1
|
Yang J, Hu X, Chen X, Li W, Yin Q, Xiong Y, An Y, Li H, Liu Z. A novel MF59 and CpG1018 adjuvant combination enhances the humoral and cellular immune responses against a truncated varicella-zoster viral glycoprotein E. Immunol Lett 2025; 275:107025. [PMID: 40239819 DOI: 10.1016/j.imlet.2025.107025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
Vaccination is the only effective strategy for preventing herpes zoster (HZ), a disease caused by reactivation of the varicella-zoster virus (VZV). Cell-mediated immunity (CMI) plays a pivotal role in controlling VZV reactivation and is a critical factor in the efficacy of the HZ vaccine. This research introduced the preliminary utilization of truncated glycoprotein E (tgE) as the antigen in the formulation of an innovative recombinant HZ vaccine and explored the combination of tgE with several adjuvants to assess their effectiveness in eliciting robust humoral and CMI responses in C57BL/6 mice, followed by the immunogenicity validation of the optimal vaccine formulation in Sprague-Dawley (SD) rats and cynomolgus monkeys. The results demonstrated that the combination of tgE with MF59 and CpG1018, designated as tgE/MF59+CpG1018, elicited significantly stronger gE-specific humoral and cellular immune responses in C57BL/6 mice compared to any single adjuvant or other adjuvant combinations. The optimal dosages for MF59 and CpG1018 were determined to be 0.025 ml and 10 μg, respectively, for each 0.05 ml of the vaccine formulation. Notably, the increasing in the dosage of the adjuvant does not inherently correlate with a more pronounced immune response. Furthermore, the tgE/MF59+CpG1018 also elicited robust humoral and CMI responses in both SD rats and cynomolgus monkeys. These findings established the novel tgE/MF59+CpG1018 vaccine as a highly promising prophylactic candidate against HZ.
Collapse
Affiliation(s)
- Jing Yang
- Yither Biotech Co., Ltd., Pudong, Shanghai 200120, PR China
| | - Xue Hu
- Yither Biotech Co., Ltd., Pudong, Shanghai 200120, PR China
| | - Xiguang Chen
- Yither Biotech Co., Ltd., Pudong, Shanghai 200120, PR China
| | - Wanzhen Li
- Yither Biotech Co., Ltd., Pudong, Shanghai 200120, PR China
| | - Quanyi Yin
- Yither Biotech Co., Ltd., Pudong, Shanghai 200120, PR China
| | - Yelin Xiong
- Yither Biotech Co., Ltd., Pudong, Shanghai 200120, PR China
| | - Youcai An
- Ab&B Biotech Co., Ltd., Taizhou Jiangsu 225300, PR China
| | - Haiyan Li
- Yither Biotech Co., Ltd., Pudong, Shanghai 200120, PR China.
| | - Zhilei Liu
- Yither Biotech Co., Ltd., Pudong, Shanghai 200120, PR China.
| |
Collapse
|
2
|
Pilati D, Agyei EK, Elkhashab M, Fuchs E, Nielsen IH, Bjerg TW, Anthi AK, Jiménez-Reinoso A, Iversen MB, Pohl L, Narita R, Frago S, Jakobsen MR, Andersen JT, Degn SE, Paludan SR, Alvarez-Vallina L, Howard KA. Exploiting FcRn engagement of an albumin-CpG oligonucleotide covalent conjugate for potent TLR9 immune induction. J Biol Chem 2025:108508. [PMID: 40222546 DOI: 10.1016/j.jbc.2025.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
CpG-oligodeoxynucleotide (CpG ODN)-based toll-like receptor (TLR) agonists are promising immunostimulatory adjuvants, however, low entry into TLR-rich cellular endosomal compartments and poor lymphatic accumulation limit clinical translation. In this work, we introduce a recombinant human serum albumin (rHA)-CpG ODN covalent conjugate (rHA-CpG) designed to exploit the neonatal Fc receptor (FcRn)-driven albumin cellular sorting pathway to maximise CpG delivery into TLR9-rich endosomes and accumulate in lymph nodes. Site-selective conjugation of CpG to albumin cysteine 34, distant from its main FcRn binding interface, resulted in a retained pH dependent human FcRn binding, and receptor-driven endosomal trafficking in a cellular recycling assay. Induction of tumour necrosis factor (TNF) secretion in THP-1 cells and interferon alpha (IFN-α) in human hematopoietic stem and progenitor cell (HSPC)-derived plasmacytoid dendritic cells (pDCs), in contrast, to a myeloid differentiation primary response 88 (MyD88) and TLR9 knockout cells, respectively, support TLR9-engagement. The rHA-CpG construct induced greater TNF-α than free CpG ODN in mouse RAW 264.7 cells, and in human peripheral blood mononuclear cells (PBMCs) and expansion of classical (CD14+CD16-) monocytes. Furthermore, greater accumulation of Cy5.5-labelled CpG in the inguinal (>3-fold) and axillary (>18-fold) lymph nodes was observed when conjugated to rHA compared to an unconjugated rHA/CpG mix following subcutaneous injection in mice. Moreover, increased LN accumulation of an rHA variant engineered with high FcRn-binding affinity supports an FcRn-driven mechanism. Demonstration of FcRn-mediated albumin targeting at intra- and extracellular sites provides the mechanistic basis for potent immune induction observed using the novel rHA-CpG conjugate design class introduced in this work.
Collapse
Affiliation(s)
- Diego Pilati
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University; DK-8000 Aarhus C, Denmark
| | - Eugene Kusi Agyei
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University; DK-8000 Aarhus C, Denmark
| | - Marwa Elkhashab
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University; DK-8000 Aarhus C, Denmark
| | - Elisabeth Fuchs
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University; DK-8000 Aarhus C, Denmark
| | - Ian Helstrup Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Tobias Wang Bjerg
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Aina Karen Anthi
- Department of Immunology, Oslo University Hospital Rikshospitalet; 0372 Oslo, Norway; Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet; 0372 Oslo, Norway; Precision Immunotherapy Alliance (PRIMA), University of Oslo; 0372 Oslo, Norway
| | - Anaïs Jiménez-Reinoso
- Immuno-Oncology and Immunotherapy Group, Biomedical Research Institute Hospital Universitario, 12 de Octubre, 28041 Madrid, Spain; Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario, 12 de Octubre, 28041 Madrid, Spain; H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Marie Beck Iversen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Layla Pohl
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Ryo Narita
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Susana Frago
- Leadartis, S.L., QUBE Technology Park, 28760 Tres Cantos, Madrid
| | - Martin R Jakobsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet; 0372 Oslo, Norway
| | - Søren E Degn
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Luis Alvarez-Vallina
- Immuno-Oncology and Immunotherapy Group, Biomedical Research Institute Hospital Universitario, 12 de Octubre, 28041 Madrid, Spain; Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario, 12 de Octubre, 28041 Madrid, Spain; H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University; DK-8000 Aarhus C, Denmark.
| |
Collapse
|
3
|
Yan W, Cao Y, Xu S, Li Y, Wu T, Yuan W, Yin Q, Li Y. Personalized Multi-Epitope Nanovaccine Unlocks B Cell-Mediated Multiple Pathways of Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411361. [PMID: 39711226 DOI: 10.1002/adma.202411361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/13/2024] [Indexed: 12/24/2024]
Abstract
B lymphocytes have emerged as an important immune-regulating target. Inoculation with tumor cell membrane-derived vaccines is a promising strategy to activate B cells, yet their efficiency is limited due to lack of costimulatory molecules. To amplify B cell responses against tumor, herein, a spatiotemporally-synchronized antigen-adjuvant integrated nanovaccine, termed as CM-CpG-aCD40, is constructed by conjugating the immune stimulative CpG oligonucleotide and the anti-CD40 antibody (aCD40) onto the membrane vesicles derived from triple negative breast cancer cells. CM-CpG-aCD40 actively accumulates in lymph nodes and is effectively captured by antigen-presenting cells via the recognition of CD40 by aCD40. Tumor antigens on CM-CpG-aCD40 bind to B cell receptors, providing the first stimulation signal for B cells. Meanwhile, the interaction between CpG/Toll like receptor and aCD40/CD40 provides superposed co-stimulation signals, improving the antibody-secreting and antigen-presenting abilities of B cells. The nanovaccine also stimulates dendritic cells to activate CD8+ T cells, and reprograms tumor associated macrophages. CM-CpG-aCD40 activating humoral, cellular, and innate antitumor immunity achieves a tumor inhibition rate of 89.3%, which is further improved to 95.4% when combined with the anti-programmed death ligand 1 (PD-L1) antibody. CM-CpG-aCD40, as a personalized multi-epitope nanovaccine, paves the way for ushering the era of B cell-based immunotherapy.
Collapse
Affiliation(s)
- Wenlu Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Cao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Shanshan Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ting Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211116, China
| | - Wenhui Yuan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China
| |
Collapse
|
4
|
Amini Y, Kabiri M, Jamehdar SA, Sankian M, Meshkat Z, Zare S, Soleimanpour S, Farsiani H, Moradi B, Tafaghodi M. Assessment of immunogenicity and protective efficiency of multi-epitope antigen-loaded in mannan decorated PLGA nanoparticles against tuberculosis. J Pharm Sci 2025; 114:1133-1141. [PMID: 39631524 DOI: 10.1016/j.xphs.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The antigen-targeting to dendritic cells (DCs) has gained increasing attention as the potential approach for immunotherapy in recent years due to the ability of DCs to regulate innate and adaptive immunity. In the present study, the immunogenicity and protective efficiency of mannan-decorated PLGA nanoparticles (NPs) loaded with multi-epitopes mycobacterium tuberculosis antigen (HspX-Ppe44-EsxV) were evaluated as a targeted delivery system to DCs. For this purpose, PLGA nanoparticle formulations were prepared and subsequently decorated by mannan. The physicochemical properties and level of mannan incorporation, as well as encapsulation efficiency and antigen release, were assessed. The potential of formulated NPs for antigen targeting to DCs, and immunogenicity against tuberculosis (TB) were investigated using immunofluorescence assay and in-vivo experiments. Mannan incorporation enhanced the uptake of fusion-loaded PLGA by DCs. The cytokine and antibody assays demonstrated that mannosylation of NPs and BCG-primed mice boosted by mannan-PLGA could significantly elevate Th1-biased immune responses relative to the BCG and non-modified PLGA NPs. Our findings also proved that the mannosylated vaccine in the presence of CpG could evoke Th1 and Th17 responses with appropriate protective efficiency against TB in mice. This result illustrated that the active targeting of DCs by mannan-PLGA NPs could induce a proper anti-tuberculosis response, which is essential for protection against tuberculosis.
Collapse
Affiliation(s)
- Yousef Amini
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Microbiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mona Kabiri
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Amel Jamehdar
- Microbiology and Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Microbiology and Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirwan Zare
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Microbiology and Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Microbiology and Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bagher Moradi
- Esfarayen Faculty of Medical Sciences, Esfarayen, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Dollinger E, Hernandez-Davies J, Felgner J, Jain A, Hwang M, Strahsburger E, Nakajima R, Jasinskas A, Nie Q, Pone EJ, Othy S, Davies DH. Combination adjuvant improves influenza virus immunity by downregulation of immune homeostasis genes in lymphocytes. Immunohorizons 2025; 9:vlae007. [PMID: 39849993 PMCID: PMC11841980 DOI: 10.1093/immhor/vlae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 01/30/2025] Open
Abstract
Adjuvants play a central role in enhancing the immunogenicity of otherwise poorly immunogenic vaccine antigens. Combining adjuvants has the potential to enhance vaccine immunogenicity compared with single adjuvants, although the cellular and molecular mechanisms of combination adjuvants are not well understood. Using the influenza virus hemagglutinin H5 antigen, we define the immunological landscape of combining CpG and MPLA (TLR-9 and TLR-4 agonists, respectively) with a squalene nanoemulsion (AddaVax) using immunologic and transcriptomic profiling. Mice immunized and boosted with recombinant H5 in AddaVax, CpG+MPLA, or AddaVax plus CpG+MPLA (IVAX-1) produced comparable levels of neutralizing antibodies and were equally well protected against the H5N1 challenge. However, after challenge with H5N1 virus, H5/IVAX-1-immunized mice had 100- to 300-fold lower virus lung titers than mice receiving H5 in AddaVax or CpG+MPLA separately. Consistent with enhanced viral clearance, unsupervised expression analysis of draining lymph node cells revealed the combination adjuvant IVAX-1 significantly downregulated immune homeostasis genes, and induced higher numbers of antibody-producing plasmablasts than either AddaVax or CpG+MPLA. IVAX-1 was also more effective after single-dose administration than either AddaVax or CpG+MPLA. These data reveal a novel molecular framework for understanding the mechanisms of combination adjuvants, such as IVAX-1, and highlight their potential for the development of more effective vaccines against respiratory viruses.
Collapse
Affiliation(s)
- Emmanuel Dollinger
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Jenny Hernandez-Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Jiin Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Aarti Jain
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Michael Hwang
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Erwin Strahsburger
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Rie Nakajima
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Algimantas Jasinskas
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Qing Nie
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Egest James Pone
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Shivashankar Othy
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - David Huw Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| |
Collapse
|
6
|
Diemert DJ, Zumer M, Bova M, Gibbs-Tewary C, Malkin EM, Campbell D, Hoeweler L, Li G, Bottazzi ME, Hotez PJ, Bethony JM. Randomized, observer-blind, controlled Phase 1 study of the safety and immunogenicity of the Na-GST-1/Alhydrogel hookworm vaccine with or without a CpG ODN adjuvant in hookworm-naïve adults. PLoS Negl Trop Dis 2024; 18:e0012788. [PMID: 39775205 PMCID: PMC11717351 DOI: 10.1371/journal.pntd.0012788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/09/2025] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Recombinant Necator americanus Glutathione-S-Transferase-1 (Na-GST-1) formulated on Alhydrogel (Na-GST-1/Alhydrogel) is being developed to prevent anemia and other complications of N. americanus infection. Antibodies induced by vaccination with recombinant Na-GST-1 are hypothesized to interfere with the blood digestion pathway of adult hookworms in the host. Phase 1 trials have demonstrated the safety of Na-GST-1 formulated on Alhydrogel, but further optimization of the vaccine adjuvant formulation may improve humoral immune responses, thereby increasing the likelihood of vaccine efficacy. METHODS A randomized, observer-blind, dose escalation Phase 1 trial was conducted in 24 healthy, hookworm-naïve adults. In each cohort of 12 participants, 4 were randomized to receive 100 µg of Na-GST-1/Alhydrogel and 8 to receive 30 µg or 100 µg of Na-GST-1/Alhydrogel plus the Cytosine-phospho-Guanine (CpG) oligodeoxynucleotide Toll-like receptor-9 agonist, CpG 10104, in the first and second cohorts, respectively. Progression to the second cohort was dependent upon evaluation of 7-day safety data after all participants in the first cohort had received the first dose of vaccine. Three intramuscular injections of study product were administered on days 0, 56, and 112, after which participants were followed for 6 months. IgG and IgG subclass antibody responses to Na-GST-1 were measured by qualified indirect ELISAs at pre- and post-vaccination time points. RESULTS Na-GST-1/Alhydrogel administered with or without CpG 10104 was well-tolerated. The most common solicited adverse events were mild injection site tenderness and pain, and mild headache. There were no vaccine-related serious adverse events or adverse events of special interest. Both dose concentrations of Na-GST-1/Alhydrogel plus CpG 10104 had significantly higher post-vaccination levels of antigen-specific IgG antibody compared to Na-GST-1/Alhydrogel without CpG, starting after the second injection. Peak anti-Na-GST-1 IgG levels were observed between 2 and 4 weeks following the third dose, regardless of Na-GST-1 formulation. IgG levels decreased but remained significantly above baseline in all groups by day 290, at which point all participants (20 of 20 evaluable participants) still had detectable IgG. Longitudinal antigen-specific IgG1 and IgG3 subclass responses mirrored those of total IgG, whereas IgG4 responses were lower in the groups that received the vaccine with the CpG adjuvant compared to the non-CpG group. CONCLUSIONS Vaccination of hookworm-naïve adults with Na-GST-1/Alhydrogel plus CpG 10104 was safe and minimally reactogenic. Addition of CpG 10104 to Na-GST-1/Alhydrogel resulted in significant improvement in IgG responses against the vaccine antigen. These promising results have led to inclusion of the CpG 10104 formulation of Na-GST-1/Alhydrogel in a Phase 2 proof-of-concept controlled human infection trial.
Collapse
Affiliation(s)
- David J. Diemert
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
| | - Maria Zumer
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
| | - Mark Bova
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States of America
| | - Christina Gibbs-Tewary
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
| | - Elissa M. Malkin
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
| | - Doreen Campbell
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
| | - Lara Hoeweler
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
| | - Guangzhao Li
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
| | - Maria Elena Bottazzi
- Division of Pediatric Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Peter J. Hotez
- Division of Pediatric Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeffrey M. Bethony
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
| |
Collapse
|
7
|
Liao JB, Dai JY, Reichow JL, Lim JB, Hitchcock-Bernhardt KM, Stanton SE, Salazar LG, Gooley TA, Disis ML. Magnitude of antigen-specific T-cell immunity the month after completing vaccination series predicts the development of long-term persistence of antitumor immune response. J Immunother Cancer 2024; 12:e010251. [PMID: 39521614 PMCID: PMC11552009 DOI: 10.1136/jitc-2024-010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND For best efficacy, vaccines must provide long-lasting immunity. To measure longevity, memory from B and T cells are surrogate endpoints for vaccine efficacy. When antibodies are insufficient for protection, the immune response must rely on T cells. The magnitude and differentiation of effective, durable immune responses depend on antigen-specific precursor frequencies. However, development of vaccines that induce durable T-cell responses for cancer treatment has remained elusive. METHODS To address long-lasting immunity, patients with HER2+ (human epidermal growth factor receptor 2) advanced stage cancer received HER2/neu targeted vaccines. Interferon-gamma (IFN-γ) enzyme-linked immunosorbent spot measuring HER2/neu IFN-γ T cells were analyzed from 86 patients from three time points: baseline, 1 month after vaccine series, and long-term follow-up at 1 year, following one in vitro stimulation. The baseline and 1-month post-vaccine series responses were correlated with immunity at long-term follow-up by logistic regression. Immunity was modeled by non-linear functions using generalized additive models. RESULTS Antigen-specific T-cell responses at baseline were associated with a 0.33-log increase in response at long-term follow-up, 95% CI (0.11, 0.54), p=0.003. 63% of patients that had HER2/neu specific T cells at baseline continued to have responses at long-term follow-up. Increased HER2/neu specific T-cell response 1 month after the vaccine series was associated with a 0.47-log increase in T-cell response at long-term follow-up, 95% CI (0.27, 0.67), p=2e-5. 74% of patients that had an increased IFN-γ HER2 response 1 month after vaccines retained immunity long-term. As the 1-month post-vaccination series precursor frequency of HER2+IFN-γ T-cell responses increased, the probability of retaining these responses long-term increased (OR=1.49 for every one natural log increase of precursor frequency, p=0.0002), reaching an OR of 20 for a precursor frequency of 1:3,000 CONCLUSIONS: Patients not destined to achieve long-term immunity can be identified immediately after completing the vaccine series. Log-fold increases in antigen-specific precursor frequencies after vaccinations correlate with increased odds of retaining long-term HER2 immune responses. Further vaccine boosting or immune checkpoint inhibitors or other immune stimulator therapy should be explored in patients that do not develop antigen-specific T-cell responses to improve overall response rates.
Collapse
Affiliation(s)
- John B Liao
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - James Y Dai
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jessica L Reichow
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Jong-Baeck Lim
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Katie M Hitchcock-Bernhardt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | | | - Lupe G Salazar
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
- Medicine/Division of Oncology, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
- Medicine/Division of Oncology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
8
|
Zheng J, Wang M, Pang L, Wang S, Kong Y, Zhu X, Zhou X, Wang X, Chen C, Ning H, Zhao W, Zhai W, Qi Y, Wu Y, Gao Y. Identification of a novel DEC-205 binding peptide to develop dendritic cell-targeting nanovaccine for cancer immunotherapy. J Control Release 2024; 373:568-582. [PMID: 39067792 DOI: 10.1016/j.jconrel.2024.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Cancer vaccine is regarded as an effective immunotherapy approach mediated by dendritic cells (DCs) which are crucial for antigen presentation and the initiation of adaptive immune responses. However, lack of DC-targeting properties significantly hampers the efficacy of cancer vaccines. Here, by using the phage display technique, peptides targeting the endocytic receptor DEC-205 primarily found on cDC1s were initially screened. An optimized hydrolysis-resistant peptide, hr-8, was identified and conjugated to PLGA-loaded antigen (Ag) and CpG adjuvant nanoparticles, resulting in a DC-targeting nanovaccine. The nanovaccine hr-8-PLGA@Ag/CpG facilitates dendritic cell maturation and improves antigen cross-presentation. The nanovaccine can enhance the antitumor immune response mediated by CD8+ T cells by encapsulating the nanovaccine with either exogenous OVA protein antigen or endogenous gp100/E7 antigenic peptide. As a result, strong antitumor effects are observed in both anti-PD-1 responsive B16-OVA and anti-PD-1 non-responsive B16 and TC1 immunocompetent tumor models. In summary, this study presents the initial documentation of a nanovaccine that targets dendritic cells via the novel DEC-205 binding peptide. This approach offers a new method for developing cancer vaccines that can potentially improve the effectiveness of cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Zheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingshuang Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liwei Pang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanan Kong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xueqin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoxi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chunxia Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haoming Ning
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
9
|
Lee MH, Choi HS, Kim NY, Sim E, Choi JY, Hong S, Shin YK, Yu CH, Gu SH, Song DH, Hur GH, Shin S. Post-Vaccination Delivery of CpG ODNs Enhances the Th2-Associated Protective Immunity of the Smallpox DNA Vaccine. Mol Biotechnol 2024; 66:1718-1726. [PMID: 37428433 DOI: 10.1007/s12033-023-00800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
Potential threat of smallpox bioterrorism and concerns related to the adverse effects of currently licensed live-virus vaccines suggest the need to develop novel vaccines with better efficacy against smallpox. Use of DNA vaccines containing specific antigen-encoding plasmids prevents the risks associated with live-virus vaccines, offering a promising alternative to conventional smallpox vaccines. In this study, we investigated the efficiency of toll-like receptor (TLR) ligands in enhancing the immunogenicity of smallpox DNA vaccines. BALB/c mice were immunized with a DNA vaccine encoding the vaccinia virus L1R protein, along with the cytosine-phosphate-guanine (CpG) motif as a vaccine adjuvant, and their immune response was analyzed. Administration of B-type CpG oligodeoxynucleotides (ODNs) as TLR9 ligands 24 h after DNA vaccination enhanced the Th2-biased L1R-specific antibody immunity in mice. Moreover, B-type CpG ODNs improved the protective effects of the DNA vaccine against the lethal Orthopoxvirus challenge. Therefore, use of L1R DNA vaccines with CpG ODNs as adjuvants is a promising approach to achieve effective immunogenicity against smallpox infection.
Collapse
Affiliation(s)
- Min Hoon Lee
- R&D Center, ABION Inc., Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | | | - Na Young Kim
- R&D Center, ABION Inc., Seoul, Republic of Korea
| | - Euni Sim
- R&D Center, ABION Inc., Seoul, Republic of Korea
| | | | - Sungyoul Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chi Ho Yu
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Se Hun Gu
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Dong Hyun Song
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Gyueng Haeng Hur
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Sungho Shin
- Bio-MAX/N-Bio, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Murata K, Harayama K, Shimoda M, Niimura M, Wakao M, Suda Y, Moroishi T, Shinchi H. Improvement of the Nuclease Resistance and Immunostimulatory Activity of CpG Oligodeoxynucleotides by Conjugation to Sugar-Immobilized Gold Nanoparticles. Bioconjug Chem 2024; 35:804-815. [PMID: 38718344 DOI: 10.1021/acs.bioconjchem.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Adjuvants are essential substances for vaccines and immunotherapies that enhance antigen-specific immune responses. Single-stranded oligodeoxynucleotides containing an unmethylated CpG motif (CpG ODNs) are agonistic ligands for toll-like receptor 9 that initiate an innate immune response. They represent promising adjuvants for antiviral and antitumor immunotherapies; however, CpG ODNs have some limitations, such as poor nuclease resistance and low cell membrane permeability. Therefore, an effective formulation is needed to improve the nuclease resistance and immunostimulatory effects of CpG ODNs. Previously, we demonstrated the selective delivery of a small molecule toll-like receptor 7 ligand to immune cells through sugar-binding receptors using sugar-immobilized gold nanoparticles (SGNPs), which significantly enhanced the potency of the ligand. In this study, we examined SGNPs as carriers for partially phosphorothioated A-type CpG ODN (D35) and an entirely phosphorothioated B-type CpG ODN (K3) and evaluated the functionality of the sugar moiety on SGNPs immobilized with CpG ODN. SGNPs immobilized with D35 (D35-SGNPs) exhibited improved nuclease resistance and the in vitro and in vivo potency was significantly higher compared with that of unconjugated D35. Furthermore, the sugar structure on the GNPs was a significant factor in enhancing the cell internalization ability, and enhanced intracellular delivery of D35 resulted in improving the potencies of the A-type CpG ODN, D35. SGNPs immobilized with K3 (K3-SGNPs) exhibited significantly higher induction activities for both humoral and cellular immunity compared with unconjugated K3 and D35-SGNPs. On the other hand, sugar structure on K3-SGNPs did not affect the immunostimulatory effects. These results indicate that the sugar moiety on K3-SGNPs primarily functions as a hydrophilic dispersant for GNPs and the formulation of K3 to SGNPs contributes to improving the immunostimulatory activity of K3. Because our CpG ODN-SGNPs have superior induction activities for antigen-specific T-cell mediated immune responses, they may be effective adjuvants for vaccines and immunotherapies.
Collapse
Affiliation(s)
- Koki Murata
- Department of Engineering, Chemistry and Biotechnology program, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Kai Harayama
- Department of Engineering, Chemistry and Biotechnology program, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Mayuko Shimoda
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Mayumi Niimura
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masahiro Wakao
- Department of Engineering, Chemistry and Biotechnology program, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Yasuo Suda
- Collaborative Research Laboratory on Glyco-nanotechnology, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Toshiro Moroishi
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Science, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiroyuki Shinchi
- Department of Engineering, Chemistry and Biotechnology program, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
11
|
Desgraves JF, Mendez Valdez MJ, Chandar J, Gurses ME, Henderson L, Castro JR, Seetheram D, Ivan ME, Komotar RJ, Shah AH. Antisense Oligonucleotides for Rapid Translation of Gene Therapy in Glioblastoma. Cancers (Basel) 2024; 16:1944. [PMID: 38792022 PMCID: PMC11119631 DOI: 10.3390/cancers16101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE The limited efficacy of current treatments for malignant brain tumors necessitates novel therapeutic strategies. This study aimed to assess the potential of antisense oligonucleotides (ASOs) as adjuvant therapy for high-grade gliomas, focusing on their CNS penetration and clinical translation prospects. METHODS A comprehensive review of the existing literature was conducted to evaluate the implications of ASOs in neuro-oncology. Studies that investigated ASO therapy's efficacy, CNS penetration, and safety profile were analyzed to assess its potential as a therapeutic intervention for high-grade gliomas. RESULTS ASOs present a promising avenue for enhancing targeted gene therapies in malignant gliomas. Their potent CNS penetration, in vivo durability, and efficient transduction offer advantages over conventional treatments. Preliminary in vivo and in vitro studies suggest ASOs as a viable adjuvant therapy for high-grade gliomas, warranting further exploration in clinical trials. CONCLUSIONS ASOs hold significant promise as adjuvant therapy for high-grade gliomas, offering improved CNS penetration and durability compared with existing treatments. While preliminary studies are encouraging, additional research is needed to establish the safety and efficacy of ASO therapy in clinical settings. Further investigation and clinical trials are warranted to validate ASOs as a transformative approach in neuro-oncology.
Collapse
Affiliation(s)
- Jelisah F. Desgraves
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Mynor J. Mendez Valdez
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Jay Chandar
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Muhammet Enes Gurses
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace (D4-6), Miami, FL 33136, USA; (M.E.I.); (R.J.K.)
| | - Lisa Henderson
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Jesus R. Castro
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Deepa Seetheram
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Michael E. Ivan
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace (D4-6), Miami, FL 33136, USA; (M.E.I.); (R.J.K.)
| | - Ricardo J. Komotar
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace (D4-6), Miami, FL 33136, USA; (M.E.I.); (R.J.K.)
| | - Ashish H. Shah
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| |
Collapse
|
12
|
Wang Y, Qiao SL, Wang J, Yu MZ, Wang NN, Mamuti M, An HW, Lin YX, Wang H. Engineered CpG-Loaded Nanorobots Drive Autophagy-Mediated Immunity for TLR9-Positive Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306248. [PMID: 37897408 DOI: 10.1002/adma.202306248] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Smart nanorobots have emerged as novel drug delivery platforms in nanomedicine, potentially improving anti-cancer efficacy and reducing side effects. In this study, an intelligent tumor microenvironment-responsive nanorobot is developed that effectively delivers CpG payloads to Toll-like receptor 9 (TLR9)-positive tumors to induce autophagy-mediated cell death for immunotherapy. The nanorobots are fabricated by co-self-assembly of two amphiphilic triblock polymer peptides: one containing the matrix metallopeptidase 2 (MMP2)-cleaved GPLGVRGS motif to control the mechanical opening of the nanorobots and provide targeting capability for TLR-9-positive tumors and the other consisting of an arginine-rich GRRRDRGRS sequence that can condense nuclear acid payloads through electrostatic interactions. Using multiple tumor-bearing mouse models, it is investigated whether the intravenous injection of CpG-loaded nanorobots could effectively deliver CpG payloads to TLR-9-positive tumors and elicit anti-tumor immunity through TLR9 signaling and autophagy. Therefore, besides being a commonly used adjuvant for tumor vaccination, CpG-loaded nanorobots can effectively reprogram the tumor immunosuppressive microenvironment and suppress tumor growth and recurrence. This nanorobot-based CpG immunotherapy can be considered a feasible approach to induce anti-tumor immunity, showing great therapeutic potential for the future treatment of TLR9-positive cancers.
Collapse
Affiliation(s)
- Yi Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
- Institute of Bioengineering and Institute of Materials Science & Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Sheng-Lin Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Jie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| | - Meng-Zhen Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| | - Nan-Nan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| | - Muhetaerjiang Mamuti
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Yao-Xin Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| |
Collapse
|
13
|
Cui Y, Ho M, Hu Y, Shi Y. Vaccine adjuvants: current status, research and development, licensing, and future opportunities. J Mater Chem B 2024; 12:4118-4137. [PMID: 38591323 PMCID: PMC11180427 DOI: 10.1039/d3tb02861e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Vaccines represent one of the most significant inventions in human history and have revolutionized global health. Generally, a vaccine functions by triggering the innate immune response and stimulating antigen-presenting cells, leading to a defensive adaptive immune response against a specific pathogen's antigen. As a key element, adjuvants are chemical materials often employed as additives to increase a vaccine's efficacy and immunogenicity. For over 90 years, adjuvants have been essential components in many human vaccines, improving their efficacy by enhancing, modulating, and prolonging the immune response. Here, we provide a timely and comprehensive review of the historical development and the current status of adjuvants, covering their classification, mechanisms of action, and roles in different vaccines. Additionally, we perform systematic analysis of the current licensing processes and highlights notable examples from clinical trials involving vaccine adjuvants. Looking ahead, we anticipate future trends in the field, including the development of new adjuvant formulations, the creation of innovative adjuvants, and their integration into the broader scope of systems vaccinology and vaccine delivery. The article posits that a deeper understanding of biochemistry, materials science, and vaccine immunology is crucial for advancing vaccine technology. Such advancements are expected to lead to the future development of more effective vaccines, capable of combating emerging infectious diseases and enhancing public health.
Collapse
Affiliation(s)
- Ying Cui
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Megan Ho
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Yongjie Hu
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Sang Y, Zheng K, Zhao Y, Liu Y, Zhu S, Xie X, Shang L, Liu J, Li L. Efficacy and regulatory strategies of gut microbiota in immunotherapy: a narrative review. Transl Cancer Res 2024; 13:2043-2063. [PMID: 38737692 PMCID: PMC11082673 DOI: 10.21037/tcr-24-316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 05/14/2024]
Abstract
Background and Objective With advances in gut microbiome research, it has been recognized that the gut microbiome has an important and far-reaching impact on many human diseases, including cancer. Therefore, more and more researchers are focusing on the treatment of gut flora in tumors. In this article, we present a review of the mechanisms of gut microbes in tumor immunotherapy and related studies to provide reference for further research and insights into the clinical application of gut microbes. Methods Between April 25, 2023, and November 25, 2023, we searched for articles published only in English between 1984 and 2023 using the databases PubMed, American Medical Association and Elsevier ScienceDirect using the keywords "gut microbiology" and "tumor" or "immunotherapy". Key Content and Findings The gastrointestinal tract contains the largest number of microorganisms in the human body. Microorganisms are involved in regulating many physiological activities of the body. Studies have shown that gut microbes and their derivatives are involved in the occurrence and development of a variety of inflammations and tumors, and changes in their abundance and proportion affect the degree of cancer progression and sensitivity to immunotherapy. Gut microbiota-based drug research is ongoing, and some anti-tumor studies have entered the clinical trial stage. Conclusions The abundance and proportion of intestinal microorganisms influence the susceptibility of tumors to tumor immunotherapy. This article reviewed the effects and mechanisms of gut microbes on tumor immunotherapy to further explore the medical value of gut microbes in tumor immunotherapy.
Collapse
Affiliation(s)
- Yaodong Sang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kexin Zheng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yulong Zhao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Siqiang Zhu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaozhou Xie
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
15
|
Bruun N, Laursen MF, Carmelo R, Christensen E, Jensen TS, Christiansen G, Birkelund S, Agger R, Kofod-Olsen E. Novel nucleotide-packaging vaccine delivers antigen and poly(I:C) to dendritic cells and generate a potent antibody response in vivo. Vaccine 2024; 42:2909-2918. [PMID: 38538405 DOI: 10.1016/j.vaccine.2024.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
An issue with many current vaccines is the dependency on broadly inflammatory adjuvants, such as aluminum hydroxide or aluminum salts that affect many immune- and non-immune cells. These adjuvants are not necessarily activating all antigen-presenting cells (APCs) that take up the antigen and most likely they also activate APCs with no antigen uptake, as well as many non-immune cells. Conjugation of antigen and adjuvant would enable the use of smaller amounts of adjuvant and avoid unnecessary tissue damage and activation of bystander cells. It would ensure that all APCs that take up the antigen would also become activated and avoid that immature and non-activated APCs present the antigen to T cells without a co-stimulatory signal, leading to tolerogenesis. We have developed a novel vaccine that co-deliver antigen and a nucleotide adjuvant to the same APC and lead to a strong activation response in dendritic cells and macrophages. The vaccine is constructed as a fusion-protein with an antigen fused to the DNA/RNA-binding domain from the Hc2 protein from Chlamydia trachomatis. We have found that the fusion protein is able to package polyinosinic:polycytidylic acid (poly(I:C)) or dsDNA into small particles. These particles were taken up by macrophages and dendritic cells and led to strong activation and maturation of these cells. Immunization of mice with the fusion protein packaged poly(I:C) led to a stronger antibody response compared to immunization with a combination of poly(I:C) and antigen without the Hc2 DNA/RNA-binding domain.
Collapse
Affiliation(s)
- Natasja Bruun
- Aalborg University, Department of Health Science and Technology, Denmark
| | - Marlene F Laursen
- Aalborg University, Department of Health Science and Technology, Denmark
| | - Rita Carmelo
- Aalborg University, Department of Health Science and Technology, Denmark
| | - Esben Christensen
- Aalborg University, Department of Health Science and Technology, Denmark
| | - Trine S Jensen
- Aalborg University, Department of Health Science and Technology, Denmark
| | - Gunna Christiansen
- Aalborg University, Department of Health Science and Technology, Denmark
| | - Svend Birkelund
- Aalborg University, Department of Health Science and Technology, Denmark
| | - Ralf Agger
- Aalborg University, Department of Health Science and Technology, Denmark
| | - Emil Kofod-Olsen
- Aalborg University, Department of Health Science and Technology, Denmark.
| |
Collapse
|
16
|
Chen Y, Song Y, Zhu X, Dong CM, Chen M. Design and Update of Multifunctional Polypeptides and Their Applications for the Prevention of Viral Infections and Cancer Immunotherapies. POLYM REV 2024; 64:528-574. [DOI: 10.1080/15583724.2023.2281462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Accepted: 11/04/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Yanzheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yingying Song
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai, P. R. China
| |
Collapse
|
17
|
Lobaina Y, Chen R, Suzarte E, Ai P, Huerta V, Musacchio A, Silva R, Tan C, Martín A, Lazo L, Guillén-Nieto G, Yang K, Perera Y, Hermida L. The Nucleocapsid Protein of SARS-CoV-2, Combined with ODN-39M, Is a Potential Component for an Intranasal Bivalent Vaccine with Broader Functionality. Viruses 2024; 16:418. [PMID: 38543783 PMCID: PMC10976088 DOI: 10.3390/v16030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/23/2024] Open
Abstract
Despite the rapid development of vaccines against COVID-19, they have important limitations, such as safety issues, the scope of their efficacy, and the induction of mucosal immunity. The present study proposes a potential component for a new generation of vaccines. The recombinant nucleocapsid (N) protein from the SARS-CoV-2 Delta variant was combined with the ODN-39M, a synthetic 39 mer unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN), used as an adjuvant. The evaluation of its immunogenicity in Balb/C mice revealed that only administration by intranasal route induced a systemic cross-reactive, cell-mediated immunity (CMI). In turn, this combination was able to induce anti-N IgA in the lungs, which, along with the specific IgG in sera and CMI in the spleen, was cross-reactive against the nucleocapsid protein of SARS-CoV-1. Furthermore, the nasal administration of the N + ODN-39M preparation, combined with RBD Delta protein, enhanced the local and systemic immune response against RBD, with a neutralizing capacity. Results make the N + ODN-39M preparation a suitable component for a future intranasal vaccine with broader functionality against Sarbecoviruses.
Collapse
Affiliation(s)
- Yadira Lobaina
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
| | - Rong Chen
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Edith Suzarte
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Panchao Ai
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Vivian Huerta
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Alexis Musacchio
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Ricardo Silva
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- BCF: R&D Section, Representative Office BCF in China, Jingtai Tower, No. 24 Jianguomen Wai Street, Chaoyang District, Beijing 100022, China
| | - Changyuan Tan
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Alejandro Martín
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Laura Lazo
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Gerardo Guillén-Nieto
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Ke Yang
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Yasser Perera
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Lisset Hermida
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
- BCF: R&D Section, Representative Office BCF in China, Jingtai Tower, No. 24 Jianguomen Wai Street, Chaoyang District, Beijing 100022, China
| |
Collapse
|
18
|
Kanuri SH, Sirrkay PJ. Adjuvants in COVID-19 vaccines: innocent bystanders or culpable abettors for stirring up COVID-heart syndrome. Ther Adv Vaccines Immunother 2024; 12:25151355241228439. [PMID: 38322819 PMCID: PMC10846003 DOI: 10.1177/25151355241228439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
COVID-19 infection is a multi-system clinical disorder that was associated with increased morbidity and mortality. Even though antiviral therapies such as Remdesvir offered modest efficacy in reducing the mortality and morbidity, they were not efficacious in reducing the risk of future infections. So, FDA approved COVID-19 vaccines which are widely administered in the general population worldwide. These COVID-19 vaccines offered a safety net against future infections and re-infections. Most of these vaccines contain inactivated virus or spike protein mRNA that are primarily responsible for inducing innate and adaptive immunity. These vaccines were also formulated to contain supplementary adjuvants that are beneficial in boosting the immune response. During the pandemic, clinicians all over the world witnessed an uprise in the incidence and prevalence of cardiovascular diseases (COVID-Heart Syndrome) in patients with and without cardiovascular risk factors. Clinical researchers were not certain about the underlying reason for the upsurge of cardiovascular disorders with some blaming them on COVID-19 infections while others blaming them on COVID-19 vaccines. Based on the literature review, we hypothesize that adjuvants included in the COVID-19 vaccines are the real culprits for causation of cardiovascular disorders. Operation of various pathological signaling events under the influence of these adjuvants including autoimmunity, bystander effect, direct toxicity, anti-phospholipid syndrome (APS), anaphylaxis, hypersensitivity, genetic susceptibility, epitope spreading, and anti-idiotypic antibodies were partially responsible for stirring up the onset of cardiovascular disorders. With these mechanisms in place, a minor contribution from COVID-19 virus itself cannot be ruled out. With that being said, we strongly advocate for careful selection of vaccine adjuvants included in COVID-19 vaccines so that future adverse cardiac disorders can be averted.
Collapse
Affiliation(s)
- Sri Harsha Kanuri
- Research Fellow, Stark Neurosciences Institute, Indiana University School of Medicine, 320 W 15 ST, Indianapolis, IN 46202, USA
| | | |
Collapse
|
19
|
Guabiraba R, Rodrigues DR, Manna PT, Chollot M, Saint-Martin V, Trapp S, Oliveira M, Bryant CE, Ferguson BJ. Mechanisms of type I interferon production by chicken TLR21. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105093. [PMID: 37951324 DOI: 10.1016/j.dci.2023.105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
The innate immune response relies on the ability of host cells to rapidly detect and respond to microbial nucleic acids. Toll-like receptors (TLRs), a class of pattern recognition receptors (PRRs), play a fundamental role in distinguishing self from non-self at the molecular level. In this study, we focused on TLR21, an avian TLR that recognizes DNA motifs commonly found in bacterial genomic DNA, specifically unmethylated CpG motifs. TLR21 is believed to act as a functional homologue to mammalian TLR9. By analysing TLR21 signalling in chickens, we sought to elucidate avian TLR21 activation outputs in parallel to that of other nucleic acid species. Our analyses revealed that chicken TLR21 (chTLR21) triggers the activation of NF-κB and induces a potent type-I interferon response in chicken macrophages, similar to the signalling cascades observed in mammalian TLR9 activation. Notably, the transcription of interferon beta (IFNB) by chTLR21 was found to be dependent on both NF-κB and IRF7 signalling, but independent of the TBK1 kinase, a distinctive feature of mammalian TLR9 signalling. These findings highlight the conservation of critical signalling components and downstream responses between avian TLR21 and mammalian TLR9, despite their divergent evolutionary origins. These insights into the evolutionarily conserved mechanisms of nucleic acid sensing contribute to the broader understanding of host-pathogen interactions across species.
Collapse
Affiliation(s)
| | | | - Paul T Manna
- Department of Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Sascha Trapp
- ISP, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Marisa Oliveira
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.
| | - Brian J Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
20
|
Miles MA, Luong R, To EE, Erlich JR, Liong S, Liong F, Logan JM, O’Leary J, Brooks DA, Selemidis S. TLR9 Monotherapy in Immune-Competent Mice Suppresses Orthotopic Prostate Tumor Development. Cells 2024; 13:97. [PMID: 38201300 PMCID: PMC10778079 DOI: 10.3390/cells13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancer is ranked second in the world for cancer-related deaths in men, highlighting the lack of effective therapies for advanced-stage disease. Toll-like receptors (TLRs) and immunity have a direct role in prostate cancer pathogenesis, but TLR9 has been reported to contribute to both the progression and inhibition of prostate tumorigenesis. To further understand this apparent disparity, we have investigated the effect of TLR9 stimulation on prostate cancer progression in an immune-competent, syngeneic orthotopic mouse model of prostate cancer. Here, we utilized the class B synthetic agonist CPG-1668 to provoke a TLR9-mediated systemic immune response and demonstrate a significant impairment of prostate tumorigenesis. Untreated tumors contained a high abundance of immune-cell infiltrates. However, pharmacological activation of TLR9 resulted in smaller tumors containing significantly fewer M1 macrophages and T cells. TLR9 stimulation of tumor cells in vitro had no effect on cell viability or its downstream transcriptional targets, whereas stimulation in macrophages suppressed cancer cell growth via type I IFN. This suggests that the antitumorigenic effects of CPG-1668 were predominantly mediated by an antitumor immune response. This study demonstrated that systemic TLR9 stimulation negatively regulates prostate cancer tumorigenesis and highlights TLR9 agonists as a useful therapeutic for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Mark A. Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Raymond Luong
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Eunice E. To
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Jonathan R. Erlich
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Stella Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Felicia Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Jessica M. Logan
- Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - John O’Leary
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, D8 Dublin, Ireland
- Sir Patrick Dun’s Laboratory, Central Pathology Laboratory, St James’s Hospital, D8 Dublin, Ireland
- Molecular Pathology Laboratory, Coombe Women and Infants’ University Hospital, D8 Dublin, Ireland
| | - Doug A. Brooks
- Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, D8 Dublin, Ireland
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
21
|
Sun B, Li M, Yao Z, Yu G, Ma Y. Advances in Vaccine Adjuvants: Nanomaterials and Small Molecules. Handb Exp Pharmacol 2024; 284:113-132. [PMID: 37059911 DOI: 10.1007/164_2023_652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Adjuvants have been extensively and essentially formulated in subunits and certain inactivated vaccines for enhancing and prolonging protective immunity against infections and diseases. According to the types of infectious diseases and the required immunity, adjuvants with various acting mechanisms have been designed and applied in human vaccines. In this chapter, we introduce the advances in vaccine adjuvants based on nanomaterials and small molecules. By reviewing the immune mechanisms induced by adjuvants with different characteristics, we aim to establish structure-activity relationships between the physicochemical properties of adjuvants and their immunostimulating capability for the development of adjuvants for more effective preventative and therapeutic vaccines.
Collapse
Affiliation(s)
- Bingbing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China.
| | - Min Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Zhiying Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yubin Ma
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
22
|
Gao F, Zheng M, Fan J, Ding Y, Liu X, Zhang M, Zhang X, Dong J, Zhou X, Luo J, Li X. A trimeric spike-based COVID-19 vaccine candidate induces broad neutralization against SARS-CoV-2 variants. Hum Vaccin Immunother 2023; 19:2186110. [PMID: 36882925 PMCID: PMC10026892 DOI: 10.1080/21645515.2023.2186110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
COVID-19 pandemic caused by SARS-CoV-2 infection has an impact on global public health and social economy. The emerging immune escape of SARS-CoV-2 variants pose great challenges to the development of vaccines based on original strains. The development of second-generation COVID-19 vaccines to induce immune responses with broad-spectrum protective effects is a matter of great urgency. Here, a prefusion-stabilized spike (S) trimer protein based on B.1.351 variant was expressed and prepared with CpG7909/aluminum hydroxide dual adjuvant to investigate the immunogenicity in mice. The results showed that the candidate vaccine could induce a significant receptor binding domain-specific antibody response and a substantial interferon-γ-mediated immune response. Furthermore, the candidate vaccine also elicited robust cross-neutralization against the pseudoviruses of the original strain, Beta variant, Delta variant and Omicron variant. The vaccine strategy of S-trimer protein formulated with CpG7909/aluminum hydroxide dual adjuvant may be considered a means to increase vaccine effectiveness against future variants.
Collapse
Affiliation(s)
- Feixia Gao
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Mei Zheng
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Jiangfeng Fan
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Yahong Ding
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Xueying Liu
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Min Zhang
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Xin Zhang
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Jinrong Dong
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Xu Zhou
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Jian Luo
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| | - Xiuling Li
- Department of Research and Development, Shanghai Institute of Biological Products, Shanghai, China
| |
Collapse
|
23
|
Malik JA, Kaur G, Agrewala JN. Revolutionizing medicine with toll-like receptors: A path to strengthening cellular immunity. Int J Biol Macromol 2023; 253:127252. [PMID: 37802429 DOI: 10.1016/j.ijbiomac.2023.127252] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Toll-like receptors play a vital role in cell-mediated immunity, which is crucial for the immune system's defense against pathogens and maintenance of homeostasis. The interaction between toll-like-receptor response and cell-mediated immunity is complex and essential for effectively eliminating pathogens and maintaining immune surveillance. In addition to pathogen recognition, toll-like receptors serve as adjuvants in vaccines, as molecular sensors, and recognize specific patterns associated with pathogens and danger signals. Incorporating toll-like receptor ligands into vaccines can enhance the immune response to antigens, making them potent adjuvants. Furthermore, they bridge the innate and adaptive immune systems and improve antigen-presenting cells' capacity to process and present antigens to T cells. The intricate signaling pathways and cross-talk between toll-like-receptor and T cell receptor (TCR) signaling emphasize their pivotal role in orchestrating effective immune responses against pathogens, thus facilitating the development of innovative vaccine strategies. This article provides an overview of the current understanding of toll-like receptor response and explores their potential clinical applications. By unraveling the complex mechanisms of toll-like-receptor signaling, we can gain novel insights into immune responses and potentially develop innovative therapeutic approaches. Ongoing investigations into the toll-like-receptor response hold promise in the future in enhancing our ability to combat infections, design effective vaccines, and improve clinical outcomes.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India
| | - Gurpreet Kaur
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India; Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab 140055, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India.
| |
Collapse
|
24
|
Zhang H, Wang Z, Wang S, Zhang J, Qiu L, Chen J. Aminated yeast β-D-glucan for macrophage-targeted delivery of CpG oligodeoxynucleotides and synergistically enhanced cancer immunotherapy. Int J Biol Macromol 2023; 253:126998. [PMID: 37729981 DOI: 10.1016/j.ijbiomac.2023.126998] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
CpG oligodeoxynucleotides (CpG ODNs) activate immune system and show strong potential in cancer immunotherapy. However, therapeutic efficacy of CpG ODNs is hampered due to rapid nuclease degradation and insufficient cellular uptake. Delivery of CpG ODNs into antigen presenting cells (APCs) is vital to enhance their therapeutic efficacy. Herein, we developed a super-convenient yet efficient strategy for macrophage-targeted delivery of CpG ODNs and synergistically enhanced cancer immunotherapy. Aminated yeast β-D-glucan (NH2-Glu) was simply synthesized through functionalization of β-D-glucan with DETA, which exhibited a dendrimer-like shape with size of about 80 nm. NH2-Glu complexed negatively-charged CpG ODNs. The as-prepared NH2-Glu/CpG complexes were positively charged, uniformly dispersed and exhibited good stability against nuclease degradation. Due to the specific recognition with dectin-1 expressed on macrophages, NH2-Glu/CpG complexes targeted macrophage and exhibited significantly enhanced cellular uptake due to dectin-1-mediated endocytosis. NH2-Glu/CpG complexes showed potent immunostimulatory activity. Contributed by the inherent immunostimulatory and antitumor activity, yeast β-D-glucan functioned synergistically with CpG ODNs in inducing antitumor immunity. NH2-Glu/CpG complexes remarkably inhibited tumor growth without causing toxic effect. In summary, this work provides a facile yet efficient macrophage-targeted CpG ODNs delivery system for cancer immunotherapy.
Collapse
Affiliation(s)
- Huijie Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhiqing Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuo Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiawen Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lipeng Qiu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
25
|
Wang S, Guirakhoo F, Periasamy S, Ryan V, Wiggins J, Subramani C, Thibodeaux B, Sahni J, Hellerstein M, Kuzmina NA, Bukreyev A, Dodart JC, Rumyantsev A. RBD-Protein/Peptide Vaccine UB-612 Elicits Mucosal and Fc-Mediated Antibody Responses against SARS-CoV-2 in Cynomolgus Macaques. Vaccines (Basel) 2023; 12:40. [PMID: 38250853 PMCID: PMC10818657 DOI: 10.3390/vaccines12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Antibodies provide critical protective immunity against COVID-19, and the Fc-mediated effector functions and mucosal antibodies also contribute to the protection. To expand the characterization of humoral immunity stimulated by subunit protein-peptide COVID-19 vaccine UB-612, preclinical studies in non-human primates were undertaken to investigate mucosal secretion and the effector functionality of vaccine-induced antibodies in antibody-dependent monocyte phagocytosis (ADMP) and antibody-dependent NK cell activation (ADNKA) assays. In cynomolgus macaques, UB-612 induced potent serum-neutralizing, RBD-specific IgG binding, ACE2 binding-inhibition antibodies, and antibodies with Fc-mediated effector functions in ADMP and ADNKA assays. Additionally, immunized animals developed mucosal antibodies in bronchoalveolar lavage fluids (BAL). The level of mucosal or serum ADMP and ADNKA antibodies was found to be UB-612 dose-dependent. Our results highlight that the novel subunit UB-612 vaccine is a potent B-cell immunogen inducing polyfunctional antibody responses contributing to anti-viral immunity and vaccine efficacy.
Collapse
Affiliation(s)
- Shixia Wang
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Farshad Guirakhoo
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
| | - Valorie Ryan
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Jonathan Wiggins
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Chandru Subramani
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
| | - Brett Thibodeaux
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Jaya Sahni
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Michael Hellerstein
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Natalia A. Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jean-Cosme Dodart
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Alexander Rumyantsev
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| |
Collapse
|
26
|
Matsuda M, Mochizuki S. Control of A/D type CpG-ODN aggregates to a suitable size for induction of strong immunostimulant activity. Biochem Biophys Rep 2023; 36:101573. [PMID: 37954170 PMCID: PMC10633530 DOI: 10.1016/j.bbrep.2023.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Among several types of CpG-ODNs, A/D-type CpG-ODNs have potent adjuvant activity to induce Th-1 immune responses, but exhibit a propensity to aggregate. For the clinical application of A/D-type CpG-ODNs, it is necessary to control such aggregation and obtain a comprehensive understanding of the relationship between their structure and the immune responses. This study revealed that a representative A/D-type CpG ODN, D35, adopted a single-stranded structure in water, while it assembled into aggregates in response to Na+ ions. From polyacrylamide gel electrophoresis and circular dichroism analyses, D35 adopted a homodimeric form (duplex) via palindromic sequences in low-Na+-concentration conditions (10-50 mM NaCl). After replacement of the solution with PBS, quadruplexes began to form in a manner coordinated by Na+, resulting in large aggregates. The duplexes and small aggregates prepared in 50 mM NaCl showed not only high cellular uptake but also high affinity to Toll-like receptor 9 (TLR9) proteins, leading to the production of a large amount of interferon-α for peripheral blood mononuclear cells. The much larger aggregates prepared in 100 mM NaCl were incorporated into cells at a high level, but showed a low ability to induce cytokine production. This suggests that the large aggregates have difficulty inducing TLR9 dimerization, resulting in loss of the stimulation of the cells. We thus succeeded in inducing adequate innate immunity in vitro by controlling and adjusting the formation of D35 aggregates. Therefore, the findings in this study for D35 ODNs could be a vital research foundation for in vivo applications.
Collapse
Affiliation(s)
- Miyu Matsuda
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Shinichi Mochizuki
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| |
Collapse
|
27
|
Tsukidate T, Hespen CW, Hang HC. Small molecule modulators of immune pattern recognition receptors. RSC Chem Biol 2023; 4:1014-1036. [PMID: 38033733 PMCID: PMC10685800 DOI: 10.1039/d3cb00096f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 12/02/2023] Open
Abstract
Pattern recognition receptors (PRRs) represent a re-emerging class of therapeutic targets for vaccine adjuvants, inflammatory diseases and cancer. In this review article, we summarize exciting developments in discovery and characterization of small molecule PRR modulators, focusing on Toll-like receptors (TLRs), NOD-like receptors (NLRs) and the cGAS-STING pathway. We also highlight PRRs that are currently lacking small molecule modulators and opportunities for chemical biology and therapeutic discovery.
Collapse
Affiliation(s)
- Taku Tsukidate
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Charles W Hespen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
- Department of Immunology and Microbiology and Department of Chemistry, Scripps Research, La Jolla California 92037 USA
| |
Collapse
|
28
|
Kerr MD, Johnson WT, McBride DA, Chumber AK, Shah NJ. Biodegradable scaffolds for enhancing vaccine delivery. Bioeng Transl Med 2023; 8:e10591. [PMID: 38023723 PMCID: PMC10658593 DOI: 10.1002/btm2.10591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 12/01/2023] Open
Abstract
Sustained release of vaccine components is a potential method to boost efficacy compared with traditional bolus injection. Here, we show that a biodegradable hyaluronic acid (HA)-scaffold, termed HA cryogel, mediates sustained antigen and adjuvant release in vivo leading to a durable immune response. Delivery from subcutaneously injected HA cryogels was assessed and a formulation which enhanced the immune response while minimizing the inflammation associated with the foreign body response was identified, termed CpG-OVA-HAC2. Dose escalation studies with CpG-OVA-HAC2 demonstrated that both the antibody and T cell responses were dose-dependent and influenced by the competency of neutrophils to perform oxidative burst. In immunodeficient post-hematopoietic stem cell transplanted mice, immunization with CpG-OVA-HAC2 elicited a strong antibody response, three orders of magnitude higher than dose-matched bolus injection. In a melanoma model, CpG-OVA-HAC2 induced dose-responsive prophylactic protection, slowing the tumor growth rate and enhancing overall survival. Upon rechallenge, none of the mice developed new tumors suggesting the development of robust immunological memory and long-lasting protection against repeat infections. CpG-OVA-HAC2 also enhanced survival in mice with established tumors. The results from this work support the potential for CpG-OVA-HAC2 to enhance vaccine delivery.
Collapse
Affiliation(s)
- Matthew D. Kerr
- Department of NanoengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Wade T. Johnson
- Department of NanoengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - David A. McBride
- Department of NanoengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Arun K. Chumber
- Department of NanoengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Nisarg J. Shah
- Department of NanoengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
29
|
Fan Y, Zhan M, Liang J, Yang X, Zhang B, Shi X, Hu Y. Programming Injectable DNA Hydrogels Yields Tumor Microenvironment-Activatable and Immune-Instructive Depots for Augmented Chemo-Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302119. [PMID: 37541435 PMCID: PMC10582419 DOI: 10.1002/advs.202302119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Injectable hydrogels have attracted increasing attention for promoting systemic antitumor immune response through the co-delivery of chemotherapeutics and immunomodulators. However, the biosafety and bioactivity of conventional hydrogel depots are often impaired by insufficient possibilities for post-gelling injection and means for biofunction integration. Here, an unprecedented injectable stimuli-responsive immunomodulatory depot through programming a super-soft DNA hydrogel adjuvant is reported. This hydrogel system encoded with adenosine triphosphate aptamers can be intratumorally injected in a gel formulation and then undergoes significant molecular conformation change to stimulate the distinct release kinetics of co-encapsulated therapeutics. In this scenario, doxorubicin is first released to induce immunogenic cell death that intimately works together with the polymerized cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN) in gel scaffold for effectively recruiting and activating dendritic cells. The polymerized CpG ODN not only enhances tumor immunogenicity but minimizes free CpG-induced splenomegaly. Furthermore, the subsequently released anti-programmed cell death protein ligand 1 (aPDL1) blocks the corresponding immune inhibitory checkpoint molecule on tumor cells to sensitize antitumor T-cell immunity. This work thus contributes to the first proof-of-concept demonstration of a programmable super-soft DNA hydrogel system that perfectly matches the synergistic therapeutic modalities based on chemotherapeutic toxicity, in situ vaccination, and immune checkpoint blockade.
Collapse
Affiliation(s)
- Yu Fan
- Department of Polymeric MaterialsSchool of Materials Science and EngineeringTongji UniversityShanghai201804P. R. China
| | - Mengsi Zhan
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620P. R. China
| | - Junhao Liang
- Department of Polymeric MaterialsSchool of Materials Science and EngineeringTongji UniversityShanghai201804P. R. China
| | - Xingsen Yang
- Department of Polymeric MaterialsSchool of Materials Science and EngineeringTongji UniversityShanghai201804P. R. China
| | - Beibei Zhang
- Department of Polymeric MaterialsSchool of Materials Science and EngineeringTongji UniversityShanghai201804P. R. China
| | - Xiangyang Shi
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620P. R. China
| | - Yong Hu
- Department of Polymeric MaterialsSchool of Materials Science and EngineeringTongji UniversityShanghai201804P. R. China
| |
Collapse
|
30
|
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev 2023; 52:5172-5254. [PMID: 37462107 DOI: 10.1039/d2cs00848c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vaccines comprising innovative adjuvants are rapidly reaching advanced translational stages, such as the authorized nanotechnology adjuvants in mRNA vaccines against COVID-19 worldwide, offering new strategies to effectively combat diseases threatening human health. Adjuvants are vital ingredients in vaccines, which can augment the degree, extensiveness, and longevity of antigen specific immune response. The advances in the modulation of physicochemical properties of nanoplatforms elevate the capability of adjuvants in initiating the innate immune system and adaptive immunity, offering immense potential for developing vaccines against hard-to-target infectious diseases and cancer. In this review, we provide an essential introduction of the basic principles of prophylactic and therapeutic vaccination, key roles of adjuvants in augmenting and shaping immunity to achieve desired outcomes and effectiveness, and the physiochemical properties and action mechanisms of clinically approved adjuvants for humans. We particularly focus on the preclinical and clinical progress of highly immunogenic emerging nanotechnology adjuvants formulated in vaccines for cancer treatment or infectious disease prevention. We deliberate on how the immune system can sense and respond to the physicochemical cues (e.g., chirality, deformability, solubility, topology, and chemical structures) of nanotechnology adjuvants incorporated in the vaccines. Finally, we propose possible strategies to accelerate the clinical implementation of nanotechnology adjuvanted vaccines, such as in-depth elucidation of nano-immuno interactions, antigen identification and optimization by the deployment of high-dimensional multiomics analysis approaches, encouraging close collaborations among scientists from different scientific disciplines and aggressive exploration of novel nanotechnologies.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
31
|
Tognetti F, Biagini M, Denis M, Berti F, Maione D, Stranges D. Evolution of Vaccines Formulation to Tackle the Challenge of Anti-Microbial Resistant Pathogens. Int J Mol Sci 2023; 24:12054. [PMID: 37569427 PMCID: PMC10418901 DOI: 10.3390/ijms241512054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The increasing diffusion of antimicrobial resistance (AMR) across more and more bacterial species emphasizes the urgency of identifying innovative treatment strategies to counter its diffusion. Pathogen infection prevention is among the most effective strategies to prevent the spread of both disease and AMR. Since their discovery, vaccines have been the strongest prophylactic weapon against infectious diseases, with a multitude of different antigen types and formulative strategies developed over more than a century to protect populations from different pathogens. In this review, we review the main characteristics of vaccine formulations in use and under development against AMR pathogens, focusing on the importance of administering multiple antigens where possible, and the challenges associated with their development and production. The most relevant antigen classes and adjuvant systems are described, highlighting their mechanisms of action and presenting examples of their use in clinical trials against AMR. We also present an overview of the analytical and formulative strategies for multivalent vaccines, in which we discuss the complexities associated with mixing multiple components in a single formulation. This review emphasizes the importance of combining existing knowledge with advanced technologies within a Quality by Design development framework to efficiently develop vaccines against AMR pathogens.
Collapse
Affiliation(s)
- Francesco Tognetti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Xu X, Yi C, Feng T, Ge Y, Liu M, Wu C, Yu H, Chen X, Gopinath SCB, Zhang W, Zhao L, Zou J. Regulating tumor microenvironments by a lymph node-targeting adjuvant via tumor-specific CTL-derived IFNγ. Clin Immunol 2023:109685. [PMID: 37406980 DOI: 10.1016/j.clim.2023.109685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/29/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Inducing tumor-specific T cell responses and regulating suppressive tumor microenvironments have been a challenge for effective tumor therapy. CpG (ODN), the Toll-like receptor 9 agonist, has been widely used as adjuvants of cancer vaccines to induce T cell responses. We developed a novel adjuvant to improve the targeting of lymph nodes. CpG were modified with lipid and glycopolymers by the combination of photo-induced RAFT polymerization and click chemistry, and the novel adjuvant was termed as lipid-glycoadjuvant@AuNPs (LCpG). OVA protein was used as model antigen and melanoma model was established to test the immunotherapy effect of the adjuvant. In tumor model, the antitumor effect and mechanism of LCpG on the response of CTLs were examined by flow cytometry and cell cytotoxicity assay. The effects of LCpG on macrophage polarization and Tregs differentiation in tumor microenvironment were also studied by cell depletion assay and cytokine neutralization assay. We also tested the therapeutic effect of the combination of the adjuvant and anti-PD-1 treatment. LCpG could be rapidly transported to and retained longer in the lymphoid nodes than unmodified CpG. In melanoma model, LCpG controlled both primary tumor and its metastasis, and established long-term memory. In spleen and tumor draining lymphoid nodes, LCpG activated tumor-specific Tc1 responses, with increased CD8+ T-cell proliferation, antigen-specific Tc1 cytokine production and specific-tumor killing capacity. In tumor microenvironments, antigen-specific Tc1 induced by the LCpG promoted CTL infiltration, skewed tumor associated macrophages to M1 phenotype, regulated Treg and induced proinflammatory cytokines production in a CTL-derived IFN-γ-dependent manner. In vivo cell depletion and adoptive transfer experiments confirmed that antitumor activity of LCpG included vaccine was mainly dependent on CTL-derived IFN-γ. The anti-tumor efficacy of LCpG was dramatically enhanced when combined with anti-PD1 immunotherapy. LCpG was a promising adjuvant for vaccine formulation which could augment tumor-specific Tc1 activity, and regulate tumor microenvironments.
Collapse
Affiliation(s)
- Xiaojing Xu
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, Suzhou 215123, Jiangsu, China
| | - Cheng Yi
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, Suzhou 215123, Jiangsu, China; Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Tianyun Feng
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, Suzhou 215123, Jiangsu, China; Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Youzhen Ge
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, Suzhou 215123, Jiangsu, China; Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Mengjie Liu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, Jiangsu, China
| | - Cenhao Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Hao Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Xiang Chen
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Perlis, Malaysia; Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis, Perlis, Malaysia; Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Lixiang Zhao
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
33
|
Lobaina Y, Chen R, Suzarte E, Ai P, Huerta V, Tan C, Alvarez-Lajonchere L, Liling Y, Musacchio A, Silva R, Guillén G, Zaixue J, Yang K, Perera Y, Hermida L. Broad humoral immunity generated in mice by a formulation composed of two antigens from the Delta variant of SARS-CoV-2. Arch Virol 2023; 168:190. [PMID: 37351679 DOI: 10.1007/s00705-023-05812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/05/2023] [Indexed: 06/24/2023]
Abstract
Due to the rapid development of new variants of SARS-CoV-2 as well as the real threat of new coronavirus zoonosis events, the development of a preventive vaccine with a broader scope of functionality is highly desirable. Previously, we reported the functionality of a nasal formulation containing the nucleocapsid protein and the receptor-binding domain (RBD) of the spike protein of the Delta variant of SARS-CoV-2 combined with the ODN-39M adjuvant. This combination induced cross-reactive immunity in mucosal and systemic compartments at the sarbecovirus level. In the present study, we explored the magnitude of the immunity generated in BALB/c mice by the same formulation with alum added as an additional adjuvant, to enhance the humoral immunity against the two antigens. Animals were immunized with three doses of the bivalent formulation, administered by subcutaneous route. Humoral immunity was tested by ELISA, and the neutralizing capacity of the resulting antibodies (Abs) was evaluated using a surrogate test and a vesicular stomatitis virus (VSV) pseudovirus-based assay. Cell-mediated immunity was also investigated using an IFN-γ ELISpot assay. High levels of antibodies against both antigens (N and RBD) were obtained upon immunization. Anti-RBD Abs with neutralizing capacity reacted with the RBD of three SARS-CoV-2 variants tested, including Omicron. Abs recognizing the nucleocapsid proteins of SARS-CoV-1 and the SARS-CoV-2 Delta and Omicron variants were also detected. Taken together, these results suggest that this bivalent formulation could be an attractive component of a pancorona vaccine able to broaden the scope of humoral immunity against both antigens. This will be particularly important for the reinforcement of immunity in previously vaccinated and/or infected populations.
Collapse
Affiliation(s)
- Yadira Lobaina
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Research Department, Yongzhou Zhong Gu Biotechnology Co., Ltd, Yangjiaqiao Street, Lengshuitan District, Yongzhou, 425000, Hunan, China
| | - Rong Chen
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou, Hunan, China
| | - Edith Suzarte
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Panchao Ai
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou, Hunan, China
| | - Vivian Huerta
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Changyuan Tan
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou, Hunan, China
| | - Liz Alvarez-Lajonchere
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Yang Liling
- Department of Laboratory Medicine, Dongguan Ninth People's Hospital, No. 88, Shaditang, Guancheng District, Dongguan, Guangdong, China
| | - Alexis Musacchio
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Ricardo Silva
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Scientific Department, Representative Office of BioCubaFarma in China, Jingtai Tower, No. 24 Jianguomen Wai Street, Chaoyang District, Beijing, 100022, China
| | - Gerardo Guillén
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Jiang Zaixue
- Guangdong Eighth People's Hospital, No. 68 South, Shilong Xihu 3rd Road, Shilong Town, Dongguan, Guangdong, China
| | - Ke Yang
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China.
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou, Hunan, China.
| | - Yasser Perera
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China.
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba.
- Research Department, Yongzhou Zhong Gu Biotechnology Co., Ltd, Yangjiaqiao Street, Lengshuitan District, Yongzhou, 425000, Hunan, China.
| | - Lisset Hermida
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China.
- Scientific Department, Representative Office of BioCubaFarma in China, Jingtai Tower, No. 24 Jianguomen Wai Street, Chaoyang District, Beijing, 100022, China.
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou, Hunan, China.
| |
Collapse
|
34
|
Zheng L, Wu H, Wen N, Zhang Y, Wang Z, Peng X, Tan Y, Qiu L, Qu F, Tan W. Aptamer-Functionalized Nanovaccines: Targeting In Vivo DC Subsets for Enhanced Antitumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18590-18597. [PMID: 37017594 DOI: 10.1021/acsami.2c20846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cancer vaccines, which directly pulsed in vivo dendritic cells (DCs) with specific antigens and immunostimulatory adjuvants, showed great potential for cancer immunoprevention. However, most of them were limited by suboptimal outcomes, mainly owing to overlooking the complex biology of DC phenotypes. Herein, based on adjuvant-induced antigen assembly, we developed aptamer-functionalized nanovaccines for in vivo DC subset-targeted codelivery of tumor-related antigens and immunostimulatory adjuvants. We chose two aptamers, iDC and CD209, and tested their performance on DC targeting. Our results verified that these aptamer-functionalized nanovaccines could specifically recognize circulating classical DCs (cDCs), a subset of DCs capable of priming naïve T cells, noting that iDC outperformed CD209 in this regard. With excellent cDC-targeting capability, the iDC-functionalized nanovaccine induced potent antitumor immunity, leading to effective inhibition of tumor occurrence and metastasis, thus providing a promising platform for cancer immunoprevention.
Collapse
Affiliation(s)
- Liyan Zheng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hui Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Nachuan Wen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yue Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xueyu Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yan Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Fengli Qu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
35
|
Anwar S, Mir F, Yokota T. Enhancing the Effectiveness of Oligonucleotide Therapeutics Using Cell-Penetrating Peptide Conjugation, Chemical Modification, and Carrier-Based Delivery Strategies. Pharmaceutics 2023; 15:pharmaceutics15041130. [PMID: 37111616 PMCID: PMC10140998 DOI: 10.3390/pharmaceutics15041130] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Oligonucleotide-based therapies are a promising approach for treating a wide range of hard-to-treat diseases, particularly genetic and rare diseases. These therapies involve the use of short synthetic sequences of DNA or RNA that can modulate gene expression or inhibit proteins through various mechanisms. Despite the potential of these therapies, a significant barrier to their widespread use is the difficulty in ensuring their uptake by target cells/tissues. Strategies to overcome this challenge include cell-penetrating peptide conjugation, chemical modification, nanoparticle formulation, and the use of endogenous vesicles, spherical nucleic acids, and smart material-based delivery vehicles. This article provides an overview of these strategies and their potential for the efficient delivery of oligonucleotide drugs, as well as the safety and toxicity considerations, regulatory requirements, and challenges in translating these therapies from the laboratory to the clinic.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Farin Mir
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
36
|
Liu S, Wu J, Feng Y, Guo X, Li T, Meng M, Chen J, Chen D, Tian H. CD47KO/CRT dual-bioengineered cell membrane-coated nanovaccine combined with anti-PD-L1 antibody for boosting tumor immunotherapy. Bioact Mater 2023; 22:211-224. [PMID: 36246666 PMCID: PMC9535270 DOI: 10.1016/j.bioactmat.2022.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Tumor vaccines trigger tumor-specific immune responses to prevent or treat tumors by activating the hosts' immune systems, and therefore, these vaccines have potential clinical applications. However, the low immunogenicity of the tumor antigen itself and the low efficiency of the vaccine delivery system hinder the efficacy of tumor vaccines that cannot produce high-efficiency and long-lasting antitumor immune effects. Here, we constructed a nanovaccine by integrating CD47KO/CRT dual-bioengineered B16F10 cancer cell membranes and the unmethylated cytosine-phosphate-guanine (CpG) adjuvant. Hyperbranched PEI25k was used to load unmethylated cytosine-phosphate-guanine (CpG) through electrostatic adsorption to prepare PEI25k/CpG nanoparticles (PEI25k/CpG-NPs). CD47KO/CRT dual-bioengineered cells were obtained by CRISPR-Cas9 gene editing technology, followed by the cell surface translocation of calreticulin (CRT) to induce immunogenic cell death (ICD) in vitro. Finally, the extracted cell membranes were coextruded with PEI25k/CpG-NPs to construct the CD47KO/CRT dual-bioengineered cancer cell membrane-coated nanoparticles (DBE@CCNPs). DBE@CCNPs could promote endocytosis of antigens and adjuvants in murine bone marrow derived dendritic cells (BMDCs) and induce their maturation and antigen cross-presentation. To avoid immune checkpoint molecule-induced T cell dysfunction, the immune checkpoint inhibitor, the anti-PD-L1 antibody, was introduced to boost tumor immunotherapy through a combination with the DBE@CCNPs nanovaccine. This combination therapy strategy can significantly alleviate tumor growth and may open up a potential strategy for clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Shengyang Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Yuanji Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Xiaoya Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Tong Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Meng Meng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Daquan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| |
Collapse
|
37
|
Enhancement of Immune Response of Bioconjugate Nanovaccine by Loading of CpG through Click Chemistry. J Pers Med 2023; 13:jpm13030507. [PMID: 36983689 PMCID: PMC10052328 DOI: 10.3390/jpm13030507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
CpG is a widely used adjuvant that enhances the cellular immune response by entering antigen-presenting cells and binding with receptors. The traditional physical mixing of the antigen and CpG adjuvant results in a low adjuvant utilization rate. Considering the efficient delivery capacity of nanovaccines, we developed an attractive strategy to covalently load CpG onto the nanovaccine, which realized the co-delivery of both CpG and the antigen. Briefly, the azide-modified CpG was conjugated to a bioconjugate nanovaccine (NP-OPS) against Shigella flexneri through a simple two-step reaction. After characterization of the novel vaccine (NP-OPS-CpG), a series of in vitro and in vivo experiments were performed, including in vivo imaging, lymph node sectioning, and dendritic cell stimulation, and the results showed that more CpG reached the lymph nodes after covalent coupling. Subsequent flow cytometry analysis of lymph nodes from immunized mice showed that the cellular immune response was greatly promoted by the nanovaccine coupled with CpG. Moreover, by analyzing the antibody subtypes of immunized mice, NP-OPS-CpG was found to further promote a Th1-biased immune response. Thus, we developed an attractive method to load CpG on a nanovaccine that is simple, convenient, and is especially suitable for immune enhancement of vaccines against intracellular bacteria.
Collapse
|
38
|
Irie H, Morita K, Matsuda M, Koizumi M, Mochizuki S. Tyrosinase-Related Protein2 Peptide with Replacement of N-Terminus Residue by Cysteine Binds to H-2K b and Induces Antigen-Specific Cytotoxic T Lymphocytes after Conjugation with CpG-DNA. Bioconjug Chem 2023; 34:433-442. [PMID: 36708315 DOI: 10.1021/acs.bioconjchem.2c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent studies have shown the potent efficacy of peptide-based vaccines for cancer immunotherapy. Immunological performance is optimized through the co-delivery of adjuvant and antigenic peptide molecules to antigen-presenting cells simultaneously. In our previous study, we showed that a conjugate consisting of 40-mer CpG-DNA and an antigenic ovalbumin peptide through disulfide bonding could efficiently induce ovalbumin-specific cytotoxic T lymphocyte (CTL) responses in vivo. In this study, based on the conjugation design, we prepared a conjugate consisting of 30-mer CpG-DNA (CpG30) and a cancer antigenic peptide of Tyrosinase-related protein 2 (TRP2180-188) using a cysteine residue attached at the N-terminus of TRP2180-188. However, the immunization of mice with this conjugate did not induce efficient TRP2180-188-specific immune responses. It was thought that the resultant peptide (10-mer) cleaved from the conjugate might be too long to fit into the H-2Kb molecule because the optimal length for binding to it is 8-9 amino acids. We newly designed a conjugate consisting of CpG30 and the C-TRP2181-188 peptide (9-mer), in which the N-terminal serine residue of TRP2180-188 is replaced by a cysteine. By adjusting the peptide length, we succeeded in inducing strong TRP2180-188 peptide-specific CTL activity upon immunization with the CpG30-C-TRP2181-188 conjugate. Furthermore, various CpG30-C-TRP2181-188 conjugates having other CpG-DNA sequences or cysteine analogues also induced the same level of CTL activity. Therefore, CpG-C-peptide conjugates prepared by replacement of the amino acid residue at the N-terminus with a cysteine residue could be a new and effective platform for peptide vaccines for targeting specific antigens of cancers and infectious diseases.
Collapse
Affiliation(s)
- Hitomi Irie
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Koji Morita
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Miyu Matsuda
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Makoto Koizumi
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Shinichi Mochizuki
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
39
|
Manley HJ, Aweh G, Frament J, Ladik V, Lacson EK. A real world comparison of HepB (Engerix-B®) and HepB-CpG (Heplisav-B®) vaccine seroprotection in patients receiving maintenance dialysis. Nephrol Dial Transplant 2023; 38:447-454. [PMID: 35150277 DOI: 10.1093/ndt/gfac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Vaccination against hepatitis B virus (HBV) is recommended for dialysis patients. Two reports comparing seroprotection (SP) rates following HepB and HepB-CpG in vaccine-naïve patients with chronic kidney disease enrolled few dialysis patients (n = 122 combined). SP rates in a subset of dialysis patients were not reported or not powered to detect statistically significant differences. SP rates in those requiring additional vaccine series or booster doses are not known. METHODS A retrospective cohort analysis including dialysis patients completing HepB or HepB-CpG vaccination between January 2019 and December 2020. Vaccine-naïve patients received a series of HepB or HepB-CpG (Series 1). A repeat series was given to nonresponders (Series 2). A booster regimen consists of one dose of either vaccine. Primary outcome was achieving SP (anti-HBs >10 mIU/mL) at least 60 days after the last HBV vaccine dose for Series 1 and Series 2, and achieving SP at least 3 weeks post-booster. RESULTS For Series 1 (n = 3509), SP after HepB vaccination was significantly higher (62.9% versus 50.1% for HepB-CpG; P < 0.0001). Series 2 (n = 1040) and booster (n = 2028) SP rates were similar between vaccines. Patients that received up to four HepB-CpG doses had higher SP rates compared with four doses of HepB (82.0% versus 62.9%, respectively; P < 0.0001). CONCLUSIONS SP rates in hepatitis B vaccine-naïve dialysis patients administered a recommended four doses of HepB were higher than those recommended two doses of HepB-CpG. SP rates were higher and achieved sooner if HepB-CpG was utilized initially and, if needed, for Series 2. Optimal HepB-CpG dosing deserves further study.
Collapse
Affiliation(s)
| | | | | | | | - Eduardo K Lacson
- Dialysis Clinic Inc, Nashville, TN, USA
- Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
40
|
Wang H, Su Y, Chen D, Li Q, Shi S, Huang X, Fang M, Yang M. Advances in the mechanisms and applications of inhibitory oligodeoxynucleotides against immune-mediated inflammatory diseases. Front Pharmacol 2023; 14:1119431. [PMID: 36825156 PMCID: PMC9941346 DOI: 10.3389/fphar.2023.1119431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Inhibitory oligodeoxynucleotides (ODNs) are short single-stranded DNA, which capable of folding into complex structures, enabling them to bind to a large variety of targets. With appropriate modifications, the inhibitory oligodeoxynucleotides exhibited many features of long half-life time, simple production, low toxicity and immunogenicity. In recent years, inhibitory oligodeoxynucleotides have received considerable attention for their potential therapeutic applications in immune-mediated inflammatory diseases (IMIDs). Inhibitory oligodeoxynucleotides could be divided into three categories according to its mechanisms and targets, including antisense ODNs (AS-ODNs), DNA aptamers and immunosuppressive ODNs (iSup ODNs). As a synthetic tool with immunomodulatory activity, it can target RNAs or proteins in a specific way, resulting in the reduction, increase or recovery of protein expression, and then regulate the state of immune activation. More importantly, inhibitory oligodeoxynucleotides have been used to treat immune-mediated inflammatory diseases, including inflammatory disorders and autoimmune diseases. Several inhibitory oligodeoxynucleotide drugs have been developed and approved on the market already. These drugs vary in their chemical structures, action mechanisms and cellular targets, but all of them could be capable of inhibiting excessive inflammatory responses. This review summarized their chemical modifications, action mechanisms and applications of the three kinds of inhibitory oligodeoxynucleotidesin the precise treatment of immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Hongrui Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yingying Su
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Duoduo Chen
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qi Li
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Shuyou Shi
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xin Huang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Mingli Fang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,*Correspondence: Mingli Fang, ; Ming Yang,
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,*Correspondence: Mingli Fang, ; Ming Yang,
| |
Collapse
|
41
|
Gaghan C, Browning M, Cortes AL, Gimeno IM, Kulkarni RR. Effect of CpG-Oligonucleotide in Enhancing Recombinant Herpes Virus of Turkey-Laryngotracheitis Vaccine-Induced Immune Responses in One-Day-Old Broiler Chickens. Vaccines (Basel) 2023; 11:vaccines11020294. [PMID: 36851171 PMCID: PMC9965839 DOI: 10.3390/vaccines11020294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Infectious laryngotracheitis (ILT) is an economically important disease of chickens. While the recombinant vaccines can reduce clinical disease severity, the associated drawbacks are poor immunogenicity and delayed onset of immunity. Here, we used CpG-oligonucleotides (ODN) as an in ovo adjuvant in boosting recombinant herpesvirus of turkey-laryngotracheitis (rHVT-LT) vaccine-induced responses in one-day-old broiler chickens. Two CpG-ODN doses (5 and 10 μg/egg) with no adverse effect on the vaccine-virus replication or chick hatchability were selected for immune-response evaluation. Results showed that while CpG-ODN adjuvantation induced an increased transcription of splenic IFNγ and IL-1β, and lung IFNγ genes, the IL-1β gene expression in the lung was significantly downregulated compared to the control. Additionally, the transcription of toll-like receptor (TLR)21 in the spleen and lung and inducible nitric oxide synthase (iNOS) in the spleen of all vaccinated groups was significantly reduced. Furthermore, splenic cellular immunophenotyping showed that the CpG-ODN-10μg adjuvanted vaccination induced a significantly higher number of macrophages, TCRγδ+, and CD4+ T cells as well as a higher frequency of activated T cells (CD4+CD44+) when compared to the control. Collectively, the findings suggested that CpG-ODN can boost rHVT-LT-induced immune responses in day-old chicks, which may help in anti-ILT defense during their later stages of life.
Collapse
Affiliation(s)
| | | | | | - Isabel M. Gimeno
- Correspondence: (I.M.G.); (R.R.K.); Tel.: +1-919-513-6852 (I.M.G.); +1-919-513-6277 (R.R.K.)
| | - Raveendra R. Kulkarni
- Correspondence: (I.M.G.); (R.R.K.); Tel.: +1-919-513-6852 (I.M.G.); +1-919-513-6277 (R.R.K.)
| |
Collapse
|
42
|
Veneziani I, Alicata C, Moretta L, Maggi E. The Latest Approach of Immunotherapy with Endosomal TLR Agonists Improving NK Cell Function: An Overview. Biomedicines 2022; 11:biomedicines11010064. [PMID: 36672572 PMCID: PMC9855813 DOI: 10.3390/biomedicines11010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) are the most well-defined pattern recognition receptors (PRR) of several cell types recognizing pathogens and triggering innate immunity. TLRs are also expressed on tumor cells and tumor microenvironment (TME) cells, including natural killer (NK) cells. Cell surface TLRs primarily recognize extracellular ligands from bacteria and fungi, while endosomal TLRs recognize microbial DNA or RNA. TLR engagement activates intracellular pathways leading to the activation of transcription factors regulating gene expression of several inflammatory molecules. Endosomal TLR agonists may be considered as new immunotherapeutic adjuvants for dendritic cell (DC) vaccines able to improve anti-tumor immunity and cancer patient outcomes. The literature suggests that endosomal TLR agonists modify TME on murine models and human cancer (clinical trials), providing evidence that locally infused endosomal TLR agonists may delay tumor growth and induce tumor regression. Recently, our group demonstrated that CD56bright NK cell subset is selectively responsive to TLR8 engagement. Thus, TLR8 agonists (loaded or not to nanoparticles or other carriers) can be considered a novel strategy able to promote anti-tumor immunity. TLR8 agonists can be used to activate and expand in vitro circulating or intra-tumoral NK cells to be adoptively transferred into patients.
Collapse
Affiliation(s)
- Irene Veneziani
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Alicata
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
43
|
Daniel WL, Lorch U, Mix S, Bexon AS. A first-in-human phase 1 study of cavrotolimod, a TLR9 agonist spherical nucleic acid, in healthy participants: Evidence of immune activation. Front Immunol 2022; 13:1073777. [PMID: 36582243 PMCID: PMC9792500 DOI: 10.3389/fimmu.2022.1073777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Tumor immunotherapy is designed to control malignancies through the host immune response but requires circumventing tumor-dysregulated immunomodulation through immunostimulation, relieving immunorepression, or a combination of both approaches. Here we designed and characterized cavrotolimod (formerly AST-008), an immunostimulatory spherical nucleic acid (SNA) compound targeting Toll-like receptor 9 (TLR9). We assessed the safety and pharmacodynamic (PD) properties of cavrotolimod in healthy participants in a first-in-human Phase 1 study under protocol AST-008-101 (NCT03086278; https://clinicaltrials.gov/ct2/show/NCT03086278). Methods Healthy participants aged 18 to 40 years were enrolled to evaluate four dose levels of cavrotolimod across four cohorts. Each cohort included four participants, and all received a single subcutaneous dose of cavrotolimod. The dose levels were 5, 10, 12.5 and 18.8 µg/kg. Results and discussion Cavrotolimod was well tolerated and elicited no serious adverse events or dose limiting toxicities at the doses tested. The results demonstrated that cavrotolimod is a potent innate immune activator, specifically stimulating Th1-type immune responses, and exhibits PD properties that may result in anti-tumor effects in patients with cancer. This study suggests that cavrotolimod is a promising clinical immunotherapy agent.
Collapse
Affiliation(s)
- Weston L. Daniel
- Research and Development, Exicure, Inc., Chicago, IL, United States,*Correspondence: Weston L. Daniel,
| | - Ulrike Lorch
- Clinical Research, Richmond Pharmacology, London, United Kingdom
| | - Scott Mix
- Research and Development, Exicure, Inc., Chicago, IL, United States
| | - Alice S. Bexon
- Clinical Research, Bexon Clinical Consulting, Upper Montclair, NJ, United States
| |
Collapse
|
44
|
Wang D, Gu W, Chen W, Zhou J, Yu L, Kook Kim B, Zhang X, Seung Kim J. Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Hansoongnern P, Phecharat N, Wasanasuk K, Tommeurd W, Chankeeree P, Lekcharoensuk C, Semkum P, Pinitkiatisakul S, Lekcharoensuk P. Encapsidated-CpG ODN enhances immunogenicity of porcine circovirus type 2 virus-like particles. Vet Microbiol 2022; 275:109583. [DOI: 10.1016/j.vetmic.2022.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/27/2022]
|
46
|
Bajoria S, Kaur K, Kumru OS, Van Slyke G, Doering J, Novak H, Rodriguez Aponte SA, Dalvie NC, Naranjo CA, Johnston RS, Silverman JM, Kleanthous H, Love JC, Mantis NJ, Joshi SB, Volkin DB. Antigen-adjuvant interactions, stability, and immunogenicity profiles of a SARS-CoV-2 receptor-binding domain (RBD) antigen formulated with aluminum salt and CpG adjuvants. Hum Vaccin Immunother 2022; 18:2079346. [PMID: 35666264 PMCID: PMC9621007 DOI: 10.1080/21645515.2022.2079346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Low-cost, refrigerator-stable COVID-19 vaccines will facilitate global access and improve vaccine coverage in low- and middle-income countries. To this end, subunit-based approaches targeting the receptor-binding domain (RBD) of SARS-CoV-2 Spike protein remain attractive. Antibodies against RBD neutralize SARS-CoV-2 by blocking viral attachment to the host cell receptor, ACE2. Here, a yeast-produced recombinant RBD antigen (RBD-L452K-F490W or RBD-J) was formulated with various combinations of aluminum-salt (Alhydrogel®, AH; AdjuPhos®, AP) and CpG 1018 adjuvants. We assessed the effect of antigen-adjuvant interactions on the stability and mouse immunogenicity of various RBD-J preparations. While RBD-J was 50% adsorbed to AH and <15% to AP, addition of CpG resulted in complete AH binding, yet no improvement in AP adsorption. ACE2 competition ELISA analyses of formulated RBD-J stored at varying temperatures (4, 25, 37°C) revealed that RBD-J was destabilized by AH, an effect exacerbated by CpG. DSC studies demonstrated that aluminum-salt and CpG adjuvants decrease the conformational stability of RBD-J and suggest a direct CpG-RBD-J interaction. Although AH+CpG-adjuvanted RBD-J was the least stable in vitro, the formulation was most potent at eliciting SARS-CoV-2 pseudovirus neutralizing antibodies in mice. In contrast, RBD-J formulated with AP+CpG showed minimal antigen-adjuvant interactions, a better stability profile, but suboptimal immune responses. Interestingly, the loss of in vivo potency associated with heat-stressed RBD-J formulated with AH+CpG after one dose was abrogated by a booster. Our findings highlight the importance of elucidating the key interrelationships between antigen-adjuvant interactions, storage stability, and in vivo performance to enable successful formulation development of stable and efficacious subunit vaccines.
Collapse
Affiliation(s)
- Sakshi Bajoria
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Kawaljit Kaur
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Ozan S. Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Greta Van Slyke
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Jennifer Doering
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Hayley Novak
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Sergio A. Rodriguez Aponte
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Neil C. Dalvie
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Christopher A. Naranjo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ryan S. Johnston
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - J. Christopher Love
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas J. Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
47
|
Lam JH, Shivhare D, Chia TW, Chew SL, Sinsinbar G, Aw TY, Wong S, Venkataraman S, Lim FWI, Vandepapeliere P, Nallani M. Artificial Cell Membrane Polymersome-Based Intranasal Beta Spike Formulation as a Second Generation Covid-19 Vaccine. ACS NANO 2022; 16:16757-16775. [PMID: 36223228 PMCID: PMC9578649 DOI: 10.1021/acsnano.2c06350] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/06/2022] [Indexed: 05/25/2023]
Abstract
Current parenteral coronavirus disease 2019 (Covid-19) vaccines inadequately protect against infection of the upper respiratory tract. Additionally, antibodies generated by wild type (WT) spike-based vaccines poorly neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. To address the need for a second-generation vaccine, we have initiated a preclinical program to produce and evaluate a potential candidate. Our vaccine consists of recombinant Beta spike protein coadministered with synthetic CpG adjuvant. Both components are encapsulated within artificial cell membrane (ACM) polymersomes, synthetic nanovesicles efficiently internalized by antigen presenting cells, including dendritic cells, enabling targeted delivery of cargo for enhanced immune responses. ACM vaccine is immunogenic in C57BL/6 mice and Golden Syrian hamsters, evoking high serum IgG and neutralizing responses. Compared to an ACM-WT spike vaccine that generates predominantly WT-neutralizing antibodies, the ACM-Beta spike vaccine induces antibodies that neutralize WT and Beta viruses equally. Intramuscular (IM)-immunized hamsters are strongly protected from weight loss and other clinical symptoms after the Beta challenge but show delayed viral clearance in the upper airway. With intranasal (IN) immunization, however, neutralizing antibodies are generated in the upper airway concomitant with rapid and potent reduction of viral load. Moreover, antibodies are cross-neutralizing and show good activity against Omicron. Safety is evaluated in New Zealand white rabbits in a repeated dose toxicological study under Good Laboratory Practice (GLP) conditions. Three doses, IM or IN, at two-week intervals do not induce an adverse effect or systemic toxicity. Cumulatively, these results support the application for a Phase 1 clinical trial of ACM-polymersome-based Covid-19 vaccine (ClinicalTrials.gov identifier: NCT05385991).
Collapse
Affiliation(s)
- Jian Hang Lam
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| | - Devendra Shivhare
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| | - Teck Wan Chia
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| | - Suet Li Chew
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| | - Gaurav Sinsinbar
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| | - Ting Yan Aw
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| | - Siamy Wong
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| | - Shrinivas Venkataraman
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| | - Francesca Wei Inng Lim
- Department of Hematology, Singapore General
Hospital, Outram Road, Block 7, Level 2, 169608,
Singapore
| | | | - Madhavan Nallani
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| |
Collapse
|
48
|
Wang P, Chen B, Zhan Y, Wang L, Luo J, Xu J, Zhan L, Li Z, Liu Y, Wei J. Enhancing the Efficiency of Mild-Temperature Photothermal Therapy for Cancer Assisting with Various Strategies. Pharmaceutics 2022; 14:2279. [PMID: 36365098 PMCID: PMC9695556 DOI: 10.3390/pharmaceutics14112279] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/30/2022] Open
Abstract
Conventional photothermal therapy (PTT) irradiates the tumor tissues by elevating the temperature above 48 °C to exert thermal ablation, killing tumor cells. However, thermal ablation during PTT harmfully damages the surrounding normal tissues, post-treatment inflammatory responses, rapid metastasis due to the short-term mass release of tumor-cellular contents, or other side effects. To circumvent this limitation, mild-temperature photothermal therapy (MTPTT) was introduced to replace PTT as it exerts its activity at a therapeutic temperature of 42-45 °C. However, the significantly low therapeutic effect comes due to the thermoresistance of cancer cells as MTPTT figures out some of the side-effects issues. Herein, our current review suggested the mechanism and various strategies for improving the efficacy of MTPTT. Especially, heat shock proteins (HSPs) are molecular chaperones overexpressed in tumor cells and implicated in several cellular heat shock responses. Therefore, we introduced some methods to inhibit activity, reduce expression levels, and hinder the function of HSPs during MTPTT treatment. Moreover, other strategies also were emphasized, including nucleus damage, energy inhibition, and autophagy mediation. In addition, some therapies, like radiotherapy, chemotherapy, photodynamic therapy, and immunotherapy, exhibited a significant synergistic effect to assist MTPTT. Our current review provides a basis for further studies and a new approach for the clinical application of MTPTT.
Collapse
Affiliation(s)
- Pei Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Biaoqi Chen
- Institute of Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Yunyan Zhan
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Lianguo Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Jun Luo
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Jia Xu
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Lilin Zhan
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Yuangang Liu
- Institute of Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| |
Collapse
|
49
|
Pinheiro AC, de Souza MVN. Current leishmaniasis drug discovery. RSC Med Chem 2022; 13:1029-1043. [PMID: 36324493 PMCID: PMC9491386 DOI: 10.1039/d1md00362c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/12/2022] [Indexed: 01/09/2023] Open
Abstract
Leishmaniasis is a complex protozoan infectious disease and, associated with malnutrition, poor health services and unavailability of prophylactic control measures, neglected populations are particularly affected. Current drug regimens are outdated and associated with some drawbacks, such as cytotoxicity and resistance, and the development of novel, efficacious and less toxic drug regimens is urgently required. In addition, leishmanial pathogenesis is not well established or understood, and a prophylactic vaccine is an unfulfilled goal. Human kinetoplastid protozoan infections, including leishmaniasis, have been neglected for many years, and in an attempt to overcome this situation, some new drug targets were recently identified, enabling the development of new drugs and vaccines. Compounds from new drug classes have also shown excellent antileishmanial activities, some of the most promising ones included in clinical trials, and could be a hope to control the disease burden of this endemic disease in the near future. In this review, we discuss the limitations of current control methods, explore the wide range of compounds that are being screened and identified as antileishmanial drug prototypes, summarize the advances in identifying new drug targets aiming at innovative treatments and explore the state-of-art vaccine development field, including immunomodulation strategies.
Collapse
|
50
|
Wang Y, Chen-Mayfield TJ, Li Z, Younis MH, Cai W, Hu Q. Harnessing DNA for immunotherapy: Cancer, infectious diseases, and beyond. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2112273. [PMID: 36304724 PMCID: PMC9595111 DOI: 10.1002/adfm.202112273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 05/03/2023]
Abstract
Despite the rapid development of immunotherapy, low response rates, poor therapeutic outcomes and severe side effects still limit their implementation, making the augmentation of immunotherapy an important goal for current research. DNA, which has principally been recognized for its functions of encoding genetic information, has recently attracted research interest due to its emerging role in immune modulation. Inspired by the intrinsic DNA-sensing signaling that triggers the host defense in response to foreign DNA, DNA or nucleic acid-based immune stimulators have been used in the prevention and treatment of various diseases. Besides that, DNA vaccines allow the synthesis of target proteins in host cells, subsequently inducing recognition of these antigens to provoke immune responses. On this basis, researchers have designed numerous vehicles for DNA and nucleic acid delivery to regulate immune systems. Additionally, DNA nanostructures have also been implemented as vaccine delivery systems to elicit strong immune responses against pathogens and diseased cells. This review will introduce the mechanism of harnessing DNA-mediated immunity for the prevention and treatment of diseases, summarize recent progress, and envisage their future applications and challenges.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Muhsin H. Younis
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Weibo Cai
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|