1
|
Hrabal I, Aliabadi E, Reiche S, Weber S, Holicki CM, Schmid L, Fast C, Schröder C, Gutjahr B, Behrendt P, Groschup MH, Eiden M. Therapeutic treatment of hepatitis E virus infection in pigs with a neutralizing monoclonal antibody. Sci Rep 2025; 15:10795. [PMID: 40155491 PMCID: PMC11953370 DOI: 10.1038/s41598-025-95992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/25/2025] [Indexed: 04/01/2025] Open
Abstract
Hepatitis E virus (HEV) poses a significant risk to human health. In Europe, the majority of HEV infection are caused by the zoonotic genotype 3 (HEV-3), which can cause chronic hepatitis E in immunocompromised patients and those with pre-existing liver disease, and may eventually develop into fatal liver cirrhosis. In this study, we examined the effectiveness of a monoclonal antibody (MAb) treatment strategy using a well established HEV-3 pig model with intravenous infection. For this purpose, nine MAbs raised against the viral capsid protein were generated and the neutralizing activities were compared using in vitro assays. The antibody with the highest neutralizing activity, MAb 5F6A1, was selected for an in vivo study in pigs infected with HEV-3. Following the initial infection of pigs with HEV-3, MAb 5F6A1 was administered intravenously one and seven days post-infection. The results suggest MAb 5F6A1 significantly reduced viremia and virus shedding in pigs infected with HEV-3. This study provides significant insight into the dynamics of HEV infection in pigs and highlights the efficacy of MAb based therapy as an option for treating HEV in porcine hosts and, potentially, humans.
Collapse
Affiliation(s)
- Isabella Hrabal
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Elmira Aliabadi
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, TWINCORE, Hannover, Germany
- Helmholz Center for Infection Research GmbH, Braunschweig, Germany
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Saskia Weber
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Cora M Holicki
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Laura Schmid
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Christine Fast
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Benjamin Gutjahr
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Patrick Behrendt
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, TWINCORE, Hannover, Germany
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Partner site Braunschweig-Hannover, Braunschweig, Germany
| | - Martin H Groschup
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
- German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Greifswald - Insel Riems, Germany
| | - Martin Eiden
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| |
Collapse
|
2
|
Halwe NJ, Cool K, Breithaupt A, Schön J, Trujillo JD, Nooruzzaman M, Kwon T, Ahrens AK, Britzke T, McDowell CD, Piesche R, Singh G, Pinho Dos Reis V, Kafle S, Pohlmann A, Gaudreault NN, Corleis B, Ferreyra FM, Carossino M, Balasuriya UBR, Hensley L, Morozov I, Covaleda LM, Diel DG, Ulrich L, Hoffmann D, Beer M, Richt JA. H5N1 clade 2.3.4.4b dynamics in experimentally infected calves and cows. Nature 2025; 637:903-912. [PMID: 39321846 PMCID: PMC11754106 DOI: 10.1038/s41586-024-08063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
In March 2024, highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.4b H5N1 infections were reported in dairy cows in Texas, USA1. Rapid dissemination to more than 380 farms in 14 states followed2. Here we provide results of two independent clade 2.3.4.4b experimental infection studies evaluating the oronasal susceptibility to and transmission of a US H5N1 bovine isolate, genotype B3.13 (H5N1 B3.13), in calves, and the susceptibility of lactating cows following direct mammary gland inoculation of either H5N1 B3.13 or a current EU H5N1 wild bird isolate, genotype euDG (H5N1 euDG). Inoculation of the calves resulted in moderate nasal replication and shedding with no severe clinical signs or transmission to sentinel calves. In dairy cows, infection resulted in no nasal shedding, but severe acute infection of the mammary gland with necrotizing mastitis and high fever was observed for both H5N1 isolates. Milk production was rapidly and markedly reduced and the physical condition of the cows was severely compromised. Virus titres in milk rapidly peaked at 109 50% tissue culture infectious dose (TCID50) per ml, but systemic infection did not ensue. Notably, the adaptive mutation E627K emerged in the viral polymerase basic protein 2 (PB2) after intramammary replication of H5N1 euDG. Our data suggest that in addition to H5N1 B3.13, other HPAIV H5N1 strains have the potential to replicate in the udder of cows and that milk and milking procedures, rather than respiratory spread, are likely to be the primary routes of H5N1 transmission between cattle.
Collapse
Affiliation(s)
- Nico Joel Halwe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Jacob Schön
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Jessie D Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Ann Kathrin Ahrens
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Tobias Britzke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Chester D McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Ronja Piesche
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Gagandeep Singh
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Vinicius Pinho Dos Reis
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Sujan Kafle
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Natasha N Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Franco Matias Ferreyra
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Udeni B R Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Lisa Hensley
- Zoonotic and Emerging Disease Research Unit, National Bio and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Lina M Covaleda
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
3
|
Klein S, Dosch R, Reiche S, Kues WA. Dynamic maternal synthesis and segregation of the germ plasm organizer, Bucky ball, in chicken oocytes and follicles. Sci Rep 2024; 14:27753. [PMID: 39532932 PMCID: PMC11557578 DOI: 10.1038/s41598-024-78544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Maternal germ plasm determines the germline in birds. Previously, we proposed the chicken-specific Bucky ball (cBuc) as a functional equivalent of the zebrafish germ plasm organizer. This study demonstrated the maternal cBuc synthesis, and verified a highly dynamic distribution of Bucky ball from oocyte nests to maturing follicles using specific antibodies. The dynamic re-localization of cBuc from the ovarian stroma to the granulosa cells, and the Balbiani structure of the oocyte was revealed. Following the accumulation of cBuc in the Balbiani body, an increased signal of chicken vasa homolog (CVH) in close contact to cBuc could be detected. Highest transcription of cBuc was recorded in follicles with diameters up to 500 µm. First RNA-interference experiments in an in-vivo follicle culture assay revealed inhibiting effects on cBuc in small follicles. These data demonstrate the maternal origin of cBuc, and underpin its role as germ plasm organizer.
Collapse
Affiliation(s)
- Sabine Klein
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Department of Biotechnology, Stem Cell Unit, Mariensee, Höltystr. 10, 31535, Neustadt, Germany.
| | - Roland Dosch
- Institut Für Humangenetik, Department of Developmental Biochemistry, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Sven Reiche
- Dept. of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Wilfried A Kues
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Department of Biotechnology, Stem Cell Unit, Mariensee, Höltystr. 10, 31535, Neustadt, Germany
| |
Collapse
|
4
|
Mohl BP, Blaurock C, Breithaupt A, Riek A, Speakman JR, Hambly C, Bokelmann M, Pei G, Sadeghi B, Dorhoi A, Balkema-Buschmann A. Increased Susceptibility of Rousettus aegyptiacus Bats to Respiratory SARS-CoV-2 Challenge Despite Its Distinct Tropism for Gut Epithelia in Bats. Viruses 2024; 16:1717. [PMID: 39599832 PMCID: PMC11598992 DOI: 10.3390/v16111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Increasing evidence suggests bats are the ancestral hosts of the majority of coronaviruses. In general, coronaviruses primarily target the gastrointestinal system, while some strains, especially Betacoronaviruses with the most relevant representatives SARS-CoV, MERS-CoV, and SARS-CoV-2, also cause severe respiratory disease in humans and other mammals. We previously reported the susceptibility of Rousettus aegyptiacus (Egyptian fruit bats) to intranasal SARS-CoV-2 infection. Here, we compared their permissiveness to an oral infection versus respiratory challenge (intranasal or orotracheal) by assessing virus shedding, host immune responses, tissue-specific pathology, and physiological parameters. While respiratory challenge with a moderate infection dose of 1 × 104 TCID50 caused a systemic infection with oral and nasal shedding of replication-competent virus, the oral challenge only induced nasal shedding of low levels of viral RNA. Even after a challenge with a higher infection dose of 1 × 106 TCID50, no replication-competent virus was detectable in any of the samples of the orally challenged bats. We postulate that SARS-CoV-2 is inactivated by HCl and digested by pepsin in the stomach of R. aegyptiacus, thereby decreasing the efficiency of an oral infection. Therefore, fecal shedding of RNA seems to depend on systemic dissemination upon respiratory infection. These findings may influence our general understanding of the pathophysiology of coronavirus infections in bats.
Collapse
Affiliation(s)
- Björn-Patrick Mohl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (B.-P.M.); (C.B.); (M.B.); (B.S.)
| | - Claudia Blaurock
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (B.-P.M.); (C.B.); (M.B.); (B.S.)
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Alexander Riek
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Doernbergstraße 25, 29223 Celle, Germany;
| | - John R. Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; (J.R.S.); (C.H.)
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; (J.R.S.); (C.H.)
| | - Marcel Bokelmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (B.-P.M.); (C.B.); (M.B.); (B.S.)
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (G.P.); (A.D.)
| | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (B.-P.M.); (C.B.); (M.B.); (B.S.)
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (G.P.); (A.D.)
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (B.-P.M.); (C.B.); (M.B.); (B.S.)
| |
Collapse
|
5
|
Lett MJ, Otte F, Hauser D, Schön J, Kipfer ET, Hoffmann D, Halwe NJ, Breithaupt A, Ulrich L, Britzke T, Kochmann J, Corleis B, Zhang Y, Urda L, Cmiljanovic V, Lang C, Beer M, Mittelholzer C, Klimkait T. High protection and transmission-blocking immunity elicited by single-cycle SARS-CoV-2 vaccine in hamsters. NPJ Vaccines 2024; 9:206. [PMID: 39472701 PMCID: PMC11522273 DOI: 10.1038/s41541-024-00992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Vaccines have played a central role in combating the COVID-19 pandemic, but newly emerging SARS-CoV-2 variants are increasingly evading first-generation vaccine protection. To address this challenge, we designed "single-cycle infection SARS-CoV-2 viruses" (SCVs) that lack essential viral genes, possess distinctive immune-modulatory features, and exhibit an excellent safety profile in the Syrian hamster model. Animals intranasally vaccinated with an Envelope-gene-deleted vaccine candidate were fully protected against an autologous challenge with the SARS-CoV-2 virus through systemic and mucosal humoral immune responses. Additionally, the deletion of immune-downregulating viral genes in the vaccine construct prevented challenge virus transmission to contact animals. Moreover, vaccinated animals displayed neither tissue inflammation nor lung damage. Consequently, SCVs hold promising potential to induce potent protection against COVID-19, surpassing the immunity conferred by natural infection, as demonstrated in human immune cells.
Collapse
Affiliation(s)
- Martin Joseph Lett
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - David Hauser
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jacob Schön
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Enja Tatjana Kipfer
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Nico J Halwe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Tobias Britzke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Jana Kochmann
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lorena Urda
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Christopher Lang
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Christian Mittelholzer
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
- RocketVax AG, Basel, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Halwe NJ, Cool K, Breithaupt A, Schön J, Trujillo JD, Nooruzzaman M, Kwon T, Ahrens AK, Britzke T, McDowell CD, Piesche R, Singh G, dos Reis VP, Kafle S, Pohlmann A, Gaudreault NN, Corleis B, Ferreyra FM, Carossino M, Balasuriya UB, Hensley L, Morozov I, Covaleda LM, Diel D, Ulrich L, Hoffmann D, Beer M, Richt JA. Outcome of H5N1 clade 2.3.4.4b virus infection in calves and lactating cows. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607272. [PMID: 39149352 PMCID: PMC11326275 DOI: 10.1101/2024.08.09.607272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In March 2024, highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.4b H5N1 infections in dairy cows were first reported from Texas, USA. Rapid dissemination to more than 190 farms in 13 states followed. Here, we provide results of two independent clade 2.3.4.4b experimental infection studies evaluating (i) oronasal susceptibility and transmission in calves to a US H5N1 bovine isolate genotype B3.13 (H5N1 B3.13) and (ii) susceptibility of lactating cows following direct mammary gland inoculation of either H5N1 B3.13 or a current EU H5N1 wild bird isolate genotype euDG (H5N1 euDG). Inoculation of the calves resulted in moderate nasal replication and shedding with no severe clinical signs or transmission to sentinel calves. In dairy cows, infection resulted in no nasal shedding, but severe acute mammary gland infection with necrotizing mastitis and high fever was observed for both H5N1 genotypes/strains. Milk production was rapidly and drastically reduced and the physical condition of the cows was severely compromised. Virus titers in milk rapidly peaked at 108 TCID50/mL, but systemic infection did not ensue. Notably, adaptive mutation PB2 E627K emerged after intramammary replication of H5N1 euDG. Our data suggest that in addition to H5N1 B3.13, other HPAIV H5N1 strains have the potential to replicate in the udder of cows and that milk and milking procedures, rather than respiratory spread, are likely the primary routes of H5N1 transmission between cattle.
Collapse
Affiliation(s)
- Nico Joel Halwe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| | - Jacob Schön
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Ann Kathrin Ahrens
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| | - Tobias Britzke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| | - Chester D. McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Ronja Piesche
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| | - Gagandeep Singh
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Vinicius Pinho dos Reis
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| | - Sujan Kafle
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Franco Matias Ferreyra
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Udeni B.R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Lisa Hensley
- Zoonotic and Emerging Disease Research Unit, National Bio and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Lina M. Covaleda
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Diego Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
7
|
Kipfer ET, Hauser D, Lett MJ, Otte F, Urda L, Zhang Y, Lang CMR, Chami M, Mittelholzer C, Klimkait T. Rapid cloning-free mutagenesis of new SARS-CoV-2 variants using a novel reverse genetics platform. eLife 2023; 12:RP89035. [PMID: 37988285 PMCID: PMC10662946 DOI: 10.7554/elife.89035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Reverse genetic systems enable the engineering of RNA virus genomes and are instrumental in studying RNA virus biology. With the recent outbreak of the coronavirus disease 2019 pandemic, already established methods were challenged by the large genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein we present an elaborated strategy for the rapid and straightforward rescue of recombinant plus-stranded RNA viruses with high sequence fidelity using the example of SARS-CoV-2. The strategy called CLEVER (CLoning-free and Exchangeable system for Virus Engineering and Rescue) is based on the intracellular recombination of transfected overlapping DNA fragments allowing the direct mutagenesis within the initial PCR-amplification step. Furthermore, by introducing a linker fragment - harboring all heterologous sequences - viral RNA can directly serve as a template for manipulating and rescuing recombinant mutant virus, without any cloning step. Overall, this strategy will facilitate recombinant SARS-CoV-2 rescue and accelerate its manipulation. Using our protocol, newly emerging variants can quickly be engineered to further elucidate their biology. To demonstrate its potential as a reverse genetics platform for plus-stranded RNA viruses, the protocol has been successfully applied for the cloning-free rescue of recombinant Chikungunya and Dengue virus.
Collapse
Affiliation(s)
- Enja Tatjana Kipfer
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - David Hauser
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Martin J Lett
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Lorena Urda
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Christopher MR Lang
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, MattenstrasseBaselSwitzerland
| | | | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| |
Collapse
|
8
|
Kipfer E, Hauser D, Lett MJ, Otte F, Urda L, Zhang Y, Lang CMR, Chami M, Mittelholzer C, Klimkait T. Rapid cloning-free mutagenesis of new SARS-CoV-2 variants using a novel reverse genetics platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540343. [PMID: 37292682 PMCID: PMC10245781 DOI: 10.1101/2023.05.11.540343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reverse genetic systems enable the engineering of RNA virus genomes and are instrumental in studying RNA virus biology. With the recent outbreak of the COVID-19 pandemic, already established methods were challenged by the large genome of SARS-CoV-2. Herein we present an elaborated strategy for the rapid and straightforward rescue of recombinant plus-stranded RNA viruses with high sequence fidelity, using the example of SARS-CoV-2. The strategy called CLEVER (CLoning-free and Exchangeable system for Virus Engineering and Rescue) is based on the intracellular recombination of transfected overlapping DNA fragments allowing the direct mutagenesis within the initial PCR-amplification step. Furthermore, by introducing a linker fragment - harboring all heterologous sequences - viral RNA can directly serve as a template for manipulating and rescuing recombinant mutant virus, without any cloning step. Overall, this strategy will facilitate recombinant SARS-CoV-2 rescue and accelerate its manipulation. Using our protocol, newly emerging variants can quickly be engineered to further elucidate their biology. To demonstrate its potential as a reverse genetics platform for plus-stranded RNA viruses, the protocol has been successfully applied for the cloning-free rescue of recombinant Chikungunya and Dengue virus.
Collapse
Affiliation(s)
- Enja Kipfer
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - David Hauser
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Martin J. Lett
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Lorena Urda
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Christopher M. R. Lang
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Christian Mittelholzer
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| |
Collapse
|
9
|
Ebenig A, Muraleedharan S, Kazmierski J, Todt D, Auste A, Anzaghe M, Gömer A, Postmus D, Gogesch P, Niles M, Plesker R, Miskey C, Gellhorn Serra M, Breithaupt A, Hörner C, Kruip C, Ehmann R, Ivics Z, Waibler Z, Pfaender S, Wyler E, Landthaler M, Kupke A, Nouailles G, Goffinet C, Brown RJP, Mühlebach MD. Vaccine-associated enhanced respiratory pathology in COVID-19 hamsters after TH2-biased immunization. Cell Rep 2022; 40:111214. [PMID: 35952673 PMCID: PMC9346010 DOI: 10.1016/j.celrep.2022.111214] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/17/2022] [Accepted: 07/22/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccine-associated enhanced respiratory disease (VAERD) is a severe complication for some respiratory infections. To investigate the potential for VAERD induction in coronavirus disease 2019 (COVID-19), we evaluate two vaccine leads utilizing a severe hamster infection model: a T helper type 1 (TH1)-biased measles vaccine-derived candidate and a TH2-biased alum-adjuvanted, non-stabilized spike protein. The measles virus (MeV)-derived vaccine protects the animals, but the protein lead induces VAERD, which can be alleviated by dexamethasone treatment. Bulk transcriptomic analysis reveals that our protein vaccine prepares enhanced host gene dysregulation in the lung, exclusively up-regulating mRNAs encoding the eosinophil attractant CCL-11, TH2-driving interleukin (IL)-19, or TH2 cytokines IL-4, IL-5, and IL-13. Single-cell RNA sequencing (scRNA-seq) identifies lung macrophages or lymphoid cells as sources, respectively. Our findings imply that VAERD is caused by the concerted action of hyperstimulated macrophages and TH2 cytokine-secreting lymphoid cells and potentially links VAERD to antibody-dependent enhancement (ADE). In summary, we identify the cytokine drivers and cellular contributors that mediate VAERD after TH2-biased vaccination.
Collapse
Affiliation(s)
- Aileen Ebenig
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Samada Muraleedharan
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Julia Kazmierski
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Arne Auste
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany; German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Martina Anzaghe
- Div. of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - André Gömer
- Department for Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Dylan Postmus
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Patricia Gogesch
- Div. of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Marc Niles
- Div. of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Roland Plesker
- Animal Facilities, Div. Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Csaba Miskey
- Div. of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | | | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Cindy Hörner
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany; German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Carina Kruip
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Rosina Ehmann
- Institute for Microbiology, Bundeswehr, 80937 München, Germany
| | - Zoltan Ivics
- Div. of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Zoe Waibler
- Div. of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Stephanie Pfaender
- Department for Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany; IRI Life Sciences, Institute for Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Alexandra Kupke
- German Center for Infection Research, Gießen-Marburg-Langen, Germany; Institute for Virology, Phillipps-University, 35043 Marburg, Germany
| | - Geraldine Nouailles
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Richard J P Brown
- Virus Tropism and Immunogenicity, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Michael D Mühlebach
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany; German Center for Infection Research, Gießen-Marburg-Langen, Germany.
| |
Collapse
|
10
|
Tajuelo A, López-Siles M, Más V, Pérez-Romero P, Aguado JM, Briz V, McConnell MJ, Martín-Galiano AJ, López D. Cross-Recognition of SARS-CoV-2 B-Cell Epitopes with Other Betacoronavirus Nucleoproteins. Int J Mol Sci 2022; 23:2977. [PMID: 35328398 PMCID: PMC8955325 DOI: 10.3390/ijms23062977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The B and T lymphocytes of the adaptive immune system are important for the control of most viral infections, including COVID-19. Identification of epitopes recognized by these cells is fundamental for understanding how the immune system detects and removes pathogens, and for antiviral vaccine design. Intriguingly, several cross-reactive T lymphocyte epitopes from SARS-CoV-2 with other betacoronaviruses responsible for the common cold have been identified. In addition, antibodies that cross-recognize the spike protein, but not the nucleoprotein (N protein), from different betacoronavirus have also been reported. Using a consensus of eight bioinformatic methods for predicting B-cell epitopes and the collection of experimentally detected epitopes for SARS-CoV and SARS-CoV-2, we identified four surface-exposed, conserved, and hypothetical antigenic regions that are exclusive of the N protein. These regions were analyzed using ELISA assays with two cohorts: SARS-CoV-2 infected patients and pre-COVID-19 samples. Here we describe four epitopes from SARS-CoV-2 N protein that are recognized by the humoral response from multiple individuals infected with COVID-19, and are conserved in other human coronaviruses. Three of these linear surface-exposed sequences and their peptide homologs in SARS-CoV-2 and HCoV-OC43 were also recognized by antibodies from pre-COVID-19 serum samples, indicating cross-reactivity of antibodies against coronavirus N proteins. Different conserved human coronaviruses (HCoVs) cross-reactive B epitopes against SARS-CoV-2 N protein are detected in a significant fraction of individuals not exposed to this pandemic virus. These results have potential clinical implications.
Collapse
Affiliation(s)
- Ana Tajuelo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (A.T.); (M.L.-S.); (V.M.); (P.P.-R.); (V.B.); (A.J.M.-G.)
| | - Mireia López-Siles
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (A.T.); (M.L.-S.); (V.M.); (P.P.-R.); (V.B.); (A.J.M.-G.)
| | - Vicente Más
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (A.T.); (M.L.-S.); (V.M.); (P.P.-R.); (V.B.); (A.J.M.-G.)
| | - Pilar Pérez-Romero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (A.T.); (M.L.-S.); (V.M.); (P.P.-R.); (V.B.); (A.J.M.-G.)
| | | | - Verónica Briz
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (A.T.); (M.L.-S.); (V.M.); (P.P.-R.); (V.B.); (A.J.M.-G.)
| | - Michael J. McConnell
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (A.T.); (M.L.-S.); (V.M.); (P.P.-R.); (V.B.); (A.J.M.-G.)
| | - Antonio J. Martín-Galiano
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (A.T.); (M.L.-S.); (V.M.); (P.P.-R.); (V.B.); (A.J.M.-G.)
| | - Daniel López
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (A.T.); (M.L.-S.); (V.M.); (P.P.-R.); (V.B.); (A.J.M.-G.)
| |
Collapse
|
11
|
Colitti B, Bonfante F, Grazioli S, Anfossi L, Nogarol C, Scalas D, Bertolotti L, Bortolami A, Pagliari M, Pezzoni G, Moreno A, Lelli D, Gennero MS, Dondo A, Brocchi E, Rosati S. Detailed epitope mapping of SARS-CoV-2 nucleoprotein reveals specific immunoresponse in cats and dogs housed with COVID-19 patients. Res Vet Sci 2022; 143:81-87. [PMID: 34998208 PMCID: PMC8723757 DOI: 10.1016/j.rvsc.2021.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022]
Abstract
Since the initial emergence in December 2019, the novel Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been reported in over 200 countries, representing an unprecedented challenge related to disease control worldwide. In this context, cases of human to animal transmission have been reported, raising concern about the potential role of companion animals in the pandemic and stressing the need for reliable animal testing. In the study, a detailed epitope mapping of SARS-CoV-2 nucleoprotein, using both human and pet sera, allowed the identification of the most antigenic region in the C-terminus domain of the protein, which was used to develop an experimental double antigen-based ELISA. A panel of pre-pandemic sera and sera of animals immunized against (or naturally infected with) related coronaviruses was used to assess assay specificity at 99.5%. Positive sera belonging to animals housed with COVID-19 patients were confirmed with the experimental double-antigen ELISA using Plaque Reduction Neutralization test (PRNT) test as gold standard. The availability of a serological assay that targets a highly specific viral antigen represents a valuable tool for multispecies monitoring of Coronavirus Disease 2019 (COVID-19) infection in susceptible animals.
Collapse
Affiliation(s)
- Barbara Colitti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy.
| | - Francesco Bonfante
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita' 10, 35020 Legnaro, PD, Italy
| | - Santina Grazioli
- National Reference Centre for Vesicular Diseases, Dpt. Biotechnology, OIE/FAO reference laboratories for FMD and for SVD, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9, 25124, Brescia, Italy
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via Giuria, 5, I-10125 Turin, Italy
| | - Chiara Nogarol
- In3Diagnostic s.r.l., Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Daniela Scalas
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Luigi Bertolotti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Alessio Bortolami
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita' 10, 35020 Legnaro, PD, Italy
| | - Matteo Pagliari
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita' 10, 35020 Legnaro, PD, Italy
| | - Giulia Pezzoni
- National Reference Centre for Vesicular Diseases, Dpt. Biotechnology, OIE/FAO reference laboratories for FMD and for SVD, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9, 25124, Brescia, Italy
| | - Ana Moreno
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, 25124 Brescia, Italy
| | - Davide Lelli
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, 25124 Brescia, Italy
| | - Maria Silvia Gennero
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154 Turin, Italy
| | - Alessandro Dondo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154 Turin, Italy
| | - Emiliana Brocchi
- National Reference Centre for Vesicular Diseases, Dpt. Biotechnology, OIE/FAO reference laboratories for FMD and for SVD, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9, 25124, Brescia, Italy
| | - Sergio Rosati
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| |
Collapse
|
12
|
Hirschbühl K, Dintner S, Beer M, Wylezich C, Schlegel J, Delbridge C, Borcherding L, Lippert J, Schiele S, Müller G, Moiraki D, Spring O, Wittmann M, Kling E, Braun G, Kröncke T, Claus R, Märkl B, Schaller T. Viral mapping in COVID-19 deceased in the Augsburg autopsy series of the first wave: A multiorgan and multimethodological approach. PLoS One 2021; 16:e0254872. [PMID: 34280238 PMCID: PMC8289110 DOI: 10.1371/journal.pone.0254872] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND COVID-19 is only partly understood, and the level of evidence available in terms of pathophysiology, epidemiology, therapy, and long-term outcome remains limited. During the early phase of the pandemic, it was necessary to effectively investigate all aspects of this new disease. Autopsy can be a valuable procedure to investigate the internal organs with special techniques to obtain information on the disease, especially the distribution and type of organ involvement. METHODS During the first wave of COVID-19 in Germany, autopsies of 19 deceased patients were performed. Besides gross examination, the organs were analyzed with standard histology and polymerase-chain-reaction for SARS-CoV-2. Polymerase chain reaction positive localizations were further analyzed with immunohistochemistry and RNA-in situ hybridization for SARS-CoV-2. RESULTS Eighteen of 19 patients were found to have died due to COVID-19. Clinically relevant histological changes were only observed in the lungs. Diffuse alveolar damage in considerably different degrees was noted in 18 cases. Other organs, including the central nervous system, did not show specific micromorphological alterations. In terms of SARS-CoV-2 detection, the focus remains on the upper airways and lungs. This is true for both the number of positive samples and the viral load. A highly significant inverse correlation between the stage of diffuse alveolar damage and viral load was found on a case and a sample basis. Mediastinal lymph nodes and fat were also affected by the virus at high frequencies. By contrast, other organs rarely exhibited a viral infection. Moderate to strong correlations between the methods for detecting SARS-CoV-2 were observed for the lungs and for other organs. CONCLUSIONS The lung is the most affected organ in gross examination, histology and polymerase chain reaction. SARS-CoV-2 detection in other organs did not reveal relevant or specific histological changes. Moreover, we did not find CNS involvement.
Collapse
Affiliation(s)
- Klaus Hirschbühl
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Sebastian Dintner
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Munich, Germany
| | - Claire Delbridge
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Munich, Germany
| | - Lukas Borcherding
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Jirina Lippert
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Stefan Schiele
- Computational Statistics and Data Analysis, Institute of Mathematics, University of Augsburg, Augsburg, Germany
| | - Gernot Müller
- Computational Statistics and Data Analysis, Institute of Mathematics, University of Augsburg, Augsburg, Germany
| | - Dimitra Moiraki
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Oliver Spring
- Anesthesiology and Operative Intensive Care Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Michael Wittmann
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Elisabeth Kling
- Microbiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Georg Braun
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Thomas Kröncke
- Diagnostic and Interventional Radiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Rainer Claus
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Bruno Märkl
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Tina Schaller
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
13
|
Zhou Y, Gilmore K, Ramirez S, Settels E, Gammeltoft KA, Pham LV, Fahnøe U, Feng S, Offersgaard A, Trimpert J, Bukh J, Osterrieder K, Gottwein JM, Seeberger PH. In vitro efficacy of artemisinin-based treatments against SARS-CoV-2. Sci Rep 2021. [PMID: 34272426 DOI: 10.1101/2020.10.05.326637v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Effective and affordable treatments for patients suffering from coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are needed. We report in vitro efficacy of Artemisia annua extracts as well as artemisinin, artesunate, and artemether against SARS-CoV-2. The latter two are approved active pharmaceutical ingredients of anti-malarial drugs. Concentration-response antiviral treatment assays, based on immunostaining of SARS-CoV-2 spike glycoprotein, revealed that treatment with all studied extracts and compounds inhibited SARS-CoV-2 infection of VeroE6 cells, human hepatoma Huh7.5 cells and human lung cancer A549-hACE2 cells, without obvious influence of the cell type on antiviral efficacy. In treatment assays, artesunate proved most potent (range of 50% effective concentrations (EC50) in different cell types: 7-12 µg/mL), followed by artemether (53-98 µg/mL), A. annua extracts (83-260 µg/mL) and artemisinin (151 to at least 208 µg/mL). The selectivity indices (SI), calculated based on treatment and cell viability assays, were mostly below 10 (range 2 to 54), suggesting a small therapeutic window. Time-of-addition experiments in A549-hACE2 cells revealed that artesunate targeted SARS-CoV-2 at the post-entry level. Peak plasma concentrations of artesunate exceeding EC50 values can be achieved. Clinical studies are required to further evaluate the utility of these compounds as COVID-19 treatment.
Collapse
Affiliation(s)
- Yuyong Zhou
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Kerry Gilmore
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Eva Settels
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Karen A Gammeltoft
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Long V Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Shan Feng
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jakob Trimpert
- Institute for Virology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Klaus Osterrieder
- Institute for Virology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany.
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| | - Peter H Seeberger
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany.
| |
Collapse
|
14
|
Zhou Y, Gilmore K, Ramirez S, Settels E, Gammeltoft KA, Pham LV, Fahnøe U, Feng S, Offersgaard A, Trimpert J, Bukh J, Osterrieder K, Gottwein JM, Seeberger PH. In vitro efficacy of artemisinin-based treatments against SARS-CoV-2. Sci Rep 2021; 11:14571. [PMID: 34272426 PMCID: PMC8285423 DOI: 10.1038/s41598-021-93361-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/23/2021] [Indexed: 11/09/2022] Open
Abstract
Effective and affordable treatments for patients suffering from coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are needed. We report in vitro efficacy of Artemisia annua extracts as well as artemisinin, artesunate, and artemether against SARS-CoV-2. The latter two are approved active pharmaceutical ingredients of anti-malarial drugs. Concentration–response antiviral treatment assays, based on immunostaining of SARS-CoV-2 spike glycoprotein, revealed that treatment with all studied extracts and compounds inhibited SARS-CoV-2 infection of VeroE6 cells, human hepatoma Huh7.5 cells and human lung cancer A549-hACE2 cells, without obvious influence of the cell type on antiviral efficacy. In treatment assays, artesunate proved most potent (range of 50% effective concentrations (EC50) in different cell types: 7–12 µg/mL), followed by artemether (53–98 µg/mL), A. annua extracts (83–260 µg/mL) and artemisinin (151 to at least 208 µg/mL). The selectivity indices (SI), calculated based on treatment and cell viability assays, were mostly below 10 (range 2 to 54), suggesting a small therapeutic window. Time-of-addition experiments in A549-hACE2 cells revealed that artesunate targeted SARS-CoV-2 at the post-entry level. Peak plasma concentrations of artesunate exceeding EC50 values can be achieved. Clinical studies are required to further evaluate the utility of these compounds as COVID-19 treatment.
Collapse
Affiliation(s)
- Yuyong Zhou
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Kerry Gilmore
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Eva Settels
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Karen A Gammeltoft
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Long V Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Shan Feng
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jakob Trimpert
- Institute for Virology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Klaus Osterrieder
- Institute for Virology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany. .,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark. .,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| | - Peter H Seeberger
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany. .,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany.
| |
Collapse
|
15
|
Wu C, Qavi AJ, Hachim A, Kavian N, Cole AR, Moyle AB, Wagner ND, Sweeney-Gibbons J, Rohrs HW, Gross ML, Peiris JSM, Basler CF, Farnsworth CW, Valkenburg SA, Amarasinghe GK, Leung DW. Characterization of SARS-CoV-2 nucleocapsid protein reveals multiple functional consequences of the C-terminal domain. iScience 2021; 24:102681. [PMID: 34095780 PMCID: PMC8168301 DOI: 10.1016/j.isci.2021.102681] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/13/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Nucleocapsid (N) encoded by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays key roles in the replication cycle and is a critical serological marker. Here, we characterize essential biochemical properties of N and describe the utility of these insights in serological studies. We define N domains important for oligomerization and RNA binding and show that N oligomerization provides a high-affinity RNA-binding platform. We also map the RNA-binding interface, showing protection in the N-terminal domain and linker region. In addition, phosphorylation causes reduction of RNA binding and redistribution of N from liquid droplets to loose coils, showing how N-RNA accessibility and assembly may be regulated by phosphorylation. Finally, we find that the C-terminal domain of N is the most immunogenic, based on antibody binding to patient samples. Together, we provide a biochemical description of SARS-CoV-2 N and highlight the value of using N domains as highly specific and sensitive diagnostic markers.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Abraham J. Qavi
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Asmaa Hachim
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Niloufar Kavian
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique–Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, Service d’Immunologie Biologique, Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Aidan R. Cole
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Austin B. Moyle
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicole D. Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Joyce Sweeney-Gibbons
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Henry W. Rohrs
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - J. S. Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Christopher F. Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Christopher W. Farnsworth
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sophie A. Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daisy W. Leung
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
16
|
Heuberger J, Trimpert J, Vladimirova D, Goosmann C, Lin M, Schmuck R, Mollenkopf H, Brinkmann V, Tacke F, Osterrieder N, Sigal M. Epithelial response to IFN-γ promotes SARS-CoV-2 infection. EMBO Mol Med 2021; 13:e13191. [PMID: 33544398 PMCID: PMC7995094 DOI: 10.15252/emmm.202013191] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2, the agent that causes COVID-19, invades epithelial cells, including those of the respiratory and gastrointestinal mucosa, using angiotensin-converting enzyme-2 (ACE2) as a receptor. Subsequent inflammation can promote rapid virus clearance, but severe cases of COVID-19 are characterized by an inefficient immune response that fails to clear the infection. Using primary epithelial organoids from human colon, we explored how the central antiviral mediator IFN-γ, which is elevated in COVID-19, affects epithelial cell differentiation, ACE2 expression, and susceptibility to infection with SARS-CoV-2. In mouse and human colon, ACE2 is mainly expressed by surface enterocytes. Inducing enterocyte differentiation in organoid culture resulted in increased ACE2 production. IFN-γ treatment promoted differentiation into mature KRT20+ enterocytes expressing high levels of ACE2, increased susceptibility to SARS-CoV-2 infection, and resulted in enhanced virus production in infected cells. Similarly, infection-induced epithelial interferon signaling promoted enterocyte maturation and enhanced ACE2 expression. We here reveal a mechanism by which IFN-γ-driven inflammatory responses induce a vulnerable epithelial state with robust replication of SARS-CoV-2, which may have an impact on disease outcome and virus transmission.
Collapse
Affiliation(s)
- Julian Heuberger
- Department of Hepatology and GastroenterologyCharité University MedicineBerlinGermany
- Department of Molecular BiologyMax Planck Institute for Infection BiologyBerlinGermany
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular MedicineBerlinGermany
| | - Jakob Trimpert
- Institute of VirologyFreie Universität BerlinBerlinGermany
| | | | - Christian Goosmann
- Department of Molecular BiologyMax Planck Institute for Infection BiologyBerlinGermany
| | - Manqiang Lin
- Department of Hepatology and GastroenterologyCharité University MedicineBerlinGermany
| | - Rosa Schmuck
- Department of SurgeryCharité University MedicineBerlinGermany
| | | | - Volker Brinkmann
- Department of Molecular BiologyMax Planck Institute for Infection BiologyBerlinGermany
| | - Frank Tacke
- Department of Hepatology and GastroenterologyCharité University MedicineBerlinGermany
| | - Nikolaus Osterrieder
- Institute of VirologyFreie Universität BerlinBerlinGermany
- Department of Infectious Disease and Public HealthJockey Club College of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
| | - Michael Sigal
- Department of Hepatology and GastroenterologyCharité University MedicineBerlinGermany
- Department of Molecular BiologyMax Planck Institute for Infection BiologyBerlinGermany
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular MedicineBerlinGermany
| |
Collapse
|
17
|
Zaeck LM, Scheibner D, Sehl J, Müller M, Hoffmann D, Beer M, Abdelwhab EM, Mettenleiter TC, Breithaupt A, Finke S. Light Sheet Microscopy-Assisted 3D Analysis of SARS-CoV-2 Infection in the Respiratory Tract of the Ferret Model. Viruses 2021; 13:529. [PMID: 33807059 PMCID: PMC8004956 DOI: 10.3390/v13030529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
The visualization of viral pathogens in infected tissues is an invaluable tool to understand spatial virus distribution, localization, and cell tropism in vivo. Commonly, virus-infected tissues are analyzed using conventional immunohistochemistry in paraffin-embedded thin sections. Here, we demonstrate the utility of volumetric three-dimensional (3D) immunofluorescence imaging using tissue optical clearing and light sheet microscopy to investigate host-pathogen interactions of pandemic SARS-CoV-2 in ferrets at a mesoscopic scale. The superior spatial context of large, intact samples (>150 mm3) allowed detailed quantification of interrelated parameters like focus-to-focus distance or SARS-CoV-2-infected area, facilitating an in-depth description of SARS-CoV-2 infection foci. Accordingly, we could confirm a preferential infection of the ferret upper respiratory tract by SARS-CoV-2 and suggest clustering of infection foci in close proximity. Conclusively, we present a proof-of-concept study for investigating critically important respiratory pathogens in their spatial tissue morphology and demonstrate the first specific 3D visualization of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (D.S.); (M.M.); (E.M.A.)
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (D.S.); (M.M.); (E.M.A.)
| | - Julia Sehl
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (J.S.); (A.B.)
| | - Martin Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (D.S.); (M.M.); (E.M.A.)
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (D.H.); (M.B.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (D.H.); (M.B.)
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (D.S.); (M.M.); (E.M.A.)
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany;
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (J.S.); (A.B.)
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (D.S.); (M.M.); (E.M.A.)
| |
Collapse
|
18
|
Wu C, Qavi AJ, Hachim A, Kavian N, Cole AR, Moyle AB, Wagner ND, Sweeney-Gibbons J, Rohrs HW, Gross ML, Peiris JSM, Basler CF, Farnsworth CW, Valkenburg SA, Amarasinghe GK, Leung DW. Characterization of SARS-CoV-2 N protein reveals multiple functional consequences of the C-terminal domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.30.404905. [PMID: 33269347 PMCID: PMC7709165 DOI: 10.1101/2020.11.30.404905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleocapsid protein (N) is the most abundant viral protein encoded by SARS-CoV-2, the causative agent of COVID-19. N plays key roles at different steps in the replication cycle and is used as a serological marker of infection. Here we characterize the biochemical properties of SARS-CoV-2 N. We define the N domains important for oligomerization and RNA binding that are associated with spherical droplet formation and suggest that N accessibility and assembly may be regulated by phosphorylation. We also map the RNA binding interface using hydrogen-deuterium exchange mass spectrometry. Finally, we find that the N protein C-terminal domain is the most immunogenic by sensitivity, based upon antibody binding to COVID-19 patient samples from the US and Hong Kong. Together, these findings uncover domain-specific insights into the significance of SARS-CoV-2 N and highlight the diagnostic value of using N domains as highly specific and sensitive markers of COVID-19.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Abraham J Qavi
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Asmaa Hachim
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Niloufar Kavian
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, Service d'Immunologie Biologique, Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, Paris
| | - Aidan R Cole
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Austin B Moyle
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicole D Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Joyce Sweeney-Gibbons
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Henry W Rohrs
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - J S Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Christopher W Farnsworth
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
19
|
Hölper JE, Reiche S, Franzke K, Mettenleiter TC, Klupp BG. Generation and characterization of monoclonal antibodies specific for the Pseudorabies Virus nuclear egress complex. Virus Res 2020; 287:198096. [PMID: 32682818 DOI: 10.1016/j.virusres.2020.198096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022]
Abstract
During herpesvirus replication, newly synthesized nucleocapsids exit the nucleus by a vesicle-mediated transport, which requires the nuclear egress complex (NEC), composed of the conserved viral proteins designated as pUL31 and pUL34 in the alphaherpesviruses pseudorabies virus (PrV) and herpes simplex viruses. Oligomerization of the heterodimeric NEC at the inner nuclear membrane (INM) results in membrane bending and budding of virus particles into the perinuclear space. The INM-derived primary envelope then fuses with the outer nuclear membrane to release nucleocapsids into the cytoplasm. The two NEC components are necessary and sufficient for induction of vesicle budding and scission as shown after co-expression in eukaryotic cells or in synthetic membranes. However, where and when the NEC is formed, how membrane curvature is mediated and how it is regulated, remains unclear. While monospecific antisera raised against the different components of the PrV NEC aided in the characterization and intracellular localization of the individual proteins, no NEC specific tools have been described yet for any herpesvirus. To gain more insight into vesicle budding and scission, we aimed at generating NEC specific monoclonal antibodies (mAbs). To this end, mice were immunized with bacterially expressed soluble PrV NEC, which was previously used for structure determination. Besides pUL31- and pUL34-specific mAbs, we also identified mAbs, which reacted only in the presence of both proteins indicating specificity for the complex. Confocal microscopy with those NEC-specific mAbs revealed small puncta (approx. 0.064 μm2) along the nuclear rim in PrV wild type infected cells. In contrast, ca. 5-fold larger speckles (approx. 0.35 μm2) were detectable in cells infected with a PrV mutant lacking the viral protein kinase pUS3, which is known to accumulate primary enveloped virions in the PNS within large invaginations of the INM, or in cells co-expressing pUL31 and pUL34. Kinetic experiments showed that while the individual proteins were detectable already between 2-4 hours after infection, the NEC-specific mAbs produced significant staining only after 4-6 hours in accordance with timing of nuclear egress. Taken together, the data indicate that these mAbs specifically label the PrV NEC.
Collapse
Affiliation(s)
- Julia E Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
20
|
Corral-Lugo A, López-Siles M, López D, McConnell MJ, Martin-Galiano AJ. Identification and Analysis of Unstructured, Linear B-Cell Epitopes in SARS-CoV-2 Virion Proteins for Vaccine Development. Vaccines (Basel) 2020; 8:397. [PMID: 32698423 PMCID: PMC7564417 DOI: 10.3390/vaccines8030397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
The efficacy of SARS-CoV-2 nucleic acid-based vaccines may be limited by proteolysis of the translated product due to anomalous protein folding. This may be the case for vaccines employing linear SARS-CoV-2 B-cell epitopes identified in previous studies since most of them participate in secondary structure formation. In contrast, we have employed a consensus of predictors for epitopic zones plus a structural filter for identifying 20 unstructured B-cell epitope-containing loops (uBCELs) in S, M, and N proteins. Phylogenetic comparison suggests epitope switching with respect to SARS-CoV in some of the identified uBCELs. Such events may be associated with the reported lack of serum cross-protection between the 2003 and 2019 pandemic strains. Incipient variability within a sample of 1639 SARS-CoV-2 isolates was also detected for 10 uBCELs which could cause vaccine failure. Intermediate stages of the putative epitope switch events were observed in bat coronaviruses in which additive mutational processes possibly facilitating evasion of the bat immune system appear to have taken place prior to transfer to humans. While there was some overlap between uBCELs and previously validated SARS-CoV B-cell epitopes, multiple uBCELs had not been identified in prior studies. Overall, these uBCELs may facilitate the development of biomedical products for SARS-CoV-2.
Collapse
Affiliation(s)
- Andrés Corral-Lugo
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (A.C.-L.); (M.L.-S.)
| | - Mireia López-Siles
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (A.C.-L.); (M.L.-S.)
| | - Daniel López
- Immune Presentation and Regulation Unit, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Michael J. McConnell
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (A.C.-L.); (M.L.-S.)
| | - Antonio J. Martin-Galiano
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (A.C.-L.); (M.L.-S.)
| |
Collapse
|
21
|
Mertens P, De Vos N, Martiny D, Jassoy C, Mirazimi A, Cuypers L, Van den Wijngaert S, Monteil V, Melin P, Stoffels K, Yin N, Mileto D, Delaunoy S, Magein H, Lagrou K, Bouzet J, Serrano G, Wautier M, Leclipteux T, Van Ranst M, Vandenberg O. Development and Potential Usefulness of the COVID-19 Ag Respi-Strip Diagnostic Assay in a Pandemic Context. Front Med (Lausanne) 2020; 7:225. [PMID: 32574326 PMCID: PMC7227790 DOI: 10.3389/fmed.2020.00225] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction: COVID-19 Ag Respi-Strip, an immunochromatographic (ICT) assay for the rapid detection of SARS-CoV-2 antigen on nasopharyngeal specimen, has been developed to identify positive COVID-19 patients allowing prompt clinical and quarantine decisions. In this original research article, we describe the conception, the analytical and clinical performances as well as the risk management of implementing the COVID-19 Ag Respi-Strip in a diagnostic decision algorithm. Materials and Methods: Development of the COVID-19 Ag Respi-Strip resulted in a ready-to-use ICT assay based on a membrane technology with colloidal gold nanoparticles using monoclonal antibodies directed against the SARS-CoV and SARS-CoV-2 highly conserved nucleoprotein antigen. Four hundred observations were recorded for the analytical performance study and thirty tests were analyzed for the cross-reactivity study. The clinical performance study was performed in a retrospective multi-centric evaluation on aliquots of 328 nasopharyngeal samples. COVID-19 Ag Respi-Strip results were compared with qRT-PCR as golden standard for COVID-19 diagnostics. Results: In the analytical performance study, the reproducibility showed a between-observer disagreement of 1.7%, a robustness of 98%, an overall satisfying user friendliness and no cross-reactivity with other virus-infected nasopharyngeal samples. In the clinical performance study performed in three different clinical laboratories during the ascendant phase of the epidemiological curve, we found an overall sensitivity and specificity of 57.6 and 99.5%, respectively with an accuracy of 82.6%. The cut-off of the ICT was found at CT <22. User-friendliness analysis and risk management assessment through Ishikawa diagram demonstrate that COVID-19 Ag Respi-Strip may be implemented in clinical laboratories according to biosafety recommendations. Conclusion: The COVID-19 Ag Respi-Strip represents a promising rapid SARS-CoV-2 antigen assay for the first-line diagnosis of COVID-19 in 15 min at the peak of the pandemic. Its role in the proposed diagnostic algorithm is complementary to the currently-used molecular techniques.
Collapse
Affiliation(s)
| | - Nathalie De Vos
- Department of Clinical Chemistry, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Delphine Martiny
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Christian Jassoy
- Medical Faculty and University Clinics, Institute for Virology, University of Leipzig, Leipzig, Germany
| | - Ali Mirazimi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lize Cuypers
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Clinical Department of Laboratory Medicine and National Reference Center for Respiratory Pathogens, UZ Leuven, Leuven, Belgium
| | | | - Vanessa Monteil
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pierrette Melin
- Department of Clinical Microbiology, Centre Hospitalier Universitaire Sart-Tilman, Université de Liège, Liège, Belgium
| | - Karolien Stoffels
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Yin
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Davide Mileto
- Laboratory of Clinical Microbiology, Virology and Bioemergency, ASST Fatebene fratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Sabrina Delaunoy
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Clinical Department of Laboratory Medicine and National Reference Center for Respiratory Pathogens, UZ Leuven, Leuven, Belgium
| | | | - Gabriela Serrano
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium.,Innovation and Business Development Unit, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Magali Wautier
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Marc Van Ranst
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Clinical Department of Laboratory Medicine and National Reference Center for Respiratory Pathogens, UZ Leuven, Leuven, Belgium
| | - Olivier Vandenberg
- Innovation and Business Development Unit, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium.,Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
| | | |
Collapse
|
22
|
Isolation and characterization of new Puumala orthohantavirus strains from Germany. Virus Genes 2020; 56:448-460. [PMID: 32328924 PMCID: PMC7329759 DOI: 10.1007/s11262-020-01755-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/03/2020] [Indexed: 12/28/2022]
Abstract
Orthohantaviruses are re-emerging rodent-borne pathogens distributed all over the world. Here, we report the isolation of a Puumala orthohantavirus (PUUV) strain from bank voles caught in a highly endemic region around the city Osnabrück, north-west Germany. Coding and non-coding sequences of all three segments (S, M, and L) were determined from original lung tissue, after isolation and after additional passaging in VeroE6 cells and a bank vole-derived kidney cell line. Different single amino acid substitutions were observed in the RNA-dependent RNA polymerase (RdRP) of the two stable PUUV isolates. The PUUV strain from VeroE6 cells showed a lower titer when propagated on bank vole cells compared to VeroE6 cells. Additionally, glycoprotein precursor (GPC)-derived virus-like particles of a German PUUV sequence allowed the generation of monoclonal antibodies that allowed the reliable detection of the isolated PUUV strain in the immunofluorescence assay. In conclusion, this is the first isolation of a PUUV strain from Central Europe and the generation of glycoprotein-specific monoclonal antibodies for this PUUV isolate. The obtained virus isolate and GPC-specific antibodies are instrumental tools for future reservoir host studies.
Collapse
|
23
|
The Ebola Virus Nucleoprotein Recruits the Nuclear RNA Export Factor NXF1 into Inclusion Bodies to Facilitate Viral Protein Expression. Cells 2020; 9:cells9010187. [PMID: 31940815 PMCID: PMC7017048 DOI: 10.3390/cells9010187] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/12/2023] Open
Abstract
Ebola virus (EBOV) causes severe outbreaks of viral hemorrhagic fever in humans. While virus-host interactions are promising targets for antivirals, there is only limited knowledge regarding the interactions of EBOV with cellular host factors. Recently, we performed a genome-wide siRNA screen that identified the nuclear RNA export factor 1 (NXF1) as an important host factor for the EBOV life cycle. NXF1 is a major component of the nuclear mRNA export pathway that is usurped by many viruses whose life cycles include nuclear stages. However, the role of NXF1 in the life cycle of EBOV, a virus replicating in cytoplasmic inclusion bodies, remains unknown. In order to better understand the role of NXF1 in the EBOV life cycle, we performed a combination of co-immunoprecipitation and double immunofluorescence assays to characterize the interactions of NXF1 with viral proteins and RNAs. Additionally, using siRNA-mediated knockdown of NXF1 together with functional assays, we analyzed the role of NXF1 in individual aspects of the virus life cycle. With this approach we identified the EBOV nucleoprotein (NP) as a viral interaction partner of NXF1. Further studies revealed that NP interacts with the RNA-binding domain of NXF1 and competes with RNA for this interaction. Co-localization studies showed that RNA binding-deficient, but not wildtype NXF1, accumulates in NP-derived inclusion bodies, and knockdown experiments demonstrated that NXF1 is necessary for viral protein expression, but not for viral RNA synthesis. Finally, our results showed that NXF1 interacts with viral mRNAs, but not with viral genomic RNAs. Based on these results we suggest a model whereby NXF1 is recruited into inclusion bodies to promote the export of viral mRNA:NXF1 complexes from these sites. This would represent a novel function for NXF1 in the life cycle of cytoplasmically replicating viruses, and may provide a basis for new therapeutic approaches against EBOV, and possibly other emerging viruses.
Collapse
|
24
|
MHC class II proteins mediate cross-species entry of bat influenza viruses. Nature 2019; 567:109-112. [PMID: 30787439 DOI: 10.1038/s41586-019-0955-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022]
Abstract
Zoonotic influenza A viruses of avian origin can cause severe disease in individuals, or even global pandemics, and thus pose a threat to human populations. Waterfowl and shorebirds are believed to be the reservoir for all influenza A viruses, but this has recently been challenged by the identification of novel influenza A viruses in bats1,2. The major bat influenza A virus envelope glycoprotein, haemagglutinin, does not bind the canonical influenza A virus receptor, sialic acid or any other glycan1,3,4, despite its high sequence and structural homology with conventional haemagglutinins. This functionally uncharacterized plasticity of the bat influenza A virus haemagglutinin means the tropism and zoonotic potential of these viruses has not been fully determined. Here we show, using transcriptomic profiling of susceptible versus non-susceptible cells in combination with genome-wide CRISPR-Cas9 screening, that the major histocompatibility complex class II (MHC-II) human leukocyte antigen DR isotype (HLA-DR) is an essential entry determinant for bat influenza A viruses. Genetic ablation of the HLA-DR α-chain rendered cells resistant to infection by bat influenza A virus, whereas ectopic expression of the HLA-DR complex in non-susceptible cells conferred susceptibility. Expression of MHC-II from different bat species, pigs, mice or chickens also conferred susceptibility to infection. Notably, the infection of mice with bat influenza A virus resulted in robust virus replication in the upper respiratory tract, whereas mice deficient for MHC-II were resistant. Collectively, our data identify MHC-II as a crucial entry mediator for bat influenza A viruses in multiple species, which permits a broad vertebrate tropism.
Collapse
|
25
|
Kraatz F, Wernike K, Reiche S, Aebischer A, Reimann I, Beer M. Schmallenberg virus non-structural protein NSm: Intracellular distribution and role of non-hydrophobic domains. Virology 2018; 516:46-54. [PMID: 29329078 DOI: 10.1016/j.virol.2017.12.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022]
Abstract
Schmallenberg virus (SBV) induces fetal malformation, abortions and stillbirth in ruminants. While the non-structural protein NSs is a major virulence factor, the biological function of NSm, the second non-structural protein which consists of three hydrophobic transmembrane (I, III, V) and two non-hydrophobic regions (II, IV), is still unknown. Here, a series of NSm mutants displaying deletions of nearly the entire NSm or of the non-hydrophobic domains was generated and the intracellular distribution of NSm was assessed. SBV-NSm is dispensable for the generation of infectious virus and mutants lacking domains II - V showed growth properties similar to the wild-type virus. In addition, a comparable intracellular distribution of SBV-NSm was observed in mammalian cells infected with domain II mutants or wild-type virus. In both cases, NSm co-localized with the glycoprotein Gc in the Golgi compartment. However, domain IV-deletion mutants showed an altered distribution pattern and no co-localization of NSm and Gc.
Collapse
Affiliation(s)
- Franziska Kraatz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Insel Riems, Germany.
| |
Collapse
|
26
|
The Nucleocapsid Protein of the SARS Coronavirus: Structure, Function and Therapeutic Potential. MOLECULAR BIOLOGY OF THE SARS-CORONAVIRUS 2009. [PMCID: PMC7176212 DOI: 10.1007/978-3-642-03683-5_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As in other coronaviruses, the nucleocapsid protein is one of the core components of the SARS coronavirus (CoV). It oligomerizes to form a closed capsule, inside which the genomic RNA is securely stored thus providing the SARS-CoV genome with its first line of defense from the harsh conditions of the host environment and aiding in replication and propagation of the virus. In addition to this function, several reports have suggested that the SARS-CoV nucleocapsid protein modulates various host cellular processes, so as to make the internal milieu of the host more conducive for survival of the virus. This article will analyze and discuss the available literature regarding these different properties of the nucleocapsid protein. Towards the end of the article, we will also discuss some recent reports regarding the possible clinically relevant use of the nucleocapsid protein, as a candidate diagnostic tool and vaccine against SARS-CoV infection.
Collapse
|
27
|
Gruschke S, Bußmann BM, Reiche S, Jassoy C. Peptides from the SARS-associated coronavirus as tags for protein expression and purification. Protein Expr Purif 2008; 61:138-41. [PMID: 18565762 PMCID: PMC7129034 DOI: 10.1016/j.pep.2008.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 04/24/2008] [Accepted: 04/26/2008] [Indexed: 11/22/2022]
Abstract
Protein tagging with a peptide is a commonly used technique to facilitate protein detection and to carry out protein purification. Flexibility with respect to the peptide tag is essential since no single tag suites all purposes. This report describes the usage of two short peptides from the SARS-associated coronavirus nucleocapsid (SARS-N) protein as protein tags. Plasmids for the generation of tagged proteins were generated by ligating synthetic oligonucleotides for the peptide-coding regions downstream of the protein coding sequence. The data show recognition of prokaryotically expressed HIV-1 Gag/p24 fusion protein by Western blot and efficient affinity purification using monoclonal antibodies against the tags. The SARS peptide antibody system described presents an alternative tagging opportunity in the growing field of protein science.
Collapse
Affiliation(s)
| | | | | | - Christian Jassoy
- Institute of Virology, Faculty of Medicine, Max Bürger Research Centre, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| |
Collapse
|
28
|
Sensitive and specific enzyme-linked immunosorbent assay using chemiluminescence for detection of severe acute respiratory syndrome viral infection. J Clin Microbiol 2007; 46:302-10. [PMID: 18032623 DOI: 10.1128/jcm.01006-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we report the development of a more-sensitive immunoassay for severe acute respiratory syndrome (SARS) based on an enzyme-linked immunosorbent assay using chemiluminescence (CLEIA) to detect the viral nucleocapsid (N) antigen in nasopharyngeal aspirate (NPA) from patients infected with SARS coronavirus (CoV). The CLEIA was established with an optical combination of monoclonal antibodies (MAbs) against SARS CoV N protein prepared from mice immunized with recombinant N protein without cultivating the virus. The capture and detecting MAbs of the CLEIA reacted to the carboxyl-terminal and amino-terminal peptides of the N protein, respectively. The CLEIA was capable of detecting recombinant N protein at 1.56 pg/ml and viral N protein in SARS CoV cell culture lysates at 0.087 of 50% tissue culture infective doses/ml. The CLEIA showed no cross-reactivities to recombinant N proteins of common human CoV (229E, OC43, and NL63) or lysates of cells infected with 229E and OC43. In addition, an evaluation with 18 SARS-positive NPA samples, all confirmed SARS positive by quantitative PCR and antibodies to SARS CoV, revealed that all (18/18) were found positive by the CLEIA; thus, the sensitivity of detection was 100%. When we tested 20 SARS-negative NPA samples, the CLEIA was shown to have high specificity (100%). The sensitivity of our novel SARS CLEIA was significantly higher than the previous EIA and comparable to the other methods using reverse transcription-PCR.
Collapse
|
29
|
Surjit M, Lal SK. The SARS-CoV nucleocapsid protein: a protein with multifarious activities. INFECTION GENETICS AND EVOLUTION 2007; 8:397-405. [PMID: 17881296 PMCID: PMC7106238 DOI: 10.1016/j.meegid.2007.07.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 07/10/2007] [Accepted: 07/11/2007] [Indexed: 12/16/2022]
Abstract
Ever since the discovery of SARS-CoV in the year 2003, numerous researchers around the world have been working relentlessly to understand the biology of this virus. As in other coronaviruses, nucleocapsid (N) is one of the most crucial structural components of the SARS-CoV. Hence major attention has been focused on characterization of this protein. Independent studies conducted by several laboratories have elucidated significant insight into the primary function of this protein, which is to encapsidate the viral genome. In addition, many reports also suggest that this protein interferes with different cellular pathways, thus implying it to be a key regulatory component of the virus too. In the first part of this review, we will discuss these different properties of the N-protein in a consolidated manner. Further, this protein has also been proposed to be an efficient diagnostic tool and a candidate vaccine against the SARS-CoV. Hence, towards the end of this article, we will discuss some recent progress regarding the possible clinically relevant use of the N-protein.
Collapse
Affiliation(s)
| | - Sunil K. Lal
- Corresponding author at: Virology Group, ICGEB, P.O. Box 10504, Aruna Asaf Ali Road, New Delhi 110067, India. Tel.: +91 9818522900.
| |
Collapse
|