1
|
Jiang Q, Dong X, Liu Y, Zhou X, Sun G, Shi K, Qiao Y, Jiang H, Feng Y. Deciphering of electron transfer and microbial community of electrogenic oxygen reducing biofilms to sulfamethoxazole stress. BIORESOURCE TECHNOLOGY 2025; 430:132597. [PMID: 40306339 DOI: 10.1016/j.biortech.2025.132597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/15/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
This study first evaluated the sulfamethoxazole (SMX) effects on oxygen-reducing biocathodes in microbial fuel cells (MFCs). Low SMX (0.5 mg L-1) enhanced current density by 20 % via increased direct electron transfer and lower charge transfer resistance. High SMX (10-30 mg L-1) suppressed electrochemical performance. SMX preferentially bound protein-like EPS components over fulvic-like fractions, inducing sequential structural changes (1054 > 970 > 3464 > 2921 > 1643 > 1350 cm-1). SMX exposure reshaped microbial communities, enriching antibiotic-resistant genera (Truepera, Nitrospira, Brevundimonas, etc.). Network analysis revealed low SMX enhanced community complexity/stability, while high doses simplified biofilm structure. Functional genes for electron transfer, carbon metabolism and oxidative phosphorylation increased at 0.5 mg L-1 SMX but decreased under high concentrations. Overall, this study elucidates the dual role of SMX in modulating oxygen-reducing biofilm composition, function, and capability, laying the groundwork for optimized application of MFC in treating SMX-contaminated wastewater.
Collapse
Affiliation(s)
- Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China.
| | - Xing Dong
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yang Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xiaoyu Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Guomeng Sun
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Ke Shi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China
| | - Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China
| | - Hao Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China.
| | - Yujie Feng
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Chen Z, Liu Y, Jiang L, Zhang C, Qian X, Gu J, Song Z. Bacterial outer membrane vesicles increase polymyxin resistance in Pseudomonas aeruginosa while inhibiting its quorum sensing. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135588. [PMID: 39181004 DOI: 10.1016/j.jhazmat.2024.135588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The persistent emergence of multidrug-resistant bacterial pathogens is leading to a decline in the therapeutic efficacy of antibiotics, with Pseudomonas aeruginosa (P. aeruginosa) emerging as a notable threat. We investigated the antibiotic resistance and quorum sensing (QS) system of P. aeruginosa, with a particular focused on outer membrane vesicles (OMVs) and polymyxin B as the last line of antibiotic defense. Our findings indicate that OMVs increase the resistance of P. aeruginosa to polymyxin B. The overall gene transcription levels within P. aeruginosa also reveal that OMVs can reduce the efficacy of polymyxin B. However, both OMVs and sublethal concentrations of polymyxin B suppressed the transcription levels of genes associated with the QS system. Furthermore, OMVs and polymyxin B acted in concert on the QS system of P. aeruginosa to produce a more potent inhibitory effect. This suppression was evidenced by a decrease in the secretion of virulence factors, impaired bacterial motility, and a notable decline in the ability to form biofilms. These results reveal that OMVs enhance the resistance of P. aeruginosa to polymyxin B, yet they collaborate with polymyxin B to inhibit the QS system. Our research contribute to a deeper understanding of the resistance mechanisms of P. aeruginosa in the environment, and provide new insights into the reduction of bacterial infections caused by P. aeruginosa through the QS system.
Collapse
Affiliation(s)
- Zhihui Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yucheng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Yu M, Guo W, Liang Y, Xiang H, Xia Y, Feng H. Towards rapid formation of electroactive biofilm: insights from thermodynamics and electric field manipulation. WATER RESEARCH 2024; 261:121992. [PMID: 38971076 DOI: 10.1016/j.watres.2024.121992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
Electroactive biofilm (EAB) has garnered significant attention due to its effectiveness in pollutant remediation, electricity generation, and chemical synthesis. However, achieving precise control over the rapid formation of EAB presents challenges for the practical implementation of bioelectrochemical technology. In this study, we investigated the regulation of EAB formation by manipulating applied electric potential. We developed a modified XDLVO model for the applied electric field and quantitatively assessed the feasibility of existing rapid formation strategies for EAB. Our results revealed that electrostatic (EL) force significantly influenced EAB formation in the presence of the applied electric field, with the potential difference between the electrode and the microbial solution being the primary determinant of EL force. Compared to -0.2 V and 0 V vs.Ag/AgCl, EAB exhibited the highest electrochemical performance at 0.2 V vs.Ag/AgCl, with a maximum current density of 6.044 ± 0.10 A/m2, surpassing that at -0.2 V vs.Ag/AgCl and 0 V vs.Ag/AgCl by 1.73 times and 1.31 times, respectively. Furthermore, EAB demonstrated the highest biomass accumulation, measuring a thickness of 25 ± 2 μm at 0.2 V vs. Ag/AgCl, representing increases of 1.67 and 1.25 times compared to -0.2 V vs.Ag/AgCl and 0 V vs.Ag/AgCl, respectively. The strong electrostatic attraction under the anodic potential promoted the formation of a monolayer of biofilm. Additionally, the hydrophilicity and hydrophobicity of the biofilm were altered following inversion culture. The Lewis acid-base (AB) attraction offset the electrostatic repulsion caused by negative charges, it is beneficial for the formation of biofilms. This study, for the first time, elucidated the difference in the formation of cathode and anode biofilm from a thermodynamic perspective in the context of electric field introduction, laying the theoretical foundation for the directional regulation of the rapid formation of typical electroactive biofilms.
Collapse
Affiliation(s)
- Mengfan Yu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Wei Guo
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Yuxiang Liang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Hai Xiang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yijing Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, College of Carbon Neutral, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
4
|
Li T, Yang XL, Qin C, Xu H, Sun Y, Song HL. Role of membrane fouling layer in microbial fuel cell-membrane bioreactor (MFC-MBR) for controlling sulfamethoxazole and corresponding resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121876. [PMID: 39018855 DOI: 10.1016/j.jenvman.2024.121876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Integrated MFC-MBR systems effectively remove antibiotics and control the release of antibiotic resistance genes (ARGs). However, the fouling layers on membranes can potentially act as reservoirs for ARGs. This study aims to elucidate the roles of membrane fouling layers and levels in influencing sulfamethoxazole (SMX) removal and ARGs control within an MFC-MBR system. Our findings demonstrate that low-intensity bioelectricity (400-500 mV) mitigates membrane fouling rates. The membrane fouling layer significantly contributes (39%-47%) to SMX removal compared to the cathode/anode zones. Higher extracellular polymeric substance (EPS) content and a lower protein/polysaccharide (PN/PS) ratio favor SMX removal by the membrane fouling layer. Across different levels of membrane fouling, the PN/PS ratio rather than EPS concentration plays a crucial role in SMX removal efficiency. The MFC-MBR with low fouling achieved superior SMX removal (69.1%) compared to medium (54.3%) and high fouling conditions (46.8%). The presence of ARGs in the membrane fouling layer increases with fouling formation, with intrinsic ARGs prevailing. Dense membrane fouling layers effectively retain ARGs, thereby reducing the risk of extracellular ARGs (eARGs) diffusion in effluents. These results provide insights into controlling ARGs in MFC-MBR systems and underscore the significant role of membrane fouling layers in antibiotics and ARGs removal.
Collapse
Affiliation(s)
- Tao Li
- College of Urban Construction, Nanjing Tech University, 211816, China; School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Congyu Qin
- School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Han Xu
- School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Yun Sun
- School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing, 210023, China.
| |
Collapse
|
5
|
Zhao K, Liu S, Feng Y, Li F. Bioelectrochemical remediation of soil antibiotic and antibiotic resistance gene pollution: Key factors and solution strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174517. [PMID: 38977104 DOI: 10.1016/j.scitotenv.2024.174517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
In recent years, owing to the overuse and improper handling of antibiotics, soil antibiotic pollution has become increasingly serious and an environmental issue of global concern. It affects the quality and ecological balance of the soil and allows the spread of antibiotic resistance genes (ARGs), which threatens the health of all people. As a promising soil remediation technology, bioelectrochemical systems (BES) are superior to traditional technologies because of their simple operation, self-sustaining operation, easy control characteristics, and use of the metabolic processes of microorganisms and electrochemical redox reactions. Moreover, they effectively remediate antibiotic contaminants in soil. This review explores the application of BES remediation mechanisms in the treatment of antibiotic contamination in soil in detail. The advantages of BES restoration are highlighted, including the effective removal of antibiotics from the soil and the prevention of the spread of ARGs. Additionally, the critical roles played by microbial communities in the remediation process and the primary parameters influencing the remediation effect of BES were clarified. This study explores several strategies to improve the BES repair efficiency, such as adjusting the reactor structure, improving the electrode materials, applying additives, and using coupling systems. Finally, this review discusses the current limitations and future development prospects, and how to improve its performance and promote its practical applications. In summary, this study aimed to provide a reference for better strategies for BES to effectively remediate soil antibiotic contamination.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, People's Republic of China
| | - Shenghe Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, People's Republic of China; Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yimeng Feng
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Amanze C, Wu X, Anaman R, Alhassan SI, Fosua BA, Chia RW, Yang K, Yunhui T, Xiao S, Cheng J, Zeng W. Elucidating the impacts of cobalt (II) ions on extracellular electron transfer and pollutant degradation by anodic biofilms in bioelectrochemical systems during industrial wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134007. [PMID: 38490150 DOI: 10.1016/j.jhazmat.2024.134007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Electrogenic biofilms in bioelectrochemical systems (BES) are critical in wastewater treatment. Industrial effluents often contain cobalt (Co2+); however, its impact on biofilms is unknown. This study investigated how increasing Co2+ concentrations (0-30 mg/L) affect BES biofilm community dynamics, extracellular polymeric substances, microbial metabolism, electron transfer gene expression, and electrochemical performance. The research revealed that as Co2+ concentrations increased, power generation progressively declined, from 345.43 ± 4.07 mW/m2 at 0 mg/L to 160.51 ± 0.86 mW/m2 at 30 mg/L Co2+. However, 5 mg/L Co2+ had less effect. The Co2+ removal efficiency in the reactors fed with 5 and 10 mg/L concentrations exceeded 99% and 94%, respectively. However, at 20 and 30 mg/L, the removal efficiency decreased substantially, likely because of reduced biofilm viability. FTIR indicated the participation of biofilm functional groups in Co2+ uptake. XPS revealed Co2+ presence in biofilms as CoO and Co(OH)2, indicating precipitation also aided removal. Cyclic voltammetry and electrochemical impedance spectroscopy tests revealed that 5 mg/L Co2+ had little impact on the electrocatalytic activity, while higher concentrations impaired it. Furthermore, at a concentration of 5 mg/L Co2+, there was an increase in the proportion of the genus Anaeromusa-Anaeroarcus, while the genus Geobacter declined at all tested Co2+ concentrations. Additionally, higher concentrations of Co2+ suppressed the expression of extracellular electron transfer genes but increased the expression of Co2+-resistance genes. Overall, this study establishes how Co2+ impacts electrogenic biofilm composition, function, and treatment efficacy, laying the groundwork for the optimized application of BES in remediating Co2+-contaminated wastewater.
Collapse
Affiliation(s)
- Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Xiaoyan Wu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Sikpaam Issaka Alhassan
- Herbert Wertheim College of Engineering, Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Bridget Ataa Fosua
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon, the Republic of Korea
| | - Kai Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Tang Yunhui
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Shanshan Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jinju Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
7
|
Yang FA, Hou YN, Cao C, Huang C, Shen S, Ren N, Wang AJ, Guo J, Wei W, Ni BJ. Electroactive properties of EABs in response to long-term exposure to polystyrene microplastics/nanoplastics and the underlying adaptive mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133438. [PMID: 38198865 DOI: 10.1016/j.jhazmat.2024.133438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Given widespread presence of polystyrene (PS) microplastics/nanoplastics (MPs/NPs), the electroactive responses and adaptation mechanisms of electroactive biofilms (EABs) exposed long-term to PS-containing aquatic environments remain unclear. Therefore, this study investigated the impacts of PS MPs/NPs on electroactivity of EABs. Results found that EABs exhibited delayed formation upon initially exposure but displayed an increased maximum current density (Imax) after subsequent exposure for up to 55 days. Notably, EABs exposure to NH2PS NPs (EAB-NH2PSNPs) demonstrated a 50% higher Imax than the control, along with a 17.84% increase in viability and a 58.10% increase in biomass. The cytochrome c (c-Cyts) content in EAB-NH2PSNPs rose by 178.35%, benefiting the extracellular electron transfer (EET) of EABs. Moreover, bacterial community assembly indicated the relative abundance of electroactive bacteria increased to 87.56% in EAB-NH2PSNPs. The adaptability mechanisms of EABs under prolonged exposure to PS MPs/NPs predominantly operate by adjusting viability, EET, and bacterial community assembly, which were further confirmed a positive correlation with Imax through structural equation model. These findings provide deeper insights into long-term effects and mechanisms of MPs/NPs on the electroactive properties of EABs and even functional microorganisms in aquatic ecosystems.
Collapse
Affiliation(s)
- Feng-Ai Yang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ce Cao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Shaoheng Shen
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Nanqi Ren
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ai-Jie Wang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Wei L, Zheng J, Han Y, Xu X, Li M, Zhu L. Insights into the roles of biochar pores toward alleviating antibiotic resistance genes accumulation in biofiltration systems. BIORESOURCE TECHNOLOGY 2024; 394:130257. [PMID: 38151208 DOI: 10.1016/j.biortech.2023.130257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Biofiltration systems would harbor and spread various antibiotic resistance genes (ARGs) when treating antibiotic micro-pollution, constituting a potential ecological risk. This study aimed to investigate the effects of biochar pores on ARG emergence and related microbial response mechanisms in bench-scale biofiltration systems. Results showed that biochar pores effectively reduced the absolute copies of the corresponding ARGs sul1 and sul2 by 54.1% by lowering the sorbed-SMX's bioavailability compared to non-porous anthracite. An investigation of antimicrobial resistomes revealed a considerable decrease in the abundance and diversity of ARGs and mobile gene elements. Metagenomic and metaproteomic analysis demonstrated that biochar pores induced the changeover of microbial defense strategy against SMX from blocking SMX uptake by EPS absorbing to SMX biotransformation. Microbial SOS response, antibiotic efflux pump, EPS secretion, and biofilm formation were decreased. Functions related to SMX biotransformation, such as sadABC-mediated transformation, xenobiotics degradation, and metabolism, were significantly promoted.
Collapse
Affiliation(s)
- Lecheng Wei
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China
| | - Jingjing Zheng
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China
| | - Yutong Han
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China.
| |
Collapse
|
9
|
Zhu Q, Zheng Y, Zhou X, Wang D, Yuan M, Qian D, Liang S, Yu W, Yang J, Hou H, Hu J. c-di-GMP and AHL signals-triggered chemical communication under electrical signaling disruption restores Geobacter sulfurreducens biofilm formation. ISME COMMUNICATIONS 2024; 4:ycae096. [PMID: 39071848 PMCID: PMC11283642 DOI: 10.1093/ismeco/ycae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Electrogenic biofilms, which have attracted considerable attention in simultaneous wastewater treatment and energy recovery in bioelectrochemical systems, are regulated by chemical communication and potassium channel-mediated electrical signaling. However, how these two communication pathways interact with each other has not been thoroughly investigated. This study first explored the roles of chemical communication, including intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) and extracellular N-acyl-homoserine lactone (AHL)-mediated quorum sensing, in electrogenic biofilm formation through an integrated analysis of transcriptomics and metabolomics. Electrical signaling disruption inhibited the formation and electroactivity of Geobacter sulfurreducens biofilm, which was mainly ascribed to the reduction in biofilm viability and extracellular protein/polysaccharide ratio. The upregulation of expression levels of genes encoding c-di-GMP and AHL synthesis by transcriptomic analysis, and the increased secretion of N-butanoyl-L-homoserine lactone by metabolomic analysis confirmed the enhancement of chemical communication under electrical signaling disruption, thus indicating a compensatory mechanism among different signaling pathways. Furthermore, protein-protein interaction network showed the convergence of different signaling pathways, with c-di-GMP-related genes acting as central bridges. This study highlights the interaction of different signaling pathways, especially the resilience of c-di-GMP signaling to adverse external stresses, thereby laying the foundation for facilitating electrogenic biofilm formation under adverse conditions in practical applications.
Collapse
Affiliation(s)
- Qian Zhu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, 11 Cihu Road, Huangshi 435002, Hubei, China
| | - Yanyan Zheng
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, 11 Cihu Road, Huangshi 435002, Hubei, China
| | - Xingwang Zhou
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, 11 Cihu Road, Huangshi 435002, Hubei, China
| | - Dunjia Wang
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, 11 Cihu Road, Huangshi 435002, Hubei, China
| | - Mengjiao Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Dingkang Qian
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan 430074, Hubei, China
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan 430074, Hubei, China
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| |
Collapse
|
10
|
Cai T, Han Y, Li W, Liu X, Zhang Z, Lu X, Zhou Y, Zhen G. Self-assembled electrochemically active biofilms doped with carbon nanotubes: Electron exchange efficiency and cytotoxicity evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167006. [PMID: 37722426 DOI: 10.1016/j.scitotenv.2023.167006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Thick electrochemically active biofilms (EABs) will lead to insufficient extracellular electron transfer (EET) rate because of the limitation of both substrate diffusion and electron exchange. Herein, carbon nanotubes (CNTs)-doped EABs are developed through self-assembly. The highly conductive biofilms (internal resistance of ∼211 Ω) are efficiently enriched at CNTs dosage of 1 g L-1, with the stable power output of 0.568 W m-2 over three months. The embedded CNTs can act as electron tunnel to accelerate the EET rate in thick biofilm. Self-charging/discharging experiments and Nernst-Monod model stimulation demonstrate a higher net charge storage capacity (0.15 C m-2) and more negative half-saturation potential (-0.401 V) for the hybrid biofilms than that of the control (0.09 C m-2, and -0.378 V). Enzyme activity tests and the observation of confocal laser scanning microscopy by live/dead staining show a nearly negligible cytotoxicity of CNTs, and non-targeted metabonomics analysis reveals fourteen differential metabolites that do not play key roles in microbial central metabolic pathways according to KEGG compound database. The abundance of typical exoelectrogens Geobacter sp. is 2-fold of the control, resulting in a better bioelectrocatalytic activity. These finding provide a possible approach to prolong electron exchange and power output by developing a hybrid EABs doped with conductive material.
Collapse
Affiliation(s)
- Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wanjiang Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xinyu Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Zhongyi Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
11
|
Zhang C, Lin X, Lin D, Liang T, Huang L, Zheng L, Xu Y. Study on toxicity responses and their mechanisms in Xenopus tropicalis long-term exposure to Shigella flexneri and ciprofloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167040. [PMID: 37709083 DOI: 10.1016/j.scitotenv.2023.167040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The abuse and overuse of antibiotics increased not only the exposure of aquatic animals to antibiotics but also the development of resistance in pathogenic bacteria. To investigate the effects and mechanisms of exposure, a long-term experiment lasting 120 days was conducted in which Xenopus tropicalis was exposed to single and combined stress factors of multiresistant pathogenic Shigella flexneri and ciprofloxacin (CIP). The intestinal oxidative stress, immune factors and flora, as well as the brain-gut axis correlation factors of X. tropicalis, were tracked to account for the response of aquatic animals to the exogenous pollutants. SOD activity and MDA content were significantly increased in stressed X. tropicalis (p < 0.001), while the levels of proinflammatory factors (IL-1β, IFN-γ) were significantly reduced (p < 0.01). The content of intestinal beneficial bacteria decreased and that of harmful bacteria increased in the intestinal flora of the stressed X. tropicalis (p < 0.001). These results suggested that S. flexneri and CIP disturbed the intestinal flora and caused oxidative damage in the host, and the body produced a series of responses, such as oxidative stress responses and regulation of the expression of immune factors, to maintain the balance of antioxidant inflammation. Significant changes in the expression of intestinal neurotransmitters (5-HT, CGRP) and brain peptides (BDNF, NCAM, NPY) (p < 0.05) also indicated that the brain-gut axis interaction was disrupted. In addition, although the coexisting CIP could reduce intestinal toxicity caused by S. flexneri, the amount of intestinal pathogenic bacteria Desulfovibrio increased significantly. Moreover, compared with the single exposure group, SOD activity, CAT activity and MDA content were significantly reduced in the dual exposure group. Therefore, the health risks of multiresistant pathogenic bacteria on the intestinal and brain-gut axis interaction should be given more attention, and the interaction of brain-gut axis is more important when antibiotics coexist.
Collapse
Affiliation(s)
- Chaonan Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaojun Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dawu Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Taojie Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lu Huang
- Instrumental Analysis Center, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
12
|
Diuvenji EV, Nevolina ED, Solovyev ID, Sukhacheva MV, Mart’yanov SV, Novikova AS, Zhurina MV, Plakunov VK, Gannesen AV. A-Type Natriuretic Peptide Alters the Impact of Azithromycin on Planktonic Culture and on (Monospecies and Binary) Biofilms of Skin Bacteria Kytococcus schroeteri and Staphylococcus aureus. Microorganisms 2023; 11:2965. [PMID: 38138110 PMCID: PMC10746058 DOI: 10.3390/microorganisms11122965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
It has been established that the human atrial natriuretic peptide is able to alter the effect of azithromycin on Kytococcus schroeteri H01 and Staphylococcus aureus 209P monospecies and binary biofilms. The effect of the hormone depends on the surface type and cultivation system, and it may have both enhancing and counteracting effects. The antagonistic effect of the hormone was observed mostly on hydrophobic surfaces, whereas the additive effect was observed on hydrophilic surfaces like glass. Also, the effect of the hormone depends on the antibiotic concentration and bacterial species. The combination of azithromycin and ANP led to an amplification of cell aggregation in biofilms, to the potential increase in matrix synthesis, and to a decrease in S. aureus in the binary community. Also, ANP, azithromycin, and their combinations caused the differential expression of genes of resistance to different antibiotics, like macrolides (mostly increasing expression in kytococci), fluoroquinolones, aminoglycosides, and others, in both bacteria.
Collapse
Affiliation(s)
- Ekaterina V. Diuvenji
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (E.V.D.); (E.D.N.); (M.V.S.); (S.V.M.); (M.V.Z.); (V.K.P.)
| | - Ekaterina D. Nevolina
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (E.V.D.); (E.D.N.); (M.V.S.); (S.V.M.); (M.V.Z.); (V.K.P.)
| | - Ilya D. Solovyev
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (E.V.D.); (E.D.N.); (M.V.S.); (S.V.M.); (M.V.Z.); (V.K.P.)
| | - Marina V. Sukhacheva
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (E.V.D.); (E.D.N.); (M.V.S.); (S.V.M.); (M.V.Z.); (V.K.P.)
| | - Sergey V. Mart’yanov
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (E.V.D.); (E.D.N.); (M.V.S.); (S.V.M.); (M.V.Z.); (V.K.P.)
| | | | - Marina V. Zhurina
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (E.V.D.); (E.D.N.); (M.V.S.); (S.V.M.); (M.V.Z.); (V.K.P.)
| | - Vladimir K. Plakunov
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (E.V.D.); (E.D.N.); (M.V.S.); (S.V.M.); (M.V.Z.); (V.K.P.)
| | - Andrei V. Gannesen
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (E.V.D.); (E.D.N.); (M.V.S.); (S.V.M.); (M.V.Z.); (V.K.P.)
| |
Collapse
|
13
|
Zhu J, Wang B, Zhang Y, Wei T, Gao T. Living electrochemical biosensing: Engineered electroactive bacteria for biosensor development and the emerging trends. Biosens Bioelectron 2023; 237:115480. [PMID: 37379794 DOI: 10.1016/j.bios.2023.115480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Bioelectrical interfaces made of living electroactive bacteria (EAB) provide a unique opportunity to bridge biotic and abiotic systems, enabling the reprogramming of electrochemical biosensing. To develop these biosensors, principles from synthetic biology and electrode materials are being combined to engineer EAB as dynamic and responsive transducers with emerging, programmable functionalities. This review discusses the bioengineering of EAB to design active sensing parts and electrically connective interfaces on electrodes, which can be applied to construct smart electrochemical biosensors. In detail, by revisiting the electron transfer mechanism of electroactive microorganisms, engineering strategies of EAB cells for biotargets recognition, sensing circuit construction, and electrical signal routing, engineered EAB have demonstrated impressive capabilities in designing active sensing elements and developing electrically conductive interfaces on electrodes. Thus, integration of engineered EAB into electrochemical biosensors presents a promising avenue for advancing bioelectronics research. These hybridized systems equipped with engineered EAB can promote the field of electrochemical biosensing, with applications in environmental monitoring, health monitoring, green manufacturing, and other analytical fields. Finally, this review considers the prospects and challenges of the development of EAB-based electrochemical biosensors, identifying potential future applications.
Collapse
Affiliation(s)
- Jin Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Baoguo Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yixin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
14
|
Wang S, Li N, Yuan Q, Liang D, Chang J, Wang X, Ren N. Vivianite recovery from high concentration phosphorus wastewater with mine drainage as iron sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160098. [PMID: 36370783 DOI: 10.1016/j.scitotenv.2022.160098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
High concentration phosphorus wastewater has attracted much attention due to the safety of water ecology and the potential crisis of phosphorus resource, which is caused by large amounts of phosphorus discharging into natural water bodies. Vivianite (Fe3(PO4)2·8H2O) crystallization has been considered as an effective technology for phosphorus recovery. In this study, we develop a potentially low-cost, sustainable approach to recover phosphorus from high concentration phosphorus wastewater using mine drainage as iron source. Inoculated with both sewage and Geobacter, mine drainage was suitable for vivianite recovery from high concentration phosphorus wastewater with PO43- concentration between 6 and 18 mM. When the PO43- concentration increased gradually, both phosphorus removal efficiency (RP) and vivianite recovery efficiency (RV) decreased significantly. The highest RV of 48 % was obtained with 9 mM PO43- in Geobacter batches (CJ2 batches), which was 15 % higher than that in the paralleled sewage batches (33 % in HJ2). Simultaneously, vivianite accounted for 91 % of the solid phosphate compounds in CJ2 batches due to the enhancement of Geobacter.
Collapse
Affiliation(s)
- Shu Wang
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Nan Li
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qing Yuan
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Danhui Liang
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jifei Chang
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
15
|
Tian L, Liao C, Yan X, Zhao Q, Wang Z, Li T, Li N, Wang X. Endogenous electric field accelerates phenol degradation in bioelectrochemical systems with reduced electrode spacing. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130043. [PMID: 36182882 DOI: 10.1016/j.jhazmat.2022.130043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Reducing the electrode spacing in bioelectrochemical systems (BESs) are widely reported to improve power output, which was mainly attributed to the decrease of ohmic resistance (Rohm) for a long time. Here we found the change of endogenous electric field (EF) intensity was the key to improve electroactivity in response to a reduced electrode spacing, which also accelerated phenol biodegradation. Correlation and principal components analysis revealed that the microbial community of electroactive biofilm (EAB) was independent of Rohm, while the EF intensity was found closely related to most of predominant genera. A strong EF selectively enriched phenol-degrading bacteria Comamonas in suspension and Geobacter in EAB, contributed to the improvement of degradation efficiency. EF also induced the secretion of extracellular polymeric substances, protected EAB from being inactivated by phenol. Our findings highlighted the importance of EF intensity on BESs performance, providing new insights into the design and application of BESs in wastewater treatment.
Collapse
Affiliation(s)
- Lili Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
16
|
Sun Q, Zhu G. Deciphering the effects of antibiotics on nitrogen removal and bacterial communities of autotrophic denitrification systems in a three-dimensional biofilm electrode reactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120476. [PMID: 36272603 DOI: 10.1016/j.envpol.2022.120476] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
In this study, three-dimensional biofilm electrode reactors (3D-BERs) were constructed, and the effects of metronidazole (MNZ) on the nitrogen removal performance and bacterial communities of autotrophic denitrification systems were evaluated. The results showed that nitrogen removal decreased slightly as the MNZ concentration increased. Specifically, nitrate-nitrogen removal efficiency decreased from 97.98% to 89.39%, 86.93%, 82.64%, and 82.77% within 12 h after the addition of 1, 3, 5, and 10 mg/L MNZ, respectively. The 3D-BERs showed excellent MNZ degradation ability, especially at a concentration of 10 mg/L. The MNZ removal efficiency could be as high as 94.38% within 6 h, and the average removal rate increased as the MNZ concentration increased. High-throughput sequencing results showed significant changes in the bacterial community under different MNZ concentrations. As the antibiotic concentration increased, the relative abundances of Hydrogenophaga and Silanimonas increased, from only 0.09% and 0.01% without antibiotics to 3.55% and 2.35%, respectively, at an antibiotic concentration of 10 mg/L. Changes in antibiotic concentration altered the abundances of genes involved in nitrogen metabolism. Redundancy analysis showed that MNZ removal efficiency was positively correlated with SBR1031, SC-I-84, Hydrogenophaga, Silanimonas and Denitratesoma, whereas the removal efficiencies of nitrate-nitrogen and total nitrogen were negatively correlated with these genera. The results of this study provide a theoretical basis for studying the toxic effects of antibiotics on the denitrification process and also provide guidance for the control of antibiotics and nitrogen pollution in ecosystems.
Collapse
Affiliation(s)
- Qi Sun
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Water Pollution Control and Ecological Restoration of Xizang, National Ethnic Affairs Commission, Xizang Minzu University, Xianyang, Shaanxi, 712082, China.
| |
Collapse
|
17
|
Zhu Q, Hu J, Liu B, Liang S, Xiao K, Yu W, Yuan S, Yang J, Hou H. Potassium channel blocker selectively enriched Geobacter from mixed-cultured electroactive biofilm: Insights from microbial community, functional prediction and gene expressions. BIORESOURCE TECHNOLOGY 2022; 364:128109. [PMID: 36244602 DOI: 10.1016/j.biortech.2022.128109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the effects of electrical signaling disruption induced by adding tetraethylammonium (TEA, a potassium channel blocker) on the formation of mixed-cultured electroactive biofilms, especially the relative abundance of Geobacter over time. Results showed that TEA addition decelerated the biofilm formation, but selectively enriched Geobacter over time (45.8% on Day 32, 67.7% on Day 60 and 78.1% on Day 90), thus resulting in higher final extracellular electron transfer (EET) efficiency. Redundancy analysis (RDA) confirmed that TEA and operation time were significant factors for the selective enrichment of Geobacter. Moreover, increase in cellular processes and signal processing by PICRUSt analysis indicated adaptive responses of electrogenic biofilms to electrical signaling disruption. Furthermore, qRT-PCR indicated the compensatory roles of key cytochromes and pilA in electrochemical communication, which induced Geobacter enrichment. This work provided a broader understanding of electroactive biofilm regulation and potential applications for electricity generation and biosensor in the future.
Collapse
Affiliation(s)
- Qian Zhu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Shushan Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| |
Collapse
|
18
|
Wang N, Xue L, Ding G, Han Y, Feng Y, Liu J, Li N, He W. High concentration of ammonia sensitizes the response of microbial electrolysis cells to tetracycline. WATER RESEARCH 2022; 225:119064. [PMID: 36130438 DOI: 10.1016/j.watres.2022.119064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Microbial electrolysis cell (MEC) is a promising technology for effective energy conversion of wastewater organics to biogas. Yet, in swine wastewater treatment, the complex contaminants including antibiotics may affect MEC performance, while the high ammonia concentration might increase this risk by increasing cell membrane permeability. In this work, the responses of MECs on tetracycline (TC) with low and high ammonia loadings (80 and 1000 mg L-1) were fully investigated. The TC of 0 to 1 mg L-1 slightly improved MEC performance in current production and electrochemical characteristics with low ammonia loading, while TC ≥ 4 mg L-1 started to show negative effects. Generally, the high ammonia loading sensitized MECs to TC concentration, inducing the current and COD removal of MECs to sharply decline with TC ≥ 0.5 mg L-1. The positive effect of high ammonia loading on MEC due to conductivity increase was counteracted with TC ≥ 1 mg L-1. The co-contamination of TC and ammonia significantly decreased the bioactivity and biomass of anode biofilm. Although the high concentration of co-existing TC and ammonia inhibited MEC performance, the reactors still obtained positive energy feedback. The network analyses indicated that the effluent suspension contributed much to antibiotic resistance gene (ARG) transmission, while the microplastics (MPs) in wastewater greatly raised the risks of ARGs spreading. This work systematically examined the synergetic effects of TC and ammonia and the transmission of ARGs in MEC operation, which is conducive to expediting the application of MECs in swine wastewater treatment.
Collapse
Affiliation(s)
- Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Lefei Xue
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Guofang Ding
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yu Han
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huang he Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
19
|
Zhu Q, Hou H, Wu Y, Hu J, Liu B, Liang S, Xiao K, Yu W, Yuan S, Yang J, Su X. Deciphering the role of extracellular polymeric substances in the regulation of microbial extracellular electron transfer under low concentrations of tetracycline exposure: Insights from transcriptomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156176. [PMID: 35613646 DOI: 10.1016/j.scitotenv.2022.156176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Low concentrations of antibiotics can regulate the formation of electroactive biofilms, however, the underlying mechanisms, especially the composition and spatial distribution of extracellular polymeric substances (EPS) and their effects on extracellular electron transfer (EET) process, have not been fully deciphered. Here, the response of EPS of Geobacter sulfurreducens biofilm to low concentrations of tetracycline (μg L-1 to mg L-1) was explored, and the impact of such EPS variations on EET efficiency was further elucidated by transcriptomic analysis. Results showed that 0.05 mg L-1 of tetracycline achieved both beneficial quantitative and spatial regulation of redox-active proteins and non-conducting exopolysaccharides in EPS, while higher concentrations induced negative effects. Moreover, 1 mg L-1 of tetracycline upregulated multiple exopolysaccharide biosynthesis-related genes, indicating a stress response for cell-protection, while 0.05 mg L-1 of tetracycline upregulated most direct EET-related gene expressions, resulting in the promoted EET efficiency. Furthermore, 0.05 mg L-1 of tetracycline selectively enriched Geobacter (45.55% vs 19.55% in control, respectively) from mixed inoculum. This research provides a new insight of how antibiotics at low concentrations regulated EET process through modulation of EPS.
Collapse
Affiliation(s)
- Qian Zhu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| | - Yaqian Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Shushan Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
20
|
Amanze C, Zheng X, Anaman R, Wu X, Fosua BA, Xiao S, Xia M, Ai C, Yu R, Wu X, Shen L, Liu Y, Li J, Dolgor E, Zeng W. Effect of nickel (II) on the performance of anodic electroactive biofilms in bioelectrochemical systems. WATER RESEARCH 2022; 222:118889. [PMID: 35907303 DOI: 10.1016/j.watres.2022.118889] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The impact of nickel (Ni2+) on the performance of anodic electroactive biofilms (EABs) in the bioelectrochemical system (BES) was investigated in this study. Although it has been reported that Ni2+ influences microorganisms in a number of ways, it is unknown how its presence in the anode of a BES affects extracellular electron transfer (EET) of EABs, microbial viability, and the bacterial community. Results revealed that the addition of Ni2+ decreased power output from 673.24 ± 12.40 mW/m2 at 0 mg/L to 179.26 ± 9.05 mW/m2 at 80 mg/L. The metal and chemical oxygen demand removal efficiencies of the microbial fuel cells (MFCs) declined as Ni2+ concentration increased, which could be attributed to decreased microbial viability as revealed by SEM and CLSM. FTIR analysis revealed the involvement of various microbial biofilm functional groups, including hydroxyl, amides, methyl, amine, and carboxyl, in the uptake of Ni2+. The presence of Ni2+ on the anodic biofilms was confirmed by SEM-EDS and XPS analyses. CV demonstrated that the electron transfer performance of the anodic biofilms was negatively correlated with the various Ni2+ concentrations. EIS showed that the internal resistance of the MFCs increased with increasing Ni2+ concentration, resulting in a decrease in power output. High-throughput sequencing results revealed a decrease in Geobacter and an increase in Desulfovibrio in response to Ni2+ concentrations of 10, 20, 40, and 80 mg/L. Furthermore, the various Ni2+ concentrations decreased the expression of EET-related genes. The Ni2+-fed MFCs had a higher abundance of the nikR gene than the control group, which was important for Ni2+ resistance. This work advances our understanding of Ni2+ inhibition on EABs, as well as the concurrent removal of organic matter and Ni2+ from wastewater.
Collapse
Affiliation(s)
- Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Xiaoya Zheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaoyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Bridget Ataa Fosua
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Shanshan Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Mingchen Xia
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Chenbing Ai
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Erdenechimeg Dolgor
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, National University of Mongolia, 14200, Mongolia
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
21
|
Tian L, Yan X, Wang D, Du Q, Wan Y, Zhou L, Li T, Liao C, Li N, Wang X. Two key Geobacter species of wastewater-enriched electroactive biofilm respond differently to electric field. WATER RESEARCH 2022; 213:118185. [PMID: 35183018 DOI: 10.1016/j.watres.2022.118185] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Electroactive biofilms have attracted increasing attention due to their unique ability to exchange electrons with electrodes. Geobacter spp. are widely found to be dominant in biofilms in acetate-rich environments when an appropriate voltage is applied, but it is still largely unknown how these bacteria are selectively enriched. Herein, two key Geobacter spp. that have been demonstrated predominant in wastewater-enriched electroactive biofilm after long-term operation, G. sulfurreducens and G. anodireducens, responded to electric field (EF) differently, leading to a higher abundance of EF-sensitive G. anodireducens in the strong EF region after cocultivation with G. sulfurreducens. Transcriptome analysis indicated that two-component systems containing sensor histidine kinases and response regulators were the key for EF sensing in G. anodireducens rather than in G. sulfurreducens, which are closely connected to chemotaxis, c-di-GMP, fatty acid metabolism, pilus, oxidative phosphorylation and transcription, resulting in an increase in extracellular polymeric substance secretion and rapid cell proliferation. Our data reveal the mechanism by which EF select specific Geobacter spp. over time, providing new insights into Geobacter biofilm formation regulated by electricity.
Collapse
Affiliation(s)
- Lili Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Dongbin Wang
- School of Public Health, Guangdong Medical University, Xincheng Road, Dongguan 523000, China
| | - Qing Du
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lean Zhou
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
22
|
Dong Y, Sui M, Jiang Y, Wu J, Wang X. Dibutyl phthalate weakens the role of electroactive biofilm as an efficient wastewater handler and related mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151612. [PMID: 34780837 DOI: 10.1016/j.scitotenv.2021.151612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Plasticizer plays an imperceptible role in interfering with the structure and function of wastewater biofilms, but the inherent influence mechanism still remains unknown. Here, the responses in electrochemical, structural, microbial properties of electroactive biofilm (EAB) to plasticizer (dibutyl phthalate, DBP) were comprehensively elucidated, especially for the property variation of extracellular polymeric substances (EPS). The biofilm-0 in DBP-absent environment contributed to 22.9% and 63.9% higher current, compared to those in 1 mg/L and 10 mg/L DBP environment (biofilm-1 and biofilm-10). Chronic exposure to high-concentration DBP significantly boosted the content and distribution width of polysaccharide in EPS, but the electron exchange capacity of EPS decreased 76.6% to 0.146 μmol e-/mg EPS for biofilm-10. The bacteria were subjected to metabolic function loss, in terms of esterase activity and membrane integrity, by using flow cytometry. The DBP exposure also imposed selective pressure on enrich EPS-secretion-related bacteria, while the Geobacter species decreased from 71.2% (biofilm-0) to 55.8% (biofilm-10). Consequently, the DBP exposure suppressed the pollutant degradation rate, which provided new insights into the EAB role as a promising core for wastewater treatment in plasticizer-existing environments.
Collapse
Affiliation(s)
- Yue Dong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Mingrui Sui
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
| | - Yiying Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianyu Wu
- CAS Key Laboratory of Urban Pollutant Conversion, University of Science & Technology of China, Hefei 230026, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
23
|
Flores-Vargas G, Bergsveinson J, Lawrence JR, Korber DR. Environmental Biofilms as Reservoirs for Antimicrobial Resistance. Front Microbiol 2022; 12:766242. [PMID: 34970233 PMCID: PMC8713029 DOI: 10.3389/fmicb.2021.766242] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Characterizing the response of microbial communities to a range of antibiotic concentrations is one of the strategies used to understand the impact of antibiotic resistance. Many studies have described the occurrence and prevalence of antibiotic resistance in microbial communities from reservoirs such as hospitals, sewage, and farm feedlots, where bacteria are often exposed to high and/or constant concentrations of antibiotics. Outside of these sources, antibiotics generally occur at lower, sub-minimum inhibitory concentrations (sub-MICs). The constant exposure to low concentrations of antibiotics may serve as a chemical "cue" that drives development of antibiotic resistance. Low concentrations of antibiotics have not yet been broadly described in reservoirs outside of the aforementioned environments, nor is the transfer and dissemination of antibiotic resistant bacteria and genes within natural microbial communities fully understood. This review will thus focus on low antibiotic-concentration environmental reservoirs and mechanisms that are important in the dissemination of antibiotic resistance to help identify key knowledge gaps concerning the environmental resistome.
Collapse
Affiliation(s)
| | | | - John R Lawrence
- Environment and Climate Change Canada, Saskatoon, SK, Canada
| | - Darren R Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
24
|
Beneficial biofilms: A mini-review of strategies to enhance biofilm formation for biotechnological applications. Appl Environ Microbiol 2021; 88:e0199421. [PMID: 34851721 DOI: 10.1128/aem.01994-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacity of bacteria to form biofilms is an important trait for their survival and persistence. Biofilms occur naturally in soil and aquatic environments, are associated with animals ranging from insects to humans and are also found in built environments. They are typically encountered as a challenge in healthcare, food industry, and water supply ecosystems. In contrast, they are known to play a key role in the industrial production of commercially valuable products, environmental remediation processes, and in microbe-catalysed electrochemical systems for energy and resource recovery from wastewater. While there are many recent articles on biofilm control and removal, review articles on promoting biofilm growth for biotechnological applications are unavailable. Biofilm formation is a tightly regulated response to perturbations in the external environment. The multi-stage process, mediated by an assortment of proteins and signaling systems, involves the attachment of bacterial cells to a surface followed by their aggregation in a matrix of extracellular polymeric substances. Biofilms can be promoted by altering the external environment in a controlled manner, supplying molecules that trigger the aggregation of cells and engineering genes associated with biofilm development. This mini-review synthesizes findings from studies that have described such strategies and highlights areas needing research attention.
Collapse
|
25
|
Mukhi M, Vishwanathan AS. Identifying potential inhibitors of biofilm-antagonistic proteins to promote biofilm formation: a virtual screening and molecular dynamics simulations approach. Mol Divers 2021; 26:2135-2147. [PMID: 34546549 DOI: 10.1007/s11030-021-10320-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022]
Abstract
Microbial biofilms play a critical role in environmental biotechnology and associated applications. Biofilm production can be enhanced by inhibiting the function of proteins that negatively regulate their formation. With this objective, an in silico approach was adopted to identify competitive inhibitors of eight biofilm-antagonistic proteins, namely AbrB and SinR (from Bacillus subtilis) and AmrZ, PDE (EAL), PslG, RetS, ShrA and TpbA (from Pseudomonas aeruginosa). Fifteen inhibitors that structurally resembled the natural ligand of each protein were shortlisted using ligand-based and structure-based virtual screening. The top four inhibitors obtained from molecular docking using Autodock Vina were further docked using SwissDock and DOCK 6.9 to obtain a consensus hit for each protein based on different scoring functions. Further analysis of the protein-ligand complexes revealed that these top inhibitors formed significant non-covalent interactions with their respective protein binding sites. The eight protein-ligand complexes were then subjected to molecular dynamics simulations for 30 ns using GROMACS. RMSD and radius of gyration values of 0.1-0.4 nm and 1.0-3.5 nm, respectively, along with hydrogen bond formation throughout the trajectory indicated that all the complexes remained stable, compact and intact during the simulation period. Binding energy values between -20 and -77 kJ/mol obtained from MM-PBSA calculations further confirmed the high affinities of the eight inhibitors for their respective receptors. The outcome of this study holds great promise to enhance biofilms that are central to biotechnological processes associated with microbial electrochemical technologies, wastewater treatment, bioremediation and the industrial production of value-added products.
Collapse
Affiliation(s)
- Mayur Mukhi
- WATER Laboratory, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, 515134, India
| | - A S Vishwanathan
- WATER Laboratory, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, 515134, India.
| |
Collapse
|
26
|
Ye J, Ren G, Wang C, Hu A, Li F, Zhou S, He Z. A facile and fast strategy for cathodic electroactive-biofilm assembly via magnetic nanoparticle bioconjugation. Biosens Bioelectron 2021; 190:113464. [PMID: 34197998 DOI: 10.1016/j.bios.2021.113464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 02/04/2023]
Abstract
Microbial electrosynthesis is a promising electricity-driven technology for converting carbon dioxide into value-added compounds, but the formation of cathodic electroactive-biofilms (CEBs) is challenging. Herein, we have demonstrated an innovative strategy for CEBs assembly via magnetic nanoparticle bioconjugation, which lies in the synergistic interactions among a bonder (Streptavidin, SA), conductive nanomaterials (Fe3O4), and a methanogen (M. barkeri). The results showed that the bioconjugated M. barkeri-SA-Fe3O4 biohybrids significantly enhanced both methane yield (33.2-fold) and faradaic efficiency (5.6-fold), compared with that of bare M. barkeri. Such an enhancement was attributed to the improved viability of CEBs with a higher biomass density. Particularly, more live cells were presented in the inner biofilms and promoted the long-distance electron exchange between the live outer-layer biofilm and the cathode electrode. Meanwhile, the higher redox activity of CEBs with the M. barkeri-SA-Fe3O4 biohybrids resulted in an improved transient charge storage capability, which was beneficial for the biological CO2-to-CH4 conversion via acting as an additional electron donor. This work has provided a new approach to accelerate the formation of CEBs and subsequent electron transfer, which holds a great potential for accomplishing electrosynthesis and CO2 fixation.
Collapse
Affiliation(s)
- Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Andong Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fengqi Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
27
|
Pu Y, Pan J, Yao Y, Ngan WY, Yang Y, Li M, Habimana O. Ecotoxicological effects of erythromycin on a multispecies biofilm model, revealed by metagenomic and metabolomic approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116737. [PMID: 33618119 DOI: 10.1016/j.envpol.2021.116737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The presence of antibiotics such as erythromycin, even in trace amounts, has long been acknowledged for negatively impacting ecosystems in freshwater environments. Although many studies have focused on the impact of antibiotic pollution at a macroecological level, the impact of erythromycin on microecosystems, such as freshwater biofilms, is still not fully understood. This knowledge gap may be attributed to the lack of robust multispecies biofilm models for fundamental investigations. Here, we used a lab-cultured multispecies biofilm model to elucidate the holistic response of a microbial community to erythromycin exposure using metagenomic and metabolomic approaches. Metagenomic analyses revealed that biofilm microbial diversity did not alter following erythromycin exposure. Notably, certain predicted metabolic pathways such as cell-cell communication pathways, amino acid metabolism, and peptidoglycan biosynthesis, mainly by the phyla Actinobacteria, Alpha/Beta-proteobacteria, Bacteroidetes, and Verrucomicrobia, were found to be involved in the maintenance of homeostasis-like balance in the freshwater biofilm. Further untargeted metabolomics data highlighted changes in lipid metabolism and linoleic acid metabolism and their related molecules as a direct consequence of erythromycin exposure. Overall, the study presented a unique picture of how multispecies biofilms respond to single environmental stress exposures. Moreover, the study demonstrated the feasibility of using lab simulated multispecies biofilms for investigating their interaction and reactivity of specific bioactive compounds or pollutants at a fundamental level.
Collapse
Affiliation(s)
- Yang Pu
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Yuan Yao
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wing Yui Ngan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yang Yang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Olivier Habimana
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong Province, China.
| |
Collapse
|
28
|
Yan Y, Wang X, Askari A, Lee HS. A modelling study of the spatially heterogeneous mutualism between electroactive biofilm and planktonic bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143537. [PMID: 33272602 DOI: 10.1016/j.scitotenv.2020.143537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Microbial cooperation widely exists in anaerobic reactors degrading complex pollutants, conventionally studied separately inside the biofilm or the planktonic community. Recent experiments discovered the mutualism between the planktonic bacteria and electroactive biofilm treating propionate, an end-product usually accumulated in anaerobic digesters. Here, a one-dimensional multispecies model found the preference on acetate-based pathway over the hydrogen-based in such community, evidenced by the fact that acetate-originated current takes 66% of the total value and acetate-consuming anode-respiring bacteria takes over 80% of the biofilm. Acetate-based anodic respiration most apparently influences biofilm function while propionate fermentation is the dominant planktonic bio-reaction. Additionally, initial planktonic propionate level shows the ability of coordinating the balance between these two extracellular electron transfer pathways. Increasing the propionate concentration from 2 to 50 mM would increase the steady hydrogen-originated current by 210% but decrease the acetate-originated by 26%, suggesting a vital influence of the planktonic microbial process to the metabolic balance in biofilm. Best strategy to promote the biofilm activity is to increase the biomass density and biofilm conductivity simultaneously, which would increase the current density by 875% without thickening the biofilm thickness or prolonging the growth apparently.
Collapse
Affiliation(s)
- Yuqing Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Anis Askari
- Department of Civil & Environmental Engineering/Department of Chemical Engineering, The University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Hyung-Sool Lee
- Department of Civil & Environmental Engineering/Department of Chemical Engineering, The University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
29
|
Long S, Zhao L, Chen J, Kim J, Huang CH, Pavlostathis SG. Tetracycline inhibition and transformation in microbial fuel cell systems: Performance, transformation intermediates, and microbial community structure. BIORESOURCE TECHNOLOGY 2021; 322:124534. [PMID: 33360083 DOI: 10.1016/j.biortech.2020.124534] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Tetracycline (TC) transformation in the anode of an air cathode microbial fuel cell (MFC) and in the cathode of an MFC-Fenton system was investigated. TC at 10 mg/L in the anolyte was removed by 43-74% in 14-d cycles, mainly attributed to adsorption. The electrochemical activity, COD and acetate consumption of the anodic biofilm were inhibited by TC; inhibition was reversed when TC addition was stopped. Over 84 d of MFC operation with TC, Geobacter and Mycobacterium in the anode biofilm decreased, while Janthinobacterium and Comamonas increased. Over 99% of TC at 10-40 mg/L was removed within 8 h in the MFC-Fenton cathode. O2-•/HO2• and •OH were responsible for the cathodic TC degradation. The maximum current was 0.93 mA (at 250 Ω) and increased by 36.3% by the MFC-Fenton reaction. Cathodic MFC-Fenton is an efficient and energy-saving process for TC removal, compared to slow and problematic anodic TC bio-oxidation.
Collapse
Affiliation(s)
- Sha Long
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jinchen Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA
| | - Juhee Kim
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA.
| |
Collapse
|
30
|
Li B, Sun JD, Tang C, Zhou J, Wu XY, Jia HH, Wei P, Zhang YF, Yong XY. Coordinated response of Au-NPs/rGO modified electroactive biofilms under phenolic compounds shock: Comprehensive analysis from architecture, composition, and activity. WATER RESEARCH 2021; 189:116589. [PMID: 33166922 DOI: 10.1016/j.watres.2020.116589] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Electroactive biofilms (EABs) can be integrated with conductive nanomaterials to boost extracellular electron transfer (EET) for achieving efficient waste treatment and energy conversion in bioelectrochemical systems. However, the in situ nanomaterial-modified EABs of mixed-culture, and their response under environmental stress are rarely revealed. Here, two nanocatalyst-decorated EABs were established by self-assembled Au nanoparticles-reduced graphene oxide (Au-NPs/rGO) in mixed-biofilms with different maturities, then their multi-property were analyzed under long-term phenolic shock. Results showed that the power density of Au-NPs/rGO decorated EABs was significantly enhanced by 28.66-42.82% due to the intensified EET pathways inside biofilms. Meanwhile, the electrochemical and catalytic performance of EABs were controllably regulated by 0.3-3.0 g/L phenolic compounds, which, however, resulted in differential alterations in their architecture, composition, and viability. EABs originated with higher maturity displayed more compact structure, lower thickness (110 μm), higher biomass (8.67 mg/cm2) and viability (0.85-0.91), endowing it better antishock ability to phenolic compounds. Phenolic-shock also induced the heterogeneous distribution of extracellular polymeric substances in terms of both spatial and bonding degrees of the decorated EABs, which could be regarded as an active response to strike a balance between self-protection and EET under environmental pressure. Our findings provide a broader understanding of microbe-electrode interactions in the micro-ecology interface and improve their performance in the removal of complex contaminants for sustainable remediation and new-energy development.
Collapse
Affiliation(s)
- Biao Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; Department of Environmental Engineering, Technical University of Denmark, DK, 2800, Lyngby, Denmark
| | - Jia-Dong Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chen Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xia-Yuan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hong-Hua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yi-Feng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK, 2800, Lyngby, Denmark
| | - Xiao-Yu Yong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
31
|
Feng Q, Song YC, Li J, Wang Z, Wu Q. Influence of electrostatic field and conductive material on the direct interspecies electron transfer for methane production. ENVIRONMENTAL RESEARCH 2020; 188:109867. [PMID: 32846649 DOI: 10.1016/j.envres.2020.109867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/12/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
The influence of electrostatic field on the direct interspecies electron transfer (DIET) pathways for methane production was investigated in a batch bioelectrochemical anaerobic digester (BEAD). The ultimate methane production and methane yield in the BEAD reactor saturated to 925 ± 29 mL/L and 309.9 ± 9.6 mL CH4/g COD, respectively, which were much higher than 616 ± 3 mL/L and 205.4 ± 205.4 mL CH4/g COD in the anaerobic digester (AD). In the cyclic voltammogram (CV) for bulk solution, the oxidation peak current was 0.52 mA in the BEAD reactor, which was higher than 0.24 mA of AD reactor. This shows that the oxidizing ability of microorganisms was greatly improved in the BEAD reactor. Anaerolineaceae, a well-known electroactive bacterial family, was well enriched in the BEAD reactor. It indicates that the electrostatic field can enrich the electroactive bacteria and activate the DIET pathways for methane production. Moreover, the conductive material (activated carbon) further improved the performance of BEAD reactor, implies that the conductivities of bulk solution is one of the important parameters for the DIET pathways.
Collapse
Affiliation(s)
- Qing Feng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China; College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Young-Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Jun Li
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400030, China
| | - Zejie Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Qin Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
32
|
Wang S, Wu Y, An J, Liang D, Tian L, Zhou L, Wang X, Li N. Geobacter Autogenically Secretes Fulvic Acid to Facilitate the Dissimilated Iron Reduction and Vivianite Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10850-10858. [PMID: 32786578 DOI: 10.1021/acs.est.0c01404] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biosynthetic organic matters, such as humus, play important roles in iron and phosphorus cycling in soil and aquatic systems. As an important member of humus, fulvic acid (FA) is ubiquitous in different environmental media, such as water, soil, and sediments. In this study, we fabricated the network among phosphate supply, metabolism pathway of FA, iron reduction, and vivianite recovery at the batch scale. Both the vivianite recovery performance and the content of biosynthetic FA were positively related to the phosphorus dosage. The highest vivianite formation efficiency of 53% was obtained in the Fe/P = 1 batch, accompanied with the maximal iron reduction rate of 2.29 mM·day-1, which was 2.66 times higher than that of the Fe/P = 3 batch. Simultaneously, the highest content of FA was detected in extracellular polymeric substances (EPS) of the Fe/P = 1 batch. Metabolome analysis revealed that FA biosynthesis was mainly relevant to tricarboxylic acid (TCA) cycle, amino acid metabolism, and purine metabolism, with glutamate and aspartate as the precursors. Sufficient phosphate stimulated the FA biosynthesis by modulating the biosynthesis and transformation of glutamate and aspartate. After adding 10 mg L-1 FA in Fe/P = 1 batch, the maximal iron reduction rate increase by 35%, as well as 12% improvement of the vivianite formation efficiency. Transcriptome revealed that FA promotes iron reduction and vivianite recovery by upregulating the expression of metal ion binding-, flagella-, and electron transfer activity-related genes.
Collapse
Affiliation(s)
- Shu Wang
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Yu Wu
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Jingkun An
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Danhui Liang
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Lili Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lean Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
33
|
Li T, Zhou Q, Zhou L, Yan Y, Liao C, Wan L, An J, Li N, Wang X. Acetate limitation selects Geobacter from mixed inoculum and reduces polysaccharide in electroactive biofilm. WATER RESEARCH 2020; 177:115776. [PMID: 32294591 DOI: 10.1016/j.watres.2020.115776] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/18/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Bioelectrochemical systems (BESs) are widely investigated as a promising technology to recover bioenergy or synthesize value-added products from wastewaters. The performance of BES depends on the activity of electroactive biofilm (EAB). As the core of BES, it is still unclear how the EAB is formed from mixed inoculum, and how exoelectrogens compete with non-exoelectrogens. Here we confirmed that microbial community composition and the morphology of EAB on the electrode including the thickness and porosity of the biofilm are critical for the performance of BES, and these properties can be simply controlled by the substrate concentration during EAB formation. The EAB formed with 0.1 g/L of acetate (EAB-0.1) exhibited a 90% higher current density than that formed with 1.0 g/L acetate (EAB-1.0). EAB-0.1 had a 50% higher electroactivity per biomass and a 20% thinner thickness than EAB-1.0, which was partly due to the 54% decrease of insulative polysaccharide in biofilm. Limited acetate also imposed a selective pressure to enrich Geobacter up to 88% compared to 72% when acetate was abundant. Our findings demonstrate that a highly active EAB can be formed by limiting substrate concentration, providing a broader understanding of the EAB formation process, the ecology of interspecies competitions and potential applications for bioenergy recovery and trace toxicant detection in the future.
Collapse
Affiliation(s)
- Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Lean Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Yuqing Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Lili Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jingkun An
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
34
|
Song HL, Lu YX, Yang XL, Xu H, Singh RP, Du KX, Yang YL. Degradation of sulfamethoxazole in low-C/N ratio wastewater by a novel membrane bioelectrochemical reactor. BIORESOURCE TECHNOLOGY 2020; 305:123029. [PMID: 32109730 DOI: 10.1016/j.biortech.2020.123029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Sulfamethoxazole (SMX) pollution in wastewater threatens public health. A novel membrane bioelectrochemical reactor (MBER) with loop operation was developed for SMX degradation in low-C/N ratio wastewater. A gas-permeable silicone membrane module was used to precisely control the dissolved oxygen in the catholyte and save energy. Compared with a traditional membrane bioreactor (i.e., open-circuit reactor), the removal of SMX was increased from 49.91% to 71.10% in the proposed MBER (i.e., closed-circuit reactor). Sequencing analyses revealed that SMX was removed via cometabolism with NH4+-N and COD removal in both the anode and cathode chambers. Six intermediates were detected as degradation products in the cathodic effluent; these intermediates pose a similar potential threat to the environment as SMX. Two possible degradation pathways, deduced from the sequencing analyses and degradation products, were proposed. These results provide a new technology for improving SMX removal through the integration/coupling of bioelectrochemical technology into a membrane bioreactor.
Collapse
Affiliation(s)
- Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Yu-Xiang Lu
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Han Xu
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | | | - Kai-Xing Du
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China.
| |
Collapse
|
35
|
Mai Q, Yang G, Cao J, Zhang X, Zhuang L. Stratified microbial structure and activity within anode biofilm during electrochemically assisted brewery wastewater treatment. Biotechnol Bioeng 2020; 117:2023-2031. [DOI: 10.1002/bit.27342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Qijun Mai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| | - Jiayao Cao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| | - Xia Zhang
- Guangzhou Zhujiang Brewery Guangzhou China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| |
Collapse
|
36
|
Zhang Z, Qu Y, Li S, Feng K, Cai W, Yin H, Wang S, Liu W, Wang A, Deng Y. Florfenicol restructured the microbial interaction network for wastewater treatment by microbial electrolysis cells. ENVIRONMENTAL RESEARCH 2020; 183:109145. [PMID: 32035407 DOI: 10.1016/j.envres.2020.109145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
To investigate the influence of antibiotics on microbial interactions in a biofilm community, we set up eight replicate reactors of microbial electrolysis cell (MEC) and applied a broad-spectrum antibiotic florfenical (FLO) as an environmental disturbance. According to the results, exposure to FLO resulted in degradation of reactor performance. The MEC could also rebound back to the comparably stable state at a certain time which exhibited a great resilience ability in response to antibiotic disturbance. The FLO perturbation showed a significant influence on the electroactive biofilms (EABs) with a distinct reformation of the community structure. Network analysis revealed that microbial interactions in the biofilms after full recovery became much closer, with a rapid increase in the positive interactions between the predominant genus Geobacter and other microorganisms as compared to the stage before FLO disturbance. Moreover, the keystone species in the networks after full recovery possessed more connections between Geobacter and potential synergistic species. Our results demonstrated that FLO, with broad-spectrum antibacterial ability, could restructure the EABs with more positive interactions for hydrogen production. This study demonstrated the response mechanisms of the MECs to the antibiotic disturbance, providing a scientific reference for the rapid development of this biotechnology to treat wastewater containing antibiotics.
Collapse
Affiliation(s)
- Zhaojing Zhang
- State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute for Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yuanyuan Qu
- State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Shuzhen Li
- State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weiwei Cai
- School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Shang Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenzong Liu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Aijie Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute for Marine Science and Technology, Shandong University, Qingdao, 266237, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
37
|
Li T, Chen F, Zhou Q, Wang X, Liao C, Zhou L, Wan L, An J, Wan Y, Li N. Unignorable toxicity of formaldehyde on electroactive bacteria in bioelectrochemical systems. ENVIRONMENTAL RESEARCH 2020; 183:109143. [PMID: 32028180 DOI: 10.1016/j.envres.2020.109143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/31/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Formaldehyde poses significant threats to the ecosystem and is widely used as a toxicity indicator to obtain electrical signal feedback in electroactive biofilm (EAB)-based sensors. Although many optimizations have been adopted to improve the performance of EAB to formaldehyde, nearly no studies have discussed the toxicity of formaldehyde to EAB. Here, EABs were acclimated with a stable current density (8.9 ± 0.2 A/m2) and then injected with formaldehyde. The current density decreased by 27% and 98% after the injection of 1 and 10 ppm formaldehyde, respectively, compared with that in the control. The ecotoxicity of formaldehyde caused the irreversible loss of current with 3% (1 ppm) and 81% (10 ppm). Confocal laser scanning microscopy and scanning electron microscopy results showed that the redox activity was inhibited by formaldehyde, and the number of dead/broken cells increased from 2% to 40% (1 ppm) and 91% (10 ppm). The contents of the total protein and extracellular polymer substances decreased by more than 28% (1 ppm) and 75% (10 ppm) because of the cleavage reaction caused by formaldehyde. Bacterial community analysis showed that the proportion of Geobacter decreased from 81% to 53% (1 ppm) and 24% (10 ppm). As a result, the current production was significantly impaired, and the irreversible loss increased. Toxicological analysis demonstrated that formaldehyde disturbed the physiological indices of cells, thereby inducing apoptosis. These findings fill the gap of ecotoxicology of toxicants to EAB in a bioelectrochemical system.
Collapse
Affiliation(s)
- Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Fan Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Lean Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Lili Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jingkun An
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Nan Li
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
38
|
Peng X, Cao J, Xie B, Duan M, Zhao J. Evaluation of degradation behavior over tetracycline hydrochloride by microbial electrochemical technology: Performance, kinetics, and microbial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109869. [PMID: 31683047 DOI: 10.1016/j.ecoenv.2019.109869] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 05/21/2023]
Abstract
Tetracycline hydrochloride (TCH), as a typical antibiotic-pollutant, is desired to enhance its removal from public environment, due to its toxicity and persistence. Microbial electrochemical technology (MET) is a series complex microorganisms-driven processes with characteristics of simultaneous wastewater treatment and electricity generation. The study was presented to evaluate the TCH removal behavior and power generation performance through the co-metabolism under constant glucose with different TCH concentrations using MET. It was found that the TCH removal efficiency arrived at 40% during the first 6 h, when TCH concentrations ranged from 1 to 50 mg/L. It was interesting that TCH degradation rate increased to a maximum of 4.15 × 10-2 h-1 with its concentrations varying from 1 to 20 mg/L, however, the further increase to 50 mg/L in TCH concentration resulted in a reverse 66% reduction. In the meantime, the generated bioelectricity declared a similar fluctuation trend with a maximum power density of 600 mW/m2 under the condition of 20 mg/L TCH co-degradation with glucose. What's more, the TCH inhibition effect fitted well with Haldane's model, indicating that the microbial electrochemical system had a better potency toward TCH toxicity than that reported (EC50 = 2.2 mg/L). Thauera as mainly functional aromatics-degrading bacteria and Bdellovibrio against bacterial pathogens, only existed in the mixed cultures with TCH and glucose, indicating extremely remarkable changes in bacterial community with TCH addition. In summary, a new approach for the anaerobic biodegradation of TCH was explored through co-metabolism with glucose using MET. The results should be useful for antibiotics wastewater disposal of containing TCH.
Collapse
Affiliation(s)
- Xinhong Peng
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (MNR), Nankai District, Tianjin, 300192, PR China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300071, PR China.
| | - Junrui Cao
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (MNR), Nankai District, Tianjin, 300192, PR China
| | - Baolong Xie
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (MNR), Nankai District, Tianjin, 300192, PR China
| | - Mengshan Duan
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (MNR), Nankai District, Tianjin, 300192, PR China
| | - Jianchao Zhao
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (MNR), Nankai District, Tianjin, 300192, PR China
| |
Collapse
|
39
|
Liu L, Liu C, Zhang H, He J, Zhai J, Yu D, Dong S. How to Identify the "LIVE/DEAD" States of Microbes Related to Biosensing. ACS Sens 2020; 5:258-264. [PMID: 31876407 DOI: 10.1021/acssensors.9b02138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we fabricated a microbial biosensor with long-term stability, which relied on microbial activity. Activity of the microbe was commonly estimated by LIVE/DEAD assay and the propidium iodide (PI)-stained one was judged as dead. Herein, we proposed the utilization of a physiological state of microbes, which was neither live nor dead but between them. In this state, microbes represented a high PI-stained ratio but still had catalytic ability. This microbial state was obtained by forming the biofilm under the conditions of poor nutrition and low temperature. Thus, the dividing and proliferating ability of the microbes in the biofilm was weak, which was beneficial for long-term stability. This mechanism was further confirmed by the biosensors made from multifarious substrate materials, including graphene-based gel, biomass-based gel, graphite felt, and poly(vinyl chloride). This biosensor was applied to water pollution monitoring in the laboratory for 2 years and then was integrated into a multiparameter water quality monitoring station on a local lake for 2.5 years.
Collapse
Affiliation(s)
- Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Changyu Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - He Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jingting He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Junfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Dengbin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| |
Collapse
|
40
|
Navidifar T, Amin M, Rashno M. Effects of sub-inhibitory concentrations of meropenem and tigecycline on the expression of genes regulating pili, efflux pumps and virulence factors involved in biofilm formation by Acinetobacter baumannii. Infect Drug Resist 2019; 12:1099-1111. [PMID: 31190904 PMCID: PMC6512781 DOI: 10.2147/idr.s199993] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/16/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Sub-minimal inhibitory concentrations of antibiotics have been indicated to affect the biofilm formation in pathogens of nosocomial infections. This study aimed to investigate the effects of meropenem and tigecycline at their sub-minimum inhibitory concentrations (MICs) on the biofilm formation capacity of Acinetobacter baumannii (A. baumannii), as well as the expression levels of genes involved in biofilm formation, quorum sensing, pili assembly and efflux pumps. Materials and methods: In this study, four non-clonal strains (AB10, AB13, AB32 and AB55), which were different from the aspects of antibiotic susceptibility and biofilm formation from each other were selected for the evaluation of antimicrobial susceptibility, biofilm inducibility at sub-MICs of meropenem and tigecycline and the gene expression levels (the abaI, abaR, bap, pgaA, csuE, bfmS, bfmR, ompA, adeB, adeJ and adeG genes). Result: A significant increase in the MICs of all antibiotics was demonstrated in the biofilm cells in each four strains. The biofilm formation was significantly decreased in all the representative strains exposed to tigecycline. However, the biofilm inducibility at sub-MICs of meropenem was dependent on strain genotype. In concordance with these results, Pearson correlation analysis indicated a positive significant correlation between the biofilm formation capacity and the mRNA levels of genes encoding efflux pumps except adeJ, the genes involved in biofilm formation, pili assembly and quorum sensing following exposure to meropenem and tigecycline at their sub-MICs. Conclusion: These results revealed valuable data into the correlation between the gene transcription levels and biofilm formation, as well as quorum sensing and their regulation at sub-MICs of meropenem and tigecycline.
Collapse
Affiliation(s)
- Tahereh Navidifar
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mansour Amin
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
41
|
Sun J, Xu W, Yang P, Li N, Yuan Y, Zhang H, Wang Y, Ning X, Zhang Y, Chang K, Peng Y, Chen K. Enhanced oxytetracycline removal coupling with increased power generation using a self-sustained photo-bioelectrochemical fuel cell. CHEMOSPHERE 2019; 221:21-29. [PMID: 30634145 DOI: 10.1016/j.chemosphere.2018.12.152] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Photo-bioelectrochemical fuel cell (PBFC) represents a promising technology for enhancing removal of antibiotic pollutants while simultaneously sustainable transformation of organic wastes and solar energy into electricity. In this study, simultaneous antibiotic removal and bioelectricity generation were investigated in a PBFC with daily light/dark cycle using oxytetracycline (OTC) as a model compound of antibiotic. The specific OTC removal rate increased by 61% at an external resistance of 50 Ω compared to that in the open-circuit control, which was attributed to bioelectrochemically enhanced co-metabolic degradation in the presence of the bioanode. The OTC removal was obviously accelerated during illumination of cathode in contrast with a dark cathode due to the higher driving force for anodic bioelectrochemical reaction by using photosynthetic oxygen as cathodic electron acceptor during illumination than that using nitrate in dark. The bioelectrocatalytic activity of anodic biofilm was continuously enhanced even at an initial OTC concentration of up to 50 mg L-1. The degradation products of OTC can function as mediators to facilitate the electron transfer from bacteria to the anode, resulting in 1.2, 1.76 and 1.8 fold increase in maximum power output when 10, 30 and 50 mg L-1 OTC was fed to the bioanode, compared to the OTC-free bioanode, respectively. The OTC feeding selective enriched OTC-tolerant bacterial community capable of degrading complex organic compounds and producing electricity. The occurrence of ARGs during bioelectrochemical degradation of OTC was affected more greatly by the succession of the anodic bacterial community than the initial OTC concentration.
Collapse
Affiliation(s)
- Jian Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenjing Xu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ping Yang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Nan Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongguo Zhang
- Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Yujie Wang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xunan Ning
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yaping Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Kenlin Chang
- Institute of Environmental Engineering, National Sun Yat-sen University, Gaoxiong, 80424, Taiwan
| | - Yenping Peng
- Department of Environmental Science and Engineering, Tunghai University, Taichung, 40704, Taiwan
| | - Kufan Chen
- Department of Civil Engineering, National Chi Nan University, Nanto, 54561, Taiwan
| |
Collapse
|
42
|
Efficient regeneration of activated carbon electrode by half-wave rectified alternating fields in capacitive deionization system. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Jing X, Liu X, Deng C, Chen S, Zhou S. Chemical signals stimulate Geobacter soli biofilm formation and electroactivity. Biosens Bioelectron 2019; 127:1-9. [DOI: 10.1016/j.bios.2018.11.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 11/17/2022]
|
44
|
Wang S, An J, Wan Y, Du Q, Wang X, Cheng X, Li N. Phosphorus Competition in Bioinduced Vivianite Recovery from Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13863-13870. [PMID: 30412394 DOI: 10.1021/acs.est.8b03022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phosphorus undergoes a one-way flow from minerals to soil to water, which creates a phosphorus crisis as well as aquatic eutrophication. Dissimilatory metal reduction bacterial (DMRB)-induced vivianite recovery from wastewater is a promising route to solve these problems synthetically. In this study, phosphorus competition between biomass growth and bioinduced vivianite mineralization was investigated at the batch scale. Biomass growth leads to phosphorus utilization over vivianite mineralization. Geobacter was selected as the main functional microorganism and presented higher vivianite recovery rates (20-48%) than sewage biomass (7-33%). An optimal Fe/P stoichiometric ratio of 1:1 was observed for both sewage biomass and Geobacter-inoculated batches. The highest vivianite yield of 4.3 mM was obtained in Geobacter-inoculated batches at a Fe:P of 1:1, with values 59% higher than those at a Fe:P of 1:0.67 (equal to the Fe/P molar ratio in vivianite). Sufficient PO43- stimulated cell growth and yielded a higher Fe3+ reduction rate and vivianite yield. Nevertheless, excessive PO43- facilitated the precipitation of KFe3 (PO4)2(OH)·8H2O and Fe7 (PO4)6, which inhibited vivianite synthesis. In the optimal Geobacter batch, the μ -S curve indicated a mixed order reaction (0 < x < 1) for both vivianite formation and biomass growth. The vivianite growth series proceeded as follows: tiny blue particles, plain pieces, dark blue nodules, and large spherical crystals.
Collapse
Affiliation(s)
- Shu Wang
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering , Tianjin University , No. 135 Yaguan Road, Jinnan District , Tianjin 300350 , China
| | - Jingkun An
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering , Tianjin University , No. 135 Yaguan Road, Jinnan District , Tianjin 300350 , China
| | - Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control , Nankai University , No. 38 Tongyan Road, Jinnan District , Tianjin 300350 , China
| | - Qing Du
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control , Nankai University , No. 38 Tongyan Road, Jinnan District , Tianjin 300350 , China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control , Nankai University , No. 38 Tongyan Road, Jinnan District , Tianjin 300350 , China
| | - Xiang Cheng
- Beijing Key Lab Source Control Technology Water Pollution , Beijing Forestry University , Beijing 100083 , China
| | - Nan Li
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering , Tianjin University , No. 135 Yaguan Road, Jinnan District , Tianjin 300350 , China
| |
Collapse
|
45
|
Du Q, Mu Q, Cheng T, Li N, Wang X. Real-Time Imaging Revealed That Exoelectrogens from Wastewater Are Selected at the Center of a Gradient Electric Field. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8939-8946. [PMID: 29995395 DOI: 10.1021/acs.est.8b01468] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Exoelectrogens acclimated from the environment are the key to energy recovery from waste in bioelectrochemical systems. However, it is still unknown how these bacteria are selectively enriched on the electrode. Here we confirmed for the first time that the electric field (EF) intensity selects exoelectrogens from wastewater using an integrated electrovisual system with a gradient EF. Under the operating conditions ( I = 3 × 10-3A), the EF intensity on the working electrode ranged from 6.00 V/cm at the center to 1.08 V/cm at the edge. A thick biofilm (88.9 μm) with spherical pink aggregates was observed at the center, while the color became gray at the edge (33.8 μm). The coverage of the biofilm also increased linearly with EF intensity from 0.42 at the edge (12 mm to the center) to 0.78 at the center. The biofilm at the center contained 76% Geobacter, which was 25% higher than that at the edge (60%). Geobacter anodireducens was the main species induced by the EF (50% at the center vs 24% at the edge). These results improve our fundamental knowledge of exoelectrogen acclimation and mixed electroactive biofilm formation, which has broader implications for energy recovery from waste and general understanding of microbial ecology.
Collapse
Affiliation(s)
- Qing Du
- MOE Key Laboratory of Pollution Processes and Environmental Criteria and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , No. 38 Tongyan Road, Jinnan District , Tianjin 300350 , China
| | - Quanhua Mu
- Bioengineering Program, Department of Chemical and Biological Engineering , Hong Kong University of Science and Technology , Hong Kong , China
| | - Tao Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , No. 38 Tongyan Road, Jinnan District , Tianjin 300350 , China
| | - Nan Li
- School of Environmental Science and Engineering , Tianjin University , No. 92 Weijin Road, Nankai District , Tianjin 300072 , China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , No. 38 Tongyan Road, Jinnan District , Tianjin 300350 , China
| |
Collapse
|