1
|
Monreal-Escalante E, Angulo M, Ramos-Vega A, Trujillo E, Angulo C. Plant-made trained immunity-based vaccines: Beyond one approach. Int J Pharm 2025; 675:125572. [PMID: 40204041 DOI: 10.1016/j.ijpharm.2025.125572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Plant-made vaccines and trained immunity-based vaccines (TIbV or TRAIMbV) represent two strategies for enhancing immunity against diseases. Plants provide an effective and cost-efficient vaccine production platform, while TIbV induces innate immune memory that can protect against both homologous and heterologous diseases. Both strategies are generally compatible; however, they have not been explored in a transdisciplinary manner. Despite their strengths in vaccinology, each faces limitations that hinder widespread adoption and health benefits. This review revisits both strategies, discussing their fundamental knowledge alongside practical and experimental examples, ultimately highlighting their limitations and perspectives to pave the way for a unified approach to combat diseases. Future scenarios are envisioned and presented if research on plant-made trained immunity-based vaccines is adopted.
Collapse
Affiliation(s)
- Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico; SECIHTI-Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico
| | - Miriam Angulo
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico
| | - Abel Ramos-Vega
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Dirección: Boulevard de la Tecnología No.1036, Código Postal 62790 Xochitepec, Morelos, Mexico
| | - Edgar Trujillo
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico.
| |
Collapse
|
2
|
Luo H, Ma Y, Su Z, Gu Y, Zhang S, Gerstweiler L. Investigating the stability of chimeric murine polyomavirus VP1 Capsomeres via molecular dynamics simulations and experimental analysis. Int J Biol Macromol 2025; 286:138372. [PMID: 39643186 DOI: 10.1016/j.ijbiomac.2024.138372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The development of modular virus-like particle (VLP) vaccine platforms with genetically inserted antigens in viral structural proteins shows great promise for advancing vaccine technology. However, the instability of many constructs leads to trial-and-error approaches, and the challenge of predicting stability based solely on amino acid sequences remains unresolved, yet highly appealing. This study evaluates the stability of wild-type murine polyomavirus (MPV) VP1 capsomeres and three engineered chimeric variants using molecular dynamics (MD) simulations and laboratory experiments. MD simulations, based on AlphaFold2 predictions and up-to-date all-atom force fields, accurately predicted the thermal stability and hydrophobicity of VP1-based capsomeres. Thermodynamic analysis revealed that binding energies from simulations reliably indicate thermal stability. Experiments and simulation results showed that inserts influence the stability of capsomeres differently, with larger insertions generally having a greater impact on the structures of capsomeres. This leads to increased intra-subunit distances and a higher proportion of flexible regions in the capsomere chassis. Capsomeres with less compact structures were found to have lower thermal stability. Specifically, the thermal transitional temperature (Tm) of the wild-type capsomeres was 46.9 °C, while the Tm values of the three chimeric derivatives were 42.0 °C, 38.8 °C, and 37.7 °C, reflecting a correlation between decreased thermal stability and reduced structural compactness. This research presents a robust approach for predicting the stability of novel VLP constructs based on amino acid sequences, potentially enhancing vaccine design by reducing failures, and suggests a shift towards minimal epitope insertions for improved stability.
Collapse
Affiliation(s)
- Hong Luo
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide 5005, Australia; State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Yanyan Ma
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yanhao Gu
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide 5005, Australia
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Lukas Gerstweiler
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
3
|
Chauhan S, Khasa YP. Challenges and Opportunities in the Process Development of Chimeric Vaccines. Vaccines (Basel) 2023; 11:1828. [PMID: 38140232 PMCID: PMC10747103 DOI: 10.3390/vaccines11121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/22/2023] [Accepted: 08/04/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccines are integral to human life to protect them from life-threatening diseases. However, conventional vaccines often suffer limitations like inefficiency, safety concerns, unavailability for non-culturable microbes, and genetic variability among pathogens. Chimeric vaccines combine multiple antigen-encoding genes of similar or different microbial strains to protect against hyper-evolving drug-resistant pathogens. The outbreaks of dreadful diseases have led researchers to develop economical chimeric vaccines that can cater to a large population in a shorter time. The process development begins with computationally aided omics-based approaches to design chimeric vaccines. Furthermore, developing these vaccines requires optimizing upstream and downstream processes for mass production at an industrial scale. Owing to the complex structures and complicated bioprocessing of evolving pathogens, various high-throughput process technologies have come up with added advantages. Recent advancements in high-throughput tools, process analytical technology (PAT), quality-by-design (QbD), design of experiments (DoE), modeling and simulations, single-use technology, and integrated continuous bioprocessing have made scalable production more convenient and economical. The paradigm shift to innovative strategies requires significant attention to deal with major health threats at the global scale. This review outlines the challenges and emerging avenues in the bioprocess development of chimeric vaccines.
Collapse
Affiliation(s)
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India;
| |
Collapse
|
4
|
Hillebrandt N, Hubbuch J. Size-selective downstream processing of virus particles and non-enveloped virus-like particles. Front Bioeng Biotechnol 2023; 11:1192050. [PMID: 37304136 PMCID: PMC10248422 DOI: 10.3389/fbioe.2023.1192050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Non-enveloped virus-like particles (VLPs) are versatile protein nanoparticles with great potential for biopharmaceutical applications. However, conventional protein downstream processing (DSP) and platform processes are often not easily applicable due to the large size of VLPs and virus particles (VPs) in general. The application of size-selective separation techniques offers to exploit the size difference between VPs and common host-cell impurities. Moreover, size-selective separation techniques offer the potential for wide applicability across different VPs. In this work, basic principles and applications of size-selective separation techniques are reviewed to highlight their potential in DSP of VPs. Finally, specific DSP steps for non-enveloped VLPs and their subunits are reviewed as well as the potential applications and benefits of size-selective separation techniques are shown.
Collapse
Affiliation(s)
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
5
|
Sazegari S, Akbarzadeh Niaki M, Afsharifar A, Niazi A, Derakhshandeh A, Moradi Vahdat M, Hemmati F, Eskandari MH. Chimeric Hepatitis B core virus-like particles harboring SARS-CoV2 epitope elicit a humoral immune response in mice. Microb Cell Fact 2023; 22:39. [PMID: 36841778 PMCID: PMC9958315 DOI: 10.1186/s12934-023-02043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/14/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Virus-like particles are an interesting vector platform for vaccine development. Particularly, Hepatitis B virus core antigen has been used as a promising VLP platform. It is highly expressed in different recombinant expression systems, such as E. coli, and self-assembled in vitro. It effectively improves the immunogenicity of foreign antigenic epitopes on its surface. Various foreign antigens from bacteria, viruses, and protozoa can be genetically inserted into such nanoparticles. The effective immunogenicity due to VLP vaccines has been reported. However, no research has been performed on the SARS-CoV2 vaccine within this unique platform through genetic engineering. Considering the high yield of target proteins, low cost of production, and feasibility of scaling up, E. coli is an outstanding expression platform to develop such vaccines. Therefore, in this investigation, we planned to study and develop a unique HBc VLP-based vaccine against SARS-Cov2 utilizing the E. coli expression system due to its importance. RESULTS Insertion of the selected epitope was done into the major immunodominant region (MIR) of truncated (149 residues) hepatitis B core capsid protein. The chimeric protein was constructed in PET28a+ and expressed through the bacterial E. coli BL21 expression system. However, the protein was expressed in inclusion body forms and extracted following urea denaturation from the insoluble phase. Following the extraction, the vaccine protein was purified using Ni2 + iminodiacetic acid (IDA) affinity chromatography. SDS-PAGE and western blotting were used to confirm the protein expression. Regarding the denaturation step, the unavoidable refolding process was carried out, so that the chimeric VLP reassembled in native conformation. Based on the transmission electron microscopy (TEM) analysis, the HBC VLP was successfully assembled. Confirming the assembled chimeric VLP, we explored the immunogenic effectivity of the vaccine through mice immunization with two-dose vaccination with and without adjuvant. The utilization of adjuvant was suggested to assess the effect of adjuvant on improving the immune elicitation of chimeric VLP-based vaccine. Immunization analysis based on anti-spike specific IgG antibody showed a significant increase in antibody production in harvested serum from immunized mice with HBc-VLP harboring antigenic epitope compared to HBc-VLP- and PBS-injected mice. CONCLUSIONS The results approved the successful production and the effectiveness of the vaccine in terms of humoral IgG antibody production. Therefore, this platform can be considered a promising strategy for developing safe and reasonable vaccines; however, more complementary immunological evaluations are needed.
Collapse
Affiliation(s)
- Sima Sazegari
- grid.412573.60000 0001 0745 1259Institute of Biotechnology, Shiraz University, Shiraz, Fars Iran
| | - Malihe Akbarzadeh Niaki
- grid.412573.60000 0001 0745 1259Department of Food Science and Technology, Shiraz University, Shiraz, Fars Iran
| | - Alireza Afsharifar
- grid.412573.60000 0001 0745 1259Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- grid.412573.60000 0001 0745 1259Institute of Biotechnology, Shiraz University, Shiraz, Fars Iran
| | - Abdollah Derakhshandeh
- grid.412573.60000 0001 0745 1259Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Maryam Moradi Vahdat
- grid.412573.60000 0001 0745 1259Institute of Biotechnology, Shiraz University, Shiraz, Fars Iran
| | - Farshad Hemmati
- grid.412573.60000 0001 0745 1259Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
6
|
Martins SA, Santos J, Silva RDM, Rosa C, Cabo Verde S, Correia JDG, Melo R. How promising are HIV-1-based virus-like particles for medical applications. Front Cell Infect Microbiol 2022; 12:997875. [PMID: 36275021 PMCID: PMC9585283 DOI: 10.3389/fcimb.2022.997875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
New approaches aimed at identifying patient-specific drug targets and addressing unmet clinical needs in the framework of precision medicine are a strong motivation for researchers worldwide. As scientists learn more about proteins that drive known diseases, they are better able to design promising therapeutic approaches to target those proteins. The field of nanotechnology has been extensively explored in the past years, and nanoparticles (NPs) have emerged as promising systems for target-specific delivery of drugs. Virus-like particles (VLPs) arise as auspicious NPs due to their intrinsic properties. The lack of viral genetic material and the inability to replicate, together with tropism conservation and antigenicity characteristic of the native virus prompted extensive interest in their use as vaccines or as delivery systems for therapeutic and/or imaging agents. Owing to its simplicity and non-complex structure, one of the viruses currently under study for the construction of VLPs is the human immunodeficiency virus type 1 (HIV-1). Typically, HIV-1-based VLPs are used for antibody discovery, vaccines, diagnostic reagent development and protein-based assays. This review will be centered on the use of HIV-1-based VLPs and their potential biomedical applications.
Collapse
Affiliation(s)
- Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rúben D. M. Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cátia Rosa
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Gerstweiler L, Billakanti J, Bi J, Middelberg APJ. An integrated and continuous downstream process for microbial virus-like particle vaccine biomanufacture. Biotechnol Bioeng 2022; 119:2122-2133. [PMID: 35478403 PMCID: PMC9542101 DOI: 10.1002/bit.28118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 12/05/2022]
Abstract
In this study, we present the first integrated and continuous downstream process for the production of microbial virus‐like particle vaccines. Modular murine polyomavirus major capsid VP1 with integrated J8 antigen was used as a model virus‐like particle vaccine. The integrated continuous downstream process starts with crude cell lysate and consists of a flow‐through chromatography step followed by periodic counter‐current chromatography (PCC) (bind‐elute) using salt‐tolerant mixed‐mode resin and subsequent in‐line assembly. The automated process showed a robust behavior over different inlet feed concentrations ranging from 1.0 to 3.2 mg ml−1 with only minimal adjustments needed, and produced continuously high‐quality virus‐like particles, free of nucleic acids, with constant purity over extended periods of time. The average size remained constant between 44.8 ± 2.3 and 47.2 ± 2.9 nm comparable to literature. The process had an overall product recovery of 88.6% and a process productivity up to 2.56 mg h−1 mlresin−1 in the PCC step, depending on the inlet concentration. Integrating a flow through step with a subsequent PCC step allowed streamlined processing, showing a possible continuous pathway for a wide range of products of interest.
Collapse
Affiliation(s)
- Lukas Gerstweiler
- The University of Adelaide, School of Chemical Engineering and Advanced Materials, 5005, Adelaide, Australia
| | - Jagan Billakanti
- Global Life Sciences Solutions Australia Pty Ltd, Level 11, 32 Phillip St, Parramatta, NSW, 2150, Australia
| | - Jingxiu Bi
- The University of Adelaide, School of Chemical Engineering and Advanced Materials, 5005, Adelaide, Australia
| | | |
Collapse
|
8
|
Huynh NH, Davey K, Jin B, Bi J. A statistical approach to boost soluble expression of E. coli-derived virus-like particles in shake-flask cultivation. J Biotechnol 2022; 347:56-66. [PMID: 35202741 DOI: 10.1016/j.jbiotec.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022]
Abstract
Hepatitis B core virus-like particles (HBc-VLP) have been widely used as carrier platforms to present an epitope of interest. Escherichia coli expression system is cost effective and produces high yields of recombinant protein. However major drawbacks include difficulties in obtaining soluble expression and tendency to form inclusion bodies. To boost solubility of proteins during expression of E. coli-derived HBc-VLPs carrying EBNA1 epitope, a statistical approach involving fractional factorial design (FFD) and response surface methodology (RSM) was used. For the first time, this approach was applied to quantitatively determine the impact of key parameters in shake-flask cultivation. Expression conditions including post-induction temperature and shaker-speed, and cell density at induction were optimized. Based on native agarose gel electrophoresis, optimized soluble protein cellular yield was 210.5mgg-1 dry cell mass and volumetric yield was 272mgL-1 of culture media. Findings highlight: 1) the significant interaction between post-induction temperature and shaker-speed on production, and; 2) sufficient oxygen level is required during induction. It is concluded that this statistical approach can be practically applied to optimize expression of HBc-VLP in shake-flask cultivation, and to determine key parameters for large-scale productions.
Collapse
Affiliation(s)
- Nhat Hoang Huynh
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, SA 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, SA 5005, Australia
| | - Bo Jin
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, SA 5005, Australia
| | - Jingxiu Bi
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, SA 5005, Australia.
| |
Collapse
|
9
|
Cheah LC, Stark T, Adamson LSR, Abidin RS, Lau YH, Sainsbury F, Vickers CE. Artificial Self-assembling Nanocompartment for Organizing Metabolic Pathways in Yeast. ACS Synth Biol 2021; 10:3251-3263. [PMID: 34591448 PMCID: PMC8689640 DOI: 10.1021/acssynbio.1c00045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/29/2022]
Abstract
Metabolic pathways are commonly organized by sequestration into discrete cellular compartments. Compartments prevent unfavorable interactions with other pathways and provide local environments conducive to the activity of encapsulated enzymes. Such compartments are also useful synthetic biology tools for examining enzyme/pathway behavior and for metabolic engineering. Here, we expand the intracellular compartmentalization toolbox for budding yeast (Saccharomyces cerevisiae) with Murine polyomavirus virus-like particles (MPyV VLPs). The MPyV system has two components: VP1 which self-assembles into the compartment shell and a short anchor, VP2C, which mediates cargo protein encapsulation via binding to the inner surface of the VP1 shell. Destabilized green fluorescent protein (GFP) fused to VP2C was specifically sorted into VLPs and thereby protected from host-mediated degradation. An engineered VP1 variant displayed improved cargo capture properties and differential subcellular localization compared to wild-type VP1. To demonstrate their ability to function as a metabolic compartment, MPyV VLPs were used to encapsulate myo-inositol oxygenase (MIOX), an unstable and rate-limiting enzyme in d-glucaric acid biosynthesis. Strains with encapsulated MIOX produced ∼20% more d-glucaric acid compared to controls expressing "free" MIOX─despite accumulating dramatically less expressed protein─and also grew to higher cell densities. This is the first demonstration in yeast of an artificial biocatalytic compartment that can participate in a metabolic pathway and establishes the MPyV platform as a promising synthetic biology tool for yeast engineering.
Collapse
Affiliation(s)
- Li Chen Cheah
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- CSIRO
Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, Queensland 4102, Australia
| | - Terra Stark
- Metabolomics
Australia (Queensland Node), The University
of Queensland, St Lucia, Queensland 4072, Australia
| | - Lachlan S. R. Adamson
- School
of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Rufika S. Abidin
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yu Heng Lau
- School
of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Frank Sainsbury
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- CSIRO
Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, Queensland 4102, Australia
- Centre
for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Claudia E. Vickers
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- CSIRO
Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, Queensland 4102, Australia
- Centre
for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
- ARC Centre
of Excellence in Synthetic Biology, Queensland
University of Technology, Brisbane
City, Queensland 4000, Australia
| |
Collapse
|
10
|
Guo M, Li J, Teng Z, Ren M, Dong H, Zhang Y, Ru J, Du P, Sun S, Guo H. Four Simple Biomimetic Mineralization Methods to Improve the Thermostability and Immunogenicity of Virus-like Particles as a Vaccine against Foot-and-Mouth Disease. Vaccines (Basel) 2021; 9:vaccines9080891. [PMID: 34452016 PMCID: PMC8402440 DOI: 10.3390/vaccines9080891] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
The need for a cold chain system during storage and transport substantially increases the cost of vaccines. Virus-like particles (VLPs) are among the best countermeasures against foot and mouth disease virus (FMDV). However, VLPs are composed of pure proteins, and thus, are susceptible to heat. To address this problem, four simple biomimetic mineralization methods with the use of calcium phosphate were developed to improve heat tolerance via biomineralization. The results showed that biomineralization can significantly improve the heat resistance of VLPs. The biomineralized VLPs can be stored at low as 25 °C for eight days, and 37 °C for four days. Animal experiments showed that biomineralization had no effect on the immunogenicity of VLPs or the expression of specific antibodies (Abs) and neutralizing Abs. Even after heat treatment at 37 °C for four days, the biomineralized VLPs remained immunogenic and produced highly specific and neutralizing Abs with a high rate of protection. These results suggest that these biomineralization approaches can promote the thermal stability of VLPs against and significantly reduce dependence on cold storage and delivery systems.
Collapse
Affiliation(s)
- Mengnan Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
| | - Jiajun Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
| | - Zhidong Teng
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
| | - Mei Ren
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
| | - Hu Dong
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
| | - Jiaxi Ru
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
| | - Ping Du
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
- College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
- College of Animal Science, Yangtze University, Jingzhou 434025, China
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650000, China
- Correspondence:
| |
Collapse
|
11
|
Gerstweiler L, Bi J, Middelberg APJ. Virus-like particle preparation is improved by control over capsomere-DNA interactions during chromatographic purification. Biotechnol Bioeng 2021; 118:1707-1720. [PMID: 33484156 DOI: 10.1002/bit.27687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 11/09/2022]
Abstract
Expression of viral capsomeres in bacterial systems and subsequent in vitro assembly into virus-like particles is a possible pathway for affordable future vaccines. However, purification is challenging as viral capsomeres show poor binding to chromatography media. In this study, the behavior of capsomeres in unfractionated bacterial lysate was compared with that for purified capsomeres, with or without added microbial DNA, to better understand reasons for poor bioprocess behavior. We show that aggregates or complexes form through the interaction between viral capsomeres and DNA, especially in bacterial lysates rich in contaminating DNA. The formation of these complexes prevents the target protein capsomeres from accessing the pores of chromatography media. We find that protein-DNA interactions can be modulated by controlling the ionic strength of the buffer and that at elevated ionic strengths the protein-DNA complexes dissociate. Capsomeres thus released show enhanced bind-elute behavior on salt-tolerant chromatography media. DNA could therefore be efficiently removed. We believe this is the first report of the use of an optimized salt concentration that dissociates capsomere-DNA complexes yet enables binding to salt-tolerant media. Post purification, assembly experiments indicate that DNA-protein interactions can play a negative role during in vitro assembly, as DNA-protein complexes could not be assembled into virus-like particles, but formed worm-like structures. This study reveals that the control over DNA-protein interaction is a critical consideration during downstream process development for viral vaccines.
Collapse
Affiliation(s)
- Lukas Gerstweiler
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jingxiu Bi
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| | | |
Collapse
|
12
|
Gerstweiler L, Billakanti J, Bi J, Middelberg A. Comparative evaluation of integrated purification pathways for bacterial modular polyomavirus major capsid protein VP1 to produce virus-like particles using high throughput process technologies. J Chromatogr A 2021; 1639:461924. [PMID: 33545579 PMCID: PMC7825977 DOI: 10.1016/j.chroma.2021.461924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/21/2022]
Abstract
Modular virus-like particles and capsomeres are potential vaccine candidates that can induce strong immune responses. There are many described protocols for the purification of microbially-produced viral protein in the literature, however, they suffer from inherent limitations in efficiency, scalability and overall process costs. In this study, we investigated alternative purification pathways to identify and optimise a suitable purification pathway to overcome some of the current challenges. Among the methods, the optimised purification strategy consists of an anion exchange step in flow through mode followed by a multi modal cation exchange step in bind and elute mode. This approach allows an integrated process without any buffer adjustment between the purification steps. The major contaminants like host cell proteins, DNA and aggregates can be efficiently removed by the optimised strategy, without the need for a size exclusion polishing chromatography step, which otherwise could complicate the process scalability and increase overall cost. High throughput process technology studies were conducted to optimise binding and elution conditions for multi modal cation exchanger, Capto™ MMC and strong anion exchanger Capto™ Q. A dynamic binding capacity of 14 mg ml−1 was achieved for Capto™ MMC resin. Samples derived from each purification process were thoroughly characterized by RP-HPLC, SEC-HPLC, SDS-PAGE and LC-ESI-MS/MS Mass Spectrometry analytical methods. Modular polyomavirus major capsid protein could be purified within hours using the optimised process achieving purities above 87% and above 96% with inclusion of an initial precipitation step. Purified capsid protein could be easily assembled in-vitro into well-defined virus-like particles by lowering pH with addition of calcium chloride to the eluate. High throughout studies allowed the screening of a vast design space within weeks, rather than months, and unveiled complicated binding behaviour for CaptoTM MMC.
Collapse
Affiliation(s)
- Lukas Gerstweiler
- The University of Adelaide, School of Chemical Engineering and Advanced Materials, Adelaide, SA 5005, Australia
| | - Jagan Billakanti
- Cytiva, Product and Application Specialist Downstream Design-In ANZ, Suite 547, Level 5, 7 Eden Park Drive, Macquarie Park, NSW 2113, Australia
| | - Jingxiu Bi
- The University of Adelaide, School of Chemical Engineering and Advanced Materials, Adelaide, SA 5005, Australia
| | - Anton Middelberg
- The University of Adelaide, Division of Research and Innovation, Adelaide, SA 5005, Australia.
| |
Collapse
|
13
|
Pattinson DJ, Apte SH, Wibowo N, Rivera-Hernandez T, Groves PL, Middelberg APJ, Doolan DL. Chimeric Virus-Like Particles and Capsomeres Induce Similar CD8 + T Cell Responses but Differ in Capacity to Induce CD4 + T Cell Responses and Antibody Responses. Front Immunol 2020; 11:564627. [PMID: 33133076 PMCID: PMC7550421 DOI: 10.3389/fimmu.2020.564627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/25/2020] [Indexed: 12/01/2022] Open
Abstract
Despite extensive research, the development of an effective malaria vaccine remains elusive. The induction of robust and sustained T cell and antibody response by vaccination is an urgent unmet need. Chimeric virus-like particles (VLPs) are a promising vaccine platform. VLPs are composed of multiple subunit capsomeres which can be rapidly produced in a cost-effective manner, but the ability of capsomeres to induce antigen-specific cellular immune responses has not been thoroughly investigated. Accordingly, we have compared chimeric VLPs and their sub-unit capsomeres for capacity to induce CD8+ and CD4+ T cell and antibody responses. We produced chimeric murine polyomavirus VLPs and capsomeres each incorporating defined CD8+ T cell, CD4+ T cell or B cell repeat epitopes derived from Plasmodium yoelii CSP. VLPs and capsomeres were evaluated using both homologous or heterologous DNA prime/boost immunization regimens for T cell and antibody immunogenicity. Chimeric VLP and capsomere vaccine platforms induced robust CD8+ T cell responses at similar levels which was enhanced by a heterologous DNA prime. The capsomere platform was, however, more efficient at inducing CD4+ T cell responses and less efficient at inducing antigen-specific antibody responses. Our data suggest that capsomeres, which have significant manufacturing advantages over VLPs, should be considered for diseases where a T cell response is the desired outcome.
Collapse
Affiliation(s)
- David J Pattinson
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Simon H Apte
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nani Wibowo
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Tania Rivera-Hernandez
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Penny L Groves
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Anton P J Middelberg
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia.,School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Denise L Doolan
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
14
|
SARS-CoV-2 vaccine research and development: Conventional vaccines and biomimetic nanotechnology strategies. Asian J Pharm Sci 2020; 16:136-146. [PMID: 32905011 PMCID: PMC7462629 DOI: 10.1016/j.ajps.2020.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
The development of a massively producible vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, is essential for stopping the current coronavirus disease (COVID-19) pandemic. A vaccine must stimulate effective antibody and T cell responses in vivo to induce long-term protection. Scientific researchers have been developing vaccine candidates for the severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) since the outbreaks of these diseases. The prevalence of new biotechnologies such as genetic engineering has shed light on the generation of vaccines against novel viruses. In this review, we present the status of the development of coronavirus vaccines, focusing particularly on the biomimetic nanoparticle technology platform, which is likely to have a major role in future developments of personalized medicine.
Collapse
|
15
|
Zackova Suchanova J, Hejtmankova A, Neburkova J, Cigler P, Forstova J, Spanielova H. The Protein Corona Does Not Influence Receptor-Mediated Targeting of Virus-like Particles. Bioconjug Chem 2020; 31:1575-1585. [DOI: 10.1021/acs.bioconjchem.0c00240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jirina Zackova Suchanova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Alzbeta Hejtmankova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jitka Neburkova
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jitka Forstova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Hana Spanielova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
16
|
Pattinson DJ, Apte SH, Wibowo N, Chuan YP, Rivera-Hernandez T, Groves PL, Lua LH, Middelberg APJ, Doolan DL. Chimeric Murine Polyomavirus Virus-Like Particles Induce Plasmodium Antigen-Specific CD8 + T Cell and Antibody Responses. Front Cell Infect Microbiol 2019; 9:215. [PMID: 31275867 PMCID: PMC6593135 DOI: 10.3389/fcimb.2019.00215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/03/2019] [Indexed: 12/28/2022] Open
Abstract
An effective vaccine against the Plasmodium parasite is likely to require the induction of robust antibody and T cell responses. Chimeric virus-like particles are an effective vaccine platform for induction of antibody responses, but their capacity to induce robust cellular responses and cell-mediated protection against pathogen challenge has not been established. To evaluate this, we produced chimeric constructs using the murine polyomavirus structural protein with surface-exposed CD8+ or CD4+ T cell or B cell repeat epitopes derived from the Plasmodium yoelii circumsporozoite protein, and assessed immunogenicity and protective capacity in a murine model. Robust CD8+ T cell responses were induced by immunization with the chimeric CD8+ T cell epitope virus-like particles, however CD4+ T cell responses were very low. The B cell chimeric construct induced robust antibody responses but there was no apparent synergy when T cell and B cell constructs were administered as a pool. A heterologous prime/boost regimen using plasmid DNA priming followed by a VLP boost was more effective than homologous VLP immunization for cellular immunity and protection. These data show that chimeric murine polyomavirus virus-like particles are a good platform for induction of CD8+ T cell responses as well as antibody responses.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan
- Antibody Formation/immunology
- Antigens, Protozoan/immunology
- B-Lymphocytes
- CD4-Positive T-Lymphocytes
- CD8-Positive T-Lymphocytes/immunology
- Disease Models, Animal
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/immunology
- Immunity, Cellular
- Immunization
- Immunization, Secondary
- Malaria Vaccines
- Mice
- Mice, Inbred BALB C
- Plasmodium yoelii
- Polyomavirus/genetics
- Polyomavirus/immunology
- Protozoan Proteins/immunology
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
- David J. Pattinson
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Simon H. Apte
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nani Wibowo
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Yap P. Chuan
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Tania Rivera-Hernandez
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Penny L. Groves
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Linda H. Lua
- Protein Expression Facility, University of Queensland, Brisbane, QLD, Australia
| | - Anton P. J. Middelberg
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Denise L. Doolan
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
17
|
Rüdt M, Vormittag P, Hillebrandt N, Hubbuch J. Process monitoring of virus-like particle reassembly by diafiltration with UV/Vis spectroscopy and light scattering. Biotechnol Bioeng 2019; 116:1366-1379. [PMID: 30684365 PMCID: PMC6593973 DOI: 10.1002/bit.26935] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022]
Abstract
Virus-like particles (VLPs) have shown great potential as biopharmaceuticals in the market and in clinics. Nonenveloped, in vivo assembled VLPs are typically disassembled and reassembled in vitro to improve particle stability, homogeneity, and immunogenicity. At the industrial scale, cross-flow filtration (CFF) is the method of choice for performing reassembly by diafiltration. Here, we developed an experimental CFF setup with an on-line measurement loop for the implementation of process analytical technology (PAT). The measurement loop included an ultraviolet and visible (UV/Vis) spectrometer as well as a light scattering photometer. These sensors allowed for monitoring protein concentration, protein tertiary structure, and protein quaternary structure. The experimental setup was tested with three Hepatitis B core Antigen (HBcAg) variants. With each variant, three reassembly processes were performed at different transmembrane pressures (TMPs). While light scattering provided information on the assembly progress, UV/Vis allowed for monitoring the protein concentration and the rate of VLP assembly based on the microenvironment of Tyrosine-132. VLP formation was verified by off-line dynamic light scattering (DLS) and transmission electron microscopy (TEM). Furthermore, the experimental results provided evidence of aggregate-related assembly inhibition and showed that off-line size-exclusion chromatography does not provide a complete picture of the particle content. Finally, a Partial-Least Squares (PLS) model was calibrated to predict VLP concentrations in the process solution. Q 2 values of 0.947-0.984 were reached for the three HBcAg variants. In summary, the proposed experimental setup provides a powerful platform for developing and monitoring VLP reassembly steps by CFF.
Collapse
Affiliation(s)
- Matthias Rüdt
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Philipp Vormittag
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Nils Hillebrandt
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| |
Collapse
|
18
|
Charlton Hume HK, Vidigal J, Carrondo MJT, Middelberg APJ, Roldão A, Lua LHL. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol Bioeng 2019; 116:919-935. [PMID: 30597533 PMCID: PMC7161758 DOI: 10.1002/bit.26890] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Vaccination is the most effective method of disease prevention and control. Many viruses and bacteria that once caused catastrophic pandemics (e.g., smallpox, poliomyelitis, measles, and diphtheria) are either eradicated or effectively controlled through routine vaccination programs. Nonetheless, vaccine manufacturing remains incredibly challenging. Viruses exhibiting high antigenic diversity and high mutation rates cannot be fairly contested using traditional vaccine production methods and complexities surrounding the manufacturing processes, which impose significant limitations. Virus-like particles (VLPs) are recombinantly produced viral structures that exhibit immunoprotective traits of native viruses but are noninfectious. Several VLPs that compositionally match a given natural virus have been developed and licensed as vaccines. Expansively, a plethora of studies now confirms that VLPs can be designed to safely present heterologous antigens from a variety of pathogens unrelated to the chosen carrier VLPs. Owing to this design versatility, VLPs offer technological opportunities to modernize vaccine supply and disease response through rational bioengineering. These opportunities are greatly enhanced with the application of synthetic biology, the redesign and construction of novel biological entities. This review outlines how synthetic biology is currently applied to engineer VLP functions and manufacturing process. Current and developing technologies for the identification of novel target-specific antigens and their usefulness for rational engineering of VLP functions (e.g., presentation of structurally diverse antigens, enhanced antigen immunogenicity, and improved vaccine stability) are described. When applied to manufacturing processes, synthetic biology approaches can also overcome specific challenges in VLP vaccine production. Finally, we address several challenges and benefits associated with the translation of VLP vaccine development into the industry.
Collapse
Affiliation(s)
- Hayley K. Charlton Hume
- The University of Queensland, Australian Institute of Bioengineering and NanotechnologySt LuciaQueenslandAustralia
| | - João Vidigal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | - Manuel J. T. Carrondo
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer and Mathematical Sciences, The University of AdelaideAdelaideSouth AustraliaAustralia
| | - António Roldão
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | | |
Collapse
|
19
|
Wu M, Liu X, Bai H, Lai L, Chen Q, Huang G, Liu B, Tang G. Surface-Layer Protein-Enhanced Immunotherapy Based on Cell Membrane-Coated Nanoparticles for the Effective Inhibition of Tumor Growth and Metastasis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9850-9859. [PMID: 30788951 DOI: 10.1021/acsami.9b00294] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chemo-immunotherapy is an important tool to overcome tumor immune suppression in cancer immunotherapy. Herein, we report a surface-layer (S-layer) protein-enhanced immunotherapy strategy based on cell membrane-coated S-CM-HPAD nanoparticles for the effective malignant tumor therapy and metastasis inhibition. The S-CM-HPAD NPs could effectively deliver the tumor antigen, DOX, and immunoadjuvant to the homotypic tumor by the homotypic targeting ability of the coated cell membrane. In addition to its ability to induce tumor cell death, the loaded DOX could enhance the immunotherapy response by inhibition of myeloid-derived suppressor cells (MDSCs). Because of the intrinsic adjuvant property and capability to surface display epitopes and proteins, the S-layers localized on the surface of S-CM-HPAD NPs potentiated the immune response to the antigen. The results confirmed that the protective immunity against tumor occurrence was promoted effectively by prompting proliferation of lymphocytes and secretion of cytokine caused by the tumor-associated antigen and adjuvant. The excellent combinational therapeutic effects on the inhibition of tumor growth and metastasis in the melanoma tumor models demonstrated that the S-layer-enhanced immunotherapeutic method is a promising strategy for tumor immunotherapy of malignant tumor growth and metastasis.
Collapse
Affiliation(s)
- Min Wu
- Department of Chemistry , Zhejiang University , Hangzhou 310028 , China
| | - Xingang Liu
- Department of Chemistry , Zhejiang University , Hangzhou 310028 , China
| | - Hongzhen Bai
- Department of Chemistry , Zhejiang University , Hangzhou 310028 , China
| | - Lihua Lai
- Institute of Immunology , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310058 , China
| | - Qi Chen
- Department of Chemistry , Zhejiang University , Hangzhou 310028 , China
| | - Guojun Huang
- Department of Chemistry , Zhejiang University , Hangzhou 310028 , China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 Singapore
| | - Guping Tang
- Department of Chemistry , Zhejiang University , Hangzhou 310028 , China
| |
Collapse
|
20
|
Steele JFC, Peyret H, Saunders K, Castells‐Graells R, Marsian J, Meshcheriakova Y, Lomonossoff GP. Synthetic plant virology for nanobiotechnology and nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:e1447. [PMID: 28078770 PMCID: PMC5484280 DOI: 10.1002/wnan.1447] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022]
Abstract
Nanotechnology is a rapidly expanding field seeking to utilize nano-scale structures for a wide range of applications. Biologically derived nanostructures, such as viruses and virus-like particles (VLPs), provide excellent platforms for functionalization due to their physical and chemical properties. Plant viruses, and VLPs derived from them, have been used extensively in biotechnology. They have been characterized in detail over several decades and have desirable properties including high yields, robustness, and ease of purification. Through modifications to viral surfaces, either interior or exterior, plant-virus-derived nanoparticles have been shown to support a range of functions of potential interest to medicine and nano-technology. In this review we highlight recent and influential achievements in the use of plant virus particles as vehicles for diverse functions: from delivery of anticancer compounds, to targeted bioimaging, vaccine production to nanowire formation. WIREs Nanomed Nanobiotechnol 2017, 9:e1447. doi: 10.1002/wnan.1447 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
| | - Hadrien Peyret
- Department of Biology ChemistryJohn Innes CentreNorwichUK
| | - Keith Saunders
- Department of Biology ChemistryJohn Innes CentreNorwichUK
| | | | | | | | | |
Collapse
|
21
|
Nanoassembly routes stimulate conflicting antibody quantity and quality for transmission-blocking malaria vaccines. Sci Rep 2017. [PMID: 28630474 PMCID: PMC5476561 DOI: 10.1038/s41598-017-03798-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vaccine development efforts have recently focused on enabling strong immune responses to poorly immunogenic antigens, via display on multimerisation scaffolds or virus like particles (VLPs). Typically such studies demonstrate improved antibody titer comparing monomeric and nano-arrayed antigen. There are many such studies and scaffold technologies, but minimal side-by-side evaluation of platforms for both the amount and efficacy of antibodies induced. Here we present direct comparison of three leading platforms displaying the promising malaria transmission-blocking vaccine (TBV) target Pfs25. These platforms encompass the three important routes to antigen-scaffold linkage: genetic fusion, chemical cross-linking and plug-and-display SpyTag/SpyCatcher conjugation. We demonstrate that chemically-conjugated Qβ VLPs elicited the highest quantity of antibodies, while SpyCatcher-AP205-VLPs elicited the highest quality anti-Pfs25 antibodies for transmission blocking upon mosquito feeding. These quantative and qualitative features will guide future nanoassembly optimisation, as well as the development of the new generation of malaria vaccines targeting transmission.
Collapse
|
22
|
Charlton Hume HK, Lua LHL. Platform technologies for modern vaccine manufacturing. Vaccine 2017; 35:4480-4485. [PMID: 28347504 PMCID: PMC7115529 DOI: 10.1016/j.vaccine.2017.02.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 10/29/2022]
Abstract
Improved understanding of antigenic components and their interaction with the immune system, as supported by computational tools, permits a sophisticated approach to modern vaccine design. Vaccine platforms provide an effective tool by which strategically designed peptide and protein antigens are modularized to enhance their immunogenicity. These modular vaccine platforms can overcome issues faced by traditional vaccine manufacturing and have the potential to generate safe vaccines, rapidly and at a low cost. This review introduces two promising platforms based on virus-like particle and liposome, and discusses the methodologies and challenges.
Collapse
Affiliation(s)
- Hayley K Charlton Hume
- The University of Queensland, Protein Expression Facility, St Lucia, QLD 4072, Australia
| | - Linda H L Lua
- The University of Queensland, Protein Expression Facility, St Lucia, QLD 4072, Australia.
| |
Collapse
|
23
|
Huang X, Wang X, Zhang J, Xia N, Zhao Q. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines 2017; 2:3. [PMID: 29263864 PMCID: PMC5627247 DOI: 10.1038/s41541-017-0006-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
Recombinant virus-like particle-based vaccines are composed of viral structural proteins and mimic authentic native viruses but are devoid of viral genetic materials. They are the active components in highly safe and effective vaccines for the prevention of infectious diseases. Several expression systems have been used for virus-like particle production, ranging from Escherichia coli to mammalian cell lines. The prokaryotic expression system, especially Escherichia coli, is the preferred expression host for producing vaccines for global use. Hecolin, the first licensed virus-like particle vaccine derived from Escherichia coli, has been demonstrated to possess good safety and high efficacy. In this review, we focus on Escherichia coli-derived virus-like particle based vaccines and vaccine candidates that are used for prevention (immunization against microbial pathogens) or disease treatment (directed against cancer or non-infectious diseases). The native-like spatial or higher-order structure is essential for the function of virus-like particles. Thus, the tool box for analyzing the key physicochemical, biochemical and functional attributes of purified virus-like particles will also be discussed. In summary, the Escherichia coli expression system has great potentials for producing a range of proteins with self-assembling properties to be used as vaccine antigens given the proper epitopes were preserved when compared to those in the native pathogens or disease-related target molecules.
Collapse
Affiliation(s)
- Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Life Science, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| |
Collapse
|
24
|
Seth A, Kong IG, Lee SH, Yang JY, Lee YS, Kim Y, Wibowo N, Middelberg AP, Lua LH, Kweon MN. Modular virus-like particles for sublingual vaccination against group A streptococcus. Vaccine 2016; 34:6472-6480. [DOI: 10.1016/j.vaccine.2016.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/28/2016] [Accepted: 11/04/2016] [Indexed: 02/05/2023]
|
25
|
Waneesorn J, Wibowo N, Bingham J, Middelberg APJ, Lua LHL. Structural-based designed modular capsomere comprising HA1 for low-cost poultry influenza vaccination. Vaccine 2016; 36:3064-3071. [PMID: 27894719 DOI: 10.1016/j.vaccine.2016.11.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 11/18/2022]
Abstract
Highly pathogenic avian influenza (HPAI) viruses cause a severe and lethal infection in domestic birds. The increasing number of HPAI outbreaks has demonstrated the lack of capabilities to control the rapid spread of avian influenza. Poultry vaccination has been shown to not only reduce the virus spread in animals but also reduce the virus transmission to humans, preventing potential pandemic development. However, existing vaccine technologies cannot respond to a new virus outbreak rapidly and at a cost and scale that is commercially viable for poultry vaccination. Here, we developed modular capsomere, subunits of virus-like particle, as a low-cost poultry influenza vaccine. Modified murine polyomavirus (MuPyV) VP1 capsomere was used to present structural-based influenza Hemagglutinin (HA1) antigen. Six constructs of modular capsomeres presenting three truncated versions of HA1 and two constructs of modular capsomeres presenting non-modified HA1 have been generated. These modular capsomeres were successfully produced in stable forms using Escherichia coli, without the need for protein refolding. Based on ELISA, this adjuvanted modular capsomere (CaptHA1-3C) induced strong antibody response (almost 105endpoint titre) when administered into chickens, similar to titres obtained in the group administered with insect cell-based HA1 proteins. Chickens that received adjuvanted CaptHA1-3C followed by challenge with HPAI virus were fully protected. The results presented here indicate that this platform for bacterially-produced modular capsomere could potentially translate into a rapid-response and low-cost vaccine manufacturing technology suitable for poultry vaccination.
Collapse
Affiliation(s)
- Jarurin Waneesorn
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Nani Wibowo
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Australian Animal Health Laboratory, Geelong, VIC 3219, Australia
| | - Anton P J Middelberg
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Linda H L Lua
- The University of Queensland, Protein Expression Facility, St Lucia, QLD 4072, Australia.
| |
Collapse
|
26
|
Tekewe A, Fan Y, Tan E, Middelberg APJ, Lua LHL. Integrated molecular and bioprocess engineering for bacterially produced immunogenic modular virus-like particle vaccine displaying 18 kDa rotavirus antigen. Biotechnol Bioeng 2016; 114:397-406. [PMID: 27497268 DOI: 10.1002/bit.26068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/04/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023]
Abstract
A high global burden of rotavirus disease and the unresolved challenges with the marketed rotavirus vaccines, particularly in the developing world, have ignited efforts to develop virus-like particle (VLP) vaccines for rotavirus. While rotavirus-like particles comprising multiple viral proteins can be difficult to process, modular VLPs presenting rotavirus antigenic modules are promising alternatives in reducing process complexity and cost. In this study, integrated molecular and bioprocess engineering approaches were used to simplify the production of modular murine polyomavirus capsomeres and VLPs presenting a rotavirus 18 kDa VP8* antigen. A single construct was generated for dual expression of non-tagged murine polyomavirus capsid protein VP1 and modular VP1 inserted with VP8*, for co-expression in Escherichia coli. Co-expressed proteins assembled into pentameric capsomeres in E. coli. A selective salting-out precipitation and a polishing size exclusion chromatography step allowed the recovery of stable modular capsomeres from cell lysates at high purity, and modular capsomeres were successfully translated into modular VLPs when assembled in vitro. Immunogenicity study in mice showed that modular capsomeres and VLPs induced high levels of VP8*-specific antibodies. Our results demonstrate that a multipronged synthetic biology approach combining molecular and bioprocess engineering enabled simple and low-cost production of highly immunogenic modular capsomeres and VLPs presenting conformational VP8* antigenic modules. This strategy potentially provides a cost-effective production route for modular capsomere and VLP vaccines against rotavirus, highly suitable to manufacturing economics for the developing world. Biotechnol. Bioeng. 2017;114: 397-406. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alemu Tekewe
- Australian Institute for Bioengineering and Nanotechnoloy, The University of Queensland, St Lucia, Queensland, Australia
| | - Yuanyuan Fan
- Protein Expression Facility, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Emilyn Tan
- Protein Expression Facility, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Anton P J Middelberg
- Australian Institute for Bioengineering and Nanotechnoloy, The University of Queensland, St Lucia, Queensland, Australia
| | - Linda H L Lua
- Protein Expression Facility, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
27
|
Tekewe A, Connors NK, Middelberg APJ, Lua LHL. Design strategies to address the effect of hydrophobic epitope on stability and in vitro assembly of modular virus-like particle. Protein Sci 2016; 25:1507-16. [PMID: 27222486 DOI: 10.1002/pro.2953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/20/2016] [Indexed: 11/09/2022]
Abstract
Virus-like particles (VLPs) and capsomere subunits have shown promising potential as safe and effective vaccine candidates. They can serve as platforms for the display of foreign epitopes on their surfaces in a modular architecture. Depending on the physicochemical properties of the antigenic modules, modularization may affect the expression, solubility and stability of capsomeres, and VLP assembly. In this study, three module designs of a rotavirus hydrophobic peptide (RV10) were synthesized using synthetic biology. Among the three synthetic modules, modularization of the murine polyomavirus VP1 with a single copy of RV10 flanked by long linkers and charged residues resulted in the expression of stable modular capsomeres. Further employing the approach of module titration of RV10 modules on each capsomere via Escherichia coli co-expression of unmodified VP1 and modular VP1-RV10 successfully translated purified modular capomeres into modular VLPs when assembled in vitro. Our results demonstrate that tailoring the physicochemical properties of modules to enhance modular capsomeres stability is achievable through synthetic biology designs. Combined with module titration strategy to avoid steric hindrance to intercapsomere interactions, this allows bioprocessing of bacterially produced in vitro assembled modular VLPs.
Collapse
Affiliation(s)
- Alemu Tekewe
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, St Lucia, Queensland 4072, Australia
| | - Natalie K Connors
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, St Lucia, Queensland 4072, Australia
| | - Anton P J Middelberg
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, St Lucia, Queensland 4072, Australia
| | - Linda H L Lua
- The University of Queensland, UQ Protein Expression Facility, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
28
|
Wang H, Middelberg AP. Non-infectious virus-like particles for the validation of membrane integrity and column performance in bioprocessing. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Shirbaghaee Z, Bolhassani A. Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers 2016; 105:113-32. [PMID: 26509554 PMCID: PMC7161881 DOI: 10.1002/bip.22759] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 12/17/2022]
Abstract
Virus-like particles (VLPs) mimic the whole construct of virus particles devoid of viral genome as used in subunit vaccine design. VLPs can elicit efficient protective immunity as direct immunogens compared to soluble antigens co-administered with adjuvants in several booster injections. Up to now, several prokaryotic and eukaryotic systems such as insect, yeast, plant, and E. coli were used to express recombinant proteins, especially for VLP production. Recent studies are also generating VLPs in plants using different transient expression vectors for edible vaccines. VLPs and viral particles have been applied for different functions such as gene therapy, vaccination, nanotechnology, and diagnostics. Herein, we describe VLP production in different systems as well as its applications in biology and medicine.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
- Department of Immunology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Azam Bolhassani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| |
Collapse
|
30
|
Parker SA, Maloy MH, Tome-Amat J, Bardliving CL, Batt CA, Lanz KJ, Olesberg JT, Arnold MA. Optimization of norovirus virus-like particle production inPichia pastorisusing a real-time near-infrared bioprocess monitor. Biotechnol Prog 2016; 32:518-26. [DOI: 10.1002/btpr.2224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/02/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Stephanie A. Parker
- Dept. of Biomedical Engineering; Cornell University; 357 Stocking Hall Ithaca, NY 14853 Ithaca NY
| | | | - Jaime Tome-Amat
- Dept. of Microbiology; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai; New York NY
| | | | - Carl A. Batt
- Dept. of Food Science; Cornell University; Ithaca NY
| | | | | | | |
Collapse
|
31
|
Ladd Effio C, Oelmeier SA, Hubbuch J. High-throughput characterization of virus-like particles by interlaced size-exclusion chromatography. Vaccine 2016; 34:1259-67. [PMID: 26845741 DOI: 10.1016/j.vaccine.2016.01.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/12/2016] [Accepted: 01/17/2016] [Indexed: 11/26/2022]
Abstract
The development and manufacturing of safe and effective vaccines relies essentially on the availability of robust and precise analytical techniques. Virus-like particles (VLPs) have emerged as an important and valuable class of vaccines for the containment of infectious diseases. VLPs are produced by recombinant protein expression followed by purification procedures to minimize the levels of process- and product-related impurities. The control of these impurities is necessary during process development and manufacturing. Especially monitoring of the VLP size distribution is important for the characterization of the final vaccine product. Currently used methods require long analysis times and tailor-made assays. In this work, we present a size-exclusion ultra-high performance liquid chromatography (SE-UHPLC) method to characterize VLPs and quantify aggregates within 3.1min per sample applying interlaced injections. Four analytical SEC columns were evaluated for the analysis of human B19 parvo-VLPs and murine polyoma-VLPs. The optimized method was successfully used for the characterization of five recombinant protein-based VLPs including human papillomavirus (HPV) VLPs, human enterovirus 71 (EV71) VLPs, and chimeric hepatitis B core antigen (HBcAg) VLPs pointing out the generic applicability of the assay. Measurements were supported by transmission electron microscopy and dynamic light scattering. It was demonstrated that the iSE-UHPLC method provides a rapid, precise and robust tool for the characterization of VLPs. Two case studies on purification tools for VLP aggregates and storage conditions of HPV VLPs highlight the relevance of the analytical method for high-throughput process development and process monitoring of virus-like particles.
Collapse
Affiliation(s)
- Christopher Ladd Effio
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | - Stefan A Oelmeier
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | - Jürgen Hubbuch
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany.
| |
Collapse
|
32
|
Wahome N, Cooper A, Thapa P, Choudhari S, Gao FP, Volkin DB, Middaugh CR. Production of Well-Characterized Virus-like Particles in an Escherichia coli-Based Expression Platform for Preclinical Vaccine Assessments. Methods Mol Biol 2016; 1404:437-457. [PMID: 27076315 DOI: 10.1007/978-1-4939-3389-1_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this chapter we demonstrate a method to produce virus-like particles (VLPs) from Escherichia coli. Standard bacterial protocols are used for the cloning, transformation, and expression of the protein subunits. A two-step protein purification method is highlighted: one step based on separating soluble proteins with ion-exchange affinity chromatography and a second polishing step using size-exclusion columns to isolate VLP species. The ensuing VLPs can be characterized with a variety of biophysical techniques including ultraviolet (UV)-visible spectroscopy for protein quantification, dynamic light scattering for size distribution determination, and transmission electron microscopy to ascertain size and morphology.
Collapse
MESH Headings
- Capsid Proteins/genetics
- Cloning, Molecular
- Drug Evaluation, Preclinical
- Dynamic Light Scattering
- Escherichia coli/genetics
- Genetic Engineering/methods
- Microscopy, Electron, Transmission
- Spectrophotometry, Ultraviolet
- Transformation, Genetic
- Vaccines, Virus-Like Particle/biosynthesis
- Vaccines, Virus-Like Particle/chemistry
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/isolation & purification
Collapse
Affiliation(s)
- Newton Wahome
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2095 Constant Ave, Lawrence, KS, 66047, USA.
| | - Anne Cooper
- Protein Production Group, University of Kansas, Lawrence, KS, 66047, USA
| | - Prem Thapa
- Microscopy and Analytical Imaging Lab, University of Kansas, Lawrence, KS, 66047, USA
| | - Shyamal Choudhari
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2095 Constant Ave, Lawrence, KS, 66047, USA
| | - Fei P Gao
- Protein Production Group, University of Kansas, Lawrence, KS, 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2095 Constant Ave, Lawrence, KS, 66047, USA
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2095 Constant Ave, Lawrence, KS, 66047, USA
| |
Collapse
|
33
|
Ladd Effio C, Baumann P, Weigel C, Vormittag P, Middelberg A, Hubbuch J. High-throughput process development of an alternative platform for the production of virus-like particles in Escherichia coli. J Biotechnol 2015; 219:7-19. [PMID: 26707548 DOI: 10.1016/j.jbiotec.2015.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/17/2015] [Accepted: 12/14/2015] [Indexed: 11/26/2022]
Abstract
The production of safe vaccines against untreatable or new diseases has pushed the research in the field of virus-like particles (VLPs). Currently, a large number of commercial VLP-based human vaccines and vaccine candidates are available or under development. A promising VLP production route is the controlled in vitro assembly of virus proteins into capsids. In the study reported here, a high-throughput screening (HTS) procedure was implemented for the upstream process development of a VLP platform in bacterial cell systems. Miniaturized cultivations were carried out in 48-well format in the BioLector system (m2p-Labs, Germany) using an Escherichia coli strain with a tac promoter producing the murine polyomavirus capsid protein (VP1). The screening procedure incorporated micro-scale cultivations, HTS cell disruption by sonication and HTS-compatible analytics by capillary gel electrophoresis. Cultivation temperatures, shaking speeds, induction and medium conditions were varied to optimize the product expression in E. coli. The most efficient system was selected based on an evaluation of soluble and insoluble product concentrations as well as on the percentage of product in the total soluble protein fraction. The optimized system was scaled up to cultivation 2.5L shaker flask scale and purified using an anion exchange chromatography membrane adsorber, followed by a size exclusion chromatography polishing procedure. For proof of concept, purified VP1 capsomeres were assembled under defined buffer conditions into empty capsids and characterized using transmission electron microscopy (TEM). The presented HTS procedure allowed for a fast development of an efficient production process of VLPs in E. coli. Under optimized cultivation conditions, the VP1 product totalled up to 43% of the total soluble protein fraction, yielding 1.63 mg VP1 per mL of applied cultivation medium. The developed production process strongly promotes the murine polyoma-VLP platform, moving towards an industrially feasible technology for new chimeric vaccines.
Collapse
Affiliation(s)
- Christopher Ladd Effio
- Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Pascal Baumann
- Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Claudia Weigel
- Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Philipp Vormittag
- Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anton Middelberg
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Jürgen Hubbuch
- Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
34
|
Wibowo N, Wu Y, Fan Y, Meers J, Lua LH, Middelberg AP. Non-chromatographic preparation of a bacterially produced single-shot modular virus-like particle capsomere vaccine for avian influenza. Vaccine 2015; 33:5960-5. [DOI: 10.1016/j.vaccine.2015.08.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/24/2015] [Indexed: 11/26/2022]
|
35
|
Abidin RS, Lua LHL, Middelberg APJ, Sainsbury F. Insert engineering and solubility screening improves recovery of virus-like particle subunits displaying hydrophobic epitopes. Protein Sci 2015; 24:1820-8. [PMID: 26401641 DOI: 10.1002/pro.2775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/20/2015] [Indexed: 11/09/2022]
Abstract
The Polyomavirus coat protein, VP1 has been developed as an epitope presentation system able to provoke humoral immunity against a variety of pathogens, such as Influenza and Group A Streptococcus. The ability of the system to carry cytotoxic T cell epitopes on a surface-exposed loop and the impact on protein solubility has not been examined. Four variations of three selected epitopes were cloned into surface-exposed loops of VP1, and expressed in Escherichia coli. VP1 pentamers, also known as capsomeres, were purified via a glutathione-S-transferase tag. Size exclusion chromatography indicated severe aggregation of the recombinant VP1 during enzymatic tag removal resulting from the introduction the hydrophobic epitopes. Inserts were modified to possess double aspartic acid residues at each end of the hydrophobic epitopes and a high-throughput buffer condition screen was implemented with protein aggregation monitored during tag removal by spectrophotometry and dynamic light scattering. These analyses showed that the insertion of charged residues at the extremities of epitopes could improve solubility of capsomeres and revealed multiple windows of opportunity for further condition optimization. A combination of epitope design, pH optimization, and the additive l-arginine permitted the recovery of soluble VP1 pentamers presenting hydrophobic epitopes and their subsequent assembly into virus-like particles.
Collapse
Affiliation(s)
- R S Abidin
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology Centre for Biomolecular Engineering, St Lucia, Queensland, 4072, Australia
| | - L H L Lua
- Protein Expression Facility, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - A P J Middelberg
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology Centre for Biomolecular Engineering, St Lucia, Queensland, 4072, Australia
| | - F Sainsbury
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology Centre for Biomolecular Engineering, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
36
|
Catrice EVB, Sainsbury F. Assembly and Purification of Polyomavirus-Like Particles from Plants. Mol Biotechnol 2015; 57:904-13. [PMID: 26179381 DOI: 10.1007/s12033-015-9879-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Polyomaviruses are small DNA viruses that have a history of use in biotechnology. The capsids of a number of species have been developed into experimental prophylactic and therapeutic virus-like particle (VLP) vaccines. In order to explore plants as a host for the expression and purification of polyomavirus-like particles, we have transiently expressed the major capsid protein, VP1, in Nicotiana benthamiana leaves. Deletion of a polybasic motif from the N-terminal region of VP1 resulted in increased expression as well as reduced necrosis of leaf tissue, which was associated with differences in subcellular localisation and reduced DNA binding by the deletion variant (ΔVP1). Self-assembled VLPs were recovered from tissue expressing both wild-type VP1 and ΔVP1 by density gradient ultracentrifugation. VLPs composed of ΔVP1 were more homogenous than wtVPLs and, unlike the latter, did not encapsidate nucleic acid. Such homogenous, empty VLPs are of great interest in biotechnology and nanotechnology. In addition, we show that both MPyV VLP variants assembled in plants can be produced with encapsidated foreign protein. Thus, this study demonstrates the utility of plant-based expression of polyomavirus-like particles and the suitability of this host for further developments in polyomavirus-based technologies.
Collapse
Affiliation(s)
- Emeline V B Catrice
- Centre for Biomolecular Engineering, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | | |
Collapse
|
37
|
Synthetic biology design to display an 18 kDa rotavirus large antigen on a modular virus-like particle. Vaccine 2015; 33:5937-44. [PMID: 26387437 DOI: 10.1016/j.vaccine.2015.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/30/2015] [Accepted: 09/04/2015] [Indexed: 11/21/2022]
Abstract
Virus-like particles are an established class of commercial vaccine possessing excellent function and proven stability. Exciting developments made possible by modern tools of synthetic biology has stimulated emergence of modular VLPs, whereby parts of one pathogen are by design integrated into a less harmful VLP which has preferential physical and manufacturing character. This strategy allows the immunologically protective parts of a pathogen to be displayed on the most-suitable VLP. However, the field of modular VLP design is immature, and robust design principles are yet to emerge, particularly for larger antigenic structures. Here we use a combination of molecular dynamic simulation and experiment to reveal two key design principles for VLPs. First, the linkers connecting the integrated antigenic module with the VLP-forming protein must be well designed to ensure structural separation and independence. Second, the number of antigenic domains on the VLP surface must be sufficiently below the maximum such that a "steric barrier" to VLP formation cannot exist. This second principle leads to designs whereby co-expression of modular protein with unmodified VLP-forming protein can titrate down the amount of antigen on the surface of the VLP, to the point where assembly can proceed. In this work we elucidate these principles by displaying the 18.1 kDa VP8* domain from rotavirus on the murine polyomavirus VLP, and show functional presentation of the antigenic structure.
Collapse
|
38
|
Norkiene M, Stonyte J, Ziogiene D, Mazeike E, Sasnauskas K, Gedvilaite A. Production of recombinant VP1-derived virus-like particles from novel human polyomaviruses in yeast. BMC Biotechnol 2015; 15:68. [PMID: 26239840 PMCID: PMC4523907 DOI: 10.1186/s12896-015-0187-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Eleven new human polyomaviruses (HPyVs) have been identified in the last decade. Serological studies show that these novel HPyVs sub-clinically infect humans at an early age. The routes of infection, entry pathways, and cell tropism of new HPyVs remain unknown. VP1 proteins of polyomaviruses can assembly into virus-like particles (VLPs). As cell culturing systems for HPyV are currently not available, VP1-derived VLPs may be useful tools in basic research and biotechnological applications. RESULTS Recombinant VP1-derived VLPs from 11 newly identified HPyVs were efficiently expressed in yeast. VP1 proteins derived from Merkel cell polyomavirus (MCPyV), trichodysplasia spinulosa-associated polyomavirus (TSPyV), and New Jersey polyomavirus (NJPyV) self-assembled into homogeneous similarly-sized VLPs. Karolinska Institutet polyomavirus (KIPyV), HPyV7, HPyV9, HPyV10, and St. Louis polyomavirus (STLPyV) VP1 proteins formed VLPs that varied in size with diameters ranging from 20 to 60 nm. Smaller-sized VLPs (25-35 nm in diameter) predominated in preparations from Washington University polyomavirus (WUPyV) and HPyV6. Attempts to express recombinant HPyV12 VP1-derived VLPs in yeast indicate that translation of VP1 might start at the second of two potential translation initiation sites in the VP1-encoding open reading frame (ORF). This translation resulted in a 364-amino acid-long VP1 protein, which efficiently self-assembled into typical PyV VLPs. MCPyV-, KIPyV-, TSPyV-, HPyV9-, HPyV10-, and HPyV12-derived VLPs showed hemagglutination (HA) assay activity in guinea pig erythrocytes, whereas WUPyV-, HPyV6-, HPyV7-, STLPyV- and NJPyV-derived VP1 VLPs did not. CONCLUSIONS The yeast expression system was successfully utilized for high-throughput production of recombinant VP1-derived VLPs from 11 newly identified HPyVs. HPyV12 VP1-derived VLPs were generated from the second of two potential translation initiation sites in the VP1-encoding ORF. Recombinant VLPs produced in yeast originated from different HPyVs demonstrated distinct HA activities and may be useful in virus diagnostics, capsid structure studies, or investigation of entry pathways and cell tropism of HPyVs until cell culture systems for new HPyVs are developed.
Collapse
Affiliation(s)
- Milda Norkiene
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania.
| | - Jomante Stonyte
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania.
| | - Danguole Ziogiene
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania.
| | - Egle Mazeike
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania.
| | - Kestutis Sasnauskas
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania.
| | - Alma Gedvilaite
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania.
| |
Collapse
|
39
|
Tekewe A, Connors NK, Sainsbury F, Wibowo N, Lua LH, Middelberg AP. A rapid and simple screening method to identify conditions for enhanced stability of modular vaccine candidates. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Abstract
Virus-like particles (VLPs) are an effective means of establishing both prophylactic and therapeutic immunity against their source virus or heterologous antigens. The particulate nature and repetitive structure of VLPs makes them ideal for stimulating potent immune responses. Epitopes delivered by VLPs can be presented on MHC-II for stimulation of a humoral immune response, or cross-presented onto MHC-I leading to cell-mediated immunity. VLPs as particulate subunit vaccine carriers are showing promise in preclinical and clinical trials for the treatment of many conditions including cancer, autoimmunity, allergies and addiction. Supporting the delivery of almost any form of antigenic material, VLPs are ideal candidate vectors for development of future vaccines.
Collapse
|
41
|
Ravin NV, Blokhina EA, Kuprianov VV, Stepanova LA, Shaldjan AA, Kovaleva AA, Tsybalova LM, Skryabin KG. Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant loop region of hepatitis B core antigen: Insertion of multiple copies of M2e increases immunogenicity and protective efficiency. Vaccine 2015; 33:3392-7. [PMID: 25937448 DOI: 10.1016/j.vaccine.2015.04.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/15/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
Abstract
The extracellular domain of the transmembrane protein M2 (M2e) of influenza A virus is a promising target for the development of "universal" vaccines against influenza. M2e is a poor immunogen by itself; however, when M2e is linked to an appropriate carrier, such as hepatitis B virus core (HBc) particles, it becomes highly immunogenic. Insertions of target peptides into the surface-exposed major immunodominant loop region (MIR) of the HBc antigen are especially immunogenic, but such insertions often affect the protein folding and formation of recombinant virus-like particles. To facilitate an appropriate conformation of the M2e insert, we introduced flexible linkers at the junction points between the insert and flanking HBc sequences. This approach allowed the construction of recombinant HBc particles carrying 1, 2 and 4 copies of M2e in the MIR region. These particles were produced in Escherichia coli and purified to homogeneity. The immune response and protective activity of hybrid HBc particles in mice correlated with the number of inserted M2e peptides: the highest immunogenicity and complete protection of mice against the lethal challenge by influenza virus was observed with particles carrying four copies of M2e. The possibility of the simultaneous presentation of M2e peptides from several important influenza strains on a single HBc particle could also facilitate the development of a broad-specificity vaccine efficient not only against influenza A strains of human origin but also for newly emerging strains of animal origin, such as the avian influenza.
Collapse
Affiliation(s)
- Nikolai V Ravin
- Centre 'Bioengineering', Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow, Russia.
| | - Elena A Blokhina
- Centre 'Bioengineering', Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow, Russia
| | - Victor V Kuprianov
- Centre 'Bioengineering', Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow, Russia
| | - Liudmila A Stepanova
- Research Institute of Influenza, Russian Federation Ministry of Health, St. Petersburg, Russia
| | - Aram A Shaldjan
- Research Institute of Influenza, Russian Federation Ministry of Health, St. Petersburg, Russia
| | - Anna A Kovaleva
- Research Institute of Influenza, Russian Federation Ministry of Health, St. Petersburg, Russia
| | - Liudmila M Tsybalova
- Research Institute of Influenza, Russian Federation Ministry of Health, St. Petersburg, Russia
| | - Konstantin G Skryabin
- Centre 'Bioengineering', Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow, Russia
| |
Collapse
|
42
|
Seth A, Ritchie FK, Wibowo N, Lua LHL, Middelberg APJ. Non-carrier nanoparticles adjuvant modular protein vaccine in a particle-dependent manner. PLoS One 2015; 10:e0117203. [PMID: 25756283 PMCID: PMC4355484 DOI: 10.1371/journal.pone.0117203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/20/2014] [Indexed: 11/18/2022] Open
Abstract
Nanoparticles are increasingly used to adjuvant vaccine formulations due to their biocompatibility, ease of manufacture and the opportunity to tailor their size, shape, and physicochemical properties. The efficacy of similarly-sized silica (Si-OH), poly (D,L-lactic-co-glycolic acid) (PLGA) and poly caprolactone (PCL) nanoparticles (nps) to adjuvant recombinant capsomere presenting antigenic M2e modular peptide from Influenza A virus (CapM2e) was investigated in vivo. Formulation of CapM2e with Si-OH or PLGA nps significantly boosted the immunogenicity of modular capsomeres, even though CapM2e was not actively attached to the nanoparticles prior to injection (i.e., formulation was by simple mixing). In contrast, PCL nps showed no significant adjuvant effect using this simple-mixing approach. The immune response induced by CapM2e alone or formulated with nps was antibody-biased with very high antigen-specific antibody titer and less than 20 cells per million splenocytes secreting interferon gamma. Modification of silica nanoparticle surface properties through amine functionalization and pegylation did not lead to significant changes in immune response. This study confirms that simple mixing-based formulation can lead to effective adjuvanting of antigenic protein, though with antibody titer dependent on nanoparticle physicochemical properties.
Collapse
Affiliation(s)
- Arjun Seth
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD, Australia
| | - Fiona K Ritchie
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD, Australia
| | - Nani Wibowo
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD, Australia
| | - Linda H L Lua
- The University of Queensland, Protein Expression Facility, St Lucia, QLD, Australia
| | - Anton P J Middelberg
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD, Australia
| |
Collapse
|
43
|
|
44
|
Trent A, Ulery BD, Black MJ, Barrett JC, Liang S, Kostenko Y, David NA, Tirrell MV. Peptide amphiphile micelles self-adjuvant group A streptococcal vaccination. AAPS JOURNAL 2014; 17:380-8. [PMID: 25527256 DOI: 10.1208/s12248-014-9707-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/27/2014] [Indexed: 11/30/2022]
Abstract
Delivery system design and adjuvant development are crucially important areas of research for improving vaccines. Peptide amphiphile micelles are a class of biomaterials that have the unique potential to function as both vaccine delivery vehicles and self-adjuvants. In this study, peptide amphiphiles comprised of a group A streptococcus B cell antigen (J8) and a dialkyl hydrophobic moiety (diC16) were synthesized and organized into self-assembled micelles, driven by hydrophobic interactions among the alkyl tails. J8-diC16 formed cylindrical micelles with highly α-helical peptide presented on their surfaces. Both the micelle length and secondary structure were shown to be enhanced by annealing. When injected into mice, J8-diC16 micelles induced a strong IgG1 antibody response that was comparable to soluble J8 peptide supplemented with two classical adjuvants. It was discovered that micelle adjuvanticity requires the antigen be a part of the micelle since separation of J8 and the micelle was insufficient to induce an immune response. Additionally, the diC16 tail appears to be non-immunogenic since it does not stimulate a pathogen recognition receptor whose agonist (Pam3Cys) possesses a very similar chemical structure. The research presented in this paper demonstrates the promise peptide amphiphile micelles have in improving the field of vaccine engineering.
Collapse
Affiliation(s)
- Amanda Trent
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California, 93106, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Foged C, Rades T, Perrie Y, Hook S, Ward V, Young S. Virus-Like Particles, a Versatile Subunit Vaccine Platform. SUBUNIT VACCINE DELIVERY 2014. [PMCID: PMC7121566 DOI: 10.1007/978-1-4939-1417-3_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Virus-like particles (VLPs) can be spontaneously formed after expression of self-polymerising viral capsid proteins. VLPs structurally resemble their native source virus, maintaining immunological relevance by retaining formation of immunogenic motifs with natural conformation. The absence of the virus genome renders VLPs safe for administration as a subunit vaccine. VLPs can target both arms of the immune response, with some VLPs initiating production of specific antibodies and others activating cytotoxic T cells. VLPs are also exceptionally versatile, conferring protection against the host virus or acting as a scaffold for antigenic molecules. In addition, VLP can support intraparticulate encapsulation for immunomodulation and gene delivery. VLP vaccines have been developed for prophylactic protection against infectious organisms, and therapeutic treatment of conditions such as Alzheimer’s disease, hypertension, and cancer. With an expanding list of vaccine candidates, VLP vaccines are a promising field with a wide range of applications.
Collapse
Affiliation(s)
- Camilla Foged
- Department of Pharmacy, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | | | - Yvonne Perrie
- Pharmacy School, Aston University, School of Life and Health Sciences, Birmingham, United Kingdom
| | - Sarah Hook
- Division of Health Sciences, University of Otago, School of Pharmacy, Dunedin, New Zealand
| | | | | |
Collapse
|
47
|
Abstract
Most infectious diseases are caused by pathogenic infiltrations from the mucosal tract. Therefore, vaccines delivered to the mucosal tissues can mimic natural infections and provide protection at the first site of infection. Thus, mucosal, especially, oral delivery is becoming the most preferred mode of vaccination. However, oral vaccines have to overcome several barriers such as the extremely low pH of the stomach, the presence of proteolytic enzymes and bile salts as well as low permeability in the intestine. Several formulations based on nanoparticle strategies are currently being explored to prepare stable oral vaccine formulations. This review briefly discusses several molecular mechanisms involved in intestinal immune cell activation and various aspects of oral nanoparticle-based vaccine design that should be considered for improved mucosal and systemic immune responses.
Collapse
Affiliation(s)
- Nirmal Marasini
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | | |
Collapse
|
48
|
Chuan YP, Wibowo N, Connors NK, Wu Y, Hughes FK, Batzloff MR, Lua LHL, Middelberg APJ. Microbially synthesized modular virus-like particles and capsomeres displaying group A streptococcus hypervariable antigenic determinants. Biotechnol Bioeng 2014; 111:1062-70. [PMID: 24338691 DOI: 10.1002/bit.25172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/28/2013] [Accepted: 12/02/2013] [Indexed: 11/28/2024]
Abstract
Effective and low-cost vaccines are essential to control severe group A streptococcus (GAS) infections prevalent in low-income nations and the Australian aboriginal communities. Highly diverse and endemic circulating GAS strains mandate broad-coverage and customized vaccines. This study describes an approach to deliver cross-reactive antigens from endemic GAS strains using modular virus-like particle (VLP) and capsomere systems. The antigens studied were three heterologous N-terminal peptides (GAS1, GAS2, and GAS3) from the GAS surface M-protein that are specific to endemic strains in Australia Northern Territory Aboriginal communities. In vivo data presented here demonstrated salient characteristics of the modular delivery systems in the context of GAS vaccine design. First, the antigenic peptides, when delivered by unadjuvanted modular VLPs or adjuvanted capsomeres, induced high titers of peptide-specific IgG antibodies (over 1 × 10(4) ). Second, delivery by capsomere was superior to VLP for one of the peptides investigated (GAS3), demonstrating that the delivery system relative effectiveness was antigen-dependant. Third, significant cross-reactivity of GAS2-induced IgG with GAS1 was observed using either VLP or capsomere, showing the possibility of broad-coverage vaccine design using these delivery systems and cross-reactive antigens. Fourth, a formulation containing three pre-mixed modular VLPs, each at a low dose of 5 μg (corresponding to <600 ng of each GAS peptide), induced significant titers of IgGs specific to each peptide, demonstrating that a multivalent, broad-coverage VLP vaccine formulation was possible. In summary, the modular VLPs and capsomeres reported here demonstrate, with promising preliminary data, innovative ways to design GAS vaccines using VLP and capsomere delivery systems amenable to microbial synthesis, potentially adoptable by developing countries.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Cross Reactions
- Humans
- Immunoglobulin G/blood
- Mice
- Northern Territory/epidemiology
- Streptococcal Infections/epidemiology
- Streptococcal Infections/prevention & control
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/genetics
- Streptococcal Vaccines/immunology
- Streptococcal Vaccines/isolation & purification
- Streptococcus pyogenes/genetics
- Streptococcus pyogenes/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Subunit/isolation & purification
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
- Vaccines, Virosome/administration & dosage
- Vaccines, Virosome/genetics
- Vaccines, Virosome/immunology
- Vaccines, Virosome/isolation & purification
- Virosomes/genetics
- Virosomes/metabolism
Collapse
Affiliation(s)
- Yap P Chuan
- Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, University of Queensland, St. Lucia, QLD, 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wibowo N, Chuan YP, Seth A, Cordoba Y, Lua LHL, Middelberg APJ. Co-administration of non-carrier nanoparticles boosts antigen immune response without requiring protein conjugation. Vaccine 2014; 32:3664-9. [PMID: 24793947 DOI: 10.1016/j.vaccine.2014.04.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 04/11/2014] [Accepted: 04/16/2014] [Indexed: 11/28/2022]
Abstract
Nanotechnology promises a revolution in medicine including through new vaccine approaches. The use of nanoparticles in vaccination has, to date, focused on attaching antigen directly to or within nanoparticle structures to enhance antigen uptake by immune cells. Here we question whether antigen incorporation with the nanoparticle is actually necessary to boost vaccine effectiveness. We show that the immunogenicity of a sub-unit protein antigen was significantly boosted by formulation with silica nanoparticles even without specific conjugation of antigen to the nanoparticle. We further show that this effect was observed only for virus-sized nanoparticles (50 nm) but not for larger (1,000 nm) particles, demonstrating a pronounced effect of nanoparticle size. This non-attachment approach has potential to radically simplify the development and application of nanoparticle-based formulations, leading to safer and simpler nanoparticle applications in vaccine development.
Collapse
Affiliation(s)
- Nani Wibowo
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD 4072, Australia
| | - Yap P Chuan
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD 4072, Australia
| | - Arjun Seth
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD 4072, Australia
| | - Yoann Cordoba
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD 4072, Australia
| | - Linda H L Lua
- The University of Queensland, Protein Expression Facility, St. Lucia, QLD 4072, Australia
| | - Anton P J Middelberg
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
50
|
Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014. [PMID: 24696436 DOI: 10.1128/cmr.00101-13)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
|