1
|
Mahmood NMS, Mahmud AMR, Maulood IM. Vascular actions of Ang 1-7 and Ang 1-8 through EDRFs and EDHFs in non-diabetes and diabetes mellitus. Nitric Oxide 2025; 156:9-26. [PMID: 40032212 DOI: 10.1016/j.niox.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in regulating vascular homeostasis, while angiotensin 1-8 (Ang 1-8) traditionally dominates as a vasoconstrictor factor. However, the discovery of angiotensin 1-7 (Ang 1-7) and Ang 1-8 has revealed counter-regulatory mechanisms mediated through endothelial-derived relaxing factors (EDRFs) and endothelial-derived hyperpolarizing factors (EDHFs). This review delves into the vascular actions of Ang 1-7 and Ang 1-8 in both non-diabetes mellitus (non-DM) and diabetes mellitus (DM) conditions, highlighting their effects on vascular endothelial cell (VECs) function as well. In a non-DM vasculature context, Ang 1-8 demonstrate dual effect including vasoconstriction and vasodilation, respectively. Additionally, Ang 1-7 induces vasodilation upon nitric oxide (NO) production as a prominent EDRFs in distinct mechanisms. Further research elucidating the precise mechanisms underlying the vascular actions of Ang 1-7 and Ang 1-8 in DM will facilitate the development of tailored therapeutic interventions aimed at preserving vascular health and preventing cardiovascular complications.
Collapse
Affiliation(s)
- Nazar M Shareef Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Almas M R Mahmud
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ismail M Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
2
|
Shi S, Lu Y, Long Q, Wu Y, Guo Y, Chen N, Wan H, Jin B. Danhong Injection Inhibits Apoptosis in Ischemia/Reperfusion Injury Based on Network Pharmacology Analysis, Molecular Docking, and Experimental Verification. ACS OMEGA 2025; 10:9604-9612. [PMID: 40092804 PMCID: PMC11904842 DOI: 10.1021/acsomega.4c10868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Danhong injection (DHI), a Chinese patent compound injection, is widely used in the treatment of cardiovascular diseases (CVD) in China. However, the underlying mechanisms have not been fully elucidated. This study investigated the therapeutic effect and the underlying mechanisms of DHI against ischemia-reperfusion (I/R) injury and endothelial dysfunction (ED). Network pharmacology analysis revealed that DHI had six core active compounds (Danshensu, salvianolic acid A, salvianolic acid B, rosmarinic acid, protocatechualdehyde, and caffeic acid) and 19 potential targets in treating I/R injury. Notably, the regulation of apoptosis was significantly enriched, as indicated by the results of the gene ontology (GO) enrichment analysis. Molecular docking studies confirmed that these targets had high affinity with the active compounds of DHI. Finally, experimental validation in vivo and in vitro demonstrated that DHI could mitigate I/R injury and ED, potentially by reducing oxidative damage through the inhibition of apoptosis via the PTEN/AKT pathway. These findings significantly advance our understanding of the molecular mechanisms in DHI treatment and contribute further to promoting the clinical application of CVD.
Collapse
Affiliation(s)
- Shennan Shi
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou 310053, China
| | - Yalan Lu
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou 310053, China
| | - Qiwen Long
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou 310053, China
| | - Yanqing Wu
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou 310053, China
| | - Yan Guo
- Hangzhou
TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Nipi Chen
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou 310053, China
| | - Haitong Wan
- School
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Bo Jin
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou 310053, China
| |
Collapse
|
3
|
Jiang X, Huang H. The therapeutic potential of apigenin against atherosclerosis. Heliyon 2025; 11:e41272. [PMID: 39811295 PMCID: PMC11732486 DOI: 10.1016/j.heliyon.2024.e41272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Apigenin is a natural flavonoid abundantly found in fruits, vegetables, and medicinal plants. It possesses protective effects against cancer, metabolic syndrome, dyslipidemia, etc. Atherosclerosis, a chronic immune-mediated inflammatory disease, is the underlying cause of coronary heart disease, stroke, and myocardial infarction. Numerous in vivo and in vitro studies have shown a protective effect of apigenin against atherosclerosis, attributed to its antioxidant and anti-inflammatory properties, as well as its antihypertensive effect and regulation of lipid metabolism. This study aimed to review the effects and mechanisms of apigenin against atherosclerosis for the first time. Apigenin displays encouraging results, and this review confirms the potential value of apigenin as a candidate medication for atherosclerosis.
Collapse
Affiliation(s)
- Xueqiang Jiang
- Sinopharm Dongfeng General Hospital, Hubei Clinical Research Center of Hypertension, Hubei University of Medicine, Shiyan, 442008, China
| | - Huimin Huang
- Sinopharm Dongfeng General Hospital, Hubei Clinical Research Center of Hypertension, Hubei University of Medicine, Shiyan, 442008, China
- Department of Pharmacy, Xi'an Jiaotong University, Xi'an, 710003, China
| |
Collapse
|
4
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Durgawale TP, Arjun UVNV, Shanmugarajan TS, Kannan SP, Prasad PD, Usman MRM, Reddy KTK, Sultana R, Alshehri MA, Rab SO, Suliman M, Emran TB. Cellular stress response and neuroprotection of flavonoids in neurodegenerative diseases: Clinical insights into targeted therapy and molecular signaling pathways. Brain Res 2025; 1847:149310. [PMID: 39537124 DOI: 10.1016/j.brainres.2024.149310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases (NDs) are caused by the gradual decline of neuronal structure and function, which presents significant challenges in treatment. Cellular stress responses significantly impact the pathophysiology of these disorders, often exacerbating neuronal damage. Plant-derived flavonoids have demonstrated potential as neuroprotective agents due to their potent anti-inflammatory, anti-apoptotic, and antioxidant properties. This review provides an in-depth analysis of the molecular processes and clinical insights that cause the neuroprotective properties of flavonoids in NDs. By controlling essential signaling pathways such as Nrf2/ARE, MAPK, and PI3K/Akt, flavonoids can lower cellular stress and improve neuronal survival. The study discusses the challenges of implementing these discoveries in clinical practice and emphasizes the therapeutic potential of specific flavonoids and their derivatives. Flavonoids are identified as potential therapeutic agents for NDs, potentially slowing progression by regulating cellular stress and improving neuroprotection despite their potential medicinal uses and clinical challenges. The study designed a strategy to identify literature published in prestigious journals, utilizing search results from PubMed, Scopus, and WOS. We selected and investigated original studies, review articles, and research reports published until 2024. It suggests future research and therapeutic approaches to effectively utilize the neuroprotective properties of flavonoids.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, KVV's Krishna Institute of Pharmacy, Karad, Maharashtra, India
| | - Uppuluri Varuna Naga Venkata Arjun
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - Shruthi Paramasivam Kannan
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - P Dharani Prasad
- Department of Pharmacology, Mohan Babu University, MB School of Pharmaceutical Sciences, (Erstwhile, Sree Vidyaniketan College of Pharmacy), Tirupati, Andhra Pradesh 517102, India
| | - Md Rageeb Md Usman
- Department of Pharmacognosy, Smt. Sharadchandrika Suresh Patil College of Pharmacy, Chopda, Maharashtra, India
| | - Konatham Teja Kumar Reddy
- Department of Pharmacy, University College of Technology, Osmania University, Amberpet, Hyderabad, Telangana 500007, India
| | - Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College and Research Centre, Yenepoya (deemed to be University), Mangalore, Karnataka, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
5
|
Miao X, Davoudi M, Alitotonchi Z, Ahmadi ES, Amraee F, Alemi A, Afrisham R. Managing cardiovascular events, hyperglycemia, and obesity in type 2 diabetes through microRNA regulation linked to glucagon-like peptide-1 receptor agonists. Diabetol Metab Syndr 2025; 17:13. [PMID: 39794819 PMCID: PMC11724456 DOI: 10.1186/s13098-025-01581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND AND AIMS Type 2 diabetes mellitus (T2DM) is usually complicated by cardiovascular diseases, hyperglycemia, and obesity, which worsen the outcome for the patient. Since recent evidence underlines the epigenetic role of glucagon-like peptide-1 receptor agonists (GLP-1RAs) in the management of these comorbidities, this study compared the effects of these agents, namely liraglutide, semaglutide, dulaglutide, and exenatide, on miRNA regulation in the management of T2DM. RESULTS GLP-1RAs modify the expression of miRNAs involved in endothelial function, sugar metabolism, and adipogenesis, including but not limited to miR-27b, miR-130a, and miR-210. Baseline miR-15a-5p predict weight loss, while higher miR-378-3p and miR-126-3p levels are related to better glycemic control and lower HbA1c and FPG at one year post-treatment. miR-375-5p was also reported as a predictor of HbA1c levels. Liraglutide has a protecting effect against pancreatic β-cell apoptosis by downregulating miR-139-5p. The highly-expressed miR-375 in pancreatic islets can be considered as a biomarker for assessing the cytoprotective action of GLP-1RAs on β-cells. GLP-1RAs also enhance β-cell responsiveness by promoting GLP-1 receptor expression through the suppression of miR-204. While semaglutide, semaglutide, and dulaglutide reduce both systolic and diastolic blood pressures, lixisenatide and exenatide QW did not reveal such an effect. The long-acting exenatide-induced miR-29b-3p is required for the protection against diabetic cardiomyopathy. Liraglutide modulates critical regulators of endothelial cell function and atherosclerosis, including miR-93-5p, miR-26a-5p, and miR-181a-5p. Eventually, GLP-1RAs regulation of exosomal miRNAs, such as miR-192, implicated in the development of fibrosis and inflammation in T2DM micro-cardiovascular outcomes like DKD and DR. CONCLUSION Additional studies will be needed in the elucidation of the relations between GLP-1RA-induced miRNAs and clinical-laboratory findings concerning the diverse populations, gender, and presence of other comorbid states in treated patients with T2DM.
Collapse
Affiliation(s)
- Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Alitotonchi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Sadat Ahmadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amraee
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Alemi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Li B, Zhao R, Jiang X, Liu C, Ma Y, Zhang H. Phytochemical investigation of Jie-Geng-Tang and regulatory role in the TNF-α pathway in mitigating pulmonary fibrosis using UPLC-Q-TOF/MS. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03755-8. [PMID: 39729206 DOI: 10.1007/s00210-024-03755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Jie-Geng-Tang (JGT), composed of Platycodon grandiflorus (Jacq.) A. DC and Glycyrrhiza uralensis Fisch, is widely used in traditional Chinese medicine for its potential effects in preventing pulmonary fibrosis (PF). This study systematically explored the effects of JGT's water and 70% EtOH extracts in bleomycin (BLM)-induced PF models. In vitro, the 70% EtOH extract significantly reversed BLM-induced reductions in cell viability and apoptosis, whereas the water extract had limited impact. In vivo, the EtOH extract markedly reduced fibrosis markers, such as α-SMA and collagen-I, alleviating lung tissue damage and collagen deposition. UPLC-Q-TOF/MS analysis revealed that the EtOH extract contained a higher abundance of flavonoids compared to the water extract. Through network pharmacology analysis of the EtOH extract, four key flavonoids-apigenin, kaempferol, kaempferol 3-glucuronoside, and quercetin-were identified as crucial compounds. These flavonoids were found to reverse BLM-induced cell viability loss, with apigenin showing the most pronounced effect by modulating the TNF-α signaling pathway and inhibiting caspase-3 activation. Apigenin, as a primary active component derived from JGT, holds significant potential as a preventive agent against pulmonary fibrosis.
Collapse
Affiliation(s)
- Bingxin Li
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Ruining Zhao
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Xiaojie Jiang
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Chang Liu
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Yun Ma
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Haijun Zhang
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China.
| |
Collapse
|
7
|
Yang Y, Chen Y, Jia X, Huang X. Association of dietary flavonoid intake with the prevalence and all-cause mortality of depressive symptoms: Findings from analysis of NHANES. J Affect Disord 2024; 366:44-58. [PMID: 39187180 DOI: 10.1016/j.jad.2024.08.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND This study aimed to explore the relationship between flavonoids intake and the prevalence and all-cause mortality of depressive symptoms in American adults. METHODS Analyzing 2007-2008, 2009-2010, and 2017-2018 NHANES data, we examined the association between dietary flavonoid and depressive symptoms, including specific subclasses assessment and mortality outcomes tracking until December 31, 2019. Our methodology included weighted multivariate logistic regression, weighted cox proportional hazards regression and restricted cubic spline (RCS) models, supported by stratified and sensitivity analyses. RESULTS Among the 12,340 participants in total, 1129 exhibited depressive symptoms. The multiple logistic regression analysis showed a significant reduction in total flavonoid and subclass intake in individuals with current depressive symptoms. Adjusted odds ratios (ORs) for the highest quartiles were 0.69 for anthocyanidins and 0.63 for flavones. Interaction effects emerged in non-hypertensive, higher-income, and normal-weight groups for flavones intake. The RCS model indicated an L-shaped association between depressive symptoms and total flavonoid intake, with inflection points at 346 mg/day. During a median follow-up of 119 months, 148 deaths occurred among patients with depressive symptoms. Hazard ratios (HRs) for all-cause mortality showed a significant positive correlation between total flavonoid intake and survival in model 1 (HR = 0.56), with an optimal intake range of 45.2-948.3 mg/day according to the RCS model. LIMITATIONS The study relied on U.S. population survey data, potentially limiting generalizability. Unmeasured confounding factors may exist, and genetic factors were not considered. CONCLUSIONS Adequate intake of flavonoids, especially anthocyanidins and flavones, is associated with reduced odds of depressive symptoms. Additionally, optimal intake ranges of flavonoid intake for mental health benefits were observed for all-cause mortality in population with depressive symptoms.
Collapse
Affiliation(s)
- Yaqin Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yuemei Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaotong Jia
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyan Huang
- Department of Nephrology, Hunan Provincial Hospital of Chinese Medicine, Hengyang, China.
| |
Collapse
|
8
|
Mou A, Sun F, Tong D, Wang L, Lu Z, Cao T, Li L, You M, Zhou Q, Chen X, Xiang J, Liu D, Gao P, He H, Zhu Z. Dietary apigenin ameliorates obesity-related hypertension through TRPV4-dependent vasorelaxation and TRPV4-independent adiponectin secretion. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167488. [PMID: 39218272 DOI: 10.1016/j.bbadis.2024.167488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Obesity-related hypertension is a major cardiovascular risk factor. Apigenin, a natural flavonoid in celery, induces vascular dilation via endothelial transient receptor potential channel vanilla 4 (TRPV4) channels. This study aimed to explore apigenin's potential to alleviate obesity-related hypertension in mice and its underlying mechanisms. METHODS The C57BL/6 and TRPV4 knockout mice were fed a high-fat diet and subjected to dietary intervention with apigenin. Body weight and tail blood pressure of the mice were measured during the feeding. Vascular reactivity was assessed through a DMT wire myograph systems in vitro. The distribution and expression of adiponectin and pro-inflammatory markers in brown fat were detected. Injecting adeno-associated eight (AAV8) viruses into brown adipose tissue (BAT) to determine whether adiponectin is indispensable for the therapeutic effect of apigenin. Palmitic acid (PA) was used in mouse brown adipocytes to examine the detailed mechanisms regulating adiponectin secretion. RESULTS Apigenin improved vasodilation and reduced blood pressure in obese mice, effects partly blocked in TRPV4 knockout. It also reduced weight gain independently of TRPV4. Apigenin increased adiponectin secretion from BAT; knockdown of adiponectin weakened its benefits. Apigenin downregulated Cluster of differentiation 38 (CD38), restoring Nicotinamide adenine dinucleotide+ (NAD+) levels and activating the NAD+/Sirtuin 1 (SIRT1) pathway, enhancing adiponectin expression. CONCLUSIONS Our study indicates that dietary apigenin is suitable as a nonpharmaceutical intervention for obesity-related hypertension. In mechanism, in addition to improving vascular relaxation through the activation of endothelial TRPV4 channels, apigenin also directly alleviated adipose inflammation and increased adiponectin levels by inhibiting CD38.
Collapse
Affiliation(s)
- Aidi Mou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Fang Sun
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Dan Tong
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Mei You
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Qing Zhou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Xiaorong Chen
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Jie Xiang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China.
| | - Hongbo He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China.
| |
Collapse
|
9
|
Zheng H, Li T, Hu Z, Zheng Q, Wang J. The potential of flavonoids to mitigate cellular senescence in cardiovascular disease. Biogerontology 2024; 25:985-1010. [PMID: 39325277 DOI: 10.1007/s10522-024-10141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Aging is one of the most significant factors affecting cardiovascular health, with cellular senescence being a central hallmark. Senescent cells (SCs) secrete a specific set of signaling molecules known as the senescence-associated secretory phenotype (SASP). The SASP has a remarkable impact on age-associated diseases, particularly cardiovascular diseases (CVD). Targeting SCs through anti-aging therapies represents a novel strategy to effectively retard senescence and attenuate disease progression. Accumulating evidence demonstrates that the flavonoids, widely presented in fruits and vegetables worldwide, can delay or treat CVD via selectively eliminating SCs (senolytics) and modulating SASPs (senomorphics). Nevertheless, only sporadic research has illustrated the application of flavonoids in targeting SCs for CVD, which requires further exploration. This review recapitulates the hallmarks and key molecular mechanisms involved in cellular senescence, then summarizes senescence of different types of cardiac cells and describes the mechanisms by which cellular senescence affects CVD development. The discussion culminates with the potential use of flavonoids via exerting their biological effects on cellular senescence to reduce CVD incidence. This summary will provide valuable insights for cardiovascular drug design, development and clinical applications leveraging flavonoids.
Collapse
Affiliation(s)
- Huimin Zheng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China
| | - Tiantian Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China
| | - Ziyun Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China
| | - Qi Zheng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China
| | - Junsong Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Tian Y, Shao S, Feng H, Zeng R, Li S, Zhang Q. Targeting senescent cells in atherosclerosis: Pathways to novel therapies. Ageing Res Rev 2024; 101:102502. [PMID: 39278272 DOI: 10.1016/j.arr.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
Targeting senescent cells has recently emerged as a promising strategy for treating age-related diseases, such as atherosclerosis, which significantly contributes to global cardiovascular morbidity and mortality. This review elucidates the role of senescent cells in the development of atherosclerosis, including persistently damaging DNA, inducing oxidative stress and secreting pro-inflammatory factors known as the senescence-associated secretory phenotype. Therapeutic approaches targeting senescent cells to mitigate atherosclerosis are summarized in this review, which include the development of senotherapeutics and immunotherapies. These therapies are designed to either remove these cells or suppress their deleterious effects. These emerging therapies hold potential to decelerate or even alleviate the progression of AS, paving the way for new avenues in cardiovascular research and treatment.
Collapse
Affiliation(s)
- Yuhan Tian
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Sihang Shao
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Haibo Feng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China.
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Pharmacy, Sichuan Provincial People's Hospital East Sichuan Hospital & Dazhou First People's Hospital, Dazhou 635000, China.
| |
Collapse
|
11
|
Dou B, Zhu Y, Sun M, Wang L, Tang Y, Tian S, Wang F. Mechanisms of Flavonoids and Their Derivatives in Endothelial Dysfunction Induced by Oxidative Stress in Diabetes. Molecules 2024; 29:3265. [PMID: 39064844 PMCID: PMC11279171 DOI: 10.3390/molecules29143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic complications pose a significant threat to life and have a negative impact on quality of life in individuals with diabetes. Among the various factors contributing to the development of these complications, endothelial dysfunction plays a key role. The main mechanism underlying endothelial dysfunction in diabetes is oxidative stress, which adversely affects the production and availability of nitric oxide (NO). Flavonoids, a group of phenolic compounds found in vegetables, fruits, and fungi, exhibit strong antioxidant and anti-inflammatory properties. Several studies have provided evidence to suggest that flavonoids have a protective effect on diabetic complications. This review focuses on the imbalance between reactive oxygen species and the antioxidant system, as well as the changes in endothelial factors in diabetes. Furthermore, we summarize the protective mechanisms of flavonoids and their derivatives on endothelial dysfunction in diabetes by alleviating oxidative stress and modulating other signaling pathways. Although several studies underline the positive influence of flavonoids and their derivatives on endothelial dysfunction induced by oxidative stress in diabetes, numerous aspects still require clarification, such as optimal consumption levels, bioavailability, and side effects. Consequently, further investigations are necessary to enhance our understanding of the therapeutic potential of flavonoids and their derivatives in the treatment of diabetic complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Furong Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| |
Collapse
|
12
|
Feng Y, Ren Y, Zhang X, Yang S, Jiao Q, Li Q, Jiang W. Metabolites of traditional Chinese medicine targeting PI3K/AKT signaling pathway for hypoglycemic effect in type 2 diabetes. Front Pharmacol 2024; 15:1373711. [PMID: 38799166 PMCID: PMC11116707 DOI: 10.3389/fphar.2024.1373711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease characterized by insulin resistance, with high morbidity and mortality worldwide. Due to the tightly intertwined connection between the insulin resistance pathway and the PI3K/AKT signaling pathway, regulating the PI3K/AKT pathway and its associated targets is essential for hypoglycemia and the prevention of type 2 diabetes mellitus. In recent years, metabolites isolated from traditional Chinese medicine has received more attention and acceptance for its superior bioactivity, high safety, and fewer side effects. Meanwhile, numerous in vivo and in vitro studies have revealed that the metabolites present in traditional Chinese medicine possess better bioactivities in regulating the balance of glucose metabolism, ameliorating insulin resistance, and preventing type 2 diabetes mellitus via the PI3K/AKT signaling pathway. In this article, we reviewed the literature related to the metabolites of traditional Chinese medicine improving IR and possessing therapeutic potential for type 2 diabetes mellitus by targeting the PI3K/AKT signaling pathway, focusing on the hypoglycemic mechanism of the metabolites of traditional Chinese medicine in type 2 diabetes mellitus and elaborating on the significant role of the PI3K/AKT signaling pathway in type 2 diabetes mellitus. In order to provide reference for clinical prevention and treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenwen Jiang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
13
|
Weng X, Luo X, Dai X, Lv Y, Zhang S, Bai X, Bao X, Wang Y, Zhao C, Zeng M, Hu S, Li J, Jia H, Yu B. Apigenin inhibits macrophage pyroptosis through regulation of oxidative stress and the NF-κB pathway and ameliorates atherosclerosis. Phytother Res 2023; 37:5300-5314. [PMID: 37526050 DOI: 10.1002/ptr.7962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/21/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023]
Abstract
Pyroptosis plays an important role in inflammatory diseases such as viral hepatitis and atherosclerosis. Apigenin exhibits various bioactivities, particularly anti-inflammation, but its effect on pyroptosis remains unclear. The aim of this study is to investigate the effect of apigenin on pyroptosis and explore its potential against inflammatory diseases. THP-1 macrophages treated by lipopolysaccharides/adenosine 5'-triphosphate were used as the in vitro pyroptosis model. Western blot was used to detect the expression of NLRP3 inflammasome components and key regulators. Immunofluorescence was used to observe ROS production and intracellular location of p65. The potential of apigenin against inflammatory diseases was evaluated using atherosclerotic mice. Plaque progression was observed by pathological staining. Immunofluorescence was used to observe the expression of NLRP3 inflammasome components in plaques. The results showed that apigenin inhibited NLRP3 inflammasome activation. Apigenin reduced ROS overproduction and inhibited p65 nuclear translocation. Additionally, apigenin decreased the expression of NLRP3 inflammasome components in the plaque. Plaque progression was inhibited by apigenin. In conclusion, apigenin exhibited a preventive effect on macrophage pyroptosis by reducing oxidative stress and inhibiting the NF-κB pathway. Apigenin may alleviate atherosclerosis at least partially by inhibiting macrophage pyroptosis. These findings suggest apigenin to be a promising therapeutic agent for inflammatory diseases.
Collapse
Affiliation(s)
- Xiuzhu Weng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Xing Luo
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Xinyu Dai
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Ying Lv
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Shan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Xiaoxuan Bai
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Xiaoyi Bao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Ying Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Chen Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Ming Zeng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Sining Hu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Ji Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Haibo Jia
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| |
Collapse
|
14
|
Tomou EM, Papakyriakopoulou P, Skaltsa H, Valsami G, Kadoglou NPE. Bio-Actives from Natural Products with Potential Cardioprotective Properties: Isolation, Identification, and Pharmacological Actions of Apigenin, Quercetin, and Silibinin. Molecules 2023; 28:molecules28052387. [PMID: 36903630 PMCID: PMC10005323 DOI: 10.3390/molecules28052387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. As a result, pharmaceutical and non-pharmaceutical interventions modifying risk factors for CVDs are a top priority of scientific research. Non-pharmaceutical therapeutical approaches, including herbal supplements, have gained growing interest from researchers as part of the therapeutic strategies for primary or secondary prevention of CVDs. Several experimental studies have supported the potential effects of apigenin, quercetin, and silibinin as beneficial supplements in cohorts at risk of CVDs. Accordingly, this comprehensive review focused critically on the cardioprotective effects/mechanisms of the abovementioned three bio-active compounds from natural products. For this purpose, we have included in vitro, preclinical, and clinical studies associated with atherosclerosis and a wide variety of cardiovascular risk factors (hypertension, diabetes, dyslipidemia, obesity, cardiac injury, and metabolic syndrome). In addition, we attempted to summarize and categorize the laboratory methods for their isolation and identification from plant extracts. This review unveiled many uncertainties which are still unexplored, such as the extrapolation of experimental results to clinical practice, mainly due to the small clinical studies, heterogeneous doses, divergent constituents, and the absence of pharmacodynamic/pharmacokinetic analyses.
Collapse
Affiliation(s)
- Ekaterina-Michaela Tomou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Helen Skaltsa
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | | |
Collapse
|
15
|
Ambroselli D, Masciulli F, Romano E, Catanzaro G, Besharat ZM, Massari MC, Ferretti E, Migliaccio S, Izzo L, Ritieni A, Grosso M, Formichi C, Dotta F, Frigerio F, Barbiera E, Giusti AM, Ingallina C, Mannina L. New Advances in Metabolic Syndrome, from Prevention to Treatment: The Role of Diet and Food. Nutrients 2023; 15:640. [PMID: 36771347 PMCID: PMC9921449 DOI: 10.3390/nu15030640] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The definition of metabolic syndrome (MetS) has undergone several changes over the years due to the difficulty in establishing universal criteria for it. Underlying the disorders related to MetS is almost invariably a pro-inflammatory state related to altered glucose metabolism, which could lead to elevated cardiovascular risk. Indeed, the complications closely related to MetS are cardiovascular diseases (CVDs) and type 2 diabetes (T2D). It has been observed that the predisposition to metabolic syndrome is modulated by complex interactions between human microbiota, genetic factors, and diet. This review provides a summary of the last decade of literature related to three principal aspects of MetS: (i) the syndrome's definition and classification, pathophysiology, and treatment approaches; (ii) prediction and diagnosis underlying the biomarkers identified by means of advanced methodologies (NMR, LC/GC-MS, and LC, LC-MS); and (iii) the role of foods and food components in prevention and/or treatment of MetS, demonstrating a possible role of specific foods intake in the development of MetS.
Collapse
Affiliation(s)
- Donatella Ambroselli
- Laboratory of Food Chemistry, Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Fabrizio Masciulli
- Laboratory of Food Chemistry, Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Enrico Romano
- Laboratory of Food Chemistry, Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppina Catanzaro
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Maria Chiara Massari
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, Health Sciences Section, University “Foro Italico”, 00135 Rome, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- UNESCO, Health Education and Sustainable Development, University of Naples Federico II, 80131 Naples, Italy
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Francesco Frigerio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Eleonora Barbiera
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Anna Maria Giusti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Cinzia Ingallina
- Laboratory of Food Chemistry, Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Luisa Mannina
- Laboratory of Food Chemistry, Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
16
|
Zhao Y, Jiang Q, Guo L, Fan D, Wang M, Zhao Y. Apigenin and its octoic acid diester attenuated glycidol-induced autophagic-dependent apoptosis via inhibiting the ERK/JNK/p38 signaling pathways in human umbilical vein endothelial cells (HUVECs). Curr Res Food Sci 2023; 6:100447. [PMID: 36699118 PMCID: PMC9868870 DOI: 10.1016/j.crfs.2023.100447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/02/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Glycidol is a well-known food contaminant mainly formed in refined edible oils and various thermally processed foods. Here, we studied the toxicity effects and related mechanism of glycidol on Human umbilical vein endothelial cells (HUVECs). Glycidol was found to induce Gap period 2 (G2)/Mitosis (M) phase cell cycle arrest, apoptosis, and autophagy in HUVECs. Inhibition of autophagy by 3-methyladenine (3-MA) attenuated glycidol-induced cell death, suggesting that glycidol-induced apoptosis was autophagy-dependent. Moreover, glycidol treatment induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal protein kinase (JNK), and p38. Inhibition of ERK, JNK, and p38 phosphorylation by the inhibitors U0126, SP600125, and SB203580 attenuated glycidol-induced autophagy and prevented glycidol-mediated reduction in cell viability, demonstrating that glycidol inhibited HUVECs growth by inducing autophagic-dependent apoptosis through activation of the ERK, JNK and p38 signaling pathways. In addition, apigenin (API) and its octoic acid diester apigenin-7 (API-C8), 4'-O-dioctanoate were found to significantly attenuate glycidol-induced cell growth inhibition by inhibiting the above signaling pathways. Collectively, glycidol induces autophagic-dependent apoptosis via activating the ERK/JNK/p38 signaling pathways in HUVECs and API-C8 could attenuate the toxicity effects.
Collapse
Affiliation(s)
- Yue Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China
| | - Qingqing Jiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China
| | - Limin Guo
- Institute of Agro-Products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Daming Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China,Corresponding author. College of Food Science and Technology, Shanghai Ocean University, China.
| |
Collapse
|
17
|
Thomas SD, Jha NK, Jha SK, Sadek B, Ojha S. Pharmacological and Molecular Insight on the Cardioprotective Role of Apigenin. Nutrients 2023; 15:nu15020385. [PMID: 36678254 PMCID: PMC9866972 DOI: 10.3390/nu15020385] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Apigenin is a naturally occurring dietary flavonoid found abundantly in fruits and vegetables. It possesses a wide range of biological properties that exert antioxidant, anti-inflammatory, anticancer, and antibacterial effects. These effects have been reported to be beneficial in the treatment of atherosclerosis, stroke, hypertension, ischemia/reperfusion-induced myocardial injury, and diabetic cardiomyopathy, and provide protection against drug-induced cardiotoxicity. These potential therapeutic effects advocate the exploration of the cardioprotective actions of apigenin. This review focuses on apigenin, and the possible pharmacological mechanisms involved in the protection against cardiovascular diseases. We further discuss its therapeutic uses and highlight its potential applications in the treatment of various cardiovascular disorders. Apigenin displays encouraging results, which may have implications in the development of novel strategies for the treatment of cardiovascular diseases. With the commercial availability of apigenin as a dietary supplement, the outcomes of preclinical studies may provide the investigational basis for future translational strategies evaluating the potential of apigenin in the treatment of cardiovascular disorders. Further preclinical and clinical investigations are required to characterize the safety and efficacy of apigenin and establish it as a nutraceutical as well as a therapeutic agent to be used alone or as an adjuvant with current drugs.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, Punjab, India
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (B.S.); (S.O.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (B.S.); (S.O.)
| |
Collapse
|
18
|
Keylani K, Arbab Mojeni F, Khalaji A, Rasouli A, Aminzade D, Karimi MA, Sanaye PM, Khajevand N, Nemayandeh N, Poudineh M, Azizabadi Farahani M, Esfandiari MA, Haghshoar S, Kheirandish A, Amouei E, Abdi A, Azizinezhad A, Khani A, Deravi N. Endoplasmic reticulum as a target in cardiovascular diseases: Is there a role for flavonoids? Front Pharmacol 2023; 13:1027633. [PMID: 36703744 PMCID: PMC9871646 DOI: 10.3389/fphar.2022.1027633] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Flavonoids are found in natural health products and plant-based foods. The flavonoid molecules contain a 15-carbon skeleton with the particular structural construction of subclasses. The most flavonoid's critical subclasses with improved health properties are the catechins or flavonols (e.g., epigallocatechin 3-gallate from green tea), the flavones (e.g., apigenin from celery), the flavanones (e.g., naringenin from citrus), the flavanols (e.g., quercetin glycosides from berries, onion, and apples), the isoflavones (e.g., genistein from soya beans) and the anthocyanins (e.g., cyanidin-3-O-glucoside from berries). Scientific data conclusively demonstrates that frequent intake of efficient amounts of dietary flavonoids decreases chronic inflammation and the chance of oxidative stress expressing the pathogenesis of human diseases like cardiovascular diseases (CVDs). The endoplasmic reticulum (ER) is a critical organelle that plays a role in protein folding, post-transcriptional conversion, and transportation, which plays a critical part in maintaining cell homeostasis. Various stimuli can lead to the creation of unfolded or misfolded proteins in the endoplasmic reticulum and then arise in endoplasmic reticulum stress. Constant endoplasmic reticulum stress triggers unfolded protein response (UPR), which ultimately causes apoptosis. Research has shown that endoplasmic reticulum stress plays a critical part in the pathogenesis of several cardiovascular diseases, including diabetic cardiomyopathy, ischemic heart disease, heart failure, aortic aneurysm, and hypertension. Endoplasmic reticulum stress could be one of the crucial points in treating multiple cardiovascular diseases. In this review, we summarized findings on flavonoids' effects on the endoplasmic reticulum and their role in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Arbab Mojeni
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Dlnya Aminzade
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nazanin Khajevand
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Nemayandeh
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammad Ali Esfandiari
- Student Research Committee, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sepehr Haghshoar
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| | - Ali Kheirandish
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Erfan Amouei
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Azizinezhad
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Afshin Khani
- Department of Cardiovascular Disease, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Li RL, Wang LY, Duan HX, Qian D, Zhang Q, He LS, Li XP. Natural flavonoids derived from herbal medicines are potential anti-atherogenic agents by inhibiting oxidative stress in endothelial cells. Front Pharmacol 2023; 14:1141180. [PMID: 36909175 PMCID: PMC10001913 DOI: 10.3389/fphar.2023.1141180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
As the common pathological basis of various cardiovascular diseases, the morbidity and mortality of atherosclerosis (AS) have increased in recent years. Unfortunately, there are still many problems in the treatment of AS, and the prevention and treatment of the disease is not ideal. Up to now, the occurrence and development of AS can roughly include endothelial cell dysfunction, vascular smooth muscle cell proliferation, inflammation, foam cell production, and neoangiogenesis. Among them, endothelial dysfunction, as an early event of AS, plays a particularly important role in promoting the development of AS. In addition, oxidative stress occurs throughout the causes of endothelial dysfunction. Some previous studies have shown that flavonoids derived from herbal medicines are typical secondary metabolites. Due to its structural presence of multiple active hydroxyl groups, it is able to exert antioxidant activity in diseases. Therefore, in this review, we will search PubMed, Web of Science, Elesvier, Wliey, Springer for relevant literature, focusing on flavonoids extracted from herbal medicines, and summarizing how they can prevent endothelial dysfunction by inhibiting oxidative stress. Meanwhile, in our study, we found that flavonoid represented by quercetin and naringenin showed superior protective effects both in vivo and in vitro, suggesting the potential of flavonoid compounds in the treatment of AS.
Collapse
Affiliation(s)
- Ruo-Lan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Qian
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Sha He
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue-Ping Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Lin J, Wang Q, Xu S, Zhou S, Zhong D, Tan M, Zhang X, Yao K. Banxia baizhu tianma decoction, a Chinese herbal formula, for hypertension: Integrating meta-analysis and network pharmacology. Front Pharmacol 2022; 13:1025104. [PMID: 36534045 PMCID: PMC9755740 DOI: 10.3389/fphar.2022.1025104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/22/2022] [Indexed: 03/29/2024] Open
Abstract
Hypertension is a major cardiovascular risk factor, which seriously affects the quality of life of patients. Banxia Baizhu Tianma Decoction (BXD) is a Chinese herbal formula that is widely used to treat hypertension in China. This study aimed to evaluate the efficacy and potential mechanism of BXD for hypertension by meta-analysis and network pharmacology. Meta-analysis was performed to explore the efficacy and safety of BXD combined with conventional treatment for hypertension. Network pharmacology was used to explore the molecular mechanism of BXD in antihypertension. A total of 23 studies involving 2,041 patients were included. Meta-analysis indicated that compared with conventional treatment, combined BXD treatment was beneficial to improve clinical efficacy rate, blood pressure, blood lipids, homocysteine, endothelial function, inflammation, and traditional Chinese medicine symptom score. In addition, meta-analysis indicated that BXD is safe and has no obvious adverse reactions. Network pharmacology showed that the antihypertensive targets of BXD may be AKT1, NOS3, ACE, and PPARG. The antihypertensive active ingredients of BXD may be naringenin, poricoic acid C, eburicoic acid, and licochalcone B. Due to the poor methodological quality of the Chinese studies and the small sample size of most, the analysis of this study may have been affected by bias. Therefore, the efficacy and safety of BXD for hypertension still need to be further verified by high-quality clinical studies. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022353666.
Collapse
Affiliation(s)
- Jianguo Lin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingqing Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siyu Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Simin Zhou
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongsheng Zhong
- Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Meng Tan
- Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Xiaoxiao Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kuiwu Yao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Meng-zhen S, Ju L, Lan-chun Z, Cai-feng D, Shu-da Y, Hao-fei Y, Wei-yan H. Potential therapeutic use of plant flavonoids in AD and PD. Heliyon 2022; 8:e11440. [DOI: 10.1016/j.heliyon.2022.e11440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
|
22
|
Alleviation of liver cirrhosis and associated portal-hypertension by Astragalus species in relation to their UPLC-MS/MS metabolic profiles: a mechanistic study. Sci Rep 2022; 12:11884. [PMID: 35831335 PMCID: PMC9279505 DOI: 10.1038/s41598-022-15958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Liver cirrhosis is a late-stage liver disease characterized by excessive fibrous deposition triggering portal-hypertension (PH); the prime restrainer for cirrhosis-related complications. Remedies that can dually oppose hepatic fibrosis and lower PH, may prevent progression into decompensated-cirrhosis. Different Astragalus-species members have shown antifibrotic and diuretic actions with possible subsequent PH reduction. However, A.spinosus and A.trigonus were poorly tested for eliciting these actions. Herein, A.spinosus and A.trigonus roots and aerial parts extracts were subjected to comprehensive metabolic-fingerprinting using UHPLC-MS/MS resulting in 56 identified phytoconstituents, followed by chemometric untargeted analysis that revealed variable metabolic profiles exemplified by different species and organ types. Consequently, tested extracts were in-vivo evaluated for potential antifibrotic/anticirrhotic activity by assessing specific markers. The mechanistic prospective to induce diuresis was investigated by analyzing plasma aldosterone and renal-transporters gene-expression. Serum apelin and dimethylarginine-dimethylaminohydrolase-1 were measured to indicate the overall effect on PH. All extracts amended cirrhosis and PH to varying extents and induced diuresis via different mechanisms. Further, An OPLS model was built to generate a comprehensive metabolic-profiling of A.spinosus and A.trigonus secondary-metabolites providing a chemical-based evidence for their efficacious consistency. In conclusion, A.spinosus and A.trigonus organs comprised myriad pharmacologically-active constituents that act synergistically to ameliorate cirrhosis and associated PH.
Collapse
|
23
|
Gu YY, Tan XH, Song WP, Song WD, Yuan YM, Xin ZC, Wang JD, Fang D, Guan RL. Icariside Ⅱ Attenuates Palmitic Acid-Induced Endothelial Dysfunction Through SRPK1-Akt-eNOS Signaling Pathway. Front Pharmacol 2022; 13:920601. [PMID: 35846993 PMCID: PMC9280058 DOI: 10.3389/fphar.2022.920601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Endothelial dysfunction is commonly accompanied by a reduced capacity for nitric oxide (NO) production and decreased NO sensitivity, playing a central role in numerous vascular diseases. Saturated free fatty acids are known to reduce NO production and then induce endothelial dysfunction. Alternative splicing participates in the regulation of cellular and tissular homeostasis and is highly regulated by serine-arginine protein kinase (SRPK1). The role of SRPK1 in the biology of endothelial cells remains elusive. Icariside Ⅱ (ICA Ⅱ) has been reported to have protective effects on endothelial function. However, the specific molecular mechanisms are still unknown. The purpose of this study is to explore the role of SRPK1 in the biology of endothelial cells and the underlying mechanism of ICA Ⅱ on palmitic acid (PA) induced endothelial dysfunction. Methods: Endothelial dysfunction was induced using PA in human umbilical vein endothelial cells (HUVECs). The expression and phosphorylation of related proteins in the SRPK1-Akt-eNOS signaling pathway were detected by Western Blot. Cell Counting Kit-8 assay and Ki-67 immunofluorescence were used to estimate cell viability. Endothelial cell function was assessed by detecting NO production using DAF-FM DA. Interaction between ICA Ⅱ and SRPK1 was demonstrated by a biotinylated protein interaction pull-down assay. Results: The expressions of eNOS, Akt, and SRPK1 were down-regulated in the endothelial dysfunction stimulated by PA. SRPK1 inhibitor SPHINX31 restrained endothelial cell viability in a dose-dependent manner. Moreover, inhibition of SRPK1 using SPHINX31 and knockdown of SRPK1 by shRNA also showed a down-regulation of the proteins associated with the SRPK1-Akt-eNOS signaling pathway. Biotinylated protein interaction pull-down assay revealed that ICA Ⅱ could be directly bound with SRPK1. On the other hand, ICA Ⅱ could attenuate the PA-induced endothelial dysfunction and restore cell viability through the SRPK1-Akt-eNOS pathway. Conclusions: ICA Ⅱ, bound with SRPK1, could attenuate the endothelial dysfunction induced by the PA in HUVECs via the SRPK1-Akt-eNOS signaling pathway.
Collapse
Affiliation(s)
- Yang-Yang Gu
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
| | - Xiao-Hui Tan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Wen-Peng Song
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wei-Dong Song
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Yi-Ming Yuan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Zhong-Cheng Xin
- Male Reproductive and Sexual Medicine, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Institute of Urology, Tianjin Medical University, Tianjin, China
| | - Jia-Dong Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Rui-Li Guan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| |
Collapse
|
24
|
Grismaldo Rodríguez A, Zamudio Rodríguez JA, Mendieta CV, Quijano Gómez S, Sanabria Barrera S, Morales Álvarez L. Effect of Platelet-Derived Growth Factor C on Mitochondrial Oxidative Stress Induced by High d-Glucose in Human Aortic Endothelial Cells. Pharmaceuticals (Basel) 2022; 15:ph15050639. [PMID: 35631465 PMCID: PMC9143891 DOI: 10.3390/ph15050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022] Open
Abstract
Endothelial dysfunction is an early marker for cardiovascular diseases. Hyperglycemia induces endothelial dysfunction, increasing the production of reactive oxygen species. Platelet-derived growth factor C stimulates angiogenesis and revascularization in ischemic tissues of diabetic mice and promotes the migration of progenitors and mature ECs to injury sites; however, the molecular mechanisms of its actions are not described yet. Here, we evaluated the effect of PDGF-C on oxidative stress induced by HG. Human aortic endothelial cells were grown in glucose concentrations ranging from 5 mmol/L to 35 mmol/L for 1 to 24 h. Treatment with 50 ng/mL PDGF-C was done for 1 to 3 h. Cytosolic and mitochondrial ROS were measured by fluorometry, and the expression of antioxidant enzymes was evaluated by Western blot. Nrf2 and Keap1 expression was assessed by real-time PCR. High glucose induced mitochondrial ROS production. PDGF-C diminished the oxidative stress induced by high glucose, increasing SOD2 expression and SOD activity, and modulating the Keap1 expression gene. These results give new evidence about the mitochondrial antioxidant effect that PDGF-C could exert on endothelial cells exposed to high glucose and its considerable role as a therapeutic target in diabetes.
Collapse
Affiliation(s)
- Adriana Grismaldo Rodríguez
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.A.Z.R.); (C.V.M.)
- Correspondence: (A.G.R.); (L.M.Á.); Tel.: +57-3114566976 (A.G.R.); +57-3132107272 (L.M.Á.)
| | - Jairo A. Zamudio Rodríguez
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.A.Z.R.); (C.V.M.)
| | - Cindy V. Mendieta
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.A.Z.R.); (C.V.M.)
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Sandra Quijano Gómez
- Immunology and Cell Biology Group, Faculty of Sciences, Microbiology Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Sandra Sanabria Barrera
- Traslational Biomedical Research Group, Fundación Cardiovascular de Colombia, Floridablanca 680004, Colombia;
| | - Ludis Morales Álvarez
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.A.Z.R.); (C.V.M.)
- Correspondence: (A.G.R.); (L.M.Á.); Tel.: +57-3114566976 (A.G.R.); +57-3132107272 (L.M.Á.)
| |
Collapse
|
25
|
Xu Y, Li X, Wang H. Protective Roles of Apigenin Against Cardiometabolic Diseases: A Systematic Review. Front Nutr 2022; 9:875826. [PMID: 35495935 PMCID: PMC9051485 DOI: 10.3389/fnut.2022.875826] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Apigenin is a flavonoid with antioxidant, anti-inflammatory, and anti-apoptotic activity. In this study, the potential effects of apigenin on cardiometabolic diseases were investigated in vivo and in vitro. Potential signaling networks in different cell types induced by apigenin were identified, suggesting that the molecular mechanisms of apigenin in cardiometabolic diseases vary with cell types. Additionally, the mechanisms of apigenin-induced biological response in different cardiometabolic diseases were analyzed, including obesity, diabetes, hypertension and cardiovascular diseases. This review provides novel insights into the potential role of apigenin in cardiometabolic diseases.
Collapse
Affiliation(s)
- Yajie Xu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xue Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xue Li,
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hui Wang,
| |
Collapse
|
26
|
Li RL, Wang LY, Liu S, Duan HX, Zhang Q, Zhang T, Peng W, Huang Y, Wu C. Natural Flavonoids Derived From Fruits Are Potential Agents Against Atherosclerosis. Front Nutr 2022; 9:862277. [PMID: 35399657 PMCID: PMC8987282 DOI: 10.3389/fnut.2022.862277] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis, as a chronic inflammatory response, is one of the main causes of cardiovascular diseases. Atherosclerosis is induced by endothelial cell dysfunction, migration and proliferation of smooth muscle cells, accumulation of foam cells and inflammatory response, resulting in plaque accumulation, narrowing and hardening of the artery wall, and ultimately leading to myocardial infarction or sudden death and other serious consequences. Flavonoid is a kind of natural polyphenol compound widely existing in fruits with various structures, mainly including flavonols, flavones, flavanones, flavanols, anthocyanins, isoflavones, and chalcone, etc. Because of its potential health benefits, it is now used in supplements, cosmetics and medicines, and researchers are increasingly paying attention to its role in atherosclerosis. In this paper, we will focus on several important nodes in the development of atherosclerotic disease, including endothelial cell dysfunction, smooth muscle cell migration and proliferation, foam cell accumulation and inflammatory response. At the same time, through the classification of flavonoids from fruits, the role and potential mechanism of flavonoids in atherosclerosis were reviewed, providing a certain direction for the development of fruit flavonoids in the treatment of atherosclerosis drugs.
Collapse
Affiliation(s)
- Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuqin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Peng,
| | - Yongliang Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Yongliang Huang,
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chunjie Wu,
| |
Collapse
|
27
|
Hejazi J, Hosseinpour-Niazi S, Yuzbashian E, Mirmiran P, Azizi F. The protective effects of dietary intake of flavonoids and its subclasses on metabolic syndrome incidence. Int J Food Sci Nutr 2022; 73:116-126. [PMID: 34096437 DOI: 10.1080/09637486.2021.1928008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to evaluate the association between the intake of total flavonoids and flavonoid subclasses and metabolic syndrome (MetS) risk and to assess the modulating effects of lifestyle factors on these associations. A total of 1915 participants from the Tehran Lipid and Glucose Study were followed-up during 2006-2008 and 2016-2018. Their dietary intake was assessed by a food frequency questionnaire at baseline and within three-year intervals afterward. Moreover, the modifying effect of weight gain on the association between total flavonoids and MetS was assessed by Cox regression analysis. Participants in the highest tertile of flavonoid, flavonol, and flavone had a significantly lower MetS risk as compared to those in the lowest tertile. Also, in participants with weight gain <7%, all flavonoid subclasses had a more pronounced risk-reducing effect. Overall, the total flavonoid, flavonol, and flavone reduced the risk of MetS; this association could be modified by weight gain.
Collapse
Affiliation(s)
- Jalal Hejazi
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Somayeh Hosseinpour-Niazi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Emad Yuzbashian
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Wang X, Li J, Zhao D, Li J. |Therapeutic and preventive effects of apigenin in cerebral ischemia: a review. Food Funct 2022; 13:11425-11437. [DOI: 10.1039/d2fo02599j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
APG can exert various protective effects against cerebral ischemia. Moreover, APG has shown a highly promising ability to prevent cerebral ischemia in terms of regulating blood glucose, blood pressure, lipids and gut microbes.
Collapse
Affiliation(s)
- Xu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Jinjian Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Dexi Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
29
|
Wang P, Huang Y, Ren J, Rong Y, Fan L, Zhang P, Zhang X, Xi J, Mao S, Su M, Zhang B, Bao GH, Wu F. Large-leaf yellow tea attenuates high glucose-induced vascular endothelial cells injury by up-regulating autophagy and down-regulating oxidative stress. Food Funct 2022; 13:1890-1905. [DOI: 10.1039/d1fo03405g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vascular endothelial cells injury induced by high glucose (HG) plays an important role in the occurrence and development of diabetic vascular complications. Yellow tea has a protective effect on vascular...
Collapse
|
30
|
Alam W, Rocca C, Khan H, Hussain Y, Aschner M, De Bartolo A, Amodio N, Angelone T, Cheang WS. Current Status and Future Perspectives on Therapeutic Potential of Apigenin: Focus on Metabolic-Syndrome-Dependent Organ Dysfunction. Antioxidants (Basel) 2021; 10:antiox10101643. [PMID: 34679777 PMCID: PMC8533599 DOI: 10.3390/antiox10101643] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome and its associated disorders such as obesity, insulin resistance, atherosclerosis and type 2 diabetes mellitus are globally prevalent. Different molecules showing therapeutic potential are currently available for the management of metabolic syndrome, although their efficacy has often been compromised by their poor bioavailability and side effects. Studies have been carried out on medicinal plant extracts for the treatment and prevention of metabolic syndrome. In this regard, isolated pure compounds have shown promising efficacy for the management of metabolic syndrome, both in preclinical and clinical settings. Apigenin, a natural bioactive flavonoid widely present in medicinal plants, functional foods, vegetables and fruits, exerts protective effects in models of neurological disorders and cardiovascular diseases and most of these effects are attributed to its antioxidant action. Various preclinical and clinical studies carried out so far show a protective effect of apigenin against metabolic syndrome. Herein, we provide a comprehensive review on both in vitro and in vivo evidence related to the promising antioxidant role of apigenin in cardioprotection, neuroprotection and renoprotection, and to its beneficial action in metabolic-syndrome-dependent organ dysfunction. We also provide evidence on the potential of apigenin in the prevention and/or treatment of metabolic syndrome, analysing the potential and limitation of its therapeutic use.
Collapse
Affiliation(s)
- Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 221400, China;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
- National Institute of Cardiovascular Research I.N.R.C., 40126 Bologna, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China;
| |
Collapse
|
31
|
Sarigul Sezenoz A, Akkoyun I, Helvacioglu F, Haberal N, Dagdeviren A, Bacanli D, Yilmaz G, Oto S. Antiproliferative and Mitochondrial Protective Effects of Apigenin in an Oxygen-Induced Retinopathy In Vivo Mouse Model. J Ocul Pharmacol Ther 2021; 37:580-590. [PMID: 34665015 DOI: 10.1089/jop.2021.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose: To investigate the effects of a common dietary flavonoid apigenin on retinal endothelial cell proliferation, retinal morphological structure, and apoptotic cell death in an oxygen-induced retinopathy (OIR) mouse model to evaluate the possibility of the use of apigenin in the treatment of ocular neovascular diseases (ONDs). Methods: Ninety-six newborn C57BL/6J mice were included. Eight groups were randomized, each including 12 mice. Two negative control groups were kept in room air: the first without any injection and the second received intravitreal (IV) dimethyl sulfoxide (DMSO), which is the solvent we used. The OIR groups were exposed to 75% ± 2% oxygen from postnatal days (PD) 7 to 12. On PD 12, the mice were randomly assigned to 6 groups: 2 OIR control groups (1 received no injection, 1 received IV-DMSO), 2 IV-apigenin groups (10 and 20 μg/mL), and 2 intraperitoneal (IP)-apigenin groups (10 and 20 mg/kg). We quantified retinal endothelial cell proliferation by counting neovascular tufts in cross-sections and examined histological and ultrastructural changes through light and electron microscopy. We evaluated apoptosis by terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL). Results: We detected a significant increase in endothelial cell proliferation in the OIR groups. Groups receiving apigenin, both IP and IV, had significant decreases in endothelial cells, atypical mitochondrion count, and apoptotic cells compared with the groups receiving no injections. None of the apigenin-injected groups revealed cystic degeneration or cell loss. Conclusions: Apigenin suppresses neovascularization, has antiapoptotic and antioxidative effects in an OIR mouse model, and can be considered a promising agent for treating OND. Clinical trial (Project number: DA15/19).
Collapse
Affiliation(s)
| | - Imren Akkoyun
- Department of Ophthalmology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Fatma Helvacioglu
- Department of Histology and Embryology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Nihan Haberal
- Department of Pathology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Attila Dagdeviren
- Department of Histology and Embryology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Didem Bacanli
- Baskent University Laboratory Animal Breeding and Research Center, Ankara, Turkey
| | - Gursel Yilmaz
- Department of Ophthalmology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Sibel Oto
- Department of Ophthalmology, Baskent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
32
|
Kashyap P, Shikha D, Thakur M, Aneja A. Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. J Food Biochem 2021; 46:e13950. [PMID: 34569073 DOI: 10.1111/jfbc.13950] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 01/18/2023]
Abstract
Numerous diseases such as cancer, diabetes, cardiovascular, neurodegenerative diseases, etc. are linked with overproduction of reactive oxygen species (ROS) and oxidative stress. Apigenin (5,7,4'-trihydroxyflavone) is a widely distributed flavonoid, responsible for antioxidant potential and chelating redox active metals. Being present as glycosides or polymers, the apigenin degrades to variable amount in the digestive tract; during processing, its activity is also reduced due to high temperature or Fe/Cu addition. Although its metabolism remains elusive, enteric absorption occurs sufficiently to reduce plasma indices of oxidant status. Delayed clearance in plasma and slow liver decomposition enhance its systematic bioavailability. Antioxidant mechanism of apigenin includes: oxidant enzymes inhibition, modulation of redox signaling pathways (NF-kB, Nrf2, MAPK, and P13/Akt), reinforcing enzymatic and nonenzymatic antioxidant, metal chelation, and free radical scavenging. DPPH, ORAC, ABTS, and FRAP are the major in vitro methods for determining the antioxidant potential of apigenin, whereas its protective effects in whole and living cells of animals are examined using in vivo studies. Due to limited information on antioxidant potential of apigenin, its in vitro and in vivo antioxidant effects are, therefore, discussed with action mechanism and interaction with the signaling pathways. This paper concludes that apigenin is a potent antioxidant compound to overcome the difficulties related to oxidative stress and other chronic diseases.
Collapse
Affiliation(s)
- Piyush Kashyap
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Deep Shikha
- Department of Food Technology, Bhai Gurdas Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior, India
| | - Ashwin Aneja
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
33
|
Md Salleh MFRR, Aminuddin A, Hamid AA, Salamt N, Japar Sidik FZ, Ugusman A. Piper sarmentosum Roxb. Attenuates Vascular Endothelial Dysfunction in Nicotine-Induced Rats. Front Pharmacol 2021; 12:667102. [PMID: 34194328 PMCID: PMC8236855 DOI: 10.3389/fphar.2021.667102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to cigarette smoke is an important risk factor for cardiovascular diseases. Nicotine is an addictive compound in cigarette smoke that triggers oxidative stress, which leads to vascular dysfunction. Piper sarmentosum Roxb. is a herb with antioxidant and vascular protective effects. This study evaluated the potential protective effect of the aqueous extract of P. sarmentosum leaf (AEPS) on vascular dysfunction in rats induced with prolonged nicotine administration. A total of 22 male Sprague-Dawley rats were divided into control (normal saline, oral gavage [p.o.]), nicotine (0.8 mg/kg/day nicotine, intraperitoneally [i.p.]), and nicotine + AEPS groups (250 mg/kg/day AEPS, p.o. + 0.8 mg/kg/day nicotine, i.p.). Treatment was given for 21 days. Thoracic aortae were harvested from the rats for the measurement of vasorelaxation, vascular nitric oxide (NO) level, and antioxidant level and the assessment of vascular remodeling. Rats treated with AEPS had improved vasorelaxation to endothelium-dependent vasodilator, acetylcholine (ACh), compared with the nicotine-induced rats (p < 0.05). The presence of endothelium increased the maximum relaxation of aortic rings in response to ACh. Compared with the nicotine group, AEPS enhanced vascular NO level (p < 0.001) and increased antioxidant levels as measured by superoxide dismutase activity (p < 0.05), catalase activity (p < 0.01), and reduced glutathione level (p < 0.05). No remarkable changes in aortic histomorphometry were detected. In conclusion, P. sarmentosum attenuates vascular endothelial dysfunction in nicotine-induced rats by improving vasorelaxation and enhancing vascular NO and antioxidant levels.
Collapse
Affiliation(s)
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Adila A Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Norizam Salamt
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | | | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| |
Collapse
|
34
|
Clayton ZS, Hutton DA, Brunt VE, VanDongen NS, Ziemba BP, Casso AG, Greenberg NT, Mercer AN, Rossman MJ, Campisi J, Melov S, Seals DR. Apigenin restores endothelial function by ameliorating oxidative stress, reverses aortic stiffening, and mitigates vascular inflammation with aging. Am J Physiol Heart Circ Physiol 2021; 321:H185-H196. [PMID: 34114892 DOI: 10.1152/ajpheart.00118.2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We assessed the efficacy of oral supplementation with the flavanoid apigenin on arterial function during aging and identified critical mechanisms of action. Young (6 mo) and old (27 mo) C57BL/6N mice (model of arterial aging) consumed drinking water containing vehicle (0.2% carboxymethylcellulose; 10 young and 7 old) or apigenin (0.5 mg/mL in vehicle; 10 young and 9 old) for 6 wk. In vehicle-treated animals, isolated carotid artery endothelium-dependent dilation (EDD), bioassay of endothelial function, was impaired in old versus young (70% ± 9% vs. 92% ± 1%, P < 0.0001) due to reduced nitric oxide (NO) bioavailability. Old mice had greater arterial reactive oxygen species (ROS) production and oxidative stress (higher nitrotyrosine) associated with greater nicotinamide adenine dinucleotide phosphate oxidase (oxidant enzyme) and lower superoxide dismutase 1 and 2 (antioxidant enzymes); ex vivo administration of Tempol (antioxidant) restored EDD to young levels, indicating ROS-mediated suppression of EDD. Old animals also had greater aortic stiffness as indicated by higher aortic pulse wave velocity (PWV, 434 ± 9 vs. 346 ± 5 cm/s, P < 0.0001) due to greater intrinsic aortic wall stiffness associated with lower elastin levels and higher collagen, advanced glycation end products (AGEs), and proinflammatory cytokine abundance. In old mice, apigenin restored EDD (96% ± 2%) by increasing NO bioavailability, normalized arterial ROS, oxidative stress, and antioxidant expression, and abolished ROS inhibition of EDD. Moreover, apigenin prevented foam cell formation in vitro (initiating step in atherosclerosis) and mitigated age-associated aortic stiffening (PWV 373 ± 5 cm/s) by normalizing aortic intrinsic wall stiffness, collagen, elastin, AGEs, and inflammation. Thus, apigenin is a promising therapeutic for arterial aging.NEW & NOTEWORTHY Our study provides novel evidence that oral apigenin supplementation can reverse two clinically important indicators of arterial dysfunction with age, namely, vascular endothelial dysfunction and large elastic artery stiffening, and prevents foam cell formation in an established cell culture model of early atherosclerosis. Importantly, our results provide extensive insight into the biological mechanisms of apigenin action, including increased nitric oxide bioavailability, normalization of age-related increases in arterial ROS production and oxidative stress, reversal of age-associated aortic intrinsic mechanical wall stiffening and adverse remodeling of the extracellular matrix, and suppression of vascular inflammation. Given that apigenin is commercially available as a dietary supplement in humans, these preclinical findings provide the experimental basis for future translational studies assessing the potential of apigenin to treat arterial dysfunction and reduce cardiovascular disease risk with aging.
Collapse
Affiliation(s)
- Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - David A Hutton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Nicholas S VanDongen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Brian P Ziemba
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Abigail G Casso
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Amanda N Mercer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California.,Lawrence Berkley National Laboratory, Berkeley, California
| | - Simon Melov
- Buck Institute for Research on Aging, Novato, California
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
35
|
Xi J, Rong Y, Zhao Z, Huang Y, Wang P, Luan H, Xing Y, Li S, Liao J, Dai Y, Liang J, Wu F. Scutellarin ameliorates high glucose-induced vascular endothelial cells injury by activating PINK1/Parkin-mediated mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113855. [PMID: 33485979 DOI: 10.1016/j.jep.2021.113855] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellarin (Scu) is one of the main active ingredients of Erigeron breviscapus (Vant.) Hand.-Mazz which has been used to treat cardiovascular disease including vascular dysfunction caused by diabetes. Scu also has a protective effect on vascular endothelial cells against hyperglycemia. However, molecular mechanisms underlying this effect are not clear. AIM OF THE STUDY This aim of this study was to investigate the effect of Scu on human umbilical vein endothelial cells (HUVECs) injury induced by high glucose (HG), especially the regulation of PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy. MATERIALS AND METHODS HUVECs were exposed to HG to induce vascular endothelial cells injury in vitro. Cell viability was assessed by MTT assay. The extent of cell apoptosis was measured by Hoechst staining and flow cytometry. Mitophagy was assayed by fluorescent immunostaining, transmission electron microscope and immunoblot. Besides, virtual docking was conducted to validate the interaction of PINK1 protein and Scu. RESULTS We found that Scu significantly increased cell viability in HG-treated HUVECs. Scu reduces the expression of Bcl-2, Bax and cytochrome C (Cyt.c) to inhibit apoptosis through a mitochondria-dependent pathway. Meanwhile, Scu improved the overload of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and SOD2 protein expression, and reversed the collapse of mitochondrial membrane potential. Besides, Scu increased autophagic flux, improved the expression of microtubule-associated protein 1 light chain 3 Ⅱ (LC3 II), Beclin 1 and autophagy-related gene 5 (Atg 5) and decreased the expression of Sequestosome1/P62 in HG-treated HUVECs. Furthermore, Scu improved the expressions of PINK1, Parkin, and Mitofusin2, which revealed the enhancement of mitophagy. Moreover, the beneficial effects of Scu on HG-induced low expression of Parkin, overproduction of ROS, and over expressions of P62, Cyt.c and Cleaved caspase-3 were weakened by PINK1 gene knockdown. Molecular docking suggested good interaction of Scu and PINK1 protein. CONCLUSION These results suggest that Scu may protect vascular endothelial cells against hyperglycemia-induced injury by up-regulating mitophagy via PINK1/Parkin signal pathway.
Collapse
Affiliation(s)
- Junxiao Xi
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuezhao Rong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zifeng Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yihai Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Pu Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Huiling Luan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan Xing
- School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Siyuan Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun Liao
- School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yue Dai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingyu Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Feihua Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
36
|
Sridevi V, Naveen P, Karnam VS, Reddy PR, Arifullah M. Beneficiary and Adverse Effects of Phytoestrogens: A Potential Constituent of Plant-based Diet. Curr Pharm Des 2021; 27:802-815. [PMID: 32942973 DOI: 10.2174/1381612826999200917154747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phytoestrogens are non-endocrine, non-steroidal secondary derivatives of plants and consumed through a plant-based diet also named as "dietary estrogens". The major sources of phytoestrogens are soy and soy-based foods, flaxseed, chickpeas, green beans, dairy products, etc. The dietary inclusion of phytoestrogen based foods plays a crucial role in the maintenance of metabolic syndrome cluster, including obesity, diabetes, blood pressure, cancer, inflammation, cardiovascular diseases, postmenopausal ailments and their complications. In recent days, phytoestrogens are the preferred molecules for hormone replacement therapy. On the other hand, they act as endocrine disruptors via estrogen receptor-mediated pathways. These effects are not restricted to adult males or females and identified even in development. OBJECTIVE Since phytoestrogenic occurrence is high at daily meals for most people worldwide, they focused to study for its beneficiary effects towards developing pharmaceutical drugs for treating various metabolic disorders by observing endocrine disruption. CONCLUSION The present review emphasizes the pros and cons of phytoestrogens on human health, which may help to direct the pharmaceutical industry to produce various phytoestrongen based drugs against various metabolic disorders.
Collapse
Affiliation(s)
- Vaadala Sridevi
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | - Ponneri Naveen
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | | | - Pamuru R Reddy
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | - Mohammed Arifullah
- Institute of Food Security and Sustainable Agriculture (IFSSA) & Faculty of Agrobased Industry (FIAT), Universiti Malaysia Kelantan Campus Jeli, Locked Bag 100, Jeli 17600, Kelantan, Malaysia
| |
Collapse
|
37
|
Duan H, Zhang Q, Liu J, Li R, Wang D, Peng W, Wu C. Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis. Pharmacol Res 2021; 168:105599. [PMID: 33838291 DOI: 10.1016/j.phrs.2021.105599] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/09/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022]
Abstract
Atherosclerosis, a chronic multifactorial disease, is closely related to the development of cardiovascular diseases and is one of the predominant causes of death worldwide. Normal vascular endothelial cells play an important role in maintaining vascular homeostasis and inhibiting atherosclerosis by regulating vascular tension, preventing thrombosis and regulating inflammation. Currently, accumulating evidence has revealed that endothelial cell apoptosis is the first step of atherosclerosis. Excess apoptosis of endothelial cells induced by risk factors for atherosclerosis is a preliminary event in atherosclerosis development and might be a target for preventing and treating atherosclerosis. Interestingly, accumulating evidence shows that natural medicines have great potential to treat atherosclerosis by inhibiting endothelial cell apoptosis. Therefore, this paper reviewed current studies on the inhibitory effect of natural medicines on endothelial cell apoptosis and summarized the risk factors that may induce endothelial cell apoptosis, including oxidized low-density lipoprotein (ox-LDL), reactive oxygen species (ROS), angiotensin II (Ang II), tumor necrosis factor-α (TNF-α), homocysteine (Hcy) and lipopolysaccharide (LPS). We expect this review to highlight the importance of natural medicines, including extracts and monomers, in the treatment of atherosclerosis by inhibiting endothelial cell apoptosis and provide a foundation for the development of potential antiatherosclerotic drugs from natural medicines.
Collapse
Affiliation(s)
- Huxinyue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China
| | - Ruolan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China
| | - Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China.
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China.
| |
Collapse
|
38
|
TGF-β promote epithelial-mesenchymal transition via NF-κB/NOX4/ROS signal pathway in lung cancer cells. Mol Biol Rep 2021; 48:2365-2375. [PMID: 33792826 DOI: 10.1007/s11033-021-06268-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/05/2021] [Indexed: 01/17/2023]
Abstract
Epithelial-mesenchymal transition (EMT), transforming growth factor β(TGF-β) and reactive oxygen species(ROS) plays a central role in cancer metastasis. Moreover, nicotinamide adenine dinucleotide phosphate 4(NOX4) is one of the main sources of ROS in lung cancer cells suggesting that NOX4 is associated with tumor cell migration. NF-κB(Nuclear factor-Kappa-B) is known to regulate ROS-mediated EMT process by activating Snail transcription factor in A549 cells. The purpose of this study was to explore the relationship between NF-κB and NOX4 in ROS production during TGF-β induced EMT process. Several fractions have been pooled to evaluates the EMT process on lung cancer cells through real-time PCR, Western Blot and flow cytometry with DCFH-DA probe etc. Cells proliferation and migration activities were monitored by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay and wound healing assay respectively. The result showed that TGF-β induction decreased the expression of E-cadherin, increased the Vimentin and the EMT transcription factor Snail in A549 cells. DPI (Diphenyleneiodonium chloride, an inhibitor of NOX4) inhibited the NOX4 expression and reduced ROS production induced by TGF-β, but didn't affect the activation of NF-κB induced by TGF-β (P > 0.05). BAY11-7082 (an inhibitor of NF-κB) inhibited the NF-κB (p65) expression and prevented the increase of NOX4 expression and ROS production induced by TGF-β (P < 0.001), which has also verified reduced TGF-β induced cell migration by inhibiting the EMT process, and also reduced cell proliferation of A549 cells (P < 0.001). The current research confirmed the TGF-β mediated EMT process via NF-κB/NOX4/ROS signaling pathway, NF-κB and NOX4 are likely to be the potential therapeutic targets for lung cancer metastasis.
Collapse
|
39
|
Song Y, Yang J, Jing W, Wang Q, Liu Y, Cheng X, Ye F, Tian J, Wei F, Ma S. Systemic elucidation on the potential bioactive compounds and hypoglycemic mechanism of Polygonum multiflorum based on network pharmacology. Chin Med 2020; 15:121. [PMID: 33292335 PMCID: PMC7672844 DOI: 10.1186/s13020-020-00401-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetes is a complex metabolic disease characterized by hyperglycemia, plaguing the whole world. However, the action mode of multi-component and multi-target for traditional Chinese medicine (TCM) could be a promising treatment of diabetes mellitus. According to the previous research, the TCM of Polygonum multiflorum (PM) showed noteworthy hypoglycemic effect. Up to now, its hypoglycemic active ingredients and mechanism of action are not yet clear. In this study, network pharmacology was employed to elucidate the potential bioactive compounds and hypoglycemic mechanism of PM. METHODS First, the compounds with good pharmacokinetic properties were screened from the self-established library of PM, and the targets of these compounds were predicted and collected through database. Relevant targets of diabetes were summarized by searching database. The intersection targets of compound-targets and disease-targets were obtained soon. Secondly, the interaction net between the compounds and the filtered targets was established. These key targets were enriched and analyzed by protein-protein interactions (PPI) analysis, molecular docking verification. Thirdly, the key genes were used to find the biologic pathway and explain the therapeutic mechanism by genome ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis. Lastly, the part of potential bioactive compounds were under enzyme activity inhibition tests. RESULTS In this study, 29 hypoglycemic components and 63 hypoglycemic targets of PM were filtrated based on online network database. Then the component-target interaction network was constructed and five key components resveratrol, apigenin, kaempferol, quercetin and luteolin were further obtained. Sequential studies turned out, AKT1, EGFR, ESR1, PTGS2, MMP9, MAPK14, and KDR were the common key targets. Docking studies indicated that the bioactive compounds could stably bind the pockets of target proteins. There were 38 metabolic pathways, including regulation of lipolysis in adipocytes, prolactin signaling pathway, TNF signaling pathway, VEGF signaling pathway, FoxO signaling pathway, estrogen signaling pathway, linoleic acid metabolism, Rap1 signaling pathway, arachidonic acid metabolism, and osteoclast differentiation closely connected with the hypoglycemic mechanism of PM. And the enzyme activity inhibition tests showed the bioactive ingredients have great hypoglycemic activity. CONCLUSION In summary, the study used systems pharmacology to elucidate the main hypoglycemic components and mechanism of PM. The work provided a scientific basis for the further hypoglycemic effect research of PM and its monomer components, but also provided a reference for the secondary development of PM.
Collapse
Affiliation(s)
- Yunfei Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Wenguang Jing
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Qi Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xianlong Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Fei Ye
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jinying Tian
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Shuangcheng Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
40
|
Heidary Moghaddam R, Samimi Z, Moradi SZ, Little PJ, Xu S, Farzaei MH. Naringenin and naringin in cardiovascular disease prevention: A preclinical review. Eur J Pharmacol 2020; 887:173535. [DOI: 10.1016/j.ejphar.2020.173535] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022]
|
41
|
Miao X, Jin C, Zhong Y, Feng J, Yan C, Xia X, Zhang Y, Peng X. Data-Independent Acquisition-Based Quantitative Proteomic Analysis Reveals the Protective Effect of Apigenin on Palmitate-Induced Lipotoxicity in Human Aortic Endothelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8836-8846. [PMID: 32687348 DOI: 10.1021/acs.jafc.0c03260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ingestion of excessive free fatty acid could induce lipotoxicity in tissues and then lead to the initiation of many metabolism diseases. In this work, the protective effect of apigenin on palmitate-induced lipotoxicity in human aortic endothelial cells (HAEC) was investigated. Compared with 150 μM palmitate treatment alone, pretreatment with 10 μM apigenin for 6 h significantly increased the cell viability from 71.55 ± 3.62 to 91.06 ± 4.30% and improved mitochondrial membrane potential to the normal level (101.62 ± 11.72% of control). In addition, the production of nitric oxide was markedly elevated by apigenin cotreatment from 7.10 ± 3.95 to 94.20 ± 21.86%. The data-independent acquisition-based proteomic approach was used to study the protective mechanism, and the results revealed that 242 proteins were differently expressed in cells treated with palmitate and 93 proteins were reversed after apigenin supplementation. Apigenin realized its protective function mainly via regulating pathways such as IL-17, TNF, Fox O, cell adhesion, and endoplasmic reticulum protein processing. Collectively, these data demonstrated that apigenin supplement may serve as an alternative nutritional intervention to protect HAEC against lipotoxicity.
Collapse
Affiliation(s)
- Xin Miao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengni Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiayu Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunhong Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiaoli Peng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
42
|
Dietary Apigenin Reduces Induction of LOX-1 and NLRP3 Expression, Leukocyte Adhesion, and Acetylated Low-Density Lipoprotein Uptake in Human Endothelial Cells Exposed to Trimethylamine-N-Oxide. J Cardiovasc Pharmacol 2020; 74:558-565. [PMID: 31815868 DOI: 10.1097/fjc.0000000000000747] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
By inducing vascular inflammation, trimethylamine-N-oxide (TMAO) is associated with endothelial dysfunction, atherosclerosis, and enhanced risk of cardiovascular diseases in humans. However, the underlying mechanisms are unknown. Expression of several genes related to arteriosclerosis, inflammasomes, and endothelial dysfunction was quantified by polymerase chain reaction after exposure to TMAO. LOX-1, ICAM-1, and NLRP3 were also quantified by Western blot, whereas leukocytic adhesion was examined using fluorescently labeled U937 cells. Scavenger receptors, adhesion molecules, and other genes associated with atherosclerosis were induced in endothelial cells exposed to TMAO. On the other hand, apigenin, a flavonoid that is abundant in parsley and celery, prevents initial arteriosclerosis events in endothelial cells. Apigenin reversed the effects of TMAO on mRNA expression of LOX-1, SREC, SR-PSOX, NLRP3, ASC, TXNIP, VCAM-1, ICAM-1, and MCP-1, as well as protein expression of LOX-1, the adhesion molecule ICAM-1, and the inflammasome protein NLRP3. Apigenin also suppressed leukocyte adhesion and uptake of acetylated low-density lipoprotein. The data indicate that expression of scavenger receptors and adhesion molecules in response to TMAO, along with formation of NLRP3 inflammasomes, may drive endothelial dysfunction through uptake of acetylated low-density lipoprotein and lymphocyte adhesion. Apigenin reverses these effects, implying that it may also prevent arteriosclerosis.
Collapse
|
43
|
Zhang Z, Zhang D. (-)-Epigallocatechin-3-Gallate Inhibits eNOS Uncoupling and Alleviates High Glucose-Induced Dysfunction and Apoptosis of Human Umbilical Vein Endothelial Cells by PI3K/AKT/eNOS Pathway. Diabetes Metab Syndr Obes 2020; 13:2495-2504. [PMID: 32765028 PMCID: PMC7367934 DOI: 10.2147/dmso.s260901] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/20/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Diabetes can increase the risk of cardiovascular disease. This study aimed to explore the effect of (-)-epigallocatechin-3-gallate (EGCG) on high glucose (HG)-induced dysfunction and apoptosis of vascular endothelial cells. MATERIALS AND METHODS The viability of human umbilical vein endothelial cells (HUVECs) treated with different concentrations and times of EGCG was detected by CCK-8 assay. The expression levels of ROS, NO and BH4 in HUVECs after treatment were detected by respective ELISA kits. The expression of p-eNOS, eNOS, NOX4, bcl2, bax, cleaved-caspase3, caspase3, p-PI3K, p-AKT, PI3K and AKT in HUVECs was detected by Western blot analysis. The apoptosis of HUVECs after treatment was analyzed by TUNEL assay. RESULTS The viability of HUVECs was not obviously changed when treated with different concentrations and times of EGCG. The expression of ROS, NOX4 and eNOS (monomer) was increased, while the expression of NO, p-eNOS, eNOS, BH4 and eNOS (dimer) was decreased in HUVECs of HG group. EGCG could gradually reverse the effect of high glucose on HG-treated HUVECs from 10 μM to 50 μM. The apoptosis of HUVECs was also increased in HG group and EGCG decreased the apoptosis of HUVECs. PI3K/AKT signaling pathway was suppressed in HG-treated HUVECs while activated by EGCG treatment. When the PI3K/AKT signaling pathway was inhibited by LY294002 (AKT inhibitor), the protective effect of EGCG on HG-treated HUVECs was weakened. CONCLUSION EGCG could inhibit eNOS uncoupling and alleviate endothelial dysfunction and apoptosis of HG-treated HUVECs by activating the PI3K/AKT/eNOS pathway.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Cardiology, Suqian First People’s Hospital, Suqian, Jiangsu223800, People’s Republic of China
| | - Daimin Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu210006, People’s Republic of China
| |
Collapse
|
44
|
Phenolic Compounds Exerting Lipid-Regulatory, Anti-Inflammatory and Epigenetic Effects as Complementary Treatments in Cardiovascular Diseases. Biomolecules 2020; 10:biom10040641. [PMID: 32326376 PMCID: PMC7226566 DOI: 10.3390/biom10040641] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the main process behind cardiovascular diseases (CVD), maladies which continue to be responsible for up to 70% of death worldwide. Despite the ongoing development of new and potent drugs, their incomplete efficacy, partial intolerance and numerous side effects make the search for new alternatives worthwhile. The focus of the scientific world turned to the potential of natural active compounds to prevent and treat CVD. Essential for effective prevention or treatment based on phytochemicals is to know their mechanisms of action according to their bioavailability and dosage. The present review is focused on the latest data about phenolic compounds and aims to collect and correlate the reliable existing knowledge concerning their molecular mechanisms of action to counteract important risk factors that contribute to the initiation and development of atherosclerosis: dyslipidemia, and oxidative and inflammatory-stress. The selection of phenolic compounds was made to prove their multiple benefic effects and endorse them as CVD remedies, complementary to allopathic drugs. The review also highlights some aspects that still need clear scientific explanations and draws up some new molecular approaches to validate phenolic compounds for CVD complementary therapy in the near future.
Collapse
|
45
|
Farrerol Directly Targets GSK-3 β to Activate Nrf2-ARE Pathway and Protect EA.hy926 Cells against Oxidative Stress-Induced Injuries. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5967434. [PMID: 32082480 PMCID: PMC7007950 DOI: 10.1155/2020/5967434] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Oxidative stress-mediated endothelial injury is considered to be involved in the pathogenesis of various cardiovascular diseases. Farrerol, a typical natural flavanone from the medicinal plant Rhododendron dauricum L., has been reported to show protective effects against oxidative stress-induced endothelial injuries in our previous study. However, its action molecular mechanisms and targets are still unclear. In the present study, we determined whether farrerol can interact with glycogen synthase kinase 3β- (GSK-3β-) nuclear factor erythroid 2-related factor 2- (Nrf2-) antioxidant response element (ARE) signaling, which is critical in defense against oxidative stress. Our results demonstrated that farrerol could specifically target Nrf2 negative regulator GSK-3β and inhibit its kinase activity. Mechanistic studies proved that farrerol could induce an inhibitory phosphorylation of GSK-3β at Ser9 without affecting the expression level of total GSK-3β protein and promote the nuclear translocation of Nrf2 as well as the mRNA and protein expression of its downstream target genes heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) in EA.hy926 cells. Further studies performed with GSK-3β siRNA and specific inhibitor lithium chloride (LiCl) confirmed that GSK-3β inhibition was involved in farrerol-mediated endothelial protection and Nrf2 signaling activation. Moreover, molecular docking and molecular dynamics studies revealed that farrerol could bind to the ATP pocket of GSK-3β, which is consistent with the ATP-competitive kinetic behavior. Collectively, our results firstly demonstrate that farrerol could attenuate endothelial oxidative stress by specifically targeting GSK-3β and further activating the Nrf2-ARE signaling pathway.
Collapse
|
46
|
McElwain CJ, Tuboly E, McCarthy FP, McCarthy CM. Mechanisms of Endothelial Dysfunction in Pre-eclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health? Front Endocrinol (Lausanne) 2020; 11:655. [PMID: 33042016 PMCID: PMC7516342 DOI: 10.3389/fendo.2020.00655] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Placental insufficiency and adipose tissue dysregulation are postulated to play key roles in the pathophysiology of both pre-eclampsia (PE) and gestational diabetes mellitus (GDM). A dysfunctional release of deleterious signaling motifs can offset an increase in circulating oxidative stressors, pro-inflammatory factors and various cytokines. It has been previously postulated that endothelial dysfunction, instigated by signaling from endocrine organs such as the placenta and adipose tissue, may be a key mediator of the vasculopathy that is evident in both adverse obstetric complications. These signaling pathways also have significant effects on long term maternal cardiometabolic health outcomes, specifically cardiovascular disease, hypertension, and type II diabetes. Recent studies have noted that both PE and GDM are strongly associated with lower maternal flow-mediated dilation, however the exact pathways which link endothelial dysfunction to clinical outcomes in these complications remains in question. The current diagnostic regimen for both PE and GDM lacks specificity and consistency in relation to clinical guidelines. Furthermore, current therapeutic options rely largely on clinical symptom control such as antihypertensives and insulin therapy, rather than that of early intervention or prophylaxis. A better understanding of the pathogenic origin of these obstetric complications will allow for more targeted therapeutic interventions. In this review we will explore the complex signaling relationship between the placenta and adipose tissue in PE and GDM and investigate how these intricate pathways affect maternal endothelial function and, hence, play a role in acute pathophysiology and the development of future chronic maternal health outcomes.
Collapse
Affiliation(s)
- Colm J. McElwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
- *Correspondence: Colm J. McElwain
| | - Eszter Tuboly
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
47
|
Inhibition of Endothelial Dysfunction by Dietary Flavonoids and Preventive Effects Against Cardiovascular Disease. J Cardiovasc Pharmacol 2020; 75:1-9. [DOI: 10.1097/fjc.0000000000000757] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Chen L, Qu H, Guo M, Zhang Y, Cui Y, Yang Q, Bai R, Shi D. ANRIL and atherosclerosis. J Clin Pharm Ther 2019; 45:240-248. [PMID: 31703157 DOI: 10.1111/jcpt.13060] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/26/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The 3.8-kb-long antisense non-coding RNA at the INK4 locus (ANRIL) is transcribed from the short arm of human chromosome 9 on P21 and is associated with malfunction of the vascular endothelium, vascular smooth muscle cell (VSMC) proliferation/migration/senescence/apoptosis, mononuclear cell adhesion and proliferation, glycolipid metabolism disorder and DNA damage. Hence, ANRIL plays an important role in atherogenesis. Moreover, genome-wide association studies (GWAS) have identified ANRIL as a biomarker that is closely related to coronary heart disease (CHD). The objective of this review was to discuss the pathological mechanism of ANRIL in atherosclerotic development and its significance as a predictor of cardiovascular disease. METHODS Review of the PubMed, EMBASE and Cochrane databases for articles demonstrating the roles of ANRIL in the development of atherosclerotic diseases. RESULTS AND DISCUSSION The abnormal expression of ANRIL is linked to vascular endothelium injury; the proliferation, migration, senescence and apoptosis of VSMCs; mononuclear cell adhesion and proliferation; glycolipid metabolism disorder; DNA damage; and competing endogenous RNAs. Moreover, ANRIL accelerates the progression of CHD by regulating its single nucleotide polymorphisms (SNPs). WHAT IS NEW AND CONCLUSION Considering that ANRIL accelerates atherosclerosis (AS) development and is a risk factor for CHD, it is reasonable for us to explore an efficacious ANRIL-based therapy for AS in CHD.
Collapse
Affiliation(s)
- Li Chen
- Peking University Traditional Chinese Medicine Clinical Medical School (Xi yuan), Beijing, China
| | - Hua Qu
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Guo
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Cui
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
49
|
Guo Y, Zhang Q, Chen H, Jiang Y, Gong P. The protective role of calcitonin gene-related peptide (CGRP) in high-glucose-induced oxidative injury in rat aorta endothelial cells. Peptides 2019; 121:170121. [PMID: 31386894 DOI: 10.1016/j.peptides.2019.170121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
Abstract
Endothelial dysfunction is considered to be an initial indicator in diabetes-induced macrovascular complications. Evidence has shown that CGRP is an important neuropeptide active in vascular system, especially in vasorelaxation. This study aimed to investigate the role of CGRP in high-glucose-induced endothelial dysfunction in rat aorta endothelial cells (RAECs). Quantitative-real time PCR and western blots were used to determine the efficiency of overexpression and interference of CGRP. After incubation with normal glucose (5.5 mM) or high glucose (33 mM), the cell viability and cell apoptosis were tested. Afterwards, the Nitric Oxide (NO) production, the mRNA expression of inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) and angiotensin II (Ang II) and the level of reactive oxygen species (ROS) were determined. The involvement of ERK1/2-NOX4 was determined through western blots and the translocation of p47phox was also observed via cell immunofluorescence. CGRP alleviated the high-glucose-induced cell apoptosis while CGRP did not have an obvious impact on cell viability. Meanwhile, CGRP increased the NO production as well as the eNOS mRNA expression and reversely decreased the stimulated expression of iNOS and Ang II by high glucose. In addition, CGRP attenuated the high-glucose-stimulated intracellular ROS production by ERK1/2-NOX4 and the translocation of p47phox. These results indicated the protective role of CGRP in high-glucose-induced oxidative injury in RAECs possibly through inhibiting ERK1/2-NOX4. Our findings might help to further understand the potential role and possible mechanism of CGRP in endothelial dysfunction caused by high glucose.
Collapse
Affiliation(s)
- Yanjun Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huilu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
50
|
Zaidun NH, Sahema ZCT, Mardiana AA, Santhana RL, Latiff AA, Syed Ahmad Fuad SB. Effects of naringenin on vascular changes in prolonged hyperglycaemia in fructose-STZ diabetic rat model. Drug Discov Ther 2019; 13:212-221. [PMID: 31534073 DOI: 10.5582/ddt.2019.01034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic uncontrolled hyperglycaemia leads to increased oxidative stress and lipid peroxidation resulting in vascular complications and accelerates the progression of diabetic atherosclerosis. Though varieties of modern drugs used in the treatment of diabetes, the complications of diabetes are increasing. Naringenin (NG), has been reported to have potent antioxidant and anti-atherosclerotic properties. However, the effects of NG as vasculoprotective agent in prolonged hyperglycaemia are not well documented. Thus, this study was aimed to determine the effect of NG against vascular changes after prolonged hyperglycaemia in a diabetic rat model. Thirty adult male Sprague-Dawley rats were induced with fructose and streptozotocin to develop the diabetic rat model. After 4 weeks, the rats were randomly divided into 5 groups each group consisting of 6 animals: control, control treated with NG, non-treated diabetes mellitus (DM), DM treated with NG and metformin-treated DM. The treatment with NG (50 mg/kg) and metformin were continued for 5 weeks. The results showed that consumption of NG at 4 weeks post diabetic did not improved blood sugar, blood pressure and serum lipid profile. However, NG did significantly improve oxidative stress parameters in the aortic tissue like malondialdehyde (MDA). Analysis through light microscopy and transmission electron microscope (TEM) reverted the histological changes caused by prolonged hyperglycaemia. The findings thus demonstrated that introduction of NG after prolonged exposure to hyperglycaemia improved the vascular deterioration in diabetic group by decreasing oxidative stress evident by the reduced in the lipid peroxidation activity. Thus, this study showed the potential use of NG as adjunct in managing the diabetic condition during late presentation.
Collapse
|