1
|
Liu Y, Qi H, Zhang J, Wang L, Wang Z. Lewis acid sites-regulated microscopic interface on graphite felt surface for enhanced heterogeneous electro-Fenton process: Formation of confinement effect and generation of singlet oxygen. J Colloid Interface Sci 2025; 694:137720. [PMID: 40306124 DOI: 10.1016/j.jcis.2025.137720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/21/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
The short lifetime and limited diffusion capability of hydroxyl radicals (•OH) restrict the further development of heterogeneous electro-Fenton (Hetero-EF) technology. In contrast, singlet oxygen (1O2) demonstrates many advantages over •OH. In the present work, a porous confined graphite felt (PCGF) was prepared through in-situ etching of nickel oxide (NiOx) and used as the cathode for Hetero-EF, aiming at constructing a 1O2-dominated Hetero-EF system to enhance its degradation performance for various antibiotic pollutants in wastewater. The in-situ etching of NiOx introduced abundant Lewis acid sites within the porous architecture of PCGF, enabling the modulation of electrode's interfacial properties and selective adsorption of Lewis basic substances, thereby generating a characteristic "confinement effect". This enhanced interfacial interaction achieved 50.23 % adsorptive removal of oxytetracycline within 30 min without external power supply, facilitating the enrichment of pollutants at the cathode interface. Meanwhile, the "confinement effect" significantly enhanced the utilization efficiency of reactive oxygen species and the selectivity of 1O2. The PCGF electrode demonstrated excellent degradation performance across a wide range of pH and exhibited strong anti-interference capability. The results from radical quenching experiments and density functional theory calculations revealed that the generation of 1O2 proceeded through multiple routes involving hydrogen peroxide, •OH, and superoxide anions. The present study presents a novel strategy for advancing the development of 1O2-dominated Hetero-EF systems for treating antibiotic-containing wastewaters.
Collapse
Affiliation(s)
- Yihao Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Haiqiang Qi
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Jian Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Liguo Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Zhongpeng Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
2
|
Ren H, Labidi A, Sial A, Miao Z, Zhao Y, Feng X, Luo J, Wang C. Fluid-induced piezoelectric field enhanced photocatalytic antibiotic removal over nitrogen-doped carbon quantum dots/Bi 2WO 6@polyvinylidene fluoride-co-hexafluoropropylene membrane in aqueous environments. J Colloid Interface Sci 2025; 691:137412. [PMID: 40132420 DOI: 10.1016/j.jcis.2025.137412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Enhancing the charge separation efficiency of photocatalysts is crucial to their catalytic activity, which is still challenging. Herein, nitrogen-doped carbon quantum dots (N-CQDs) were combined with Bi2WO6 to construct an N-CQDs/Bi2WO6 heterocomposite, which was loaded onto the surface of polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) membrane to design a flexible, porous and hydrophilic N-CQDs/Bi2WO6@PVDF-HFP photocatalytic membrane. Piezo-response force microscopy (PFM) and the maximum effective piezoelectric coefficient (d33) measurements demonstrate that the PVDF-HFP membrane has favorable piezoelectric properties. Besides, fluid-induced mechanical energy can generate a piezoelectric field within the PVDF-HFP membrane. Theoretical calculations indicate that the difference in work function at the N-CQDs/Bi2WO6 heterocomposite interface creates an inherent electric field. Therefore, the synergistic effect of the two electric fields improves the separation and migration efficiency of photogenerated carriers in N-CQDs/Bi2WO6 heterocomposite. The membrane effectively removed 85.3 % of oxytetracycline (OTC) under the synergistic driving of water flow (900 r/min) and visible light, surpassing the results of only water flow (34.4 %) and visible light (63.1 %). Furthermore, the degradation performance of the membrane towards OTC remains almost unchanged after multiple recycles, highlighting its favorable reusability. This work addresses the issue of powdery catalysts in recovering for practical applications and underlines the potential of integrating with natural low-frequency water flows to purify organic-contaminated wastewater.
Collapse
Affiliation(s)
- Haitao Ren
- Shaanxi Key Laboratory of Liquid Crystal Polymer Intelligent Display, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, China; School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Abdelkader Labidi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Atif Sial
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zongcheng Miao
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuzhen Zhao
- Shaanxi Key Laboratory of Liquid Crystal Polymer Intelligent Display, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, China
| | - Xiangbo Feng
- Shaanxi Key Laboratory of Liquid Crystal Polymer Intelligent Display, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, China
| | - Jianmin Luo
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512005, China
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
3
|
Liang Y, Feng A, Al-Dhabi NA, Zhang J, Xing W, Chen T, Han Y, Zeng G, Tang L, Tang W. Efficient antibiotic tetracycline degradation and toxicity abatement via the perovskite-type CaFe xNi 1-xO 3 assisted heterogeneous electro-Fenton system. WATER RESEARCH 2025; 279:123432. [PMID: 40054283 DOI: 10.1016/j.watres.2025.123432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/23/2025] [Accepted: 03/01/2025] [Indexed: 05/06/2025]
Abstract
As one of the emerging contaminants, antibiotics are posing a great threat to the human health and environment, which requires effective treatment methods. Heterogeneous electro-Fenton is a promising technique for organic contaminant elimination, but preparation of an appropriate heterogeneous electro-Fenton catalyst still remains challenging. In this work, the feasibility of perovskite-type CaFexNi1-xO3 as heterogeneous electro-Fenton catalyst for tetracycline (TC) removal and toxicity abatement has been explored. It was found that, among the examined CaFexNi1-xO3 catalysts with different Ni doping amount, CaFe3/4Ni1/4O3 exhibited the best performance, achieving 92.1 % TC removal within 30 min without pH adjustment in the presence of 0.05 M Na2SO4 electrolyte. Choosing Cl--containing electrolyte enabled further improvement towards TC elimination. In addition, the CaFe3/4Ni1/4O3 based heterogeneous electro-Fenton system presented other advantages including good recyclability and universal applicability, and significant toxicity reduction (verified via both ECOSAR simulation and soybean germination test). The TC degradation pathways were elucidated through identification of intermediate products and DFT calculations. Mechanism investigations revealed that there existed a strong synergy between Fe and Ni, and ·OH and ·O2- played the primary roles in the system while 1O2 played an auxiliary role. This study presented a promising heterogeneous electro-Fenton catalyst for degradation of antibiotics such as tetracycline.
Collapse
Affiliation(s)
- Yuling Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Aochen Feng
- Hubei Xiecheng Transportation Environmental Protection Co., Ltd., Wuhan 430040, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jing Zhang
- MCC Capital Engineering and Research Incorporation Limited, Beijing 100176, China
| | - Wenle Xing
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Tao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuxuan Han
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
4
|
Zhang H, Li M, Li N, Jiang R, Yin E, Li X. Performance enhancement and mechanism of tetracycline removal by visible light-driven photo bio-electro-fenton system with CoFe-LDH/g-C 3N 4 cathode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125526. [PMID: 40315647 DOI: 10.1016/j.jenvman.2025.125526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/07/2025] [Accepted: 04/21/2025] [Indexed: 05/04/2025]
Abstract
Bio-electro-Fenton (BEF) technology has shown significant advantages in the treatment of antibiotic wastewater. However, the strict pH application range (2-3) still limits the practical application of BEF. To overcome the limitation of pH on traditional BEF, CoFe-LDH/g-C3N4 composite catalyst was synthesized by hydrothermal method and applied to the BEF cathode to construct a photo-BEF (PBEF) system. The performance of the PBEF system under visible light was investigated with tetracycline hydrochloride (TC) as the target pollutant. The results showed that the PBEF system could extend the pH application range to 3-11 and could maintain more than 80 % of TC removal. The highest removal efficiency of TC by PBEF reached 94.98 % at pH 5, and the highest TOC removal could achieve 70.09 %, indicating that the PBEF can effectively remove TC. Meanwhile, PBEF also showed good universality, anti-interference and stability. In addition, to explore the mechanism of TC degradation by PBEF, the quenching experiments and electron spin resonance (ESR) tests were used to identify and evaluate the contribution of the reactive oxygen species in TC removal. And the results showed that e- and •OH played the major role in TC removal. Density functional theory (DFT) calculations were used to analyze the active sites of TC molecules, and three possible degradation pathways of TC were proposed. Moreover, the toxicity of TC degradation by PBEF was effectively reduced. This study proposes a new way to broaden the application range of pH by PBEF and provides a novel alternative for antibiotics removal from wastewater.
Collapse
Affiliation(s)
- Hanyu Zhang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ming Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ni Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ruixue Jiang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Erqin Yin
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaochen Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
5
|
Guo X, Su Q, Fan X, Liu X, Wang Y. Real "zero energy consumption" for efficient antibiotics degradation by floating photocatalysis: modeling, degradation pathway and toxicity assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125798. [PMID: 40393119 DOI: 10.1016/j.jenvman.2025.125798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/20/2025] [Accepted: 05/10/2025] [Indexed: 05/22/2025]
Abstract
Floating photocatalysis is a real "zero energy consumption" and practicable green water treatment technology because of no need for reactor and pump, and direct contact with sunlight to produce more free radicals compared to traditional immersion photocatalysts. To realize "green" and "safe" practical application, efficiency for different water quality bodies and toxicity assessment of degradation products are key factors. In this work, an economic and efficient floating photocatalyst Bi doped P25-TiO2 (Bi@P25)/expanded perlite (EP), named BTEP was successfully constructed, exhibiting stronger visible light absorption and faster photogenerated carriers separation ability due to Bi doping and formation of Bi-O-Si bond. Ciprofloxacin (CIP) degradation efficiency (10 mg/L) in deionized water and three types of ambient water reached 97.8 % and 52.9 %-75.2 %, respectively, based on the major active species (h+ and •O2-). Three degradation pathways were determined and the reduced toxicity of most intermediates proved the process is green and safe. BTEP had strong adaptability over a wide pH range (3-9). The degradation efficiency is promoted by higher temperatures, while depressed by humic acid (HA) (still maintain over 65.3 % at 15 mg/L of HA). Moreover, the Random Forest model is the most suitable to achieve degradation efficiency prediction of different water parameters duo to the lowest root mean square error (RMSE) value (9.52) and the highest R2 value (0.9045). The BTEP based floating photocatalysis promotes the practical application of solar photocatalytic technology and realizes zero energy consumption to remove pollutants.
Collapse
Affiliation(s)
- Xinrui Guo
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Qi Su
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Xiaoyu Fan
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Xianjing Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Ying Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
6
|
Yao S, Lin J, He S, Bai Y, Jin M, Zhu F, Fang J, Wang M. Highly efficient degradation of perfluoroalkyl substances (PFAS) by a novel polytetrafluoroetylene piezocatalyst. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137317. [PMID: 39874758 DOI: 10.1016/j.jhazmat.2025.137317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Perfluoroalkyl substances (PFAS) are environmentally persistent, bioaccumulative and toxic pollutants. However, thorough degradation of PFAS remains exceptionally difficult due to the high dissociation energy of the C-F bond. Here, we report a viable strategy to markedly degrade PFAS completely by capitalizing on a harmless polytetrafluoroetylene (PTFE) as a piezocatalyst. Remarkably, perfluorooctanoic acid (PFOA), as one of the widely used PFAS, was almost completely removed with a degradation rate of 93.4 % and a defluorination rate of 91.5 % by the ultrasound excitation of PTFE for 1 h. On the basis of the intermediate analysis, we proposed an oxidation mechanism for the piezocatalytic PFOA degradation. Furthermore, this strategy was also efficient for the degradation of perfluoroheptanoic acid (PFNA), perfluorooctane sulfonate (PFOS) and hexafluoropropylene oxide dimer acid (Gen-X), implying its effectiveness to remediate water containing multiple PFAS. Impressively, due to the diverse energy gap between HOMO and LUMO energy of various PFAS, the degradation reaction kinetics of different PFAS are of significant difference. This study provides the deep insight into the piezocatalytic technique for the remediation of persistent and disparate PFAS.
Collapse
Affiliation(s)
- Shan Yao
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jieying Lin
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shaoxiong He
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yang Bai
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mingge Jin
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
| | - Feng Zhu
- Shenzhen Shiage Electronic Technology Co., Ltd., Shenzhen 518107, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mengye Wang
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
7
|
Li Z, Huang D, Wang Y, Yan J, Liu Y, Zhao H, Lan X, Huang Y, Astruc D, Liu X. Sustainability-Inspired Upcycling of Organophosphorus Pollutants into Phosphatic Fertilizer in a Continuous-Flow Reactor. Angew Chem Int Ed Engl 2025; 64:e202502408. [PMID: 39998984 PMCID: PMC12051758 DOI: 10.1002/anie.202502408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 02/27/2025]
Abstract
With the increasing requirement for phosphorus resources and their shortage in nature, cyclic utilization of organophosphorus pollutants into phosphatic fertilizer might offer a sustainable approach to achieve the recycling of phosphorus. Herein, we first report the selective degradation of organophosphorus pollutants, via the synergistic effect of peroxymonosulfate (PMS) and sodium percarbonate (SPC), into phosphates (o-PO4 3-), which are continually converted into phosphatic fertilizer by struvite precipitation on the continuous-flow reactor. Quenching experiments, electron paramagnetic resonance (EPR) results, electrochemical analysis, and density functional theory (DFT) calculation suggest that the transfer of electrons from SPC to PMS results in the synthesis of catalytically active species (i.e., ·OH, ·O2 -, 1O2, and CO3·-) for hydroxyethylidene-1,1-diphosphonicacid (HEDP) degradation. For the real glyphosate wastewater, the PMS/SPC system exhibits excellent catalytic activity with 69.20% decrease in chemical oxygen demand (COD) and 37.80% decrease in the total organic carbon (TOC) after 90 min. Indeed, high performance liquid chromatography (HPLC) confirms that glyphosate is completely degraded in 90 min with the formation of 271.93 µmol/L of o-PO4 3-, which is further converted into phosphatic fertilizer by the precipitation of struvite with 87.20% yield on continuous-flow reactor. Finally, biotoxicity of glyphosate to zebrafish and wheat seeds are significantly deceased after treatment of PMS/SPC system by zebrafish toxicology assays and germination tests of wheat seeds.
Collapse
Affiliation(s)
- Zhangli Li
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical EngineeringChina Three Gorges UniversityYichang443002China
| | - Di Huang
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical EngineeringChina Three Gorges UniversityYichang443002China
| | - Yazhou Wang
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical EngineeringChina Three Gorges UniversityYichang443002China
| | - Jiaying Yan
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical EngineeringChina Three Gorges UniversityYichang443002China
| | - Yue Liu
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling712100China
| | - Haiyu Zhao
- School of Life SciencesLanzhou UniversityLanzhou730000China
| | - Xianyong Lan
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling712100China
| | - Yingping Huang
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical EngineeringChina Three Gorges UniversityYichang443002China
| | - Didier Astruc
- ISM, UMR CNRS 5255Université de BordeauxTalence Cedex33405France
| | - Xiang Liu
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical EngineeringChina Three Gorges UniversityYichang443002China
| |
Collapse
|
8
|
Cattelan M, Yang J, Cielo L, Nappini S, Carlotto S, Nalesso M, Azcona IN, Yivlialin R, Sun X, Bussetti G, Magnano E, Agnoli S. Operando Exploration of CoAl-LDH: Transformations Driving Alkaline Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412351. [PMID: 40171743 PMCID: PMC12067176 DOI: 10.1002/smll.202412351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/26/2025] [Indexed: 04/04/2025]
Abstract
This work reports a comprehensive study on the morphology, composition, and electronic structure of CoAl layered double hydroxide (CoAl-LDH) during the oxygen evolution reaction (OER). To capture electrochemically induced transformations, operando spectroscopic and microscopic methods are combined. The complementary data provided by operando near-edge X-ray absorption fine structure (NEXAFS), supported by density functional theory (DFT) calculations, and electrochemical atomic force microscopy (AFM), reveal that under OER conditions, CoAl-LDH is fragmented into smaller particles due to Al leaching. This process forms a "resting" phase with an average Co oxidation state of 2.5+, which readily transforms into the OER-active β-CoOOH phase upon further potential increase. This work exemplifies how operando methods enable precise tracking of oxidation state changes, element dissolution, and structural transformations at the nanoscale while the electrocatalyst is active. This approach contrasts with conventional pre- and post-mortem characterization, which would instead suggest Co3O4 formation. These findings extend beyond the specific example of CoAl-LDH, emphasizing the crucial importance of selective cation leaching, recrystallization, and morphological restructuring, since these processes play a key role not only in designing advanced multi-element materials but also in understanding the complex nanoscale mechanisms that govern the activation and durability of practical electrocatalysts.
Collapse
Affiliation(s)
- Mattia Cattelan
- Department of Chemical SciencesUniversity of Padovavia Marzolo 1Padova35131Italy
- INSTM Istituto Nazionale Scienza e Tecnologia dei MaterialiPadova Research UnitFirenze50121Italy
- CIRCC Consorzio Interuniversitario Reattività e CatalisiPadova Research UnitBari70126Italy
| | - Jijin Yang
- Department of Chemical SciencesUniversity of Padovavia Marzolo 1Padova35131Italy
| | - Leonardo Cielo
- Department of Chemical SciencesUniversity of Padovavia Marzolo 1Padova35131Italy
| | - Silvia Nappini
- CNR – Istituto Officina dei Materiali (IOM)S.S. 14 km 163.5Trieste34149Italy
| | - Silvia Carlotto
- Department of Chemical SciencesUniversity of Padovavia Marzolo 1Padova35131Italy
- INSTM Istituto Nazionale Scienza e Tecnologia dei MaterialiPadova Research UnitFirenze50121Italy
- CIRCC Consorzio Interuniversitario Reattività e CatalisiPadova Research UnitBari70126Italy
| | - Marco Nalesso
- Department of Chemical SciencesUniversity of Padovavia Marzolo 1Padova35131Italy
| | - Ilargi Napal Azcona
- CNR – Istituto Officina dei Materiali (IOM)S.S. 14 km 163.5Trieste34149Italy
- Physics DepartmentUniversity of TriesteP.le Europa 1Trieste34127Italy
| | - Rossella Yivlialin
- Department of PhysicsPolitecnico di Milanop.za Leonardo da Vinci 32MilanI‐20133Italy
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science EngineeringCollege of ChemistryBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Gianlorenzo Bussetti
- Department of PhysicsPolitecnico di Milanop.za Leonardo da Vinci 32MilanI‐20133Italy
| | - Elena Magnano
- CNR – Istituto Officina dei Materiali (IOM)S.S. 14 km 163.5Trieste34149Italy
- Nanotechnology Research LaboratoryFaculty of EngineeringUniversity of SydneyCamperdown2006Australia
| | - Stefano Agnoli
- Department of Chemical SciencesUniversity of Padovavia Marzolo 1Padova35131Italy
- INSTM Istituto Nazionale Scienza e Tecnologia dei MaterialiPadova Research UnitFirenze50121Italy
- CIRCC Consorzio Interuniversitario Reattività e CatalisiPadova Research UnitBari70126Italy
| |
Collapse
|
9
|
Zhang YS, Chen XJ, Huang XT, Bai CW, Duan PJ, Zhang ZQ, Chen F. Enhanced peroxone reaction with amphoteric oxide modulation for efficient decontamination of challenging wastewaters: Comparative performance, economic evaluation, and pilot-scale implementation. WATER RESEARCH 2025; 274:123058. [PMID: 39740329 DOI: 10.1016/j.watres.2024.123058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
The peroxone reaction, a promising alternative technology for water treatment, is traditionally hampered by its restricted pH operational range and suboptimal oxidant utilization. In this study, we introduced a novel amphoteric metal oxide (ZnO)-regulated peroxone system that transcended the pH limitations of conventional peroxone processes. Our innovative approach exploited the unique properties of ZnO to regulate the reaction pathway of the traditional O3/H2O2 (or peroxymonosulfate, PMS) processes, resulting in a 52.4 % (64.9 %) increase in the removal efficiency of electron-deficient pollutant atrazine under acidic conditions (pH=5.8). This was achieved through the facilitated generation of hydroxyl radicals (•OH) and sulfate radicals (SO4•-), alongside a marked increase in the utilization efficiency of O3, thus reducing the requisite amount of oxidant. The primary active sites within this system were identified as zinc-oxidant sites, with the critical interfacial interactions between ZnO and oxidants elucidated through comprehensive analytical techniques. These studies reveal that ZnO acted as an electron acceptor, with H2O2 (or PMS) serving as the electron donor, leading to the formation of a reactive intermediate. This intermediate subsequently engaged with O3, producing secondary radicals such as HO2• (SO5•-) and O3•-, which were instrumental in generating the final radical species, •OH and SO4•-. The efficacy of this ZnO-regulated peroxone process was validated through resistance to interference tests, treatment of pilot-scale coking wastewater (mineralization rate of over 70 %), and extensive biological toxicity evaluations, all of which validated the system's robust degradation capability, stability, and significant detoxification potential. A detailed comparison of reaction systems with conventional technologies using Electrical Energy per Order (EE/O) and Life Cycle Assessment (LCA) further highlighted the advantages. This investigation offers a groundbreaking solution for the treatment of complex wastewater, showcasing the substantial promise of ZnO-catalyzed peroxone for practical wastewater treatment applications.
Collapse
Affiliation(s)
- Yi-Shuo Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xin-Tong Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Pi-Jun Duan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi-Quan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
10
|
Chauhan S, Bhar R, Ray K, Chowdhury S, Ghangrekar MM, Dubey BK. Enhanced visible light photocatalytic degradation of oxytetracycline through sugarcane bagasse biochar supported layered WS 2 type-II staggered heterojunction: Towards performance, degradation pathway, toxicity, and life cycle assessment. ENVIRONMENTAL RESEARCH 2025; 271:121100. [PMID: 39947382 DOI: 10.1016/j.envres.2025.121100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025]
Abstract
This research presents the synthesis of sugarcane bagasse biochar (SCB) integrated with WS2 nanosheets via one step facile solid-phase reaction. The as-prepared SCBW composites were then evaluated for their photocatalytic efficacy in degrading the antibiotic oxytetracycline (OTC) from water. Among the tested conditions using a Taguchi L9 orthogonal array, SCBW-10 achieved a maximum OTC degradation efficiency of 92.7% under optimal conditions (pH = 7, dose = 0.5 g L⁻1, initial concentration = 5 mg L⁻1, reaction time = 180 min). The study also examined the impact of other environmental factors, identified the predominant reactive oxygen species (•O2⁻ and •OH) responsible for OTC degradation, and conducted toxicity assessment and prediction of degradation products using Vigna radiata seed germination and T.E.S.T. software, respectively. Further, the SCBW-10 nanocomposite demonstrated reusability over four cycles with minimal loss in efficiency. Lastly, a life cycle assessment was performed to evaluate the environmental impact of the proposed remediation system from gate to gate viewpoint.
Collapse
Affiliation(s)
- Sahil Chauhan
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Rajarshi Bhar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Koustuv Ray
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | | | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India; School of Water Resources, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
11
|
Zhou Y, Sun H, Hu X, Guo J, Liang Y, Gong X, Xiao X, Luo L, Wu Z, Qin P. Mechanism of oxygen vacancy engineering CoO X/Fe 3O 4 regulated electrocatalytic reduction of nitrate to ammonia. J Colloid Interface Sci 2025; 683:709-721. [PMID: 39746242 DOI: 10.1016/j.jcis.2024.12.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025]
Abstract
To enhance the activity of the nitrate reduction reaction (NO3-RR), the development of oxygen vacancies electrocatalysts is a promising approach for improving the efficiency of ammonia synthesis. However, the mechanism by which oxygen vacancies regulate NO3-RR to ammonia remains poorly understood. In this study, a series of CoOX/Fe3O4 composite catalysts derived from ZIF-67 containing oxygen vacancies (OVs) were synthesized to elucidate the role of OVs on the activity and selectivity of ammonia synthesis. Structural characterization revealed that the concentration of OVs in the catalysts increased with the addition of iron ions. Electrochemical experiments and theoretical calculations demonstrated that OVs promote interfacial electron transfer, alter the adsorption conformation of NO3* on the catalyst surface, and reduce the activation energy barrier of NO3*. Nonetheless, we observed that high concentrations of OVs exhibited a preference for the product NO2- at high potentials, which we attribute to the strong adsorption of NO* by the OVs, impeding the subsequent hydrogenation process. Additionally, electron paramagnetic resonance (EPR) and activated hydrogen (H*) quenching experiments indicated that the catalyst was unable to deliver substantial amounts of H* in the buffered electrolyte, resulting in low ammonia productivity. The ammonia Faraday current efficiency (FE) of CoOX/Fe3O4-90 in 0.1 M KOH and 0.1 M NO3- was 82.22 %, with an ammonia production rate of 1.09 mmol h-1 cm-2.
Collapse
Affiliation(s)
- Yunfei Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan 410128, PR China
| | - Haibo Sun
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan 410128, PR China
| | - Xiaolong Hu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan 410128, PR China
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, PR China
| | - Yunshan Liang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan 410128, PR China
| | - Xiaomin Gong
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan 410128, PR China
| | - Xinmin Xiao
- Hunan Bairuifu Environmental Protection Technology Co., Ltd, Changsha 410000, PR China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan 410128, PR China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan 410128, PR China.
| | - Pufeng Qin
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan 410128, PR China.
| |
Collapse
|
12
|
Yang W, Jia H, Li T, Liu Y, Li Y. Distinct pathways for superoxide radical generation induced by Mn and Cu-based catalysts in electro-Fenton like process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124664. [PMID: 40031417 DOI: 10.1016/j.jenvman.2025.124664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Superoxide radicals (·O2-) has been regarded as one of the reactive oxygen species (ROS) for the elimination of complex contaminants via electro-Fenton like (EF-like) technology. However, the generation path of ·O2- is diverse, and the influence of the physicochemical properties of metals on the mechanism of ·O2- conversion is significant in the EF-like treatment of wastewater. Herein, metals (M = Mn, Cu) loaded zeolitic imidazolate frameworks catalytic materials (M-NC) were prepared for sulfamethoxazole (SMX) removal to analyze the effect of metals on the pathways of ·O2- generation. The removal kinetic rate of SMX by Cu-NC was 1.32 times higher than that of Mn-NC. Quenching experiments demonstrated that ·O2- is the most important oxidizing species to achieve SMX removal. The RRDE measurements and quantitative experiment on the concentration of H2O2 experiments indicated that Mn-NC was more inclined to generate ROS through activation of H2O2 and Cu-NC through other ways. Therefore, the transformation pathways of ·O2- in different catalytic systems were thoroughly analyzed. Electron paramagnetic resonance test and reactive oxygen species quenching experiments indicated that the pathway for ·O2- production of Mn-NC was O2 → H2O2 → ·O2-, and that of Cu-NC was O2 → ·O2-. The strategy of using Mn and Cu-based catalysts to investigate the mechanism of the ·O2- generation pathway provided a way to efficiently utilize the conversion of ·O2-.
Collapse
Affiliation(s)
- Wenjing Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Hexue Jia
- Collaborative Innovation Center for Wetland Conservation and Green Development of Hebei Province, Hengshui University, Hengshui 053000, China
| | - Tingting Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuepeng Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| |
Collapse
|
13
|
Chen J, Liu Y, Wang Z, Zhang B, Feng Y. Nanocarriers for the delivery of plant-extracted camptothecin derivatives and hepatocellular carcinoma treatment. Nat Prod Res 2025:1-12. [PMID: 40102036 DOI: 10.1080/14786419.2025.2479249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/21/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide and a major cause of death in cirrhosis. The prognosis of HCC is poor, with a mortality rate close to the morbidity rate. Once HCC develops distant metastasis, the area affected by the cancer cells is significantly enlarged, and there is still no effective treatment for HCC. Therefore, the development of effective drugs is essential to improve the survival rate of HCC patients. We designed and optimised a delivery system for compound 1, derived from camptothecin extract, by developing a multifunctional fluorescent drug delivery platform composed of polylactic acid (PLA), chitosan (CS), and fluorescein isothiocyanate (FITC) (PLA-CS-FITC). This system successfully encapsulated CP1 and compound 1, forming a PLA-CS-FITC@CP1@1 composite nanocarrier with dual functions for drug delivery and real-time fluorescence monitoring. The effects of the system on HCC proliferation and its regulation were evaluated by treating HCC cells in vitro, which provided an experimental basis for the development of drugs for HCC.
Collapse
Affiliation(s)
- Jie Chen
- Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanfeng Liu
- Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zelin Wang
- Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingyuan Zhang
- Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujie Feng
- Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Deng R, He Q, Yang D, Sun Y, Xie H, Chen Y. Efficient degradation of ciprofloxacin in water using nZVI/g-C 3N 4 enhanced dielectric barrier discharge plasma process. ENVIRONMENTAL RESEARCH 2025; 268:120833. [PMID: 39800290 DOI: 10.1016/j.envres.2025.120833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Residual antibiotics in aquatic environments pose health and ecological risks due to their persistence and resistance to biodegradation. Thus, it is crucial to develop efficient technologies for the degradation of such antibiotics. This study presents a novel approach using a nano zero-valent iron/graphitic carbon nitride (nZVI/g-C3N4)-enhanced dielectric barrier discharge (DBD) plasma process for the degradation of ciprofloxacin (CIP). The combination of nZVI and g-C3N4 with DBD plasma significantly enhances CIP degradation efficiency, achieving an apparent first-order kinetic constant of 0.2849 min⁻1 at an input voltage of 12 kV, which is 5.22 times higher than standalone DBD treatment and 10.59 times higher than the ozonation treatment. The morphology, elemental valence states, and other properties of nZVI/g-C3N4 have been thoroughly characterized and demonstrate good reusability. Reactive species such as ·OH dominates CIP degradation. The Fe atoms in nZVI/g-C3N4 exhibit a strong tendency to donate electrons, generating reactive oxygen through the dissociation of adsorbed water. The cleavage of C-F bonds, hydroxylation and ring-opening oxidation of the piperazine group are the main pathways for CIP degradation, which helps to reduce biotoxicity after treatment. Overall, this study provides insights into the mechanism of reactive species in a DBD-nZVI/g-C3N4 system, a system that has the potential to become an efficient and environmentally friendly solution for the treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Ruoyu Deng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Dongxu Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yi Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310003, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
15
|
Bai J, Wang C, Zhang X, Li X, Mao Y, Liang W, Zhang C, Xiao X, Shen J. Revealing multi-level shortrange migration of electrons on full-spectrum response e-LDH/t-BiOCl/Bi 2S 3 and their essential role in the detoxification of Cr(VI) and refractory organic pollutants. ENVIRONMENTAL RESEARCH 2025; 266:120479. [PMID: 39617156 DOI: 10.1016/j.envres.2024.120479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
The toxic dyeing wastewater containing both carcinogenic Cr(VI) and refractory dyes poses serious threats to ecological safety and human health. Herein, a novel composite photocatalytic material e-LDH/t-BiOCl/Bi2S3 with an ultrathin sandwich structure constructed achieves removal rate constants of 0.044 and 0.019 min-1 for Cr(VI) and reactive red 2 by adsorption-photocatalysis synergistic mechanism in full-spectrum illumination. This structure employs the interface conditions and built-in electric field to form multilevel short-range charge migration channel, achieving the targeted reduction and oxidation of Cr(VI) and azoxy dyes by electrons (e-) and holes (h+). Besides facilitating the reduction of Cr(VI), e- can also enhance the effective utilization of h+ and mediate the formation of other reactive oxygen species that target RR2 degradation. The degradation mechanism, pathway, and biological toxicity of RR2 single and Cr(VI)/RR2 coexistence reaction system were discussed by DFT calculation, LC-MS characterization, and T.E.S.T. evaluation. Moreover, we further investigated the photocatalytic activity and cost-effectiveness of the e-LDH/t-BiOCl/Bi2S3 system under continuous flow and real water settings, and determined the primary water quality parameters that influence photocatalytic performance. This work establishes a new concept for the rational design of robust ternary heterostructure photocatalysts with desirable morphology and competitive performance for photocatalytic applications.
Collapse
Affiliation(s)
- Jing Bai
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Chen Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan 572024, China.
| | - Xuhao Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Yajia Mao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Liang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Cong Zhang
- Communications Construction Company Second Harbor Consultants Co., Ltd., Wuhan 430060, China
| | - Xinlu Xiao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Shen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
16
|
Wang S, Li C, Yin H, Gao B, Yu Z, Zhou Y, Wang J, Xu H, Wu J, Sun Y. A novel Ag/Bi/Bi 2O 2CO 3 photocatalyst effectively removes antibiotic-resistant bacteria and tetracycline from water under visible light irradiation. ENVIRONMENTAL RESEARCH 2025; 264:120313. [PMID: 39510230 DOI: 10.1016/j.envres.2024.120313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
Currently, achieving dual applications of Bi2O2CO3-based photocatalysts in photocatalytic degradation and sterilization under visible-light conditions is challenging. In this study, a novel Ag/Bi/Bi2O2CO3 visible-light photocatalyst with bimetallic doping and rich oxygen vacancies was successfully synthesized using a one-pot hydrothermal crystallization method. The existence of oxygen vacancies was verified by X-ray photoelectron spectroscopy (XPS) and Electron spin resonance (ESR) analysis. The experimental results showed that Ag/Bi/Bi2O2CO3 killed ∼100% (log 7) of antibiotic-resistant Escherichia coli (AR-E. coli) within 60 min and degraded 83.81% of tetracycline (TC) within 180 min under visible light irradiation. Moreover, Ag/Bi/Bi2O2CO3 can still remove 61.07% of TC in water after 5 cycles, showing excellent photocatalytic cycle stability and reusability. The possible degradation pathway of TC was determined by liquid chromatography-mass spectrometry. It was found that the main active substances in the photocatalytic disinfection of AR-E. coli were 1O2, h+, and ·OH, while 1O2 was the dominant active species in the photocatalytic degradation of TC. This study presents a promising Bi2O2CO3-based visible light photocatalyst for treating both antibiotics (TC) and antibiotic-resistant bacteria (AR-E. coli) in water.
Collapse
Affiliation(s)
- Suo Wang
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Changyu Li
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Zhengkun Yu
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Hongxia Xu
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Jichun Wu
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yuanyuan Sun
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
17
|
Wang S, Qin S, Yang G, Liu Y, Yang T, Wang Z, Li X, Liu D, Lei W. Fast Solid-Phase Exfoliation of Layered Double Hydroxides with Tunable Functionalization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69725-69732. [PMID: 39655639 DOI: 10.1021/acsami.4c16111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Two-dimensional (2D) layered double hydroxides (LDHs) with adjustable compositions and structure have been promising candidates for various domains, including catalysis, water treatment, and energy storage. To unlock their full potential, there is a strong demand for versatile and effective exfoliation techniques capable of generating diverse types of 2D LDHs. However, the conventional liquid-phase exfoliation methods typically rely on toxic solvents and face challenges with agglomeration and restacking. Herein, a series of LDHs, including CoAl-LDH, MgAl-LDH, ZnAl-LDH, and NiFe-LDH, have been successfully exfoliated into nanosheets using a solid-phase exfoliation technique. Meanwhile, surface functional groups and defects are introduced into the exfoliated LDHs. The incorporation of surface functional groups improves the homogeneity and aqueous dispersion stability of LDH nanosheets, enabling them to be stably stored for over six months while remaining redispersible and processable even after freeze-drying. Furthermore, the induced defects alter the electronic structure of the LDH nanosheets, generating more active sites that enhance their electrocatalytic performance. These advantages contribute to the superior OER activity of the exfoliated NiFe-LDH nanosheets with an ultralow overpotential of 258 mV at 10 mA cm-2. This work highlights the potential of solid-phase exfoliation as an efficient, environmentally friendly, and scalable method for the preparation and functionalization of 2D LDHs.
Collapse
Affiliation(s)
- Shana Wang
- Institute for Frontier Materials, Deakin University, Geelong 3220 Victoria, Australia
| | - Si Qin
- Institute for Frontier Materials, Deakin University, Geelong 3220 Victoria, Australia
| | - Guoliang Yang
- Institute for Frontier Materials, Deakin University, Geelong 3220 Victoria, Australia
| | - Yuchen Liu
- Institute for Frontier Materials, Deakin University, Geelong 3220 Victoria, Australia
| | - Tairan Yang
- Institute for Frontier Materials, Deakin University, Geelong 3220 Victoria, Australia
| | - Zhiyu Wang
- Institute for Frontier Materials, Deakin University, Geelong 3220 Victoria, Australia
| | - Xinhao Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Liu
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Weiwei Lei
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
18
|
Piao H, Zhao J, Tang Y, Fan L, Zhuang X, Zhang S, Huang Q, Liu Y, Xiao C, Zhao C, Liu S. Tubular nanofiber membranes combined with Z-scheme CuS@Co 3S 4 heterojunction catalyst for high-efficient removal of polyvinyl alcohol from waste water with high COD. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136354. [PMID: 39522215 DOI: 10.1016/j.jhazmat.2024.136354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Polyvinyl alcohol (PVA), a typical water-soluble polymer with huge global production, is becoming one of the most ubiquitous pollutants and indeed the villain of the piece contributing high chemical oxygen demand (COD) in wastewater. Membrane technology is an effective method for wastewater purification, in particular, with the combination of peroxymonosulfate (PMS)-assisted advanced oxidation or photocatalytic process, is capable of maintaining high water flux and anti-fouling. Herein, a ZIF-67 derived Z-scheme CuS@Co3S4 heterojunction catalyst immobilized by poly (m-phenylene isophthalamide) (PMIA) tubular nanofiber membrane (CuS@Co3S4/PMIA-TNM) is designed using a polyester braided tube as interior reinforcement. The resultant membrane features with outstanding superhydrophilicity and commendable porosity (82.1 %), leading to a significantly enhanced permeability (water flux > 82.3 L·m-2·h-1). Meanwhile, the membrane shows promising PVA removal efficiency (> 99.9 %) with a high COD removal efficiency (∼ 83.4 %) and enhanced antifouling capacity (flux recovery ratio > 99.7 %) with the assistance of PMS driven by an ultra low-power LED lamp. The universal applicability and environmental adaptability are also verified in various reaction conditions. In terms of ecotoxicological impacts of the PVA wastewater before and after treatment on aquatic organisms, Zebrafish embryonic development dynamically demonstrated that the treated PVA waste water by the developed hybrid membrane is healthy for fish to grow. Our study definitely opens up a new avenue to develop high-performance catalytic membranes for PVA-based wastewater treatment.
Collapse
Affiliation(s)
- Hongwei Piao
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Advanced Braided Composites Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jian Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Advanced Braided Composites Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Yifei Tang
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Advanced Braided Composites Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Linpeng Fan
- Australian Future Fibres Research and Innovation Centre, Institute for Frontier Materials, Deakin University, VIC 3220, Australia
| | - Xupin Zhuang
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Advanced Braided Composites Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shujie Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Advanced Braided Composites Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qinglin Huang
- National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yong Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Advanced Braided Composites Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Changfa Xiao
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Advanced Braided Composites Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Fiber Materials Research Center, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Changwei Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Shaomin Liu
- School of Engineering, Great Bay University, Dongguan 523000, China
| |
Collapse
|
19
|
Li S, Gao C, Yu H, Wang Y, Wang S, Ding W, Zhang L, Yu J. Vinylene-Linked Donor-π-Acceptor Metal-Covalent Organic Framework for Enhanced Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202409925. [PMID: 39225195 DOI: 10.1002/anie.202409925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Intramolecular charge separation driving force and linkage chemistry between building blocks are critical factors for enhancing the photocatalytic performance of metal-covalent organic framework (MCOF) based photocatalyst. However, robust achieving both simultaneously has yet to be challenging despite ongoing efforts. Here we develop a fully π-conjugated vinylene-linked multivariate donor-π-acceptor MCOF (D-π-A, termed UJN-1) by integrating benzyl cyanides linker with multiple functional building blocks of electron-rich triphenylamine and electron-deficient copper-cyclic trinuclear units (Cu-CTUs) moieties, featuring with strong intramolecular charge separation driving force, extended conjugation degree of skeleton, and abundant active sites. The incorporation of Cu-CTUs acceptor with electron-withdrawing ability and concomitantly giant charge separation driving force can efficiently accelerate the photogenerated electrons transfer from triphenylamine to Cu-CTUs, revealing by experiments and theoretical calculations. Benefiting from the synergistically effect of D-π-A configuration and vinylene linkage, the highly-efficient charge spatial separation is achieved. Consequently, UJN-1 exhibits an excellent CO formation rate of 114.8 μmol g-1 in 4 h without any co-catalysts or sacrificial reagents under visible light, outperforming those analogous MCOFs with imine-linked (UJN-2, 28.9 μmol g-1) and vinylene-linked COF without Cu-CTU active sites (UJN-3, 50.0 μmol g-1), emphasizing the role of charge separation driving force and linkage chemistry in designing novel COFs-based photocatalyst.
Collapse
Affiliation(s)
- Shanshan Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Chaomin Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yuwen Wang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Shuai Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Wenwen Ding
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
20
|
Jin J, Dai C, Zeng C, Liu X, Jia Y. Bimetallic Au/Ag coated on In 2O 3 for the effective removal of emerging organic contaminants under natural sunlight irradiation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122573. [PMID: 39303599 DOI: 10.1016/j.jenvman.2024.122573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Antibiotics-polluted wastewater, likely causing the spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), can be effectively remediated by photocatalytic degradation driven by endless solar energy. Herein, bimetallic Au/Ag is deposited on In2O3 surface via a one-step sintering process followed by a controllable chemical reduction approach. Under natural sunlight irradiation, the optimal Au/Ag/In2O3 (UGI-1.0) photocatalyst possesses a considerable norfloxacin (NOR) degradation rate constant of 0.013 min-1, which is 3.25, 1.63, and 1.86 times higher than that of In2O3, Ag/In2O3, and Au/In2O3 respectively. The effect of many water characteristics (e.g., humic acid, water bodies, pH values, and coexisting anions) on the photodegradation performance of NOR over UGI-1.0 is investigated. Moreover, other persistent organic pollutants (ofloxacin, phenol, 2,4-dichlorophenol, and rhodamine B) can also be degraded over UGI-1.0, suggesting its universal oxidation capacity. To settle the challenge of powder photocatalyst recovery, the UGI-1.0 photocatalyst is coated on a frosted glass sheet, which exhibits outstanding activity and stability for degrading NOR. The bimetallic Au/Ag deposited on In2O3 promote its photo-absorption, and enhance its photoinduced charge separation and transfer efficiency by serving as electron accepter, leading to the boosted activity of Au/Ag/In2O3 catalysts. Particularly, the cultivation of staphylococcus aureus (S. aureus) and cabbage seeds reveals the efficient toxicity reduction of NOR by photocatalytic degradation and the nontoxic characteristic of UGI-1.0 catalyst. This work unveils the feasibility of UGI-1.0 to remediate real wastewater with the assistance of solar energy.
Collapse
Affiliation(s)
- Jiahui Jin
- School of Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China; College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
| | - Chunhui Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Chao Zeng
- School of Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Xin Liu
- School of Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yushuai Jia
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
21
|
Qian X, Ji J, Zhao Y, Guo J, Duan A, Yuan X, Wang H, Zhou S, Li X. Rational design of waste anode graphite-derived carbon catalyst to activate peroxymonosulfate for atrazine degradation. ENVIRONMENTAL RESEARCH 2024; 257:119296. [PMID: 38824985 DOI: 10.1016/j.envres.2024.119296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
As the rapidly growing number of waste lithium-ion batteries (LIBs), the recycling and reutilization of anode graphite is of increasing interest. Converting waste anode graphite into functional materials may be a sensible option. Herein, a series of carbonaceous catalysts (TG) were successfully prepared using spent anode graphite calcined at various temperatures and applied for activating peroxymonosulfate (PMS) to degrade atrazine (ATZ). The catalyst obtained at 800 °C (TG-800) showed the optimum performance for ATZ removal (99.2% in 6 min). Various experimental conditions were explored to achieve the optimum efficiency of the system. In the TG-800/PMS system, free radicals (e.g., SO4·-, HO·), singlet oxygen (1O2), together with a direct electron transfer pathway all participated in ATZ degradation, and the ketonic (CO) group was proved as the leading catalytic site for PMS activation. The potential degradation routes of ATZ have also been presented. According to the toxicity assessment experiments, the toxicity of the intermediate products decreased. The reusability and universal applicability of the TG-800 were also confirmed. This research not only provides an efficient PMS activator for pollutant degradation, but also offers a meaningful reference for the recovery of waste anode graphite to develop environmentally functional materials.
Collapse
Affiliation(s)
- Xufeng Qian
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, PR China
| | - Jingqin Ji
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yanlan Zhao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 550025, PR China.
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, PR China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Shaoqi Zhou
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 550025, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
22
|
Jiang R, Luo G, Chen G, Lin Y, Tong L, Huang A, Zheng Y, Shen Y, Huang S, Ouyang G. Boosting the photocatalytic decontamination efficiency using a supramolecular photoenzyme ensemble. SCIENCE ADVANCES 2024; 10:eadp1796. [PMID: 39259803 PMCID: PMC11389788 DOI: 10.1126/sciadv.adp1796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
Continuous industrialization has raised daunting environmental concerns, and there is an urgent need to develop a sustainable strategy to tackle the contamination issues. Here, we report a supramolecular photoenzyme ensemble enabling the harvest of solar energy to remove contaminations in water. The well-sourced oxidoreductase, laccase, is confined into a photoactive hydrogen-bonded organic framework (PHOF) through an in situ encapsulation method. The direct electron migration between the oxidation center in a PHOF and the reduction center in laccase facilitates synergistic photoenzyme-coupled catalysis, showing two orders of magnitude higher activity than free laccase for pollutant degradation under visible light, without the need for sacrificial agents or costly co-mediators. Such high decontamination efficiency also surpasses the reported catalysts. The structure and decontamination function of this supramolecular photoenzyme ensemble remain highly stable in complex environment matrices, presenting desirable reusability and almost 100% conversion efficiency of pollutants for real sewage samples. Our conceptual photoenzyme hybrid catalyst offers important insights into green and sustainable water decontamination.
Collapse
Affiliation(s)
- Ruifen Jiang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Gan Luo
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuhong Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Linjing Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Anlian Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Zheng
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Yong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
23
|
Shi J, Yang T, Zhao T, Pu K, Shi J, Zhou A, Li H, Wang S, Xue J. Insights on the efficiency and contribution of single active species in photocatalytic degradation of tetracycline: Priority attack active sites, intermediate products and their toxicity evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121970. [PMID: 39106792 DOI: 10.1016/j.jenvman.2024.121970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 08/09/2024]
Abstract
Photocatalysis has been proven to be an excellent technology for treating antibiotic wastewater, but the impact of each active species involved in the process on antibiotic degradation is still unclear. Therefore, the S-scheme heterojunction photocatalyst Ti3C2/g-C3N4/TiO2 was successfully synthesized using melamine and Ti3C2 as precursors by a one-step calcination method using mechanical stirring and ultrasound assistance. Its formation mechanism was studied in detail through multiple characterizations and work function calculations. The heterojunction photocatalyst not only enabled it to retain active species with strong oxidation and reduction abilities, but also significantly promoted the separation and transfer of photo-generated carriers, exhibiting an excellent degradation efficiency of 94.19 % for tetracycline (TC) within 120 min. Importantly, the priority attack sites, degradation pathways, degradation intermediates and their ecological toxicity of TC under the action of each single active species (·O2-, h+, ·OH) were first positively explored and evaluated through design experiments, Fukui function theory calculations, HPLC-MS, Escherichia coli toxicity experiments, and ECOSAR program. The results indicated that the preferred attack sites of ·O2- on TC were O20, C7, C11, O21, and N25 atoms with high f+ value. The toxicity of intermediates produced by ·O2- was also lower than those produced by h+ and ·OH.
Collapse
Affiliation(s)
- Jianhui Shi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China.
| | - Tiantian Yang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Ting Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Kaikai Pu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Jiating Shi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Jinbo Xue
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, 030024, PR China
| |
Collapse
|
24
|
Zhang Y, Wang M, Chen D, Li N, Xu Q, Li H, Lu J. Ternary heterojunction of cross-linked benzene Polymer/Bi 2MoO 6-Graphene oxide catalysts promote efficient adsorption and photocatalytic removal of oxytetracycline. J Colloid Interface Sci 2024; 668:437-447. [PMID: 38688182 DOI: 10.1016/j.jcis.2024.04.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Antibiotics are refractory degradable organic pollutants that present a significant hazard to water environments. In this work, a ternary composite (KB/BMO-GO) comprising of graphene oxide (GO), Bi2MoO6 (BMO), and a cross-linked benzene polymer (KB) was synthesized and applied to promote the synergistic adsorption-photocatalytic degradation of the refractory pollutant, oxytetracycline (OTC). The inclusion of GO and KB in the composite enhanced the OTC adsorption performance of the catalysts, and the construction of Z-scheme heterojunction promoted the photogenerated charge separation efficiency and broadened the range of light absorption, thereby enhancing the photocatalytic performance. Moreover, we compared the performance of catalysts loaded with different mass ratios of KB (x% KB/BMO-GO). Among them, the 15 % KB/BMO-GO catalyst sample had the best OTC degradation performance. Specifically, 15 % KB/BMO-GO could adsorb 69.7 % of OTC in 30 min, reaching an OTC degradation rate of 93.3 % under visible light irradiation. h+ and 1O2 are the main active substances in the photocatalytic process. In addition, the catalysts are acid-alkali and salt-resistant, as well as good reusability. This study provides a valuable reference for the preparation of highly efficient photocatalysts for synergistic adsorption-photodegradation processes.
Collapse
Affiliation(s)
- Yingxue Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengmeng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
25
|
Jiang Y, Sun H, Guo J, Liang Y, Qin P, Yang Y, Luo L, Leng L, Gong X, Wu Z. Vacancy Engineering in 2D Transition Metal Chalcogenide Photocatalyst: Structure Modulation, Function and Synergy Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310396. [PMID: 38607299 DOI: 10.1002/smll.202310396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Transition metal chalcogenides (TMCs) are widely used in photocatalytic fields such as hydrogen evolution, nitrogen fixation, and pollutant degradation due to their suitable bandgaps, tunable electronic and optical properties, and strong reducing ability. The unique 2D malleability structure provides a pre-designed platform for customizable structures. The introduction of vacancy engineering makes up for the shortcomings of photocorrosion and limited light response and provides the greatest support for TMCs in terms of kinetics and thermodynamics in photocatalysis. This work reviews the effect of vacancy engineering on photocatalytic performance based on 2D semiconductor TMCs. The characteristics of vacancy introduction strategies are summarized, and the development of photocatalysis of vacancy engineering TMCs materials in energy conversion, degradation, and biological applications is reviewed. The contribution of vacancies in the optical range and charge transfer kinetics is also discussed from the perspective of structure manipulation. Vacancy engineering not only controls and optimizes the structure of the TMCs, but also improves the optical properties, charge transfer, and surface properties. The synergies between TMCs vacancy engineering and atomic doping, other vacancies, and heterojunction composite techniques are discussed in detail, followed by a summary of current trends and potential for expansion.
Collapse
Affiliation(s)
- Yi Jiang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Haibo Sun
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, P. R. China
| | - Yunshan Liang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Pufeng Qin
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Yuan Yang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Lin Luo
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xiaomin Gong
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Zhibin Wu
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| |
Collapse
|
26
|
Kamranifar M, Ghanbari S, Fatehizadeh A, Taheri E, Azizollahi N, Momeni Z, Khiadani M, Ebrahimpour K, Ganachari SV, Aminabhavi TM. Unique effect of bromide ion on intensification of advanced oxidation processes for pollutants removal: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124136. [PMID: 38734054 DOI: 10.1016/j.envpol.2024.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Advanced oxidation processes (AOPs) have been developed to decompose toxic pollutants to protect the aquatic environment. AOP has been considered an alternative treatment method for wastewater treatment. Bromine is present in natural waters posing toxic effects on human health and hence, its removal from drinking water sources is necessary. Of the many techniques advanced oxidation is covered in this review. This review systematically examines literature published from 1997 to April 2024, sourced from Scopus, PubMed, Science Direct, and Web of Science databases, focusing on the efficacy of AOPs for pollutant removal from aqueous solutions containing bromide ions to investigate the impact of bromide ions on AOPs. Data and information extracted from each article eligible for inclusion in the review include the type of AOP, type of pollutants, and removal efficiency of AOP under the presence and absence of bromide ion. Of the 1784 documents screened, 90 studies met inclusion criteria, providing insights into various AOPs, including UV/chlorine, UV/PS, UV/H2O2, UV/catalyst, and visible light/catalyst processes. The observed impact of bromide ion presence on the efficacy of AOP processes, alongside the AOP method under scrutiny, is contingent upon various factors such as the nature of the target pollutant, catalyst type, and bromide ion concentration. These considerations are crucial in selecting the best method for removing specific pollutants under defined conditions. Challenges were encountered during result analysis included variations in experimental setups, disparities in pollutant types and concentrations, and inconsistencies in reporting AOP performance metrics. Addressing these parameters in research reports will enhance the coherence and utility of subsequent systematic reviews.
Collapse
Affiliation(s)
- Mohammad Kamranifar
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sobhan Ghanbari
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Nastaran Azizollahi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Momeni
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharanabasava V Ganachari
- Center for Energy and Environment,School of Advanced Sciences, KLE Technological University, Hubballi-580031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment,School of Advanced Sciences, KLE Technological University, Hubballi-580031, India; University Center for Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140 413, India; Korea University, Seoul, South Korea
| |
Collapse
|
27
|
Zhong Y, Ma S, Chen D, Feng Y, Zhang W, Sun S, Lv G, Zhang W, Zhang JZ, Ding H. Ultrathin BiOCl-OV/CoAl-LDH S-scheme heterojunction for efficient photocatalytic peroxymonosulfate activation to boost Co (IV)=O generation. WATER RESEARCH 2024; 258:121774. [PMID: 38772316 DOI: 10.1016/j.watres.2024.121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
Sustainable and rapid production of high-valent cobalt-oxo (Co(IV)=O) species for efficiently removing organic pollutants is challenging in permoxymonosulfate (PMS) based advanced-oxidation-processes (AOPs) due to the limitation of the high 3d-orbital electronic occupancy of Co and slow conversion from Co(III) to Co(II). Herein, S-scheme BiOCl-OV/CoAl-LDH heterojunction were constructed by ultrathin BiOCl with the oxygen-vacancy (OV) self-assembled with ultrathin CoAl-LDH. OV promoted the formation of charge transfer channel (Bi-O-Co bonds) at the interface of the heterojunction and reduced electron occupation of the Co 3d-orbital to facilitate the generation of Co(IV)=O in the BiOCl-OV/CoAl-LDH/PMS/Visible-light system. S-scheme heterojunction accelerated the photogenerated electrons to allow rapid conversion of Co(III) to Co(II), promoting the fast two-electron transfer from Co(II) to Co(IV)=O. Consequently, the developed BiOCl-OV/CoAl-LDH/PMS/Visible-light system showed excellent degradation efficiency for most of organic pollutions, and exhibited very high removal capability for the actual industrial wastewater. This study provides a new insight into the evolution of Co(IV)=O and the coordinative mechanism for photocatalysis and PMS activation.
Collapse
Affiliation(s)
- Yi Zhong
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China; Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Shiqing Ma
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Daimei Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China.
| | - Yanmei Feng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Wenyang Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Sijia Sun
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Weibin Zhang
- College of Physics and Electronics Information, Yunnan Key Laboratory of Opto-Electronic Information Technology, Yunnan Normal University, Kunming 650500, China.
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Hao Ding
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
28
|
Sun M, Xie Y, Huang J, Liu C, Dong Y, Li S, Zeng C. Oxygen-deficient AgIO 3 for efficiently photodegrading organic contaminants under natural sunlight. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121393. [PMID: 38850920 DOI: 10.1016/j.jenvman.2024.121393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Defect engineering is regarded as an effective strategy to boost the photo-activity of photocatalysts for organic contaminants removal. In this work, abundant surface oxygen vacancies (Ov) are created on AgIO3 microsheets (AgIO3-OV) by a facile and controllable hydrogen chemical reduction approach. The introduction of surface Ov on AgIO3 broadens the photo-absorption region from ultraviolet to visible light, accelerates the photoinduced charges separation and migration, and also activates the formation of superoxide radicals (•O2-). The AgIO3-OV possesses an outstanding degradation rate constant of 0.035 min-1, for photocatalytic degrading methyl orange (MO) under illumination of natural sunlight with a light intensity is 50 mW/cm2, which is 7 and 3.5 times that of the pristine AgIO3 and C-AgIO3 (AgIO3 is calcined in air without generating Ov). In addition, the AgIO3-OV also exhibit considerable photoactivity for degrading other diverse organic contaminants, including azo dye (rhodamine B (RhB)), antibiotics (sulflsoxazole (SOX), norfloxacin (NOR), chlortetracycline hydrochloride (CTC), tetracycline hydrochloride (TC) and ofloxacin (OFX)), and even the mixture of organic contaminants (MO-RhB and CTC-OFX). After natural sunlight illumination for 50 min, 41.4% of total organic carbon (TOC) for MO-RhB mixed solution can be decreased over AgIO3-OV. In a broad range of solution pH from 3 to 11 or diverse water bodies of MO solution, AgIO3-OV exhibits attractive activity for decomposing MO. The MO photo-degradation process and mechanism over AgIO3-OV under natural sunlight irradiation has been systemically investigated and proposed. The toxicities of MO and its degradation intermediates over AgIO3-OV are compared using Toxicity Estimation Software (T.E.S.T.). Moreover, the non-toxicity of both AgIO3-OV catalyst and treated antibiotic solution (CTC-OFX mixture) are confirmed by E. coli DH5a cultivation test, supporting the feasibility of AgIO3-OV catalyst to treat organic contaminants in real water under natural sunlight illumination.
Collapse
Affiliation(s)
- Miaofei Sun
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunchang Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Jiayang Huang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Chengyin Liu
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Yujing Dong
- School of Science and Technology, Xinyang College, Xinyang, 464000, China.
| | - Shijie Li
- National Engineering Research Center for Marine Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Chao Zeng
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
29
|
Shi J, Zhao T, Yang T, Pu K, Shi J, Zhou A, Li H, Wang S, Xue J. Z-scheme heterojunction photocatalyst formed by MOF-derived C-TiO 2 and Bi 2WO 6 for enhancing degradation of oxytetracycline: Mechanistic insights and toxicity evaluation in the presence of a single active species. J Colloid Interface Sci 2024; 665:41-59. [PMID: 38513407 DOI: 10.1016/j.jcis.2024.03.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
In the work, Bi2WO6/C-TiO2 photocatalyst was successfully synthesized for the first time by loading narrow bandgap semiconductor Bi2WO6 on MOF-derived carboxyl modified TiO2. The phase structure, morphology, photoelectric properties, surface chemical states and photocatalytic performance of the prepared photocatalysts were systematically investigated using various characterization tools. The degradation efficiency of oxytetracycline by 6BT Z-scheme heterojunction photocatalyst under visible light could reach 93.6 % within 100 min, which was related to the high light harvesting and effective separation and transfer of photo-generated carriers. Furthermore, the effects of various environmental factors in actual wastewater were further investigated, and the results showed that 6BT exhibited good adaptability, durability and resistance to interference. Unlike most works, the degradation system with a different single active species were designed and constructed based on their formation mechanism. In addition, for the first time, a positive study was conducted on the priority attack sites, intermediate products, and degradation pathways for the photocatalytic degradation of oxytetracycline by a single active species through HPLC-MS and Fukui index calculations. The toxicity changes of intermediate products produced in three different single active species oxidation systems were evaluated using toxicity assessment software tools (T.E.S.T.), Escherichia coli growth experiments, and wheat growth experiments. Among them, the intermediate products formed through O2- oxidation had the lowest toxicity and the main active sites it attacked were the 20C, 38O, 18C, 41O, and 55O atoms with high f+ values in the oxytetracycline molecular structure. This work provided the insight into the role of each active species in the degradation of antibiotics and offered new ideas for the design and synthesis of efficient and eco-friendly photocatalysts.
Collapse
Affiliation(s)
- Jianhui Shi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China.
| | - Ting Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Tiantian Yang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Kaikai Pu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Jiating Shi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Jinbo Xue
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| |
Collapse
|
30
|
Jin J, Liu C, Dai C, Zeng C, Jia Y, Liu X. Boosting the activity for organic pollutants removal of In 2O 3 by loading Ag particles under natural sunlight irradiation. ENVIRONMENTAL RESEARCH 2024; 251:118649. [PMID: 38458589 DOI: 10.1016/j.envres.2024.118649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
A novel photocatalyst In2O3 with loading Ag particles is prepared via a facile one-step annealing method in air atmosphere. The Ag/In2O3 exhibits considerable photoactivity for decomposing sulfisoxazole (SOX), tetracycline hydrochloride (TC), and rhodamine B (RhB) under natural sunlight irradiation, which is much higher than that of pristine In2O3 and Ag species. After natural sunlight irradiation for 100 min, 70.6% of SOX, 65.6% of TC, and 81.9% of RhB are degraded over Ag/In2O3, and their corresponding chemical oxygen demand (COD) removal ratio achieve 95.4%, 38.4%, and 93.6%, respectively. A batch of experiments for degrading SOX with adjusting pollutant solution pH and adding coexisting anions over Ag/In2O3 are carried out to estimate its practical application prospect. Particularly, the as-prepared Ag/In2O3 possesses a superior stability, which exhibits no noticeable deactivation in decomposing SOX after eight cycles' reactions. In addition, the Ag/In2O3 coated on a frosted glass plate, also possesses a superior activity and stability for SOX removal, which solve the possible second pollution of residual powdered catalyst in water. Ag particles on In2O3 working as electron accepter improve charge separation and transfer efficiency, as well as the photo-absorption and organic pollutants affinity, leading to the boosted photoactivity of Ag/In2O3. The photocatalytic mechanism for degrading SOX and degradation process over Ag/In2O3 has been systemically investigated and proposed. This work offers an archetype for the rational design of highly efficient photocatalysts by metal loading.
Collapse
Affiliation(s)
- Jiahui Jin
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Chengyin Liu
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, Shandong, China
| | - Chunhui Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Chao Zeng
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yushuai Jia
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Xin Liu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
31
|
Zhou Z, Zeng H, Li L, Tang R, Feng C, Gong D, Huang Y, Deng Y. Methyl contributes to the directed phosphorus doping of g-C 3N 4: pH-dependent selective reactive oxygen species enable customized degradation of organic pollutants. WATER RESEARCH 2024; 255:121521. [PMID: 38554634 DOI: 10.1016/j.watres.2024.121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
In the photocatalytic degradation process, constructing a controllable composite oxidation system with radicals and nonradicals to meet the requirement for efficient and selective degradation of diverse pollutants is significant. Herein, a methylated and phosphorus-doped g-C3N4 (NPEA) can exhibit selective radical and nonradical species formation depending on the pH values. The NPEA can spontaneously switch the production of active species according to the pH value of the reaction system, exhibiting steady-state concentrations of ·O2- for 11.83 × 10-2 µmol L-1 s-1 (with 92.7 % selectivity) under alkaline conditions (pH = 11), and steady-state concentrations of 1O2 for 5.18 × 10-2 µmol L-1 s-1 (with 88.7 % selectivity) under acidic conditions (pH = 3). The NPEA exhibits stability and universality in the degradation of pollutants with rate constant for sulfamethazine (k = 0.261 min-1) and atrazine (k = 0.222 min-1). Moreover, the LC-MS and Fukui function demonstrated that the NPEA can tailor degradation pathways for pollutants, achieving selective degradation. This study offers a comprehensive insight into the mechanism of the photocatalytic oxidation system, elucidating the intricate interplay between pollutants and reactive oxygen species.
Collapse
Affiliation(s)
- Zhanpeng Zhou
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China; College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Hao Zeng
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Ling Li
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China; College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Rongdi Tang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chengyang Feng
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Daoxin Gong
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Ying Huang
- College of Resources, Hunan Agricultural University, Changsha 410128, China.
| | - Yaocheng Deng
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
32
|
Liu LX, Liu C, Li B, Dong YM, Wang XH, Zhang X. Tuning interfacial oxygen vacancy level of bismuth oxybromide to enhance photocatalytic degradation of bisphenol A. CHEMOSPHERE 2024; 356:141911. [PMID: 38583539 DOI: 10.1016/j.chemosphere.2024.141911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Oxygen vacancies (OVs) have garnered significant interest for their role as active sites, enhancing the catalytic efficiency of various catalysts. Despite their widespread application in environmental purification processes, the generation of OVs conventionally depends on high-temperature conditions and strong reducing agents for the extraction of surface partial oxygen atoms from catalysts. In this work, bismuth oxybromide (BiOBr) nanosheets with varying levels of OVs were synthesized via a simple and effective solvothermal method. This novel method affords precise control over the conduction band (CB) and valence band (VB) positions of BiOBr. The presence of different OVs exhibited varying photocatalytic efficiencies in the degradation of bisphenol A (BPA) under visible light irradiation, with higher levels of OVs resulting in superior photocatalytic performance. Furthermore, radical scavenger experiments demonstrated that superoxide oxides (O2•-) and holes (h+) were the primary reactive oxygen species for BPA degradation. Additionally, BiOBr-OVs exhibited excellent anti-interference and stability in water matrices containing diverse inorganic anions and organic compounds. This work provides a simple and effective approach for the fine-regulating of catalysts through interfacial defect engineering, paving the way for their practical application in environmental decontamination.
Collapse
Affiliation(s)
- Le-Xuan Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Chang Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Bin Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Ya-Meng Dong
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xin-Hui Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xing Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
33
|
Li YX, Chen X, Jiang ZY, Luan J, Guo F. Rational Design and Synthesis of Fe-Doped Co-Based Coordination Polymer Composite Photocatalysts for the Degradation of Norfloxacin and Ciprofloxacin. Inorg Chem 2024; 63:6514-6525. [PMID: 38547361 DOI: 10.1021/acs.inorgchem.4c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The solar light-responsive Fe-doped Co-based coordination polymer (Fe@Co-CP) photocatalyst was synthesized under mild conditions. [Co(4-padpe)(1,3-BDC)]n (Co-CP) was first constructed using mixed ligands through the hydrothermal method. Then, Fe was introduced into the Co-CP framework to achieve the enhanced photocatalytic activity. The optimal Fe@Co-CP-2 exhibited excellent catalytic degradation performance for norfloxacin and ciprofloxacin under sunlight irradiation without auxiliary oxidants, and the degradation rates were 91.25 and 92.66% in 120 min. These excellent photocatalytic properties were ascribed to the generation of the Fe-O bond, which not only enhanced the light absorption intensity but also accelerated the separation efficiency of electrons and holes, and hence significantly improved the photocatalytic property of the composites. Meanwhile, Fe@Co-CP-2 displayed excellent stability and reusability. In addition, the degradation pathways and intermediates of antibiotic molecules were effectively analyzed. The free radical scavenging experiment and ESR results confirmed that •OH, •O2-, and h+ active species were involved in the catalytic degradation reaction; the corresponding mechanisms were deeply investigated. This study provides a fresh approach for constructing Fe-doped Co-CP-based composite materials as photocatalysts for degradation of antibiotic contaminants.
Collapse
Affiliation(s)
- Ye-Xia Li
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Xin Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China
| | - Zhi-Yang Jiang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Fang Guo
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| |
Collapse
|
34
|
Liu S, Wu J, Ma X, Wang L, Han J, Wang Y. A novel photo-enzyme platform based on non-metallic modified carbon nitride for removal of bisphenol A in water. Int J Biol Macromol 2024; 264:130402. [PMID: 38408583 DOI: 10.1016/j.ijbiomac.2024.130402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
A nonmetallic composite photocatalyst with 2D/2D structure was prepared by hydrothermal in-situ polymerization and used for the immobilization of cytochrome C (Cyt c). The photo-enzyme coupling system has a very high enzyme load, which can reach 528.29 mg g-1 after optimization. Compared with free Cyt c, Cytc/PEDOT/CN showed better enzymatic activity, stability and catalytic efficiency. Even after being stored at 100 °C for 60 min, the enzyme activity remained at 49.42 % and remained at 57.89 % after 8 cycles. Moreover, Cytc0.5/PEDOT3/CN showed excellent photocatalytic degradation performance in the degradation experiment of bisphenol A (BPA), reaching 68.22 % degradation rate within 60 min, which was 3.9 times higher than that of pure g-C3N4 and 1.61 times higher than that of pure PEDOT3/CN. This study shows that the introduction of conductive polymers is of great significance to the photo-enzyme coupling system and provides a new strategy for the treatment of phenol-containing wastewater.
Collapse
Affiliation(s)
- Shiyuan Liu
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiacong Wu
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinnan Ma
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Han
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yun Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
35
|
Shao Y, Li S, Wei X, Zhao Y, Liang J, Li X. The diverse roles of halide ions in the degradation of bisphenol A via UV/peracetic acid process at different pH values: Radical chemistry, and transformation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133053. [PMID: 38113739 DOI: 10.1016/j.jhazmat.2023.133053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/19/2023] [Accepted: 11/19/2023] [Indexed: 12/21/2023]
Abstract
UV/Peracetic Acid (UV/PAA), as an innovative advanced oxidation process (AOP), is employed to treat bisphenol A (BPA) in water through the generation of hydroxyl radicals (•OH) and carbon-centered radicals (R-C•). The impact of halide ions (Cl-; Br-; I-) on the efficiency of UV/PAA was investigated for the first time under varying pH levels. The presence of halide ions exerted an influence on the reactivity of •OH and R-C•, exhibiting varying degrees of impact across different pH conditions. It was discovered that pH exerts a significant influence on its efficiency, with optimal removal performance observed at a pH 9. The degradation of BPA was inhibited by Cl- through the generation of reactive chlorine species (RCS), which triggers the interconversion between •OH and R-C•. Reactive bromine species (RBS) were produced in the presence of Br-, facilitating BPA degradation and generating HOBr as a supplementary source of •OH radicals. I- primarily generate reactive iodine species (RIS) through photolysis, which facilitates the degradation of BPA. The transformation of BPA involves hydroxylation, demethylation, halogenation, and cleavage reactions to form various products and pathways. The toxicity test demonstrates that the UV/PAA treatment of BPA exhibits lower toxicity, thereby indicating its environmentally friendly.
Collapse
Affiliation(s)
- Yanan Shao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Shuai Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xue Wei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yanlan Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
36
|
Wang Y, Liu C, Hu H, Lu Q, Wang H, Zhao C, Du F, Tang N. Fabrication of CuFe 2O 4/Bi 12O 17Cl 2 photocatalyst with intrinsic p-n junction for highly efficient bisphenol A degradation. J Environ Sci (China) 2024; 136:547-558. [PMID: 37923463 DOI: 10.1016/j.jes.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/07/2023]
Abstract
The construction and application of novel highly efficient photocatalysts have been the focus in the field of environmental pollutant removal. In this work, a novel CuFe2O4/Bi12O17Cl2 photocatalysts were synthesized by simple hydrothermal and chemical precipitation method. The fabricated CuFe2O4/Bi12O17Cl2 composite exhibited much higher photocatalytic activity than pristine CuFe2O4 and Bi12O17Cl2 in the removal of bisphenol A (BPA) under visible-light illumination, which ascribed to the intrinsic p-n junction of CuFe2O4 and Bi12O17Cl2. The photocatalytic degradation rate of BPA on CuFe2O4/Bi12O17Cl2 with an optimized CuFe2O4 content (1.0 wt.%) reached 93.0% within 30 min. The capture experiments of active species confirmed that the hydroxyl radicals (•OH) and superoxide radicals (•O2-) played crucial roles in photocatalytic BPA degradation process. Furthermore, the possible degradation mechanism and pathways of BPA was proposed according to the detected intermediates in photocatalytic reaction process.
Collapse
Affiliation(s)
- Yong Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Cheng Liu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Haoyun Hu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Qiujun Lu
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Haiyan Wang
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Chenxi Zhao
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China.
| | - Ningli Tang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
37
|
Ding J, Su G, Zhou Y, Yin H, Wang S, Wang J, Zhang W. Construction of Bi/BiOI/BiOCl Z-scheme photocatalyst with enhanced tetracycline removal under visible light. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122942. [PMID: 37972681 DOI: 10.1016/j.envpol.2023.122942] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Bi/BiOI/BiOCl composite photocatalyst was constructed by one-step stirring approach at ambient environment to remove of tetracycline (TC) antibiotics via photodegradation in aqueous medium. A systematic discussion of the architecture, composition, formation, photochemical performance and photocatalytic activity of Bi/BiOI/BiOCl was carried out. By adjusting the experimental conditions, it was found that the Bi/BiOI/BiOCl photocatalyst obtained by using 0.7 mmol NaBH4, I/Cl = 5% and reacting for 6 h had the greatest removal performance. Under visible light irradiation, the photocatalytic degradation efficiency of TC reached 90.3% within 60 min, surpassing that of single BiOCl and BiOI. Through the active species removal experiment, it was determined that •O2- made a primary contribution to the photocatalytic degradation process. Moreover, the formation of Z-scheme heterojunction in Bi/BiOI/BiOCl was discussed, analyzing the photocatalytic mechanism and TC degradation pathway. The ecological toxicity of TC solution before and after degradation to rice seedlings was preliminarily tested. This study provides an idea for one-step synthesis of bismuth-based composite photocatalysts, with potential applications in the photocatalytic degradation of antibiotics.
Collapse
Affiliation(s)
- Jia Ding
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China; College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Guangxia Su
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Suo Wang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China.
| | - Wenjuan Zhang
- Shandong Green and Blue Bio-technology Co. Ltd, Tai'an, People's Republic of China
| |
Collapse
|
38
|
Xiao X, Guo R, Qi Y, Wei J, Wu N, Zhang S, Qu R. Photocatalytic degradation of alkyl imidazole ionic liquids by TiO 2 nanospheres under simulated solar irradiation: Transformation behavior, DFT calculations and promoting effects of alkali and alkaline earth metal ions. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132616. [PMID: 37757564 DOI: 10.1016/j.jhazmat.2023.132616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
In this study, TiO2 nanospheres prepared by the sol-gel method were found to efficiently catalyze the photodegradation of 1-butyl-2,3-dimethylimidazolium bromide salt ([BMMIm]Br) under simulated solar irradiation through the main attack of hydroxyl radicals (•OH). The promoting effect of alkali metal (Li+→Cs+) and alkaline earth metal ions (Mg2+→Ba2+) was particularly emphasized. In-situ EPR tests showed that the introduction of alkali and alkaline earth metal ions could enhance the formation of •OH thus leading to a 7%-30.3% increase in the degradation efficiency of. [BMMIm]+. Moreover, the removal efficiency of [BMMIm]+ still reached > 96.19% in four real waters. A total of 23 products of [BMMIm]Br were detected, and hydroxyl substitution, bond breaking, direct oxidation and ring opening were considered as the main reactions during the photocatalytic degradation process. The results of toxicity evaluation showed that hydroxylation was a reaction process of increasing toxicity, while the bond breaking reaction had great detoxification capacity for [BMMIm]+. These findings may enhance our understanding on the effects of alkali or alkaline earth metal ions on the photocatalytic activity of TiO2, which could also provide reference for the efficient and green removal of alkylimidazolium ionic liquids in waters.
Collapse
Affiliation(s)
- Xuejing Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
39
|
Xu H, Guo T, Lei X, Guo S, Liu Q, Lu J, Zhang T. Enhancing Electrocatalytic Water Oxidation of NiFe-LDH Nanosheets via Bismuth-Induced Electronic Structure Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58784-58793. [PMID: 38084743 DOI: 10.1021/acsami.3c15403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The design and synthesis of high-efficiency electrocatalysts are of great practical significance in electrocatalytic water splitting, specifically in accelerating the slow oxygen evolution reaction (OER). Herein, a self-supported bismuth-doped NiFe layered double hydroxide (LDH) nanosheet array for water splitting was successfully constructed on nickel foam by a one-step hydrothermal strategy. Benefiting from the abundant active sites of two-dimensional nanosheets and electronic effect of Bi-doped NiFe LDH, the optimal Bi0.2NiFe LDH electrocatalyst exhibits excellent OER performance in basic media. It only requires an overpotential of 255 mV to drive 50 mA cm-2 and a low Tafel slope of 57.49 mV dec-1. The calculation of density functional theory (DFT) further shows that the incorporation of Bi into NiFe LDH could obviously overcome the step of H2O adsorption during OER progress. This work provides a simple and effective strategy for improving the electrocatalytic performance of NiFe LDHs, which is of great practical significance.
Collapse
Affiliation(s)
- Haitao Xu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723001, China
| | - Ting Guo
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723001, China
| | - Xiaoyun Lei
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723001, China
| | - Shaobo Guo
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723001, China
| | - Quan Liu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jiufu Lu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723001, China
| | - Tianlei Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
40
|
Sun H, Qin P, Liang Y, Yang Y, Zhang J, Guo J, Hu X, Jiang Y, Zhou Y, Luo L, Wu Z. Sonochemically assisted the synthesis and catalytic application of bismuth-based photocatalyst: A mini review. ULTRASONICS SONOCHEMISTRY 2023; 100:106600. [PMID: 37741022 PMCID: PMC10520575 DOI: 10.1016/j.ultsonch.2023.106600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Recently, bismuth (Bi)-based photocatalysts have been a well-deserved hotspot in the field of photocatalysis owning to their photoelectrochemical properties driven by the distortion of the Bi 6 s orbital, while their narrow band gap and poor quantum efficiency still restrict their application. With the development of ultrasonic technology, it is expected to become a broom to clear the application obstacles of Bi-based photocatalysts. The special forces and environmental conditions brought by ultrasonic irradiation play beneficial roles in the preparation, modification and performance releasement of Bi-based photocatalysts. In this review, the role and influencing factors of ultrasound in the preparation and modification of Bi-based photocatalysts were introduced. Crucially, the mechanism of the improving the performance for various types of Bi-based photocatalysts by ultrasound in the whole process of photocatalysis was deeply analyzed. Then, the application of ultrasonic synergistic Bi-based photocatalysts in contaminants treatment and energy conversion was briefly introduced. Finally, based on an unambiguous understanding of ultrasonic technology in assisting Bi-based photocatalysts, the future directions and possibilities for ultrasonic synergistic Bi-based photocatalysts are explored.
Collapse
Affiliation(s)
- Haibo Sun
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Pufeng Qin
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Yunshan Liang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, PR China.
| | - Xiaolong Hu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Yi Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Yunfei Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| |
Collapse
|
41
|
Wang A, Du M, Ni J, Liu D, Pan Y, Liang X, Liu D, Ma J, Wang J, Wang W. Enhanced and synergistic catalytic activation by photoexcitation driven S-scheme heterojunction hydrogel interface electric field. Nat Commun 2023; 14:6733. [PMID: 37872207 PMCID: PMC10593843 DOI: 10.1038/s41467-023-42542-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
The regulation of heterogeneous material properties to enhance the peroxymonosulfate (PMS) activation to degrade emerging organic pollutants remains a challenge. To solve this problem, we synthesize S-scheme heterojunction PBA/MoS2@chitosan hydrogel to achieve photoexcitation synergistic PMS activation. The constructed heterojunction photoexcited carriers undergo redox conversion with PMS through S-scheme transfer pathway driven by the directional interface electric field. Multiple synergistic pathways greatly enhance the reactive oxygen species generation, leading to a significant increase in doxycycline degradation rate. Meanwhile, the 3D polymer chain spatial structure of chitosan hydrogel is conducive to rapid PMS capture and electron transport in advanced oxidation process, reducing the use of transition metal activator and limiting the leaching of metal ions. There is reason to believe that the synergistic activation of PMS by S-scheme heterojunction regulated by photoexcitation will provide a new perspective for future material design and research on enhancing heterologous catalysis oxidation process.
Collapse
Affiliation(s)
- Aiwen Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Meng Du
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jiaxin Ni
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Yunhao Pan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Xiongying Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich, 8093, Switzerland.
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland.
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| |
Collapse
|
42
|
Phonlakan K, Meetam P, Chonlaphak R, Kongseng P, Chantarak S, Budsombat S. Poly(acrylic acid- co-2-acrylamido-2-methyl-1-propanesulfonic acid)-grafted chitosan hydrogels for effective adsorption and photocatalytic degradation of dyes. RSC Adv 2023; 13:31002-31016. [PMID: 37876655 PMCID: PMC10591295 DOI: 10.1039/d3ra05596e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
As a result of the growth of industrialization and urbanization, the water ecosystem is contaminated by various pollutants, including heavy metal ions and dyes. The use of low-cost and environmentally friendly dye adsorbents has been investigated. A hydrogel was fabricated via graft polymerization of acrylic acid (AA) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) onto chitosan. The hydrogel was used as a dye adsorbent and support for a zinc oxide (ZnO) powder photocatalyst. The adsorption capacity of the bare hydrogel was greater towards cationic dyes than anionic dyes. Grafting P(AA-co-AMPS) exhibited a 23-time increase in adsorption capacity towards crystal violet (CV) compared to pristine chitosan. The effect of the AA-AMPS molar ratio on CV adsorption was studied. A hydrogel with an AA-AMPS ratio of 10 : 1 had the highest adsorption capacity towards CV in water, removing 91% of the dye in 12 h. The maximum adsorption capacity was 2023 mg g-1. The adsorption kinetics and isotherm were described by the pseudo-second-order model and the Langmuir model, respectively. ZnO particles were in situ synthesized within the 10 : 1 hydrogel to facilitate the recovery of the photocatalyst. The ZnO hydrogel composite could remove 95% and 92% of CV from solutions on the 1st and 2nd cycle, respectively. In addition, the hydrogel composite containing only 8.7 wt% of ZnO particles effectively degraded adsorbed CV under sunlight and could be reused without requiring a chemical regeneration or photocatalyst recovery procedure. This hydrogel composite is an effective dual-functional material for the adsorption and photodegradation of dye pollutants in wastewater.
Collapse
Affiliation(s)
- Kunlarat Phonlakan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Panjalak Meetam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Rungthip Chonlaphak
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Piyawan Kongseng
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Sirinya Chantarak
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Surangkhana Budsombat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
43
|
Meng J, Zhang X, Yang G, Qin L, Pan Y, Guo Y. Porous cyclopentadiene unit-incorporated graphitic carbon nitride nanosheets for efficient photocatalytic oxidation of recalcitrant organic micropollutants in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132365. [PMID: 37639791 DOI: 10.1016/j.jhazmat.2023.132365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
For the purpose of searching for efficient photocatalysts to deal with recalcitrant organic micropollutants in wastewater, here an in-situ supramolecule self-assembly-thermal polymerization strategy is developed to prepare a series of porous cyclopentadiene (CPD) unit-incorporated g-C3N4 ultrathin nanosheets (CCPD-g-C3N4). The CCPD-g-C3N4 demonstrate CPD unit doping level-dependent and remarkably enhanced visible-light photocatalytic oxidation efficiency towards two organic micropollutants, acetaminophen and methylparaben, in which the optimized CCPD-g-C3N4-2 shows 6.1 and 3.5 times higher acetaminophen and methylparaben degradation rate than bulk g-C3N4; moreover, CCPD-g-C3N4-2 is still robust and efficient in the treatment of five mixed organic micropollutants in pharmaceutical wastewater, and the satisfactory micropollutant removal efficiency is obtained in a wide pH window and the presence of high concentrations of inorganic anions and cations as well as dissolved organic matters. Theoretical calculation combined with experimental test reveal that CCPD-g-C3N4 can significantly reduce ecological risk of the target pollutant after the photocatalytic degradation reaction. Such enhanced photocatalytic oxidation efficiency is dominated by the accelerated charge carrier separation dynamics and extended visible-light response region due to the incorporation of CPD units, which finally lead to the generation of abundant reactive oxygen species to degrade and mineralize target micropollutants efficiently.
Collapse
Affiliation(s)
- Jiaqi Meng
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, PR China
| | - Xueyan Zhang
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, PR China
| | - Guang Yang
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, PR China
| | - Lang Qin
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, PR China
| | - Yue Pan
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, PR China
| | - Yihang Guo
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, PR China.
| |
Collapse
|
44
|
Wu X, Wang X, Lynch I, Guo Z, Zhang P, Wu L, Ning P, Ren N. Exceptional photo-elimination of antibiotic by a novel Z-scheme heterojunction catalyst composed of nanoscale zero valent iron embedded with carbon quantum dots (CQDs)-black TiO 2. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132323. [PMID: 37666174 DOI: 10.1016/j.jhazmat.2023.132323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023]
Abstract
Passivation of nanoscale zero valent iron (nZVI, Fe0) impaired its longevity while black TiO2 (b-TiO2) suffered from restricted optical properties. Using a facile approach, a novel Z-scheme heterojunction catalyst (Fe0@CQDs-TiO2(b)) of nZVI decorated with carbon quantum dots (CQDs) implanted into b-TiO2 was designed. Characterization results revealed the optical potential of the passivation coating of nZVI. The incorporation of CQDs stimulated the creation of active •OH during the dark reaction, and led to an accelerated mobility of photo-excited carriers of b-TiO2 and optimized its band gap (narrowing from 2.36 eV to 2.15 eV) during the light reaction. The photo-elimination capacity of metronidazole (MNZ) on Fe0@CQDs-TiO2(b) (99.36%) was 2.64, 8.25 and 1.34 fold beyond that on nZVI, b-TiO2 and Fe0@b-TiO2, respectively. The assembled material offered excellent adaptability to environmental substrates, in addition to being virtually unaffected by tap (95.62%) and river water (92.62%). The mechanism of MNZ degradation was elaborated, and the combination of density functional theory (DFT) calculations and LC-MS discerned 12 intermediates and 3 routes. Toxicity assessment of these products was conducted to ensure no inadvertent negative environmental impacts arose. This work proposed an original direction and mechanism for the application of passivation layers in nZVI-based materials for environmental restoration.
Collapse
Affiliation(s)
- Xi Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiangyu Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Lisi Wu
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Nanqi Ren
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
45
|
Liu G, Zhang X, Liu H, He Z, Show PL, Vasseghian Y, Wang C. Biochar/layered double hydroxides composites as catalysts for treatment of organic wastewater by advanced oxidation processes: A review. ENVIRONMENTAL RESEARCH 2023; 234:116534. [PMID: 37399983 DOI: 10.1016/j.envres.2023.116534] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Heterogeneous advanced oxidation process has been widely studied as an effective method for removing organic pollutants in wastewater, but the development of efficient catalysts is still challenging. This review summaries the present status of researches on biochar/layered double hydroxides composites (BLDHCs) as catalysts for treatment of organic wastewater. The synthesis methods of layered double hydroxides, the characterizations of BLDHCs, the impacts of process factors influencing catalytic performance, and research advances in various advanced oxidation processes are discussed in this work. The integration of layered double hydroxides and biochar provides synthetic effects for improving pollutant removal. The enhanced pollutant degradation in heterogeneous Fenton, sulfate radical-based, sono-assisted, and photo-assisted processes using BLDHCs have been verified. Pollutant degradation in heterogeneous advanced oxidation processes using BLDHCs is influenced by process factors such as catalyst dosage, oxidant addition, solution pH, reaction time, temperature, and co-existing substances. BLDHCs are promising catalysts due to the unique features including easy preparation, distinct structure, adjustable metal ions, and high stability. Currently, catalytic degradation of organic pollutants using BLDHCs is still in its infancy. More researches should be conducted on the controllable synthesis of BLDHCs, the in-depth understanding of catalytic mechanism, the improvement of catalytic performance, and large-scale application of treating real wastewater.
Collapse
Affiliation(s)
- Gonggang Liu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongwen Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhangxing He
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
46
|
Jie Z, Yang L, Huiyuan T, Mengyan X, Xiuhong D, Zehua W, Chunguang L, Xianying D, Jiehu C. Layered by layered construction of three novel ZnCo-LDHs/g-C 3N 4 for the removal of sunset yellow by adsorption-photocatalytic process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100450-100465. [PMID: 37632611 DOI: 10.1007/s11356-023-29347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023]
Abstract
The removal of organic dyes has attracted attention by adsorption-photocatalytic synergetic process in water treatment technology. Three novel ZnCo-LDHs/g-C3N4 were successfully prepared for the first time by layered construction technique through the hydrolysis of triethanolamine in this paper. They exhibited high specific surface area which facilitates the adsorption of sunset yellow (SY) from solution to catalyst surface. All the target pollutant dyes are very effectively removed by the three ZnCo-LDHs/g-C3N4 composites through synergetic effect of adsorption and photocatalysis process under UV irradiation (λ = 365 nm). The order of synergistic degradation effect for SY is as follows: ZnCo-LDHs/g-C3N4-3 (99.6%) > ZnCo-LDHs/g-C3N4-2 (99.5%) > ZnCo-LDHs/g-C3N4-1 (99.3%) > pure g-C3N4 (77.4%) > pure ZnCo-LDHs (44.2.6%) at the initial concentration of 75 mg L-1. ZnCo-LDHs/g-C3N4-3 has the largest k value (0.0284 min-1) in SY degradation, which is 2.8 times that of g-C3N4. ZnCo-LDHs/g-C3N4-3 is a very promising adsorption-photocatalyst for the removal of SY from wastewater. The electron spin resonance experiments demonstrate that OH·, 1O2, and O2- are the dominant active species and oxides SY together. This result demonstrates that the three ZnCo-LDHs/g-C3N4 have practical applications as efficient adsorption-photocatalytic materials and also provides a synergetic strategy for the removal of SY wastewater.
Collapse
Affiliation(s)
- Zhu Jie
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, People's Republic of China
| | - Li Yang
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, People's Republic of China
| | - Tian Huiyuan
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, People's Republic of China
| | - Xia Mengyan
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, People's Republic of China
| | - Du Xiuhong
- Clinical Laboratory Medicine, Henan Medical College, Zhengzhou, People's Republic of China
| | - Wang Zehua
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, People's Republic of China
| | - Li Chunguang
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, People's Republic of China
| | - Duan Xianying
- School of Medicine, Huanghe Science and Technology University, Zhengzhou, People's Republic of China.
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, Henan, 450002, People's Republic of China.
| | - Cui Jiehu
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, People's Republic of China.
- Henan Engineering Research Center for Ceramic Materials Interface, Zhengzhou University of Aeronautics, Zhengzhou, People's Republic of China.
| |
Collapse
|
47
|
Lv M, Liu H, He L, Zheng B, Tan Q, Hassan M, Chen F, Gong Z. Efficient photocatalytic degradation of ciprofloxacin by graphite felt-supported MnS/Polypyrrole composite: Dominant reactive species and reaction mechanisms. ENVIRONMENTAL RESEARCH 2023; 231:116218. [PMID: 37224952 DOI: 10.1016/j.envres.2023.116218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
The accumulation of antibiotics in aquatic environments poses a serious threat to human health. Photocatalytic degradation is a promising method for removing antibiotics from water, but its practical implementation requires improvements in photocatalyst activity and recovery. Here, a novel graphite felt-supported MnS/Polypyrrole composite (MnS/PPy/GF) was constructed to achieve effective adsorption of antibiotics, stable loading of photocatalyst, and rapid separation of spatial charge. Systematic characterization of composition, structure and photoelectric properties indicated the efficient light absorption, charge separation and migration of the MnS/PPy/GF, which achieved 86.2% removal of antibiotic ciprofloxacin (CFX), higher than that of MnS/GF (73.7%) and PPy/GF (34.8%). The charge transfer-generated 1O2, energy transfer-generated 1O2, and photogenerated h+ were identified as the dominant reactive species, which mainly attacked the piperazine ring in the photodegradation of CFX by MnS/PPy/GF. The •OH was confirmed to participate in the defluorination of CFX via hydroxylation substitution. The MnS/PPy/GF-based photocatalytic process could ultimately achieve the mineralization of CFX. The facile recyclability, robust stability, and excellent adaptability to actual aquatic environments further confirmed MnS/PPy/GF is a promising eco-friendly photocatalyst for antibiotic pollution control.
Collapse
Affiliation(s)
- Miao Lv
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Hongchang Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Lei He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Binbin Zheng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu, 610072, China
| | - Muhammad Hassan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Fan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China; State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
48
|
Eskandari P, Amarloo E, Zangeneh H, Rezakazemi M, Aminabhavi TM. Photocatalytic degradation of metronidazole and oxytetracycline by novel l-Arginine (C, N codoped)-TiO 2/g-C 3N 4: RSM optimization, photodegradation mechanism, biodegradability evaluation. CHEMOSPHERE 2023:139282. [PMID: 37348615 DOI: 10.1016/j.chemosphere.2023.139282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/20/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Removal of Metronidazole (MNZ) and Oxytetracycline (OTC) from wastewater by the prepared (C, N codoped)-TiO2/g-C3N4 (Graphitic carbon nitride) was examined. l-Arginine (C, N codoped)-TiO2 and l-Arginine (C, N codoped)-TiO2/g-C3N4 photocatalysts were successfully synthesized through the sol-gel method, and optimal ratio of l-arginine:TiO2, as well as l-arginine/TiO2:g-C3N4, was determined by a kinetic study of photodegradation process. The maximum photocatalytic removal rate (0.065 min-1 for MNZ removal) was observed using 1% l-Arginine-TiO2/g-C3N4 (1:1) under visible light illumination, 2.2 and 6.5 times greater than those of 1% l-Arginine-TiO2 and pure TiO2, respectively. l-Arginine (1%)-TiO2/g-C3N4 (1:1) (co-doped-TCN) was investigated using X-ray diffraction analysis (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray (EDX), Photo-luminescence (PL), and Differential Reflectance Spectroscopy (DRS) as the best-performing photocatalyst. Response surface methodology (RSM) was used to study the effect of co-doped-TCN dosage (0.5-1.0 g/L), pH of simulated wastewater (4-10), initial concentration of MNZ and OTC (50-100 mg/L), and irradiation time (30-90 min for MNZ and 20-40 min for OTC) on removal efficiency of the antibiotics. Also, their optimum values were determined by RSM. The treated pharmaceutical wastewater showed high biodegradability features with 5-day biological oxygen demand/chemical oxygen demand (BOD5/COD) of 0.51 and 0.46 after 40 and 100 min reaction for OTC and MNZ, respectively. The order of reactive species responsible for the photodegradation of pollutants was •O2─> •OH > h+>1O2. The effect of inorganic anions showed that all anions decreased the removal efficiency of both antibiotics in order of NO3─> Cl─ >SO42─>HPO42─ >HCO3─ for MNZ and NO3─> SO42─ > Cl─ >HPO42─ >HCO3─ for OTC. Also, introducing different oxidants improved the photocatalytic removal efficiency with the order of H2O2>K2S2O8> KBrO3.
Collapse
Affiliation(s)
- Parisa Eskandari
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ehsan Amarloo
- Department of Chemical Engineering, Sharif University of Technology, Tehran, 11155, Iran
| | - Hadis Zangeneh
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India
| |
Collapse
|
49
|
Liu Y, Li G, Wang D, Zhong Z, Hu K, Zhang C, Hu G, Li X, Wan Y. Lanthanide-doped upconversion glass-ceramic photocatalyst fabricated from fluorine-containing waste for the degradation of organic pollutants. J Colloid Interface Sci 2023; 638:461-474. [PMID: 36758258 DOI: 10.1016/j.jcis.2023.01.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/06/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Fluorine-containing waste is one kind of hazardous waste characteristic by hard disposal and utilization, it is an attractive way to prepare for fluoride-based luminescent matrix. In this work, to realize the high value-added utilization of fluorine-containing waste and reduce cost of the raw materials for preparation near-infrared (NIR) glass-ceramic (GC) photocatalyst, the pure fluoride of luminescent matrix was replaced by introducing fluorine-containing waste. The waste contained NIR GC photocatalyst was synthesis by the method of facile in-situ etching of an upconversion GC with HCl, which possesses core-shell structure, where the GC micro-powder including optically active centers lanthanides doped CaF2 nanocrystals are displayed as the core, and the BiOCl is as the superficial coating. The upconversion emission performance of CaF2 based luminescent matrix in photocatalyst is not weakened with HCl etching. NIR GC photocatalyst has high methyl orange and enrofloxacin degradation rate of 86 % and 82 % over 180 min after NIR light irradiation, respectively. The UV-Vis-NIR photocatalytic activity was enhanced degradation rate (93 % in 15 min) of enrofloxacin compared with those of commercial P25 and BiOCl. In addition, the photocatalyst had stable photocatalytic activity and it also can be regenerated. The study provided references for high value-added utilization fluorine-containing waste.
Collapse
Affiliation(s)
- Yucheng Liu
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Guobiao Li
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
| | - Dong Wang
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenchen Zhong
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Kaibo Hu
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Chuanqi Zhang
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Guoping Hu
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Xuewei Li
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Yinhua Wan
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
| |
Collapse
|
50
|
Sarker A, Al Masud MA, Deepo DM, Das K, Nandi R, Ansary MWR, Islam ARMT, Islam T. Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. CHEMOSPHERE 2023; 332:138861. [PMID: 37150456 DOI: 10.1016/j.chemosphere.2023.138861] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Contamination of the natural ecosystem by heavy metals, organic pollutants, and hazardous waste severely impacts on health and survival of humans, animals, plants, and microorganisms. Diverse chemical and physical treatments are employed in many countries, however, the acceptance of these treatments are usually poor because of taking longer time, high cost, and ineffectiveness in contaminated areas with a very high level of metal contents. Bioremediation is an eco-friendly and efficient method of reclaiming contaminated soils and waters with heavy metals through biological mechanisms using potential microorganisms and plant species. Considering the high efficacy, low cost, and abundant availability of biological materials, particularly bacteria, algae, yeasts, and fungi, either in natural or genetically engineered (GE) form, bioremediation is receiving high attention for heavy metal removal. This report comprehensively reviews and critically discusses the biological and green remediation tactics, contemporary technological advances, and their principal applications either in-situ or ex-situ for the remediation of heavy metal contamination in soil and water. A modified PRISMA review protocol is adapted to critically assess the existing research gaps in heavy metals remediation using green and biological drivers. This study pioneers a schematic illustration of the underlying mechanisms of heavy metal bioremediation. Precisely, it pinpoints the research bottleneck during its real-world application as a low-cost and sustainable technology.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55365, Republic of Korea
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Deen Mohammad Deepo
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Rakhi Nandi
- Bangladesh Academy for Rural Development (BARD), Kotbari, Cumilla, Bangladesh
| | - Most Waheda Rahman Ansary
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | | | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| |
Collapse
|