1
|
Euring B, Harzer M, Vahlenkamp TW. Extended analyses of rotavirus C (RVC) G-types and P-types reveal new cut-off value for the G-types and reclassification of strains. J Virol 2025:e0004925. [PMID: 40231817 DOI: 10.1128/jvi.00049-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/15/2025] [Indexed: 04/16/2025] Open
Abstract
Rotavirus C (RVC) is an important cause of gastroenteritis in humans and pigs and has also been detected in cattle, ferrets, minks, and dogs. Incidental zoonotic transmissions have been described. In contrast to rotavirus A (RVA), a complete genotyping system for RVC has not yet been established due to limited or incomplete sequence data. In this study, 138 complete nucleotide sequences for VP7 (G-type) and 97 complete nucleotide sequences for VP4 (P-type) of porcine RVC-positive samples have successfully been generated and genotyped. Together with available sequences from the NCBI database, phylogenetic analyses were conducted, cut-off values were re-evaluated, and the current classification system was adapted. Pairwise identity frequency analyses revealed a new cut-off value of 82% instead of the previous 85% for the G-type and confirmed the current cut-off value of 85% for the P-type. This resulted in the identification of 21 G-types and 39 P-types, including 4 new G-types and 10 new P-types. The results of the investigations expand the existing knowledge about the genetics of RVC and demonstrate the enormous diversity of porcine RVC sequences in particular.IMPORTANCEThis article provides a new sequence data set of porcine rotavirus C (RVC) strains. The extended full-length analysis of RVC G-types and P-types enabled us to review the current classification system. According to the guidelines of the rotavirus classification working group (RCWG), the results led to a new cut-off value of RVC G-types and required the reclassification of numerous RVC G-types. In addition, several new genotypes have been found. The present work closes the aforementioned knowledge gap and provides important, comprehensive data for RVC genetic diversity.
Collapse
Affiliation(s)
- Belinda Euring
- Institute of Virology, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Maxi Harzer
- Institute of Virology, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Thomas W Vahlenkamp
- Institute of Virology, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Harima H, Qiu Y, Sasaki M, Ndebe J, Penjaninge K, Simulundu E, Kajihara M, Ohnuma A, Matsuno K, Nao N, Orba Y, Takada A, Ishihara K, Hall WW, Hang'ombe BM, Sawa H. First identification and whole genome characterization of rotavirus C in pigs in Zambia. Virology 2025; 603:110385. [PMID: 39756076 DOI: 10.1016/j.virol.2024.110385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Rotavirus C (RVC) causes acute gastroenteritis in neonatal piglets. Despite the clinical importance of RVC infection, the distribution and prevalence in pig populations in most African countries remains unknown. In this study, we identified RVC in Zambian pigs by metagenomic analysis. The full genome sequence of the RVC revealed two different VP4 sequences, implying that two different RVC strains (ZP18-77-c1 and ZP18-77-c2) were present in the same sample. Genetic analyses demonstrated that all segments of ZP18-77-c1 and ZP18-77-c2 showed high nucleotide sequence identities (87.7-94.5%) to known porcine RVC strains, and ZP18-77-c1 and ZP18-77-c2 strains were assigned to genotype constellations, G1-P[4]/P[14]-I13-R5-C5-M1-A7-N9-T10-E5-H1. We further screened RVC genomes among pig feces collected in Zambia (n = 147) by RT-qPCR, and 78 samples (53.1%) were positive. This study demonstrated the first full genome sequence of African RVC strains with a relatively high prevalence of RVC infection in the pig populations in Zambia.
Collapse
Affiliation(s)
- Hayato Harima
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Yongjin Qiu
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan; Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
| | - Joseph Ndebe
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan; Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka, 10101, Zambia
| | - Kapila Penjaninge
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka, 10101, Zambia
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka, 10101, Zambia; Macha Research Trust, Choma, 20100, Zambia
| | - Masahiro Kajihara
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Aiko Ohnuma
- Technical Office, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Keita Matsuno
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan; Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan; One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan; One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan; Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan; One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka, 10101, Zambia; One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan; Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan; Africa Center of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka, 10101, Zambia
| | - Kanako Ishihara
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - William W Hall
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan; National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland
| | - Bernard M Hang'ombe
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka, 10101, Zambia; Department of Para-clinical Studies, School of Veterinary Medicine, The University of Zambia, Lusaka, 10101, Zambia
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan; Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka, 10101, Zambia; One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan; Africa Center of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka, 10101, Zambia.
| |
Collapse
|
3
|
Lachapelle V, Arsenault J, Nantel-Fortier N, Hélie P, L'Homme Y, Brassard J. A matched case-control study of porcine group A and C rotaviruses in a swine farrowing production system. Vet Microbiol 2025; 301:110358. [PMID: 39765009 DOI: 10.1016/j.vetmic.2024.110358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
Group A rotaviruses (RVA) and group C rotaviruses (RVC) are important enteric pathogens in swine. Comprehensive studies investigating porcine rotaviruses in Canada are necessary to enhance understanding of the frequency, impacts, and dynamics of these infections in swine herds. This study aims to estimate the prevalence of RVA and RVC, describe circulating strains, and assess the association of rotaviruses with diarrhea at the piglet, litter, and batch levels in Canadian farrowing swine productions. A matched case-control study was conducted on farrowing farms within an integrated production system experiencing a diarrheic episode. Rectal swabs from 94 diarrheic piglets and 127 healthy piglets were collected and subjected to VP7 and VP4 gene amplification of RVA and RVC using RT-PCR. Results indicated a 45.4 % and 27.4 % prevalence for RVA and RVC in piglets, respectively. A significant association between RVC and diarrhea (odds ratio = 7.1; p = 0.02) was identified at the batch level, while RVA detection did not show a significant relationship with diarrhea. Molecular characterization of various RVA and RVC strains detected in this study described at least four different RVA strains and three different RVC strains circulating on farms within the integrated production system. This study estimates the prevalence of RVA and RVC and describes the main viral strains in swine herds experiencing an episode of neonatal diarrhea. While it also highlights the importance of RVC in piglet diarrhea when detected in a batch, results from his study warrant the implementation of additional prevention measures and regular surveillance for the control of both RVA and RVC in swine herds.
Collapse
Affiliation(s)
- Virginie Lachapelle
- NSERC Industrial Research Chair in Meat Safety, Faculty of Veterinary Medicine, Université de Montréal, 3200, Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada; Swine and Poultry Infectious Diseases Research Centre (CRIPA-FRQNT), Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada.
| | - Julie Arsenault
- Department of pathology and microbiology, Faculty of Veterinary Medicine, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada; Swine and Poultry Infectious Diseases Research Centre (CRIPA-FRQNT), Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada.
| | - Nicolas Nantel-Fortier
- NSERC Industrial Research Chair in Meat Safety, Faculty of Veterinary Medicine, Université de Montréal, 3200, Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada; Swine and Poultry Infectious Diseases Research Centre (CRIPA-FRQNT), Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada.
| | - Pierre Hélie
- Department of pathology and microbiology, Faculty of Veterinary Medicine, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada.
| | - Yvan L'Homme
- Cégep François-Xavier Garneau, 1660 Boulevard de l'Entente, Québec, Québec G1S 4S3, Canada; Swine and Poultry Infectious Diseases Research Centre (CRIPA-FRQNT), Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada.
| | - Julie Brassard
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Blvd. West, Saint-Hyacinthe, Québec J2S 8E3, Canada; Swine and Poultry Infectious Diseases Research Centre (CRIPA-FRQNT), Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada.
| |
Collapse
|
4
|
Acquah ME, Adadey SM, Languon S, Quaye O. A Double Lysis Method for Animal Rotavirus RNA Extraction From Stool Samples. Curr Protoc 2024; 4:e70011. [PMID: 39364978 DOI: 10.1002/cpz1.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Globally, porcine rotavirus is a leading cause of gastroenteritis in nursing and post-weaning piglets, as well as adult pigs. Between February 2015 and June 2016, 156 fecal samples were collected from pigs in the Northeastern part of Accra, Ghana, and screened for Group A rotavirus using the ProflowTM Kit. Here, we describe different extraction methods that were employed to recover high-quality RNA for downstream analysis, with emphasis on a novel hybrid extraction method. The hybrid approach with a kit and manual extraction method led to a 10-fold greater RNA yield versus the kit-based method alone. The new extraction method gave an average purity ratio (A260/A280) of 1.8, which was also significantly higher than that obtained solely from the manual or kit-based extraction methods. Our novel hybrid approach will be useful in the extraction of rotavirus from animal fecal samples, thus improving the yield of RNA for downstream analysis. © 2024 Wiley Periodicals LLC. Basic Protocol: Hybrid 2: A double lysis method for RNA extraction from animal stool samples Support Protocol 1: The GenElute extraction method Support Protocol 2: Hybrid 1 extraction method.
Collapse
Affiliation(s)
- Maame Ekua Acquah
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Samuel Mawuli Adadey
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Sylvester Languon
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
5
|
Arnold M, Echtermann T, Nathues H. Infectious Enteric Diseasses in Pigs. PRODUCTION DISEASES IN FARM ANIMALS 2024:223-269. [DOI: 10.1007/978-3-031-51788-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Krasnikov N, Yuzhakov A. Interspecies recombination in NSP3 gene in the first porcine rotavirus H in Russia identified using nanopore-based metagenomic sequencing. Front Vet Sci 2023; 10:1302531. [PMID: 38116510 PMCID: PMC10728476 DOI: 10.3389/fvets.2023.1302531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
During the last decade, porcine rotavirus H was detected in the USA, Asian regions, South Africa, Brazil, and a couple of European countries. In the presented study, the virus was identified in piglets on a farrow-to-finish farm in Russia during metagenomic surveillance. Currently, it is the first identification of this species in the country. As a diagnostic method, nanopore-based metagenomic sequencing was applied. The obtained nanopore reads allowed for the assembly of 10 genome segments out of 11. The phylogenetic analysis revealed the virus belonged to the porcine cluster and had GX-P3-I3-R3-C3-M8-A7-N1-T5-E3-H3 genome constellation. Moreover, three potential new genotype groups for VP3, NSP1, and NSP3 genes were determined. Additionally, a recombination between RVH and RVC in the NSP3 gene was detected. The study provides significant information about a novel RVH strain.
Collapse
|
7
|
Raev SA, Raque M, Kick MK, Saif LJ, Vlasova AN. Differential transcriptome response following infection of porcine ileal enteroids with species A and C rotaviruses. Virol J 2023; 20:238. [PMID: 37848925 PMCID: PMC10580564 DOI: 10.1186/s12985-023-02207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Rotavirus C (RVC) is the major causative agent of acute gastroenteritis in suckling piglets, while most RVAs mostly affect weaned animals. Besides, while most RVA strains can be propagated in MA-104 and other continuous cell lines, attempts to isolate and culture RVC strains remain largely unsuccessful. The host factors associated with these unique RVC characteristics remain unknown. METHODS In this study, we have comparatively evaluated transcriptome responses of porcine ileal enteroids infected with RVC G1P[1] and two RVA strains (G9P[13] and G5P[7]) with a focus on innate immunity and virus-host receptor interactions. RESULTS The analysis of differentially expressed genes regulating antiviral immune response indicated that in contrast to RVA, RVC infection resulted in robust upregulation of expression of the genes encoding pattern recognition receptors including RIG1-like receptors and melanoma differentiation-associated gene-5. RVC infection was associated with a prominent upregulation of the most of glycosyltransferase-encoding genes except for the sialyltransferase-encoding genes which were downregulated similar to the effects observed for G9P[13]. CONCLUSIONS Our results provide novel data highlighting the unique aspects of the RVC-associated host cellular signalling and suggest that increased upregulation of the key antiviral factors maybe one of the mechanisms responsible for RVC age-specific characteristics and its inability to replicate in most cell cultures.
Collapse
Affiliation(s)
- Sergei A Raev
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA.
| | - Molly Raque
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA
| | - Maryssa K Kick
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA
| | - Linda J Saif
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA
| | - Anastasia N Vlasova
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA.
| |
Collapse
|
8
|
Malik YS, Ansari MI, Karikalan M, Sircar S, Selvaraj I, Ghosh S, Singh K. Molecular Characterization of Rotavirus C from Rescued Sloth Bears, India: Evidence of Zooanthroponotic Transmission. Pathogens 2023; 12:934. [PMID: 37513781 PMCID: PMC10384673 DOI: 10.3390/pathogens12070934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The present study reports the detection and molecular characterisation of rotavirus C (RVC) in sloth bears (Melursus ursinus) rescued from urban areas in India. Based on an RVC VP6 gene-targeted diagnostic RT-PCR assay, 48.3% (42/87) of sloth bears tested positive for RVC infection. The VP6, VP7, and NSP4 genes of three sloth bear RVC isolates (UP-SB19, 21, and 37) were further analysed. The VP6 genes of RVC UP-SB21 and 37 isolates were only 37% identical. The sequence identity, TM-score from structure alignment, and selection pressure (dN/dS) of VP6 UP-SB37 with pig and human RVCs isolates were (99.67%, 0.97, and 1.718) and (99.01%, 0.93, and 0.0340), respectively. However, VP6 UP-SB21 has an identity, TM-score, and dN/dS of (84.38%, 1.0, and 0.0648) and (99.63%, 1.0, and 3.7696) with human and pig RVC isolates, respectively. The VP7 genes from UP-SB19 and 37 RVC isolates were 79.98% identical and shared identity, TM-score, and dN/dS of 88.4%, 0.76, and 5.3210, along with 77.98%, 0.77, and 4.7483 with pig and human RVC isolates, respectively. The NSP4 gene of UP-SB37 RVC isolates has an identity, TM-score, and dN/dS of 98.95%, 0.76, and 0.2907, along with 83.12%, 0.34, and 0.2133 with pig and human RVC isolates, respectively. Phylogenetic analysis of the nucleotide sequences of the sloth bear RVC isolates assigned the isolate UP-SB37 to genotype G12, I2 for RVC structural genes VP7 and VP6, and E1 for NSP4 genes, respectively, while isolates UP-SB19 and UP-SB21 were classified as genotype G13 and GI7 based on the structural gene VP7, respectively. The study suggests that the RVCs circulating in the Indian sloth bear population are highly divergent and might have originated from pigs or humans, and further investigation focusing on the whole genome sequencing of the sloth bear RVC isolate may shed light on the virus origin and evolution.
Collapse
Affiliation(s)
- Yashpal Singh Malik
- ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - Mohd Ikram Ansari
- ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
- Department of Biosciences, Integral University, Lucknow 226026, India
| | - Mathesh Karikalan
- Centre for Wildlife Conservation Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Shubhankar Sircar
- ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA
| | | | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Kalpana Singh
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| |
Collapse
|
9
|
Boulbria G, Teixeira Costa C, Amenna-Bernard N, Labrut S, Normand V, Nicolazo T, Chocteau F, Chevance C, Jeusselin J, Brissonnier M, Lebret A. Microbiological Findings and Associated Histopathological Lesions in Neonatal Diarrhoea Cases between 2020 and 2022 in a French Veterinary Pig Practice. Vet Sci 2023; 10:vetsci10040304. [PMID: 37104459 PMCID: PMC10143693 DOI: 10.3390/vetsci10040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
This retrospective study described the aetiologies of neonatal diarrhoea cases and their associations with histological findings. A total of 106 diarrhoeic neonatal piglets were selected. Cultures, MALDI typings, PCRs and evaluation of intestinal lesions were performed. A total of 51 cases (48.1%) were positive for only one pathogen and 54 (50.9%) were positive for more than one pathogen. Clostridium perfringens type A was the most frequently detected pathogen (61.3%), followed by Enterococcus hirae (43.4%), rotavirus type A (38.7%), rotavirus type C (11.3%) and enterotoxigenic Escherichia coli (3.8%). Only lesions in the small intestine were correlated with detected pathogens. The detection of rotavirus was associated with an increased probability of observing villous atrophy (p < 0.001), crypt hyperplasia (p = 0.01) and leucocyte necrosis in the lamina propria (p = 0.05). The detection of Clostridium perfringens type A was associated with an increased probability of observing bacilli in close proximity to the mucosa (p < 0.001) and a decreased probability of observing epithelial necrosis (p = 0.04). Detection of Enterococcus hirae was associated with an increased probability of observing enteroadherent cocci (p < 0.001). Multivariate regression logistic models revealed that epithelial necrosis was more likely to occur in Enterococcus hirae-positive piglets (p < 0.02) and neutrophilic infiltrate was more likely to occur in Clostridium perfringens type A- and Enterococcus hirae-positive piglets (p = 0.04 and p = 0.02, respectively).
Collapse
Affiliation(s)
- Gwenaël Boulbria
- REZOOLUTION Pig Consulting Services, 56920 Noyal-Pontivy, France
- PORC.SPECTIVE Swine Vet Practice, 56920 Noyal-Pontivy, France
| | | | | | | | - Valérie Normand
- REZOOLUTION Pig Consulting Services, 56920 Noyal-Pontivy, France
- PORC.SPECTIVE Swine Vet Practice, 56920 Noyal-Pontivy, France
| | - Théo Nicolazo
- REZOOLUTION Pig Consulting Services, 56920 Noyal-Pontivy, France
| | - Florian Chocteau
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes University, 44007 Nantes, France
| | - Céline Chevance
- REZOOLUTION Pig Consulting Services, 56920 Noyal-Pontivy, France
- PORC.SPECTIVE Swine Vet Practice, 56920 Noyal-Pontivy, France
| | - Justine Jeusselin
- REZOOLUTION Pig Consulting Services, 56920 Noyal-Pontivy, France
- PORC.SPECTIVE Swine Vet Practice, 56920 Noyal-Pontivy, France
| | | | - Arnaud Lebret
- REZOOLUTION Pig Consulting Services, 56920 Noyal-Pontivy, France
- PORC.SPECTIVE Swine Vet Practice, 56920 Noyal-Pontivy, France
| |
Collapse
|
10
|
Diller JR, Thoner TW, Ogden KM. Mammalian orthoreoviruses exhibit rare genotype variability in genome constellations. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 110:105421. [PMID: 36871695 PMCID: PMC10112866 DOI: 10.1016/j.meegid.2023.105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Mammalian orthoreoviruses (reoviruses) are currently classified based on properties of the attachment protein, σ1. Four reovirus serotypes have been identified, three of which are represented by well-studied prototype human reovirus strains. Reoviruses contain ten segments of double-stranded RNA that encode 12 proteins and can reassort during coinfection. To understand the breadth of reovirus genetic diversity and its potential influence on reassortment, the sequence of the entire genome should be considered. While much is known about the prototype strains, a thorough analysis of all ten reovirus genome segment sequences has not previously been conducted. We analyzed phylogenetic relationships and nucleotide sequence conservation for each of the ten segments of more than 60 complete or nearly complete reovirus genome sequences, including those of the prototype strains. Using these relationships, we defined genotypes for each segment, with minimum nucleotide identities of 77-88% for most genotypes that contain several representative sequences. We applied segment genotypes to determine reovirus genome constellations, and we propose implementation of an updated reovirus genome classification system that incorporates genotype information for each segment. For most sequenced reoviruses, segments other than S1, which encodes σ1, cluster into a small number of genotypes and a limited array of genome constellations that do not differ greatly over time or based on animal host. However, a small number of reoviruses, including prototype strain Jones, have constellations in which segment genotypes differ from those of most other sequenced reoviruses. For these reoviruses, there is little evidence of reassortment with the major genotype. Future basic research studies that focus on the most genetically divergent reoviruses may provide new insights into reovirus biology. Analysis of available partial sequences and additional complete reovirus genome sequencing may also reveal reassortment biases, host preferences, or infection outcomes that are based on reovirus genotype.
Collapse
Affiliation(s)
- Julia R Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy W Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristen M Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Genz B, Gerszon J, Pollock Y, Gleeson B, Shankar R, Sellars MJ, Moser RJ. Detection and genetic diversity of porcine rotavirus A, B and C in eastern Australian piggeries. Aust Vet J 2023; 101:153-163. [PMID: 36651680 DOI: 10.1111/avj.13229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/19/2023]
Abstract
Rotaviruses (RV) have a high prevalence in piggeries worldwide and are one of the major pathogens causing severe diarrhoea in young pigs. RV species A, B, and C have been linked to piglet diarrhoea in Australian pig herds, but their genetic diversity has not been studied in detail. Based on sequencing of the structural viral protein 7 (VP7) RVA G genotypes G3, G4 and G5, and RVC types G1, G3, G5, and G6 have been identified in Australian piggeries in previous studies. Although occurrence of RVB was reported in Australia in 1988, no further genetic analysis has been conducted. To improve health management decisions in Australian pig herds, more information on RV prevalence and genetic diversity is needed. Here, 243 enteric samples collected from 20 pig farms within Eastern Australia were analysed for the presence of RV in different age groups using a novel PCR-based multiplex assay (Pork MultiPath™ enteric panel). RVA, RVB, and RVC were detected in 10, 14, and 14 farms, respectively. Further sequencing of VP7 in selected RV-positive samples revealed G genotypes G2, G5, G9 (RVA), G6, G8, G14, G16, G20 (RVB), and G1, G3, G5, G6 (RVC) present. RVA was only detected in young (<10 weeks old) pigs whereas RVB and RVC were also detected in older animals (>11 weeks old). Interestingly, RVB and RVC G-type occurrence differed between age groups. In conclusion, this study provides new insights on the prevalence and diversity of different RV species in pig herds of Eastern Australia whilst demonstrating the ability of the Pork MultiPath™ technology to accurately differentiate between these RV species.
Collapse
Affiliation(s)
- B Genz
- Research and Development, Genics Pty Ltd., Level 5, St Lucia, Australia
| | - J Gerszon
- Research and Development, Genics Pty Ltd., Level 5, St Lucia, Australia
| | - Y Pollock
- Veterinary Services, SunPork Farms, Brisbane, Australia
| | - B Gleeson
- Veterinary Services, SunPork Farms, Brisbane, Australia
| | - R Shankar
- Veterinary Services, SunPork Farms, Brisbane, Australia
| | - M J Sellars
- Research and Development, Genics Pty Ltd., Level 5, St Lucia, Australia
| | - R J Moser
- Research and Development, Genics Pty Ltd., Level 5, St Lucia, Australia
| |
Collapse
|
12
|
Joshi MS, Arya SA, Shinde MS, Ingle VC, Birade HS, Gopalkrishna V. Rotavirus C infections in asymptomatic piglets in India, 2009-2013: genotyping and phylogenetic analysis of all genomic segments. Arch Virol 2022; 167:2665-2675. [PMID: 36169718 DOI: 10.1007/s00705-022-05607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Asymptomatic infection with rotavirus C (RVC) was observed in pigs in India, with a detection rate of 20%. Sequencing of the VP6, VP7, and NSP4 genes of RVC strains identified the genotypes I7/I10, G1, and E5, respectively. Full genome sequencing of one of these strains revealed that the genotypes of the VP4, VP1, VP2, VP3, NSP1, NSP2, NSP3, and NSP5 genes were P1, R1, C1, M3, A1, N5, T5, and H1, respectively. The detection of porcine RVC strains at two different locations in India at different time points strongly suggests that they are circulating continuously in the pig population through asymptomatic infections.
Collapse
Affiliation(s)
- Madhuri S Joshi
- Enteric Viruses Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, 411 001, India.
| | - Shalu A Arya
- Enteric Viruses Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, 411 001, India
| | - Manohar S Shinde
- Enteric Viruses Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, 411 001, India
| | - Vijay C Ingle
- Department of Veterinary Microbiology and Animal Biotechnology, Nagpur Veterinary College, Nagpur, India
| | - Hemant S Birade
- Department of Animal Reproduction, Gynaecology and Obstetrics, Krantisinh Nana Patil College of Veterinary Science, Satara, India
| | - Varanasi Gopalkrishna
- Enteric Viruses Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, 411 001, India
| |
Collapse
|
13
|
Jiao R, Ji Z, Zhu X, Shi H, Chen J, Shi D, Liu J, Jing Z, Zhang J, Zhang L, Feng S, Zhang X, Feng L. Genome Analysis of the G6P6 Genotype of Porcine Group C Rotavirus in China. Animals (Basel) 2022; 12:2951. [PMID: 36359075 PMCID: PMC9657714 DOI: 10.3390/ani12212951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/29/2023] Open
Abstract
Swine enteric disease is the predominant cause of morbidity and mortality, and viral species involved in swine enteric disease include rotaviruses and coronaviruses, among others. Awareness of the circulating porcine rotavirus group C (PoRVC) in pig herds is critical to evaluate the potential impact of infection. At present, due to the lack of disease awareness and molecular diagnostic means, the research on RVC infection in China is not well-studied. In this study, diarrhea samples collected from pig farms were detected positive for RVC by PCR, and the full-length RVC was not previously reported for Chinese pig farms. This rotavirus strain was designated as RVC/Pig/CHN/JS02/2018/G6P6. A natural recombination event was observed with breakpoints at nucleotides (nt) 2509 to 2748 of the VP2 gene. Phylogenetic analysis based on nsp1 revealed that a new branch A10 formed. Collectively, our data suggest a potentially novel gene recombination event of RVC in the VP2 gene. These findings provide a new insight into the evolution of the rotavirus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
14
|
Kumar D, Anderson AV, Pittman J, Springer NL, Marthaler DG, Mwangi W. Antibody Response to Rotavirus C Pre-Farrow Natural Planned Exposure to Gilts and Their Piglets. Viruses 2022; 14:2250. [PMID: 36298806 PMCID: PMC9610825 DOI: 10.3390/v14102250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
A longitudinal study was conducted to investigate the dynamics of genotype-specific (G6 and P[5]) antibody response to different doses (3, 2 and 1) of rotavirus C (RVC) natural planned exposure (NPE) in gilt serum, colostrum/milk and piglet serum, and compare with antibody response to rotavirus A NPE (RVA genotypes G4, G5, P[7] and P[23]). G6 and P[5] antigens of RVC were expressed in mammalian and bacterial cells, and used to develop individual indirect ELISAs. For both antigens, group 1 with 3 doses of NPE resulted in significantly higher IgG and IgA levels in colostrum compared to other groups. In piglet serum, group 1 P[5] IgG levels were significantly higher than other study groups at day 0 and 7. Piglet serum had higher IgA levels for group 1 piglets compared to other groups for both antigens. A comparison of colostrum antibody levels to rotavirus A (RVA) and RVC revealed that colostrum RVC IgG and IgA titers were lower than RVA titers irrespective of the G and P-type. Next generation sequencing (NGS) detected same RVC genotypes (G6 and P[5]) circulating in the piglet population under the window of lactogenic immunity. We conclude that the low RVC load in NPE material (real-time PCR Ct-values 32.55, 29.32 and 30.30) failed to induce sufficient maternal immunity in gilts (low colostrum RVC antibody levels) and passively prevent piglets from natural RVC infection in the farrowing room. To the best of our knowledge, this is the first study comparing differences in antibody response to porcine RVA and RVC in a commercial setting.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Amanda V. Anderson
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Jeremy Pittman
- Smithfield Foods, Inc., 434 E Main St., Waverly, VA 23890, USA
| | - Nora L. Springer
- Clinical Pathology, Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
15
|
Kumar D, Shepherd FK, Springer NL, Mwangi W, Marthaler DG. Rotavirus Infection in Swine: Genotypic Diversity, Immune Responses, and Role of Gut Microbiome in Rotavirus Immunity. Pathogens 2022; 11:pathogens11101078. [PMID: 36297136 PMCID: PMC9607047 DOI: 10.3390/pathogens11101078] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Rotaviruses (RVs) are endemic in swine populations, and all swine herds certainly have a history of RV infection and circulation. Rotavirus A (RVA) and C (RVC) are the most common among all RV species reported in swine. RVA was considered most prevalent and pathogenic in swine; however, RVC has been emerging as a significant cause of enteritis in newborn piglets. RV eradication from swine herds is not practically achievable, hence producers’ mainly focus on minimizing the production impact of RV infections by reducing mortality and diarrhea. Since no intra-uterine passage of immunoglobulins occur in swine during gestation, newborn piglets are highly susceptible to RV infection at birth. Boosting lactogenic immunity in gilts by using vaccines and natural planned exposure (NPE) is currently the only way to prevent RV infections in piglets. RVs are highly diverse and multiple RV species have been reported from swine, which also contributes to the difficulties in preventing RV diarrhea in swine herds. Human RV-gut microbiome studies support a link between microbiome composition and oral RV immunogenicity. Such information is completely lacking for RVs in swine. It is not known how RV infection affects the functionality or structure of gut microbiome in swine. In this review, we provide a detailed overview of genotypic diversity of swine RVs, host-ranges, innate and adaptive immune responses to RVs, homotypic and heterotypic immunity to RVs, current methods used for RV management in swine herds, role of maternal immunity in piglet protection, and prospects of investigating swine gut microbiota in providing immunity against rotaviruses.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| | - Frances K Shepherd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55108, USA
| | - Nora L. Springer
- Clinical Pathology, Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| | - Douglas G. Marthaler
- Indical Inc., 1317 Edgewater Dr #3722, Orlando, FL 32804, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| |
Collapse
|
16
|
Guo Y, Raev S, Kick MK, Raque M, Saif LJ, Vlasova AN. Rotavirus C Replication in Porcine Intestinal Enteroids Reveals Roles for Cellular Cholesterol and Sialic Acids. Viruses 2022; 14:v14081825. [PMID: 36016447 PMCID: PMC9416568 DOI: 10.3390/v14081825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Rotaviruses (RVs) are a significant cause of severe diarrheal illness in infants and young animals, including pigs. Group C rotavirus (RVC) is an emerging pathogen increasingly reported in pigs and humans worldwide, and is currently recognized as the major cause of gastroenteritis in neonatal piglets that results in substantial economic losses to the pork industry. However, little is known about RVC pathogenesis due to the lack of a robust cell culture system, with the exception of the RVC Cowden strain. Here, we evaluated the permissiveness of porcine crypt-derived 3D and 2D intestinal enteroid (PIE) culture systems for RVC infection. Differentiated 3D and 2D PIEs were infected with porcine RVC (PRVC) Cowden G1P[1], PRVC104 G3P[18], and PRVC143 G6P[5] virulent strains, and the virus replication was measured by qRT-PCR. Our results demonstrated that all RVC strains replicated in 2D-PIEs poorly, while 3D-PIEs supported a higher level of replication, suggesting that RVC selectively infects terminally differentiated enterocytes, which were less abundant in the 2D vs. 3D PIE cultures. While cellular receptors for RVC are unknown, target cell surface carbohydrates, including histo-blood-group antigens (HBGAs) and sialic acids (SAs), are believed to play a role in cell attachment/entry. The evaluation of the selective binding of RVCs to different HBGAs revealed that PRVC Cowden G1P[1] replicated to the highest titers in the HBGA-A PIEs, while PRVC104 or PRVC143 achieved the highest titers in the HBGA-H PIEs. Further, contrasting outcomes were observed following sialidase treatment (resulting in terminal SA removal), which significantly enhanced Cowden and RVC143 replication, but inhibited the growth of PRVC104. These observations suggest that different RVC strains may recognize terminal (PRVC104) as well as internal (Cowden and RVC143) SAs on gangliosides. Finally, several cell culture additives, such as diethylaminoethyl (DEAE)-dextran, cholesterol, and bile extract, were tested to establish if they could enhance RVC replication. We observed that only DEAE-dextran significantly enhanced RVC attachment, but it had no effect on RVC replication. Additionally, the depletion of cellular cholesterol by MβCD inhibited Cowden replication, while the restoration of the cellular cholesterol partially reversed the MβCD effects. These results suggest that cellular cholesterol plays an important role in the replication of the PRVC strain tested. Overall, our study has established a novel robust and physiologically relevant system to investigate RVC pathogenesis. We also generated novel, experimentally derived evidence regarding the role of host glycans, DEAE, and cholesterol in RVC replication, which is critical for the development of control strategies.
Collapse
Affiliation(s)
- Yusheng Guo
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Sergei Raev
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Maryssa K. Kick
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Molly Raque
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Linda J. Saif
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Correspondence:
| |
Collapse
|
17
|
On the Infectious Causes of Neonatal Piglet Diarrhoea—A Review. Vet Sci 2022; 9:vetsci9080422. [PMID: 36006337 PMCID: PMC9414921 DOI: 10.3390/vetsci9080422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this paper is to review current knowledge on the relationship between presumptive infectious agents and neonatal porcine diarrhoea (NPD). The literature provides information on the rationale for this causation, including the first mention, main understandings gained with respect to, e.g., pathogenesis, and the knowledge to date on the specific relationships. Further, surveys on the presence and relative importance of these pathogens in NPD are included and the methodology used to identify the causation are discussed.
Collapse
|
18
|
Assessing the Epidemiology of Rotavirus A, B, C and H in Diarrheic Pigs of Different Ages in Northern Italy. Pathogens 2022; 11:pathogens11040467. [PMID: 35456143 PMCID: PMC9025647 DOI: 10.3390/pathogens11040467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Rotaviruses are classified in 10 groups (A to J), where rotavirus A (RVA) is the major cause of diarrhea in humans and animals. With some exceptions, there is scarce information on the epidemiology of non-A rotaviruses in human and animal hosts. Currently, five species (A, B, C, E and H) have been identified in pigs. In the present study we investigated the prevalence of RVA, RVB, RVC and RVH among diarrheic pigs of different ages, in different seasons and in the presence of co-infections. Two molecular assays were developed for the detection of porcine RVA, RVB, RVC and RVH and were used to screen 962 stool specimens from suckling, weaning and fattening pigs with acute enteritis. Overall, rotaviruses were detected in a high percentage of samples (78%), with RVA being predominant (53%), followed by RVC (45%), RVB (43%) and RVH (14%). RVA was more common in the suckling (58%) and weaning cohorts (64%), while RVB, RVC and RVH were also frequently detected in fattening pigs. Only RVA and RVB infections followed a seasonal trend and exhibited age-related differences. Rotavirus infections were frequently present in combination with other pathogens. The present study depicts a portrait of rich rotavirus diversity in porcine herds, identifying seasonal and age-related patterns of circulation of the different rotavirus species in the surveyed areas.
Collapse
|
19
|
Doerksen T, Christensen T, Lu A, Noll L, Bai J, Henningson J, Palinski R. Assessment of Porcine Rotavirus-associated virome variations in pigs with enteric disease. Vet Microbiol 2022; 270:109447. [PMID: 35561657 DOI: 10.1016/j.vetmic.2022.109447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 11/29/2022]
|
20
|
Oki H, Masuda T, Hayashi-Miyamoto M, Kawai M, Ito M, Madarame H, Fukase Y, Takemae H, Sakaguchi S, Furuya T, Mizutani T, Oba M, Nagai M. Genomic diversity and intragenic recombination of species C rotaviruses. J Gen Virol 2022; 103. [PMID: 35175914 DOI: 10.1099/jgv.0.001703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rotavirus C (RVC) is a major cause of diarrhoea in swine, cattle, and humans worldwide. RVC exhibits sequence diversity in all 11 genes, especially in VP4 and VP7, and all segment-based genotyping has been performed similar to rotavirus A. To date, recombination events have been reported in rotavirus A and B. However, there are no reports describing gene recombination of RVC, except for recombination in NSP3 between RVC and rotavirus H. In this study, nine porcine RVC strains identified in Japanese pigs were completely sequenced and analysed together with RVC sequences from the GenBank database. The analyses showed that sequences of the VP4, VP2, and NSP1 of several porcine RVC strains did not branch with any of those of the RVC strains in the GenBank database, suggesting new genotypes. Several homologous recombination events, between or within genotypes, were identified in the VP4, VP7, VP2, NSP1, and NSP3 genes. Of these, nine, one, and one intergenotypic recombination events in the VP4, VP2, and NSP3 genes, respectively, were supported with sufficient statistical values. Although these findings suggest occurrences of the intragenic recombination events in the RVC genome, potential sequence errors and poor sequence assemblies in the databases should be watched with care. The results in this study present data about the important recombination events of the RVCs, which influence evolution of the virus by aiding them to gain genetic diversity and plasticity, although further sequence data will be necessary to obtain more comprehensive understanding of such mechanisms.
Collapse
Affiliation(s)
- Hisako Oki
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa 920-3101, Japan
| | - Tsuneyuki Masuda
- Seibu Livestock Hygiene Service Center, Houki, Tottori 689-4213, Japan
| | | | - Megumi Kawai
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa 920-3101, Japan
| | - Mika Ito
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa 920-3101, Japan
| | - Hiroo Madarame
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Yuka Fukase
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Hitoshi Takemae
- Center for Infectious Diseases of Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Osaka Medical College, Osaka 569-8686, Japan
| | - Tetsuya Furuya
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Mizutani
- Center for Infectious Diseases of Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Mami Oba
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
- Center for Infectious Diseases of Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Nagai
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
- Center for Infectious Diseases of Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
21
|
Monteagudo LV, Benito AA, Lázaro-Gaspar S, Arnal JL, Martin-Jurado D, Menjon R, Quílez J. Occurrence of Rotavirus A Genotypes and Other Enteric Pathogens in Diarrheic Suckling Piglets from Spanish Swine Farms. Animals (Basel) 2022; 12:ani12030251. [PMID: 35158575 PMCID: PMC8833434 DOI: 10.3390/ani12030251] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Neonatal diarrhea is a major cause of economic losses in the swine industry worldwide and has significant impact in Spain, which is one of the biggest pork producers globally. Multiple infectious agents can contribute to this condition, with some viruses such as species A rotavirus (RVA) playing a major role. Studies on their occurrence and genetic diversity are essential for development of RVA vaccines. In this study, fecal samples from diarrheic suckling piglets originating from farms distributed throughout Spain were analyzed for RVA and four other common enteric pathogens using molecular methods. The individual prevalence was 89.4%, 64.4%, 44.9%, 33.7% and 4.4% for Clostridiumperfringens, Clostridioides (formerly Clostridium) difficile, species A rotavirus, species C rotavirus and porcine epidemic diarrhea virus, respectively. Most specimens (96.9%) were positive for at least one of the target pathogens and concurrent infections were common. The molecular characterization of RVA positive specimens of specific genes used for genotyping revealed the extensive genetic diversity of RVA strains circulating in swine herds in Spain. Comparison with genotypes contained in the commercial vaccine available in Spain showed differences in the identity of the predominant RVA genotypes from diarrheic piglets in the sampled pig farms. These findings contribute to the surveillance of RVA strains circulating in swine herds in Spain and may help optimize target vaccine design. Abstract Species A rotavirus (RVA) is a major viral pathogen causing diarrhea in suckling piglets. Studies on its genetic heterogeneity have implications for vaccine efficacy in the field. In this study, fecal samples (n = 866) from diarrheic piglets younger than 28 days were analyzed over a two-year period (2018–2019). Samples were submitted from 426 farms located in 36 provinces throughout Spain and were tested using real-time PCR (qPCR) and reverse transcription real-time PCR (RT-qPCR) for five enteric pathogens. The individual prevalence was 89.4%, 64.4%, 44.9%, 33.7% and 4.4% for Clostridiumperfringens, Clostridioides (formerly Clostridium) difficile, species A rotavirus, species C rotavirus and porcine epidemic diarrhea virus, respectively. Most specimens (96.9%) were positive for at least one of the target pathogens, and more than 80% of samples harbored mixed infections. Nucleotide sequencing of 70 specimens positive for RVA revealed the presence of the VP7 genotypes G4, G9, G3, G5, G11 and the VP4 genotypes P7, P23, P6 and P13, with the combinations G4P7 and G9P23 being the most prevalent, and especially in the areas with the highest pig population. The study shows the extensive genetic diversity of RVA strains as well as discrepancies with the genotypes contained in the vaccine available in Spain, and multiple amino acid differences in antigenic epitopes of different G- and P- genotypes with the vaccine strains. Further investigations are needed to determine the efficacy of the vaccine to confer clinical protection against heterologous strains.
Collapse
Affiliation(s)
- Luis V. Monteagudo
- Department of Anatomy, Embryology and Genetics, Faculty of Veterinary Sciences, University of Zaragoza, 50013 Zaragoza, Spain;
- Agrifood Institute of Aragón (IA2), University of Zaragoza-CITA, 50013 Zaragoza, Spain
| | - Alfredo A. Benito
- EXOPOL S.L, Pol Rio Gállego D/14, San Mateo del Gállego, 50840 Zaragoza, Spain; (A.A.B.); (S.L.-G.); (J.L.A.); (D.M.-J.)
| | - Sofía Lázaro-Gaspar
- EXOPOL S.L, Pol Rio Gállego D/14, San Mateo del Gállego, 50840 Zaragoza, Spain; (A.A.B.); (S.L.-G.); (J.L.A.); (D.M.-J.)
| | - José L. Arnal
- EXOPOL S.L, Pol Rio Gállego D/14, San Mateo del Gállego, 50840 Zaragoza, Spain; (A.A.B.); (S.L.-G.); (J.L.A.); (D.M.-J.)
| | - Desirée Martin-Jurado
- EXOPOL S.L, Pol Rio Gállego D/14, San Mateo del Gállego, 50840 Zaragoza, Spain; (A.A.B.); (S.L.-G.); (J.L.A.); (D.M.-J.)
| | - Rut Menjon
- MSD Animal Health España, Carbajosa de la Sagrada, 37188 Salamanca, Spain;
| | - Joaquín Quílez
- Agrifood Institute of Aragón (IA2), University of Zaragoza-CITA, 50013 Zaragoza, Spain
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Zaragoza, 50013 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-762150
| |
Collapse
|
22
|
Wang Y, Porter EP, Lu N, Zhu C, Noll LW, Hamill V, Brown SJ, Palinski RM, Bai J. Whole-genome classification of rotavirus C and genetic diversity of porcine strains in the USA. J Gen Virol 2021; 102. [PMID: 33950806 DOI: 10.1099/jgv.0.001598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rotavirus C (RVC) is associated with acute diarrhoea in both children and young animals. Because of its frequent occurrence, additional sequences have recently been generated. In this study, we sequenced 21 complete genomes from porcine diarrhoea samples and analysed them together with all available reference sequences collected from the GenBank database [National Center for Biotechnology Information (NCBI)]. Based on phylogenetic analysis and genetic distance calculation, the number of each segment was identified as 31G, 26P, 13I, 5R, 5C, 5M, 12A, 10 N, 9T, 8E and 4 H for genotypes encoding VP7, VP4, VP6, VP1, VP2, VP3 and NSP1, NSP2, NSP3, NSP4 and NSP5, respectively. From the analysis, genotypes G19-G31, P[22]-P[26], R5, A9-A12, N9-N10, T7-T9 and E6-E8 were defined as newly identified genotypes, and genotype C6 was combined with C5, and M6 was combined with M1, due to their closely related nature. Estimated with the identity frequency ratio between the intergenotype and intragenotype, the nucleotide identity cutoff values for different genotypes were determined as 85, 85, 86, 84, 83, 84, 82, 87, 84, 81 and 79 % for VP7, VP4, VP6, VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4 and NSP5, respectively. Genotyping of the 49 US strains indicated possible segment reassortment in 9 of the 11 segments, with the exceptions being VP1 and NSP5, and the most prevalent genotypes for each segment genes in the USA were G6/G5/G21/G9-P5/P4-I6/I5-R1-C5-M1-A8-N1/N10-T1-E1-H1. Our study updated the genotypes of RVC strains and provided more evidence of RVC strain diversity that may be relevant to better understand genetic diversity, and the distribution and evolution of RVC strains.
Collapse
Affiliation(s)
- Yin Wang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Elizabeth P Porter
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Nanyan Lu
- Bioinformatics Center, Kansas State University, Manhattan, KS 66506, USA
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Cong Zhu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Lance W Noll
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Vaughn Hamill
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Susan J Brown
- Bioinformatics Center, Kansas State University, Manhattan, KS 66506, USA
| | - Rachel M Palinski
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
23
|
Roczo-Farkas S, Dunlop RH, Donato CM, Kirkwood CD, McOrist S. Rotavirus group C infections in neonatal and grower pigs in Australia. Vet Rec 2021; 188:e296. [PMID: 33870517 DOI: 10.1002/vetr.296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/07/2021] [Accepted: 02/25/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Rotavirus infections of neonatal and older pigs are widely reported. Analysis of rotavirus group C prevalence and diversity has not previously been reported for Australian pig farms. METHODS Twenty-seven farms with or without diarrhoea present among neonatal or older pigs were enrolled across eastern Australia. Fresh faecal samples were analysed by ELISA for rotavirus and RNA extractions by polyacrylamide gel electrophoresis and RT-PCR for rotavirus. Rotavirus group C samples were genotyped via sequencing. RESULTS AND CONCLUSIONS Rotavirus infection was diagnosed in pigs on 10 of 19 farms investigated for neonatal diarrhoea, four with group A and six with group C; also among post-weaned (5- to 11-week-old) diarrhoeic pigs on two farms. Neonatal rotavirus group C infections were exclusively noted in piglets less than 1-week-old, consisting of farm infections with a single VP7 genotype (G5 or G6). Infections in post-weaned pigs were associated with multiple VP7 genotypes (G1, G3). This first report of rotavirus group C infections of Australian pigs suggests they may form a limited population of VP7 genotypes.
Collapse
Affiliation(s)
- Susie Roczo-Farkas
- Enteric Diseases Group, Murdoch Children's Research Institute, Victoria, Australia
| | - R Hugo Dunlop
- Chris Richards and Associates, Piper Lane, Victoria, Australia
| | - Celeste M Donato
- Enteric Diseases Group, Murdoch Children's Research Institute, Victoria, Australia
| | - Carl D Kirkwood
- Enteric Diseases Group, Murdoch Children's Research Institute, Victoria, Australia
| | - Steven McOrist
- Scolexia Pig Consultancy Co., Norwood Crescent, Victoria, Australia
| |
Collapse
|
24
|
Hull JJA, Qi M, Montmayeur AM, Kumar D, Velasquez DE, Moon SS, Magaña LC, Betrapally N, Ng TFF, Jiang B, Marthaler D. Metagenomic sequencing generates the whole genomes of porcine rotavirus A, C, and H from the United States. PLoS One 2020; 15:e0244498. [PMID: 33373390 PMCID: PMC7771860 DOI: 10.1371/journal.pone.0244498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The genus Rotavirus comprises eight species, designated A to H, and two recently identified tentative species I in dogs and J in bats. Species Rotavirus A, B, C and H (RVA, RVB, RVC and RVH) have been detected in humans and animals. While human and animal RVA are well characterized and defined, complete porcine genome sequences in the GenBank are limited compared to human strains. Here, we used a metagenomic approach to sequence the 11 segments of RVA, RVC and RVH strains from piglets in the United States (US) and explore the evolutionary relations of these RV species. Metagenomics identified Astroviridae, Picornaviridae, Caliciviridae, Coronoviridae in samples MN9.65 and OK5.68 while Picobirnaviridae and Arteriviridae were only identified in sample OK5.68. Whole genome sequencing and phylogenetic analyses identified multiple genotypes with the RVA of strain MN9.65 and OK5.68, with the genome constellation of G5/G9-P[7]/P[13]-I5/I5- R1/R1-C1-M1-A8-N1-T7-E1/E1-H1 and G5/G9-P[6]/P[7]-I5-R1/R1-C1-M1-A8-N1-T1/T7-E1/E1-H1, respectively. The RVA strains had a complex evolutionary relationship with other mammalian strains. The RVC strain OK5.68 had a genome constellation of G9-P[6]-I1-R1-C5-M6-A5-N1-T1-E1-H1, and shared an evolutionary relationship with porcine strains from the US. The RVH strains MN9.65 and OK5.68 had the genome constellation of G5-P1-I1-R1-C1-M1-A5-N1-T1-E4-H1 and G5-P1-I1-R1-C1-M1-A5-N1-T1-E1-H1, indicating multiple RVH genome constellations are circulating in the US. These findings allow us to understand the complexity of the enteric virome, develop improved screening methods for RVC and RVH strains, facilitate expanded rotavirus surveillance in pigs, and increase our understanding of the origin and evolution of rotavirus species.
Collapse
Affiliation(s)
- Jennifer J. A. Hull
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mingpu Qi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Anna M. Montmayeur
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Deepak Kumar
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Daniel E. Velasquez
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sung-Sil Moon
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Laura Cristal Magaña
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Naga Betrapally
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Terry Fei Fan Ng
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Baoming Jiang
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| | - Douglas Marthaler
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
25
|
Miyabe FM, Dall Agnol AM, Leme RA, Oliveira TES, Headley SA, Fernandes T, de Oliveira AG, Alfieri AF, Alfieri AA. Porcine rotavirus B as primary causative agent of diarrhea outbreaks in newborn piglets. Sci Rep 2020; 10:22002. [PMID: 33319798 PMCID: PMC7738533 DOI: 10.1038/s41598-020-78797-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Rotavirus (RV) is considered a major cause of acute viral gastroenteritis in young animals. RV is classified into nine species, five of which have been identified in pigs. Most studies worldwide have highlighted diarrhoea outbreaks caused by RVA, which is considered the most important RV species. In the present study, we described the detection and characterization of porcine RVB as a primary causative agent of diarrhoea outbreaks in pig herds in Brazil. The study showed a high frequency (64/90; 71.1%) of RVB diagnosis in newborn piglets associated with marked histopathological lesions in the small intestines. Phylogenetic analysis of the VP7 gene of wild-type RVB strains revealed a high diversity of G genotypes circulating in one geographic region of Brazil. Our findings suggest that RVB may be considered an important primary enteric pathogen in piglets and should be included in the routine differential diagnosis of enteric diseases in piglets.
Collapse
Affiliation(s)
- Flavia Megumi Miyabe
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, PO Box 10011, Londrina, Paraná, 86057-970, Brazil
- Multi-User Animal Health Laboratory-Molecular Biology Unit, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Alais Maria Dall Agnol
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, PO Box 10011, Londrina, Paraná, 86057-970, Brazil
- Multi-User Animal Health Laboratory-Molecular Biology Unit, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Raquel Arruda Leme
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, PO Box 10011, Londrina, Paraná, 86057-970, Brazil
- Multi-User Animal Health Laboratory-Molecular Biology Unit, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Thalita Evani Silva Oliveira
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Selwyn Arlington Headley
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Thiago Fernandes
- Laboratory of Electron Microscopy, Department of Microbiology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Admilton Gonçalves de Oliveira
- Laboratory of Electron Microscopy, Department of Microbiology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Alice Fernandes Alfieri
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, PO Box 10011, Londrina, Paraná, 86057-970, Brazil
- Multi-User Animal Health Laboratory-Molecular Biology Unit, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, PO Box 10011, Londrina, Paraná, 86057-970, Brazil.
- Multi-User Animal Health Laboratory-Molecular Biology Unit, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
26
|
Chepngeno J, Takanashi S, Diaz A, Michael H, Paim FC, Rahe MC, Hayes JR, Baker C, Marthaler D, Saif LJ, Vlasova AN. Comparative Sequence Analysis of Historic and Current Porcine Rotavirus C Strains and Their Pathogenesis in 3-Day-Old and 3-Week-Old Piglets. Front Microbiol 2020; 11:780. [PMID: 32395116 PMCID: PMC7197332 DOI: 10.3389/fmicb.2020.00780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
The increased prevalence of porcine group C rotavirus (PRVC) in suckling piglets and the emergence of new genetically distinct PRVC strains are concerning due to the associated significant economic losses they cause to the swine industry. We sequenced and analyzed two new PRVC strains, RV0104 (G3), and RV0143 (G6) and compared their pathogenesis with that of the historic strain Cowden (G1) in gnotobiotic (Gn) pigs. Near complete genome sequence analysis confirmed that these two strains were distinct from one another and the Cowden strain. VP1, VP2, VP6, NSP1-NSP3, and NSP5 genes were more similar between Cowden and RV0143, whereas VP3, VP7, and NSP4 shared higher nucleotide identity between Cowden and RV0104. Three-day-old and 3-week-old Gn piglets were inoculated with 105 FFU/piglet of Cowden, RV0104 or RV0143, or mock. All 3-day-old piglets developed severe diarrhea, anorexia, and lethargy, with mean PRVC fecal shedding titers peaking and numerically higher in RV0104 and RV0143 piglets on post infection day (PID) 2. Histopathological examination of the small intestine revealed that the 3-day-old Cowden and RV0104 inoculated piglets were mildly affected, while significant destruction of small intestinal villi was observed in the RV0143 inoculated piglets. Consistent with the highest degree of pathological changes in the small intestines, the RV0143 inoculated piglets had numerically higher levels of serum IL-17 and IFN-α cytokines and numerically lower PRVC IgA geometric mean antibody titers. Milder pathological changes and overall higher titers of PRVC IgA antibodies were observed in 3-week-old vs. 3-day-old piglets. Additionally, diarrhea was only observed in RV0104 and RV0143 (but not Cowden) inoculated 3-week-old piglets, while levels of serum IL-10 and PRVC IgA antibodies were higher in Cowden inoculated pigs, consistent with the lack of diarrhea. Thus, we confirmed that these current, genetically heterogeneous PRVC strains possess distinct pathobiological characteristics that may contribute to the increased prevalence of PRVC diarrhea in neonatal suckling piglets.
Collapse
Affiliation(s)
- Juliet Chepngeno
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Sayaka Takanashi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States.,Department of Developmental Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Annika Diaz
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States.,Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Husheem Michael
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Francine C Paim
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Michael C Rahe
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Jeffrey R Hayes
- Animal Disease Diagnostic Laboratory, The Ohio Department of Agriculture, Reynoldsburg, OH, United States
| | - Courtney Baker
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States.,Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Douglas Marthaler
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
27
|
Longitudinal study of rotavirus C VP6 genotype I6 in diarrheic piglets up to 1 week old. Braz J Microbiol 2020; 51:1345-1351. [PMID: 31997262 DOI: 10.1007/s42770-020-00234-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/23/2020] [Indexed: 01/10/2023] Open
Abstract
The reports of rotavirus C (RVC) involvement in diarrhea outbreaks in newborn piglets have been increasing in recent years. This longitudinal study, conducted over a 37-day period, aimed to evaluate the frequency of RVC infection in piglets aged up to 7 days obtained from a pig herd with a previous diagnosis of RVC infection in this age group. Piglets from 50 different litters were monitored daily for the occurrence of diarrhea, and all litters were classified into the following categories: sow parity order (PO) 1 to 5; litter size (LS) ≤ 10 piglets and > 10 piglets; and piglet birth weight (BW) 1.2 to 1.3 kg and > 1.3 to 1.4 kg. Two hundred six diarrheic fecal samples were collected and classified according to the fecal consistency score (pasty, semiliquid, liquid). Ten fecal samples were collected from asymptomatic piglets (control group). Fecal samples were screened for rotavirus (RV) by silver stained-polyacrylamide gel electrophoresis (ss-PAGE), and samples with inconclusive and negative-ss-PAGE results were submitted to RVC VP6 gene amplification by RT-PCR. RVC was identified in 71 (34.5%) samples, in 1 (10%) sample of the control group, and in piglets from 33 (66%) litters. The electrophoretic profile of RV species A was identified in only two samples. Of the 72 RVC-positive samples, 51 (70.8%) presented semiliquid or liquid consistency. There was no significant difference in either group regarding the production parameters (PO, LS, BW) evaluated. An analysis of the whole VP6 gene of three RVC field strains collected on the first, fifteenth, and last day of the experiment enabled us to identify genotype I6. This report describes the first longitudinal study examining epidemiological aspects of RVC infection in newborn piglets.
Collapse
|
28
|
Cortey M, Díaz I, Vidal A, Martín-Valls G, Franzo G, Gómez de Nova PJ, Darwich L, Puente H, Carvajal A, Martín M, Mateu E. High levels of unreported intraspecific diversity among RNA viruses in faeces of neonatal piglets with diarrhoea. BMC Vet Res 2019; 15:441. [PMID: 31805938 PMCID: PMC6896758 DOI: 10.1186/s12917-019-2204-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/29/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Diarrhoea is a major cause of death in neonate pigs and most of the viruses that cause it are RNA viruses. Next Generation Sequencing (NGS) deeply characterize the genetic diversity among rapidly mutating virus populations at the interspecific as well as the intraspecific level. The diversity of RNA viruses present in faeces of neonatal piglets suffering from diarrhoea in 47 farms, plus 4 samples from non-diarrhoeic piglets has been evaluated by NGS. Samples were selected among the cases submitted to the Veterinary Diagnostic Laboratories of Infectious Diseases of the Universitat Autònoma de Barcelona (Barcelona, Spain) and Universidad de León (León, Spain). RESULTS The analyses identified the presence of 12 virus species corresponding to 8 genera of RNA viruses. Most samples were co-infected by several viruses. Kobuvirus and Rotavirus were more commonly reported, with Sapovirus, Astrovirus 3, 4 and 5, Enterovirus G, Porcine epidemic diarrhoea virus, Pasivirus and Posavirus being less frequently detected. Most sequences showed a low identity with the sequences deposited in GenBank, allowing us to propose several new VP4 and VP7 genotypes for Rotavirus B and Rotavirus C. CONCLUSIONS Among the cases analysed, Rotaviruses were the main aetiological agents of diarrhoea in neonate pigs. Besides, in a small number of cases Kobuvirus and Sapovirus may also have an aetiological role. Even most animals were co-infected in early life, the association with enteric disease among the other examined viruses was unclear. The NGS method applied successfully characterized the RNA virome present in faeces and detected a high level of unreported intraspecific diversity.
Collapse
Affiliation(s)
- Martí Cortey
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ivan Díaz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Anna Vidal
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Gerard Martín-Valls
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Giovanni Franzo
- Department of Animal Medicine Production and Health (MAPS), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | - Pedro José Gómez de Nova
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Laila Darwich
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Héctor Puente
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Marga Martín
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
29
|
Chepngeno J, Diaz A, Paim FC, Saif LJ, Vlasova AN. Rotavirus C: prevalence in suckling piglets and development of virus-like particles to assess the influence of maternal immunity on the disease development. Vet Res 2019; 50:84. [PMID: 31640807 PMCID: PMC6805359 DOI: 10.1186/s13567-019-0705-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/24/2019] [Indexed: 01/05/2023] Open
Abstract
Rotavirus C (RVC) has been detected increasingly in humans and swine in different countries, including the US. It is associated with significant economic losses due to diarrheal disease in nursing piglets. In this study we aimed: (1) to determine the prevalence of RVC in healthy and diarrheic suckling piglets on US farms; and (2) to evaluate if maternal antibody (Ab) levels were associated with protection of newborn suckling piglets against RVC. There was a significantly higher prevalence (p = 0.0002) of litters with diarrhea born to gilts compared with those born to multiparous sows. Of 113 nursing piglet fecal samples tested, 76.1% were RVC RNA positive. Fecal RVC RNA was detected in significantly (p = 0.0419) higher quantities and more frequently in piglets with diarrhea compared with healthy ones (82.5 vs. 69.9%). With the exception of the historic strain Cowden (G1 genotype), field RVC strains do not replicate in cell culture, which is a major impediment for studying RVC pathogenesis and immunity. To circumvent this, we generated RVC virus-like particles (VLPs) for Cowden (G1), RV0104 (G3) and RV0143 (G6) and used them as antigens in ELISA to detect swine RVC Abs in serum and milk from the sows. Using RVC-VLP Ab ELISA we demonstrated that sows with diarrheic litters had significantly lower RVC IgA and IgG Ab titers in milk compared to those with healthy litters. Thus, our data suggest that insufficient lactogenic protection provided by gilts plays a key role in the development of and the increased prevalence of clinical RVC disease.
Collapse
Affiliation(s)
- Juliet Chepngeno
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH USA
| | - Annika Diaz
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH USA
- Present Address: College of Food, Agricultural and Environmental Sciences, The Ohio State University, Agricultural Administration Building, Columbus, OH 43210 USA
| | - Francine C. Paim
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH USA
| | - Linda J. Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH USA
| | - Anastasia N. Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH USA
| |
Collapse
|
30
|
Kozyra I, Kozyra J, Dors A, Rzeżutka A. Molecular chracterisation of porcine group A rotaviruses: Studies on the age-related occurrence and spatial distribution of circulating virus genotypes in Poland. Vet Microbiol 2019; 232:105-113. [PMID: 31030833 DOI: 10.1016/j.vetmic.2019.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/17/2023]
Abstract
Rotaviruses of group A (RVAs) commonly occur in farm animals. In pigs, they cause acute gastrointestinal disease which is considered as significant factor of economic losses in pig farming. The aim of the study was an assessment of the prevalence of rotavirus (RV) infections in farmed pigs in Poland, genotype identification of the virus strains in conjunction with their age-related occurrence and regional (province) distribution pattern in pig herds. In total, 920 pig faecal samples were collected from pigs between the ages of one week and two years old from 131 farms. RVAs were detected using ELISA and molecular methods followed by a sequence-based identification of G (VP7) and P (VP4) virus genotypes. RV antigen was found in 377 (41%) of pig faecal samples. The correlation between pig age and frequency of RV infections was shown. In the Polish pig population, 145 RVA strains representing 33 GP genotypes were identified. Subsequent molecular analysis revealed an age-dependent and regional diversity in distribution of genotypes and virus strains. Besides typical pig RVA strains, novel strains such as G5P [34], G9P[34], and human G1P[8] were identified in this animal host. Findings from this study showed a change over time in the genotype occurrence of circulating pig RVAs in Poland. The high genetic variability of RV strains and acquisition of new virus genotypes have led to the emergence of novel, genetically distinct RVAs. The changes in the genotype occurrence of RVA strains in pigs indicate the need for their continuous epidemiological surveillance.
Collapse
Affiliation(s)
- Iwona Kozyra
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - Jerzy Kozyra
- Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation, ul. Czartoryskich 8, 24-100, Puławy, Poland
| | - Arkadiusz Dors
- Department of Swine Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - Artur Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland.
| |
Collapse
|
31
|
Trovão NS, Shepherd FK, Herzberg K, Jarvis MC, Lam HC, Rovira A, Culhane MR, Nelson MI, Marthaler DG. Evolution of rotavirus C in humans and several domestic animal species. Zoonoses Public Health 2019; 66:546-557. [PMID: 30848076 DOI: 10.1111/zph.12575] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/21/2018] [Accepted: 02/10/2019] [Indexed: 12/19/2022]
Abstract
Rotavirus C (RVC) causes enteric disease in multiple species, including humans, swine, bovines, and canines. To date, the evolutionary relationships of RVC populations circulating in different host species are poorly understood, owing to the low availability of genetic sequence data. To address this gap, we sequenced 45 RVC complete genomes from swine samples collected in the United States and Mexico. A phylogenetic analysis of each genome segment indicates that RVC populations have been evolving independently in human, swine, canine, and bovine hosts for at least the last century, with inter-species transmission events occurring deep in the phylogenetic tree, and none in the last 100 years. Bovine and canine RVC populations clustered together nine of the 11 gene segments, indicating a shared common ancestor centuries ago. The evolutionary relationships of RVC in humans and swine were more complex, due to the extensive genetic diversity and multiple RVC clades identified in pigs, which were not structured geographically. Topological differences between trees inferred for different genome segments occurred frequently, including at nodes deep in the tree, indicating that RVC's evolutionary history includes multiple reassortment events that occurred a long time ago. Overall, we find that RVC is evolving within host-defined lineages, but the evolutionary history of RVC is more complex than previously recognized due to the high genetic diversity of RVC in swine, with a common ancestor dating back centuries. Pigs may act as a reservoir host for RVC, and a source of the lineages identified in other species, including humans, but additional sequencing is needed to understand the full diversity of this understudied pathogen across multiple host species.
Collapse
Affiliation(s)
- Nídia S Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Frances K Shepherd
- Comparative and Molecular Biosciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Katerina Herzberg
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Matthew C Jarvis
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota.,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Ham C Lam
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota.,Minnesota Supercomputing Institute, University of Minnesota, Saint Paul, Minnesota
| | - Albert Rovira
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Marie R Culhane
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Martha I Nelson
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| | - Douglas G Marthaler
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| |
Collapse
|
32
|
Simultaneous detection of five pig viruses associated with enteric disease in pigs using EvaGreen real-time PCR combined with melting curve analysis. J Virol Methods 2019; 268:1-8. [PMID: 30844408 DOI: 10.1016/j.jviromet.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/02/2019] [Accepted: 03/02/2019] [Indexed: 12/14/2022]
Abstract
In recent years, a series of porcine diarrhea viruses such as porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), rotaviruses of group A (RVA), rotaviruses of group C (RVC), and porcine circovirus 2 (PCV2) caused enormous economic losses all over the world. While any of these viruses is capable to cause disease alone, there is often concurrent infection with more than one virus on pig farms. In this study, a multiplex real-time PCR method based on EvaGreen fluorescent dye and melting curve analysis was established to simultaneously detect these five viruses in a single closed tube. Five distinct melt peaks were obtained with different melting temperature (Tm) value corresponding to each of the five viruses. This method was highly sensitive to detect and distinguish TGEV, RVA, RVC, PEDV and PCV2 with the limits of detection ranging from 5 to 50 copies/μL. The intra-assay and inter-assay reproducibility were good with coefficient of variation of Tm and cycle threshold values less than 0.32% and 2.86%, respectively. Testing of 90 field samples by the single and multiplex real-time PCR assays demonstrated a concordance of 91.1%. Thus, the EvaGreen multiplex real-time PCR is a rapid, sensitive and low-cost diagnostic tool for differential detection and routine surveillance of TGEV, RVA, RVC, PEDV and PCV2 in pigs.
Collapse
|
33
|
Tuanthap S, Phupolphan C, Luengyosluechakul S, Duang-In A, Theamboonlers A, Wattanaphansak S, Vongpunsawad S, Amonsin A, Poovorawan Y. Porcine rotavirus C in pigs with gastroenteritis on Thai swine farms, 2011-2016. PeerJ 2018; 6:e4724. [PMID: 29761045 PMCID: PMC5947060 DOI: 10.7717/peerj.4724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
Swine are economically important food animals, but highly contagious porcine epidemic diarrhea virus (PEDV) and rotavirus can afflict pig herds and contribute significantly to piglet morbidity and mortality. While there have been studies on rotavirus group A (RVA) in Thailand, reports of rotavirus group C (RVC) are limited. Here, we aimed to identify the prevalence of RVC circulating on Thai commercial swine farms. We analyzed 769 feces and intestine mucosal contents of pigs affected with diarrhea between 2011 and 2016 using RT-PCR specific for the PEDV spike (S), rotavirus glycoprotein (G) VP7, and protease-sensitive protein (P) VP4 genes. We found that 6.6% (51/769) of samples tested positive for RVC, of which 11 samples were co-infected with RVA and four samples were co-infected with PEDV. Three samples tested positive for all three viruses. Phylogenetic analysis of the VP7 gene showed that the most frequent RVC genotype was G1, which grouped with the prototypic RVC Cowden strain. While G6 and G9 were also common, G3 was relatively rare. Analysis of the VP4 gene revealed that the most common P type was P[5], followed by P[4], P[7], and P[1]. In all, there were six G/P combinations (G6P[5], G1P[1], G1P[4], G1P[5], G9P[4], and G9P[7]), of which G6P[5] was the most predominant.
Collapse
Affiliation(s)
- Supansa Tuanthap
- Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Cherdpong Phupolphan
- The Livestock Animal Hospital, Faculty of Veterinary Science, Chulalongkorn University, Nakorn Pathom, Thailand
| | - Supol Luengyosluechakul
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Ausanee Duang-In
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiradee Theamboonlers
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suphot Wattanaphansak
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Alongkorn Amonsin
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
34
|
Shepherd FK, Herrera-Ibata DM, Porter E, Homwong N, Hesse R, Bai J, Marthaler DG. Whole Genome Classification and Phylogenetic Analyses of Rotavirus B strains from the United States. Pathogens 2018; 7:pathogens7020044. [PMID: 29670022 PMCID: PMC6027208 DOI: 10.3390/pathogens7020044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/17/2022] Open
Abstract
Rotaviruses (RVs) are a major etiological agent of acute viral gastroenteritis in humans and young animals, with rotavirus B (RVB) often detected in suckling and weaned pigs. Group A rotavirus classification is currently based on the two outer capsid proteins, VP7 and VP4, and the middle layer protein, VP6. Using RVB strains generated in this study and reference sequences from GenBank, pairwise identity frequency graphs and phylogenetic trees were constructed for the eleven gene segments of RVB to estimate the nucleotide identity cutoff values for different genotypes and determine the genotype diversity per gene segment. Phylogenetic analysis of VP7, VP4, VP6, VP1–VP3, and NSP1–NSP5 identified 26G, 5P, 13I, 5R, 5C, 5M, 8A, 10N, 6T, 4E, and 7H genotypes, respectively. The analysis supports the previously proposed cutoff values for the VP7, VP6, NSP1, and NSP3 gene segments (80%, 81%, 76% and 78%, respectively) and suggests new cutoff values for the VP4, VP1, VP2, VP3, NSP2, NSP4, and NSP5 (80%, 78%, 79%, 77% 83%, 76%, and 79%, respectively). Reassortment events were detected between the porcine RVB strains from our study. This research describes the genome constellations for the complete genome of Group B rotaviruses in different host species.
Collapse
Affiliation(s)
- Frances K Shepherd
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Diana Maria Herrera-Ibata
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Elizabeth Porter
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Nitipong Homwong
- Department of Animal Science, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Chatuchak, Bankok 10900, Thailand.
| | - Richard Hesse
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Jianfa Bai
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Douglas G Marthaler
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
35
|
Bhat S, Kattoor JJ, Malik YS, Sircar S, Deol P, Rawat V, Rakholia R, Ghosh S, Vlasova AN, Nadia T, Dhama K, Kobayashi N. Species C Rotaviruses in Children with Diarrhea in India, 2010-2013: A Potentially Neglected Cause of Acute Gastroenteritis. Pathogens 2018; 7:E23. [PMID: 29462971 PMCID: PMC5874749 DOI: 10.3390/pathogens7010023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/10/2018] [Accepted: 02/14/2018] [Indexed: 11/16/2022] Open
Abstract
All over the world, children and adults are severely affected by acute gastroenteritis, caused by one of the emerging enteric pathogens, rotavirus C (RVC). At present, no extensive surveillance program is running for RVC in India, and its prevalence is largely unknown except cases of local outbreaks. Here, we intended to detect the presence of RVC in diarrheic children visiting or admitted to hospitals in Haldwani (state of Uttarakhand, India), a city located in the foothills of the Himalayas. During 2010-2013, we screened 119 samples for RVC by an RVC VP6 gene-specific RT-PCR. Of these, 38 (31.93%) were found positive, which is higher than the incidence rates reported so far from India. The phylogenetic analysis of the derived nucleotide sequences from one of the human RVC (HuRVC) isolates, designated as HuRVC/H28/2013/India, showed that the study isolate belongs to genotype I2, P2 and E2 for RVC structural genes 6 and 4 (VP6, and VP4) and non-structural gene 4 (NSP4), respectively. Furthermore, the VP6 gene of HuRVC/H28/2013/India shows the highest similarity to a recently-reported human-like porcine RVC (PoRVC/ASM140/2013/India, KT932963) from India suggesting zoonotic transmission. We also report a full-length NSP4 gene sequence of human RVC from India. Under the One-health platforms there is a need to launch combined human and animal RVC surveillance programs for a better understanding of the epidemiology of RVC infections and for implementing control strategies.Reoviridae, possess 11 double-stranded segments of RNA that encode six structural viral proteins (VP1, VP2, VP3, VP4, VP6, VP7) and five/six non-structural proteins (NSP1-NSP5/6) [7]. Based on the antigenic properties of the major inner capsid protein (VP6), RVs are subdivided into eight well-characterized species (A-H) and two putative species viz. I and J [8-10]. Humans and other mammalian species are affected by species A, B, C and H rotaviruses and birds by species D, F and G, and species E has been reported exclusively in pigs [7,8,11-17]. The newly-proposed species I is reported in dogs [18] and cats [19], whereas species J is found in bats [10].
Collapse
Affiliation(s)
- Sudipta Bhat
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India.
| | - Jobin Jose Kattoor
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India.
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India.
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India.
| | - Pallavi Deol
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India.
| | - Vinita Rawat
- Department of Microbiology, Government Medical College, Haldwani, Nainital, Uttarakhand 263 139, India.
| | - Ritu Rakholia
- Department of Pediatrics, Government Medical College, Haldwani, Nainital, Uttarakhand 263 139, India.
| | - Souvik Ghosh
- Department of Biomedical Sciences, One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies.
| | - Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Touil Nadia
- Laboratoire de Biosécurité et de Recherche, Hôpital Militaire d'Instruction Med V de Rabat; 110 000 Morocco.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India.
| | - Nobumichi Kobayashi
- Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan.
| |
Collapse
|
36
|
Suzuki T, Hasebe A. A provisional complete genome-based genotyping system for rotavirus species C from terrestrial mammals. J Gen Virol 2017; 98:2647-2662. [DOI: 10.1099/jgv.0.000953] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Tohru Suzuki
- Division of Viral Disease and Epidemiology, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ayako Hasebe
- Gifu Prefectural Central Livestock Health and Sanitation Office, Gifu, Japan
| |
Collapse
|
37
|
First Detection of Rotavirus Group C in Asymptomatic Pigs of Smallholder Farms in East Africa. Pathogens 2017; 6:pathogens6030037. [PMID: 28805733 PMCID: PMC5617994 DOI: 10.3390/pathogens6030037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/07/2017] [Accepted: 08/11/2017] [Indexed: 02/05/2023] Open
Abstract
Abstract: Group C rotavirus (RVC) has been described to be a causative agent of gastroenteritis in humans and animals including pigs, cows, and dogs. Fecal samples collected from asymptomatic pigs in smallholder swine farms in Kenya and Uganda were screened for the presence of group C rotaviruses (RVC) using a reverse transcription-polymerase chain reaction assay. A total of 446 samples were tested and 37 were positive (8.3%). A significantly larger (p < 0.05) number of RVC-positive samples was detected in groups of older pigs (5-6 months) than in younger piglets (1-2 months). There were no significant differences in the RVC detection rate between the pigs that were full time housed/tethered and those that were free range combined with housing/tethering. After compiling these data with diagnostic results for group A rotaviruses (RVA), 13 RVC-positive samples were also positive for RVA. This study provides the first evidence that porcine group C rotavirus may be detected frequently in asymptomatic piglets (aged < 1-6 months) in East Africa. The occurrence of RVC in mixed infections with RVA and other enteric pathogens requires further research to investigate the pathogenic potential of RVC in pigs.
Collapse
|
38
|
Kattoor JJ, Saurabh S, Malik YS, Sircar S, Dhama K, Ghosh S, Bányai K, Kobayashi N, Singh RK. Unexpected detection of porcine rotavirus C strains carrying human origin VP6 gene. Vet Q 2017. [DOI: 10.1080/01652176.2017.1346849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jobin Jose Kattoor
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Sharad Saurabh
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Souvik Ghosh
- Department of Biomedical Sciences, One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, West Indies
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nobumichi Kobayashi
- School of Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | |
Collapse
|
39
|
Tiku VR, Jiang B, Kumar P, Aneja S, Bagga A, Bhan MK, Ray P. First study conducted in Northern India that identifies group C rotavirus as the etiological agent of severe diarrhea in children in Delhi. Virol J 2017; 14:100. [PMID: 28558823 PMCID: PMC5450416 DOI: 10.1186/s12985-017-0767-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/22/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Group C Rotavirus (RVC) is an enteric pathogen responsible for acute gastroenteritis in children and adults globally. At present there are no surveillance studies on group C Rotaviruses in India and therefore their prevalence in India remains unknown. The present study aimed to evaluate group C rotavirus infection among <5 years old children hospitalized with acute gastroenteritis in New Delhi. METHODS A total of 350 fecal specimens were collected during September 2013 to November 2014 from <5 years old diarrheal patients admitted at KSCH hospital, Delhi. The samples found negative for group A rotavirus (N = 180) by Enzyme immunoassay were screened for group C rotavirus by RT-PCR with VP6, VP7 and VP4 gene specific primers. The PCR products were further sequenced (VP6, VP7, VP4) and analyzed to ascertain their origin and G and P genotypes. RESULTS Six out of 180 (group A rotavirus negative) samples were found positive for group C rotavirus by VP6 gene specific RT-PCR, of which 3 were also found positive for VP7 and VP4 genes. Phylogenetic analysis of VP7 and VP4 genes of these showed them to be G4 and P[2] genotypes. Overall, the nucleotide sequence data (VP6, VP7 and VP4) revealed a close relationship with the human group C rotavirus with no evidence of animal ancestry. Interestingly, the nucleotide sequence analysis of various genes also indicated differences in their origin. While the identity matrix of VP4 gene (n = 3) showed high amino acid sequence identity (97.60 to 98.20%) with Korean strain, the VP6 gene (n = 6) showed maximum identity with Nigerian strain (96.40 to 97.60%) and VP7 gene (n = 3) with Bangladeshi and USA strains. This is true for all analyzed samples. CONCLUSION Our study demonstrated the group C rotavirus as the cause of severe diarrhea in young children in Delhi and provides insights on the origin of group C rotavirus genes among the local strains indicating their source of transmission. Our study also highlights the need for a simple and reliable diagnostic test that can be utilized to determine the disease burden due to group C rotavirus in India.
Collapse
Affiliation(s)
| | - Baoming Jiang
- Centers for Disease Control and Prevention, Atlanta, USA
| | - Praveen Kumar
- Kalawati Saran Children's Hospital, Lady Hardinge Medical College, New Delhi, India
| | - Satender Aneja
- Kalawati Saran Children's Hospital, Lady Hardinge Medical College, New Delhi, India
| | - Arvind Bagga
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Maharaj Kishen Bhan
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Pratima Ray
- Department of Biotechnology, Faculty of Science, Jamia Hamdard University, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
40
|
Vlasova AN, Amimo JO, Saif LJ. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies. Viruses 2017; 9:v9030048. [PMID: 28335454 PMCID: PMC5371803 DOI: 10.3390/v9030048] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Rotaviruses (RVs) are a major cause of acute viral gastroenteritis in young animals and children worldwide. Immunocompetent adults of different species become resistant to clinical disease due to post-infection immunity, immune system maturation and gut physiological changes. Of the 9 RV genogroups (A–I), RV A, B, and C (RVA, RVB, and RVC, respectively) are associated with diarrhea in piglets. Although discovered decades ago, porcine genogroup E RVs (RVE) are uncommon and their pathogenesis is not studied well. The presence of porcine RV H (RVH), a newly defined distinct genogroup, was recently confirmed in diarrheic pigs in Japan, Brazil, and the US. The complex epidemiology, pathogenicity and high genetic diversity of porcine RVAs are widely recognized and well-studied. More recent data show a significant genetic diversity based on the VP7 gene analysis of RVB and C strains in pigs. In this review, we will summarize previous and recent research to provide insights on historic and current prevalence and genetic diversity of porcine RVs in different geographic regions and production systems. We will also provide a brief overview of immune responses to porcine RVs, available control strategies and zoonotic potential of different RV genotypes. An improved understanding of the above parameters may lead to the development of more optimal strategies to manage RV diarrheal disease in swine and humans.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Joshua O Amimo
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi 30197, Kenya.
- Bioscience of Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi 30709, Kenya.
| | - Linda J Saif
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
41
|
Phan MVT, Anh PH, Cuong NV, Munnink BBO, van der Hoek L, My PT, Tri TN, Bryant JE, Baker S, Thwaites G, Woolhouse M, Kellam P, Rabaa MA, Cotten M. Unbiased whole-genome deep sequencing of human and porcine stool samples reveals circulation of multiple groups of rotaviruses and a putative zoonotic infection. Virus Evol 2016; 2:vew027. [PMID: 28748110 PMCID: PMC5522372 DOI: 10.1093/ve/vew027] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coordinated and synchronous surveillance for zoonotic viruses in both human clinical cases and animal reservoirs provides an opportunity to identify interspecies virus movement. Rotavirus (RV) is an important cause of viral gastroenteritis in humans and animals. In this study, we document the RV diversity within co-located humans and animals sampled from the Mekong delta region of Vietnam using a primer-independent, agnostic, deep sequencing approach. A total of 296 stool samples (146 from diarrhoeal human patients and 150 from pigs living in the same geographical region) were directly sequenced, generating the genomic sequences of sixty human rotaviruses (all group A) and thirty-one porcine rotaviruses (thirteen group A, seven group B, six group C, and five group H). Phylogenetic analyses showed the co-circulation of multiple distinct RV group A (RVA) genotypes/strains, many of which were divergent from the strain components of licensed RVA vaccines, as well as considerable virus diversity in pigs including full genomes of rotaviruses in groups B, C, and H, none of which have been previously reported in Vietnam. Furthermore, the detection of an atypical RVA genotype constellation (G4-P[6]-I1-R1-C1-M1-A8-N1-T7-E1-H1) in a human patient and a pig from the same region provides some evidence for a zoonotic event.
Collapse
Affiliation(s)
- My V T Phan
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Pham Hong Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen Van Cuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Bas B Oude Munnink
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Phuc Tran My
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tue Ngo Tri
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Juliet E Bryant
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen Baker
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,London School of Tropical Medicine and Hygiene, London, UK
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mark Woolhouse
- Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh, UK
| | - Paul Kellam
- Kymab Inc., Cambridge, UK.,Imperial College, London, UK
| | - Maia A Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Matthew Cotten
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.,Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
42
|
Molinari BLD, Possatti F, Lorenzetti E, Alfieri AF, Alfieri AA. Unusual outbreak of post-weaning porcine diarrhea caused by single and mixed infections of rotavirus groups A, B, C, and H. Vet Microbiol 2016; 193:125-32. [DOI: 10.1016/j.vetmic.2016.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/13/2016] [Accepted: 08/16/2016] [Indexed: 02/06/2023]
|
43
|
Niira K, Ito M, Masuda T, Saitou T, Abe T, Komoto S, Sato M, Yamasato H, Kishimoto M, Naoi Y, Sano K, Tuchiaka S, Okada T, Omatsu T, Furuya T, Aoki H, Katayama Y, Oba M, Shirai J, Taniguchi K, Mizutani T, Nagai M. Whole genome sequences of Japanese porcine species C rotaviruses reveal a high diversity of genotypes of individual genes and will contribute to a comprehensive, generally accepted classification system. INFECTION GENETICS AND EVOLUTION 2016; 44:106-113. [PMID: 27353186 DOI: 10.1016/j.meegid.2016.06.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022]
Abstract
Porcine rotavirus C (RVC) is distributed throughout the world and is thought to be a pathogenic agent of diarrhea in piglets. Although, the VP7, VP4, and VP6 gene sequences of Japanese porcine RVCs are currently available, there is no whole-genome sequence data of Japanese RVC. Furthermore, only one to three sequences are available for porcine RVC VP1-VP3 and NSP1-NSP3 genes. Therefore, we determined nearly full-length whole-genome sequences of nine Japanese porcine RVCs from seven piglets with diarrhea and two healthy pigs and compared them with published RVC sequences from a database. The VP7 genes of two Japanese RVCs from healthy pigs were highly divergent from other known RVC strains and were provisionally classified as G12 and G13 based on the 86% nucleotide identity cut-off value. Pairwise sequence identity calculations and phylogenetic analyses revealed that candidate novel genotypes of porcine Japanese RVC were identified in the NSP1, NSP2 and NSP3 encoding genes, respectively. Furthermore, VP3 of Japanese porcine RVCs was shown to be closely related to human RVCs, suggesting a gene reassortment event between porcine and human RVCs and past interspecies transmission. The present study demonstrated that porcine RVCs show greater genetic diversity among strains than human and bovine RVCs.
Collapse
Affiliation(s)
- Kazutaka Niira
- Tochigi Prefectural South District Animal Hygiene Service Center, Tochigi, Tochigi 328-0002, Japan
| | - Mika Ito
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa 920-3101, Japan
| | - Tsuneyuki Masuda
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 682-0017, Japan
| | - Toshiya Saitou
- Tochigi Prefectural Central District Animal Hygiene Service Center, Utsunomiya, Tochigi 321-0905, Japan
| | - Tadatsugu Abe
- Tochigi Prefectural Central District Animal Hygiene Service Center, Utsunomiya, Tochigi 321-0905, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Mitsuo Sato
- Tochigi Prefectural Central District Animal Hygiene Service Center, Utsunomiya, Tochigi 321-0905, Japan
| | - Hiroshi Yamasato
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 682-0017, Japan
| | - Mai Kishimoto
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kaori Sano
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Shinobu Tuchiaka
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Takashi Okada
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Furuya
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Junsuke Shirai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Nagai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
44
|
Theuns S, Conceição-Neto N, Zeller M, Heylen E, Roukaerts IDM, Desmarets LMB, Van Ranst M, Nauwynck HJ, Matthijnssens J. Characterization of a genetically heterogeneous porcine rotavirus C, and other viruses present in the fecal virome of a non-diarrheic Belgian piglet. INFECTION GENETICS AND EVOLUTION 2016; 43:135-45. [PMID: 27184192 PMCID: PMC7172746 DOI: 10.1016/j.meegid.2016.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/15/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022]
Abstract
Next-generation sequencing (NGS) technologies are becoming increasingly accessible, leading to an expanded interest in the composition of the porcine enteric virome. In the present study, the fecal virome of a non-diarrheic Belgian piglet was determined. Although the virome of only a single piglet was analyzed, some interesting data were obtained, including the second complete genome of a pig group C rotavirus (RVC). This Belgian strain was only distantly related to the only other completely characterized pig RVC strain, Cowden. Its relatedness to RVC strains from other host species was also analyzed and the porcine strain found in our study was only distantly related to RVCs detected in humans and cows. The gene encoding the outer capsid protein VP7 belonged to the rare porcine G3 genotype, which might be serologically distinct from most other pig RVC strains. A putative novel RVC VP6 genotype was identified as well. A group A rotavirus strain also present in this fecal sample contained the rare pig genotype combination G11P[27], but was only partially characterized. Typical pig RVA genotypes I5, A8, and T7 were found for the viral proteins VP6, NSP1, and NSP3, respectively. Interestingly, the fecal virome of the piglet also contained an astrovirus and an enterovirus, of which the complete genomes were characterized. Results of the current study indicate that many viruses may be present simultaneously in fecal samples of non-diarrheic piglets. In this study, these viruses could not be directly associated with any disease, but still they might have had a potential subclinical impact on pig growth performance. The fast evolution of NGS will be a powerful tool for future diagnostics in veterinary practice. Its application will certainly lead to better insights into the relevance of many (sub)clinical enteric viral infections, that may have remained unnoticed using traditional diagnostic techniques. This will stimulate the development of new and durable prophylactic measures to improve pig health and production. The virome of a non-diarrheic Belgian piglet was determined. Porcine group C and A rotaviruses, and an astrovirus and enterovirus were found. The second complete genome of a pig group C rotavirus was fully characterized. The Belgian rotavirus C strain was only distantly related to pig strain Cowden. A putative novel genotype of VP6 of the RVC strains was detected.
Collapse
Affiliation(s)
- Sebastiaan Theuns
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke B-9820, Belgium.
| | - Nádia Conceição-Neto
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, B-3000, Leuven, Belgium
| | - Mark Zeller
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000 Leuven, Belgium
| | - Elisabeth Heylen
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000 Leuven, Belgium
| | - Inge D M Roukaerts
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke B-9820, Belgium
| | - Lowiese M B Desmarets
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke B-9820, Belgium
| | - Marc Van Ranst
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, B-3000, Leuven, Belgium
| | - Hans J Nauwynck
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke B-9820, Belgium
| | - Jelle Matthijnssens
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000 Leuven, Belgium
| |
Collapse
|
45
|
Medici MC, Tummolo F, Martella V, Arcangeletti MC, De Conto F, Chezzi C, Fehér E, Marton S, Calderaro A, Bányai K. Analysis of the full genome of human group C rotaviruses reveals lineage diversification and reassortment. J Gen Virol 2016; 97:1888-1898. [PMID: 27154899 DOI: 10.1099/jgv.0.000497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Group C rotaviruses (RVC) are enteric pathogens of humans and animals. Whole-genome sequences are available only for few RVCs, leaving gaps in our knowledge about their genetic diversity. We determined the full-length genome sequence of two human RVCs (PR2593/2004 and PR713/2012), detected in Italy from hospital-based surveillance for rotavirus infection in 2004 and 2012. In the 11 RNA genomic segments, the two Italian RVCs segregated within separate intra-genotypic lineages showed variation ranging from 1.9 % (VP6) to 15.9 % (VP3) at the nucleotide level. Comprehensive analysis of human RVC sequences available in the databases allowed us to reveal the existence of at least two major genome configurations, defined as type I and type II. Human RVCs of type I were all associated with the M3 VP3 genotype, including the Italian strain PR2593/2004. Conversely, human RVCs of type II were all associated with the M2 VP3 genotype, including the Italian strain PR713/2012. Reassortant RVC strains between these major genome configurations were identified. Although only a few full-genome sequences of human RVCs, mostly of Asian origin, are available, the analysis of human RVC sequences retrieved from the databases indicates that at least two intra-genotypic RVC lineages circulate in European countries. Gathering more sequence data is necessary to develop a standardized genotype and intra-genotypic lineage classification system useful for epidemiological investigations and avoiding confusion in the literature.
Collapse
Affiliation(s)
- Maria Cristina Medici
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Fabio Tummolo
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, Valenzano, Italy
| | - Maria Cristina Arcangeletti
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Flora De Conto
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Carlo Chezzi
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Enikő Fehér
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilvia Marton
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Adriana Calderaro
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
46
|
Homwong N, Diaz A, Rossow S, Ciarlet M, Marthaler D. Three-Level Mixed-Effects Logistic Regression Analysis Reveals Complex Epidemiology of Swine Rotaviruses in Diagnostic Samples from North America. PLoS One 2016; 11:e0154734. [PMID: 27145176 PMCID: PMC4856330 DOI: 10.1371/journal.pone.0154734] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/18/2016] [Indexed: 11/27/2022] Open
Abstract
Rotaviruses (RV) are important causes of diarrhea in animals, especially in domestic animals. Of the 9 RV species, rotavirus A, B, and C (RVA, RVB, and RVC, respectively) had been established as important causes of diarrhea in pigs. The Minnesota Veterinary Diagnostic Laboratory receives swine stool samples from North America to determine the etiologic agents of disease. Between November 2009 and October 2011, 7,508 samples from pigs with diarrhea were submitted to determine if enteric pathogens, including RV, were present in the samples. All samples were tested for RVA, RVB, and RVC by real time RT-PCR. The majority of the samples (82%) were positive for RVA, RVB, and/or RVC. To better understand the risk factors associated with RV infections in swine diagnostic samples, three-level mixed-effects logistic regression models (3L-MLMs) were used to estimate associations among RV species, age, and geographical variability within the major swine production regions in North America. The conditional odds ratios (cORs) for RVA and RVB detection were lower for 1–3 day old pigs when compared to any other age group. However, the cOR of RVC detection in 1–3 day old pigs was significantly higher (p < 0.001) than pigs in the 4–20 days old and >55 day old age groups. Furthermore, pigs in the 21–55 day old age group had statistically higher cORs of RV co-detection compared to 1–3 day old pigs (p < 0.001). The 3L-MLMs indicated that RV status was more similar within states than among states or within each region. Our results indicated that 3L-MLMs are a powerful and adaptable tool to handle and analyze large-hierarchical datasets. In addition, our results indicated that, overall, swine RV epidemiology is complex, and RV species are associated with different age groups and vary by regions in North America.
Collapse
Affiliation(s)
- Nitipong Homwong
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- Department of Animal Science, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Andres Diaz
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Stephanie Rossow
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Max Ciarlet
- Vaccines Clinical Research and Development, GlaxoSmithKline Vaccines, Cambridge, Massachusetts, United States of America
| | - Douglas Marthaler
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
47
|
Doan YH, Haga K, Fujimoto A, Fujii Y, Takai-Todaka R, Oka T, Kimura H, Yoshizumi S, Shigemoto N, Okamoto-Nakagawa R, Shirabe K, Shinomiya H, Sakon N, Katayama K. Genetic analysis of human rotavirus C: The appearance of Indian-Bangladeshi strain in Far East Asian countries. INFECTION GENETICS AND EVOLUTION 2016; 41:160-173. [PMID: 27071530 DOI: 10.1016/j.meegid.2016.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 11/30/2022]
Abstract
Rotaviruses C (RVCs) circulate worldwide as an enteric pathogen in both humans and animals. Most studies of their genetic diversity focus on the VP7 and VP4 genes, but the complete genomes of 18 human RVCs have been described in independent studies. The genetic background of the Far East Asian RVCs is different than other human RVCs that were found in India and Bangladesh. Recently, a RVC detected in 2010 in South Korea had genetic background similar to the Indian-Bangladeshi RVCs. This study was undertaken to determine the whole genome of eight Japanese RVCs detected in 2005-2012, and to compare them with other human and animal global RVCs to better understand the genetic background of contemporary Far East Asian RVC. By phylogenetic analysis, the human RVCs appeared to be distinct from animal RVCs. Among human RVCs, three lineage constellations had prolonged circulation. The genetic background of the Far East Asian RVC was distinguished from Indian-Bangladeshi RVC as reported earlier. However, we found one Japanese RVC in 2012 that carried the genetic background of Indian-Bangladeshi RVC, whereas the remaining seven Japanese RVCs carried the typical genetic background of Far East Asian RVC. This is the first report of the Indian-Bangladeshi RVC in Japan. With that observation and the reassortment event of human RVCs in Hungary, our study indicates that the RVCs are spreading from one region to another.
Collapse
Affiliation(s)
- Yen Hai Doan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kei Haga
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akira Fujimoto
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Reiko Takai-Todaka
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Naoki Shigemoto
- Hiroshima Prefectural Technology Research Institute, Hiroshima, Japan
| | | | - Komei Shirabe
- Yamaguchi Prefectural Institute of Public Health and Environment, Yamaguchi, Japan
| | - Hiroto Shinomiya
- Ehime Prefectural Institute of Public Health and Environmental Science, Ehime, Japan
| | - Naomi Sakon
- Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
48
|
Marthaler D, Raymond L, Jiang Y, Collins J, Rossow K, Rovira A. Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus. Emerg Infect Dis 2016; 20:1347-50. [PMID: 25075556 PMCID: PMC4111195 DOI: 10.3201/eid2008.140526] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In February 2014, porcine deltacoronavirus (PDCoV) was identified in the United States. We developed a PDCoV real-time reverse transcription PCR that identified PDCoV in 30% of samples tested. Four additional PDCoV genomes from the United States were sequenced; these had ≈99%-100% nt similarity to the other US PDCoV strains.
Collapse
|
49
|
Genetic heterogeneity of the VP6 gene and predominance of G6P[5] genotypes of Brazilian porcine rotavirus C field strains. Arch Virol 2016; 161:1061-7. [DOI: 10.1007/s00705-016-2750-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/31/2015] [Indexed: 02/06/2023]
|
50
|
Eren E, Zamuda K, Patton JT. Modeling of the rotavirus group C capsid predicts a surface topology distinct from other rotavirus species. Virology 2016; 487:150-62. [PMID: 26524514 PMCID: PMC4679652 DOI: 10.1016/j.virol.2015.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 11/21/2022]
Abstract
Rotavirus C (RVC) causes sporadic gastroenteritis in adults and is an established enteric pathogen of swine. Because RVC strains grow poorly in cell culture, which hinders generation of virion-derived RVC triple-layered-particle (TLP) structures, we used the known Rotavirus A (RVA) capsid structure to model the human RVC (Bristol) capsid. Comparative analysis of RVA and RVC capsid proteins showed major differences at the VP7 layer, an important target region for vaccine development due to its antigenic properties. Our model predicted the presence of a surface extended loop in RVC, which could form a major antigenic site on the capsid. We analyzed variations in the glycosylation patterns among RV capsids and identified group specific conserved sites. In addition, our results showed a smaller RVC VP4 foot, which protrudes toward the intermediate VP6 layer, in comparison to that of RVA. Finally, our results showed major structural differences at the VP8* glycan recognition sites.
Collapse
Affiliation(s)
- Elif Eren
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Kimberly Zamuda
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John T Patton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|