1
|
Nurisyah S, Iyori M, Hasyim AA, Amru K, Itani K, Nakamura K, Zainal KH, Halik H, Djaharuddin I, Bukhari A, Asih PBS, Syafruddin D, Yoshida S, Idris I, Yusuf Y. Evaluation of an E. coli-expressed spike protein-based in-house ELISA system for assessment of antibody responses after COVID-19 infection and vaccination. NARRA J 2025; 5:e1250. [PMID: 40352206 PMCID: PMC12059849 DOI: 10.52225/narra.v5i1.1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/18/2025] [Indexed: 05/14/2025]
Abstract
Evaluating long-term immunity after COVID-19 infection and vaccination is critical for managing potential outbreaks. The aim of this study was to develop a cost-effective in-house enzyme-linked immunosorbent assay (ELISA) based on Escherichia coli-expressed SARS-CoV-2 spike protein (E-S1) for antibody detection and to evaluate its performance. The system was validated by comparing the in-house ELISA results with those obtained using a commercial ELISA with HEK293-expressed spike protein (H-S1). Recombinant SARS-CoV-2 spike protein was produced in E. coli, purified, and validated for antigenicity via ELISA. Indirect ELISAs with both E-S1 and H-S1 antigens were performed on 386 serum samples from COVID-19 survivors, vaccinated individuals, and pre-pandemic controls collected at different time points. The E-S1 ELISA showed a statistically significant but weak correlation with H-S1 ELISA across all samples (r=0.205; p=0.0001). Stronger correlations were observed among vaccinated individuals with prior infection on day 90 (r=0.6017; p<0.001) and in naïve vaccine recipients on day 30 (r=0.5361; p=0.0003). Pre-pandemic sera from a rural population in Sumba Island exhibited high background reactivity in E-S1 ELISA, likely due to anti-E. coli antibodies, while urban pre-pandemic sera from Jakarta showed a stronger correlation with H-S1 ELISA. This suggests potential regional or immune background differences influencing assay performance. Although E-S1 retained antigenic properties, its diagnostic utility is limited by non-specific reactivity and reduced sensitivity compared to H-S1. In conclusion, E. coli expression systems may not be ideal for producing spike protein-based ELISA antigens specific to SARS-CoV-2. Alternative expression systems, such as human or baculovirus, could enhance diagnostic accuracy and specificity for COVID-19 antibody detection.
Collapse
Affiliation(s)
- Sitti Nurisyah
- Department of Pulmonology and Respiratory Medicine, Universitas Hasanuddin, Makassar, Indonesia
- Dr. Tadjuddin Chalid Hospital, Makassar, Indonesia
| | - Mitsuhiro Iyori
- Research Institute of Pharmaceutical Science, Musashino University, Nishitokyo, Japan
| | - Ammar A. Hasyim
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Ishikawa, Japan
| | - Khaeriah Amru
- Dr. Tadjuddin Chalid Hospital, Makassar, Indonesia
- Department of Medical Education, Universitas Hasanuddin, Makassar, Indonesia
| | - Kei Itani
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Ishikawa, Japan
| | - Kurumi Nakamura
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Ishikawa, Japan
| | - Kartika H. Zainal
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Ishikawa, Japan
| | | | - Irawaty Djaharuddin
- Department of Pulmonology and Respiratory Medicine, Universitas Hasanuddin, Makassar, Indonesia
- Dr. Wahidin Soedirohusodo Hospital, Makassar, Indonesia
| | - Agussalim Bukhari
- Department of Clinical Nutrition, Universitas Hasanuddin, Makassar, Indonesia
| | - Puji BS. Asih
- National Research and Innovation Agency, Jakarta, Indonesia
| | - Din Syafruddin
- Department of Parasitology, Universitas Hasanuddin, Makassar, Indonesia
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Ishikawa, Japan
| | - Irfan Idris
- Department of Physiology, Universitas Hasanuddin, Makassar, Indonesia
| | - Yenni Yusuf
- Department of Parasitology, Universitas Hasanuddin, Makassar, Indonesia
| |
Collapse
|
2
|
Guercetti J, Alorda M, Sappia L, Galve R, Duran-Corbera M, Pulido D, Berardi G, Royo M, Lacoma A, Muñoz J, Padilla E, Castañeda S, Sendra E, Horcajada JP, Gutierrez-Galvez A, Marco S, Salvador JP, Marco MP. Immuno-μSARS2 Chip: A Peptide-Based Microarray to Assess COVID-19 Prognosis Based on Immunological Fingerprints. ACS Pharmacol Transl Sci 2025; 8:871-884. [PMID: 40109734 PMCID: PMC11915183 DOI: 10.1021/acsptsci.4c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
A multiplexed microarray chip (Immuno-μSARS2) aiming at providing information on the prognosis of the COVID-19 has been developed. The diagnostic technology records information related to the profile of the immunological response of patients infected by the SARS-CoV-2 virus. The diagnostic technology delivers information on the avidity of the sera against 28 different peptide epitopes and 7 proteins printed on a 25 mm2 area of a glass slide. The peptide epitopes (12-15 mer) derived from structural proteins (Spike and Nucleocapsid) have been rationally designed, synthesized, and used to develop Immuno-μSARS2 as a multiplexed and high-throughput fluorescent microarray platform. The analysis of 755 human serum samples (321 from PCR+ patients; 288 from PCR- patients; 115 from prepandemic individuals and classified as hospitalized, admitted to intensive-care unit (ICU), and exitus) from three independent cohorts has shown that the chips perform with a 98% specificity and 91% sensitivity identifying RT-PCR+ patients. Computational analysis utilized to correlate the immunological signatures of the samples analyzed indicate significant prediction rates against exitus conditions with 82% accuracy, ICU admissions with 80% accuracy, and 73% accuracy over hospitalization requirement compared to asymptomatic patients' fingerprints. The miniaturized microarray chip allows simultaneous determination of 96 samples (24 samples/slide) in 90 min and requires only 10 μL of sera. The diagnostic approach presented for the first time here could have a great value in assisting clinicians in decision-making based on the information provided by the Immuno-μSARS2 regarding progression of the disease and could be easily implemented in diagnostics of other infectious diseases.
Collapse
Affiliation(s)
- Julian Guercetti
- Nanobiotechnology for Diagnostics Group, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marc Alorda
- Nanobiotechnology for Diagnostics Group, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Marti i Franqués 1-11, 08028 Barcelona, Spain
| | - Luciano Sappia
- Nanobiotechnology for Diagnostics Group, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Roger Galve
- Nanobiotechnology for Diagnostics Group, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Macarena Duran-Corbera
- Multivalent Systems for Nanomedicine (MS4N), Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Pulido
- Multivalent Systems for Nanomedicine (MS4N), Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ginevra Berardi
- Multivalent Systems for Nanomedicine (MS4N), Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miriam Royo
- Multivalent Systems for Nanomedicine (MS4N), Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alicia Lacoma
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut Germans Trias i Pujol, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Muñoz
- Servicio de Microbiología del Laboratorio de Referencia de Catalunya, 08820 Barcelona, Spain
| | - Eduardo Padilla
- Servicio de Microbiología del Laboratorio de Referencia de Catalunya, 08820 Barcelona, Spain
| | - Silvia Castañeda
- Servicio de Enfermedades Infecciosas del Hospital del Mar de Barcelona, COVID-MAR group, 08003 Barcelona, Spain
| | - Elena Sendra
- Servicio de Enfermedades Infecciosas del Hospital del Mar de Barcelona, COVID-MAR group, 08003 Barcelona, Spain
| | - Juan P Horcajada
- Servicio de Enfermedades Infecciosas del Hospital del Mar de Barcelona, COVID-MAR group, 08003 Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Agustín Gutierrez-Galvez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Marti i Franqués 1-11, 08028 Barcelona, Spain
| | - Santiago Marco
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Marti i Franqués 1-11, 08028 Barcelona, Spain
| | - J-Pablo Salvador
- Nanobiotechnology for Diagnostics Group, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - M-Pilar Marco
- Nanobiotechnology for Diagnostics Group, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Wang H, Gao H, Li M, Cheng L, Zhang X, Zhang X, Zhan H, Liu Y, Wang Y, Ren J, Hu D, He F, Dai E, Li Y, Yu X. Proteome-Wide Analysis of Antibody Responses in Asymptomatic Omicron BA.2-Infected Individuals at the Amino Acid Resolution. J Proteome Res 2025; 24:189-201. [PMID: 39661118 DOI: 10.1021/acs.jproteome.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Humoral immunity plays a critical role in clearing SARS-CoV-2 during viral invasion. However, the proteome-wide characteristics of antibody responses in individuals infected with Omicron variant, both asymptomatic and symptomatic, remain poorly understood. We profiled the serum antibodies from 108 individuals, including healthy controls and those infected with Omicron BA.2, using a SARS-CoV-2 proteome microarray at the amino acid resolution. We constructed a landscape of B-cell epitopes across the SARS-CoV-2 proteome in symptomatic and asymptomatic individuals. Immunodominant epitopes were mainly derived from S, N, Nsp3, M, and ORF3a proteins, with some epitopes overlapping with T-cell epitopes. Using machine learning, we identified a proteomic signature capable of distinguishing asymptomatic individuals from healthy controls in both training and validation cohorts, achieving AUCs of 0.988 and 0.857, respectively. These findings provide crucial immunological insights into BA.2 infections of the Omicron and have implications for future COVID-19 diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hongye Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang 050021, China
| | - Mansheng Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Linlin Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Xin Zhang
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang 050021, China
| | - Xiaomei Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Haoting Zhan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Yongmei Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Yuling Wang
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang 050021, China
| | - Jing Ren
- ProteomicsEra Medical Co., Ltd, Beijing 102206, China
| | - Di Hu
- ProteomicsEra Medical Co., Ltd, Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang 050021, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Xiaobo Yu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
4
|
Shrewsbury JV, Vitus ES, Koziol AL, Nenarokova A, Jess T, Elmahdi R. Comprehensive phage display viral antibody profiling using VirScan: potential applications in chronic immune-mediated disease. J Virol 2024; 98:e0110224. [PMID: 39431820 PMCID: PMC11575288 DOI: 10.1128/jvi.01102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Phage immunoprecipitation sequencing (PhIP-Seq) is a high-throughput platform that uses programmable phage display for serology. VirScan, a specific PhIP-Seq library encoding viral peptides from all known human viruses, enables comprehensive quantification of past viral exposures. We review its use in immune-mediated diseases (IMDs), highlighting its utility in identifying viral exposures in the context of IMD development. Finally, we evaluate its potential for precision medicine by integrating it with other large-scale omics data sets.
Collapse
Affiliation(s)
- Jed Valentiner Shrewsbury
- Faculty of Medicine, Imperial College London, London, United Kingdom
- Ashford and St. Peter’s Hospitals NHS Foundation Trust, Chertsey, United Kingdom
| | - Evangelin Shaloom Vitus
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Adam Leslie Koziol
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | - Tine Jess
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Rahma Elmahdi
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
5
|
Klepper A, Asaki J, Kung AF, Vazquez SE, Bodansky A, Mitchell A, Mann SA, Zorn K, Avila-Vargas I, Kari S, Tekeste M, Castro J, Lee B, Duarte M, Khalili M, Yang M, Wolters P, Price J, Perito E, Feng S, Maher JJ, Lai JC, Weiler-Normann C, Lohse AW, DeRisi J, Tana M. Novel autoantibody targets identified in patients with autoimmune hepatitis (AIH) by PhIP-Seq reveals pathogenic insights. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.06.12.23291297. [PMID: 37398174 PMCID: PMC10312872 DOI: 10.1101/2023.06.12.23291297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background and Aims Autoimmune hepatitis (AIH) is a severe disease characterized by elevated immunoglobin levels. However, the role of autoantibodies in the pathophysiology of AIH remains uncertain. Methods Phage Immunoprecipitation-Sequencing (PhIP-seq) was employed to identify autoantibodies in the serum of patients with AIH (n = 115), compared to patients with other liver diseases (metabolic associated steatotic liver disease (MASH) n = 178, primary biliary cholangitis (PBC), n = 26, or healthy controls, n = 94). Results Logistic regression using PhIP-seq enriched peptides as inputs yielded a classification AUC of 0.81, indicating the presence of a predictive humoral immune signature for AIH. Embedded within this signature were disease relevant targets, including SLA/LP, the target of a well-recognized autoantibody in AIH, disco interacting protein 2 homolog A (DIP2A), and the relaxin family peptide receptor 1 (RXFP1). The autoreactive fragment of DIP2A was a 9-amino acid stretch nearly identical to the U27 protein of human herpes virus 6 (HHV-6). Fine mapping of this epitope suggests the HHV-6 U27 sequence is preferentially enriched relative to the corresponding DIP2A sequence. Antibodies against RXFP1, a receptor involved in anti-fibrotic signaling, were also highly specific to AIH. The enriched peptides are within a motif adjacent to the receptor binding domain, required for signaling and serum from AIH patients positive for anti-RFXP1 antibody was able to significantly inhibit relaxin-2 singling. Depletion of IgG from anti-RXFP1 positive serum abrogated this effect. Conclusions These data provide evidence for a novel serological profile in AIH, including a possible functional role for anti-RXFP1, and antibodies that cross react with HHV6 U27 protein.
Collapse
Affiliation(s)
- Arielle Klepper
- Department of Medicine, University of California, San Francisco, USA
- UCSF Liver Center
| | - James Asaki
- Department of Biochemistry, University of California, San Francisco, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, USA
| | - Andrew F Kung
- Department of Biochemistry, University of California, San Francisco, USA
| | - Sara E Vazquez
- Department of Dermatology, Mass General Hospital, Boston, MA
| | - Aaron Bodansky
- Department of Pediatrics, University of California, San Francisco, USA
| | | | - Sabrina A Mann
- Department of Biochemistry, University of California, San Francisco, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Kelsey Zorn
- Department of Biochemistry, University of California, San Francisco, USA
| | | | - Swathi Kari
- Department of Medicine, University of California, San Francisco, USA
| | - Melawit Tekeste
- Department of Medicine, University of California, San Francisco, USA
| | - Javier Castro
- Department of Medicine, University of California, San Francisco, USA
| | - Briton Lee
- Department of Medicine, University of California, San Francisco, USA
| | - Maria Duarte
- Department of Medicine, University of California, San Francisco, USA
- UCSF Liver Center
| | - Mandana Khalili
- Department of Medicine, University of California, San Francisco, USA
- UCSF Liver Center
| | - Monica Yang
- Department of Medicine, University of California, San Francisco, USA
| | - Paul Wolters
- Department of Medicine, University of California, San Francisco, USA
| | - Jennifer Price
- Department of Medicine, University of California, San Francisco, USA
- UCSF Liver Center
| | - Emily Perito
- Department of Pediatrics, University of California, San Francisco, USA
- UCSF Liver Center
| | - Sandy Feng
- Department of Surgery, University of California, San Francisco, USA
- UCSF Liver Center
| | - Jacquelyn J Maher
- Department of Medicine, University of California, San Francisco, USA
- UCSF Liver Center
| | - Jennifer C Lai
- Department of Medicine, University of California, San Francisco, USA
- UCSF Liver Center
| | | | - Ansgar W Lohse
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joseph DeRisi
- Department of Biochemistry, University of California, San Francisco, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Michele Tana
- Department of Medicine, University of California, San Francisco, USA
- UCSF Liver Center
| |
Collapse
|
6
|
Bhagat K, Maurya S, Yadav AJ, Tripathi T, Padhi AK. Bebtelovimab-bound SARS-CoV-2 RBD mutants: resistance profiling and validation with escape mutations, clinical results, and viral genome sequences. FEBS Lett 2024; 598:2394-2416. [PMID: 39107909 DOI: 10.1002/1873-3468.14990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 10/16/2024]
Abstract
The dynamic evolution of SARS-CoV-2 variants necessitates ongoing advancements in therapeutic strategies. Despite the promise of monoclonal antibody (mAb) therapies like bebtelovimab, concerns persist regarding resistance mutations, particularly single-to-multipoint mutations in the receptor-binding domain (RBD). Our study addresses this by employing interface-guided computational protein design to predict potential bebtelovimab-resistance mutations. Through extensive physicochemical analysis, mutational preferences, precision-recall metrics, protein-protein docking, and energetic analyses, combined with all-atom, and coarse-grained molecular dynamics (MD) simulations, we elucidated the structural-dynamics-binding features of the bebtelovimab-RBD complexes. Identification of susceptible RBD residues under positive selection pressure, coupled with validation against bebtelovimab-escape mutations, clinically reported resistance mutations, and viral genomic sequences enhances the translational significance of our findings and contributes to a better understanding of the resistance mechanisms of SARS-CoV-2.
Collapse
Affiliation(s)
- Khushboo Bhagat
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, India
| | - Shweata Maurya
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, India
| | - Amar Jeet Yadav
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, India
| |
Collapse
|
7
|
Huang Z, Gunarathne SMS, Liu W, Zhou Y, Jiang Y, Li S, Huang J. PhIP-Seq: methods, applications and challenges. FRONTIERS IN BIOINFORMATICS 2024; 4:1424202. [PMID: 39295784 PMCID: PMC11408297 DOI: 10.3389/fbinf.2024.1424202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Phage-immunoprecipitation sequencing (PhIP-Seq) technology is an innovative, high-throughput antibody detection method. It enables comprehensive analysis of individual antibody profiles. This technology shows great potential, particularly in exploring disease mechanisms and immune responses. Currently, PhIP-Seq has been successfully applied in various fields, such as the exploration of biomarkers for autoimmune diseases, vaccine development, and allergen detection. A variety of bioinformatics tools have facilitated the development of this process. However, PhIP-Seq technology still faces many challenges and has room for improvement. Here, we review the methods, applications, and challenges of PhIP-Seq and discuss its future directions in immunological research and clinical applications. With continuous progress and optimization, PhIP-Seq is expected to play an even more important role in future biomedical research, providing new ideas and methods for disease prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Ziru Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Wenwen Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuwei Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuqing Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiqi Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| |
Collapse
|
8
|
Bodansky A, Mettelman RC, Sabatino JJ, Vazquez SE, Chou J, Novak T, Moffitt KL, Miller HS, Kung AF, Rackaityte E, Zamecnik CR, Rajan JV, Kortbawi H, Mandel-Brehm C, Mitchell A, Wang CY, Saxena A, Zorn K, Yu DJL, Pogorelyy MV, Awad W, Kirk AM, Asaki J, Pluvinage JV, Wilson MR, Zambrano LD, Campbell AP, Thomas PG, Randolph AG, Anderson MS, DeRisi JL. Molecular mimicry in multisystem inflammatory syndrome in children. Nature 2024; 632:622-629. [PMID: 39112696 PMCID: PMC11324515 DOI: 10.1038/s41586-024-07722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/14/2024] [Indexed: 08/16/2024]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a severe, post-infectious sequela of SARS-CoV-2 infection1,2, yet the pathophysiological mechanism connecting the infection to the broad inflammatory syndrome remains unknown. Here we leveraged a large set of samples from patients with MIS-C to identify a distinct set of host proteins targeted by patient autoantibodies including a particular autoreactive epitope within SNX8, a protein involved in regulating an antiviral pathway associated with MIS-C pathogenesis. In parallel, we also probed antibody responses from patients with MIS-C to the complete SARS-CoV-2 proteome and found enriched reactivity against a distinct domain of the SARS-CoV-2 nucleocapsid protein. The immunogenic regions of the viral nucleocapsid and host SNX8 proteins bear remarkable sequence similarity. Consequently, we found that many children with anti-SNX8 autoantibodies also have cross-reactive T cells engaging both the SNX8 and the SARS-CoV-2 nucleocapsid protein epitopes. Together, these findings suggest that patients with MIS-C develop a characteristic immune response to the SARS-CoV-2 nucleocapsid protein that is associated with cross-reactivity to the self-protein SNX8, demonstrating a mechanistic link between the infection and the inflammatory syndrome, with implications for better understanding a range of post-infectious autoinflammatory diseases.
Collapse
Affiliation(s)
- Aaron Bodansky
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, CA, USA
| | - Robert C Mettelman
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph J Sabatino
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Sara E Vazquez
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Janet Chou
- Division of Immunology, Department of Pediatrics, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Tanya Novak
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Kristin L Moffitt
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatric, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Haleigh S Miller
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Biological and Medical Informatics Program, University of California San Francisco, San Francisco, CA, USA
| | - Andrew F Kung
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Biological and Medical Informatics Program, University of California San Francisco, San Francisco, CA, USA
| | - Elze Rackaityte
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Colin R Zamecnik
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jayant V Rajan
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Hannah Kortbawi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Aditi Saxena
- Chan Zuckerberg Biohub SF, San Francisco, CA, USA
| | - Kelsey Zorn
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - David J L Yu
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Mikhail V Pogorelyy
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Walid Awad
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Allison M Kirk
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - James Asaki
- Biomedical Sciences Program, University of California San Francisco, San Francisco, CA, USA
| | - John V Pluvinage
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Laura D Zambrano
- COVID-19 Response Team and Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Angela P Campbell
- COVID-19 Response Team and Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul G Thomas
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adrienne G Randolph
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Mark S Anderson
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Francisco, San Francisco, CA, USA.
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub SF, San Francisco, CA, USA.
| |
Collapse
|
9
|
Zamecnik CR, Sowa GM, Abdelhak A, Dandekar R, Bair RD, Wade KJ, Bartley CM, Kizer K, Augusto DG, Tubati A, Gomez R, Fouassier C, Gerungan C, Caspar CM, Alexander J, Wapniarski AE, Loudermilk RP, Eggers EL, Zorn KC, Ananth K, Jabassini N, Mann SA, Ragan NR, Santaniello A, Henry RG, Baranzini SE, Zamvil SS, Sabatino JJ, Bove RM, Guo CY, Gelfand JM, Cuneo R, von Büdingen HC, Oksenberg JR, Cree BAC, Hollenbach JA, Green AJ, Hauser SL, Wallin MT, DeRisi JL, Wilson MR. An autoantibody signature predictive for multiple sclerosis. Nat Med 2024; 30:1300-1308. [PMID: 38641750 PMCID: PMC11980355 DOI: 10.1038/s41591-024-02938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. In this study, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster in approximately 10% of PwMS who share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active preclinical period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically or radiologically isolated neuroinflammatory syndromes.
Collapse
Affiliation(s)
- Colin R Zamecnik
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gavin M Sowa
- University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, USA
| | - Ahmed Abdelhak
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ravi Dandekar
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rebecca D Bair
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kristen J Wade
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher M Bartley
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kerry Kizer
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Danillo G Augusto
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Asritha Tubati
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Refujia Gomez
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Camille Fouassier
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Chloe Gerungan
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Colette M Caspar
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Alexander
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Anne E Wapniarski
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rita P Loudermilk
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Erica L Eggers
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kelsey C Zorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Kirtana Ananth
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Nora Jabassini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sabrina A Mann
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Nicholas R Ragan
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Adam Santaniello
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Roland G Henry
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sergio E Baranzini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Scott S Zamvil
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph J Sabatino
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Riley M Bove
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Chu-Yueh Guo
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey M Gelfand
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Richard Cuneo
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - H-Christian von Büdingen
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jorge R Oksenberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce A C Cree
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jill A Hollenbach
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Ari J Green
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen L Hauser
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mitchell T Wallin
- Department of Veterans Affairs, Multiple Sclerosis Center of Excellence, Washington, DC, USA
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Michael R Wilson
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Musunuri S, Weidenbacher PAB, Kim PS. Bringing immunofocusing into focus. NPJ Vaccines 2024; 9:11. [PMID: 38195562 PMCID: PMC10776678 DOI: 10.1038/s41541-023-00792-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Immunofocusing is a strategy to create immunogens that redirect humoral immune responses towards a targeted epitope and away from non-desirable epitopes. Immunofocusing methods often aim to develop "universal" vaccines that provide broad protection against highly variant viruses such as influenza virus, human immunodeficiency virus (HIV-1), and most recently, severe acute respiratory syndrome coronavirus (SARS-CoV-2). We use existing examples to illustrate five main immunofocusing strategies-cross-strain boosting, mosaic display, protein dissection, epitope scaffolding, and epitope masking. We also discuss obstacles for immunofocusing like immune imprinting. A thorough understanding, advancement, and application of the methods we outline here will enable the design of high-resolution vaccines that protect against future viral outbreaks.
Collapse
Affiliation(s)
- Sriharshita Musunuri
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Payton A B Weidenbacher
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Peter S Kim
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA.
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
11
|
Bastard P, Vazquez SE, Liu J, Laurie MT, Wang CY, Gervais A, Le Voyer T, Bizien L, Zamecnik C, Philippot Q, Rosain J, Catherinot E, Willmore A, Mitchell AM, Bair R, Garçon P, Kenney H, Fekkar A, Salagianni M, Poulakou G, Siouti E, Sahanic S, Tancevski I, Weiss G, Nagl L, Manry J, Duvlis S, Arroyo-Sánchez D, Paz Artal E, Rubio L, Perani C, Bezzi M, Sottini A, Quaresima V, Roussel L, Vinh DC, Reyes LF, Garzaro M, Hatipoglu N, Boutboul D, Tandjaoui-Lambiotte Y, Borghesi A, Aliberti A, Cassaniti I, Venet F, Monneret G, Halwani R, Sharif-Askari NS, Danielson J, Burrel S, Morbieu C, Stepanovskyy Y, Bondarenko A, Volokha A, Boyarchuk O, Gagro A, Neuville M, Neven B, Keles S, Hernu R, Bal A, Novelli A, Novelli G, Saker K, Ailioaie O, Antolí A, Jeziorski E, Rocamora-Blanch G, Teixeira C, Delaunay C, Lhuillier M, Le Turnier P, Zhang Y, Mahevas M, Pan-Hammarström Q, Abolhassani H, Bompoil T, Dorgham K, Gorochov G, Laouenan C, Rodríguez-Gallego C, Ng LFP, Renia L, Pujol A, Belot A, Raffi F, Allende LM, Martinez-Picado J, Ozcelik T, Imberti L, Notarangelo LD, Troya J, Solanich X, Zhang SY, Puel A, Wilson MR, Trouillet-Assant S, Abel L, Jouanguy E, Ye CJ, et alBastard P, Vazquez SE, Liu J, Laurie MT, Wang CY, Gervais A, Le Voyer T, Bizien L, Zamecnik C, Philippot Q, Rosain J, Catherinot E, Willmore A, Mitchell AM, Bair R, Garçon P, Kenney H, Fekkar A, Salagianni M, Poulakou G, Siouti E, Sahanic S, Tancevski I, Weiss G, Nagl L, Manry J, Duvlis S, Arroyo-Sánchez D, Paz Artal E, Rubio L, Perani C, Bezzi M, Sottini A, Quaresima V, Roussel L, Vinh DC, Reyes LF, Garzaro M, Hatipoglu N, Boutboul D, Tandjaoui-Lambiotte Y, Borghesi A, Aliberti A, Cassaniti I, Venet F, Monneret G, Halwani R, Sharif-Askari NS, Danielson J, Burrel S, Morbieu C, Stepanovskyy Y, Bondarenko A, Volokha A, Boyarchuk O, Gagro A, Neuville M, Neven B, Keles S, Hernu R, Bal A, Novelli A, Novelli G, Saker K, Ailioaie O, Antolí A, Jeziorski E, Rocamora-Blanch G, Teixeira C, Delaunay C, Lhuillier M, Le Turnier P, Zhang Y, Mahevas M, Pan-Hammarström Q, Abolhassani H, Bompoil T, Dorgham K, Gorochov G, Laouenan C, Rodríguez-Gallego C, Ng LFP, Renia L, Pujol A, Belot A, Raffi F, Allende LM, Martinez-Picado J, Ozcelik T, Imberti L, Notarangelo LD, Troya J, Solanich X, Zhang SY, Puel A, Wilson MR, Trouillet-Assant S, Abel L, Jouanguy E, Ye CJ, Cobat A, Thompson LM, Andreakos E, Zhang Q, Anderson MS, Casanova JL, DeRisi JL. Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Sci Immunol 2023; 8:eabp8966. [PMID: 35857576 PMCID: PMC9210448 DOI: 10.1126/sciimmunol.abp8966] [Show More Authors] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
Life-threatening "breakthrough" cases of critical COVID-19 are attributed to poor or waning antibody (Ab) response to SARS-CoV-2 vaccines in individuals already at risk. Preexisting auto-Abs neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; their contribution to hypoxemic breakthrough cases in vaccinated people is unknown. We studied a cohort of 48 individuals (aged 20 to 86 years) who received two doses of a messenger RNA (mRNA) vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Ab levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal Ab response to the vaccine. Among them, 10 (24%) had auto-Abs neutralizing type I IFNs (aged 43 to 86 years). Eight of these 10 patients had auto-Abs neutralizing both IFN-α2 and IFN-ω, whereas two neutralized IFN-ω only. No patient neutralized IFN-β. Seven neutralized type I IFNs at 10 ng/ml and three at 100 pg/ml only. Seven patients neutralized SARS-CoV-2 D614G and Delta efficiently, whereas one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only type I IFNs at 100 pg/ml neutralized both D614G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating Abs capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a notable proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Sara E Vazquez
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew T Laurie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chung Yu Wang
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
| | - Colin Zamecnik
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
| | | | | | | | - Rebecca Bair
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Pierre Garçon
- Intensive Care Unit, Grand Hôpital de l'Est Francilien Site de Marne-la-Vallée, Jossigny, France
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Arnaud Fekkar
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- Service de Parasitologie-Mycologie, Groupe Hospitalier Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Maria Salagianni
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Garyphallia Poulakou
- 3rd Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, "Sotiria" General Hospital of Chest Diseases, Athens, Greece
| | - Eleni Siouti
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Laurenz Nagl
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Jérémy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
| | - Sotirija Duvlis
- Faculty of Medical Sciences, University "Goce Delchev", Stip, Republic of North Macedonia
- Institute of Public Health, Skopje, Republic of North Macedonia
| | - Daniel Arroyo-Sánchez
- Department of Immunology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12) and Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, CIBERINFEC, Madrid, Spain
| | - Estela Paz Artal
- Department of Immunology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12) and Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, CIBERINFEC, Madrid, Spain
| | - Luis Rubio
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | - Alessandra Sottini
- CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Virginia Quaresima
- CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Lucie Roussel
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Québec, Canada
- Infectious Disease Susceptibility Program, Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Donald C Vinh
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Québec, Canada
- Infectious Disease Susceptibility Program, Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Luis Felipe Reyes
- Department of Microbiology, Universidad de La Sabana, Chía, Colombia
- Department of Critical Care Medicine, Clínica Universidad de La Sabana, Chía, Colombia
| | - Margaux Garzaro
- Department of Infectious Diseases, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Nevin Hatipoglu
- Pediatric Infectious Diseases Unit, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - David Boutboul
- Department of Immunology, Saint-Louis Hospital, AP-HP, Paris, France
| | - Yacine Tandjaoui-Lambiotte
- INSERM UMR 1137 IAME, Paris, France
- INSERM UMR 1272 Hypoxie and Poumon, Bobigny, France
- Pneumology and Infectiology Department, CH Saint Denis, Saint-Denis, France
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna Aliberti
- Anesthesia and Intensive Care, Rianimazione I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Irene Cassaniti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabienne Venet
- Laboratoire d'Immunologie, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
- EA 7426, Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Hôpital Edouard Herriot-BioMérieux, Lyon, France
- CIRI, INSERM U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Guillaume Monneret
- Laboratoire d'Immunologie, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
- EA 7426, Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Hôpital Edouard Herriot-BioMérieux, Lyon, France
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immunology Research Laboratory, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Narjes Saheb Sharif-Askari
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jeffrey Danielson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Sonia Burrel
- Sorbonne Université, INSERM U1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié Salpêtrière, Service de Virologie, Paris, France
| | - Caroline Morbieu
- Internal Medicine Department, Louis Mourier Hospital, AP-HP, Paris, France
| | | | | | - Alla Volokha
- Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Oksana Boyarchuk
- Department of Children's Diseases and Pediatric Surgery, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Alenka Gagro
- Department of Pediatrics, Children's Hospital Zagreb, University of Zagreb School of Medicine, Zagreb, Josip Juraj Strossmayer University of Osijek, Medical Faculty Osijek, Osijek, Croatia
| | | | - Bénédicte Neven
- Department of Pediatrics Hematology Immunology and Rheumatology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Sevgi Keles
- Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Romain Hernu
- Service des Urgences, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Antonin Bal
- Laboratoire de virologie, Institut Agent Infectieux, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Antonio Novelli
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Kahina Saker
- Joint Research Unit, Hospices Civils de Lyon-bio Mérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; and International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Oana Ailioaie
- Service de Génétique, Hôpital Raymond Poincaré, AP-HP, Garches, France
| | - Arnau Antolí
- Department of Internal Medicine, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Eric Jeziorski
- General Pediatric Department, PCCEI, CeRéMAIA, University of Montpellier, CHU Montpellier, Montpellier, France
| | - Gemma Rocamora-Blanch
- Department of Internal Medicine, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Carla Teixeira
- Unidade de Infeciologia e Imunodeficiências, Centro Materno-infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Clarisse Delaunay
- Department of Infectious Diseases, CHU Nantes, and INSERM UIC 1413, CHU, Nantes, France
| | - Marine Lhuillier
- Geriatric Department, CHU Nantes, Hopital Bellier, Nantes, France
| | - Paul Le Turnier
- Department of Infectious Diseases, CHU Nantes, and INSERM UIC 1413, CHU, Nantes, France
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Bethesda, MD, USA
| | - Matthieu Mahevas
- Necker Enfants Malades Institute (INEM), INSERM U1151/CNRS UMR 8253, University of Paris Cité, Paris, France
- Departement of Internal Medicine, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris-Est Créteil University (UPEC), Créteil, France
- INSERM U955, Team 2, Mondor Biomedical Research Institute (IMRB), Paris-Est Créteil University (UPEC), Créteil, France
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, SE14183 Huddinge, Sweden
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, SE14183 Huddinge, Sweden
| | - Thierry Bompoil
- Biologie/Pathologie, CHU-Nantes-Hôtel Dieu, Institut de Biologie, Nantes, France
| | - Karim Dorgham
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, (CIMI-Paris), Paris, France
| | - Guy Gorochov
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, (CIMI-Paris), Paris, France
- Département d'Immunologie, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpétrière, Paris, France
| | - Cédric Laouenan
- INSERM UMR 1137 IAME, Paris, France
- Université de Paris, IAME UMR-S 1137, INSERM, Paris, France
- Département Epidémiologie Biostatistiques et Recherche Clinique, Hôpital Bichat, AP-HP, Paris, France
| | - Carlos Rodríguez-Gallego
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Canary Islands, Spain
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Lisa F P Ng
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Laurent Renia
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technology University, Singapore, Singapore
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL-Hospital Duran i Reynals, CIBERER U759, and Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Alexandre Belot
- Joint Research Unit, Hospices Civils de Lyon-bio Mérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; and International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- CNRS UMR 5308, ENS, UCBL, Lyon, France; National Referee Centre for Rheumatic, and Autoimmune and Systemic Diseases in Children (RAISE), Lyon, France; and Immunopathology Federation LIFE, Hospices Civils de Lyon, Lyon, France
| | - François Raffi
- Department of Infectious Diseases, CHU Nantes, and INSERM UIC 1413, CHU, Nantes, France
| | - Luis M Allende
- Department of Immunology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12) and Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, CIBERINFEC, Madrid, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute and Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- Infectious Diseases and Immunity, Center for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Luisa Imberti
- CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Jesus Troya
- Department of Internal Medicine, Infanta Leonor University Hospital, Madrid, Spain
| | - Xavier Solanich
- Department of Internal Medicine, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Michael R Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sophie Trouillet-Assant
- Hospices Civils de Lyon, Lyon, France; and International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Chun Jimmie Ye
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
- Departments of Epidemiology and Biostatistics and Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Leslie M Thompson
- Departments of Psychiatry and Human Behavior and Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
12
|
Weidenbacher PAB, Friedland N, Sanyal M, Morris MK, Do J, Hanson C, Kim PS. Decreased efficacy of a COVID-19 vaccine due to mutations present in early SARS-CoV-2 variants of concern. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546764. [PMID: 37425802 PMCID: PMC10326996 DOI: 10.1101/2023.06.27.546764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
With the SARS-CoV-2 virus still circulating and evolving, there remains an outstanding question if variant-specific vaccines represent the optimal path forward, or if other strategies might be more efficacious towards providing broad protection against emerging variants. Here, we examine the efficacy of strain-specific variants of our previously reported, pan-sarbecovirus vaccine candidate, DCFHP-alum, a ferritin nanoparticle functionalized with an engineered form of the SARS-CoV-2 spike protein. In non-human primates, DCFHP-alum elicits neutralizing antibodies against all known VOCs that have emerged to date and SARS-CoV-1. During development of the DCFHP antigen, we investigated the incorporation of strain-specific mutations from the major VOCs that had emerged to date: D614G, Epsilon, Alpha, Beta, and Gamma. Here, we report the biochemical and immunological characterizations that led us to choose the ancestral Wuhan-1 sequence as the basis for the final DCFHP antigen design. Specifically, we show by size exclusion chromatography and differential scanning fluorimetry that mutations in the VOCs adversely alter the antigen's structure and stability. More importantly, we determined that DCFHP without strain-specific mutations elicits the most robust, cross-reactive response in both pseudovirus and live virus neutralization assays. Our data suggest potential limitations to the variant-chasing approach in the development of protein nanoparticle vaccines, but also have implications for other approaches including mRNA-based vaccines.
Collapse
Affiliation(s)
- Payton A.-B. Weidenbacher
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Natalia Friedland
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Mrinmoy Sanyal
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jonathan Do
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Carl Hanson
- California Department of Public Health, Richmond, CA, USA
| | - Peter S. Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
13
|
Zamecnik CR, Sowa GM, Abdelhak A, Dandekar R, Bair RD, Wade KJ, Bartley CM, Tubati A, Gomez R, Fouassier C, Gerungan C, Alexander J, Wapniarski AE, Loudermilk RP, Eggers EL, Zorn KC, Ananth K, Jabassini N, Mann SA, Ragan NR, Santaniello A, Henry RG, Baranzini SE, Zamvil SS, Bove RM, Guo CY, Gelfand JM, Cuneo R, von Büdingen HC, Oksenberg JR, Cree BAC, Hollenbach JA, Green AJ, Hauser SL, Wallin MT, DeRisi JL, Wilson MR. A Predictive Autoantibody Signature in Multiple Sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.01.23288943. [PMID: 37205595 PMCID: PMC10187343 DOI: 10.1101/2023.05.01.23288943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. Here, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster of PwMS that share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active prodromal period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid (CSF) and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically- or radiologically-isolated neuroinflammatory syndromes.
Collapse
Affiliation(s)
- Colin R. Zamecnik
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Gavin M. Sowa
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, USA
| | - Ahmed Abdelhak
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Ravi Dandekar
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Rebecca D. Bair
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kristen J. Wade
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Christopher M. Bartley
- UCSF Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Asritha Tubati
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Refujia Gomez
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Camille Fouassier
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Chloe Gerungan
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Jessica Alexander
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Anne E. Wapniarski
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Rita P. Loudermilk
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Erica L. Eggers
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kelsey C. Zorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Kirtana Ananth
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Nora Jabassini
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Sabrina A. Mann
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Nicholas R. Ragan
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Adam Santaniello
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Roland G. Henry
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Sergio E. Baranzini
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Scott S. Zamvil
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Riley M. Bove
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Chu-Yueh Guo
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Jeffrey M. Gelfand
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Richard Cuneo
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - H.-Christian von Büdingen
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Jorge R. Oksenberg
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bruce AC Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Jill A. Hollenbach
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA USA
| | - Ari J. Green
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Stephen L. Hauser
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Mitchell T. Wallin
- Veterans Affairs, Multiple Sclerosis Center of Excellence, Washington, DC and University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Michael R. Wilson
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Byrum JR, Waltari E, Janson O, Guo SM, Folkesson J, Chhun BB, Vinden J, Ivanov IE, Forst ML, Li H, Larson AG, Blackmon L, Liu Z, Wu W, Ahyong V, Tato CM, McCutcheon KM, Hoh R, Kelly JD, Martin JN, Peluso MJ, Henrich TJ, Deeks SG, Prakash M, Greenhouse B, Mehta SB, Pak JE. MultiSero: An Open-Source Multiplex-ELISA Platform for Measuring Antibody Responses to Infection. Pathogens 2023; 12:671. [PMID: 37242341 PMCID: PMC10221076 DOI: 10.3390/pathogens12050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
A multiplexed enzyme-linked immunosorbent assay (ELISA) that simultaneously measures antibody binding to multiple antigens can extend the impact of serosurveillance studies, particularly if the assay approaches the simplicity, robustness, and accuracy of a conventional single-antigen ELISA. Here, we report on the development of multiSero, an open-source multiplex ELISA platform for measuring antibody responses to viral infection. Our assay consists of three parts: (1) an ELISA against an array of proteins in a 96-well format; (2) automated imaging of each well of the ELISA array using an open-source plate reader; and (3) automated measurement of optical densities for each protein within the array using an open-source analysis pipeline. We validated the platform by comparing antibody binding to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) antigens in 217 human sera samples, showing high sensitivity (0.978), specificity (0.977), positive predictive value (0.978), and negative predictive value (0.977) for classifying seropositivity, a high correlation of multiSero determined antibody titers with commercially available SARS-CoV-2 antibody tests, and antigen-specific changes in antibody titer dynamics upon vaccination. The open-source format and accessibility of our multiSero platform can contribute to the adoption of multiplexed ELISA arrays for serosurveillance studies, for SARS-CoV-2 and other pathogens of significance.
Collapse
Affiliation(s)
- Janie R. Byrum
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Eric Waltari
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Owen Janson
- Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, CA 94143, USA
- EPPIcenter Program, University of California, San Francisco, CA 94143, USA
| | - Syuan-Ming Guo
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Jenny Folkesson
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Bryant B. Chhun
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Joanna Vinden
- Infectious Diseases and Immunity Graduate Program, University of California, Berkeley, CA 94720-3370, USA
| | - Ivan E. Ivanov
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Marcus L. Forst
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Hongquan Li
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Adam G. Larson
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Lena Blackmon
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Ziwen Liu
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Wesley Wu
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Vida Ahyong
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Cristina M. Tato
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | | | - Rebecca Hoh
- Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, CA 94143, USA
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, USA
| | - Michael J. Peluso
- Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, CA 94143, USA
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California, San Francisco, CA 94110, USA
| | - Steven G. Deeks
- Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, CA 94143, USA
| | - Manu Prakash
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Bryan Greenhouse
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
- Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, CA 94143, USA
- EPPIcenter Program, University of California, San Francisco, CA 94143, USA
| | - Shalin B. Mehta
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - John E. Pak
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
15
|
McAlpine LS, Lifland B, Check JR, Angarita GA, Ngo TT, Chen P, Dandekar R, Alvarenga BD, Browne WD, Pleasure SJ, Wilson MR, Spudich SS, Farhadian SF, Bartley CM. Anti-SARS-CoV-2 and Autoantibody Profiling of a COVID-19 Patient With Subacute Psychosis Who Remitted After Treatment With Intravenous Immunoglobulin. Biol Psychiatry 2023; 93:e25-e29. [PMID: 36481066 PMCID: PMC9722219 DOI: 10.1016/j.biopsych.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Lindsay S McAlpine
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Brooke Lifland
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Joseph R Check
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Thomas T Ngo
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, California
| | - Peixi Chen
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Ravi Dandekar
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Bonny D Alvarenga
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Weston D Browne
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Samuel J Pleasure
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Serena S Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Shelli F Farhadian
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Christopher M Bartley
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, California.
| |
Collapse
|
16
|
Jiang HW, Li Y, Tao SC. SARS-CoV-2 peptides/epitopes for specific and sensitive diagnosis. Cell Mol Immunol 2023; 20:540-542. [PMID: 36973483 PMCID: PMC10040901 DOI: 10.1038/s41423-023-01001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Affiliation(s)
- He-Wei Jiang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
Weidenbacher PAB, Sanyal M, Friedland N, Tang S, Arunachalam PS, Hu M, Kumru OS, Morris MK, Fontenot J, Shirreff L, Do J, Cheng YC, Vasudevan G, Feinberg MB, Villinger FJ, Hanson C, Joshi SB, Volkin DB, Pulendran B, Kim PS. A ferritin-based COVID-19 nanoparticle vaccine that elicits robust, durable, broad-spectrum neutralizing antisera in non-human primates. Nat Commun 2023; 14:2149. [PMID: 37069151 PMCID: PMC10110616 DOI: 10.1038/s41467-023-37417-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/16/2023] [Indexed: 04/19/2023] Open
Abstract
While the rapid development of COVID-19 vaccines has been a scientific triumph, the need remains for a globally available vaccine that provides longer-lasting immunity against present and future SARS-CoV-2 variants of concern (VOCs). Here, we describe DCFHP, a ferritin-based, protein-nanoparticle vaccine candidate that, when formulated with aluminum hydroxide as the sole adjuvant (DCFHP-alum), elicits potent and durable neutralizing antisera in non-human primates against known VOCs, including Omicron BQ.1, as well as against SARS-CoV-1. Following a booster ~one year after the initial immunization, DCFHP-alum elicits a robust anamnestic response. To enable global accessibility, we generated a cell line that can enable production of thousands of vaccine doses per liter of cell culture and show that DCFHP-alum maintains potency for at least 14 days at temperatures exceeding standard room temperature. DCFHP-alum has potential as a once-yearly (or less frequent) booster vaccine, and as a primary vaccine for pediatric use including in infants.
Collapse
Affiliation(s)
- Payton A-B Weidenbacher
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Mrinmoy Sanyal
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Natalia Friedland
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Shaogeng Tang
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Ozan S Kumru
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | | | - Jane Fontenot
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Lisa Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Jonathan Do
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ya-Chen Cheng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Francois J Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Carl Hanson
- California Department of Public Health, Richmond, CA, USA
| | - Sangeeta B Joshi
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - David B Volkin
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter S Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
18
|
Aparna GM, Tetala KKR. Recent Progress in Development and Application of DNA, Protein, Peptide, Glycan, Antibody, and Aptamer Microarrays. Biomolecules 2023; 13:602. [PMID: 37189350 PMCID: PMC10135839 DOI: 10.3390/biom13040602] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Microarrays are one of the trailblazing technologies of the last two decades and have displayed their importance in all the associated fields of biology. They are widely explored to screen, identify, and gain insights on the characteristics traits of biomolecules (individually or in complex solutions). A wide variety of biomolecule-based microarrays (DNA microarrays, protein microarrays, glycan microarrays, antibody microarrays, peptide microarrays, and aptamer microarrays) are either commercially available or fabricated in-house by researchers to explore diverse substrates, surface coating, immobilization techniques, and detection strategies. The aim of this review is to explore the development of biomolecule-based microarray applications since 2018 onwards. Here, we have covered a different array of printing strategies, substrate surface modification, biomolecule immobilization strategies, detection techniques, and biomolecule-based microarray applications. The period of 2018-2022 focused on using biomolecule-based microarrays for the identification of biomarkers, detection of viruses, differentiation of multiple pathogens, etc. A few potential future applications of microarrays could be for personalized medicine, vaccine candidate screening, toxin screening, pathogen identification, and posttranslational modifications.
Collapse
Affiliation(s)
| | - Kishore K. R. Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamilnadu, India;
| |
Collapse
|
19
|
Galardi MM, Sowa GM, Crockett CD, Rudock R, Smith AE, Shwe EE, San T, Linn K, Aye AMM, Ramachandran PS, Zia M, Wapniarski AE, Hawes IA, Hlaing CS, Kyu EH, Thair C, Mar YY, Nway N, Storch GA, Wylie KM, Wylie TN, Dalmau J, Wilson MR, Mar SS. Pathogen and Antibody Identification in Children with Encephalitis in Myanmar. Ann Neurol 2023; 93:615-628. [PMID: 36443898 DOI: 10.1002/ana.26560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/22/2022] [Accepted: 11/20/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Prospective studies of encephalitis are rare in regions where encephalitis is prevalent, such as low middle-income Southeast Asian countries. We compared the diagnostic yield of local and advanced tests in cases of pediatric encephalitis in Myanmar. METHODS Children with suspected subacute or acute encephalitis at Yangon Children's Hospital, Yangon, Myanmar, were prospectively recruited from 2016-2018. Cohort 1 (n = 65) had locally available diagnostic testing, whereas cohort 2 (n = 38) had advanced tests for autoantibodies (ie, cell-based assays, tissue immunostaining, studies with cultured neurons) and infections (ie, BioFire FilmArray multiplex Meningitis/Encephalitis multiplex PCR panel, metagenomic sequencing, and pan-viral serologic testing [VirScan] of cerebrospinal fluid). RESULTS A total of 20 cases (13 in cohort 1 and 7 in cohort 2) were found to have illnesses other than encephalitis. Of the 52 remaining cases in cohort 1, 43 (83%) had presumed infectious encephalitis, of which 2 cases (4%) had a confirmed infectious etiology. Nine cases (17%) had presumed autoimmune encephalitis. Of the 31 cases in cohort 2, 23 (74%) had presumed infectious encephalitis, of which one (3%) had confirmed infectious etiology using local tests only, whereas 8 (26%) had presumed autoimmune encephalitis. Advanced tests confirmed an additional 10 (32%) infections, 4 (13%) possible infections, and 5 (16%) cases of N-methyl-D-aspartate receptor antibody encephalitis. INTERPRETATION Pediatric encephalitis is prevalent in Myanmar, and advanced technologies increase identification of treatable infectious and autoimmune causes. Developing affordable advanced tests to use globally represents a high clinical and research priority to improve the diagnosis and prognosis of encephalitis. ANN NEUROL 2023;93:615-628.
Collapse
Affiliation(s)
- Maria M Galardi
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Gavin M Sowa
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL
| | - Cameron D Crockett
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Robert Rudock
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Alyssa E Smith
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Ei E Shwe
- Department of Pathology, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar
| | - Thidar San
- Department of Pathology, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar
| | - Kyaw Linn
- Department of Pediatrics, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar
| | - Aye Mya M Aye
- Department of Pediatrics, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar
| | - Prashanth S Ramachandran
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Maham Zia
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Anne E Wapniarski
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Isobel A Hawes
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Chaw S Hlaing
- Department of Pediatrics, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar
| | - Ei H Kyu
- Department of Pediatrics, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar
| | - Cho Thair
- Department of Pediatrics, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar
| | - Yi Y Mar
- Department of Pediatrics, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar
| | - Nway Nway
- Department of Pediatrics, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar
| | - Gregory A Storch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Kristine M Wylie
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Todd N Wylie
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Josep Dalmau
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer Hospital Clínic, University of Barcelona, Barcelona, Spain.,Department of Neurology, University of Pennsylvania, Philadelphia, PA.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Michael R Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Soe S Mar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
20
|
Raghavan M, Kalantar KL, Duarte E, Teyssier N, Takahashi S, Kung AF, Rajan JV, Rek J, Tetteh KKA, Drakeley C, Ssewanyana I, Rodriguez-Barraquer I, Greenhouse B, DeRisi JL. Antibodies to repeat-containing antigens in Plasmodium falciparum are exposure-dependent and short-lived in children in natural malaria infections. eLife 2023; 12:e81401. [PMID: 36790168 PMCID: PMC10005774 DOI: 10.7554/elife.81401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/14/2023] [Indexed: 02/16/2023] Open
Abstract
Protection against Plasmodium falciparum, which is primarily antibody-mediated, requires recurrent exposure to develop. The study of both naturally acquired limited immunity and vaccine induced protection against malaria remains critical for ongoing eradication efforts. Towards this goal, we deployed a customized P. falciparum PhIP-seq T7 phage display library containing 238,068 tiled 62-amino acid peptides, covering all known coding regions, including antigenic variants, to systematically profile antibody targets in 198 Ugandan children and adults from high and moderate transmission settings. Repeat elements - short amino acid sequences repeated within a protein - were significantly enriched in antibody targets. While breadth of responses to repeat-containing peptides was twofold higher in children living in the high versus moderate exposure setting, no such differences were observed for peptides without repeats, suggesting that antibody responses to repeat-containing regions may be more exposure dependent and/or less durable in children than responses to regions without repeats. Additionally, short motifs associated with seroreactivity were extensively shared among hundreds of antigens, potentially representing cross-reactive epitopes. PfEMP1 shared motifs with the greatest number of other antigens, partly driven by the diversity of PfEMP1 sequences. These data suggest that the large number of repeat elements and potential cross-reactive epitopes found within antigenic regions of P. falciparum could contribute to the inefficient nature of malaria immunity.
Collapse
Affiliation(s)
- Madhura Raghavan
- University of California, San FranciscoSan FranciscoUnited States
| | | | - Elias Duarte
- University of California, BerkeleyBerkeleyUnited States
| | - Noam Teyssier
- University of California, San FranciscoSan FranciscoUnited States
| | - Saki Takahashi
- University of California, San FranciscoSan FranciscoUnited States
| | - Andrew F Kung
- University of California, San FranciscoSan FranciscoUnited States
| | - Jayant V Rajan
- University of California, San FranciscoSan FranciscoUnited States
| | - John Rek
- Infectious Diseases Research CollaborationKampalaUganda
| | - Kevin KA Tetteh
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Chris Drakeley
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Isaac Ssewanyana
- Infectious Diseases Research CollaborationKampalaUganda
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Isabel Rodriguez-Barraquer
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Bryan Greenhouse
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Joseph L DeRisi
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
21
|
Sabatino JJ, Mittl K, Rowles W, Zamecnik CR, Loudermilk RP, Gerungan C, Spencer CM, Sagan SA, Alexander J, Mcpolin K, Chen P, Deshpande C, Wyse K, Maiese EM, Wilson MR, Zamvil SS, Bove R. Longitudinal adaptive immune responses following sequential SARS-CoV-2 vaccinations in MS patients on anti-CD20 therapies and sphingosine-1-phosphate receptor modulators. Mult Scler Relat Disord 2023; 70:104484. [PMID: 36608538 PMCID: PMC9794398 DOI: 10.1016/j.msard.2022.104484] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Adequate response to the SARS-CoV-2 vaccine represents an important treatment goal in caring for patients with multiple sclerosis (MS) during the ongoing COVID-19 pandemic. Previous data so far have demonstrated lower spike-specific IgG responses following two SARS-CoV-2 vaccinations in MS patients treated with sphingosine-1-phosphate (S1P) receptor modulators and anti-CD20 monoclonal antibodies (mAb) compared to other disease modifying therapies (DMTs). It is unknown whether subsequent vaccinations can augment antibody responses in these patients. OBJECTIVES The goal of this observational study was to determine the effects of a third SARS-CoV-2 vaccination on antibody and T cell responses in MS patients treated with anti-CD20 mAb or S1P receptor modulators. METHODS Vaccine responses in patients treated with anti-CD20 antibodies (ocrelizumab and ofatumumab) or S1P receptor modulators (fingolimod and siponimod) were evaluated before and after third SARS-CoV-2 vaccination as part of an ongoing longitudinal study. Total spike protein and spike receptor binding domain (RBD)-specific IgG responses were measured by Luminex bead-based assay. Spike-specific CD4+ and CD8+ T cell responses were measured by activation-induced marker expression. RESULTS MS patients and healthy controls were enrolled before and following SARS-CoV-2 vaccination. A total of 31 MS patients (n = 10 ofatumumab, n = 13 ocrelizumab, n = 8 S1P) and 10 healthy controls were evaluated through three SARS-CoV-2 vaccinations. Compared to healthy controls, total spike IgG was significantly lower in anti-CD20 mAb-treated patients and spike RBD IgG was significantly lower in anti-CD20 mAb and S1P-treated patients following a third vaccination. While seropositivity was 100% in healthy controls after a third vaccination, total spike IgG and spike RBD IgG seropositivity were lower in ofatumumab (60% and 60%, respectively), ocrelizumab (85% and 46%, respectively), and S1P-treated patients (100% and 75%, respectively). Longer treatment duration, including prior treatment history, appeared to negatively impact antibody responses. Spike-specific CD4+ and CD8+ T cell responses were well maintained across all groups following a third vaccination. Finally, immune responses were also compared in patients who were vaccinated prior to or following ofatumumab treatment. Antibody responses were significantly higher in those patients who received their primary SARS-CoV-2 vaccination prior to initiating ofatumumab treatment. CONCLUSIONS This study adds to the evolving understanding of SARS-CoV-2 vaccine responses in people with MS treated with disease-modifying therapies (DMTs) known to suppress humoral immunity. Our findings provide important information for optimizing vaccine immunity in at-risk MS patient populations.
Collapse
Affiliation(s)
- Joseph J Sabatino
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kristen Mittl
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - William Rowles
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Colin R Zamecnik
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Rita P Loudermilk
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Chloe Gerungan
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Collin M Spencer
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Sharon A Sagan
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Jessa Alexander
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kira Mcpolin
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - PeiXi Chen
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Kerri Wyse
- Novartis Pharmaceuticals, East Hanover, NJ, USA
| | | | - Michael R Wilson
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Scott S Zamvil
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Riley Bove
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA.
| |
Collapse
|
22
|
Rong G, Zheng Y, Chen Y, Zhang Y, Zhu P, Sawan M. COVID-19 Diagnostic Methods and Detection Techniques. ENCYCLOPEDIA OF SENSORS AND BIOSENSORS 2023. [PMCID: PMC8409760 DOI: 10.1016/b978-0-12-822548-6.00080-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Weidenbacher PAB, Sanyal M, Friedland N, Tang S, Arunachalam PS, Hu M, Kumru OS, Morris MK, Fontenot J, Shirreff L, Do J, Cheng YC, Vasudevan G, Feinberg MB, Villinger FJ, Hanson C, Joshi SB, Volkin DB, Pulendran B, Kim PS. A ferritin-based COVID-19 nanoparticle vaccine that elicits robust, durable, broad-spectrum neutralizing antisera in non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.25.521784. [PMID: 36597527 PMCID: PMC9810210 DOI: 10.1101/2022.12.25.521784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
While the rapid development of COVID-19 vaccines has been a scientific triumph, the need remains for a globally available vaccine that provides longer-lasting immunity against present and future SARS-CoV-2 variants of concern (VOCs). Here, we describe DCFHP, a ferritin-based, protein-nanoparticle vaccine candidate that, when formulated with aluminum hydroxide as the sole adjuvant (DCFHP-alum), elicits potent and durable neutralizing antisera in non-human primates against known VOCs, including Omicron BQ.1, as well as against SARS-CoV-1. Following a booster ∼one year after the initial immunization, DCFHP-alum elicits a robust anamnestic response. To enable global accessibility, we generated a cell line that can enable production of thousands of vaccine doses per liter of cell culture and show that DCFHP-alum maintains potency for at least 14 days at temperatures exceeding standard room temperature. DCFHP-alum has potential as a once-yearly booster vaccine, and as a primary vaccine for pediatric use including in infants.
Collapse
Affiliation(s)
- Payton A.-B. Weidenbacher
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Mrinmoy Sanyal
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Natalia Friedland
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Shaogeng Tang
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Ozan S. Kumru
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | | | - Jane Fontenot
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Lisa Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Jonathan Do
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ya-Chen Cheng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Francois J. Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Carl Hanson
- California Department of Public Health, Richmond, CA, USA
| | - Sangeeta B. Joshi
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - David B. Volkin
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter S. Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
24
|
Qi H, Xue JB, Lai DY, Li A, Tao SC. Current advances in antibody-based serum biomarker studies: From protein microarray to phage display. Proteomics Clin Appl 2022; 16:e2100098. [PMID: 36071670 DOI: 10.1002/prca.202100098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE This review aims to summarize the technological advances in the field of antibody-based biomarker studies by proteome microarray and phage display. In addition, the possible development directions of this field are also discussed. EXPERIMENTAL DESIGN We have focused on the antibody profiling by proteome microarray and phage display, including the technological advances, the tools/resources constructed, and the characteristics of both platforms. RESULTS With the help of tools/resources and technological advances in proteome microarray and phage display, the efficiency of profiling antibody-based biomarkers in serum samples has been greatly improved. CONCLUSIONS In the past few years, proteome microarray and phage display, especially the latter one, have already demonstrated their capacity and efficiency for biomarker identification. In the near future, we believe that more antibody-based biomarkers could be identified, and some of them could eventually be developed into real clinical applications.
Collapse
Affiliation(s)
- Huan Qi
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Biao Xue
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Dan-Yun Lai
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Ang Li
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Elledge SK, Eigl I, Phelps M, McClinton K, Zhou XX, Leung KK, Tato CM, Wells JA. Using Split Luminescent Biosensors for SARS-CoV-2 Antibody Detection in Serum, Plasma, and Blood Samples. Curr Protoc 2022; 2:e521. [PMID: 36200787 PMCID: PMC9793882 DOI: 10.1002/cpz1.521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Antibody detection assays are essential for evaluating immunity of individuals against a given virus, and this has been particularly relevant during the COVID-19 pandemic. Current serology assays either require a laboratory setting and take >1 hr (i.e., enzyme-linked immunosorbent assay [ELISA]) or are rapid but only qualitative in nature and cannot accurately track antibody levels over time (i.e., lateral flow assay [LFA]). Therefore, there is a need for development of a rapid and simple but also quantitative assay that can evaluate antibody levels in patients accurately over time. We have developed an assay that uses a split nanoluciferase fused to the spike or nucleocapsid proteins of the SARS-CoV-2 virus to enable luminescent-based detection of spike- or nucleocapsid-binding antibodies in serum, plasma, and whole blood samples. The resulting approach is simple, rapid, and quantitative and is highly amenable to low-/medium-throughput scale using plate-based assays, high-throughput scale using robotics, and point-of-care applications. In this article, we describe how to perform the assay in a laboratory setting using a plate reader or liquid-handling robotics and in a point-of-care setting using a handheld, battery-powered luminometer. Together, these assays allow antibody detection to be easily performed in multiple settings by simplifying and reducing assay time in a laboratory or clinical environment and by allowing for antibody detection in point-of-care, nonlaboratory settings. © 2022 Wiley Periodicals LLC. Basic Protocol: SARS-CoV-2 antibody detection using the split-luciferase assay on a medium-throughput scale with a laboratory luminometer Alternate Protocol 1: High-throughput-based protocol for SARS-CoV-2 antibody detection using a robotic platform Alternate Protocol 2: Point-of-care-based protocol for SARS-CoV-2 antibody detection using a handheld luminometer Support Protocol: Determining positive/negative cutoffs for test samples and standardizing the assay between days.
Collapse
Affiliation(s)
- Susanna K. Elledge
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCalifornia
| | - Ian Eigl
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCalifornia
| | | | | | - Xin X. Zhou
- Cancer BiologyDana Farber Cancer InstituteBostonMassachusetts
| | - Kevin K. Leung
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCalifornia
| | | | - James A. Wells
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCalifornia,Chan Zuckerberg BiohubSan FranciscoCalifornia,Department of Cellular and Molecular PharmacologyUniversity of CaliforniaSan FranciscoCalifornia
| |
Collapse
|
26
|
Wang L, Candia J, Ma L, Zhao Y, Imberti L, Sottini A, Quiros-Roldan E, Dobbs K, Burbelo PD, Cohen JI, Delmonte OM, Forgues M, Liu H, Matthews HF, Shaw E, Stack MA, Weber SE, Zhang Y, Lisco A, Sereti I, Su HC, Notarangelo LD, Wang XW. Serological responses to human virome define clinical outcomes of Italian patients infected with SARS-CoV-2. Int J Biol Sci 2022; 18:5591-5606. [PMID: 36263161 PMCID: PMC9576512 DOI: 10.7150/ijbs.78002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 01/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic respiratory infectious disease COVID-19. However, clinical manifestations and outcomes differ significantly among COVID-19 patients, ranging from asymptomatic to extremely severe, and it remains unclear what drives these disparities. Here, we studied 159 sequentially enrolled hospitalized patients with COVID-19-associated pneumonia from Brescia, Italy using the VirScan phage-display method to characterize circulating antibodies binding to 96,179 viral peptides encoded by 1,276 strains of human viruses. SARS-CoV-2 infection was associated with a marked increase in immune antibody repertoires against many known pathogenic and non-pathogenic human viruses. This antiviral antibody response was linked to longitudinal trajectories of disease severity and was further confirmed in additional 125 COVID-19 patients from the same geographical region in Northern Italy. By applying a machine-learning-based strategy, a viral exposure signature predictive of COVID-19-related disease severity linked to patient survival was developed and validated. These results provide a basis for understanding the role of memory B-cell repertoire to viral epitopes in COVID-19-related symptoms and suggest that a unique anti-viral antibody repertoire signature may be useful to define COVID-19 clinical severity.
Collapse
Affiliation(s)
- Limin Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892
- These authors contributed equally
| | - Julián Candia
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892
- These authors contributed equally
| | - Lichun Ma
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892
- These authors contributed equally
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, Maryland 21701
- These authors contributed equally
| | - Luisa Imberti
- CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Sottini
- CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Peter D. Burbelo
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland 20892
| | - Jeffrey I. Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892
| | - Hui Liu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Helen F. Matthews
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Michael A. Stack
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Sarah E. Weber
- Section of Molecular Development of the Immune System, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892
- Lead Contact
| |
Collapse
|
27
|
Prahl M, Golan Y, Cassidy AG, Matsui Y, Li L, Alvarenga B, Chen H, Jigmeddagva U, Lin CY, Gonzalez VJ, Chidboy MA, Warrier L, Buarpung S, Murtha AP, Flaherman VJ, Greene WC, Wu AHB, Lynch KL, Rajan J, Gaw SL. Evaluation of transplacental transfer of mRNA vaccine products and functional antibodies during pregnancy and infancy. Nat Commun 2022; 13:4422. [PMID: 35908075 PMCID: PMC9338928 DOI: 10.1038/s41467-022-32188-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/20/2022] [Indexed: 11/08/2022] Open
Abstract
Studies are needed to evaluate the safety and effectiveness of mRNA SARS-CoV-2 vaccination during pregnancy, and the levels of protection provided to their newborns through placental transfer of antibodies. Here, we evaluate the transplacental transfer of mRNA vaccine products and functional anti-SARS-CoV-2 antibodies during pregnancy and early infancy in a cohort of 20 individuals vaccinated during late pregnancy. We find no evidence of mRNA vaccine products in maternal blood, placenta tissue, or cord blood at delivery. However, we find time-dependent efficient transfer of IgG and neutralizing antibodies to the neonate that persists during early infancy. Additionally, using phage immunoprecipitation sequencing, we find a vaccine-specific signature of SARS-CoV-2 Spike protein epitope binding that is transplacentally transferred during pregnancy. Timing of vaccination during pregnancy is critical to ensure transplacental transfer of protective antibodies during early infancy.
Collapse
Affiliation(s)
- Mary Prahl
- Department of Pediatrics, University of California, San Francisco, CA, USA.
- Division of Pediatric Infectious Diseases and Global Health, University of California, San Francisco, CA, USA.
| | - Yarden Golan
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Arianna G Cassidy
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Yusuke Matsui
- Gladstone Center for HIV Cure Research, Gladstone Institute, San Francisco, CA, USA
| | - Lin Li
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Bonny Alvarenga
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Hao Chen
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Unurzul Jigmeddagva
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Christine Y Lin
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Veronica J Gonzalez
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Megan A Chidboy
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Lakshmi Warrier
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Sirirak Buarpung
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Amy P Murtha
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Warner C Greene
- Gladstone Center for HIV Cure Research, Gladstone Institute, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Departments of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Alan H B Wu
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Kara L Lynch
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Jayant Rajan
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Stephanie L Gaw
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
28
|
Dinnes J, Sharma P, Berhane S, van Wyk SS, Nyaaba N, Domen J, Taylor M, Cunningham J, Davenport C, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Van den Bruel A, Deeks JJ. Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev 2022; 7:CD013705. [PMID: 35866452 PMCID: PMC9305720 DOI: 10.1002/14651858.cd013705.pub3] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Accurate rapid diagnostic tests for SARS-CoV-2 infection would be a useful tool to help manage the COVID-19 pandemic. Testing strategies that use rapid antigen tests to detect current infection have the potential to increase access to testing, speed detection of infection, and inform clinical and public health management decisions to reduce transmission. This is the second update of this review, which was first published in 2020. OBJECTIVES To assess the diagnostic accuracy of rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. Sources of heterogeneity investigated included setting and indication for testing, assay format, sample site, viral load, age, timing of test, and study design. SEARCH METHODS We searched the COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) on 08 March 2021. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions. SELECTION CRITERIA We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen tests. We included evaluations of single applications of a test (one test result reported per person) and evaluations of serial testing (repeated antigen testing over time). Reference standards for presence or absence of infection were any laboratory-based molecular test (primarily reverse transcription polymerase chain reaction (RT-PCR)) or pre-pandemic respiratory sample. DATA COLLECTION AND ANALYSIS We used standard screening procedures with three people. Two people independently carried out quality assessment (using the QUADAS-2 tool) and extracted study results. Other study characteristics were extracted by one review author and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test, and pooled data using the bivariate model. We investigated heterogeneity by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status. MAIN RESULTS We included 155 study cohorts (described in 166 study reports, with 24 as preprints). The main results relate to 152 evaluations of single test applications including 100,462 unique samples (16,822 with confirmed SARS-CoV-2). Studies were mainly conducted in Europe (101/152, 66%), and evaluated 49 different commercial antigen assays. Only 23 studies compared two or more brands of test. Risk of bias was high because of participant selection (40, 26%); interpretation of the index test (6, 4%); weaknesses in the reference standard for absence of infection (119, 78%); and participant flow and timing 41 (27%). Characteristics of participants (45, 30%) and index test delivery (47, 31%) differed from the way in which and in whom the test was intended to be used. Nearly all studies (91%) used a single RT-PCR result to define presence or absence of infection. The 152 studies of single test applications reported 228 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies, with consistently high specificities. Average sensitivity was higher in symptomatic (73.0%, 95% CI 69.3% to 76.4%; 109 evaluations; 50,574 samples, 11,662 cases) compared to asymptomatic participants (54.7%, 95% CI 47.7% to 61.6%; 50 evaluations; 40,956 samples, 2641 cases). Average sensitivity was higher in the first week after symptom onset (80.9%, 95% CI 76.9% to 84.4%; 30 evaluations, 2408 cases) than in the second week of symptoms (53.8%, 95% CI 48.0% to 59.6%; 40 evaluations, 1119 cases). For those who were asymptomatic at the time of testing, sensitivity was higher when an epidemiological exposure to SARS-CoV-2 was suspected (64.3%, 95% CI 54.6% to 73.0%; 16 evaluations; 7677 samples, 703 cases) compared to where COVID-19 testing was reported to be widely available to anyone on presentation for testing (49.6%, 95% CI 42.1% to 57.1%; 26 evaluations; 31,904 samples, 1758 cases). Average specificity was similarly high for symptomatic (99.1%) or asymptomatic (99.7%) participants. We observed a steady decline in summary sensitivities as measures of sample viral load decreased. Sensitivity varied between brands. When tests were used according to manufacturer instructions, average sensitivities by brand ranged from 34.3% to 91.3% in symptomatic participants (20 assays with eligible data) and from 28.6% to 77.8% for asymptomatic participants (12 assays). For symptomatic participants, summary sensitivities for seven assays were 80% or more (meeting acceptable criteria set by the World Health Organization (WHO)). The WHO acceptable performance criterion of 97% specificity was met by 17 of 20 assays when tests were used according to manufacturer instructions, 12 of which demonstrated specificities above 99%. For asymptomatic participants the sensitivities of only two assays approached but did not meet WHO acceptable performance standards in one study each; specificities for asymptomatic participants were in a similar range to those observed for symptomatic people. At 5% prevalence using summary data in symptomatic people during the first week after symptom onset, the positive predictive value (PPV) of 89% means that 1 in 10 positive results will be a false positive, and around 1 in 5 cases will be missed. At 0.5% prevalence using summary data for asymptomatic people, where testing was widely available and where epidemiological exposure to COVID-19 was suspected, resulting PPVs would be 38% to 52%, meaning that between 2 in 5 and 1 in 2 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. AUTHORS' CONCLUSIONS Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. Assays that meet appropriate performance standards, such as those set by WHO, could replace laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. However, they are more suitable for use as triage to RT-PCR testing. The variable sensitivity of antigen tests means that people who test negative may still be infected. Many commercially available rapid antigen tests have not been evaluated in independent validation studies. Evidence for testing in asymptomatic cohorts has increased, however sensitivity is lower and there is a paucity of evidence for testing in different settings. Questions remain about the use of antigen test-based repeat testing strategies. Further research is needed to evaluate the effectiveness of screening programmes at reducing transmission of infection, whether mass screening or targeted approaches including schools, healthcare setting and traveller screening.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Pawana Sharma
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sarah Berhane
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Susanna S van Wyk
- Centre for Evidence-based Health Care, Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nicholas Nyaaba
- Infectious Disease Unit, 37 Military Hospital, Cantonments, Ghana
| | - Julie Domen
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Melissa Taylor
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Clare Davenport
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | | | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mariska Mg Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - René Spijker
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
| | - Jan Y Verbakel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Sian Taylor-Phillips
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
29
|
Shrock EL, Shrock CL, Elledge SJ. VirScan: High-throughput Profiling of Antiviral Antibody Epitopes. Bio Protoc 2022; 12:e4464. [PMID: 35937932 PMCID: PMC9303818 DOI: 10.21769/bioprotoc.4464] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/03/2020] [Accepted: 06/08/2022] [Indexed: 12/29/2022] Open
Abstract
Profiling the specificities of antibodies can reveal a wealth of information about humoral immune responses and the antigens they target. Here, we present a protocol for VirScan, an application of the phage immunoprecipitation sequencing (PhIP-Seq) method for profiling the specificities of human antiviral antibodies. Accompanying this protocol is a video of the experimental procedure. VirScan and, more generally, PhIP-Seq are techniques that enable high-throughput antibody profiling by combining high-throughput DNA oligo synthesis and bacteriophage display with next-generation sequencing. In the VirScan method, human sera samples are screened against a library of peptides spanning the entire human viral proteome. Bound phage are immunoprecipitated and sequenced, identifying the viral peptides recognized by the antibodies. VirScan Is a powerful tool for uncovering individual viral exposure histories, mapping the epitope landscape of viruses of interest, and studying fundamental mechanisms of viral immunity. Graphical abstract.
Collapse
Affiliation(s)
- Ellen L. Shrock
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
,
Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | | | - Stephen J. Elledge
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
,
Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
,
*For correspondence:
| |
Collapse
|
30
|
Ballmann R, Hotop SK, Bertoglio F, Steinke S, Heine PA, Chaudhry MZ, Jahn D, Pucker B, Baldanti F, Piralla A, Schubert M, Čičin-Šain L, Brönstrup M, Hust M, Dübel S. ORFeome Phage Display Reveals a Major Immunogenic Epitope on the S2 Subdomain of SARS-CoV-2 Spike Protein. Viruses 2022; 14:1326. [PMID: 35746797 PMCID: PMC9229677 DOI: 10.3390/v14061326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
The development of antibody therapies against SARS-CoV-2 remains a challenging task during the ongoing COVID-19 pandemic. All approved therapeutic antibodies are directed against the receptor binding domain (RBD) of the spike, and therefore lose neutralization efficacy against emerging SARS-CoV-2 variants, which frequently mutate in the RBD region. Previously, phage display has been used to identify epitopes of antibody responses against several diseases. Such epitopes have been applied to design vaccines or neutralize antibodies. Here, we constructed an ORFeome phage display library for the SARS-CoV-2 genome. Open reading frames (ORFs) representing the SARS-CoV-2 genome were displayed on the surface of phage particles in order to identify enriched immunogenic epitopes from COVID-19 patients. Library quality was assessed by both NGS and epitope mapping of a monoclonal antibody with a known binding site. The most prominent epitope captured represented parts of the fusion peptide (FP) of the spike. It is associated with the cell entry mechanism of SARS-CoV-2 into the host cell; the serine protease TMPRSS2 cleaves the spike within this sequence. Blocking this mechanism could be a potential target for non-RBD binding therapeutic anti-SARS-CoV-2 antibodies. As mutations within the FP amino acid sequence have been rather rare among SARS-CoV-2 variants so far, this may provide an advantage in the fight against future virus variants.
Collapse
Affiliation(s)
- Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - Sven-Kevin Hotop
- Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.Z.C.); (L.Č.-Š.); (M.B.)
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - M. Zeeshan Chaudhry
- Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.Z.C.); (L.Č.-Š.); (M.B.)
| | - Dieter Jahn
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany;
| | - Boas Pucker
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstr 1, 38106 Braunschweig, Germany;
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Fondazione Policlinico, 27100 Pavia, Italy;
| | - Antonio Piralla
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Fondazione Policlinico, 27100 Pavia, Italy;
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - Luka Čičin-Šain
- Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.Z.C.); (L.Č.-Š.); (M.B.)
| | - Mark Brönstrup
- Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.Z.C.); (L.Č.-Š.); (M.B.)
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (F.B.); (S.S.); (P.A.H.); (M.S.)
| |
Collapse
|
31
|
IgG targeting distinct seasonal coronavirus- conserved SARS-CoV-2 spike subdomains correlates with differential COVID-19 disease outcomes. Cell Rep 2022; 39:110904. [PMID: 35617962 PMCID: PMC9108089 DOI: 10.1016/j.celrep.2022.110904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/25/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022] Open
Abstract
Despite SARS-CoV-2 being a "novel" virus, early detection of anti-spike IgG in severe COVID-19 patients may be caused by the amplification of humoral memory responses against seasonal coronaviruses. Here, we examine this phenomenon by characterizing anti-spike IgG responses in non-hospitalized convalescent individuals across a spectrum of COVID-19 severity. We observe that disease severity positively correlates with anti-spike IgG levels, IgG cross-reactivity against other betacoronaviruses (β-CoVs), and FcγR activation. Analysis of IgG targeting β-CoV-conserved and non-conserved immunodominant epitopes within the SARS-CoV-2 spike protein revealed epitope-specific relationships: IgG targeting the conserved heptad repeat (HR) 2 region significantly correlates with milder disease, while targeting the conserved S2'FP region correlates with more severe disease. Furthermore, a lower HR2-to-S2'FP IgG-binding ratio correlates with greater disease severity, with ICU-hospitalized COVID-19 patients showing the lowest HR2/S2'FP ratios. These findings suggest that HR2/S2'FP IgG profiles may predict disease severity and offer insight into protective versus deleterious humoral recall responses.
Collapse
|
32
|
Chen L, Pang P, Qi H, Yan K, Ren Y, Ma M, Cao R, Li H, Hu C, Li Y, Xia J, Lai D, Dong Y, Jiang H, Zhang H, Shan H, Tao S, Liu S. Evaluation of Spike Protein Epitopes by Assessing the Dynamics of Humoral Immune Responses in Moderate COVID-19. Front Immunol 2022; 13:770982. [PMID: 35371042 PMCID: PMC8971992 DOI: 10.3389/fimmu.2022.770982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The spike protein (S) of SARS-CoV-2 is a major target for diagnosis and vaccine development because of its essential role in viral infection and host immunity. Currently, time-dependent responses of humoral immune system against various S protein epitopes are poorly understood. In this study, enzyme-linked immunosorbent assay (ELISA), peptide microarray, and antibody binding epitope mapping (AbMap) techniques were used to systematically analyze the dynamic changes of humoral immune responses against the S protein in a small cohort of moderate COVID-19 patients who were hospitalized for approximately two months after symptom onset. Recombinant truncated S proteins, target S peptides, and random peptides were used as antigens in the analyses. The assays demonstrated the dynamic IgM- and IgG recognition and reactivity against various S protein epitopes with patient-dependent patterns. Comprehensive analysis of epitope distribution along the spike gene sequence and spatial structure of the homotrimer S protein demonstrated that most IgM- and IgG-reactive peptides were clustered into similar genomic regions and were located at accessible domains. Seven S peptides were generally recognized by IgG antibodies derived from serum samples of all COVID-19 patients. The dynamic immune recognition signals from these seven S peptides were comparable to those of the entire S protein or truncated S1 protein. This suggested that the humoral immune system recognized few conserved S protein epitopes in most COVID-19 patients during the entire duration of humoral immune response after symptom onset. Furthermore, in this cohort, individual patients demonstrated stable immune recognition to certain S protein epitopes throughout their hospitalization period. Therefore, the dynamic characteristics of humoral immune responses to S protein have provided valuable information for accurate diagnosis and immunotherapy of COVID-19 patients.
Collapse
Affiliation(s)
- Lingyun Chen
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Pengfei Pang
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huan Qi
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Keqiang Yan
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Yan Ren
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Mingliang Ma
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Ruyin Cao
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Hua Li
- State Key laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuansheng Hu
- State Key laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Li
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Xia
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Danyun Lai
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuliang Dong
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Hewei Jiang
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Hainan Zhang
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Hong Shan
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- *Correspondence: Siqi Liu, ; Shengce Tao, ; Hong Shan,
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Siqi Liu, ; Shengce Tao, ; Hong Shan,
| | - Siqi Liu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
- *Correspondence: Siqi Liu, ; Shengce Tao, ; Hong Shan,
| |
Collapse
|
33
|
McGuire BE, Mela JE, Thompson VC, Cucksey LR, Stevens CE, McWhinnie RL, Winkler DFH, Pelech S, Nano FE. Escherichia coli recombinant expression of SARS-CoV-2 protein fragments. Microb Cell Fact 2022; 21:21. [PMID: 35123472 PMCID: PMC8817660 DOI: 10.1186/s12934-022-01753-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
We have developed a method for the inexpensive, high-level expression of antigenic protein fragments of SARS-CoV-2 proteins in Escherichia coli. Our approach uses the thermophilic family 9 carbohydrate-binding module (CBM9) as an N-terminal carrier protein and affinity tag. The CBM9 module was joined to SARS-CoV-2 protein fragments via a flexible proline–threonine linker, which proved to be resistant to E. coli proteases. Two CBM9-spike protein fragment fusion proteins and one CBM9-nucleocapsid fragment fusion protein largely resisted protease degradation, while most of the CBM9 fusion proteins were degraded at some site in the SARS-CoV-2 protein fragment. All of the fusion proteins were highly expressed in E. coli and the CBM9-ID-H1 fusion protein was shown to yield 122 mg/L of purified product. Three purified CBM9-SARS-CoV-2 fusion proteins were tested and found to bind antibodies directed to the appropriate SARS-CoV-2 antigenic regions. The largest intact CBM9 fusion protein, CBM9-ID-H1, incorporates spike protein amino acids 540–588, which is a conserved region overlapping and C-terminal to the receptor binding domain that is widely recognized by human convalescent sera and contains a putative protective epitope.
Collapse
|
34
|
ELISA-Based Analysis Reveals an Anti-SARS-CoV-2 Protein Immune Response Profile Associated with Disease Severity. J Clin Med 2022; 11:jcm11020405. [PMID: 35054099 PMCID: PMC8781066 DOI: 10.3390/jcm11020405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 01/01/2023] Open
Abstract
Since the start of the COVID-19 pandemic, many studies have investigated the humoral response to SARS-CoV-2 during infection. Studies with native viral proteins constitute a first-line approach to assessing the overall immune response, but small peptides are an accurate and valuable tool for the fine characterization of B-cell epitopes, despite the restriction of this approach to the determination of linear epitopes. In this study, we used ELISA and peptides covering a selection of structural and non-structural SARS-CoV-2 proteins to identify key epitopes eliciting a strong immune response that could serve as a biological signature of disease characteristics, such as severity, in particular. We used 213 plasma samples from a cohort of patients well-characterized clinically and biologically and followed for COVID-19 infection. We found that patients developing severe disease had higher titers of antibodies mapping to multiple specific epitopes than patients with mild to moderate disease. These data are potentially important as they could be used for immunological profiling to improve our knowledge of the quantitative and qualitative characteristics of the humoral response in relation to patient outcome.
Collapse
|
35
|
Sabatino JJ, Mittl K, Rowles WM, McPolin K, Rajan JV, Laurie MT, Zamecnik CR, Dandekar R, Alvarenga BD, Loudermilk RP, Gerungan C, Spencer CM, Sagan SA, Augusto DG, Alexander JR, DeRisi JL, Hollenbach JA, Wilson MR, Zamvil SS, Bove R. Multiple sclerosis therapies differentially impact SARS-CoV-2 vaccine-induced antibody and T cell immunity and function. JCI Insight 2022; 7:156978. [PMID: 35030101 PMCID: PMC8876469 DOI: 10.1172/jci.insight.156978] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Vaccine-elicited adaptive immunity is a prerequisite for control of SARS-CoV-2 infection. Multiple sclerosis (MS) disease-modifying therapies (DMTs) differentially target humoral and cellular immunity. A comprehensive comparison of the effects of MS DMTs on SARS-CoV-2 vaccine–specific immunity is needed, including quantitative and functional B and T cell responses. METHODS Spike-specific Ab and T cell responses were measured before and following SARS-CoV-2 vaccination in a cohort of 80 study participants, including healthy controls and patients with MS in 6 DMT groups: untreated and treated with glatiramer acetate (GA), dimethyl fumarate (DMF), natalizumab (NTZ), sphingosine-1-phosphate (S1P) receptor modulators, and anti-CD20 mAbs. Anti–spike-Ab responses were assessed by Luminex assay, VirScan, and pseudovirus neutralization. Spike-specific CD4+ and CD8+ T cell responses were characterized by activation-induced marker and cytokine expression and tetramer. RESULTS Anti-spike IgG levels were similar between healthy control participants and patients with untreated MS and those receiving GA, DMF, or NTZ but were reduced in anti-CD20 mAb– and S1P-treated patients. Anti-spike seropositivity in anti-CD20 mAb–treated patients was correlated with CD19+ B cell levels and inversely correlated with cumulative treatment duration. Spike epitope reactivity and pseudovirus neutralization were reduced in anti-CD20 mAb– and S1P-treated patients. Spike-specific CD4+ and CD8+ T cell reactivity remained robust across all groups, except in S1P-treated patients, in whom postvaccine CD4+ T cell responses were attenuated. CONCLUSION These findings from a large cohort of patients with MS exposed to a wide spectrum of MS immunotherapies have important implications for treatment-specific COVID-19 clinical guidelines. FUNDING NIH grants 1K08NS107619, K08NS096117, R01AI159260, R01NS092835, R01AI131624, and R21NS108159; NMSS grants TA-1903-33713 and RG1701-26628; Westridge Foundation; Chan Zuckerberg Biohub; Maisin Foundation.
Collapse
Affiliation(s)
- Joseph J Sabatino
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| | - Kristen Mittl
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| | - William M Rowles
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| | - Kira McPolin
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| | - Jayant V Rajan
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Matthew T Laurie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States of America
| | - Colin R Zamecnik
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| | - Ravi Dandekar
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| | - Bonny D Alvarenga
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| | - Rita P Loudermilk
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| | - Chloe Gerungan
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| | - Collin M Spencer
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| | - Sharon A Sagan
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| | - Danillo G Augusto
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| | - Jessa R Alexander
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States of America
| | - Jill A Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| | - Michael R Wilson
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| | - Scott S Zamvil
- University of California, San Francisco, San Francisco, United States of America
| | - Riley Bove
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| |
Collapse
|
36
|
Vanderheijden N, Stevaert A, Xie J, Ren X, Barbezange C, Noppen S, Desombere I, Verhasselt B, Geldhof P, Vereecke N, Stroobants V, Oh D, Vanhee M, Naesens LMJ, Nauwynck HJ. Functional Analysis of Human and Feline Coronavirus Cross-Reactive Antibodies Directed Against the SARS-CoV-2 Fusion Peptide. Front Immunol 2022; 12:790415. [PMID: 35069571 PMCID: PMC8766817 DOI: 10.3389/fimmu.2021.790415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
To face the continuous emergence of SARS-CoV-2 variants, broadly protective therapeutic antibodies are highly needed. We here focused on the fusion peptide (FP) region of the viral spike antigen since it is highly conserved among alpha- and betacoronaviruses. First, we found that coronavirus cross-reactive antibodies are commonly formed during infection, being omnipresent in sera from COVID-19 patients, in ~50% of pre-pandemic human sera (rich in antibodies against endemic human coronaviruses), and even in feline coronavirus-infected cats. Pepscan analyses demonstrated that a confined N-terminal region of the FP is strongly immunogenic across diverse coronaviruses. Peptide-purified human antibodies targeting this conserved FP epitope exhibited broad binding of alpha- and betacoronaviruses, besides weak and transient SARS-CoV-2 neutralizing activity. Being frequently elicited by coronavirus infection, these FP-binding antibodies might potentially exhibit Fc-mediated effector functions and influence the kinetics or severity of coronavirus infection and disease.
Collapse
Affiliation(s)
- Nathalie Vanderheijden
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Annelies Stevaert
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven – University of Leuven, Leuven, Belgium
| | - Jiexiong Xie
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Xiaolei Ren
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Cyril Barbezange
- National Influenza Centre and Epidemiology of Infectious Diseases, Sciensano, Brussels, Belgium
| | - Sam Noppen
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven – University of Leuven, Leuven, Belgium
| | | | - Bruno Verhasselt
- Laboratory for Medical Microbiology, Ghent University Hospital, Ghent, Belgium
| | - Peter Geldhof
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nick Vereecke
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- PathoSense BV, Lier, Belgium
| | - Veerle Stroobants
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dayoung Oh
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Merijn Vanhee
- Department of Laboratory Medicine, AZ Sint-Jan Brugge-Oostende, Bruges, Belgium
| | - Lieve M. J. Naesens
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven – University of Leuven, Leuven, Belgium
| | - Hans J. Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
37
|
Prahl M, Golan Y, Cassidy AG, Matsui Y, Li L, Alvarenga B, Chen H, Jigmeddagva U, Lin CY, Gonzalez VJ, Chidboy MA, Warrier L, Buarpung S, Murtha AP, Flaherman VJ, Greene WC, Wu AHB, Lynch KL, Rajan J, Gaw SL. Evaluation of transplacental transfer of mRNA vaccine products and functional antibodies during pregnancy and early infancy. RESEARCH SQUARE 2021:rs.3.rs-1150427. [PMID: 34931183 PMCID: PMC8687466 DOI: 10.21203/rs.3.rs-1150427/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Studies are needed to evaluate the safety and effectiveness of mRNA SARS-CoV-2 vaccination during pregnancy, and the levels of protection provided to their newborns through placental transfer of antibodies. We evaluated the transplacental transfer of mRNA vaccine products and functional anti-SARS-CoV-2 antibodies during pregnancy and early infancy in a cohort of 20 individuals vaccinated during pregnancy. We found no evidence of mRNA vaccine products in maternal blood, placenta tissue, or cord blood at delivery. However, we found time-dependent efficient transfer of IgG and neutralizing antibodies to the neonate that persisted during early infancy. Additionally, using phage immunoprecipitation sequencing, we found a vaccine-specific signature of SARS-CoV-2 Spike protein epitope binding that is transplacentally transferred during pregnancy. In conclusion, products of mRNA vaccines are not transferred to the fetus during pregnancy, however timing of vaccination during pregnancy is critical to ensure transplacental transfer of protective antibodies during early infancy.
Collapse
Affiliation(s)
- Mary Prahl
- Department of Pediatrics, University of California, San Francisco
| | - Yarden Golan
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Arianna G Cassidy
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| | - Yusuke Matsui
- Gladstone Center for HIV Cure Research, Gladstone Institute, San Francisco, CA
| | - Lin Li
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| | - Bonny Alvarenga
- Department of Medicine, University of California, San Francisco
| | - Hao Chen
- Weill Institute for Neurosciences, Division of Neurology, University of California, San Francisco, CA
| | - Unurzul Jigmeddagva
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| | - Christine Y Lin
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| | - Veronica J Gonzalez
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| | - Megan A Chidboy
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| | - Lakshmi Warrier
- Department of Medicine, University of California, San Francisco
| | - Sirirak Buarpung
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| | - Amy P Murtha
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| | | | - Warner C Greene
- Gladstone Center for HIV Cure Research, Gladstone Institute, San Francisco, CA
| | - Alan H B Wu
- Department of Laboratory Medicine, University of California, San Francisco
| | - Kara L Lynch
- Department of Laboratory Medicine, University of California, San Francisco
| | - Jayant Rajan
- Department of Medicine, University of California, San Francisco
| | - Stephanie L Gaw
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| |
Collapse
|
38
|
Prahl M, Golan Y, Cassidy AG, Matsui Y, Li L, Alvarenga B, Chen H, Jigmeddagva U, Lin CY, Gonzalez VJ, Chidboy MA, Warrier L, Buarpung S, Murtha AP, Flaherman VJ, Greene WC, Wu AHB, Lynch KL, Rajan J, Gaw SL. Evaluation of transplacental transfer of mRNA vaccine products and functional antibodies during pregnancy and early infancy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34931197 DOI: 10.1101/2021.12.09.21267423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Studies are needed to evaluate the safety and effectiveness of mRNA SARS-CoV-2 vaccination during pregnancy, and the levels of protection provided to their newborns through placental transfer of antibodies. We evaluated the transplacental transfer of mRNA vaccine products and functional anti-SARS-CoV-2 antibodies during pregnancy and early infancy in a cohort of 20 individuals vaccinated during pregnancy. We found no evidence of mRNA vaccine products in maternal blood, placenta tissue, or cord blood at delivery. However, we found time-dependent efficient transfer of IgG and neutralizing antibodies to the neonate that persisted during early infancy. Additionally, using phage immunoprecipitation sequencing, we found a vaccine-specific signature of SARS-CoV-2 Spike protein epitope binding that is transplacentally transferred during pregnancy. In conclusion, products of mRNA vaccines are not transferred to the fetus during pregnancy, however timing of vaccination during pregnancy is critical to ensure transplacental transfer of protective antibodies during early infancy.
Collapse
|
39
|
Pinheiro T, Cardoso AR, Sousa CEA, Marques AC, Tavares APM, Matos AM, Cruz MT, Moreira FTC, Martins R, Fortunato E, Sales MGF. Paper-Based Biosensors for COVID-19: A Review of Innovative Tools for Controlling the Pandemic. ACS OMEGA 2021; 6:29268-29290. [PMID: 34778604 PMCID: PMC8577188 DOI: 10.1021/acsomega.1c04012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/18/2021] [Indexed: 05/07/2023]
Abstract
The appearance and quick spread of the new severe acute respiratory syndrome coronavirus disease, COVID-19, brought major societal challenges. Importantly, suitable medical diagnosis procedures and smooth clinical management of the disease are an emergent need, which must be anchored on novel diagnostic methods and devices. Novel molecular diagnostic tools relying on nucleic acid amplification testing have emerged globally and are the current gold standard in COVID-19 diagnosis. However, the need for widespread testing methodologies for fast, effective testing in multiple epidemiological scenarios remains a crucial step in the fight against the COVID-19 pandemic. Biosensors have previously shown the potential for cost-effective and accessible diagnostics, finding applications in settings where conventional, laboratorial techniques may not be readily employed. Paper- and cellulose-based biosensors can be particularly relevant in pandemic times, for the renewability, possibility of mass production with sustainable methodologies, and safe environmental disposal. In this review, paper-based devices and platforms targeting SARS-CoV-2 are showcased and discussed, as a means to achieve quick and low-cost PoC diagnosis, including detection methodologies for viral genomic material, viral antigen detection, and serological antibody testing. Devices targeting inflammatory markers relevant for COVID-19 are also discussed, as fast, reliable bedside diagnostic tools for patient treatment and follow-up.
Collapse
Affiliation(s)
- Tomás Pinheiro
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
| | - A. Rita Cardoso
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
- CEB,
Centre of Biological Engineering, University
of Minho, Braga 4710-057, Portugal
| | - Cristina E. A. Sousa
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
| | - Ana C. Marques
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
| | - Ana P. M. Tavares
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
- CEB,
Centre of Biological Engineering, University
of Minho, Braga 4710-057, Portugal
| | - Ana Miguel Matos
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Chemical
Engineering Processes and Forest Products Research Center, Coimbra 3000-548, Portugal
| | - Maria Teresa Cruz
- Faculty
of Medicine, Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I, 1st Floor, Coimbra 3004-504, Portugal
| | - Felismina T. C. Moreira
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
| | - Rodrigo Martins
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
| | - Elvira Fortunato
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
| | - M. Goreti F. Sales
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
- CEB,
Centre of Biological Engineering, University
of Minho, Braga 4710-057, Portugal
| |
Collapse
|
40
|
Camerini D, Randall AZ, Trappl-Kimmons K, Oberai A, Hung C, Edgar J, Shandling A, Huynh V, Teng AA, Hermanson G, Pablo JV, Stumpf MM, Lester SN, Harcourt J, Tamin A, Rasheed M, Thornburg NJ, Satheshkumar PS, Liang X, Kennedy RB, Yee A, Townsend M, Campo JJ. Mapping SARS-CoV-2 Antibody Epitopes in COVID-19 Patients with a Multi-Coronavirus Protein Microarray. Microbiol Spectr 2021; 9:e0141621. [PMID: 34704808 PMCID: PMC8549749 DOI: 10.1128/spectrum.01416-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/05/2021] [Indexed: 11/20/2022] Open
Abstract
The rapid worldwide spread of SARS-CoV-2 has accelerated research and development for controlling the COVID-19 pandemic. A multi-coronavirus protein microarray was created containing full-length proteins, overlapping protein fragments of various lengths, and peptide libraries from SARS-CoV-2 and four other human coronaviruses. Sera from confirmed COVID-19 patients as well as unexposed individuals were applied to multicoronavirus arrays to identify specific antibody reactivity. High-level IgG, IgM, and IgA reactivity to structural proteins S, M, and N of SARS-CoV-2, as well as accessory proteins such as ORF3a and ORF7a, were observed that were specific to COVID-19 patients. Antibody reactivity against overlapping 100-, 50-, and 30-amino acid fragments of SARS-CoV-2 proteins was used to identify antigenic regions. Numerous proteins of SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), and the endemic human coronaviruses HCoV-NL63 and HCoV-OC43 were also more reactive with IgG, IgM, and IgA in COVID-19 patient sera than in unexposed control sera, providing further evidence of immunologic cross-reactivity between these viruses. Whereas unexposed individuals had minimal reactivity against SARS-CoV-2 proteins that poorly correlated with reactivity against HCoV-NL63 and HCoV-OC43 S2 and N proteins, COVID-19 patient sera had higher correlation between SARS-CoV-2 and HCoV responses, suggesting that de novo antibodies against SARS-CoV-2 cross-react with HCoV epitopes. Array responses were compared with validated spike protein-specific IgG enzyme-linked immunosorbent assays (ELISAs), showing agreement between orthologous methods. SARS-CoV-2 microneutralization titers were low in the COVID-19 patient sera but correlated with array responses against S and N proteins. The multi-coronavirus protein microarray is a useful tool for mapping antibody reactivity in COVID-19 patients. IMPORTANCE With novel mutant SARS-CoV-2 variants of concern on the rise, knowledge of immune specificities against SARS-CoV-2 proteins is increasingly important for understanding the impact of structural changes in antibody-reactive protein epitopes on naturally acquired and vaccine-induced immunity, as well as broader topics of cross-reactivity and viral evolution. A multi-coronavirus protein microarray used to map the binding of COVID-19 patient antibodies to SARS-CoV-2 proteins and protein fragments as well as to the proteins of four other coronaviruses that infect humans has shown specific regions of SARS-CoV-2 proteins that are highly reactive with patient antibodies and revealed cross-reactivity of these antibodies with other human coronaviruses. These data and the multi-coronavirus protein microarray tool will help guide further studies of the antibody response to COVID-19 and to vaccination against this worldwide pandemic.
Collapse
Affiliation(s)
- David Camerini
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
- University of California, Irvine, California, USA
| | - Arlo Z. Randall
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | | | - Amit Oberai
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | | | - Joshua Edgar
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | - Adam Shandling
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | - Vu Huynh
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | - Andy A. Teng
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | - Gary Hermanson
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | | | - Megan M. Stumpf
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sandra N. Lester
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Azaibi Tamin
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mohammed Rasheed
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Xiaowu Liang
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | | | - Angela Yee
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| | - Michael Townsend
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joseph J. Campo
- Antigen Discovery Incorporated (ADI), Irvine, California, USA
| |
Collapse
|
41
|
Sabatino JJ, Mittl K, Rowles W, Mcpolin K, Rajan JV, Zamecnik CR, Dandekar R, Alvarenga BD, Loudermilk RP, Gerungan C, Spencer CM, Sagan SA, Augusto DG, Alexander J, Hollenbach JA, Wilson MR, Zamvil SS, Bove R. Impact of multiple sclerosis disease-modifying therapies on SARS-CoV-2 vaccine-induced antibody and T cell immunity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.09.10.21262933. [PMID: 34580672 PMCID: PMC8475959 DOI: 10.1101/2021.09.10.21262933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vaccine-elicited adaptive immunity is an essential prerequisite for effective prevention and control of coronavirus 19 (COVID-19). Treatment of multiple sclerosis (MS) involves a diverse array of disease-modifying therapies (DMTs) that target antibody and cell-mediated immunity, yet a comprehensive understanding of how MS DMTs impact SARS-CoV-2 vaccine responses is lacking. We completed a detailed analysis of SARS-CoV-2 vaccine-elicited spike antigen-specific IgG and T cell responses in a cohort of healthy controls and MS participants in six different treatment categories. Two specific DMT types, sphingosine-1-phosphate (S1P) receptor modulators and anti-CD20 monoclonal antibodies (mAb), resulted in significantly reduced spike-specific IgG responses. Longer duration of anti-CD20 mAb treatment prior to SARS-CoV-2 vaccination were associated with absent antibody responses. Except for reduced CD4+ T cell responses in S1P-treated patients, spike-specific CD4+ and CD8+ T cell reactivity remained robust across all MS treatment types. These findings have important implications for clinical practice guidelines and vaccination recommendations in MS patients and other immunosuppressed populations.
Collapse
Affiliation(s)
- Joseph J. Sabatino
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kristen Mittl
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - William Rowles
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kira Mcpolin
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jayant V. Rajan
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Colin R. Zamecnik
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ravi Dandekar
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bonny D. Alvarenga
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Rita P. Loudermilk
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Chloe Gerungan
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Collin M. Spencer
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sharon A. Sagan
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Danillo G. Augusto
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jessa Alexander
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jill A. Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Michael R. Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Scott S. Zamvil
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Riley Bove
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
42
|
Palma M. Perspectives on passive antibody therapy and peptide-based vaccines against emerging pathogens like SARS-CoV-2. Germs 2021; 11:287-305. [PMID: 34422699 DOI: 10.18683/germs.2021.1264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/25/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The current epidemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is raising awareness of the need to act faster when dealing with new pathogens. Exposure to an emerging pathogen generates an antibody response that can be used for preventing and treating the infection. These antibodies might have a high specificity to a target, few side effects, and are useful in the absence of an effective vaccine for treating immunocompromised individuals. The approved antibodies against the receptor-binding domain (RBD) of the viral spike protein of SARS-CoV-2 (e.g., regdanvimab, bamlanivimab, etesevimab, and casirivimab/imdevimab) have been selected from the antibody repertoire of B cells from convalescent patients using flow cytometry, next-generation sequencing, and phage display. This encourages use of these techniques especially phage display, because it does not require expensive types of equipment and can be performed on the lab bench, thereby making it suitable for labs with limited resources. Also, the antibodies in blood samples from convalescent patients can be used to screen pre-made peptide libraries to identify epitopes for vaccine development. Different types of vaccines against SARS-CoV-2 have been developed, including inactivated virus vaccines, mRNA-based vaccines, non-replicating vector vaccines, and protein subunits. mRNA vaccines have numerous advantages over existing vaccines, such as efficacy, ease of manufacture, safety, and cost-effectiveness. Additionally, epitope vaccination may constitute an attractive strategy to induce high levels of antibodies against a pathogen and phages might be used as immunogenic carriers of such peptides. This is a point worth considering further, as phage-based vaccines have been shown to be safe in clinical trials and phages are easy to produce and tolerate high temperatures. In conclusion, identification of the antibody repertoire of recovering patients, and the epitopes they recognize, should be an attractive alternative option for developing therapeutic and prophylactic antibodies and vaccines against emerging pathogens.
Collapse
Affiliation(s)
- Marco Palma
- PhD, Independent researcher, Calle San Jose, Torrevieja, 03181, Spain
| |
Collapse
|
43
|
Affiliation(s)
- Elizabeth Smerczak
- Detroit Medical Center University Laboratories, Sinai-Grace Hospital, Detroit, Michigan, USA
| |
Collapse
|
44
|
IMPACC Manuscript Writing Team, on behalf of the IMPACC Network Steering Committee. Immunophenotyping assessment in a COVID-19 cohort (IMPACC): A prospective longitudinal study. Sci Immunol 2021; 6:eabf3733. [PMID: 34376480 PMCID: PMC8713959 DOI: 10.1126/sciimmunol.abf3733] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
The IMmunoPhenotyping Assessment in a COVID-19 Cohort (IMPACC) is a prospective longitudinal study designed to enroll 1000 hospitalized patients with COVID-19 (NCT04378777). IMPACC collects detailed clinical, laboratory and radiographic data along with longitudinal biologic sampling of blood and respiratory secretions for in depth testing. Clinical and lab data are integrated to identify immunologic, virologic, proteomic, metabolomic and genomic features of COVID-19-related susceptibility, severity and disease progression. The goals of IMPACC are to better understand the contributions of pathogen dynamics and host immune responses to the severity and course of COVID-19 and to generate hypotheses for identification of biomarkers and effective therapeutics, including optimal timing of such interventions. In this report we summarize the IMPACC study design and protocols including clinical criteria and recruitment, multi-site standardized sample collection and processing, virologic and immunologic assays, harmonization of assay protocols, high-level analyses and the data sharing plans.
Collapse
|
45
|
Klompus S, Leviatan S, Vogl T, Mazor RD, Kalka IN, Stoler-Barak L, Nathan N, Peres A, Moss L, Godneva A, Kagan Ben Tikva S, Shinar E, Dvashi HC, Gabizon R, London N, Diskin R, Yaari G, Weinberger A, Shulman Z, Segal E. Cross-reactive antibodies against human coronaviruses and the animal coronavirome suggest diagnostics for future zoonotic spillovers. Sci Immunol 2021; 6:6/61/eabe9950. [PMID: 34326184 PMCID: PMC9267281 DOI: 10.1126/sciimmunol.abe9950] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
The spillover of animal coronaviruses (aCoVs) to humans has caused SARS, MERS, and COVID-19. While antibody responses displaying cross-reactivity between SARS-CoV-2 and seasonal/common cold human coronaviruses (hCoVs) have been reported, potential cross-reactivity with aCoVs and the diagnostic implications are incompletely understood. Here, we probed for antibody binding against all seven hCoVs and 49 aCoVs represented as 12,924 peptides within a phage-displayed antigen library. Antibody repertoires of 269 recovered COVID-19 patients showed distinct changes compared to 260 unexposed pre-pandemic controls, not limited to binding of SARS-CoV-2 antigens but including binding to antigens from hCoVs and aCoVs with shared motifs to SARS-CoV-2. We isolated broadly reactive monoclonal antibodies from recovered COVID-19 patients that bind a shared motif of SARS-CoV-2, hCoV-OC43, hCoV-HKU1, and several aCoVs, demonstrating that interspecies cross-reactivity can be mediated by a single immunoglobulin. Employing antibody binding data against the entire CoV antigen library allowed accurate discrimination of recovered COVID-19 patients from unexposed individuals by machine learning. Leaving out SARS-CoV-2 antigens and relying solely on antibody binding to other hCoVs and aCoVs achieved equally accurate detection of SARS-CoV-2 infection. The ability to detect SARS-CoV-2 infection without knowledge of its unique antigens solely from cross-reactive antibody responses against other hCoVs and aCoVs suggests a potential diagnostic strategy for the early stage of future pandemics. Creating regularly updated antigen libraries representing the animal coronavirome can provide the basis for a serological assay already poised to identify infected individuals following a future zoonotic transmission event.
Collapse
Affiliation(s)
- Shelley Klompus
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sigal Leviatan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Thomas Vogl
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel .,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Roei D Mazor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Iris N Kalka
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Stoler-Barak
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nachum Nathan
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ayelet Peres
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Faculty of Engineering, Bar Ilan University, Ramat Gan 52900, Israel
| | - Lihee Moss
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sharon Kagan Ben Tikva
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Hadas Cohen Dvashi
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ronen Gabizon
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nir London
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ron Diskin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gur Yaari
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Faculty of Engineering, Bar Ilan University, Ramat Gan 52900, Israel
| | - Adina Weinberger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ziv Shulman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel .,Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eran Segal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel .,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
46
|
Elledge SK, Zhou XX, Byrnes JR, Martinko AJ, Lui I, Pance K, Lim SA, Glasgow JE, Glasgow AA, Turcios K, Iyer NS, Torres L, Peluso MJ, Henrich TJ, Wang TT, Tato CM, Leung KK, Greenhouse B, Wells JA. Engineering luminescent biosensors for point-of-care SARS-CoV-2 antibody detection. Nat Biotechnol 2021. [PMID: 33767397 DOI: 10.1038/s41587-41021-00878-41588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Current serology tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies mainly take the form of enzyme-linked immunosorbent assays, chemiluminescent microparticle immunoassays or lateral flow assays, which are either laborious, expensive or lacking sufficient sensitivity and scalability. Here we present the development and validation of a rapid, low-cost, solution-based assay to detect antibodies in serum, plasma, whole blood and to a lesser extent saliva, using rationally designed split luciferase antibody biosensors. This new assay, which generates quantitative results in 30 min, substantially reduces the complexity and improves the scalability of coronavirus disease 2019 (COVID-19) antibody tests. This assay is well-suited for point-of-care, broad population testing, and applications in low-resource settings, for monitoring host humoral responses to vaccination or viral infection.
Collapse
Affiliation(s)
- Susanna K Elledge
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Xin X Zhou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - James R Byrnes
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | | | - Irene Lui
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Katarina Pance
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Shion A Lim
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Jeff E Glasgow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Anum A Glasgow
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Keirstinne Turcios
- Division of Experimental Medicine, University of California, San Francisco, San Francisco CA, USA
| | - Nikita S Iyer
- Division of Experimental Medicine, University of California, San Francisco, San Francisco CA, USA
| | - Leonel Torres
- Division of Experimental Medicine, University of California, San Francisco, San Francisco CA, USA
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, San Francisco CA, USA
| | - Taia T Wang
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Departments of Medicine and of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Bryan Greenhouse
- Division of Experimental Medicine, University of California, San Francisco, San Francisco CA, USA
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
47
|
Fraley E, LeMaster C, Geanes E, Banerjee D, Khanal S, Grundberg E, Selvarangan R, Bradley T. Humoral immune responses during SARS-CoV-2 mRNA vaccine administration in seropositive and seronegative individuals. BMC Med 2021; 19:169. [PMID: 34304742 PMCID: PMC8310732 DOI: 10.1186/s12916-021-02055-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/07/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The global pandemic of coronavirus disease 2019 (COVID-19) is caused by infection with the SARS-CoV-2 virus. Currently, there are three approved vaccines against SARS-CoV-2 in the USA, including two based on messenger RNA (mRNA) technology that has demonstrated high vaccine efficacy. We sought to characterize humoral immune responses, at high resolution, during immunization with the BNT162b2 (Pfizer-BioNTech) vaccine in individuals with or without prior history of natural SARS-CoV-2 infection. METHODS We determined antibody responses after each dose of the BNT162b2 SARS-CoV-2 vaccine in individuals who had no prior history of SARS-CoV-2 infection (seronegative) and individuals that had previous viral infection 30-60 days prior to first vaccination (seropositive). To do this, we used both an antibody isotype-specific multiplexed bead-based binding assays targeting multiple SARS-CoV-2 viral protein antigens and an assay that identified potential SARS-CoV-2 neutralizing antibody levels. Moreover, we mapped antibody epitope specificity after immunization using SARS-CoV-2 spike protein peptide arrays. RESULTS Antibody levels were significantly higher after a single dose in seropositive individuals compared to seronegative individuals and were comparable to levels observed in seronegative individuals after two doses. While IgG was boosted by vaccination for both seronegative and seropositive individuals, only seronegative individuals had increased IgA or IgM antibody titers after primary immunization. We identified immunodominant peptides targeted on both SARS-CoV-2 spike S1 and S2 subunits after vaccination. CONCLUSION These findings demonstrated the antibody responses to SARS-CoV-2 immunization in seropositive and seronegative individuals and provide support for the concept of using prior infection history as a guide for the consideration of future vaccination regimens. Moreover, we identified key epitopes on the SARS-CoV-2 spike protein that are targeted by antibodies after vaccination that could guide future vaccine and immune correlate development.
Collapse
Affiliation(s)
- Elizabeth Fraley
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Cas LeMaster
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Eric Geanes
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Dithi Banerjee
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Santosh Khanal
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Elin Grundberg
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.,Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.,Department of Pediatrics, UMKC School of Medicine, Kansas City, MO, 64108, USA
| | - Rangaraj Selvarangan
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA. .,Department of Pediatrics, UMKC School of Medicine, Kansas City, MO, 64108, USA.
| | - Todd Bradley
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA. .,Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, 64108, USA. .,Department of Pediatrics, UMKC School of Medicine, Kansas City, MO, 64108, USA. .,Departments of Pediatrics and Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
48
|
Roxhed N, Bendes A, Dale M, Mattsson C, Hanke L, Dodig-Crnković T, Christian M, Meineke B, Elsässer S, Andréll J, Havervall S, Thålin C, Eklund C, Dillner J, Beck O, Thomas CE, McInerney G, Hong MG, Murrell B, Fredolini C, Schwenk JM. Multianalyte serology in home-sampled blood enables an unbiased assessment of the immune response against SARS-CoV-2. Nat Commun 2021; 12:3695. [PMID: 34140485 PMCID: PMC8211676 DOI: 10.1038/s41467-021-23893-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/21/2021] [Indexed: 12/18/2022] Open
Abstract
Serological testing is essential to curb the consequences of the COVID-19 pandemic. However, most assays are still limited to single analytes and samples collected within healthcare. Thus, we establish a multianalyte and multiplexed approach to reliably profile IgG and IgM levels against several versions of SARS-CoV-2 proteins (S, RBD, N) in home-sampled dried blood spots (DBS). We analyse DBS collected during spring of 2020 from 878 random and undiagnosed individuals from the population in Stockholm, Sweden, and use classification approaches to estimate an accumulated seroprevalence of 12.5% (95% CI: 10.3%-14.7%). This includes 5.4% of the samples being IgG+IgM+ against several SARS-CoV-2 proteins, as well as 2.1% being IgG-IgM+ and 5.0% being IgG+IgM- for the virus' S protein. Subjects classified as IgG+ for several SARS-CoV-2 proteins report influenza-like symptoms more frequently than those being IgG+ for only the S protein (OR = 6.1; p < 0.001). Among all seropositive cases, 30% are asymptomatic. Our strategy enables an accurate individual-level and multiplexed assessment of antibodies in home-sampled blood, assisting our understanding about the undiagnosed seroprevalence and diversity of the immune response against the coronavirus.
Collapse
Affiliation(s)
- Niclas Roxhed
- Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.
- MedTechLabs, BioClinicum, Karolinska University Hospital, Solna, Sweden.
| | - Annika Bendes
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Matilda Dale
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Cecilia Mattsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Tea Dodig-Crnković
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Murray Christian
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Birthe Meineke
- Science for Life Laboratory, Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Solna, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Solna, Sweden
| | - Simon Elsässer
- Science for Life Laboratory, Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Solna, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Solna, Sweden
| | - Juni Andréll
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Sebastian Havervall
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Danderyd, Sweden
| | - Charlotte Thålin
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Danderyd, Sweden
| | - Carina Eklund
- Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Joakim Dillner
- Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Olof Beck
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia E Thomas
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Mun-Gwan Hong
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Claudia Fredolini
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Jochen M Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden.
| |
Collapse
|
49
|
Smith CC, Olsen KS, Gentry KM, Sambade M, Beck W, Garness J, Entwistle S, Willis C, Vensko S, Woods A, Fini M, Carpenter B, Routh E, Kodysh J, O'Donnell T, Haber C, Heiss K, Stadler V, Garrison E, Sandor AM, Ting JPY, Weiss J, Krajewski K, Grant OC, Woods RJ, Heise M, Vincent BG, Rubinsteyn A. Landscape and selection of vaccine epitopes in SARS-CoV-2. Genome Med 2021; 13:101. [PMID: 34127050 PMCID: PMC8201469 DOI: 10.1186/s13073-021-00910-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Early in the pandemic, we designed a SARS-CoV-2 peptide vaccine containing epitope regions optimized for concurrent B cell, CD4+ T cell, and CD8+ T cell stimulation. The rationale for this design was to drive both humoral and cellular immunity with high specificity while avoiding undesired effects such as antibody-dependent enhancement (ADE). METHODS We explored the set of computationally predicted SARS-CoV-2 HLA-I and HLA-II ligands, examining protein source, concurrent human/murine coverage, and population coverage. Beyond MHC affinity, T cell vaccine candidates were further refined by predicted immunogenicity, sequence conservation, source protein abundance, and coverage of high frequency HLA alleles. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering for surface accessibility, sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. RESULTS From 58 initial candidates, three B cell epitope regions were identified. From 3730 (MHC-I) and 5045 (MHC-II) candidate ligands, 292 CD8+ and 284 CD4+ T cell epitopes were identified. By combining these B cell and T cell analyses, as well as a manufacturability heuristic, we proposed a set of 22 SARS-CoV-2 vaccine peptides for use in subsequent murine studies. We curated a dataset of ~ 1000 observed T cell epitopes from convalescent COVID-19 patients across eight studies, showing 8/15 recurrent epitope regions to overlap with at least one of our candidate peptides. Of the 22 candidate vaccine peptides, 16 (n = 10 T cell epitope optimized; n = 6 B cell epitope optimized) were manually selected to decrease their degree of sequence overlap and then synthesized. The immunogenicity of the synthesized vaccine peptides was validated using ELISpot and ELISA following murine vaccination. Strong T cell responses were observed in 7/10 T cell epitope optimized peptides following vaccination. Humoral responses were deficient, likely due to the unrestricted conformational space inhabited by linear vaccine peptides. CONCLUSIONS Overall, we find our selection process and vaccine formulation to be appropriate for identifying T cell epitopes and eliciting T cell responses against those epitopes. Further studies are needed to optimize prediction and induction of B cell responses, as well as study the protective capacity of predicted T and B cell epitopes.
Collapse
Affiliation(s)
- Christof C Smith
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Kelly S Olsen
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Kaylee M Gentry
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Maria Sambade
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Wolfgang Beck
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Jason Garness
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Sarah Entwistle
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Caryn Willis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Steven Vensko
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Allison Woods
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Misha Fini
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Brandon Carpenter
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Eric Routh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Julia Kodysh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy O'Donnell
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Erik Garrison
- Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Adam M Sandor
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Jenny P Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA
- Institute for Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jared Weiss
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
- Division of Medical Oncology, Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, NC, USA
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Mark Heise
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA.
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA.
- Division of Hematology, Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA.
| | - Alex Rubinsteyn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA.
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA.
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
50
|
Garrett ME, Galloway J, Chu HY, Itell HL, Stoddard CI, Wolf CR, Logue JK, McDonald D, Weight H, Matsen FA, Overbaugh J. High-resolution profiling of pathways of escape for SARS-CoV-2 spike-binding antibodies. Cell 2021; 184:2927-2938.e11. [PMID: 34010620 PMCID: PMC8096189 DOI: 10.1016/j.cell.2021.04.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/26/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023]
Abstract
Defining long-term protective immunity to SARS-CoV-2 is one of the most pressing questions of our time and will require a detailed understanding of potential ways this virus can evolve to escape immune protection. Immune protection will most likely be mediated by antibodies that bind to the viral entry protein, spike (S). Here, we used Phage-DMS, an approach that comprehensively interrogates the effect of all possible mutations on binding to a protein of interest, to define the profile of antibody escape to the SARS-CoV-2 S protein using coronavirus disease 2019 (COVID-19) convalescent plasma. Antibody binding was common in two regions, the fusion peptide and the linker region upstream of the heptad repeat region 2. However, escape mutations were variable within these immunodominant regions. There was also individual variation in less commonly targeted epitopes. This study provides a granular view of potential antibody escape pathways and suggests there will be individual variation in antibody-mediated virus evolution.
Collapse
Affiliation(s)
- Meghan E Garrett
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA; Molecular and Cellular Biology Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA
| | - Jared Galloway
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hannah L Itell
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA; Molecular and Cellular Biology Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA
| | - Caitlin I Stoddard
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA
| | - Caitlin R Wolf
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jennifer K Logue
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Dylan McDonald
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Haidyn Weight
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA
| | - Frederick A Matsen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA; Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA.
| |
Collapse
|