1
|
Wang J, Cui J, Li G, Yu L. Research advances in replication-deficient viral vector vaccines. Front Vet Sci 2025; 12:1535328. [PMID: 40098886 PMCID: PMC11911334 DOI: 10.3389/fvets.2025.1535328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
In recent years, replication-deficient viral vector vaccines have attracted much attention in the field of vaccine research and development due to their high safety and immunogenicity. These vaccines use genetic modifications to engineer viral vectors that make them unable to replicate but effective in expressing recombinant proteins and induce immune responses. Currently, replication-deficient adenovirus vectors and poxvirus vectors are widely used in vaccine R&D for a variety of infectious diseases in humans and animals, including AIDS, hepatitis B, pseudorabies, avian influenza, infectious bronchitis in poultry, and foot-and-mouth disease. Replication-deficient viral vaccines have been shown to effectively induce neutralizing antibodies and cellular immune responses, thereby providing effective immune protection. Future development of genetic engineering technology and continuous in-depth research on viral vectors should lead to replication-deficient viral vector platforms that have an essential role in preventing and controlling existing and emerging infectious diseases.
Collapse
Affiliation(s)
- Junna Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jin Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
2
|
He Z, Li F, Liu M, Liao J, Guo C. Porcine Reproductive and Respiratory Syndrome Virus: Challenges and Advances in Vaccine Development. Vaccines (Basel) 2025; 13:260. [PMID: 40266104 PMCID: PMC11945896 DOI: 10.3390/vaccines13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 04/24/2025] Open
Abstract
Persistent infection of porcine reproductive and respiratory syndrome virus (PRRSV) significantly hampers both the quantity and quality of pork production in China. Although PRRSV is widely prevalent worldwide, the absence of effective vaccines has made it one of the major pathogens threatening the sustainable development of the global swine industry. Vaccination remains one of the most effective measures for controlling pathogen infections. However, the continuous genetic recombination and mutation of PRRSV demand more comprehensive strategies to address emerging threats, while ensuring the efficacy and safety of vaccines. This review provides an overview of the latest advances in PRRSV vaccine research, highlighting the importance of understanding the unique strengths and limitations of various vaccines in developing effective therapeutic approaches and vaccination strategies. Moreover, the development of adjuvants and antiviral drugs as adjuncts to combat PRRSV infection offers significant potential for enhancing disease control efforts. With the advancement of technologies such as proteolysis-targeting chimera (PROTAC) and mRNA, new avenues for controlling PRRSV and other pathogens are emerging, offering considerable hope. Ultimately, the goal of these vaccine developments is to alleviate the impact of PRRSV on animal health and the profitability of the swine industry.
Collapse
Affiliation(s)
| | | | | | | | - Chunhe Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (F.L.); (M.L.); (J.L.)
| |
Collapse
|
3
|
Wang H, Feng W. Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines. Vaccines (Basel) 2024; 12:1387. [PMID: 39772049 PMCID: PMC11679953 DOI: 10.3390/vaccines12121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/05/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failures in breeding pigs and respiratory diseases in growing pigs, is a widespread and challenging disease. The agent, PRRSV, is a single-strand RNA virus that is undergoing continuous mutation and evolution, resulting in the global spread of multiple strains with different genetic characteristics and variable antigens. There are currently no effective measures to eradicate PRRS, and vaccination is crucial for controlling the disease. At present, various types of vaccine are available or being studied, including inactivated vaccines, modified live virus (MLV) vaccines, vector vaccines, subunit vaccines, DNA vaccines, RNA vaccines, etc. MLV vaccines have been widely used to control PRRSV infection for more than 30 years since they were first introduced in North America in 1994, and have shown a certain efficacy. However, there are safety and efficacy issues such as virulence reversion, recombination with field strains, and a lack of protection against heterologous strains, while other types of vaccine have their own advantages and disadvantages, making the eradication of PRRS a challenge. This article reviews the latest progress of these vaccines in the prevention and control of PRRS and provides scientific inspiration for developing new strategies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Honglei Wang
- Department of Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Wenhai Feng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Zhou L, Wubshet AK, Zhang J, Hou S, Yao K, Zhao Q, Dai J, Liu Y, Ding Y, Zhang J, Sun Y. The mRNA Vaccine Expressing Single and Fused Structural Proteins of Porcine Reproductive and Respiratory Syndrome Induces Strong Cellular and Humoral Immune Responses in BalB/C Mice. Viruses 2024; 16:544. [PMID: 38675887 PMCID: PMC11054013 DOI: 10.3390/v16040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
PRRS is a viral disease that profoundly impacts the global swine industry, causing significant economic losses. The development of a novel and effective vaccine is crucial to halt the rapid transmission of this virus. There have been several vaccination attempts against PRRSV using both traditional and alternative vaccine design development approaches. Unfortunately, there is no currently available vaccine that can completely control this disease. Thus, our study aimed to develop an mRNA vaccine using the antigens expressed by single or fused PRRSV structural proteins. In this study, the nucleotide sequence of the immunogenic mRNA was determined by considering the antigenicity of structural proteins and the stability of spatial structure. Purified GP5 protein served as the detection antigen in the immunological evaluation. Furthermore, cellular mRNA expression was detected by immunofluorescence and western blotting. In a mice experiment, the Ab titer in serum and the activation of spleen lymphocytes triggered by the antigen were detected by ELISA and ICS, respectively. Our findings demonstrated that both mRNA vaccines can significantly stimulate cellular and humoral immune responses. More specifically, the GP5-mRNA exhibited an immunological response that was similar to that of the commercially available vaccine when administered in high doses. To conclude, our vaccine may show promising results against the wild-type virus in a natural host.
Collapse
Affiliation(s)
- Luoyi Zhou
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China; (L.Z.)
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Ashenafi Kiros Wubshet
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Jiangrong Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Shitong Hou
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Kaishen Yao
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, China;
| | - Qiuyi Zhao
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China; (L.Z.)
| | - Junfei Dai
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yongsheng Liu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China; (L.Z.)
| | - Yaozhong Ding
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Jie Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China; (L.Z.)
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| |
Collapse
|
5
|
Tu T, Pang M, Jiang D, Zhou Y, Wu X, Yao X, Luo Y, Yang Z, Ren M, Lu A, Zhang G, Yu Y, Wang Y. Development of a Real-Time TaqMan RT-PCR Assay for the Detection of NADC34-like Porcine Reproductive and Respiratory Syndrome Virus. Vet Sci 2023; 10:vetsci10040279. [PMID: 37104434 PMCID: PMC10141196 DOI: 10.3390/vetsci10040279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
NADC34-like porcine reproductive and respiratory syndrome virus first appeared in 2017 in a herd of pigs in Liaoning Province, China. The virus was subsequently found in other provinces. Given the potential for this virus to cause an epidemic, rapid, sensitive, and specific detection of NADC34-like PRRSV is required. The virus' ORF5 gene was artificially synthesized based on a Chinese reference strain, and specific primers/probes for the ORF5 gene were designed. Then, the amplified target fragment was cloned into the pMD19-T vector, and a series of diluted recombinant plasmids were used to generate a standard curve. An optimized real-time TaqMan RT-PCR method was established. The method was highly specific for NADC34-like PRRSV, without cross-reactions with other non-targeted pig viruses. The detection limit of this assay was 101 copies/μL. The method had an efficiency of 98.8%, a squared regression value (R2) of 0.999, and showed a linear range of 103-108 copies/μL of DNA per reaction. This method was shown to be analytically specific and sensitive with a low intra- and inter-assay coefficient of variation (<1.40%). A total of 321 clinical samples were tested using the established method, and four were shown to be positive (1.24%). This study confirmed the existence of NADC34-like PRRSV and HP-PRRSV co-infection in Sichuan and provided a promising alternative tool for the rapid detection of NADC34-like PRRSV.
Collapse
Affiliation(s)
- Teng Tu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Maonan Pang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dike Jiang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - You Zhou
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xulong Wu
- Chengdu Agricultural College, Chengdu 611130, China
| | - Xueping Yao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Luo
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zexiao Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
VanderBurgt JT, Harper O, Garnham CP, Kohalmi SE, Menassa R. Plant production of a virus-like particle-based vaccine candidate against porcine reproductive and respiratory syndrome. FRONTIERS IN PLANT SCIENCE 2023; 14:1044675. [PMID: 36760639 PMCID: PMC9902946 DOI: 10.3389/fpls.2023.1044675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a disease leading to spontaneous abortions and stillbirths in sows and lowered life quality and expectancy in growing pigs. PRRS is prevalent worldwide and has significant economic impacts to swine industries around the globe. Co-expression of the two most abundant proteins in the viral envelope, the matrix protein (M) and glycosylated protein 5 (GP5), can produce a neutralizing immune response for the virus providing a potentially effective subunit vaccine against the disease, but these proteins are difficult to express. The goal of this research was to display antigenic portions of the M and GP5 proteins on the surface of tobacco mosaic virus-like particles. A modified tobacco mosaic virus coat protein (TMVc) was transiently expressed in Nicotiana benthamiana leaves and targeted to three subcellular compartments along the secretory pathway to introduce glycosylation patterns important for M-GP5 epitope immunogenicity. We found that accumulation levels in the apoplast were similar to the ER and the vacuole. Because glycans present on plant apoplastic proteins are closest to those present on PRRSV proteins, a TMVc-M-GP5 fusion construct was targeted to the apoplast and accumulated at over 0.5 mg/g of plant fresh weight. TMVc virus-like particles self-assembled in plant cells and surface-displayed the M-GP5 epitope, as visualized by transmission electron microscopy and immunogold localization. These promising findings lay the foundation for immunogenicity and protective-immunity studies in animals to examine the efficacy of this vaccine candidate as a measure to control PRRS.
Collapse
Affiliation(s)
- Jordan T. VanderBurgt
- Biology Department, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ondre Harper
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Biochemistry Department, University of Western Ontario, London, ON, Canada
| | - Christopher P. Garnham
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Biochemistry Department, University of Western Ontario, London, ON, Canada
| | | | - Rima Menassa
- Biology Department, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
7
|
Evaluation of the Immune Response Afforded by Combined Immunization with Orf Virus DNA and Subunit Vaccine in Mice. Vaccines (Basel) 2022; 10:vaccines10091499. [PMID: 36146577 PMCID: PMC9504141 DOI: 10.3390/vaccines10091499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Contagious ecthyma (Orf) is a highly contagious disease caused by Orf virus (ORFV) infection. Orf is prevalent all over the world and, not only affects the healthy development of sheep husbandry, but also threatens human health. However, there are no safe and effective vaccines or drugs for the prevention and treatment of Orf at present. In this study, we constructed a DNA plasmid expressing ORFV B2L and F1L genes as a DNA vaccine candidate, with purified B2L full-length protein and F1L truncated protein as subunit vaccine candidates. BALB/c mice were immunized with the DNA vaccine, subunit vaccine, as well as DNA prime-protein boost strategies. The results showed that compared with the DNA vaccine and subunit vaccine alone, the DNA prime-protein boost immunization group had a higher level of specific antibodies, stronger lymphocyte proliferation, and higher expression of cytokines such as IL-2, IL-4, IL-6, IFN-γ, and TNF-α, which are considered to cause a Th1/Th2 mixed cytokine response. Our results demonstrated that the DNA prime-protein boost immunization strategy induced stronger humoral and cellular immune responses, which have potential advantages in preventing ORFV infection.
Collapse
|
8
|
Zhao J, Zhu L, Xu L, Li F, Deng H, Huang Y, Gu S, Sun X, Zhou Y, Xu Z. The Construction and Immunogenicity Analyses of Recombinant Pseudorabies Virus With NADC30-Like Porcine Reproductive and Respiratory Syndrome Virus-Like Particles Co-expression. Front Microbiol 2022; 13:846079. [PMID: 35308386 PMCID: PMC8924499 DOI: 10.3389/fmicb.2022.846079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) and pseudorabies (PR) are highly infectious swine diseases and cause significant financial loss in China. The respiratory system and reproductive system are the main target systems. Previous studies showed that the existing PR virus (PRV) and PRRS virus (PRRSV) commercial vaccines could not provide complete protection against PRV variant strains and NADC30-like PRRSV strains in China. In this study, the PRV variant strain XJ and NADC30-like PRRSV strain CHSCDJY-2019 are used as the parent for constructing a recombinant pseudorabies virus (rPRV)-NC56 with gE/gI/TK gene deletion and co-expressing NADC30-like PRRSV GP5 and M protein. The rPRV-NC56 proliferated stably in BHK-21 cells, and it could stably express GP5 and M protein. Due to the introduction of the self-cleaving 2A peptide, GP5 and M protein were able to express independently and form virus-like particles (VLPs) of PRRSV in rPRV-NC56-infected BHK-21 cells. The rPRV-NC56 is safe for use in mice; it can colonize and express the target protein in mouse lungs for a long time. Vaccination with rPRV-NC56 induces PRV and NADC30-like PRRSV specific humoral and cellular immune responses in mice, and protects 100% of mice from virulent PRV XJ strain. Furthermore, the virus-neutralizing antibody (VNA) elicited by rPRV-NC56 showed significantly lower titer against SCNJ-2016 (HP-PRRSV) than that against CHSCDJY-2019 (NADC30-like PRRSV). Thus, rPRV-NC56 appears to be a promising candidate vaccine against NADC30-like PRRSV and PRV for the control and eradication of the variant PRV and NADC30-like PRRSV.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fengqing Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sirui Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xianggang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
9
|
Jeong CG, Khatun A, Nazki S, Kim SC, Noh YH, Kang SC, Lee DU, Yang MS, Shabir N, Yoon IJ, Kim B, Kim WI. Evaluation of the Cross-Protective Efficacy of a Chimeric PRRSV Vaccine against Two Genetically Diverse PRRSV2 Field Strains in a Reproductive Model. Vaccines (Basel) 2021; 9:vaccines9111258. [PMID: 34835189 PMCID: PMC8617800 DOI: 10.3390/vaccines9111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the routine use of porcine reproductive and respiratory syndrome (PRRS)-modified live vaccines, serious concerns are currently being raised due to their quick reversion to virulence and limited cross-protection against divergent PRRS virus (PRRSV) strains circulating in the field. Therefore, a PRRS chimeric vaccine (JB1) was produced using a DNA-launched infectious clone by replacing open reading frames (ORFs) 3–6 with those from a mixture of two genetically different PRRSV2 strains (K07–2273 and K08–1054) and ORF1a with that from a mutation-resistant PRRSV strain (RVRp22) exhibiting an attenuated phenotype. To evaluate the safety and cross-protective efficacy of JB1 in a reproductive model, eight PRRS-negative pregnant sows were purchased and divided into four groups. Four sows in two of the groups were vaccinated with JB1, and the other 4 sows were untreated at gestational day 60. At gestational day 93, one vaccinated group and one nonvaccinated group each were challenged with either K07–2273 or K08–1054. All of the sows aborted or delivered until gestation day 115 (24 days post challenge), and the newborn piglets were observed up to the 28th day after birth, which was the end of the experiment. Overall, pregnant sows of the JB1-vaccinated groups showed no meaningful viremia after vaccination and significant reductions in viremia with K07–2273 and K08–1054, exhibiting significantly higher levels of serum virus-neutralizing antibodies than non-vaccinated sows. Moreover, the JB1-vaccinated groups did not exhibit any abortion due to vaccination and showed improved piglet viability and birth weight. The piglets from JB1-vaccinated sows displayed lower viral concentrations in serum and fewer lung lesions compared with those of the piglets from the nonvaccinated sows. Therefore, JB1 is a safe and effective vaccine candidate that confers simultaneous protection against two genetically different PRRSV strains.
Collapse
Affiliation(s)
- Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (C.-G.J.); (A.K.); (S.N.); (S.-C.K.); (M.-S.Y.); (N.S.); (B.K.)
| | - Amina Khatun
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (C.-G.J.); (A.K.); (S.N.); (S.-C.K.); (M.-S.Y.); (N.S.); (B.K.)
- Department of Pathology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Salik Nazki
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (C.-G.J.); (A.K.); (S.N.); (S.-C.K.); (M.-S.Y.); (N.S.); (B.K.)
- The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (C.-G.J.); (A.K.); (S.N.); (S.-C.K.); (M.-S.Y.); (N.S.); (B.K.)
| | - Yun-Hee Noh
- ChoongAng Vaccine Laboratory, Daejeon 34055, Korea; (Y.-H.N.); (D.-U.L.); (I.-J.Y.)
| | - Sang-Chul Kang
- Animal Clinical Evaluation Center, Optipharm Inc., Cheongju-si 28158, Korea;
| | - Dong-Uk Lee
- ChoongAng Vaccine Laboratory, Daejeon 34055, Korea; (Y.-H.N.); (D.-U.L.); (I.-J.Y.)
| | - Myeon-Sik Yang
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (C.-G.J.); (A.K.); (S.N.); (S.-C.K.); (M.-S.Y.); (N.S.); (B.K.)
| | - Nadeem Shabir
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (C.-G.J.); (A.K.); (S.N.); (S.-C.K.); (M.-S.Y.); (N.S.); (B.K.)
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India
| | - In-Joong Yoon
- ChoongAng Vaccine Laboratory, Daejeon 34055, Korea; (Y.-H.N.); (D.-U.L.); (I.-J.Y.)
| | - Bumseok Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (C.-G.J.); (A.K.); (S.N.); (S.-C.K.); (M.-S.Y.); (N.S.); (B.K.)
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (C.-G.J.); (A.K.); (S.N.); (S.-C.K.); (M.-S.Y.); (N.S.); (B.K.)
- Correspondence: ; Tel.: +82-63-270-3981
| |
Collapse
|
10
|
Liu Y, Wang X, Zhou J, Shi S, Shen T, Chen L, Zhang M, Liao C, Wang C. Development of PDA Nanoparticles for H9N2 Avian Influenza BPP-V/BP-IV Epitope Peptide Vaccines: Immunogenicity and Delivery Efficiency Improvement. Front Immunol 2021; 12:693972. [PMID: 34386005 PMCID: PMC8353371 DOI: 10.3389/fimmu.2021.693972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
The protection of current influenza vaccines is limited due to the viral antigenic shifts and antigenic drifts. The universal influenza vaccine is a new hotspot in vaccine research that aims to overcome these problems. Polydopamine (PDA), a versatile biomaterial, has the advantages of an excellent biocompatibility, controllable particle size, and distinctive drug loading approach in drug delivery systems. To enhance the immunogenicities and delivery efficiencies of H9N2 avian influenza virus (AIV) epitope peptide vaccines, PDA nanoparticles conjugated with the BPP-V and BP-IV epitope peptides were used to prepare the nano BPP-V and BP-IV epitope peptide vaccines, respectively. The characteristics of the newly developed epitope peptide vaccines were then evaluated, revealing particle sizes ranging from approximately 240 to 290 nm (PDI<0.3), indicating that the synthesized nanoparticles were stable. Simultaneously, the immunoprotective effects of nano BPP-V and BP-IV epitope peptide vaccines were assessed. The nano BPP-V and BP-IV epitope vaccines, especially nano BP-IV epitope vaccine, quickly induced anti-hemagglutinin (HA) antibody production and a sustained immune response, significantly promoted humoral and cellular immune responses, reduced viral lung damage and provided effective protection against AIV viral infection. Together, these results reveal that PDA, as a delivery carrier, can improve the immunogenicities and delivery efficiencies of H9N2 AIV nano epitope vaccines, thereby providing a theoretical basis for the design and development of PDA as a carrier of new universal influenza vaccines.
Collapse
Affiliation(s)
- Yongqing Liu
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Xiaoli Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Jiangfei Zhou
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Shuaibing Shi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Tengfei Shen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Liangliang Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Min Zhang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Chengshui Liao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Chen Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
11
|
Liu Y, Shen T, Zhou J, Chen L, Shi S, Wang X, Zhang M, Wang C, Liao C. Bursal peptide BP-IV as a novel immunoadjuvant enhances the protective efficacy of an epitope peptide vaccine containing T and B cell epitopes of the H9N2 avian influenza virus. Microb Pathog 2021; 158:105095. [PMID: 34280501 DOI: 10.1016/j.micpath.2021.105095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/15/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Short peptide antigens covering conserved T or B cell epitopes have been investigated in influenza vaccines. Bursal pentapeptide V (BPP-V) and bursal peptide IV (BP-IV) are small molecular peptides that were isolated and identified from the bursa of Fabricius (BF) and induce a strong immune response at both the humoural and cellular levels. To explore the molecular adjuvant potential of BPP-V and BP-IV with an epitope vaccine, an epitope peptide (HA284-298, GNCVVQCQTERGGLN) rich in T and B cell epitopes for the H9N2 avian influenza virus (AIV) haemagglutinin (HA) protein was selected. BPP-V and BP-IV were coupled with the epitope peptide sequence to form BPP-V and BP-IV-epitope vaccines, respectively. The immunoefficacy of BPP-V and BP-IV-epitope peptide vaccines was evaluated. The results showed that the epitope peptide had weak immunogenicity. The BPP-V-epitope peptide vaccine promoted only the secretion of anti-HA IgG and IgG1 antibodies. The BP-IV-epitope peptide vaccine not only promoted the production of anti-HA IgG and IgG1 antibodies but also significantly induced the production of the IgG2a antibody. The BP-IV-epitope peptide vaccine significantly promoted the production of interleukin (IL-4) and interferon-γ (IFN-γ) (the BPP-V epitope peptide vaccine promoted only the production of IL-4), enhanced the cytotoxic T lymphocyte (CTL) response, and increased the proportion of CD3+ T lymphocytes. Moreover, the BP-IV-epitope peptide vaccine promoted a cell-mediated immune response similar to that of the AIV vaccine group. Furthermore, BPP-V and BP-IV-epitope peptide vaccines could also accelerate the clearance of pulmonary virus and reduce pathological damage after the challenge with H9N2 AIV. This study demonstrates the potential of BP-IV as an effective adjuvant for the epitope peptide vaccine for the H9N2 AIV.
Collapse
Affiliation(s)
- Yongqing Liu
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Tengfei Shen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jiangfei Zhou
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Liangliang Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shuaibing Shi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiaoli Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China
| | - Min Zhang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chen Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Chengshui Liao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
12
|
Liu Y, Shen T, Chen L, Zhou J, Wang C. Analogs of the Cathelicidin-Derived Antimicrobial Peptide PMAP-23 Exhibit Improved Stability and Antibacterial Activity. Probiotics Antimicrob Proteins 2021; 13:273-286. [PMID: 32666297 DOI: 10.1007/s12602-020-09686-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antimicrobial peptides (AMPs) have gained interesting as a new type of antimicrobial agent. The cathelicidin-derived antimicrobial peptide PMAP-23 has broad-spectrum antibacterial activity, and to improve its antimicrobial activity, we used amino acid substitution at position 5 or 19 of PMAP-23 to design three analogs, named PMAP-23R (Leu5--Arg), PMAP-23I (Thr19--Ile), and PMAP-23RI (Leu5--Arg and Thr19--Ile). We found that the analog peptides exhibited higher stability and improved antibacterial activity compared with PMAP-23. Additionally, the analog peptides PMAP-23I and PMAP-23RI inhibited the growth of Shigella flexneri CICC 21534, whereas PMAP-23 and PMAP-23R exhibited no antibacterial activity against S. flexneri CICC 21534. Moreover, the peptide analogs showed negligible hemolysis and cytotoxicity. We also found that PMAP-23RI exerted impressive therapeutic effects on mice infected with Staphylococcus aureus ATCC 25923 and Salmonella enterica serovar Typhimurium SL1344. PMAP-23RI induced a greater reduction in pathological damage and a higher decrease in the bacterial gene copies in the lung and liver tissues and greatly reduced mouse mortality. In conclusion, the peptide analogs PMAP-23R, PMAP-23I, and PMAP-23RI enhanced the stability and antimicrobial activity of PMAP-23, but PMAP-23RI exhibits more promise as a new antimicrobial agent candidate for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Yongqing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, People's Republic of China
| | - Tengfei Shen
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, People's Republic of China
| | - Liangliang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, People's Republic of China
| | - Jiangfei Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, People's Republic of China
| | - Chen Wang
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, People's Republic of China.
| |
Collapse
|
13
|
Meas S, Mekvichitsaeng P, Roshorm YM. Co-expression of self-cleaved multiple proteins derived from Porcine Reproductive and Respiratory Syndrome Virus by bi-cistronic and tri-cistronic DNA vaccines. Protein Expr Purif 2020; 177:105763. [PMID: 32971295 DOI: 10.1016/j.pep.2020.105763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022]
Abstract
Porcine Reproductive and Respiratory Syndrome caused by Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) remains one of the important diseases in swine industry. A vaccine that is safe, effective and also elicit broad immune response against multiple antigens is desirable. In this study, we developed multi-cistronic DNA vaccines capable of co-expressing multiple structural proteins derived from PRRSV. To preserve the structure and function of each antigen protein, we employed self-cleaving 2A peptides to mediate separation of multiple proteins expressed by multi-cistronic genes. Six bi-cistronic genes encoding PRRSV GP5 and M proteins were generated, by which each construct contains different 2A sequences derived from Foot-and-mouth disease virus (F2A), porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A) either with or without furin cleavage site (Fu). Vectored by the mammalian expression plasmid pTH, all six bi-cistronic genes co-expressed the proteins GP5 and M at comparable level. Importantly, all six types of 2A sequences could mediate a complete self-cleavage of the GP5 and M. We next generated tri-cistronic DNA vaccines co-expressing the PRRSV proteins GP5, M and N. All homologous and heterologous combinations of P2A and F2A in tri-cistronic genes yielded a complete self-cleavage of the GP5, M and N proteins. Our study reports a success in co-expression of multiple PRRSV structural proteins in discrete form from a single vaccine and confirms feasibility of developing one single vaccine that provides broad immune responses against PRRSV.
Collapse
Affiliation(s)
- Sochanwattey Meas
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Phenjun Mekvichitsaeng
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Yaowaluck Maprang Roshorm
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand; Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| |
Collapse
|
14
|
Adjuvant Effects of Platycodin D on Immune Responses to Infectious Bronchitis Vaccine in Chickens. J Poult Sci 2020; 57:160-167. [PMID: 32461731 PMCID: PMC7248007 DOI: 10.2141/jpsa.0180089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adjuvants are common vaccine components. Novel adjuvants may improve the protective immunity conferred by vaccines against poultry diseases. Here, a less-hemolytic saponin, platycodin D (PD), isolated from the root of Platycodon grandiflorum was investigated as a potential alternative adjuvant. PD was tested as an adjuvant in the infectious bronchitis (IB) vaccine, because the existing IB vaccine has often failed to induce effective immune responses. The adjuvant activity of PD in conjunction with IB vaccine was evaluated in this study. Compared to control treatment, PD treatment significantly increased the proliferation of chicken peripheral blood mononuclear cells, concentration of interferon-γ in culture supernatants, and anti-IB antibody titer. In chickens pre-challenged with the Mass 41 infectious bronchitis virus (IBV), PD administration resulted in fewer and less severe clinical signs, lower mortality rate, and higher protection compared to control treatment. Histopathological examination showed that the lungs and kidneys of PD-treated chickens displayed fewer pathological lesions than those of control chickens. Our results also demonstrated that this new vaccine adjuvant improved chicken humoral and cellular immune responses without any side effects. Hence, our findings suggest that PD might serve as an effective adjuvant in IBV vaccines.
Collapse
|
15
|
Zhou J, Liu Y, Shen T, Chen L, Zhang C, Cai K, Liao C, Wang C. Antimicrobial activity of the antibacterial peptide PMAP-36 and its analogues. Microb Pathog 2019; 136:103712. [DOI: 10.1016/j.micpath.2019.103712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/27/2019] [Accepted: 09/02/2019] [Indexed: 01/04/2023]
|
16
|
Zhou J, Liu Y, Shen T, Chen L, Zhang C, Cai K, Liu Z, Meng X, Zhang L, Liao C, Wang C. Enhancing the antibacterial activity of PMAP-37 by increasing its hydrophobicity. Chem Biol Drug Des 2019; 94:1986-1999. [PMID: 31437351 DOI: 10.1111/cbdd.13601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/09/2019] [Accepted: 07/27/2019] [Indexed: 12/15/2022]
Abstract
With increasing resistance against conventional antibiotics, there is an urgent need to discover novel substances to replace antibiotics. This need provides an opportunity for the development of antimicrobial peptides (AMPs). To develop new AMPs with effective and safe therapeutic effects, two PMAP-37 analogs called PMAP-37(R13-I) and PMAP-37(K20/27-I) were designed to increase hydrophobicity. Antimicrobial susceptibility testing and animal infection models were used to assess their antibacterial activity. The results showed that the minimal inhibitory concentrations of PMAP-37(R13-I) were lower than those of PMAP-37 for two gram-negative strains. Compared with PMAP-37, PMAP-37(K20/27-I) not only inhibited the growth of most bacterial strains, but also exhibited antibacterial activity against Shigella flexneri CICC21534. In addition, PMAP-37(K20/27-I) exhibited pH and thermal stability. PMAP-37(R13-I) had a therapeutic effect only in mice infected with Salmonella typhimurium SL1344. However, PMAP-37(K20/27-I) exhibited the therapeutic effects, whether in the clinical symptoms, the tissue lesions, or the tissue bacterial loads and the survival rates in mice infected with Staphylococcus aureus ATCC25923 or S. typhimurium SL1344. Therefore, PMAP-37(K20/27-I) can be used as a substitute for antibiotics against infection with bacterial strains.
Collapse
Affiliation(s)
- Jiangfei Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yongqing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Tengfei Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Liangliang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Cong Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Kairui Cai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zhixin Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiangmiao Meng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Chengshui Liao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Chen Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
17
|
Zhou Y, Mao S, Zhou M. Effect of the flavonoid baicalein as a feed additive on the growth performance, immunity, and antioxidant capacity of broiler chickens. Poult Sci 2019; 98:2790-2799. [PMID: 30778569 DOI: 10.3382/ps/pez071] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Baicalein, the main flavonoid extracted from the root of Scutellaria baicalensis Georgi, has been demonstrated to exert multiple pharmacological effects, and thus could be utilized as a potential feed additive in broiler chickens. This study evaluated the effects of broiler chicken diet supplementation with baicalein on growth performance, immunity, and antioxidant activity at levels of 100 and 200 mg/kg. No significant effect on average daily feed intake (P > 0.05) of broilers with diets supplemented with baicalein was found compared to those on the basal diet or butylated hydroxytoluene (BHT) during the 35-d feeding trial. The addition of baicalein to the basal diet significantly increased average body weight, body weight gain, average weight gain, and the feed conversion ratio of birds during 21 to 42 d and 7 to 42 d of age, respectively. The best numerical values for the overall growth performance were observed in broilers fed on diets containing 200 mg/kg of baicalein. Baicalein supplementation significantly increased the ratio of CD3+/CD4+ and CD3±/CD8+, the concentration of IFN-γ, anti-IB antibody titer, and the spleen index compared with the control group (P < 0.05). Total cholesterol, the ratio of non-HDL-C/HDL-C, LDL-C/HDL-C, TC/HDL-C, triglycerides, and low-density lipoprotein cholesterol were significantly decreased after intake of baicalein compared with both the basal diet and the BHT-supplemented diet, whereas the SOD, GSH-Px, and CAT activity in the serum increased with the supplementation of baicalein. The T-AOC activity, T-SOD, and GSH-Px level in liver tissues was significantly increased by inclusion of baicalein, and intake of baicalein or BHT significantly decreased the malondialdehyde level found both in serum and meat tissue. Thus, the results obtained here indicate that the baicalein can be used as an effective natural feed additive in broiler chicken diets, and that 100 to 200 mg/kg can be considered as the optimum dosage.
Collapse
Affiliation(s)
- Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu province, China
| | - Shanguo Mao
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu province, China
| | - Meixian Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu province, China
| |
Collapse
|
18
|
Evaluation of a Recombinant Mouse X Pig Chimeric Anti-Porcine DEC205 Antibody Fused with Structural and Nonstructural Peptides of PRRS Virus. Vaccines (Basel) 2019; 7:vaccines7020043. [PMID: 31126125 PMCID: PMC6631554 DOI: 10.3390/vaccines7020043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Activation of the immune system using antigen targeting to the dendritic cell receptor DEC205 presents great potential in the field of vaccination. The objective of this work was to evaluate the immunogenicity and protectiveness of a recombinant mouse x pig chimeric antibody fused with peptides of structural and nonstructural proteins of porcine respiratory and reproductive syndrome virus (PRRSV) directed to DEC205+ cells. Priming and booster immunizations were performed three weeks apart and administered intradermally in the neck area. All pigs were challenged with PRRSV two weeks after the booster immunization. Immunogenicity was evaluated by assessing the presence of antibodies anti-PRRSV, the response of IFN-γ-producing CD4+ cells, and the proliferation of cells. Protection was determined by assessing the viral load in the blood, lungs, and tonsils using qRT-PCR. The results showed that the vaccine exhibited immunogenicity but conferred limited protection. The vaccine group had a lower viral load in the tonsils and a significantly higher production of antibodies anti-PRRSV than the control group (p < 0.05); the vaccine group also produced more CD4+IFN-γ+ cells in response to peptides from the M and Nsp2 proteins. In conclusion, this antigenized recombinant mouse x pig chimeric antibody had immunogenic properties that could be enhanced to improve the level of protection and vaccine efficiency.
Collapse
|
19
|
Zhang C, Zhou J, Liu Z, Liu Y, Cai K, Shen T, Liao C, Wang C. Comparison of immunoadjuvant activities of four bursal peptides combined with H9N2 avian influenza virus vaccine. J Vet Sci 2019; 19:817-826. [PMID: 30173497 PMCID: PMC6265577 DOI: 10.4142/jvs.2018.19.6.817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/22/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022] Open
Abstract
The bursa of Fabricius (BF) is a central humoral immune organ unique to birds. Four bursal peptides (BP-I, BP-II, BP-III, and BP-IV) have been isolated and identified from the BF. In this study, the immunoadjuvant activities of BPs I to IV were examined in mice immunized with H9N2 avian influenza virus (AIV) vaccine. The results suggested that BP-I effectively enhanced cell-mediated immune responses, increased the secretion of Th1 (interferon gamma)- and Th2 (interleukin-4)-type cytokines, and induced an improved cytotoxic T-lymphocyte (CTL) response to the H9N2 virus. BP-II mainly elevated specific antibody production, especially neutralizing antibodies, and increased Th1- and Th2-type cytokine secretion. BP-III had no significant effect on antibody production or cell-mediated immune responses compared to those in the control group. A strong immune response at both the humoral and cellular levels was induced by BP-IV. Furthermore, a virus challenge experiment followed by H&E staining revealed that BP-I and BP-II promoted removal of the virus and conferred protection in mouse lungs. BP-IV significantly reduced viral titers and histopathological changes and contributed to protection against H9N2 AIV challenge in mouse lungs. This study further elucidated the immunoadjuvant activities of BPs I to IV, providing a novel insight into immunoadjuvants for use in vaccine design.
Collapse
Affiliation(s)
- Cong Zhang
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jiangfei Zhou
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhixin Liu
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yongqing Liu
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Kairui Cai
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Tengfei Shen
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengshui Liao
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chen Wang
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
20
|
Cho Y, Heo Y, Choi H, Park KH, Kim S, Jang Y, Lee HJ, Kim M, Kim YB. Porcine endogenous retrovirus envelope coated baculoviral DNA vaccine against porcine reproductive and respiratory syndrome virus. Anim Biotechnol 2018; 31:32-41. [PMID: 30570378 DOI: 10.1080/10495398.2018.1531014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PERV is a major virus concerning xenotransplantation study. However, the interesting part is that PERV is present in all kinds of pigs without pathogenicity and immune response. Furthermore, since pig cells have receptors for PERV, the gene delivery system using PERV envelope is highly likely to develop into an excellent viral vector in pigs. We developed a recombinant baculovirus with a modified surface for expressing the porcine endogenous retrovirus (PERV) envelope. Porcine reproductive and respiratory syndrome virus (PRRSV) infection is a severe concern in the porcine industry due to reproduction failure and respiratory symptoms. GP5 and M proteins are major immunogenic proteins of PRRSV. Using PERV-modified baculovirus (Ac mPERV) as a delivery vector, we constructed a dual antigen (GP5 and M)-encoding DNA vaccine system, Ac mPERV-C5/C6. Intramuscular immunization in mice and pigs, Ac mPERV-C5/C6 induced comparative high humoral and cellular immune responses. Our results support further development of Ac mPERV-C5/C6 as a potential PRRSV vaccine in the porcine industry. In addition, the Ac mPERV system may be applied to the generation of other effective DNA vaccines against porcine viral diseases.
Collapse
Affiliation(s)
- Yeondong Cho
- Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Yoonki Heo
- Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Hanul Choi
- Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Ki Hoon Park
- Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Sehyun Kim
- Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Yuyeon Jang
- Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Hee-Jung Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Minji Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Young Bong Kim
- Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea.,Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Assessment of the efficacy of two novel DNA vaccine formulations against highly pathogenic Porcine Reproductive and Respiratory Syndrome Virus. Sci Rep 2017; 7:41886. [PMID: 28157199 PMCID: PMC5291100 DOI: 10.1038/srep41886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023] Open
Abstract
Since May 2006, a highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) has emerged and prevailed in mainland China, affecting over 2 million pigs. Commercial PRRSV killed and modified live vaccines cannot provide complete protection against HP-PRRSV due to genetic variation. Development of more effective vaccines against the emerging HP-PRRSV is urgently required. In our previous studies, two formulations of DNA vaccines (pcDNA3.1-PoIFN-λ1-SynORF5 and BPEI/PLGA-SynORF5) based on the HP-PRRSV were constructed and shown to induce enhanced humoral and cellular immune responses in mice. The objective of this study was to evaluate the immune response induced by these novel formulations in piglets. PcDNA3.1-PoIFN-λ1-SynORF5 and BPEI/PLGA-SynORF5 vaccines induced significantly enhanced GP5-specific antibody and PRRSV-specific neutralizing antibody in pigs compared with the pcDNA3.1-SynORF5 parental construct. Though IFN-γ levels and lymphocyte proliferation responses induced by the two DNA vaccine formulations were comparable to that induced by the pcDNA3.1-SynORF5 construct, each of the novel formulations provided efficient protection against challenge with HP-PRRSV. Non-severe clinical signs and rectal temperatures were observed in pigs immunized with BPEI/PLGA-SynORF5 compared with other groups. Thus, these novel DNA constructs may represent promising candidate vaccines against emerging HP-PRRSV.
Collapse
|
22
|
Du L, Li B, Pang F, Yu Z, Xu X, Fan B, Tan Y, He K, Huang K. Porcine GPX1 enhances GP5-based DNA vaccination against porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2016; 183:31-39. [PMID: 28063474 DOI: 10.1016/j.vetimm.2016.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/12/2016] [Accepted: 12/03/2016] [Indexed: 12/15/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been causing huge economic losses to the swine industry worldwide. Commercial PRRSV vaccines including killed and modified live ones are available. However the protective efficacy of these vaccines is incomplete. Thus, it is in urgent need to develop safer and more effective PRRSV vaccines. In this study, we constructed a recombinant plasmid co-expressing porcine glutathione peroxidase-1 (GPX1) and the envelope glycoprotein (GP5) encoding-gene of PRRSV (pcDNA3.1-GPX1-LSynORF5), and investigated the immune response induced following inoculation of mice and piglets. Significantly enhanced GP5-specific antibody, PRRSV-specific neutralizing antibody, IFN-γ level, as well as lymphocyte proliferation response, were induced in mice and pigs immunized with the DNA construct encoding GPX1 and GP5 compared with those inoculated with a construct encoding PRRSV GP5 only (pcDNA3.1-SynORF5). The enhanced cellular immune response in pigs induced by pcDNA3.1-GPX1-LSynORF5 was comparable to that induced by the attenuated virus vaccine JXA1-R, although the humoral immune response induced by the plasmid was much lower than the response induced by JXA1-R. Following the challenge with highly pathogenic PRRSV, less-severe clinical signs and rectal temperatures were observed in pigs immunized with the GPX1-GP5 construct compared with the control group. However, the viraemia of groups immunized with plasmid was more severe than that inoculated with JXA1-R, and it is likely that this could be attributed to the poor humoral response induced by the GPX1-GP5 construct. These results demonstrated that inclusion of GPX1 in a PRRSV DNA vaccine leads to an adjuvant effect, enhancing the humoral and cellular responses following vaccination.
Collapse
Affiliation(s)
- Luping Du
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Wei-gang, Nanjing 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, 210014 Jiangsu Province, China; Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009 Jiangsu Province, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, 210014 Jiangsu Province, China; Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009 Jiangsu Province, China
| | - Fengjiao Pang
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Wei-gang, Nanjing 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, 210014 Jiangsu Province, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, 210014 Jiangsu Province, China; Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009 Jiangsu Province, China
| | - Xiangwei Xu
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Wei-gang, Nanjing 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, 210014 Jiangsu Province, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, 210014 Jiangsu Province, China; Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009 Jiangsu Province, China
| | - Yeping Tan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, 210014 Jiangsu Province, China; Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009 Jiangsu Province, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, 210014 Jiangsu Province, China; Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009 Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Wei-gang, Nanjing 210095, China.
| |
Collapse
|
23
|
Evaluation of the Cross-Protective Efficacy of a Chimeric Porcine Reproductive and Respiratory Syndrome Virus Constructed Based on Two Field Strains. Viruses 2016; 8:v8080240. [PMID: 27556483 PMCID: PMC4997602 DOI: 10.3390/v8080240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 11/17/2022] Open
Abstract
One of the major hurdles to porcine reproductive and respiratory syndrome (PRRS) vaccinology is the limited or no cross-protection conferred by current vaccines. To overcome this challenge, a PRRS chimeric virus (CV) was constructed using an FL12-based cDNA infectious clone in which open reading frames (ORFs) 3-4 and ORFs 5-6 were replaced with the two Korean field isolates K08-1054 and K07-2273,respectively. This virus was evaluated as a vaccine candidate to provide simultaneous protection against two genetically distinct PRRS virus (PRRSV) strains. Thirty PRRS-negative three-week-old pigs were divided into five groups and vaccinated with CV, K08-1054, K07-2273, VR-2332, or a mock inoculum. At 25 days post-vaccination (dpv), the pigs in each group were divided further into two groups and challenged with either K08-1054 or K07-2273. All of the pigs were observed until 42 dpv and were euthanized for pathological evaluation. Overall, the CV-vaccinated group exhibited higher levels of tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and interleukin-12 (IL-12) expression and of serum virus-neutralizing antibodies compared with the other groups after vaccination and also demonstrated better protection levels against both viruses compared with the challenge control group. Based on these results, it was concluded that CV might be an effective vaccine model that can confer a broader range of cross-protection to various PRRSV strains.
Collapse
|
24
|
Li D, Huang Y, Du Q, Wang Z, Chang L, Zhao X, Tong D. CD40 Ligand and GMCSF Coexpression Enhance the Immune Responses and Protective Efficacy of PCV2 Adenovirus Vaccine. Viral Immunol 2016; 29:148-58. [DOI: 10.1089/vim.2015.0109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Delong Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhenyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
25
|
Peng J, Yuan Y, Du Y, Wu J, Li B, Li J, Yu J, Hu L, Shen S, Wang J, Zhu R. Potentiation of Taishan Pinus massoniana pollen polysaccharide on the immune response and protection elicited by a highly pathogenic porcine reproductive and respiratory syndrome virus glycoprotein 5 subunit in pigs. Mol Cell Probes 2016; 30:83-92. [PMID: 26828953 DOI: 10.1016/j.mcp.2016.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Jun Peng
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Yanmei Yuan
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Baoquan Li
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Jun Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liping Hu
- Shandong Center for Animal Disease Prevention and Control, Jinan, China
| | - Si Shen
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Jinbao Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China.
| | - Ruiliang Zhu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China.
| |
Collapse
|
26
|
Influence of the amino acid residues at 70 in M protein of porcine reproductive and respiratory syndrome virus on viral neutralization susceptibility to the serum antibody. Virol J 2016; 13:51. [PMID: 27004554 PMCID: PMC4802621 DOI: 10.1186/s12985-016-0505-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 01/11/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is mainly responsible for the significant economic losses in pig industry in the world. The adaptive immune responses of the host act as an important source of selective pressure in the evolutionary process of the virus. In the previous study, we confirmed that the amino acid (aa) residues at 102 and 104 sites in GP5 played an important role in escaping from the neutralizing antibodies (NAbs) against highly pathogenic PRRSV (HP-PRRSV). In this study, we further analyzed the aa mutants affecting neutralization susceptibility of NAbs in other structure proteins in NAbs resistant variants. Methods Based on the different aa residues of the structural proteins between the resistant virus BB20s and the parent virus BB, 12 recombinant PRRSV strains containing these aa residue substitutions were constructed using reverse genetic techniques. The neutralizing antibody (NA) titers of the recombinant strains were tested on MARC-145 and porcine alveolar macrophages (PAMs). And the NAbs binding abilities of parent and rescued viruses were tested by using ELISA method. Results By using the neutralization assay, it was revealed that the NA titer of N4 serum with rBB/Ms was significantly lower than that with rBB. Meanwhile, NA titer of the serum with rBB20s/M was significantly higher than that with rBB20s. The ELISA binding results showed that rBB/Ms had higher binding inability to N4 than did rBB. And alignment of M protein revealed that the variant aa residue lysine (K) at 70 was also existed in field type 2 and vaccine PRRSV strains. Conclusions The aa residue at 70 in M protein of PRRSV played an important role in regulating neutralization susceptibility to the porcine serum NAbs. It may be helpful for monitoring the antigen variant strains in the field and developing new vaccine against PRRSV in the future. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0505-7) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Peng J, Yuan Y, Shen S, Niu Z, Du Y, Wu J, Li J, Yu J, Wang T, Wang J. Immunopotentiation of four natural adjuvants co-administered with a highly pathogenic porcine reproductive and respiratory syndrome virus glycoprotein 5 subunit. Virus Genes 2016; 52:261-9. [DOI: 10.1007/s11262-016-1299-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/23/2016] [Indexed: 11/28/2022]
|
28
|
Yu M, Qiu Y, Chen J, Jiang W. Enhanced humoral and cellular immune responses to PRRS virus GP5 glycoprotein by DNA prime-adenovirus boost vaccination in mice. Virus Genes 2016; 52:228-34. [PMID: 26837895 DOI: 10.1007/s11262-016-1293-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/12/2016] [Indexed: 11/29/2022]
Abstract
In order to investigate the induction of humoral and cellular immune responses against porcine reproductive and respiratory syndrome virus (PRRSV), BALB/c mice were immunized in a pcDNA3-GP5 prime-rAd-GP5 boost regimen. After humoral and cellular immune response detection, levels of PRRSV-specific antibodies, neutralizing antibodies, lymphocyte proliferation response, and cytotoxic T-lymphocyte response were significantly increased as compared to controls. The humoral immune response was induced more effectively by the DNA priming and recombinant adenovirus boosting regimen. Significant difference was observed between heterogeneous and homologous vaccination. Induction of anti-GP5 antibody response was higher in all heterogeneous combinations than those of the homologous combinations. In the induction of lymphocyte proliferation response and CTL response, the homologous combination of pcDNA3-GP5/pcDNA3-GP5/pcDNA3-GP5was significantly stronger than that of rAd-GP5/rAd-GP5/rAd-GP5, but was relatively weaker than the heterogeneous combination of pcDNA3-GP5/pcDNA3-GP5/rAd-GP5 and pcDNA3-GP5/rAd-GP5/rAd-GP5. This heterogeneous combination was a most efficient immunization regimen in induction of PRRSV-specific cellular immune response just as the antibody response. These results suggested that DNA immunization followed by recombinant adenovirus boosting could be used as a potential PRRSV vaccine.
Collapse
Affiliation(s)
- Meifang Yu
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao, 266032, People's Republic of China
| | - Yuan Qiu
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao, 266032, People's Republic of China
| | - Jiming Chen
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao, 266032, People's Republic of China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao, 266032, People's Republic of China.
| |
Collapse
|
29
|
Fan B, Liu X, Bai J, Li Y, Zhang Q, Jiang P. The 15N and 46R Residues of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein Enhance Regulatory T Lymphocytes Proliferation. PLoS One 2015; 10:e0138772. [PMID: 26397116 PMCID: PMC4580451 DOI: 10.1371/journal.pone.0138772] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/09/2015] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) negatively modulates host immune responses, resulting in persistent infection and immunosuppression. PRRSV infection increases the number of PRRSV-specific regulatory T lymphocytes (Tregs) in infected pigs. However, the target antigens for Tregs proliferation in PRRSV infection have not been fully understood. In this study, we demonstrated that the highly pathogenic PRRSV (HP-PRRSV) induced more CD4+CD25+Foxp3+ Tregs than classical PRRSV (C-PRRSV) strain. Of the recombinant GP5, M and N proteins of HP-PRRSV expressed in baculovirus expression systems, only N protein induced Tregs proliferation. The Tregs assays showed that three amino-acid regions, 15–21, 42–48 and 88–94, in N protein played an important role in induction of Tregs proliferation with synthetic peptides covering the whole length of N protein. By using reverse genetic methods, it was firstly found that the 15N and 46R residues in PRRSV N protein were critical for induction of Tregs proliferation. The phenotype of induced Tregs closely resembled that of transforming-growth-factor-β-secreting T helper 3 Tregs in swine. These data should be useful for understanding the mechanism of immunity to PRRSV and development of infection control strategies in the future.
Collapse
Affiliation(s)
- Baochao Fan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufeng Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiaoya Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail:
| |
Collapse
|
30
|
Renukaradhya GJ, Meng XJ, Calvert JG, Roof M, Lager KM. Inactivated and subunit vaccines against porcine reproductive and respiratory syndrome: Current status and future direction. Vaccine 2015; 33:3065-72. [PMID: 25980425 DOI: 10.1016/j.vaccine.2015.04.102] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/18/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Within a few years of its emergence in the late 1980s, the PRRS virus had spread globally to become the foremost infectious disease concern for the pork industry. Since 1994, modified live-attenuated vaccines against porcine reproductive and respiratory syndrome virus (PRRSV-MLV) have been widely used, but have failed to provide complete protection against emerging and heterologous field strains of the virus. Moreover, like many other MLVs, PRRSV-MLVs have safety concerns including vertical and horizontal transmission of the vaccine virus and several documented incidences of reversion to virulence. Thus, the development of efficacious inactivated vaccines is warranted for the control and eradication of PRRS. Since the early 1990s, researchers have been attempting to develop inactivated PRRSV vaccines, but most of the candidates have failed to elicit protective immunity even against homologous virus challenge. Recent research findings relating to both inactivated and subunit candidate PRRSV vaccines have shown promise, but they need to be pursued further to improve their heterologous efficacy and cost-effectiveness before considering commercialization. In this comprehensive review, we provide information on attempts to develop PRRSV inactivated and subunit vaccines. These includes various virus inactivation strategies, adjuvants, nanoparticle-based vaccine delivery systems, DNA vaccines, and recombinant subunit vaccines produced using baculovirus, plant, and replication-deficient viruses as vector vaccines. Finally, future directions for the development of innovative non-infectious PRRSV vaccines are suggested. Undoubtedly there remains a need for novel PRRSV vaccine strategies targeted to deliver cross-protective, non-infectious vaccines for the control and eradication of PRRS.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States.
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | | - Michael Roof
- Boehringer Ingelheim Vetmedica, Inc., Ames, IA, United States
| | - Kelly M Lager
- Virology Swine Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Ames, IA, United States.
| |
Collapse
|
31
|
Fan B, Liu X, Bai J, Zhang T, Zhang Q, Jiang P. The amino acid residues at 102 and 104 in GP5 of porcine reproductive and respiratory syndrome virus regulate viral neutralization susceptibility to the porcine serum neutralizing antibody. Virus Res 2015; 204:21-30. [PMID: 25907991 DOI: 10.1016/j.virusres.2015.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 12/29/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is mainly responsible for the heavy economic losses in pig industry in the world. A number of neutralizing epitopes have been identified in the viral structural proteins GP3, GP4, GP5 and M. In this study, the important amino acid (aa) residues of HP-PRRSV strain BB affecting neutralization susceptibility of antibody were examined using resistant strains generated under neutralizing antibody (NAb) pressure in MARC-145 cells, reverse genetic technique and virus neutralization assay. HP-PRRSV strain BB was passaged under the pressure of porcine NAb serum in vitro. A resistant strain BB34s with 102 and 104 aa substitutions in GP5, which have been predicted to be the positive sites for pressure selection (Delisle et al., 2012), was cloned and identified. To determine the effect of the two aa residues on neutralization, eight recombinant PRRSV strains were generated, and neutralization assay results confirmed that the aa residues 102 and 104 in GP5 played an important role in NAbs against HP-PRRSV in MARC-145 cells and porcine alveolar macrophages. Alignment of GP5 sequences revealed that the variant aa residues at 102 and 104 were frequent among type 2 PRRSV strains. It may be helpful for understanding the mechanism regulating the neutralization susceptibility of PRRSV to the NAbs and monitoring the antigen variant strains in the field.
Collapse
Affiliation(s)
- Baochao Fan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingjie Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiaoya Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
32
|
Roques E, Lessard M, Archambault D. The Cholera Toxin B Subunit (CTB) Fused to the Porcine Arterivirus Matrix M and GP5 Envelope Proteins Fails to Enhance the GP5-Specific Antibody Response in Pigs Immunized with Adenovectors. Mol Biotechnol 2015; 57:701-8. [PMID: 25801418 DOI: 10.1007/s12033-015-9861-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus of the Arteriviridae family. As the current commercial vaccines are incompletely protective effective against PRRSV infection, we developed a vaccine strategy using replicating but non-disseminating adenovectors (rAdVs) expressing the PRRSV M matrix protein in fusion with the neutralizing major epitope-carrying GP5 envelope protein (Roques et al. in Vet Res 44:17, 2013). Although production of GP5-specific antibodies (Abs) was observed, no PRRSV-specific neutralizing Abs (NAbs) were induced in pigs given the rAdVs expressing M-GP5 or M-GP5m (GP5m being a mutant form of GP5). Nevertheless, partial protection was observed in the M-GP5m-rAdV-inoculated pigs experimentally infected with PRRSV. Here, we determined the impact of the cholera toxin B subunit (CTB, known for its adjuvant effect) in fusion with the C-terminus of M-GP5m on the Ab response to PRRSV. Three-week-old pigs were immunized twice both intramuscularly and intranasally at 3-week intervals with rAdV-expressing the green fluorescent protein (rAdV-GFP), rAdV-M-GP5m, or rAdV-M-GP5m-CTB. Pigs immunized with rAdV-M-GP5m showed a high level of serum GP5-specific Abs (as determined by an indirect ELISA). In contrast, CTB in fusion with M-GP5m had an unexpected severe negative impact on GP5-specific Ab production. PRRSV-specific NAbs could not be detected in any pigs of all groups.
Collapse
Affiliation(s)
- Elodie Roques
- Department of Biological Sciences, University of Québec at Montréal, Succursale Centre-Ville, P.O. Box 8888, Montreal, QC, H3C 3P8, Canada
| | | | | |
Collapse
|
33
|
Wang C, Li X, Wu T, Li D, Niu M, Wang Y, Zhang C, Cheng X, Chen P. Bursin-like peptide (BLP) enhances H9N2 influenza vaccine induced humoral and cell mediated immune responses. Cell Immunol 2014; 292:57-64. [DOI: 10.1016/j.cellimm.2014.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/16/2014] [Accepted: 09/20/2014] [Indexed: 11/16/2022]
|
34
|
Wang Q, Chen J, Peng J, An T, Leng C, Sun Y, Guo X, Ge X, Tian Z, Yang H. Characterisation of novel linear antigen epitopes on North American-type porcine reproductive and respiratory syndrome virus M protein. Arch Virol 2014; 159:3021-8. [PMID: 25037720 DOI: 10.1007/s00705-014-2174-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/30/2014] [Indexed: 11/24/2022]
Abstract
The M protein, encoded by the porcine reproductive and respiratory syndrome virus (PRRSV) ORF6 gene, is considered to be one of the most conserved PRRSV proteins. In recent decades, highly specific monoclonal antibodies (Mabs) have been exploited to provide reliable diagnoses for many diseases. In this study, two different Mab clones targeting the linear epitopes on the PRRSV M protein were generated and characterized. Both Mabs showed binding activity against the native PRRSV virion and recombinant M protein when analyzed by immunofluorescence assay (IFA) and Western blot. The targeted epitope of each Mab was mapped by serial truncation of the M protein to generate overlapping fragments. Fine epitope mapping was then performed using a panel of expressed polypeptides. The polypeptide sequences of the two epitopes recognized by Mabs 1C8 and 3F7 were (3)SSLD(6) and (155)VLGGRKAVK(163), respectively, with the former being a newly identified epitope on the M protein. In both cases, these two epitopes were finely mapped for the first time. Alignments of Mab epitope sequences revealed that the two epitopes on the M protein were highly conserved between the North American-type strains. These Mabs, along with their mapped epitopes, are useful for the development of diagnostic and research tools, including immunofluorescence, ELISA and Western blot.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
An overview of live attenuated recombinant pseudorabies viruses for use as novel vaccines. J Immunol Res 2014; 2014:824630. [PMID: 24995348 PMCID: PMC4068083 DOI: 10.1155/2014/824630] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/23/2014] [Indexed: 11/18/2022] Open
Abstract
Pseudorabies virus (PRV) is a double-stranded, DNA-based swine virus with a genome approximating 150 kb in size. PRV has many nonessential genes which can be replaced with genes encoding heterologous antigens but without deleterious effects on virus propagation. Recombinant PRVs expressing both native and foreign antigens are able to stimulate immune responses. In this paper, we review the current status of live attenuated recombinant PRVs and live PRV-based vector vaccines with potential for controlling viral infections in animals.
Collapse
|
36
|
Construction and immunogenicity of DNA vaccines encoding fusion protein of porcine IFN- λ 1 and GP5 gene of porcine reproductive and respiratory syndrome virus. BIOMED RESEARCH INTERNATIONAL 2013; 2013:318698. [PMID: 24490154 PMCID: PMC3884778 DOI: 10.1155/2013/318698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/29/2013] [Indexed: 01/05/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been mainly responsible for the catastrophic economic losses in pig industry worldwide. The commercial vaccines only provide a limited protection against PRRSV infection. Thus, the focus and direction is to develop safer and more effective vaccines in the research field of PRRS. The immune modulators are being considered to enhance the effectiveness of PRRSV vaccines. IFN-λ1 belongs to type III interferon, a new interferon family. IFN-λ1 is an important cytokine with multiple functions in innate and acquired immunity. In this study, porcine IFN-λ1 (PoIFN-λ1) was evaluated for its adjuvant effects on the immunity of a DNA vaccine carrying the GP5 gene of PRRSV. Groups of mice were immunized twice at 2-week interval with 100 μg of the plasmid DNA vaccine pcDNA3.1-SynORF5, pcDNA3.1-PoIFN-λ1-SynORF5, and the blank vector pcDNA3.1, respectively. The results showed that pcDNA3.1-PoIFN-λ1-SynORF5 can significantly enhance GP5-specific ELISA antibody, PRRSV-specific neutralizing antibody, IFN-γ level, and lymphocyte proliferation rather than the responses induced by pcDNA3.1-SynORF5. Therefore, type III interferon PoIFN-λ1 could enhance the immune responses of DNA vaccine of PRRSV, highlighting the potential value of PoIFN-λ1 as a molecular adjuvant in the prevention of PRRSV infection.
Collapse
|
37
|
Jiang Y, Khan FA, Pandupuspitasari NS, Kadariya I, Cheng Z, Ren Y, Chen X, Zhou A, Yang L, Kong D, Zhang S. Analysis of the binding sites of porcine sialoadhesin receptor with PRRSV. Int J Mol Sci 2013; 14:23955-79. [PMID: 24351868 PMCID: PMC3876088 DOI: 10.3390/ijms141223955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/13/2013] [Accepted: 11/19/2013] [Indexed: 01/23/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) can infect pigs and cause enormous economic losses to the pig industry worldwide. Porcine sialoadhesin (pSN) and CD163 have been identified as key viral receptors on porcine alveolar macrophages (PAM), a main target cell infected by PRRSV. In this study, the protein structures of amino acids 1-119 from the pSN and cSN (cattle sialoadhesin) N-termini (excluding the 19-amino acid signal peptide) were modeled via homology modeling based on mSN (mouse sialoadhesin) template structures using bioinformatics tools. Subsequently, pSN and cSN homology structures were superposed onto the mSN protein structure to predict the binding sites of pSN. As a validation experiment, the SN N-terminus (including the wild-type and site-directed-mutant-types of pSN and cSN) was cloned and expressed as a SN-GFP chimera protein. The binding activity between SN and PRRSV was confirmed by WB (Western blotting), FAR-WB (far Western blotting), ELISA (enzyme-linked immunosorbent assay) and immunofluorescence assay. We found that the S107 amino acid residue in the pSN N-terminal played a crucial role in forming a special cavity, as well as a hydrogen bond for enhancing PRRSV binding during PRRSV infection. S107 may be glycosylated during PRRSV infection and may also be involved in forming the cavity for binding PRRSV along with other sites, including W2, Y44, S45, R97, R105, W106 and V109. Additionally, S107 might also be important for pSN binding with PRRSV. However, the function of these binding sites must be confirmed by further studies.
Collapse
Affiliation(s)
- Yibo Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China; E-Mails: (Y.J.); (F.A.K.); (N.S.P.); (I.K.); (Y.R.); (X.C.); (A.Z.); (L.Y.)
| | - Faheem Ahmed Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China; E-Mails: (Y.J.); (F.A.K.); (N.S.P.); (I.K.); (Y.R.); (X.C.); (A.Z.); (L.Y.)
| | - Nuruliarizki Shinta Pandupuspitasari
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China; E-Mails: (Y.J.); (F.A.K.); (N.S.P.); (I.K.); (Y.R.); (X.C.); (A.Z.); (L.Y.)
| | - Ishwari Kadariya
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China; E-Mails: (Y.J.); (F.A.K.); (N.S.P.); (I.K.); (Y.R.); (X.C.); (A.Z.); (L.Y.)
| | - Zhangrui Cheng
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; E-Mail:
| | - Yuwei Ren
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China; E-Mails: (Y.J.); (F.A.K.); (N.S.P.); (I.K.); (Y.R.); (X.C.); (A.Z.); (L.Y.)
| | - Xing Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China; E-Mails: (Y.J.); (F.A.K.); (N.S.P.); (I.K.); (Y.R.); (X.C.); (A.Z.); (L.Y.)
| | - Ao Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China; E-Mails: (Y.J.); (F.A.K.); (N.S.P.); (I.K.); (Y.R.); (X.C.); (A.Z.); (L.Y.)
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China; E-Mails: (Y.J.); (F.A.K.); (N.S.P.); (I.K.); (Y.R.); (X.C.); (A.Z.); (L.Y.)
| | - Dexin Kong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China; E-Mails: (Y.J.); (F.A.K.); (N.S.P.); (I.K.); (Y.R.); (X.C.); (A.Z.); (L.Y.)
| | - Shujun Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China; E-Mails: (Y.J.); (F.A.K.); (N.S.P.); (I.K.); (Y.R.); (X.C.); (A.Z.); (L.Y.)
| |
Collapse
|
38
|
Peng J, Wang J, Wu J, Du Y, Li J, Guo Z, Yu J, Xu S, Zhang Y, Sun W, Cong X, Shi J. Positive Inductive Effect of Swine Interleukin-4 on Immune Responses Elicited by Modified Live Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Vaccine. Viral Immunol 2013; 26:404-14. [DOI: 10.1089/vim.2013.0040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jun Peng
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Jinbao Wang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Jiaqiang Wu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Yijun Du
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Jun Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Zhongkun Guo
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Jiang Yu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Shaojian Xu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Yuyu Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Wenbo Sun
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Xiaoyan Cong
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Jianli Shi
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| |
Collapse
|
39
|
Nam HM, Chae KS, Song YJ, Lee NH, Lee JB, Park SY, Song CS, Seo KH, Kang SM, Kim MC, Choi IS. Immune responses in mice vaccinated with virus-like particles composed of the GP5 and M proteins of porcine reproductive and respiratory syndrome virus. Arch Virol 2013; 158:1275-85. [PMID: 23392631 PMCID: PMC4126520 DOI: 10.1007/s00705-013-1612-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 12/09/2012] [Indexed: 01/05/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) induces reproductive failure in sows and respiratory problems in pigs of all ages. Live attenuated and inactivated vaccines are used on swine farms to control PRRSV. However, their protective efficacy against field strains of PRRSV remains questionable. New vaccines have been developed to improve the efficacy of these traditional vaccines. In this study, virus-like particles (VLPs) composed of the GP5 and M proteins of PRRSV were developed, and the capacity of the VLPs to elicit antigen-specific immunity was evaluated. Serum antibody titers and production of cytokines were measured in BALB/C mice immunized intramuscularly three times with different doses (0.5, 1.0, 2.0, and 4.0 μg) of the VLP vaccine. A commercial vaccine consisting of inactivated PRRSV and phosphate-buffered saline (PBS) were used as positive and negative controls, respectively. IgG titers to GP5 were significantly higher in all groups of mice vaccinated with the VLPs than in control mice. Neutralizing antibodies were only detected in mice vaccinated with 2.0 and 4.0 μg of the VLPs. Cytokine levels were determined in cell culture supernatants after in vitro stimulation of splenocytes with the VLPs for 3 days. Mice immunized with 4.0 μg of the VLPs produced a significantly higher amount of interferon-gamma (IFN-γ) than mice immunized with the commercial inactivated PRRSV vaccine and PBS. In contrast, immunization with the commercial vaccine induced higher production of IL-4 and IL-10 in mice than mice vaccinated with VLPs. These data together demonstrate the capacity of VLPs to induce both neutralizing antibodies and IFN-γ in immunized mice. The VLP vaccine developed in this study could serve as a platform for the generation of improved VLP vaccines to control PRRSV.
Collapse
Affiliation(s)
- Hae-Mi Nam
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Kyung-Sil Chae
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Young-Jo Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Nak-Hyung Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Kun-Ho Seo
- Department of Public Health, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea
| | - Sang-Moo Kang
- Department of Biology, Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Chul Kim
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea; Department of Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
40
|
Roques E, Girard A, Gagnon CA, Archambault D. Antibody responses induced in mice immunized with recombinant adenovectors expressing chimeric proteins of various porcine pathogens. Vaccine 2013; 31:2698-704. [DOI: 10.1016/j.vaccine.2013.03.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/18/2013] [Accepted: 03/28/2013] [Indexed: 01/19/2023]
|
41
|
Chan HT, Chia MY, Pang VF, Jeng CR, Do YY, Huang PL. Oral immunogenicity of porcine reproductive and respiratory syndrome virus antigen expressed in transgenic banana. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:315-324. [PMID: 23116484 DOI: 10.1111/pbi.12015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 06/01/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a persistent threat of economically significant influence to the swine industry worldwide. Recombinant DNA technology coupled with tissue culture technology is a viable alternative for the inexpensive production of heterologous proteins in planta. Embryogenic cells of banana cv. 'Pei chiao' (AAA) have been transformed with the ORF5 gene of PRRSV envelope glycoprotein (GP5) using Agrobacterium-mediated transformation and have been confirmed. Recombinant GP5 protein levels in the transgenic banana leaves were detected and ranged from 0.021%-0.037% of total soluble protein. Pigs were immunized with recombinant GP5 protein by orally feeding transgenic banana leaves for three consecutive doses at a 2-week interval and challenged with PRRSV at 7 weeks postinitial immunization. A vaccination-dependent gradational increase in the elicitation of serum and saliva anti-PRRSV IgG and IgA was observed. Furthermore, significantly lower viraemia and tissue viral load were recorded when compared with the pigs fed with untransformed banana leaves. The results suggest that transgenic banana leaves expressing recombinant GP5 protein can be an effective strategy for oral delivery of recombinant subunit vaccines in pigs and can open new avenues for the production of vaccines against PRRSV.
Collapse
Affiliation(s)
- Hui-Ting Chan
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Roques E, Girard A, St-Louis MC, Massie B, Gagnon CA, Lessard M, Archambault D. Immunogenic and protective properties of GP5 and M structural proteins of porcine reproductive and respiratory syndrome virus expressed from replicating but nondisseminating adenovectors. Vet Res 2013; 44:17. [PMID: 23497101 PMCID: PMC3608016 DOI: 10.1186/1297-9716-44-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 02/13/2013] [Indexed: 02/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is responsible for significant economic losses in the porcine industry. Currently available commercial vaccines do not allow optimal and safe protection. In this study, replicating but nondisseminating adenovectors (rAdV) were used for the first time in pigs for vaccinal purposes. They were expressing the PRRSV matrix M protein in fusion with either the envelope GP5 wild-type protein (M-GP5) which carries the major neutralizing antibody (NAb)-inducing epitope or a mutant form of GP5 (M-GP5m) developed to theoretically increase the NAb immune response. Three groups of fourteen piglets were immunized both intramuscularly and intranasally at 3-week intervals with rAdV expressing the green fluorescent protein (GFP, used as a negative control), M-GP5 or M-GP5m. Two additional groups of pigs were primed with M-GP5m-expressing rAdV followed by a boost with bacterially-expressed recombinant wild-type GP5 or were immunized twice with a PRRSV inactivated commercial vaccine. The results show that the rAdV expressing the fusion proteins of interest induced systemic and mucosal PRRSV GP5-specific antibody response as determined in an ELISA. Moreover the prime with M-GP5m-expressing rAdV and boost with recombinant GP5 showed the highest antibody response against GP5. Following PRRSV experimental challenge, pigs immunized twice with rAdV expressing either M-GP5 or M-GP5m developed partial protection as shown by a decrease in viremia overtime. The lowest viremia levels and/or percentages of macroscopic lung lesions were obtained in pigs immunized twice with either the rAdV expressing M-GP5m or the PRRSV inactivated commercial vaccine.
Collapse
Affiliation(s)
- Elodie Roques
- Department of Biological Sciences, University of Québec at Montréal, Succursale Centre-Ville, P,O, Box 8888, Montréal, Québec, H3C 3P8, Canada.
| | | | | | | | | | | | | |
Collapse
|
43
|
Hu J, Zhang C. Porcine reproductive and respiratory syndrome virus vaccines: current status and strategies to a universal vaccine. Transbound Emerg Dis 2013; 61:109-20. [PMID: 23343057 DOI: 10.1111/tbed.12016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Indexed: 12/29/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of PRRS, the most significant infectious disease currently affecting swine industry worldwide. In the United States alone, the economic losses caused by PRRS amount to more than 560 million US dollars every year. Due to immune evasion strategies and the antigenic heterogeneity of the virus, current commercial PRRSV vaccines (killed-virus and modified-live vaccines) are of unsatisfactory efficacy, especially against heterologous infection. Continuous efforts have been devoted to develop better PRRSV vaccines. Experimental PRRSV vaccines, including live attenuated vaccines, recombinant vectors expressing PRRSV viral proteins, DNA vaccines and plant-made subunit vaccines, have been developed. However, the genetic and antigenic heterogeneity of the virus limits the value of almost all of the PRRSV vaccines tested. Developing a universal vaccine that can provide broad protection against circulating PRRSV strains has become a major challenge for current vaccine development. This paper reviews current status of PRRSV vaccine development and discusses strategies to develop a universal PRRSV vaccine.
Collapse
Affiliation(s)
- J Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
44
|
Li J, Murtaugh MP. Dissociation of porcine reproductive and respiratory syndrome virus neutralization from antibodies specific to major envelope protein surface epitopes. Virology 2012; 433:367-76. [PMID: 22981434 DOI: 10.1016/j.virol.2012.08.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 06/09/2012] [Accepted: 08/17/2012] [Indexed: 12/19/2022]
Abstract
Glycoprotein 5 (GP5) and membrane (M) protein are the major proteins in the envelope of porcine reproductive and respiratory syndrome virus (PRRSV). Although viral neutralization epitopes are reported in GP5 and M of type 2 PRRSV, their significance as targets of porcine humoral immunity is not well described. Thus, we constructed recombinant polypeptides containing ectodomain neutralization epitopes to examine their involvement in porcine antibody neutralization and antiviral immunity. PRRSV infection elicited ectodomain-specific antibodies, whose titers did not correlate with the neutralizing antibody (NA) response. Ectodomain-specific antibodies from PRRSV-neutralizing serum bound virus but did not neutralize infectivity. Furthermore, immunization of pigs with ectodomain polypeptides raised specific antibodies and provided partial protection without a detectable NA response. Finally the polypeptides did not block infection of porcine macrophages. These results suggest that the GP5/M ectodomain peptide epitopes are accessible for host antibody recognition, but are not associated with antibody-mediated virus neutralization.
Collapse
Affiliation(s)
- Juan Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
45
|
Zhou F, Liang S, Chen AH, Singh CO, Bhaskar R, Niu YS, Miao YG. A transgenic Marc-145 cell line of piggyBac transposon-derived targeting shRNA interference against porcine reproductive and respiratory syndrome virus. Vet Res Commun 2012; 36:99-105. [PMID: 22297554 DOI: 10.1007/s11259-012-9519-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is now considered to be one of the most important diseases in countries with intensive swine industries. The two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus (PRRSV), GP5 and M (encoded by ORF5 and ORF6 genes, respectively), are associated as disulfide-linked heterodimers (GP5/M) in the virus particle. In this study, we designed 5 of the small hairpin RNAs (shRNAs) targeting the GP5 and M gene of PRRSV respectively, and investigated their inhibition to the production of PRRSV. The highest activity displayed in shRNAs of the ORF6e sequence (nts 261-279), which the inhibition rate reached was 99.09%. The result suggests that RNAi technology might serve as a potential molecular strategy for PRRSV therapy. Furthermore, the transgenic Marc-145 cell line of piggyBac transposon-derived targeting shRNA interference against PRRS virus was established. It presented stable inhibition to the replication and amplification of PRRS. The work implied that shRNAs targeting the GP5 and M gene of PRRSV may be used as potential RNA vaccines in vivo, and supplied the screening methods of transformed pig embryonic fibroblast which are prerequisite for the disease-resistant transgenic pigs to PRRS.
Collapse
Affiliation(s)
- Fang Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The alphavirus replicon technology has been utilized for many years to develop vaccines for both veterinary and human applications. Many developments have been made to the replicon platform recently, resulting in improved safety and efficacy of replicon particle (RP) vaccines. This review provides a broad overview of the replicon technology and safety features of the system and discusses the current literature on RP and replicon-based vaccines.
Collapse
|
47
|
Zhang D, Xia Q, Wu J, Liu D, Wang X, Niu Z. Construction and immunogenicity of DNA vaccines encoding fusion protein of murine complement C3d-p28 and GP5 gene of porcine reproductive and respiratory syndrome virus. Vaccine 2010; 29:629-35. [PMID: 21134449 DOI: 10.1016/j.vaccine.2010.11.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/07/2010] [Accepted: 11/14/2010] [Indexed: 01/11/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has recently caused catastrophic losses in swine industry worldwide. The commercial vaccines only provide a limited protection against PRRSV infection. At present, DNA vaccine is the focus on the new vaccines. The gene fragment (p28) coding for the molecular adjuvants complement protein C3d (mC3d) from BALB/c mouse was cloned and expressed as a fusion protein for its application in the vaccine study of mice. Three potential vaccines construct units were engineered to contain two, four and six copies of mC3d-p28 coding gene linked to the GP5 gene of PRRSV and one vaccine expressing GP5 alone (pcDNA3.1-GP5) was constructed. Subsequently, the vaccines' abilities to elicit the humoral and cellular immune responses were investigated in mice. These results showed that significantly enhanced GP5-specific ELISA antibody, GP5-specific neutralizing antibody, IFN-γ level, and IL-4 level, could be induced in mice immunized with DNA construct units encoding the pcDNA3.1-C3d-p28.n-GP5 than those received DNA vaccine expressing GP5 alone (pcDNA3.1-GP5). Analysis of the immunogenicity of different repeats of mC3d-p28 revealed that mC3d-p28 had an enhancing effect on the immunogenicity of antigens, and that six or more repeats of mC3d-p28 may be necessary for efficient enhancement of antigen specific immune responses. This approach may provide a new strategy for the development of efficient vaccines against the PRRSV for pigs in the future.
Collapse
Affiliation(s)
- Deqing Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | | | | | | | | | | |
Collapse
|
48
|
Cao J, Wang X, Du Y, Li Y, Wang X, Jiang P. CD40 ligand expressed in adenovirus can improve the immunogenicity of the GP3 and GP5 of porcine reproductive and respiratory syndrome virus in swine. Vaccine 2010; 28:7514-22. [PMID: 20851084 DOI: 10.1016/j.vaccine.2010.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 08/16/2010] [Accepted: 09/01/2010] [Indexed: 01/11/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has recently caused heavy economic losses in swine industry worldwide. Current vaccination strategies only provide a limited protective efficacy, thus immune modulators are being considered to enhance the effectiveness of PRRSV vaccines. In this study, the recombinant adenoviruses expressing porcine CD40 ligand (CD40L) and GP3/GP5 of PRRSV were constructed and the immune responses were examined in pigs. The results showed that rAd-CD40L-GP35 (co-expressing CD40L and GP3-GP5) or rAd-GP35 (expressing GP3-GP5) plus rAd-CD40L (expressing CD40L) could provide significant higher specific anti-PRRSV ELISA antibody and neutralizing antibody. And the levels of proliferative responses of peripheral blood mononuclear cells (PBMC), IFN-γ and IL-4 were markedly increased in rAd-CD40L-GP35 and rAd-CD40L plus rAd-GP35 groups than those in rAd-GP35 group. Following homologous challenge with Chinese isolate of the North-American genotype of PRRSV, pigs inoculated with recombinant rAd-CD40L-GP35 and rAd-CD40L plus rAd-GP35 showed lighter clinical signs and lower viremia, as compared to those in rAd-GP35 group. It indicated that porcine CD40L could effectively increase humoral and cell-mediated immune responses of GP3 and GP5 of PRRSV. Porcine CD40L might be used as an attractive adjuvant or immunotargeting strategies to enhance the PRRSV subunit vaccine responses in swine.
Collapse
Affiliation(s)
- Jun Cao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
49
|
Zhou L, Yang H. Porcine reproductive and respiratory syndrome in China. Virus Res 2010; 154:31-7. [PMID: 20659506 DOI: 10.1016/j.virusres.2010.07.016] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 07/17/2010] [Accepted: 07/18/2010] [Indexed: 12/18/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important viral disease for the pig industry worldwide. This disease has brought great losses to the Chinese pig production in recent years, particularly following the emergence of the highly pathogenic PRRS virus (PRRSV), and has become an intractable problem for the development of pig industry in China. This paper will review the history of PRRS, the epidemic of atypical PRRS caused by the highly pathogenic virus, and the molecular characteristics of the Chinese highly pathogenic PRRSV, and the development of vaccines against PRRS in China, as well as current control status and perspective of PRRS in China.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | | |
Collapse
|
50
|
Cruz JLG, Zúñiga S, Bécares M, Sola I, Ceriani JE, Juanola S, Plana J, Enjuanes L. Vectored vaccines to protect against PRRSV. Virus Res 2010; 154:150-60. [PMID: 20600388 PMCID: PMC7114413 DOI: 10.1016/j.virusres.2010.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 06/14/2010] [Indexed: 12/18/2022]
Abstract
PRRSV is the causative agent of the most important infectious disease affecting swine herds worldwide, producing great economic losses. Commercially available vaccines are only partially effective in protection against PRRSV. Moreover, modified live vaccines may allow virus shedding, and could revert generating virulent phenotypes. Therefore, new efficient vaccines are required. Vaccines based on recombinant virus genomes (virus vectored vaccines) against PRRSV could represent a safe alternative for the generation of modified live vaccines. In this paper, current vectored vaccines to protect against PRRSV are revised, including those based on pseudorabies virus, poxvirus, adenovirus, and virus replicons. Special attention has been provided to the use of transmissible gastroenteritis virus (TGEV) as vector for the expression of PRRSV antigens. This vector has the capability of expressing high levels of heterologous genes, is a potent interferon-α inducer, and presents antigens in mucosal surfaces, eliciting both secretory and systemic immunity. A TGEV derived vector (rTGEV) was generated, expressing PRRSV wild type or modified GP5 and M proteins, described as the main inducers of neutralizing antibodies and cellular immune response, respectively. Protection experiments showed that vaccinated animals developed a faster and stronger humoral immune response than the non-vaccinated ones. Partial protection in challenged animals was observed, as vaccinated pigs showed decreased lung damage when compared with the non-vaccinated ones. Nevertheless, the level of neutralizing antibodies was low, what may explain the limited protection observed. Several strategies are proposed to improve current rTGEV vectors expressing PRRSV antigens.
Collapse
Affiliation(s)
- Jazmina L G Cruz
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|