACT
Human infection with Shiga toxin-producing
Escherichia coli
O157:H7 (STEC O157) is relatively rare, but the consequences can be serious, especially in the very young and the elderly. Efforts to control the flow of STEC O157 during beef processing have meaningfully reduced the incidence of human STEC O157 infection, particularly prior to 2005. Unfortunately, despite early progress, the incidence of STEC O157 infection has not changed meaningfully or statistically in recent years, suggesting that additional actions, for example, targeting the cattle reservoir, are necessary to further reduce STEC O157 illness. Ideally, preharvest interventions against STEC O157 should reduce the likelihood that cattle carry the organism, have practical application within the beef production system, and add sufficient value to the cattle to offset the cost of the intervention. A number of STEC O157 antigens are being investigated as potential vaccine targets. Some vaccine products have demonstrated efficacy to reduce the prevalence of cattle carrying STEC O157 by making the gut unfavorable to colonization. However, in conditions of natural exposure, efficacy afforded by vaccination depends on how the products are used to control environmental transmission within groups of cattle and throughout the production system. Although cattle vaccines against STEC O157 have gained either full or preliminary regulatory approval in Canada and the United States, widespread use by cattle feeders is unlikely until there is an economic signal to indicate that cattle vaccinated against STEC O157 are valued over other cattle.
Collapse
|
30
|
Oral immunization with Lactococcus lactis-expressing EspB induces protective immune responses against Escherichia coli O157:H7 in a murine model of colonization. Vaccine 2014; 32:3909-16. [DOI: 10.1016/j.vaccine.2014.05.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/01/2014] [Accepted: 05/15/2014] [Indexed: 01/30/2023]
|
31
|
Physiopathological effects of Escherichia coli O157:H7 inoculation in weaned calves fed with colostrum containing antibodies to EspB and Intimin. Vaccine 2014; 32:3823-9. [DOI: 10.1016/j.vaccine.2014.04.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 11/22/2022]
|
32
|
Callaway TR, Edrington TS, Nisbet DJ. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM: Ecological and dietary impactors of foodborne pathogens and methods to reduce fecal shedding in cattle1,2. J Anim Sci 2014; 92:1356-65. [DOI: 10.2527/jas.2013-7308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- T. R. Callaway
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, USDA, College Station, TX 77845
| | - T. S. Edrington
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, USDA, College Station, TX 77845
| | - D. J. Nisbet
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, USDA, College Station, TX 77845
| |
Collapse
|
33
|
Zhang X, Yu Z, Zhang S, He K. Immunization with H7-HCP-tir-intimin significantly reduces colonization and shedding of Escherichia coli O157:H7 in goats. PLoS One 2014; 9:e91632. [PMID: 24632795 PMCID: PMC3954762 DOI: 10.1371/journal.pone.0091632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/11/2014] [Indexed: 11/18/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is the causative agent of hemorrhagic colitis and hemolytic uremic syndrome in humans. However, the bacterium can colonize the intestines of ruminants without causing clinical signs. EHEC O157:H7 needs flagella (H7) and hemorrhagic coli pili (HCP) to adhere to epithelial cells. Then the bacterium uses the translocated intimin receptor (Tir) and an outer membrane adhesion (Intimin) protein to colonize hosts. This leads to the attachment and effacement of (A/E) lesions. A tetravalent recombinant vaccine (H7-HCP-Tir-Intimin) composed of immunologically important portions of H7, HCP, Tir and Intimin proteins was constructed and its efficacy was evaluated using a caprine model. The results showed that the recombinant vaccine induced strong humoral and mucosal immune responses and protected the subjects from live challenges with EHEC O157:H7 86-24 stain. After a second immunization, the average IgG titer peaked at 7.2 × 10(5). Five days after challenge, E. coli O157:H7 was no longer detectable in the feces of vaccinated goats, but naïve goats shed the bacterium throughout the course of the challenge. Cultures of intestinal tissues showed that vaccination of goats with H7-HCP-Tir-Intimin reduced the amount of intestinal colonization by EHEC O157:H7 effectively. Recombinant H7-HCP-Tir-Intimin protein is an excellent vaccine candidate. Data from the present study warrant further efficacy studies aimed at reducing EHEC O157:H7 load on farms and the contamination of carcasses by this zoonotic pathogen.
Collapse
Affiliation(s)
- Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, P. R. China
- National Center for Engineering Research of Veterinary Bio-products, Nanjing, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
- * E-mail: (XZ); (KH)
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, P. R. China
- National Center for Engineering Research of Veterinary Bio-products, Nanjing, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Shuping Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, P. R. China
- National Center for Engineering Research of Veterinary Bio-products, Nanjing, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
- * E-mail: (XZ); (KH)
| |
Collapse
|
34
|
Wisener LV, Sargeant JM, O'Connor AM, Faires MC, Glass-Kaastra SK. The Evidentiary Value of Challenge Trials for Three Pre-harvest Food Safety Topics: A Systematic Assessment. Zoonoses Public Health 2013; 61:449-76. [DOI: 10.1111/zph.12083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Indexed: 01/07/2023]
Affiliation(s)
- L. V. Wisener
- Centre for Public Health and Zoonoses; University of Guelph; Guelph ON Canada
| | - J. M. Sargeant
- Centre for Public Health and Zoonoses; University of Guelph; Guelph ON Canada
- Population Medicine; University of Guelph; Guelph ON Canada
| | - A. M. O'Connor
- Department of Veterinary Diagnostic and Production Animal Medicine; College of Veterinary Medicine; Iowa State University; Ames IA Canada
| | - M. C. Faires
- Population Medicine; University of Guelph; Guelph ON Canada
| | | |
Collapse
|
35
|
Rabinovitz BC, Gerhardt E, Tironi Farinati C, Abdala A, Galarza R, Vilte DA, Ibarra C, Cataldi A, Mercado EC. Vaccination of pregnant cows with EspA, EspB, γ-intimin, and Shiga toxin 2 proteins from Escherichia coli O157:H7 induces high levels of specific colostral antibodies that are transferred to newborn calves. J Dairy Sci 2012; 95:3318-26. [PMID: 22612965 DOI: 10.3168/jds.2011-5093] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/05/2012] [Indexed: 01/09/2023]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major cause of intestinal disease and hemolytic uremic syndrome, a serious systemic complication that particularly affects children. Cattle are primary reservoirs for EHEC O157:H7 and the main source of infection for humans. Vaccination of cattle with different combinations of bacterial virulence factors has shown efficacy in decreasing EHEC O157:H7 shedding. It is, therefore, important to demonstrate whether vaccination of pregnant cows with EHEC O157:H7 induces high titers of transferable antibodies to avoid early colonization of calves by the bacteria. In this study we evaluated the ability of EspA, EspB, the C-terminal fragment of 280 amino acids of γ-intimin (γ-intimin C₂₈₀) and inactivated Shiga toxin (Stx) 2 proteins to induce specific antibodies in colostrum and their passive transference to colostrum-fed calves. Friesian pregnant cows immunized by the intramuscular route mounted significantly high serum and colostrum IgG responses against EspB and γ-intimin C₂₈₀ that were efficiently transferred to their calves. Antibodies to EspB and γ-intimin C₂₈₀ were detected in milk samples of vaccinated cows at d 40 postparturition. Significant Stx2-neutralizing titers were also observed in colostrum from Stx2-vaccinated cows and sera from colostrum-fed calves. The results presented showed that bovine colostrum with increased levels of antibodies against EHEC O157:H7 may be obtained by systemic immunization of pregnant cows, and that these specific antibodies are efficiently transferred to newborn calves by feeding colostrum. Hyperimmune colostrum and milk may be an alternative to protect calves from early colonization by EHEC O157:H7 and a possible key source of antibodies to block colonization and toxic activity of this bacterium.
Collapse
Affiliation(s)
- B C Rabinovitz
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria-INTA, Nicolás Repetto y De los Reseros, 1686 Hurlingham, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vande Walle K, Vanrompay D, Cox E. Bovine innate and adaptive immune responses against Escherichia coli O157:H7 and vaccination strategies to reduce faecal shedding in ruminants. Vet Immunol Immunopathol 2012; 152:109-20. [PMID: 23084625 DOI: 10.1016/j.vetimm.2012.09.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Enterohaemorrhagic E. coli (EHEC) O157:H7 is a zoonotic pathogen of worldwide importance causing foodborne infections with possibly life-threatening consequences in humans, such as haemorrhagic colitis and in a small percentage of zoonotic cases, haemolytic-uremic syndrome (HUS). Ruminants are an important reservoir of EHEC and human infections are most frequently associated with direct or indirect contact with ruminant faeces. A thorough understanding of the host-bacterium interaction in ruminants could lead to the development of novel interventions strategies, including innovative vaccines. This review aims to present the current knowledge regarding innate and adaptive immune responses in EHEC colonized ruminants. In addition, results on vaccination strategies in ruminants aiming at reduction of EHEC shedding are reviewed.
Collapse
Affiliation(s)
- Kris Vande Walle
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9860 Merelbeke, Belgium
| | | | | |
Collapse
|
37
|
Pacheco AR, Sperandio V. Shiga toxin in enterohemorrhagic E.coli: regulation and novel anti-virulence strategies. Front Cell Infect Microbiol 2012; 2:81. [PMID: 22919672 PMCID: PMC3417539 DOI: 10.3389/fcimb.2012.00081] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/23/2012] [Indexed: 01/09/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are responsible for major outbreaks of bloody diarrhea and hemolytic uremic syndrome (HUS) throughout the world. The mortality associated with EHEC infections stems from the production and release of a potent Shiga toxin (Stx) by these bacteria. Stx induces cell death in endothelial cells, primarily in the urinary tract, causing HUS. Stx was first described in Shigella dysenteriae serotype I by Kiyoshi Shiga and was discovered later in EHEC. Multiple environmental cues regulate the expression of Stx, including temperature, growth phase, antibiotics, reactive oxygen species (ROS), and quorum sensing. Currently, there is no effective treatment or prophylaxis for HUS. Because antibiotics trigger Stx production and their use to treat EHEC infections is controversial, alternative therapeutic strategies have become the focus of intense research. One such strategy explores quorum sensing inhibitors as therapeutics. These inhibitors target quorum sensing regulation of Stx expression without interfering with bacterial growth, leading to the hypothesis that these inhibitors impose less selective pressure for bacteria to develop drug resistance. In this review, we discuss factors that regulate Stx production in EHEC, as well as novel strategies to prevent and/or minimize the development of HUS in infected subjects.
Collapse
Affiliation(s)
- Alline R Pacheco
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas TX, USA
| | | |
Collapse
|
38
|
Immunogenical Study of Chimeric Recombinant Intimin-Tir of Escherichia coli O157:H7 in Mice. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2012. [DOI: 10.5812/archcid.14068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Vilte D, Larzábal M, Mayr U, Garbaccio S, Gammella M, Rabinovitz B, Delgado F, Meikle V, Cantet R, Lubitz P, Lubitz W, Cataldi A, Mercado E. A systemic vaccine based on Escherichia coli O157:H7 bacterial ghosts (BGs) reduces the excretion of E. coli O157:H7 in calves. Vet Immunol Immunopathol 2012; 146:169-76. [DOI: 10.1016/j.vetimm.2012.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 03/02/2012] [Accepted: 03/04/2012] [Indexed: 11/24/2022]
|
40
|
Gautam R, Kulow M, Döpfer D, Kaspar C, Gonzales T, Pertzborn K, Carroll R, Grant W, Ivanek R. The strain-specific dynamics of Escherichia coli O157:H7 faecal shedding in cattle post inoculation. JOURNAL OF BIOLOGICAL DYNAMICS 2012; 6:1052-1066. [PMID: 22988977 PMCID: PMC3983691 DOI: 10.1080/17513758.2012.722232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study reports analysis of faecal shedding dynamics in cattle for three Escherichia coli O157:H7 (ECO157) strains (S1, S2 and S3) of different genotype and ecological history, using experimental inoculation data. The three strains were compared for their shedding frequency and level of ECO157 in faeces. A multistate Markov chain model was used to compare shedding patterns of S1 and S2. Strains S1 and S2 were detected seven to eight times more often and at 10(4) larger levels than strain S3. Strains S1 and S2 had similar frequencies and levels of shedding. However, the total time spent in the shedding state during colonization was on average four times longer for S1 (15 days) compared to S2 (4 days). These results indicate that an ECO157 strain effect on the frequency, level, pattern and the duration of faecal shedding may need to be considered in control of ECO157 in the cattle reservoir.
Collapse
Affiliation(s)
- R. Gautam
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - M. Kulow
- School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - D. Döpfer
- School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - C. Kaspar
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - T. Gonzales
- School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - K.M. Pertzborn
- School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - R.J. Carroll
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - W. Grant
- Department of Wildlife and Fisheries Sciences, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - R. Ivanek
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
41
|
Mayr UB, Kudela P, Atrasheuskaya A, Bukin E, Ignatyev G, Lubitz W. Rectal single dose immunization of mice with Escherichia coli O157:H7 bacterial ghosts induces efficient humoral and cellular immune responses and protects against the lethal heterologous challenge. Microb Biotechnol 2011; 5:283-94. [PMID: 22103353 PMCID: PMC3815788 DOI: 10.1111/j.1751-7915.2011.00316.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacterial ghosts (BGs) have been applied through oral, aerogenic, intraocular or intranasal routes for mucosal immunization using a wide range of experimental animals. All these applications required a booster after primary immunization to achieve protective immunity against the lethal challenge. Here we report for the first time that a single rectal dose of BGs produced from enterohaemorrhagic Escherichia coli (EHEC) O157:H7 fully protects mice against a 50% lethal challenge with a heterologous EHEC strain given at day 55. BGs from EHEC O157:H7 were prepared by a combination of protein E‐mediated cell lysis and expression of staphylococcal nuclease A guaranteeing the complete degradation of pathogen residual DNA. The lack of genetic material in the EHEC BGs vaccine abolished any potential hazard for horizontal gene transfer of plasmid encoded antibiotic resistance genes or pathogenic islands to the recipient's gut flora. Single rectal immunization using EHEC O157:H7 BGs without any addition of adjuvant significantly stimulated efficient humoral and cellular immune responses, and was equally protective as two immunizations, which indicates the possibility to develop a novel efficacious single dose mucosal EHEC O157:H7 BGs vaccine using a simplified immunization regimen.
Collapse
|
42
|
Boyer O, Niaudet P. Hemolytic uremic syndrome: new developments in pathogenesis and treatment. Int J Nephrol 2011; 2011:908407. [PMID: 21876803 PMCID: PMC3159990 DOI: 10.4061/2011/908407] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 06/14/2011] [Indexed: 12/27/2022] Open
Abstract
Hemolytic uremic syndrome is defined by the characteristic triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. In children, most cases of HUS are caused by Shiga-toxin-producing bacteria, especially Escherichia coli O157:H7. Common vehicles of transmission include ground beef, unpasteurized milk, and municipal or swimming water. Shiga-toxin-associated HUS is a main cause of acute renal failure in young children. Management remains supportive as there is at present no specific therapy to ameliorate the prognosis. Immediate outcome is most often favourable but long-term renal sequelae are frequent due to nephron loss. Atypical HUS represents 5% of cases. In the past 15 years, mutations in complement regulators of the alternative pathway have been identified in almost 60% of cases, leading to excessive complement activation. The disease has a relapsing course and more than half of the patients either die or progress to end-stage renal failure. Recurrence after renal transplantation is frequent.
Collapse
Affiliation(s)
- Olivia Boyer
- Service de Néphrologie Pédiatrique, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | | |
Collapse
|