1
|
Hu P, Ren W, Xi Z, Cai J, Ibrahim MAA, Shoeib T, Yang H. Dynamic process of UV-aging polystyrene microplastics, simultaneous adsorption of drugs, and subsequently coagulative removal together. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138100. [PMID: 40199081 DOI: 10.1016/j.jhazmat.2025.138100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/28/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
The aging of plastics and their adsorptive interactions with the residual contaminants in water has attracted increasing attentions. In this study, the dynamic process of UV-aging polystyrene (PS) microplastics (MPs) were semi-quantitatively analyzed using a coulter counter, and the adsorptive interactions between the aged PS MPs and two popular drugs[norfloxacin (NOR) and chloroquine phosphate (CQ)] were investigated simultaneously. The MPs presented a rapid size downtrend, reduced from micrometer to nanometer, and the particle number concentration increased about 2 -3 times after a 36.0 h aging effect. The apparent UV-aging process of PS MPs mainly obeyed the pseudo-first order kinetic model in currently measured MPs' size range. The drug uptakes of the aged MPs were fully consistent with the contents of oxygen-containing groups on MPs surface rather than MPs' size. The involved adsorption mechanisms were investigated in detail mainly including electrostatic attraction, hydrogen bonding, and π-π electron donor-acceptor interaction. The drug adsorbed MPs were subsequently efficiently removed by an enhanced coagulation together owing to the synergistic effects of the two pollutants. This study provides a novel and comprehensive perspective on the fundamental understanding the UV-aging process of MPs and the simultaneous adsorption behaviors, furthermore, a strategy was proposed for their collaborative removal.
Collapse
Affiliation(s)
- Pan Hu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Wenxiao Ren
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhonghua Xi
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jun Cai
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Hu Yang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Liu H, Ma Y, Xiao J, Zhang Y, Li Y, Shen A, Niu Z, Chen Q, Chen B. Biofilm-mediated mass transfer of sorbed benzo[a]pyrene from polyethylene to seawater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126257. [PMID: 40239938 DOI: 10.1016/j.envpol.2025.126257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
Plastic waste, including microplastics (MPs), often serves as a carrier for hydrophobic organic contaminants (HOCs) and additives in aquatic environments. However, little is known about the fate of contaminants in plastics, especially under the influence of biofilm in field conditions. In this study, polyethylene (PE) was pre-sorbed with varying concentrations of benzo[a]pyrene (BaP), a non-polar contaminant, and deployed in situ to study desorption kinetics under natural biofilm colonization. Based on the desorption kinetics of BaP from PE, a mass transfer model was developed to describe the desorption of non-polar contaminants from PE under the influence of biofilm formation. This study proved that biofilm, acting as an intermediary between plastics and the aquatic environment, did not serve as a sink for plastic-sorbed BaP, but accelerated the desorption process of BaP by reducing the partition coefficient between the plastic and the boundary layer. Furthermore, based on our developed model (IABL-ODD), the effects of biofilm on the fate of other non-polar and weakly polar contaminants in PE were predicted. This study highlights the influence of biofilm on the desorption of hydrophobic contaminants from plastics in field conditions and also informs future work on more relevant processes such as additive leaching.
Collapse
Affiliation(s)
- Hongtao Liu
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yongzheng Ma
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China; The State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Jingen Xiao
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuan Li
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ao Shen
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiguang Niu
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Qiqing Chen
- The State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Baizhu Chen
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, 510006, China; School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| |
Collapse
|
3
|
Jiang Q, Xu H, Zong Y, Hua R, Wu X, Xue J. Polyethylene microplastics decrease the bioaccumulation and toxicity of picoxystrobin and azoxystrobin to microalgae Scenedesmus obliquus. MARINE POLLUTION BULLETIN 2025; 218:118185. [PMID: 40403608 DOI: 10.1016/j.marpolbul.2025.118185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 05/03/2025] [Accepted: 05/17/2025] [Indexed: 05/24/2025]
Abstract
Fungicide residues can interact with microplastics (MPs) in the aquatic environment leading to mixed toxicity on phytoplankton. The investigation of biological effects obtained from combined fungicide and MPs is essential for proper evaluation of the ecological risks. Until now, the mechanisms that how polyethylene (PE) MPs altered the toxicity of picoxystrobin and azoxystrobin on microalgae Scenedesmus obliquus was unknown. Here, the impacts of PE-MPs on freely dissolved concentrations (Cfree) of the 2 fungicides and their toxicity to microalgae growth were assessed after 96 h exposure. We found that the presence of PE-MPs reduced the bioaccumulation of picoxystrobin and azoxystrobin in microalgae through decreasing the fungicide Cfree. Furthermore, inhibition effects on microalgae growth and chlorophyll generation was alleviated significantly in the combination of fungicide and PE-MPs compared with the fungicide alone. Specifically, 400 mg/L of 25 μm PE induced more profound influences than other treatments in terms of decreasing Cfree, promoting growth rate, and increasing chlorophyll content that might be attributed to its higher adsorption capacity for the fungicides. Our results demonstrated the antagonism between the fungicides and PE-MPs, clarifying that PE-MPs functioned in lowering the bioavailability and acte toxicity of the 2 strobilurin fungcides to microalgae via physical adsorption especially under the small size and high level of PE-MPs. This study provides evidences that the existence of MPs is capable of influencing the toxicological behavior of fungicides in the environment, and can be a starting point for more sophisticated mechanism investigation of joint toxicity for fungicides and MPs.
Collapse
Affiliation(s)
- Qingqing Jiang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food, Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Huiru Xu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food, Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Zong
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food, Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Rimao Hua
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food, Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiangwei Wu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food, Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jiaying Xue
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food, Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Han Y, Tan J, Fu M, Zhang Z, Liu T, Zhou S, Qiao Z, Zhang W, Peng C. Aging Changes the Vector Effects of Various Microplastics on the Bioaccumulation of Decabromodiphenyl Ethane in Earthworms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40391681 DOI: 10.1021/acs.jafc.5c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The widespread use and nonstandard disposal of plastic products led to inevitable copollution of microplastics (MPs) and novel brominated flame retardants (NBFRs). However, gaps remain in understanding the influence of aged MPs on the bioaccumulation and biotoxicity of NBFRs in terrestrial environments. We assessed the effects of UV-aged MPs derived from poly(lactic acid) (PLA) and polyethylene (PE) on the bioaccumulation of decabromodiphenyl ethane (DBDPE) in a soil-earthworm system. After 28-d exposure, DBDPE bioaccumulation in the intestine of earthworms under coexposure (0.1% or 1% MPs in 10 mg kg-1 DBDPE soil) exhibited better impacts of MPs than that in the whole tissue. Overall, the aging of biodegradable PLA-MPs promoted DBDPE bioaccumulation in the intestine of earthworms through ingestion and thus reduced DBDPE attachment on the aged PLA-MPs in soil, which relied on their increased adsorption to DBDPE. Similarly, the aging of PE-MPs reduced DBDPE bioaccumulation in the intestine due to the decreased adsorption ability to DBDPE. Specifically, aged PLA-MPs increased DBDPE in the intestine by 15%, while aged PE-MPs decreased it by 21%. Aged PE-MPs formed stable biofilms in soil with strong binding to DBDPE, thereby reducing DBDPE bioaccumulation in earthworms but exacerbating its migration risks. This reflected the "vector effect" of aged MPs on DBDPE bioaccumulation in earthworms with ingestion. Furthermore, SR-FTIR confirmed that MPs remained in tissues and DBDPE was loaded on the MPs' surface in the intestine, indirectly verifying the vector effect of MPs. This work highlights discrepant risks between biobased degradable and fuel-based hydrocarbon MPs in HOC-contaminated soil in realistic environmental scenarios.
Collapse
Affiliation(s)
- Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiyin Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianzi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Zhang Q, Wang X, Chen Y, Song G, Zhang H, Huang K, Luo Y, Cheng N. Discovery and solution for microplastics: New risk carriers in food. Food Chem 2025; 471:142784. [PMID: 39788019 DOI: 10.1016/j.foodchem.2025.142784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/04/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Microplastics (MPs), as a kind of plastic particles with an equal volume size of less than 5 mm, similar to PM2.5 in the air, are causing severe contamination issues in food. Along with the food chain accumulation, they have been confirmed to appear in daily foods and cause serious health risks to the organisms. However, there were no unifying national and local policies on separating, extracting, and detecting MPs in food, which is an essential and imperative early-warning strategy. This review carefully and comprehensively summarized the validated contaminated food, physical and chemical characteristics, extraction methods, traditional and rapid detection techniques, as well as degradation methods of MPs. We thoroughly analyzed the differences among these traditional strategies, and innovatively generalized the existing rapid detection techniques for MPs. Finally, the shortcomings of existing research were discussed, and the possibility of novel rapid and intelligent detection techniques for MPs in food was proposed.
Collapse
Affiliation(s)
- Qi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yang Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guangchun Song
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hao Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Yunbo Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Wang L, He Y, Zhu Y, Zhang J, Zheng S, Huang W. Impact of the hydrated functional zone on the adsorption of ciprofloxacin to microplastics under the influence of UV aging. ENVIRONMENTAL TECHNOLOGY 2025; 46:1468-1480. [PMID: 39234686 DOI: 10.1080/09593330.2024.2398812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
The inevitable UV aging of microplastics (MPs) is one of the key factors affecting their interaction with antibiotics. In this study, polyethylene (PE) and polystyrene (PS) MPs were aged with UV irradiation. The adsorption isotherms and kinetics of ciprofloxacin (CIP) to virgin and aged MPs were investigated through various models, and the effects of pH on the adsorption amount were explored. Characterization revealed that the surfaces of aged MPs became rougher, and the hydrophilicity increased. These aged MPs were still in the early stage of aging on the basis of their carbonyl index (CI) (<0.2) and O/C (<0.04) values. The adsorption isotherms indicated that the adsorption mechanism of aged PE was different from that of virgin PE. Compared with virgin PE, the adsorption amount of aged PE increased by 87.80-95.45%, and the adsorption rate decreased by 65.52-80.74%. However, aging did not significantly affect the equilibrium adsorption amount or adsorption rate of aged PS. The external diffusion rate (Kext) (about 2.29-0.36 h-1) was almost 30 times greater than the internal diffusion rate (Kint) in the film-pore mass transfer (FPMT) model, indicating that CIP adsorption rate was dominated by external diffusion. A hydrated functional zone is thought to form around aged MPs, thus changing the adsorption mechanism and adsorption amount of aged PE. Therefore, more attention should be given to alterations in the hydrated functional zone in the early stage of MPs aging.
Collapse
Affiliation(s)
- Lin Wang
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Yang He
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Yanhong Zhu
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Jianqiang Zhang
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Shijie Zheng
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Wen Huang
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| |
Collapse
|
7
|
Sankoda K, Saito K. Effect of sunlight aging on physicochemical properties and sorption capacities of environmental microplastics: implications for contamination by PAHs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7085-7094. [PMID: 40038166 DOI: 10.1007/s11356-025-36138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/14/2025] [Indexed: 03/06/2025]
Abstract
This study investigates the effects of ultraviolet (UV) aging on the physicochemical properties and adsorption capacity of three plastics commonly detected in the environment: polyethylene (PE), polypropylene (PP), and polystyrene (PS). One set of plastic samples was exposed to Xe-based simulated sunlight for up to 5 days and another set to outdoor conditions for up to 69 days. The physicochemical properties and ability of the pristine and aged plastic particles to adsorb pyrene, a representative polycyclic aromatic hydrocarbon (PAH), are evaluated. For the outdoor-exposed PP and PS samples, distinct Fourier transform infrared peaks related to carbonyl groups are detected. The adsorption coefficients of pyrene after 72 h of agitation in PE and PP samples aged via 69 days of outdoor exposure are 2.9 and 3.5 times higher compared with that in the respective pristine samples. This increase in adsorption capacity is probably attributed to these plastics undergoing changes in surface properties, including embrittlement. The findings indicate that the accumulation of PAHs on microplastics is accelerated on aged material surfaces, emphasizing the need for further studies under conditions that simulate natural sunlight exposure.
Collapse
Affiliation(s)
- Kenshi Sankoda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-Shi, Toyama, 939-0398, Japan.
| | - Koki Saito
- Department of Environmental and Civil Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-Shi, Toyama, 939-0398, Japan
| |
Collapse
|
8
|
Hu M, Sun S, Ma H, Xing B. Adsorption behaviors of microplastics from packaging materials subjected to ultraviolet irradiation and microbial colonization. MARINE POLLUTION BULLETIN 2025; 212:117517. [PMID: 39752813 DOI: 10.1016/j.marpolbul.2024.117517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/11/2024] [Accepted: 12/28/2024] [Indexed: 03/05/2025]
Abstract
Microplastics (MPs) in nature inevitably undergo various aging processes and may exhibit varied interfacial interactions with the coexisted contaminants. Here several discarded disposable polyethylene and polypropylene plastic packaging materials were collected and employed as the raw materials of MPs, and the effects of stimulated UV irradiation and microbial colonization on the variations of surface physicochemical characteristics, including biofilm content, oxygen-containing functional groups, oxygen/carbon ratio, hydrophilicity and surface charge properties were explored. Simultaneously, the adsorption behavior of each MPs on the representative cationic dye crystal violet (CV), as well as the influences of salinity and pH of CV solution, was investigated. The fitting results of kinetic and isotherm models indicated that the adsorption process was mainly multilayer on heterogeneous surfaces, involving hydrogen bonding, electrostatic attraction and hydrophobic interactions, which were further confirmed by FTIR spectra, pH and salinity experiments, respectively. This study elucidated the variation of surface physicochemical characteristics of MPs during natural aging processes and the possible interfacial interactions with CV, which provided theoretical information on MPs as the potential pollutant carriers.
Collapse
Affiliation(s)
- Miao Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi 710119, PR China
| | - Siao Sun
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'An, Shaanxi 710072, PR China
| | - Hongzhu Ma
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi 710119, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
9
|
Sun L, Liu Y, Feng Y, Fan Z, Jiang L, Lu C, Jiang C. Aged polylactic acid microplastics with ultraviolet irradiation stunted pakchoi (Brassica chinensis L.) germination and growth with cadmium in hydroponics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117696. [PMID: 39788031 DOI: 10.1016/j.ecoenv.2025.117696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/14/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
The presence of biodegradable microplastics (BMPs) alongside toxic metals in soil significantly threatens plant health. Current research mainly focuses on the effects of original BMPs. In contrast, the specific impacts of ultraviolet (UV)-aged BMPs and their interaction with Cadmium (Cd) on seed germination and growth are unclear. Therefore, this study incubated aged polylactic acid (PLA) MPs through a UV irradiation aging process and used an indoor hydroponic experiment to systematically investigate the single and combined effects of Cd and BMPs (virgin and aged) on pakchoi (Brassica chinensis L.) germination, photosynthesis, antioxidant systems, and Cd accumulation. The results showed that after 21 days of UV irradiation (UPLA MPs), PLA MPs formed a fractured surface, demonstrating more detrimental effects on pakchoi than virgin ones. UPLA MPs and Cd alone inhibited pakchoi germination, growth, and photosynthesis, while PLA MPs alone promoted these processes. Combined treatment with Cd and UPLA MPs significantly increased oxidative damage and reduced pakchoi root length, chlorophyll, Mg, Mn, and Zn content. Under the combination of Cd and BMPs, PLA MPs could effectively alleviate the toxic effect of Cd on pakchoi. The results unraveled here emphasized that UPLA MPs, especially aged BMPs, could trigger adverse effects on agro-systems with heavy metals. Therefore, the results of this study can provide a new perspective and reference for the ecological risk evaluation of Cd and BMPs pollution in agricultural soils.
Collapse
Affiliation(s)
- Lei Sun
- College of Hydrology and Water Resources, Hohai University, Nanjing 210000, China.
| | - Ya Liu
- Yangtze Three Gorges Technology and Economy Development Co., Ltd, Beijing 100083, China.
| | - Yakun Feng
- College of Hydrology and Water Resources, Hohai University, Nanjing 210000, China.
| | - Zequn Fan
- College of Hydrology and Water Resources, Hohai University, Nanjing 210000, China.
| | - Lei Jiang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210000, China.
| | - Can Lu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210000, China.
| | - Cuiling Jiang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210000, China.
| |
Collapse
|
10
|
Vogel A, Tentschert J, Pieters R, Bennet F, Dirven H, van den Berg A, Lenssen E, Rietdijk M, Broßell D, Haase A. Towards a risk assessment framework for micro- and nanoplastic particles for human health. Part Fibre Toxicol 2024; 21:48. [PMID: 39614364 PMCID: PMC11606215 DOI: 10.1186/s12989-024-00602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Human exposure to micro- and nanoplastic particles (MNPs) is inevitable but human health risk assessment remains challenging for several reasons. MNPs are complex mixtures of particles derived from different polymer types, which may contain plenty of additives and/or contaminants. MNPs cover broad size distributions and often have irregular shapes and morphologies. Moreover, several of their properties change over time due to aging/ weathering. Case-by-case assessment of each MNP type does not seem feasible, more straightforward methodologies are needed. However, conceptual approaches for human health risk assessment are rare, reliable methods for exposure and hazard assessment are largely missing, and meaningful data is scarce. METHODS Here we reviewed the state-of-the-art concerning risk assessment of chemicals with a specific focus on polymers as well as on (nano-)particles and fibres. For this purpose, we broadly screened relevant knowledge including guidance documents, standards, scientific publications, publicly available reports. We identified several suitable concepts such as: (i) polymers of low concern (PLC), (ii) poorly soluble low toxicity particles (PSLT) and (iii) fibre pathogenicity paradigm (FPP). We also aimed to identify promising methods, which may serve as a reasonable starting point for a test strategy. RESULTS AND CONCLUSION Here, we propose a state-of-the-art modular risk assessment framework for MNPs, focusing primarily on inhalation as a key exposure route for humans that combines several integrated approaches to testing and assessment (IATAs). The framework starts with basic physicochemical characterisation (step 1), followed by assessing the potential for inhalative exposure (step 2) and includes several modules for toxicological assessment (step 3). We provide guidance on how to apply the framework and suggest suitable methods for characterization of physicochemical properties, exposure and hazard assessment. We put special emphasis on new approach methodologies (NAMs) and included grouping, where adequate. The framework has been improved in several iterative cycles by taking into account expert feedback and is currently being tested in several case studies. Overall, it can be regarded as an important step forward to tackle human health risk assessment.
Collapse
Affiliation(s)
- Amelie Vogel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jutta Tentschert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Raymond Pieters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Francesca Bennet
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Hubert Dirven
- Department of Environmental Health, Norwegian Institute of Public Health (NPIH), Oslo, Norway
| | | | - Esther Lenssen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Dirk Broßell
- Federal Institute for Occupational Safety and Health (BAuA), Berlin, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Dueñas-Moreno J, Mora A, Capparelli MV, González-Domínguez J, Mahlknecht J. Potential ecological risk assessment of microplastics in environmental compartments in Mexico: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124812. [PMID: 39182811 DOI: 10.1016/j.envpol.2024.124812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Microplastic (MP) environmental contamination has been widely studied in Mexico. However, the evaluation of the associated risk to MPs in environmental compartments is scarce. Therefore, this study addresses this issue using diverse indicators such as the Pollution Load Index (PLI), the Polymer Risk Index (PRI), and the Potential Ecological Risk Index (PERI). The results of a meta-analysis revealed high MP contamination levels in most of the studied compartments, which included marine and estuarine waters, beach sand, freshwater, sediments, and biota. Regarding the risk assessment indicators, PLIs indicated low (56%), dangerous (22%), moderate (12%), and high (10%) levels across compartments. Meanwhile, PRIs displayed concerning values, with 36%, 35%, 20%, and 9% exhibiting dangerous, high, moderate, and low levels, respectively. Thus, high PRI values emphasized the significant rise in MP pollution, largely attributed to high-hazard polymer compositions. Otherwise, PERIs showed low (56%), very dangerous (29%), moderate (6%), high (5%), and dangerous (4%) levels. Thus, the ecological risk in Mexico is widespread and mainly linked to MP abundance, polymer type, environmental matrix, and characteristics of organisms. This study represents the first attempt at MP ecological risk assessment in Mexico, providing crucial insights for developing mitigation strategies to address concerns about MP contamination.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Abrahan Mora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico.
| | - Mariana V Capparelli
- Instituto de Ciencias del Mar y Limnología, Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, 24157, Mexico
| | - Janeth González-Domínguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| |
Collapse
|
12
|
Özen EY, Canbulat Özdemir M, Hatinoğlu MD, Apul OG, İmamoğlu İ. Mechanistic inferences from empirical and LSER modeling approaches concerning sorption of organic compounds by pristine and aged PE microplastics. CHEMOSPHERE 2024; 368:143695. [PMID: 39510265 DOI: 10.1016/j.chemosphere.2024.143695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
This study investigates the effect of aging of polyethylene (PE) microplastics (MP) on its interaction with organic compounds (OCs). Initially, pristine PE MPs were subjected to UV-aging, followed by characterization of their chemical structure and thermal properties. UV-aging resulted in formation of new functional groups such as carbonyl (CO), -OH, and unsaturation, along with changes in crystallinity and melting temperature. Complimentary sorption experiments were conducted with a suite of environmentally significant and structurally related OCs i.e., phenol, 2,3,6-trichlorophenol, triclosan, 1,1,2,2-tetrachloroethane, tetrachloroethylene and hexachloroethane, using pristine and UV-aged PE MPs. In addition to the distribution coefficients (i.e., KPEW) obtained experimentally, relevant data from the literature was also gathered for the purpose of developing a poly-parametric linear free energy relationship (pp-LFER) model. Two models were developed for predicting sorption onto: (i) only UV-aged PE, yielding an R2 = 0.96, RMSE = 0.19 (n = 16), (ii) PE that has undergone various types of aging, yielding an R2 = 0.83, RMSE = 0.68 (n = 36). Lastly, a direct comparison was performed between two pp-LFERs developed for the interaction of the same OCs with pristine vs. aged PE (n = 7). In addition to the predictive strength, the system coefficients enabled mechanistic inferences to be made; such that while molecular volume or non-specific hydrophobic interactions govern OC-pristine PE interactions, polar interactions and H-bonding also play important roles for OC-aged PE interactions. Overall, findings suggested that changes of MP surfaces under environmentally relevant aging conditions indicated an impact on their interactions with OCs in the environment.
Collapse
Affiliation(s)
- Elif Yaren Özen
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| | - Melek Canbulat Özdemir
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| | | | - Onur Güven Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME, 04469, USA.
| | - İpek İmamoğlu
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
13
|
Li Y, Wang X, Zhang H, Wang Q, Cao X, Gong R, Guo J, Shan J. Tracing Microplastic Aging Processes Using Multimodal Deep Learning: A Predictive Model for Enhanced Traceability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18335-18344. [PMID: 39251361 DOI: 10.1021/acs.est.4c05022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The aging process of microplastics (MPs) affects their surface physicochemical properties, thereby influencing their behaviors in releasing harmful chemicals, adsorption of organic contaminants, sinking, and more. Understanding the aging process is crucial for evaluating MPs' environmental behaviors and risks, but tracing the aging process remains challenging. Here, we propose a multimodal deep learning model to trace typical aging factors of aged MPs based on MPs' physicochemical characteristics. A total of 1353 surface morphology images and 1353 Fourier transform infrared spectroscopy spectra were achieved from 130 aged MPs undergoing different aging processes, demonstrating that physicochemical properties of aged MPs vary from aging processes. The multimodal deep learning model achieved an accuracy of 93% in predicting the major aging factors of aged MPs. The multimodal deep learning model improves the model's accuracy by approximately 5-20% and reduces prediction bias compared to the single-modal model. In practice, the established model was performed to predict the major aging factors of naturally aged MPs collected from typical environment matrices. The prediction results aligned with the aging conditions of specific environments, as reported in previous studies. Our findings provide new insights into tracing and understanding the plastic aging process, contributing more accurately to the environmental risk assessment of aged MPs.
Collapse
Affiliation(s)
- Yunlong Li
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, Liaoning, China
| | - Xue Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, Liaoning, China
| | - Han Zhang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116081, Liaoning, China
| | - Qing Wang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116081, Liaoning, China
| | - Xun Cao
- China Unicom Online Information Technology Co., Ltd., Beijing 100032, China
| | - Rongyi Gong
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, Liaoning, China
| | - Jianli Guo
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, Liaoning, China 124000
| | - Jiajia Shan
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, Liaoning, China
| |
Collapse
|
14
|
Frescura LM, de Menezes BB, Junior RAF, Mortari SR, de Moraes Bastos AF, da Rosa MB. Polycyclic aromatic hydrocarbon derivatives onto polar microplastics of polyurethane: equilibrium, thermodynamics, and kinetics of monolayer-multilayer adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55158-55168. [PMID: 39222233 DOI: 10.1007/s11356-024-34848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The study of the adsorption of polycyclic aromatic hydrocarbons on microplastics (MPs) has attracted much attention as to how microplastics can act as carriers of these pollutants. Polyurethane (PU) is one of the MPs found in aquatic environments, containing different functional groups it can interact with polar and nonpolar molecules. PAH derivatives (dPAHs) present different properties and thus can be adsorbed by different interactions; thus, this study investigated the adsorption of fluorene (FLN), dibenzothiophene (DBT), dibenzofuran (DBF), and carbazole (CBZ) onto PU MP. The Langmuir, Freundlich, and BET isotherm models were examined, and the BET model best fitted. The adsorption was a nonspontaneous process, exothermic for mono- and multilayer formation for FLN, DBT, and CBZ, and endothermic for DBF monolayer formation. The adsorption monolayer was formed by van der Waals forces, H─bonding, and π─π interactions, while the formation of the multilayer can be explained by π─π and hydrophobic interactions. The pseudo-second-order model proved to be more consistent for the adsorption of dPAHs. The adsorption in artificial seawater shows no significant differences for the monolayer but favored the adsorption multilayer due to the salting-out effect. Due to the existence of several adsorption mechanisms, PU MP interacts with dPAHs in greater quantities when compared to a MP with a simpler structure.
Collapse
Affiliation(s)
- Lucas Mironuk Frescura
- Laboratório de Análises Químicas E Farmacêuticas (LAQUIF), Department of Chemistry, Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000‑17, Santa Maria, RS, 97105-900, Brazil
- Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Bryan Brummelhaus de Menezes
- Laboratório de Análises Químicas E Farmacêuticas (LAQUIF), Department of Chemistry, Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000‑17, Santa Maria, RS, 97105-900, Brazil
- Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Ronaldo Antunes Funari Junior
- Laboratório de Análises Químicas E Farmacêuticas (LAQUIF), Department of Chemistry, Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000‑17, Santa Maria, RS, 97105-900, Brazil
- Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Sérgio Roberto Mortari
- Programa de Pós-Graduação Em Nanociências, Universidade Franciscana - UFN, Santa Maria, Rio Grande Do Sul, Brazil
| | - Ana Flávia de Moraes Bastos
- Laboratório de Análises Químicas E Farmacêuticas (LAQUIF), Department of Chemistry, Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000‑17, Santa Maria, RS, 97105-900, Brazil
| | - Marcelo Barcellos da Rosa
- Laboratório de Análises Químicas E Farmacêuticas (LAQUIF), Department of Chemistry, Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000‑17, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
15
|
Vianna de Pinho J, Celano MR, Andrade J, Castro Cardoso De Almeida AE, Hauser-Davis RA, Conte-Junior CA, Xing B. Effects of salinity on naphthalene adsorption and toxicity of polyethylene microparticles on Artemia salina. CHEMOSPHERE 2024; 362:142718. [PMID: 38945219 DOI: 10.1016/j.chemosphere.2024.142718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Plastic pollution in aquatic ecosystems is increasing and plastic particles may adsorb and transport a diverse array of contaminants, thereby increasing their bioavailability to biota. This investigation aimed to evaluate the effects of varying polyethylene microplastics (PE MPs) and naphthalene (NAPH) concentrations on the survival and feeding rates of the model organism, Artemia salina, as well as NAPH adsorption to microplastics at different salinity levels (17, 75, 35.5 and 52.75 g L-1) under selected climate change scenarios. Survival (48 h) and feeding rates (6 h) of A. salina were also monitored, revealing that the presence of higher PE and NAPH concentrations lead to decreased survival rates while also increasing the number and size of microplastic particles in the saline solutions. Higher PE concentrations negatively affected A. salina feeding rates and NAPH concentrations were positively correlated with particle number and size, as well as with NAPH and PE adsorption rates in solution. Our findings demonstrate that the co-occurrence of microplastics and NAPH in aquatic environments can result in detrimental zooplankton survival and feeding rate effects. Furthermore, this interaction may contribute to the accumulation of these contaminants in the environment, highlighting the need to simultaneously monitor and mitigate the presence of microplastics and organic pollutants, like NAPH, in aquatic environments.
Collapse
Affiliation(s)
- Julia Vianna de Pinho
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-598, RJ, Brazil; National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, RJ, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-900, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, 21941-909, RJ, Brazil
| | - Michael Ribas Celano
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-902, Brazil
| | - Jelmir Andrade
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-598, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, 21941-909, RJ, Brazil
| | - Antonio Eugênio Castro Cardoso De Almeida
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-598, RJ, Brazil; National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, RJ, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, 21040-360, Brazil.
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-598, RJ, Brazil; National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, RJ, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-900, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, 21941-909, RJ, Brazil; Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niteroi, 24220-000, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-909, RJ, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-909, RJ, Brazil.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
16
|
Li B, Zhu C, Ouyang D, Guo T, Wu X, Cai Y, Zhang H. Impact on sulfadiazine bio-accessibility in soils through organic diffusive gradients in thin films (o-DGT): Differentiation based on microplastic polymers, aging, and soil properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173138. [PMID: 38734107 DOI: 10.1016/j.scitotenv.2024.173138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Due to the similar sources of swage irrigation, organic fertilizer, and sludge application, microplastics (MPs) and antibiotics coexist inevitably in the agriculture soils. However, the impacts of MPs with different polymer types and aging status on the bio-accessibility of co-existing antibiotics in soils remained unclear. Therefore, we using the diffusive gradients films for organic compounds devices (o-DGT) to evaluated the distribution of sulfadiazine (SDZ) in both paddy soil and saline soil amended with 0.5 % (w/w) MPs. Four polymer types (polyethylene: PE, polypropylene: PP, polyamide: PA, and polyethylene terephthalate: PET) and two aging statuses (aged PE and aged PP) of MPs were used in this study. Results showed that soil properties significantly influence the partition of SDZ in soil and soil solution, and SDZ gained a lower degradation rate but higher mobility in saline soil. MPs pose different impacts on partition of SDZ between paddy soil and saline soil. Notably, PP reduced the labile solid phase-solution phase partition coefficient (Kdl) by 17.7 % in paddy soil, while PE, PP, and aPE increased the Kdl value by 2.00, 1.62, and 2.81 times in saline soil. Besides, in saline soil, all the MPs reduced the SDZ concentration in the soil solution, while significantly increased the SDZ in o-DGT phase. Conversely, MPs did not impact the SDZ's o-DGT concentration in paddy soil. Additionally, MPs increased the R value of SDZ in two soils, especially in saline soil. It suggested that MPs could potentially enhance the resupply of SDZ from soil to plants, particularly under saline conditions. Furthermore, aged MPs had a more pronounced effect on these indicators compared to virgin MPs in saline soil. Therefore, MPs in soil poses a potential risk for biota's uptake of SDZ, particularly in fragile environment. Moreover, the risk intensifies with aged MPs.
Collapse
Affiliation(s)
- Baochen Li
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Chunli Zhu
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Da Ouyang
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ting Guo
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xiaodong Wu
- Eco-Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Yimin Cai
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Haibo Zhang
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
17
|
Xu H, Hu Z, Sun Y, Xu J, Huang L, Yao W, Yu Z, Xie Y. Microplastics supply contaminants in food chain: non-negligible threat to health safety. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:276. [PMID: 38958774 DOI: 10.1007/s10653-024-02076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
The occurrence of microplastics (MPs) and organic pollutants (OPs) residues is commonly observed in diverse environmental settings, where their interactions can potentially alter the behavior, availability, and toxicity of OPs, thereby posing risks to ecosystems. Herein, we particularly emphasize the potential for bioaccumulation and the biomagnification effect of MPs in the presence of OPs within the food chain. Despite the ongoing influx of novel information, there exists a dearth of data concerning the destiny and consequences of MPs in the context of food pollution. Further endeavors are imperative to unravel the destiny and repercussions of MPs/OPs within food ecosystems and processing procedures, aiming to gain a deeper understanding of the joint effect on human health and food quality. Nevertheless, the adsorption and desorption behavior of coexisting pollutants can be significantly influenced by MPs forming biofilms within real-world environments, including temperature, pH, and food constituents. A considerable portion of MPs tend to accumulate in the epidermis of vegetables and fruits, thus necessitating further research to comprehend the potential ramifications of MPs on the infiltration behavior of OPs on agricultural product surfaces.
Collapse
Affiliation(s)
- Hongwen Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Zhenyang Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yingying Sun
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen, 518000, China
| | - Jiang Xu
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen, 518000, China
| | - Lijun Huang
- Wuxi Food Safety Inspection and Test Center, 35-210 Changjiang South Road, Wuxi, 214142, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
18
|
Aolin H, Qin L, Zhu S, Hu X, Yin D. Combined effects of pH and dissolved organic matter on the availability of pharmaceuticals and personal care products in aqueous environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172637. [PMID: 38663604 DOI: 10.1016/j.scitotenv.2024.172637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/30/2024]
Abstract
The interaction between pharmaceuticals and personal care products (PPCPs) with dissolved organic matter (DOM) can alter their bioavailability and toxicity. Nevertheless, little is known about how pH and DOM work together to affect the availability of PPCPs. This study investigated the impact of pH and DOM on the availability of seven PPCPs, namely Carbamazepine, Estrone, Bisphenol A, Testosterone Propionate, Triclocarban, 4-tert-Octylphenol and 4-n-Nonylphenol, using negligible depletion solid-phase microextraction (nd-SPME). The uptake kinetics of PPCPs by the nd-SPME fibers increased proportionally with DOM concentrations, likely due to enhanced diffusive conductivity in the unstirred water layer. At neutral pH, the partitioning coefficients of PPCPs for Humic Acid (log KDOC 3.87-5.25) were marginally higher than those for Fulvic Acid (log KDOC 3.64-5.11). Also, the log KDOC values correlated linearly with the log DOW (pH 7.0) values of PPCPs, indicating a predominant role for hydrophobic interactions in the binding of DOM and PPCPs. Additionally, specific interactions like hydrogen bonding, π-π, and electrostatic interactions occur for certain compounds, influenced by the polarity and spatial conformation of the compounds. For these ionizable PPCPs, the log DDOC values exhibit a strong dependence on pH due to the dual influence of pH on both DOM and PPCPs. The log DDOC values rose from pH 1.0 to 3.0, peaked at pH 5.0 to 9.0, and then (sharply) declined from 11.0 to 13.0. The reasons are that in strong acidic circumstances, the coiled and compressed shape of DOM inhibits the hydrophobic interaction, whereas in strong alkaline conditions, significant electrostatic repulsion reduces the sorption. This study reveals that the effects of DOM on the bioavailability of PPCPs are dependent on both pH and the specific compound involved.
Collapse
Affiliation(s)
- Huazhi Aolin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lanxue Qin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Sihan Zhu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
19
|
Ali M, Xu D, Yang X, Hu J. Microplastics and PAHs mixed contamination: An in-depth review on the sources, co-occurrence, and fate in marine ecosystems. WATER RESEARCH 2024; 257:121622. [PMID: 38733961 DOI: 10.1016/j.watres.2024.121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024]
Abstract
Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) are toxic contaminants that have been found in marine ecosystems. This review aims to explore the sources and mechanisms of PAHs and MPs mixed contamination in marine environments. Understanding the released sources of PAHs and MPs is crucial for proposing appropriate regulations on the release of these contaminants. Additionally, the mechanisms of co-occurrence and the role of MPs in distributing PAHs in marine ecosystems were investigated in detail. Moreover, the chemical affinity between PAHs and MPs was proposed, highlighting the potential mechanisms that lead to their persistence in marine ecosystems. Moreover, we delve into the various factors influencing the co-occurrence, chemical affinity, and distribution of mixed contaminants in marine ecosystems. These factors, including environmental characteristics, MPs properties, PAHs molecular weight and hydrophobicity, and microbial interactions, were critically examined. The co-contamination raises concerns about the potential synergistic effects on their degradation and toxicity. Interesting, few studies have reported the enhanced photodegradation and biodegradation of contaminants under mixed contamination compared to their individual remediation. However, currently, the remediation strategies reported for PAHs and MPs mixed contamination are scarce and limited. While there have been some initiatives to remove PAHs and MPs individually, there is a lack of research specifically targeting the removal of mixed contaminants. This deficiency highlights the need for further investigation and the development of effective remediation approaches for the efficient remediation of PAHs and MPs from marine ecosystems.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
| | - Dong Xu
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China.
| | - Xuan Yang
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
| | - Jiangyong Hu
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China; Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Block E1A, #07-01, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
20
|
Bao X, Gu Y, Chen L, Wang Z, Pan H, Huang S, Meng Z, Chen X. Microplastics derived from plastic mulch films and their carrier function effect on the environmental risk of pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171472. [PMID: 38458459 DOI: 10.1016/j.scitotenv.2024.171472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024]
Abstract
Plastic film mulching can maintain soil water and heat conditions, promote plant growth and thus generate considerable economic benefits in agriculture. However, as they age, these plastics degrade and form microplastics (MPs). Additionally, pesticides are widely utilized to control organisms that harm plants, and they can ultimately enter and remain in the environment after use. Pesticides can also be sorbed by MPs, and the sorption kinetics and isotherms explain the three stages of pesticide sorption: rapid sorption, slow sorption and sorption equilibrium. In this process, hydrophobic and partition interactions, electrostatic interactions and valence bond interactions are the main sorption mechanisms. Additionally, small MPs, biodegradable MPs and aged conventional MPs often exhibit stronger pesticide sorption capacity. As environmental conditions change, especially in simulated biological media, pesticides can desorb from MPs. The utilization of pesticides by environmental microorganisms is the main factor controlling the degradation rate of pesticides in the presence of MPs. Pesticide sorption by MPs and size effects of MPs on pesticides are related to the internal exposure level of biological pesticides and changes in pesticide toxicity in the presence of MPs. Most studies have suggested that MPs exacerbate the toxicological effects of pesticides on sentinel species. Hence, the environmental risks of pesticides are altered by MPs and the carrier function of MPs. Based on this, research on the affinity between MPs and various pesticides should be systematically conducted. During agricultural production, pesticides should be cautiously selected and used plastic film to ensure human health and ecological security.
Collapse
Affiliation(s)
- Xin Bao
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuntong Gu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Long Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zijian Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hui Pan
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shiran Huang
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
21
|
Li T, Lan J, Wang Y, Sun L, Li Y, Zhao Z. Enhanced biotoxicity by co-exposure of aged polystyrene and ciprofloxacin: the adsorption and its influence factors. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:185. [PMID: 38695908 DOI: 10.1007/s10653-024-01961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/18/2024] [Indexed: 06/17/2024]
Abstract
Microplastics (MPs), as emerging contaminants, usually experience aging processes in natural environments and further affect their interactions with coexisted contaminants, resulting in unpredictable ecological risks. Herein, the effect of MPs aging on their adsorption for coexisting antibiotics and their joint biotoxicity have been investigated. Results showed that the adsorption capacity of aged polystyrene (PS, 100 d and 50 d) for ciprofloxacin (CIP) was 1.10-4.09 times higher than virgin PS due to the larger BET surface area and increased oxygen-containing functional groups of aged PS. Following the increased adsorption capacity of aged PS, the joint toxicity of aged PS and CIP to Shewanella Oneidensis MR-1 (MR-1) was 1.03-1.34 times higher than virgin PS and CIP. Combined with the adsorption process, CIP posed higher toxicity to MR-1 compared to aged PS due to the rapid adsorption of aged PS for CIP in the first 12 h. After that, the adsorption process tended to be gentle and hence the joint toxicity to MR-1 was gradually dominated by aged PS. A similar transformation between the adsorption rate and the joint toxicity of PS and CIP was observed under different conditions. This study supplied a novel perception of the synergistic effects of PS aging and CIP on ecological health.
Collapse
Affiliation(s)
- Tongtong Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yaoyao Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Lulu Sun
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
22
|
Zafar R, Lee YK, Li X, Hur J. Environmental condition-dependent effects of aquatic humic substances on the distribution of phenanthrene in microplastic-contaminated aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123809. [PMID: 38493869 DOI: 10.1016/j.envpol.2024.123809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Numerous studies have focused on the interaction between microplastics (MPs) and phenanthrene (PHE) in aquatic environments. However, the intricate roles of aquatic humic substances (HS), which vary with environmental conditions, in influencing PHE-MP interactions are not yet fully understood. This study investigates the variable and environmentally sensitive roles of HS in modifying the interactions between PHE and polyethylene (PE) MPs under laboratory-simulated aquatic conditions with varying solution chemistry, including pH, HS types, HS concentrations, and ionic strength. Our findings show that the presence of HS significantly reduces the adsorption of PHE onto both pristine and aged PE MPs, with a more pronounced reduction observed in aged PEs. This effect is highlighted by a notable decrease in the partitioning coefficient (Kd) of PHE, which falls from 2.60 × 104 to 1.30 × 104 L/kg on MPs in the presence of HS. The study also demonstrates that alterations in the net charge of HS solutions are crucial in modifying PHE distribution onto PEs. An initial decrease in Kd values at higher pH levels is reversed when HS is introduced. Furthermore, an increase in HS concentrations is associated with lower Kd values. In conditions of higher ionic strength, the retention of PHE by HS is intensified, likely due to an enhanced salting-out effect. This research highlights the significant role of aquatic HS in modulating the distribution of PHE in MP-polluted waters, which is highly influenced by various solution chemistry factors. The findings are vital for understanding the fate of PHE in MP-contaminated aquatic environments and can contribute to refining predictive models that consider diverse solution chemistry scenarios.
Collapse
Affiliation(s)
- Rabia Zafar
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Yun Kyung Lee
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
23
|
Wang J, Tao J, Wu M, Sun Y, Su Y, Guo X, Du X, Li J, Gan J. Size-dependent vector effects of microplastics on bioaccumulation of hydrophobic organic contaminants in earthworm: A dual-dosing study. ENVIRONMENT INTERNATIONAL 2024; 186:108625. [PMID: 38593690 DOI: 10.1016/j.envint.2024.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/29/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
The potential of microplastics to act as a vector for anthropogenic contaminants is of rising concern. However, directly quantitatively determining the vector effects of microplastics has been rarely studied. Here, we present a dual-dosing method that simulates the chemical bioaccumulation from soil and microplastics simultaneously, wherein unlabeled hydrophobic organic contaminants (HOCs) were spiked in the soil and their respective isotope-labeled reference compounds were spiked on the polyethylene microplastics. The comparison of the bioavailability, i.e., the freely dissolved concentration in soil porewater and bioaccumulation by earthworm, between the unlabeled and isotope-labeled HOCs was carried out. Relatively higher level of bioavailability of the isotope-labeled HOCs was observed compared to the unlabeled HOCs, which may be attributed to the irreversible desorption of HOCs from soil particles. The average relative fractions of bioaccumulated isotope-labeled HOCs in the soil treated with 1 % microplastics ranged from 6.9 % to 46.4 %, which were higher than those in the soil treated with 0.1 % microplastics. Treatments with the smallest microplastic particles were observed to have the highest relative fractions of bioaccumulated isotope-labeled HOCs, with the exception of phenanthrene, suggesting greater vector effects of smaller microplastic particles. Biodynamic model analysis indicated that the contribution of dermal uptake to the bioaccumulation of isotope-labeled HOCs was higher than that for unlabeled HOCs. This proposed method can be used as a tool to assess the prospective vector effects of microplastics in complex environmental conditions and would enhance the comprehensive understanding of the microplastic vector effects for HOC bioaccumulation.
Collapse
Affiliation(s)
- Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Jianguo Tao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mochen Wu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanze Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Su
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyu Du
- Collage of Maine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Li
- State Key Laboratory of Biogeology and Environmental Geology, School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
24
|
Fan X, Cao B, Wang S, Li H, Zhu M, Sha H, Yang Y. Effects of tire-road wear particles on the adsorption of tetracycline by aquatic sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29232-29245. [PMID: 38573573 DOI: 10.1007/s11356-024-33132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Tire-road wear particles (TRWPs) are formed by friction between the tire and the road. TRWPs are ubiquitous across the globe, especially in sediments. However, the possible effects of TRWPs on tetracycline (TC) in aquatic sediments are unknown. To investigate the potential role of TRWPs as carriers of co-pollutants, this study investigated the pore surface properties and TC adsorption behavior of TRWP-contaminated sediments and explored the TC behavior in water sediments, as well as the role of aging processes and TRWPs abundance. The results showed that the surface morphology of TRWP-contaminated sediments changed and the adsorption capacity of sediments to TC increased. The TC adsorption capacity of sediments contaminated by 2% TRWPs increased from 3.15 to 3.48 mg/g. Moreover, the surface physical and chemical properties of TRWPs after UV aging changed, which further increased the TC adsorption capacity. The TC adsorption capacity of the sediments contaminated by aged TRWPs increased from 3.48 to 3.65 mg/g. Changing the proportion of aged TRWPs, we found that the adsorption capacity of sediments contaminated by different proportions of TRWPs for TC was 2% > 1% > 0.5% > 4% > blank sediment. These results may contribute to predicting the potential environmental risks of TRWPs in aquatic sediments.
Collapse
Affiliation(s)
- Xiulei Fan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Binwen Cao
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Shenpeng Wang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Huixian Li
- Xuzhou River and Lake Management Center, Xuzhou, China
| | - Mingxian Zhu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Haidi Sha
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Yangyang Yang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China.
| |
Collapse
|
25
|
Kong X, Zhou A, Chen X, Cheng X, Lai Y, Li C, Ji Q, Ji Q, Kong J, Ding Y, Zhu F, He H. Insight into the adsorption behaviors and bioaccessibility of three altered microplastics through three types of advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170420. [PMID: 38301781 DOI: 10.1016/j.scitotenv.2024.170420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Advanced oxidation processes (AOPs) can significantly alter the structural properties, environmental behaviors and human exposure level of microplastics in aquatic environments. Three typical microplastics (Polyethylene (PE), polypropylene (PP), and polystyrene (PS)) and three AOPs (Heat-K2S2O8 (PDS), UV-H2O2, UV-peracetic acid (PAA)) were adopted to simulate the process when microplastics exposed to the sewage disposal system. 2-Nitrofluorene (2-NFlu) adsorption experiments found the equilibrium time decreased to 24 hours and the capacity increased up to 610 μg g-1, which means the adsorption efficiency has been greatly improved. The fitting results indicate the adsorption mechanism shifted from the partition dominant on pristine microplastic to the physical adsorption (pore filling) dominant. The alteration of specific surface area (21 to 152 m2 g-1), pore volume (0.003 to 0.148 cm3 g-1) and the particle size (123 to 16 μm) of microplastics after AOPs are implying the improvement for pore filling. Besides, the investigation of bioaccessibility is more complex, AOPs alter microplastic with more oxygen-containing functional groups and lower hydrophobicity detected by XPS and water contact angle, those modifications have increased the sorption concentration, especially in the human intestinal tract. Therefore, this indicates the actual exposure of organic compounds loaded in microplastic may be higher than in the pristine microplastic. This study can help to assess the human health risk of microplastic pollution in actual environments.
Collapse
Affiliation(s)
- Xiangcheng Kong
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China; School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Aoyu Zhou
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Xianxian Chen
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Yuqi Lai
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Chao Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Qiuyi Ji
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Qingsong Ji
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Jijie Kong
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Yuan Ding
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Fengxiao Zhu
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, Fujian 354300, PR China.
| |
Collapse
|
26
|
Athulya PA, Waychal Y, Rodriguez-Seijo A, Devalla S, Doss CGP, Chandrasekaran N. Microplastic interactions in the agroecosystems: methodological advances and limitations in quantifying microplastics from agricultural soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:85. [PMID: 38367078 DOI: 10.1007/s10653-023-01800-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/17/2023] [Indexed: 02/19/2024]
Abstract
The instantaneous growth of the world population is intensifying the pressure on the agricultural sector. On the other hand, the critical climate changes and increasing load of pollutants in the soil are imposing formidable challenges on agroecosystems, affecting productivity and quality of the crops. Microplastics are among the most prevalent pollutants that have already invaded all terrestrial and aquatic zones. The increasing microplastic concentration in soil critically impacts crop plants growth and yield. The current review elaborates on the behaviors of microplastics in soil and their impact on soil quality and plant growth. The study shows that microplastics alter the soil's biophysical properties, including water-holding capacity, bulk density, aeration, texture, and microbial composition. In addition, microplastics interact with multiple pollutants, such as polyaromatic hydrocarbons and heavy metals, making them more bioavailable to crop plants. The study also provides a detailed insight into the current techniques available for the isolation and identification of soil microplastics, providing solutions to some of the critical challenges faced and highlighting the research gaps. In our study, we have taken a holistic, comprehensive approach by analysing and comparing various interconnected aspects to provide a deeper understanding of all research perspectives on microplastics in agroecosystems.
Collapse
Affiliation(s)
| | - Yojana Waychal
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Andres Rodriguez-Seijo
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas S/N, 32004, Ourense, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo-Campus Auga, 32004, Ourense, Spain
| | - Sandhya Devalla
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - C George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
27
|
Zuo C, Li Y, Chen Y, Jiang J, Qiu W, Chen Q. Leaching of heavy metals from polyester microplastic fibers and the potential risks in simulated real-world scenarios. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132639. [PMID: 37778306 DOI: 10.1016/j.jhazmat.2023.132639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Heavy metals have been incorporated as additives into synthetic textiles to enhance their functional properties. However, these fibers are susceptible to shedding due to mechanical wear, and the release of heavy metals from microplastic fibers (MFs) remains largely uncharacterized. Therefore, this study sought to quantify the levels of heavy metals in textiles, evaluate their leaching capabilities under various scenarios, and ultimately assess the potential health risks associated with MFs ingestion. First, we determined the metal content in eight commonly used polyester textiles. Subsequently, we estimated the metal leaching capacities of specific MFs sourced from carpets, curtains, sweaters, and scarves in freshwater, human saliva, human lung fluid, and fish gastric fluid at distinct time intervals. The results indicated that carpets contained the highest amount of total metals, with a concentration of 218 ± 8 mg/kg. Ultraviolet weathering, coupled with longer exposure durations, led to surface coarsening of MFs, which may be the primary reason for the enhanced leaching of metals in freshwater. Furthermore, our findings revealed that carbonyl index was unsuitable for characterizing aging because polyester inherently contains carbonyl groups. Instead, the O/C ratio emerged as a more suitable indicator. The leached concentrations and percentages of metals from MFs exhibited the following order in biofluids: Sb>Mn>Cr and Cr>Mn>Pb in biofluids, respectively. Finally, the estimated daily intake of metals was significantly below the tolerable thresholds (0.0014-0.14 mg/kg/d for fish and 0.0036-1.0 mg/kg/d for humans), indicating a negligible risk of heavy metal exposure through MFs for both fish and humans. ENVIRONMENTAL IMPLICATION: In recent years, the ecological risks posed by heavy metal contaminants loaded onto microplastic fibers have become an increasing concern. Therefore, our study sought to characterize the accumulation of heavy metals on plastic fabrics and the potential for these loaded heavy metals to be released when microplastic fibers originating from these fabrics enter freshwater environments and interact with organisms. This vector-like behavior underscores the importance of investigating the ecological hazards associated with microplastic fibers carrying contaminants in both environmental and organismal contexts.
Collapse
Affiliation(s)
- Chencheng Zuo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yue Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yuye Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai 200241, China.
| |
Collapse
|
28
|
Pan J, Zhang Q, Zhang K, Zhang Z, Guo X. Occurrence of microplastics in agricultural soils in ecologically fragile areas of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166350. [PMID: 37591376 DOI: 10.1016/j.scitotenv.2023.166350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023]
Abstract
The pollution caused by microplastics (MPs), an emerging pollutant, has been receiving continuous concern. However, the distribution characteristics of MPs in ecologically fragile areas (EFAs), which are sensitive to environmental change and pollution, are still unclear. Here, the abundance and pollution characteristics of MPs in agricultural soils in four typical EFAs in China, namely semiarid farming-pastoral area (SFPA), desert-oasis interlaced area (DOIA), plateau composite erosion area (PCEA) and southwest karst area (SWKA) were investigated. MPs were detected in all agricultural soil samples with a mean abundance of 2685 ± 938 n/kg. DOIA (3193 ± 630 n/kg) had the largest abundance of MPs in agricultural soils, followed by SWKA (2948 ± 819 n/kg), SFPA (2920 ± 935 n/kg), and PCEA (1680 ± 320 n/kg). MPs in four EFAs were mostly small size (0-0.49 mm), accounted for 81.71 %. Fragmented and pelleted MPs were the main shapes, occupying for 51.26 % and 28.53 %, respectively. In addition, Fourier transform infrared (FTIR) was applied to determine the polymer types of MPs and to assess the pollution risk of MPs, which ranged from 157 to 938, indicating a moderate to high risk. The results revealed that EFAs located in remote inland areas were considerably polluted by MPs, close to the developed coastal areas. This study provided systematic data on MPs pollution of EFAs, which is crucial in preventing further environmental degradation and promoting ecological restoration.
Collapse
Affiliation(s)
- Jianrui Pan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qi Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiyue Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenming Zhang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550003, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
29
|
Frescura LM, Funari Junior RA, Brummelhaus de Menezes B, Flávia de Moraes Bastos A, Barcellos da Rosa M. Interaction of fluorene and its analogs with high-density polyethylene microplastics: An assessment of the adsorption mechanism to establish the effects of heteroatoms in the molecule. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122573. [PMID: 37722476 DOI: 10.1016/j.envpol.2023.122573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The threat of microplastics (MP) pollution in aquatic ecosystems can be even more severe for they are able to interact with organic pollutants that can migrate to adjacent environments. The presence of heteroatoms in organic pollutants can directly influence adsorption onto MP. This research evaluated the adsorption of fluorene (FLN) and its heteroatom analogs dibenzothiophene (DBT), dibenzofuran (DBF) and carbazole (CBZ) onto high-density polyethylene (HDPE) MP from residual (HDPEres) and commercial (HDPEcom) sources. The Langmuir isotherm showed a better fit, while DBT showed higher maximum adsorption capacity (19.2 and 15.8 μmol g-1) followed by FLN (13.4 and 11.7 μmol g-1), and DBF (13.5 and 10.3 μmol g-1) to the HDPEcom and HDPEres, respectively, which indicates a direct correlation with the hydrophobicity of the molecules determined by Log Kow. In contrast, CBZ showed no significant interaction with MP, due to their polar characteristic, thus, no kinetic and thermodynamic parameters could be determined. The adsorption process of all PAH was determined to be exothermic and spontaneous, with low temperatures favoring the process. The pseudo-second-order kinetic models have fitted to the adsorption onto both HDPE; intraparticle diffusion was also observed. Computational studies, physical characterization techniques and batch adsorption experiments demonstrated that the mechanism is governed by hydrophobic interactions, with van der Waals forces as a secondary effect in the adsorption of FLN, DBT and DBF onto HDPEres and HDPEcom. Thus, allowing a deeper understanding of the interactions between HDPE MP and FLN as well with its derivatives.
Collapse
Affiliation(s)
- Lucas Mironuk Frescura
- Universidade Federal de Santa Maria - UFSM, Department of Chemistry, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Ronaldo Antunes Funari Junior
- Universidade Federal de Santa Maria - UFSM, Department of Chemistry, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Bryan Brummelhaus de Menezes
- Universidade Federal de Santa Maria - UFSM, Department of Chemistry, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Ana Flávia de Moraes Bastos
- Universidade Federal de Santa Maria - UFSM, Department of Chemistry, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Marcelo Barcellos da Rosa
- Universidade Federal de Santa Maria - UFSM, Department of Chemistry, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
30
|
Kılıç Ö, Belivermiş M, Sıkdokur E, Sezer N, Aksüt Y, Pekmez M, Kösesakal T, Gerçek YC. The combined effects of polyethylene microplastics and benzoanthracene on Manila clam Ruditapes philippinarum. CHEMOSPHERE 2023; 329:138664. [PMID: 37044146 DOI: 10.1016/j.chemosphere.2023.138664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/19/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Microplastic (MP) toxicity has recently been explored in various marine species. Along with the toxicity of plastics polymer itself, additional substances or pollutants that are absorbed onto it may also be harmful. In the present study, we investigated the combined impacts of polyethylene microplastics (PE MPs) and an organic pollutant (Benzo(a)anthracene, BaA) on Manila clam Ruditapes philippinarum during a one-week exposure. Two PE MPs concentrations (26 μg L-1 and 260 μg L-1) and one BaA concentration (3 μg L-1) were tested. The clams were exposed to BaA and PE MPs either alone or in combination. BaA and PE MPs were incubated before the combined exposure. The biological effects of PE MPs and BaA on the clams were evaluated by considering several assays such as feeding rate, anti-oxidant enzyme activities, and the expression levels of stress-related genes. The feeding rate significantly decreased in individual PE MPs and individual BaA groups while it remained unchanged in combined groups. Superoxide dismutase (SOD) was the most affected among the biochemical parameters. Malondialdehyde (MDA), and glutathione peroxidase (GPx) activities were slightly affected, whereas no changes were observed in glutathione s-transferase (GST) activities. CYP1A1, CYP3A4, and HSP70 gene expressions displayed slightly significant changes. Considering all stressor groups, high PE MPs exposure (260 μg L-1 PE MPs) more effectively altered the biological parameters in the clams compared to individual low PE MPs and BaA exposure, and their combination. The results also indicated the negligible vector role of PE MPs to transport BaA into the clam tissues.
Collapse
Affiliation(s)
- Önder Kılıç
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Türkiye.
| | - Murat Belivermiş
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Türkiye
| | - Ercan Sıkdokur
- Department of Molecular Biology and Genetics, Koç University, 34450, Istanbul, Türkiye
| | - Narin Sezer
- Head of Medical Services and Techniques Department, Medical Laboratory Techniques Program, Istanbul Arel University, 34295, Sefaköy, Istanbul, Türkiye
| | - Yunus Aksüt
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul, Türkiye
| | - Murat Pekmez
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Türkiye
| | - Taylan Kösesakal
- Botany Division, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Türkiye
| | - Yusuf Can Gerçek
- Botany Division, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Türkiye
| |
Collapse
|
31
|
Zhang Y, Chen Z, Shi Y, Ma Q, Mao H, Li Y, Wang H, Zhang Y. Revealing the sorption mechanisms of carbamazepine on pristine and aged microplastics with extended DLVO theory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162480. [PMID: 36858211 DOI: 10.1016/j.scitotenv.2023.162480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The co-occurrence of microplastics (MPs) and organic contaminants in aquatic environment can complexify their environmental fate via sorption interactions, especially when the properties of MPs can even vary due to the aging effect. Thus, quantitatively clarifying the sorption mechanisms is required to understand their environmental impacts. This study selected popularly occurring carbamazepine (CBZ) and four types of MPs as model systems, including polyethylene, polyvinyl chloride, polyethylene terephthalate and polystyrene in their pristine and aged forms, to investigate the sorption isotherms, kinetics, and desorption. The variation of MPs during the aging process were analyzed with scanning electron microscopy, contact angle, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. It was found that the aging process elevated the sorption capacity and intensified the desorption hysteresis of CBZ on MPs via increasing the surface roughness, decreasing the particle size, and altering the surficial chemistry of all MPs. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory was innovatively applied hereby to calculate the interfacial free energies and revealed that the hydrophobic interaction was significantly lessened after aging for all MPs with the slightly enhanced van der Waals interaction. Then the total interfacial free energies were dropped down for all MPs, which resulted in their declined specific sorption capacity. This work reveals the sorption mechanisms of CBZ on pristine and aged MPs with XDLVO and provides a useful reference to study the sorption of other neutral organics onto MPs.
Collapse
Affiliation(s)
- Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Zihao Chen
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Yuexiao Shi
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Qing Ma
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Haoran Mao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Ying Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Hao Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China.
| |
Collapse
|
32
|
Bao ZZ, Lu SQ, Wang G, Cai Z, Chen ZF. Adsorption of 2-hydroxynaphthalene, naphthalene, phenanthrene, and pyrene by polyvinyl chloride microplastics in water and their bioaccessibility under in vitro human gastrointestinal system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162157. [PMID: 36775174 DOI: 10.1016/j.scitotenv.2023.162157] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The interaction of microplastics (MPs) and organic pollutants has recently become a focus of investigation. To understand how microplastic residues affect the migration of organic pollutants, it is necessary to examine the adsorption and desorption behavior of organic pollutants on MPs. In this study, integrated adsorption/desorption experiments and theoretical calculations were used to clarify the adsorption mechanism of 2-hydroxynaphthalene (2-OHN), naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) by polyvinyl chloride microplastics (PVC-MPs). Based on the phenomenological mathematical models, the rate-limiting step for analyte adsorption onto PVC-MPs was adsorption onto active sites (R2 = 0.865-0.995). Except for PHE, analyte adsorption isotherms were well described by the Freundlich model (R2 = 0.992-0.998), and adsorption thermodynamics showed that analyte adsorption on PVC-MPs was a spontaneous exothermic process (ΔH0 < 0; ΔG0 < 0). Based on the order of adsorption efficiency of 2-OHN < NAP < PHE < PYR, which is identical to the competitive adsorption experiment, polycyclic aromatic hydrocarbon (PAH) adsorption on PVC-MPs increased as the aromatic ring number increased and the hydroxyl content decreased. The release of 2-OHN (49 %-52 %) from PVC-MPs into the simulated gastrointestinal environment was greater than that of NAP (5.5 %-5.7 %). Theoretical calculations and adsorption tests indicated that hydrophobic interaction was the primary influence on the adsorption of PAHs and their hydroxylated derivatives by PVC-MPs. These findings improve our understanding of MPs' behavior and dangers as pollutant carriers in the aquatic environment and help us develop recommendations for the pollution control of MPs.
Collapse
Affiliation(s)
- Zhen-Zong Bao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Si-Qi Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangzhao Wang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
33
|
Duan L, Qin Y, Meng X, Liu Y, Zhang T, Chen W. Sulfide- and UV-induced aging differentially affect contaminant-binding properties of microplastics derived from commercial plastic products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161800. [PMID: 36708829 DOI: 10.1016/j.scitotenv.2023.161800] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Microplastics in the environments can undergo various aging processes that alter their physicochemical properties and consequently their affinities for environmental contaminants. Here, we compare the effects of sulfide-induced aging (a common process in anoxic environments) and UV-induced aging on contaminant binding of polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET) microplastics derived from commercial plastic products. The two aging processes differentially affect adsorption of pyrene (a model nonionic, nonpolar organic) and ciprofloxacin (CIP, a zwitterion under the conditions tested) by modulating the hydrophobicity, surface charges and polarity of the microplastics to different extents. The effects of the two treatments on Cd(II) adsorption correlate well with their modulation on ζ potential and surface (O + S)/C ratio of the microplastics. For all three microplastics sulfide treatment results in stronger adsorption of Cr(VI) and its subsequent conversion to Cr(III) than does UV treatment, as the thiol groups formed during sulfide treatment strongly regulate the complexation and reduction of Cr(VI). Notably, both sulfide and UV treatments result in the flattening of the PET microplastics, significantly enhancing the adsorption of all four contaminants, by increasing surface area for adsorption. The findings of this study further underline the importance of understanding environmental aging/weathering processes of microplastics, particularly, those readily occur in anoxic environments but were previously not well studied.
Collapse
Affiliation(s)
- Lin Duan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Yiyuan Qin
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Xin Meng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China.
| |
Collapse
|
34
|
Sun Y, Peng BY, Wang X, Li Y, Wang Y, Zhang Y, Xia S, Zhao J. Adsorption and desorption mechanisms of oxytetracycline on poly(butylene adipate-co-terephthalate) microplastics after degradation: The effects of biofilms, Cu(II), water pH, and dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160866. [PMID: 36526173 DOI: 10.1016/j.scitotenv.2022.160866] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
As the application of biodegradable polymers has grown, so has the interest in exploring the environmental behaviors of biodegradable microplastics (MPs). In this study, we investigated the interaction of oxytetracycline (OTC) with poly(butylene adipate-co-terephthalate) (PBAT) MPs after biodegradation, and explored the effect of the coexisting Cu(II) on OTC adsorption and desorption processes. The maximum adsorption amounts of virgin PBAT, biofilm PBAT, and degraded PBAT reached 692.05 μg·g-1, 1396.21 μg·g-1, and 1869.93 μg·g-1, respectively, and the presence of Cu(II) increased the OTC adsorption capacities by 431.16 %, 165.99 %, and 132.94 %, respectively. The enhanced adsorption capacities were attributed to the formation of PBAT-Cu-OTC complexes. The remarkable desorption hysteresis of OTC was observed on the degraded PBAT but not on the biofilm PBAT when Cu(II) was present, due to the complexation between Cu(II) and biofilms. The effect of Cu(II) varied depending on the MP physiochemical properties (e.g., surface areas, zeta potentials, and functional groups) and the environmental factors (e.g., the solution pH and coexisting dissolved organic matter). Fourier transform infrared spectroscopy (FTIR) coupled with X-ray photoelectron spectroscopy (XPS) identified the Cu(II) bridging effect, and various interaction forces between PBAT and OTC, including hydrogen-bonding, π-π, cation-π, and electrostatic interactions.
Collapse
Affiliation(s)
- Ying Sun
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bo-Yu Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xuejiang Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yuan Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuan Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Yanan Zhang
- College of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Siqing Xia
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jianfu Zhao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
35
|
Yu Y, Xie D, Yang Y, Tan S, Li H, Dang Y, Xiang M, Chen H. Carboxyl-modified polystyrene microplastics induces neurotoxicity by affecting dopamine, glutamate, serotonin, and GABA neurotransmission in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130543. [PMID: 36493651 DOI: 10.1016/j.jhazmat.2022.130543] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are ubiquitous in various environmental media and have potential toxicity. However, the neurotoxicity of carboxyl-modified polystyrene microplastics (PS-COOH) and their mechanisms remain unclear. In this study, Caenorhabditis elegans was used as a model to examine the neurotoxicity of polystyrene microplastic (PS) and PS-COOH concentrations ranging from 0.1 to 100 μg/L. Locomotion behavior, neuron development, neurotransmitter level, and neurotransmitter-related gene expression were selected as assessment endpoints. Exposure to low concentrations (1 μg/L) of PS-COOH caused more severe neurotoxicity than exposure to pristine PS. In transgenic nematodes, exposure to PS-COOH at 10-100 μg/L significantly increased the fluorescence intensity of dopaminergic, glutamatergic, serotonergic, and aminobutyric acid (GABA)ergic neurons compared to that of the control. Further studies showed that exposure to 100 μg/L PS-COOH can significantly affect the levels of glutamate, serotonin, dopamine, and GABA in nematodes. Likewise, in the present study, the expression of genes involved in neurotransmission was altered in worms. These results suggest that PS-COOH exerts neurotoxicity by affecting neurotransmission of dopamine, glutamate, serotonin, and GABA. This study provides new insights into the underlying mechanisms and potential risks associated with PS-COOH.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Dongli Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Yue Yang
- Xi 'an Jiaotong University Second Affiliated Hospital, Xi 'an 710004, China
| | - Shihui Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Liaoning 110122, China
| | - Hongyan Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
36
|
Pasqualini V, Garrido M, Cecchi P, Connès C, Couté A, El Rakwe M, Henry M, Hervio-Heath D, Quilichini Y, Simonnet J, Rinnert E, Vitré T, Galgani F. Harmful algae and pathogens on plastics in three mediterranean coastal lagoons. Heliyon 2023; 9:e13654. [PMID: 36895393 PMCID: PMC9988496 DOI: 10.1016/j.heliyon.2023.e13654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/27/2023] Open
Abstract
Plastic is now a pervasive pollutant in all marine ecosystems. The microplastics and macroplastic debris were studied in three French Mediterranean coastal lagoons (Prevost, Biguglia and Diana lagoons), displaying different environmental characteristics. In addition, biofilm samples were analyzed over the seasons to quantify and identify microalgae communities colonizing macroplastics, and determine potentially harmful microorganisms. Results indicate low but highly variable concentrations of microplastics, in relation to the period and location of sampling. Micro-Raman spectroscopy analyses revealed that the majority of macroplastic debris corresponded to polyethylene (PE) and low-density polyethylene (LDPE), and to a far lesser extent to polypropylene (PP). The observations by Scanning Electron Microscopy of microalgae communities colonizing macroplastic debris demonstrated differences depending on the seasons, with higher amounts in spring and summer, but without any variation between lagoons and polymers. Among the Diatomophyceae, the most dominant genera were Amphora spp., Cocconeis spp., and Navicula spp.. Cyanobacteria and Dinophyceae such as Prorocentrum cordatum, a potentially toxic species, were also found sporadically. The use of Primer specific DNA amplification tools enabled us to detect potentially harmful microorganisms colonizing plastics, such as Alexandrium minutum or Vibrio spp. An additional in situ experiment performed over one year revealed an increase in the diversity of colonizing microalgae in relation to the duration of immersion for the three tested polymers PE, LDPE and polyethylene terephthalates (PET). Vibrio settled durably after two weeks of immersion, whatever the polymer. This study confirms that Mediterranean coastal lagoons are vulnerable to the presence of macroplastic debris that may passively host and transport various species, including some potentially harmful algal and bacterial microorganisms.
Collapse
Affiliation(s)
- Vanina Pasqualini
- UMR SPE CNRS - UMS Stella Mare CNRS, University of Corsica, BP 52, 20250, Corte, France
| | - Marie Garrido
- Environmental Agency of Corsica, 7 Avenue Jean Nicoli, 20250, Corte, France
| | - Philippe Cecchi
- UMR MARBEC, IRD CNRS IFREMER, University of Montpellier, CC093, 34095, Montpellier Cedex 5, France
| | - Coralie Connès
- IFREMER, Laboratoire Environnement Ressources Provence-Azur-Corse (LER/PAC), Station de Bastia, Zone Industrielle de Furiani, 20600, Bastia, France
| | - Alain Couté
- Muséum National d'Histoire Naturelle, Département RDDM, FRE 3206, USM 505, 57 rue Cuvier, 75005, Paris, France
| | - Maria El Rakwe
- IFREMER, Laboratoire Détection, Capteurs et Mesures (LDCM), Centre Bretagne, ZI de la Pointe du Diable, CS 10070, 29280, Plouzané, France
| | - Maryvonne Henry
- IFREMER, Laboratoire Environnement Ressources Provence-Azur-Corse (LER/PAC), Station de Toulon, Zone Portuaire de Brégaillon, CS 20330, 83507, La Seyne sur Mer, France
| | - Dominique Hervio-Heath
- IFREMER, Laboratoire Adaptation, Reproduction et Nutrition des Poissons (LARN), Centre Bretagne, ZI de la Pointe du Diable, CS 10070, 29280, Plouzané, France
| | - Yann Quilichini
- UMR SPE CNRS - UMS Stella Mare CNRS, University of Corsica, BP 52, 20250, Corte, France
| | - Jérémy Simonnet
- IFREMER, Laboratoire Santé, Environnement et Microbiologie (LSEM), Centre Bretagne, ZI de la Pointe du Diable, CS 10070, 29280, Plouzané, France
| | - Emmanuel Rinnert
- IFREMER, Laboratoire Cycle Géochimique et Ressources (LCG), Centre Bretagne, ZI de la Pointe du Diable, CS 10070, 29280, Plouzané, France
| | - Thomas Vitré
- IFREMER, Laboratoire Adaptation, Reproduction et Nutrition des Poissons (LARN), Centre Bretagne, ZI de la Pointe du Diable, CS 10070, 29280, Plouzané, France
| | - François Galgani
- IFREMER, Laboratoire Environnement Ressources Provence-Azur-Corse (LER/PAC), Station de Bastia, Zone Industrielle de Furiani, 20600, Bastia, France
| |
Collapse
|
37
|
Wang Y, Zhang M, Ding G, Shi H, Cong Y, Li Z, Wang J. Polystyrene microplastics alleviate adverse effects of benzo[a]pyrene on tissues and cells of the marine mussel, Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106430. [PMID: 36812700 DOI: 10.1016/j.aquatox.2023.106430] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
As two major ubiquitous pollutants, microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) coexist in the marine environment. However, the role of MPs in altering the toxicity of PAHs to marine organisms is poorly understood. We therefore investigated the accumulation and toxicity of benzo[a]pyrene (B[a]P, 0.4 nM), in the marine mussel Mytilus galloprovincialis over a 4-day of exposure with or without the presence of 10 μm polystyrene microplastics (PS MPs) (10 particles/mL). The presence of PS MPs significantly decreased B[a]P accumulation in soft tissues of M. galloprovincialis by approximately 6.7%. Single exposure of PS MPs or B[a]P decreased the mean epithelial thickness (MET) of digestive tubules and enhanced reactive oxygen species (ROS) levels in haemolymph, while upon co-exposure the adverse impacts were alleviated. Real-time q-PCR results showed that most selected genes involved in stress response (FKBP, HSP90), immune (MyD88a, NF-κB) and detoxification (CYP4Y1) were induced for both single exposure and co-exposure. The co-presence of PS MPs down-regulated the mRNA expression of NF-κB in gills compared with of B[a]P alone. The uptake and toxicity reductions of B[a]P might result from the decrease of its bioavailable concentrations caused by the adsorption of B[a]P by PS MPs and the strong affinity of B[a]P to PS MPs. Adverse outcomes for the co-existence of marine emerging pollutants under long-term conditions remain to be further validated.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory for Ecological Environment in Coastal Areas, Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Mingxing Zhang
- Key Laboratory for Ecological Environment in Coastal Areas, Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yi Cong
- Key Laboratory for Ecological Environment in Coastal Areas, Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zhaochuan Li
- Key Laboratory for Ecological Environment in Coastal Areas, Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Juying Wang
- Key Laboratory for Ecological Environment in Coastal Areas, Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China.
| |
Collapse
|
38
|
Avazzadeh Samani F, Meunier L. Interactions of microplastics with contaminants in freshwater systems: a review of characteristics, bioaccessibility, and environmental factors affecting sorption. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:222-235. [PMID: 36803513 DOI: 10.1080/10934529.2023.2177458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs), plastic particles of 1 nm to <5 mm, have been identified in the atmosphere, soil, and aquatic environments across the globe. MPs may act as vectors to transport environmental contaminants to sensitive receptors, including humans. In this review, the capability of MPs to sorb persistent organic pollutants (POPs) and metals is investigated, along with how sorption is affected by factors, such as pH, salinity, and temperature. Sensitive receptors may take up MPs through incidental ingestion. In the gastrointestinal tract (GIT), contaminants may desorb from MPs, and this desorbed portion is then considered bioaccessible. Understanding the sorption and bioaccessibility of such contaminants is important in determining potential risks of exposure to MPs. Thus, a review is presented on the bioaccessibility of contaminants sorbed to MPs in the human and avian GIT s. The current state of knowledge on MP-contaminant interactions in freshwater systems is limited; these interactions can differ considerably from those in marine environments. The bioaccessibility of contaminants sorbed to MPs can vary significantly, from near zero to 100%, depending on MP type, contaminant characteristics, and the digestive phase. Further research is needed to characterize the bioaccessibility and the potential risks, especially for POPs associated with MPs.
Collapse
Affiliation(s)
| | - Louise Meunier
- Department of Chemical Engineering, Queen's University, Kingston, Canada
| |
Collapse
|
39
|
Wang L, Zhang J, Huang W, He Y. Laboratory simulated aging methods, mechanisms and characteristic changes of microplastics: A review. CHEMOSPHERE 2023; 315:137744. [PMID: 36626952 DOI: 10.1016/j.chemosphere.2023.137744] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) aging occurs in all environmental medias and affects the environmental behaviour and toxicity of MPs. Due to the extremely slow process of aging, laboratory simulated aging methods have had to be used to research the properties, behaviour, toxicity and effects of aged MPs. However, multiple laboratory aging methods with different mechanisms have led to divergent viewpoints on the characteristics, behavior and toxicity of aged MPs. Therefore, this paper reviewed the main laboratory MPs aging methods and mechanism, including those that involve UV, advanced oxidation processes (AOPs), sunlight or simulated sunlight, chemical treatment, heat, plasma radiation, etc. As a technology with a low time cost, AOPs have potential and are recommended. Physical, chemical, and coupled aging significantly alter MPs surface topography and functional groups, which affect MPs adsorption, migration and toxicity. However, the effects of aging on environmental behaviour and toxicity are highly uncertain. The carbonyl index (CI) and O/C ratio are generally applied to evaluate the MPs aging degree. This review highlights the need to provide adequate information on coupled simulated aging methods to allow better elucidation of the underlying mechanisms of aging and its effect on MPs environmental behaviour and toxicity.
Collapse
Affiliation(s)
- Lin Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianqiang Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wen Huang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yang He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
40
|
Yu Y, Ding Y, Zhou C, Ge S. Aging of polylactic acid microplastics during hydrothermal treatment of sewage sludge and its effects on heavy metals adsorption. ENVIRONMENTAL RESEARCH 2023; 216:114532. [PMID: 36243048 DOI: 10.1016/j.envres.2022.114532] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Microplastics' (MPs) aging process and environmental behavior have attracted extensive attention due to the potential long-term ecological impact. MPs enriched in sludge may accelerate aging during sludge treatment and the affecting environmental behavior, i.e., adsorption performance for pollutants. However, the related studies have not been well researched, especially for the biodegradable MPs. This study revealed the influences of hydrothermal treatment on the characteristics of polylactic acid microplastics (PLA-MPs) and the consequences on heavy metals adsorption. The changes in PLA-MPs' physiochemical properties were characterized and compared. PLA-MPs' surface became irregular, and the oxygen-containing functional groups increased through FTIR and XPS analysis. Meanwhile, the molecular weight and crystallinity of PLA-MPs decreased significantly with the rising in hydrothermal temperature. Accordingly, the adsorption capacity of PLA-MPs for Pb2+ increased from 93.97 μg g-1 for the raw PLA-MPs to 1058.03 μg g-1 for the aged PLA-MPs. Multiple adsorption kinetics and isotherms were discussed for the Pb2+ adsorption onto PLA-MPs with different aging of the PLA-MPs. The adsorption mechanisms of Pb2+ relate to electrostatic interaction and complexation. The main difference is that the adsorption for raw PLA-MPs is dominated by physical and chemical adsorption, whereas the adsorption for the aged PLA-MPs prefers chemical adsorption. In addition, we carefully evaluated the influences of pH, dissolved organic matter, and ionic strength on the PLA-MPs adsorption. The present study highlighted the significance of hydrothermal treatment on the MPs aging and the adsorption performance.
Collapse
Affiliation(s)
- Yang Yu
- School of Energy and Environment, MOE Key Laboratory of Environmental Medicine Engineering, Southeast University, Nanjing, 210096, PR China.
| | - Yindi Ding
- School of Energy and Environment, MOE Key Laboratory of Environmental Medicine Engineering, Southeast University, Nanjing, 210096, PR China
| | - Cailing Zhou
- School of Energy and Environment, MOE Key Laboratory of Environmental Medicine Engineering, Southeast University, Nanjing, 210096, PR China
| | - Shifu Ge
- School of Energy and Environment, MOE Key Laboratory of Environmental Medicine Engineering, Southeast University, Nanjing, 210096, PR China
| |
Collapse
|
41
|
Sharma D, Jaiswal S, Kaur G. Scientometric analysis and identification of research trends in microplastic research for 2011-2019. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84312-84324. [PMID: 35779214 DOI: 10.1007/s11356-022-20872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Microplastic pollution of our environment has seen major data reporting in the last decade. Microplastics produce harmful effects on marine organisms and in humans. Despite the fact that microplastics (MPs) have inert or sublethal toxicity in many circumstances, their long-term presence can have negative ecological consequences. However, there is a paucity of comprehensive literature on the present study and future development trend of MPs in aquatic ecosystems, to our knowledge. In this scientometric study, the literature was evaluated between years 2011 and 2019. The data show increasing importance of microplastics in terms of increase in publication in concurrence of granting funds in this area by major funding agencies. Most research articles were published by authors (~ 49%) affiliated with Chinese Academy of Sciences. Journals 'Marine Pollution Bulletin' and 'Environmental Pollution' were identified as important journals with 273 and 185 research publications, respectively. We have also identified the upcoming research trend and shift from microplastic presence in water to microplastic presence in air. However, in the year 2017, researchers from the UK started publishing more articles in this field with 11 publications with top authors affiliated to University of Plymouth. The journal Environmental Pollution has been found to be the leading journal (~ 20%) addressing the issue of microplastics in the environment. Our co-authorship analysis demonstrated that China (its institutions and authors) is the most collaborative country followed by the USA, together forming top cluster with a link strength of 42. Finally, our analysis provides information about prospective research and emerging trends that can be explored in the coming years.
Collapse
Affiliation(s)
- Deepika Sharma
- School of Pharmaceutical Sciences, Shoolini University, Bajhol, Solan, 173212, India
| | - Shreya Jaiswal
- School of Pharmaceutical Sciences, Shoolini University, Bajhol, Solan, 173212, India
| | - Gurjot Kaur
- School of Pharmaceutical Sciences, Shoolini University, Bajhol, Solan, 173212, India.
| |
Collapse
|
42
|
Mudigonda S, Dahms HU, Hwang JS, Li WP. Combined effects of copper oxide and nickel oxide coated chitosan nanoparticles adsorbed to styrofoam resin beads on hydrothermal vent bacteria. CHEMOSPHERE 2022; 308:136338. [PMID: 36108756 DOI: 10.1016/j.chemosphere.2022.136338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/12/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Microplastics are potential carriers of harmful contaminants but their combined effects are largely unknown. It needs intensive monitoring in order to achieve a better understanding of metal-oxide nanoparticles and their dispersion via microplastics such as styrofoam in the aquatic environment. In the present study, an effort was made to provide a preferable perception about the toxic effects of engineered nanoparticles (NPs), namely, copper oxide (CuO NPs), nickel oxide (NiO NPs), copper oxide/chitosan (CuO/CS NPs) and nickel oxide/chitosan (NiO/CS NPs). Characterizations of synthesized NPs included their morphology (SEM and EDX), functional groups (FT-IR) and crystallinity (XRD). Their combined toxic effect after adsorption to styrofoam (SF) was monitored using the hydrothermal vent bacterium Jeotgalicoccus huakuii as a model. This was done by determining MIC (minimum inhibitory concentration) through a resazurin assay measuring ELISA, growth, biofilm inhibition and making a live and dead assay. Results revealed that at high concentrations (60 mg/10 mL) of CuO, CuO/CS NPs and 60 mg of SF adsorbed CuO and CuO/CS NPs inhibited the growth of J. huakuii. However, NPs rather than SF inhibited the growth of bacteria. The toxicity of NPs adsorbed on plain SF was found to be less compared to NPs alone. This study revealed new dimensions regarding the positive impacts of SF at low concentrations. Synthesized NPs applied separately were found to affect the growth of bacteria substantially more than if coated to SF resin beads.
Collapse
Affiliation(s)
- Sunaina Mudigonda
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80424, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80424, Taiwan; Research Centre for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80424, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan; Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan; Centre of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| |
Collapse
|
43
|
Zafar R, Bang TH, Lee YK, Begum MS, Rabani I, Hong S, Hur J. Change in adsorption behavior of aquatic humic substances on microplastic through biotic and abiotic aging processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157010. [PMID: 35772558 DOI: 10.1016/j.scitotenv.2022.157010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Interactions between microplastics (MPs) and humic substances (HS) are inevitable in MP-contaminated aquatic environment because of the ubiquitous presence of HS. In this study, we explored the effects of abiotic and biotic aging processes on the adsorption behavior of aquatic HS on MPs. Aging experiments were conducted using polyethylene (PE) as a representative MP, in which UV irradiation and microbial incubation were applied for 15 to 18 days to mimic the natural abiotic and biotic aging processes. Surface modifications after the aging treatments were evidenced by the appearance of CO, CO, O-C=O, and -OH groups; the formation of grooves on UV-aged PE; and the formation of biofilms on the surface of bio-aged PE. The specific surface areas of both treated PE MPs increased with aging. Higher HS adsorption on PE surface was observed after the aging treatments, with a highest kinetic rate for UV-aged PE than that for bio-aged PE. The adsorption isotherm models revealed that the aging processes enhanced the HS adsorption tendency, as evidenced by the highest adsorption capacity for UV-aged PE (~187 μg C/m2), followed by bio-aged PE (~157 μg C/m2) and pristine PE (~87.5 μg C/m2) for a comparable extended aging period (15-18 days). The difference was more pronounced at a lower pH. The enhanced HS adsorption was mainly attributed to the formation of hydrogen bonds, whereas HS adsorption on pristine PE was dominated by hydrophobic interactions and weak van der Waals interactions. Among the two identified fluorescent components (terrestrial humic-like C1 and protein-like C2), C1 exhibited a higher affinity for adsorption onto PE irrespective of aging. Our findings provide insights into the substantial changes that occur in the interactions between MPs and aquatic organic matter with aging processes, which may alter the fate and environmental impacts of MPs in many aquatic systems.
Collapse
Affiliation(s)
- Rabia Zafar
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Truong Hai Bang
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Yun Kyung Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Most Shirina Begum
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Iqra Rabani
- Interface Lab, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
44
|
Fu B, Luo J, Xu R, Fang F, Feng Q, Zhang T, Yang E, Cao J. Co-impacts of the microplastic polyamide and sertraline on the denitrification function and microbial community structure in SBRs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156928. [PMID: 35753462 DOI: 10.1016/j.scitotenv.2022.156928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The co-impacts of microplastics (MPs) and organic pollutants on activated sludge have attracted extensive attention. In this study, microplastic polyamide (PA) and sertraline (SER) were respectively or simultaneously added to sequencing batch reactors (SBRs), and the impacts of these pollutants on activated sludge were investigated. The results showed that NH4+-N and TN removal efficiencies significantly decreased with the simultaneous adding of the two pollutants. The coexistence of PA and SER could observably decrease the settling ability of activated sludge, and more proteins and polysaccharides were generated to reduce the combined toxicity. The microbial diversity, especially the denitrification microorganism, was restrained and the metabolic function and the key enzyme involved in nitrogen metabolism pathways were observably decreased, due to the combined toxicity of this two pollutants. Furthermore, the effective SER interception by PA in SBR could induce the SER enrichment in activated sludge and enhance the biotoxicity toward sludge microorganisms.
Collapse
Affiliation(s)
- Boming Fu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Teng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - E Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China.
| |
Collapse
|
45
|
Qin Q, Yang Y, Yang C, Zhang L, Yin H, Yu F, Ma J. Degradation and adsorption behavior of biodegradable plastic PLA under conventional weathering conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156775. [PMID: 35724797 DOI: 10.1016/j.scitotenv.2022.156775] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 05/06/2023]
Abstract
With the increasing pollution of plastics and the widespread use of polylactic acid (PLA), its weathering process in the natural environment needs to be studied. Hence, we investigated the characteristics of PLA under conventional weathering conditions and the adsorption behavior between PLA and tetracycline (TC). The results showed cracks and holes in the weathered PLA surface, an increase in oxygen-containing functional groups, and a 77.94 % decrease in contact angle, causing more amount of TC to be adsorbed. The maximum adsorption capacity of PLA for TC is approximately 3.5 times higher than before weathering due to multilayer physical adsorption. Nevertheless, the surface of the microplastics weathered by seawater did not change significantly. This work elucidates the weathering mechanism of biodegradable microplastics under abiotic conditions, thus correctly assessing the difference in natural and conventional degradability of biodegradable plastics.
Collapse
Affiliation(s)
- Qiyu Qin
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China
| | - Yidi Yang
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China
| | - Changfu Yang
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong, Shanghai 200240, PR China
| | - Leilihe Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China
| | - Haoyuan Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong, Shanghai 200240, PR China.
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
46
|
James BD, de Vos A, Aluwihare LI, Youngs S, Ward CP, Nelson RK, Michel APM, Hahn ME, Reddy CM. Divergent Forms of Pyroplastic: Lessons Learned from the M/V X-Press Pearl Ship Fire. ACS ENVIRONMENTAL AU 2022; 2:467-479. [PMID: 37101454 PMCID: PMC10125272 DOI: 10.1021/acsenvironau.2c00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 04/28/2023]
Abstract
In late May 2021, the M/V X-Press Pearl container ship caught fire while anchored 18 km off the coast of Colombo, Sri Lanka and spilled upward of 70 billion pieces of plastic or "nurdles" (∼1680 tons), littering the country's coastline. Exposure to combustion, heat, chemicals, and petroleum products led to an apparent continuum of changes from no obvious effects to pieces consistent with previous reports of melted and burned plastic (pyroplastic) found on beaches. At the middle of this continuum, nurdles were discolored but appeared to retain their prefire morphology, resembling nurdles that had been weathered in the environment. We performed a detailed investigation of the physical and surface properties of discolored nurdles collected on a beach 5 days after the ship caught fire and within 24 h of their arrival onshore. The color was the most striking trait of the plastic: white for nurdles with minimal alteration from the accident, orange for nurdles containing antioxidant degradation products formed by exposure to heat, and gray for partially combusted nurdles. Our color analyses indicate that this fraction of the plastic released from the ship was not a continuum but instead diverged into distinct groups. Fire left the gray nurdles scorched, with entrained particles and pools of melted plastic, and covered in soot, representing partial pyroplastics, a new subtype of pyroplastic. Cross sections showed that the heat- and fire-induced changes were superficial, leaving the surfaces more hydrophilic but the interior relatively untouched. These results provide timely and actionable information to responders to reevaluate cleanup end points, monitor the recurrence of these spilled nurdles, gauge short- and long-term effects of the spilled nurdles to the local ecosystem, and manage the recovery of the spill. These findings underscore partially combusted plastic (pyroplastic) as a type of plastic pollution that has yet to be fully explored despite the frequency at which plastic is burned globally.
Collapse
Affiliation(s)
- Bryan D. James
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Department
of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Asha de Vos
- Oceanswell, 9 Park Gardens, Colombo 5 00500, Sri Lanka
- The
Oceans Institute, University of Western
Australia, 35 Stirling
Highway, Perth, WA 6009, Australia
| | - Lihini I. Aluwihare
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Sarah Youngs
- Department
of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Collin P. Ward
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Robert K. Nelson
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Anna P. M. Michel
- Department
of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Mark E. Hahn
- Department
of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Christopher M. Reddy
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
47
|
Lu B, Jiang C, Chen Z, Li A, Wang W, Zhang S, Luo G. Fate of polylactic acid microplastics during anaerobic digestion of kitchen waste: Insights on property changes, released dissolved organic matters, and biofilm formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155108. [PMID: 35398128 DOI: 10.1016/j.scitotenv.2022.155108] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Polylactic acid (PLA), an alternative to petroleum-based plastics, has been widely used in food packaging and disposable tableware for biodegradable properties. As a result, PLA fragments were often mixed with kitchen waste (KW) and disposed of together. This study aimed to assess the fate of polylactic acid microplastics (PMP) when co-digested with KW. The spiked PMP did not increase the methane yield of KW but had deformation and fragmentation at mesophilic and thermophilic conditions, respectively. Identification of physicochemical properties and leachates showed that the anaerobic digestion of the KW process caused the aging and fragmentation of PMP, including the generation of irregular cracking and tiny daughter particles, the increase of oxygen-containing functional groups, and the releasing of dissolved organic matters (DOM). The thermophilic anaerobic digestion with KW enhanced the aging and fragmentation of PMP to the highest degree, which was attributed to the high temperature and enriched microorganisms (Peptococcaceae, Tepidimicrobium, and Clostridium_sensu_stricto_7) in the biofilm. Clostridium_sensu_stricto_7 was only found in the anaerobic digestion with KW, which meant the KW anaerobic digestion could contribute to the enrichment of microorganisms that promoted the PMP degradation.
Collapse
Affiliation(s)
- Bei Lu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Chao Jiang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Aimin Li
- PerkinElmer (shanghai) Enterprise Management Co. LTD, Shanghai 201203, China
| | - Wen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
48
|
Liu X, Deng Q, Zheng Y, Wang D, Ni BJ. Microplastics aging in wastewater treatment plants: Focusing on physicochemical characteristics changes and corresponding environmental risks. WATER RESEARCH 2022; 221:118780. [PMID: 35759845 DOI: 10.1016/j.watres.2022.118780] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 05/21/2023]
Abstract
Microplastics (MPs) have been frequently detected in effluent wastewater and sludge in wastewater treatment plants (WWTPs), the discharge and agricultural application of which represent a primary source of environmental MPs contamination. As important as quantitative removal is, changes of physicochemical characteristics of MPs (e.g., shapes, sizes, density, crystallinity) in WWTPs are crucial to their environmental behaviors and risks and have not been put enough attention yet. This review is therefore to provide a current overview on the changes of physicochemical characteristics of MPs in WWTPs and their corresponding environmental risks. The changes of physicochemical characteristics as well as the underlying mechanisms of MPs in different successional wastewater and sludge treatment stages that mainly driven by mechanical (e.g., mixing, pumping, filtering), chemical (e.g., flocculation, advanced oxidation, ultraviolet radiation, thermal hydrolysis, incineration and lime stabilization), biological (e.g., activated sludge process, anaerobic digestion, composition) and their combination effects were first recapitulated. Then, the inevitable correlations between physicochemical characteristics of MPs and their environmental behaviors (e.g., migration, adsorption) and risks (e.g., animals, plants, microbes), are comprehensively discussed with particular emphasis on the leaching of additives and physicochemical characteristics that affect the co-exist pollutants behavior of MPs in WWTPs on environmental risks. Finally, knowing the summarized above, some relating unanswered questions and concerns that need to be unveiled in the future are prospected. The physicochemical properties of MPs change after passing through WWTP, leading to subsequent changes in co-contaminant adsorption, migration, and toxicity. This could threaten our ecosystems and human health and must be worth investigating.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China
| | - Qian Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China
| | - Yuyang Zheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China.
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
49
|
Liu J, Yang H, Meng Q, Feng Q, Yan Z, Liu J, Liu Z, Zhou Z. Intergenerational and biological effects of roxithromycin and polystyrene microplastics to Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106192. [PMID: 35617774 DOI: 10.1016/j.aquatox.2022.106192] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The influence of microplastics (MPs) on transgenerational effects of pharmaceuticals are drawing growing attention, however, whether aged process will alter the carrier effects of MPs were unknown. In this study, the intergenerational toxicity of single and combined exposure of polystyrene microplastics (PS-MPs) and roxithromycin (ROX) were investigated at the environmentally related concentrations, using Daphina magna as test organism. In the presence of UV-aged PS-MPs, the survival of D. magna for maternal generation (F0) at ROX concentration of 0.1 and 10 µg/L were increased by 20% and 40%, respectively. Meanwhile, the inhibition effects of ROX on the number of offspring and intrinsic rate of natural increase were obviously moderated. All these reproductive toxicity of ROX and PS-MPs in the first offspring (F1) were further aggravated both for the single and combined exposure. And the adverse effects disappeared much easier for the single exposure compared to the co-exposure through subsequent recovery. The combined exposure resulted in the change of inhibition of ROX on the swimming velocity and acceleration of D. magna into induction, while the feeding behavior kept inhibited. The AChE activity was distinctly increased by 1.61-3.25 times for the single and combined treatments, and the induction level of UV-aged MPs was higher than that of original MPs. Oxidative stress of the single exposure of ROX and original PS-MPs was observed with obvious induction of T-AOC and SOD activity, while the significant increase of MDA content was observed for the co-exposure. Among all indicators, the biochemical biomarkers and time of first brood were attributed to a class among all indicators, indicating that the time of first brood might be the most sensitive reproductive toxicity index. These results illustrated that both maternal impacts and offspring quality need to be considered for assessment of interaction of emerging contaminants.
Collapse
Affiliation(s)
- Jiaqiang Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Haohan Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Qingjun Meng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Qiyan Feng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhigang Liu
- Ningbo Water Supply Co Ltd, Ningbo 315041, China
| | | |
Collapse
|
50
|
Abstract
Microplastic debris is a persistent, ubiquitous global pollutant in oceans, estuaries, and freshwater systems. Some of the highest reported concentrations of microplastics, globally, are in the Gulf of Mexico (GoM), which is home to the majority of plastic manufacturers in the United States. A comprehensive understanding of the risk microplastics pose to wildlife is critical to the development of scientifically sound mitigation and policy initiatives. In this review, we synthesize existing knowledge of microplastic debris in the Gulf of Mexico and its effects on birds and make recommendations for further research. The current state of knowledge suggests that microplastics are widespread in the marine environment, come from known sources, and have the potential to be a major ecotoxicological concern for wild birds, especially in areas of high concentration such as the GoM. However, data for GoM birds are currently lacking regarding typical microplastic ingestion rates uptake of chemicals associated with plastics by avian tissues; and physiological, behavioral, and fitness consequences of microplastic ingestion. Filling these knowledge gaps is essential to understand the hazard microplastics pose to wild birds, and to the creation of effective policy actions and widespread mitigation measures to curb this emerging threat to wildlife.
Collapse
|