1
|
Wilhelm O, Jordan C, Kek H, Brunton-O’Sullivan MM, Rikard-Bell L, Ramanathan P, Chung AW, Poumbourios P, Wines BD, Jaworowski A, Hearps AC. Afucosylated broadly neutralizing antibodies targeting the HIV envelope elicit enhanced NK-cell-mediated cytotoxicity against HIV-infected CD4+ T-cell and macrophage targets. J Leukoc Biol 2025; 117:qiaf033. [PMID: 40086815 PMCID: PMC12080361 DOI: 10.1093/jleuko/qiaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/14/2024] [Accepted: 03/13/2025] [Indexed: 03/16/2025] Open
Abstract
Enhancement of antibody-dependent cellular cytotoxicity is a promising adjunct approach to achieve HIV control in the absence of antiretroviral therapy but requires the development of potent antibody-dependent cellular cytotoxicity-eliciting antibodies that can recognize diverse HIV-infected cell types. A panel of broadly neutralizing antibodies targeting the HIV envelope was identified that specifically binds both HIV-infected CD4+ T cells and monocyte-derived macrophages. Afucosylated versions of these broadly neutralizing antibodies containing ≈30% less core fucose were generated and elicited a significant increase in antibody-dependent cellular cytotoxicity responses from natural killer cells against HIV-infected T-cell and monocyte-derived macrophage targets. Afucosylation did not alter virus neutralization or cell-binding activity of these broadly neutralizing antibodies. Afucosylation modification of broadly neutralizing antibody Fc regions is thus a promising strategy to enhance Fc-mediated activity against both T-cell and macrophage targets in vivo, which may be employed to heighten the therapeutic potential of antibody-based immunotherapy approaches for drug-free HIV control.
Collapse
Affiliation(s)
- Olivia Wilhelm
- Life Sciences Discipline, Burnet Institute, GPO Box 284, Melbourne, VIC 3004, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St, Melbourne, VIC 3000, Australia
| | - Christine Jordan
- Life Sciences Discipline, Burnet Institute, GPO Box 284, Melbourne, VIC 3004, Australia
| | - Hans Kek
- Life Sciences Discipline, Burnet Institute, GPO Box 284, Melbourne, VIC 3004, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Level 6, 99 Commercial Rd, Melbourne, VIC 3004, Australia
| | | | - Laura Rikard-Bell
- Life Sciences Discipline, Burnet Institute, GPO Box 284, Melbourne, VIC 3004, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St, Melbourne, VIC 3000, Australia
| | - Pradhipa Ramanathan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St, Melbourne, VIC 3000, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St, Melbourne, VIC 3000, Australia
| | - Pantelis Poumbourios
- Life Sciences Discipline, Burnet Institute, GPO Box 284, Melbourne, VIC 3004, Australia
- Department of Microbiology, Monash University, 19 Innovation Walk, Clayton, VIC 3800, Australia
| | - Bruce D Wines
- Life Sciences Discipline, Burnet Institute, GPO Box 284, Melbourne, VIC 3004, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Level 6, 99 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Anthony Jaworowski
- Life Sciences Discipline, Burnet Institute, GPO Box 284, Melbourne, VIC 3004, Australia
- Department of Infectious Diseases, Monash University, Level 2, 85 Commercial Rd, Melbourne, VIC 3004, Australia
- School of Health and Biomedical Sciences, RMIT University, Plenty Rd, Bundoora, VIC 3083, Australia
| | - Anna C Hearps
- Life Sciences Discipline, Burnet Institute, GPO Box 284, Melbourne, VIC 3004, Australia
- Department of Infectious Diseases, Monash University, Level 2, 85 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Infectious Diseases, University of Melbourne, 792 Elizabeth St, Melbourne, VIC 3000, Australia
| |
Collapse
|
2
|
Lin LY, Gantner P, Li S, Su B, Moog C. Unpredicted Protective Function of Fc-Mediated Inhibitory Antibodies for HIV and SARS-CoV-2 Vaccines. J Infect Dis 2025; 231:e1-e9. [PMID: 39302695 PMCID: PMC11793060 DOI: 10.1093/infdis/jiae464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024] Open
Abstract
Developing effective vaccines is necessary in combating new virus pandemics. For human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the induction of neutralizing antibodies (NAb) is important for vaccine protection; however, the exact mechanisms underlying protection require further study. Recent data emphasize that even Abs that do not exhibit neutralizing activity may contribute to immune defense by Ab Fc-mediated inhibition. Abs exhibiting this function may counter virus mutations, which are acquired to escape from NAbs, and therefore broaden the protective Ab response induced by vaccination. The steps leading to inhibition are complex. How can these functions be measured in vitro? What inhibitory assay is physiologically relevant at mimicking effective in vivo protection? This review provides a comprehensive update on the current knowledge gaps on the Ab Fc-mediated functions involved in HIV and SARS-CoV-2 protection. Understanding the inhibitory effects of these Abs is vital for designing the next generation of protective HIV and SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Li-Yun Lin
- Laboratoire d’Immunorhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, France
- Vaccine Research Institute, Créteil, France
| | - Pierre Gantner
- Laboratoire d’Immunorhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, France
- Institut Thématique Interdisciplinaire de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Shuang Li
- Beijing Key Laboratory for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Christiane Moog
- Laboratoire d’Immunorhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, France
- Institut Thématique Interdisciplinaire de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Vaccine Research Institute, Créteil, France
| |
Collapse
|
3
|
Harris AW, Kurtovic L, Nogueira J, Bouzas I, Opi DH, Wines BD, Lee WS, Hogarth PM, Poumbourios P, Drummer HE, Valim C, Porto LC, Beeson JG. Induction of Fc-dependent functional antibodies against different variants of SARS-CoV-2 varies by vaccine type and prior infection. COMMUNICATIONS MEDICINE 2024; 4:273. [PMID: 39702507 DOI: 10.1038/s43856-024-00686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND SARS-CoV-2 transmission and COVID-19 disease severity is influenced by immunity from natural infection and/or vaccination. Population-level immunity is complicated by the emergence of viral variants. Antibody Fc-dependent effector functions are as important mediators in immunity. However, their induction in populations with diverse infection and/or vaccination histories and against variants remains poorly defined. METHODS We evaluated Fc-dependent functional antibodies following vaccination with two widely used vaccines, AstraZeneca (AZ) and Sinovac (SV), including antibody binding of Fcγ-receptors and complement-fixation in vaccinated Brazilian adults (n = 222), some of who were previously infected with SARS-CoV-2, as well as adults with natural infection only (n = 200). IgG, IgM, IgA, and IgG subclasses were also quantified. RESULTS AZ induces greater Fcγ-receptor-binding (types I, IIa, and IIIa/b) antibodies than SV or natural infection. Previously infected individuals have significantly greater vaccine-induced responses compared to naïve counterparts. Fcγ-receptor-binding is highest among AZ vaccinated individuals with a prior infection, for all receptor types, and substantial complement-fixing activity is only seen among this group. SV induces higher IgM than AZ, but this does not drive better complement-fixing activity. Some SV responses are associated with subject age, whereas AZ responses are not. Importantly, functional antibody responses are well retained against the Omicron BA.1 S protein, being best retained for Fcγ-receptor-1 binding, and are higher for AZ than SV. CONCLUSIONS Hybrid immunity, from combined natural exposure and vaccination, generates strong Fc-mediated antibody functions which may contribute to immunity against evolving SARS-CoV-2 variants. Understanding determinants of Fc-mediated functions may enable future vaccines with greater efficacy against different variants.
Collapse
Affiliation(s)
- Alexander W Harris
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| | - Liriye Kurtovic
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| | - Jeane Nogueira
- Immunogenic and Histocompatibility Laboratory, Technologic Core for Tissue repair and Histocompatibility, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Isabel Bouzas
- Health Research Support Facility Center (CAPCS), Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - D Herbert Opi
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- Departments of Medicine, The University of Melbourne, Melbourne, Australia
| | - Bruce D Wines
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | | | - Pantelis Poumbourios
- Burnet Institute, Melbourne, Australia
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Heidi E Drummer
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Clarissa Valim
- Boston University School of Public Health, Boston University, Boston, USA
| | - Luís Cristóvão Porto
- Immunogenic and Histocompatibility Laboratory, Technologic Core for Tissue repair and Histocompatibility, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Health Research Support Facility Center (CAPCS), Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - James G Beeson
- Burnet Institute, Melbourne, Australia.
- Department of Immunology, Monash University, Melbourne, Australia.
- Departments of Medicine, The University of Melbourne, Melbourne, Australia.
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
4
|
Long C, Wang W, Du J, Xu G, Yu C, Wang L. Developing a human monoclonal antibody combination CRM25 to prevent rabies after exposure. Int J Antimicrob Agents 2024; 64:107383. [PMID: 39542064 DOI: 10.1016/j.ijantimicag.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE Immunization against rabies post-exposure prophylaxis requires passive immunization with either monoclonal antibody (mAb) or blood-derived rabies immunoglobin (RIG). Currently, replacing traditional RIG with emerging mAb or mAb combinations is highly recommended due to the limited supply and potential safety risks of RIG. METHODS We developed a mAb combination named CRM25 by combining two human mAbs, RM02 and RM05, at a 1:1 mass ratio. RESULTS RM02 and RM05 were non-competing and non-overlapping mAbs targeting epitopes I and III, respectively. K226 and G229 were found to be the critical amino acid sites for RM02 neutralization, but the mutant I338T displayed decreased susceptibility to RM05 neutralization. Notably, CRM25 was capable of cross-neutralizing rabies virus (RABV) strains containing K226M or I338T mutations. CRM25 additionally showed an inhibitory effect on the infection of all tested common RABVs and non-RABV phylogroup I lyssaviruses. CRM25 not only exhibited neutralizing activity but also exhibited antiviral effects via Fc-mediated effector functions. Importantly, CRM25 was comparable to human RIG in terms of its capacity to protect Syrian golden hamsters from lethal RABV challenges. CONCLUSIONS These findings promote more thorough research on CRM25's antiviral properties in cells and in vivo to enhance its clinical applicability and suggest that it may be a viable candidate medication for rabies post-exposure prophylaxis.
Collapse
Affiliation(s)
- Caifeng Long
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Wenbo Wang
- Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| | - Jialiang Du
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Gangling Xu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Chuanfei Yu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China.
| | - Lan Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China.
| |
Collapse
|
5
|
Yucha R, Litchford ML, Fish CS, Yaffe ZA, Richardson BA, Maleche-Obimbo E, John-Stewart G, Wamalwa D, Overbaugh J, Lehman DA. Higher HIV-1 Env gp120-Specific Antibody-Dependent Cellular Cytotoxicity (ADCC) Activity Is Associated with Lower Levels of Defective HIV-1 Provirus. Viruses 2023; 15:2055. [PMID: 37896832 PMCID: PMC10611199 DOI: 10.3390/v15102055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
A cure for HIV-1 (HIV) remains unrealized due to a reservoir of latently infected cells that persist during antiretroviral therapy (ART), with reservoir size associated with adverse health outcomes and inversely with time to viral rebound upon ART cessation. Once established during ART, the HIV reservoir decays minimally over time; thus, understanding factors that impact the size of the HIV reservoir near its establishment is key to improving the health of people living with HIV and for the development of novel cure strategies. Yet, to date, few correlates of HIV reservoir size have been identified, particularly in pediatric populations. Here, we employed a cross-subtype intact proviral DNA assay (CS-IPDA) to quantify HIV provirus between one- and two-years post-ART initiation in a cohort of Kenyan children (n = 72), which had a median of 99 intact (range: 0-2469), 1340 defective (range: 172-3.84 × 104), and 1729 total (range: 178-5.11 × 104) HIV proviral copies per one million T cells. Additionally, pre-ART plasma was tested for HIV Env-specific antibody-dependent cellular cytotoxicity (ADCC) activity. We found that pre-ART gp120-specific ADCC activity inversely correlated with defective provirus levels (n = 68, r = -0.285, p = 0.0214) but not the intact reservoir (n = 68, r = -0.0321, p-value = 0.800). Pre-ART gp41-specific ADCC did not significantly correlate with either proviral population (n = 68; intact: r = -0.0512, p-value = 0.686; defective: r = -0.109, p-value = 0.389). This suggests specific host immune factors prior to ART initiation can impact proviruses that persist during ART.
Collapse
Affiliation(s)
- Ryan Yucha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Morgan L. Litchford
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Carolyn S. Fish
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Barbra A. Richardson
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Grace John-Stewart
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Dalton Wamalwa
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi P.O. Box 30197, Kenya
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Dara A. Lehman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Stoddard CI, Sung K, Yaffe ZA, Weight H, Beaudoin-Bussières G, Galloway J, Gantt S, Adhiambo J, Begnel ER, Ojee E, Slyker J, Wamalwa D, Kinuthia J, Finzi A, Matsen FA, Lehman DA, Overbaugh J. Elevated binding and functional antibody responses to SARS-CoV-2 in infants versus mothers. Nat Commun 2023; 14:4864. [PMID: 37567924 PMCID: PMC10421871 DOI: 10.1038/s41467-023-40554-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Infant antibody responses to viral infection can differ from those in adults. However, data on the specificity and function of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in infants, and direct comparisons between infants and adults are limited. Here, we characterize antibody binding and functionality against Wuhan-Hu-1 (B lineage) strain SARS-CoV-2 in convalescent plasma from 36 postpartum women and 14 of their infants infected with SARS-CoV-2 from a vaccine-naïve prospective cohort in Nairobi, Kenya. We find significantly higher antibody titers against SARS-CoV-2 Spike, receptor binding domain and N-terminal domain, and Spike-expressing cell-surface staining levels in infants versus mothers. Plasma antibodies from mothers and infants bind to similar regions of the Spike S2 subunit, including the fusion peptide (FP) and stem helix-heptad repeat 2. However, infants display higher antibody levels and more consistent antibody escape pathways in the FP region compared to mothers. Finally, infants have significantly higher levels of antibody-dependent cellular cytotoxicity (ADCC), though, surprisingly, Spike pseudovirus neutralization titers between infants and mothers are similar. These results suggest infants develop distinct SARS-CoV-2 binding and functional antibody activities and reveal age-related differences in humoral immunity to SARS-CoV-2 infection that could be relevant to protection and COVID-19 disease outcomes.
Collapse
Affiliation(s)
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Zak A Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Haidyn Weight
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Jared Galloway
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Soren Gantt
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Judith Adhiambo
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Emily R Begnel
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Ednah Ojee
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Jennifer Slyker
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Dalton Wamalwa
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - John Kinuthia
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Research and Programs, Kenyatta National Hospital, Nairobi, Kenya
| | - Andrés Finzi
- Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Frederick A Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Dara A Lehman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
7
|
Yaffe ZA, Sung K, Bosire R, Farquhar C, Ngacha DM, Lohman-Payne B, Nduati R, John-Stewart G, Matsen FA, Overbaugh J. Passively Acquired Constant Region 5-Specific Antibodies Associated With Improved Survival in Infants Who Acquire Human Immunodeficiency Virus. Open Forum Infect Dis 2023; 10:ofad316. [PMID: 37426948 PMCID: PMC10323728 DOI: 10.1093/ofid/ofad316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Studying vertical human immunodeficiency virus (HIV) transmission enables the impact of passively transferred antibodies on HIV transmission and pathogenesis to be examined. Using phage display of HIV envelope peptides and peptide enzyme-linked immunosorbent assay (ELISA), we found that, in infants who acquired HIV, passive antibody responses to constant region 5 (C5) were associated with improved survival in 2 cohorts. In a combined analysis, C5 peptide ELISA activity was correlated directly with survival and estimated infection time and inversely with set point viral load. These results suggest that preexisting C5-specific antibodies may be correlated with the survival of infants living with HIV, motivating additional research into their protective potential.
Collapse
Affiliation(s)
- Zak A Yaffe
- Correspondence: Julie Overbaugh, PhD, Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, C2-023, Seattle, WA 98109 (); Zak A. Yaffe, PhD, Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, C2-023, Seattle, WA 98109 ()
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Rose Bosire
- Centre for Public Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Carey Farquhar
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Dorothy Mbori Ngacha
- HIV Section, United Nations Children's Fund, New York, New York, USA
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Barbara Lohman-Payne
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Ruth Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Grace John-Stewart
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Frederick A Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, Washington, USA
| | - Julie Overbaugh
- Correspondence: Julie Overbaugh, PhD, Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, C2-023, Seattle, WA 98109 (); Zak A. Yaffe, PhD, Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, C2-023, Seattle, WA 98109 ()
| |
Collapse
|
8
|
Yaffe ZA, Ding S, Sung K, Chohan V, Marchitto L, Doepker L, Ralph D, Nduati R, Matsen FA, Finzi A, Overbaugh J. Reconstruction of a polyclonal ADCC antibody repertoire from an HIV-1 non-transmitting mother. iScience 2023; 26:106762. [PMID: 37216090 PMCID: PMC10196594 DOI: 10.1016/j.isci.2023.106762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/24/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Human natural history and vaccine studies support a protective role of antibody dependent cellular cytotoxicity (ADCC) activity against many infectious diseases. One setting where this has consistently been observed is in HIV-1 vertical transmission, where passively acquired ADCC activity in HIV-exposed infants has correlated with reduced acquisition risk and reduced pathogenesis in HIV+ infants. However, the characteristics of HIV-specific antibodies comprising a maternal plasma ADCC response are not well understood. Here, we reconstructed monoclonal antibodies (mAbs) from memory B cells from late pregnancy in mother MG540, who did not transmit HIV to her infant despite several high-risk factors. Twenty mAbs representing 14 clonal families were reconstructed, which mediated ADCC and recognized multiple HIV Envelope epitopes. In experiments using Fc-defective variants, only combinations of several mAbs accounted for the majority of plasma ADCC of MG540 and her infant. We present these mAbs as evidence of a polyclonal repertoire with potent HIV-directed ADCC activity.
Collapse
Affiliation(s)
- Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lorie Marchitto
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Laura Doepker
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ruth Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
9
|
Grunst MW, Ladd RA, Clark NM, Gil HM, Klenchin VA, Mason R, Franchini G, Roederer M, Evans DT. Antibody-dependent cellular cytotoxicity, infected cell binding and neutralization by antibodies to the SIV envelope glycoprotein. PLoS Pathog 2023; 19:e1011407. [PMID: 37253062 PMCID: PMC10256149 DOI: 10.1371/journal.ppat.1011407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/09/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Antibodies specific for diverse epitopes of the simian immunodeficiency virus envelope glycoprotein (SIV Env) have been isolated from rhesus macaques to provide physiologically relevant reagents for investigating antibody-mediated protection in this species as a nonhuman primate model for HIV/AIDS. With increasing interest in the contribution of Fc-mediated effector functions to protective immunity, we selected thirty antibodies representing different classes of SIV Env epitopes for a comparison of antibody-dependent cellular cytotoxicity (ADCC), binding to Env on the surface of infected cells and neutralization of viral infectivity. These activities were measured against cells infected with neutralization-sensitive (SIVmac316 and SIVsmE660-FL14) and neutralization-resistant (SIVmac239 and SIVsmE543-3) viruses representing genetically distinct isolates. Antibodies to the CD4-binding site and CD4-inducible epitopes were identified with especially potent ADCC against all four viruses. ADCC correlated well with antibody binding to virus-infected cells. ADCC also correlated with neutralization. However, several instances of ADCC without detectable neutralization or neutralization without detectable ADCC were observed. The incomplete correspondence between ADCC and neutralization shows that some antibody-Env interactions can uncouple these antiviral activities. Nevertheless, the overall correlation between neutralization and ADCC implies that most antibodies that are capable of binding to Env on the surface of virions to block infectivity are also capable of binding to Env on the surface of virus-infected cells to direct their elimination by ADCC.
Collapse
Affiliation(s)
- Michael W. Grunst
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ruby A. Ladd
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
10
|
Stoddard CI, Sung K, Yaffe ZA, Weight H, Beaudoin-Bussières G, Galloway J, Gantt S, Adhiambo J, Begnel ER, Ojee E, Slyker J, Wamalwa D, Kinuthia J, Finzi A, Matsen FA, Lehman DA, Overbaugh J. Elevated binding and functional antibody responses to SARS-CoV-2 in infants versus mothers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527330. [PMID: 36798400 PMCID: PMC9934573 DOI: 10.1101/2023.02.06.527330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Infant antibody responses to viral infection can differ from those in adults. However, data on the specificity and function of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in infants, and direct comparisons between infants and adults are limited. We characterized antibody binding and functionality in convalescent plasma from postpartum women and their infants infected with SARS-CoV-2 from a vaccine-naïve prospective cohort in Nairobi, Kenya. Antibody titers against SARS-CoV-2 Spike, receptor binding domain and N-terminal domain, and Spike-expressing cell-surface staining levels were significantly higher in infants than in mothers. Plasma antibodies from mothers and infants bound to similar regions of the Spike S2 subunit, including the fusion peptide (FP) and stem helix-heptad repeat 2. However, infants displayed higher antibody levels and more consistent antibody escape pathways in the FP region compared to mothers. Finally, infants had significantly higher levels of antibody-dependent cellular cytotoxicity (ADCC), though, surprisingly, neutralization titers between infants and mothers were similar. These results suggest infants develop distinct SARS-CoV-2 binding and functional antibody repertoires and reveal age-related differences in humoral immunity to SARS-CoV-2 infection that could be relevant to protection and COVID-19 disease outcomes.
Collapse
Affiliation(s)
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Center
| | - Zak A Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center
- Medical Scientist Training Program, University of Washington
| | - Haidyn Weight
- Human Biology Division, Fred Hutchinson Cancer Center
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Université de Montréal
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal
| | - Jared Galloway
- Public Health Sciences Division, Fred Hutchinson Cancer Center
| | - Soren Gantt
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal
- Centre de Recherche du CHU Sainte-Justine, Université de Montréal
| | - Judith Adhiambo
- Department of Pediatrics and Child Health, University of Nairobi
| | | | - Ednah Ojee
- Department of Pediatrics and Child Health, University of Nairobi
| | | | - Dalton Wamalwa
- Department of Pediatrics and Child Health, University of Nairobi
| | - John Kinuthia
- Department of Global Health, University of Washington
- Department of Research and Programs, Kenyatta National Hospital
| | - Andrés Finzi
- Centre de Recherche du CHUM, Université de Montréal
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal
| | - Frederick A Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Center
- Howard Hughes Medical Institute
| | - Dara A Lehman
- Human Biology Division, Fred Hutchinson Cancer Center
- Department of Global Health, University of Washington
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center
- Public Health Sciences Division, Fred Hutchinson Cancer Center
- Lead contact
| |
Collapse
|
11
|
Barrows BM, Krebs SJ, Jian N, Zemil M, Slike BM, Dussupt V, Tran U, Mendez-Rivera L, Chang D, O’Sullivan AM, Mann B, Sanders-Buell E, Shubin Z, Creegan M, Paquin-Proulx D, Ehrenberg P, Laurence-Chenine A, Srithanaviboonchai K, Thomas R, Eller MA, Ferrari G, Robb M, Rao V, Tovanabutra S, Polonis VR, Wieczorek L. Fc receptor engagement of HIV-1 Env-specific antibodies in mothers and infants predicts reduced vertical transmission. Front Immunol 2022; 13:1051501. [PMID: 36578481 PMCID: PMC9791209 DOI: 10.3389/fimmu.2022.1051501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Infants acquire maternal antibodies by Fc receptor transcytosis across the placenta during pregnancy. Fc receptors are expressed on immune cells and are important for activation of effector cell functions. Methods In this study, we evaluated Fc receptor engagement and ADCC activity of plasma binding antibodies from human immunodeficiency virus-1 (HIV) -infected mothers and to identify factors that may contribute to protection from HIV vertical transmission. Results HIV-specific binding and Fc receptor engagement of plasma antibodies varied between mothers by transmission status and infants by infection status. Non-transmitting (NT) mothers and HIV-uninfected infants had antibodies with higher neonatal Fc receptor (FcRn) and FcγR engagement, as compared to transmitting (T) mothers and HIV+ infants, respectively. A significant inverse correlation between plasma antibody FcRn and FcγR engagement was observed for T mothers, but not NT mothers. Conversely, a significant direct correlation was observed between plasma antibody FcRn and FcγR engagement for HIV- infants, but not for HIV+ infants. Consequently, we observed significantly higher plasma antibody ADCC potency and breadth in HIV- infants, as compared to HIV+ infants. However, no differences in overall ADCC potency and breadth were observed between mothers. FcRn-engagement of HIV-specific antibodies in both mothers and infants predicted a lack of vertical transmission of HIV. Discussion This study indicates that HIV-uninfected infants acquire HIV-specific antibodies with greater Fc receptor engagement and thus, greater ADCC capacity.
Collapse
Affiliation(s)
- Brittani M. Barrows
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Ningbo Jian
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Bonnie M. Slike
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Ursula Tran
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - David Chang
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Anne Marie O’Sullivan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Brendan Mann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Zhanna Shubin
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Matt Creegan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Philip Ehrenberg
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Agnes Laurence-Chenine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | | | - Rasmi Thomas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Michael A. Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Merlin Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Venigalla Rao
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| |
Collapse
|
12
|
Berendam SJ, Nelson AN, Yagnik B, Goswami R, Styles TM, Neja MA, Phan CT, Dankwa S, Byrd AU, Garrido C, Amara RR, Chahroudi A, Permar SR, Fouda GG. Challenges and Opportunities of Therapies Targeting Early Life Immunity for Pediatric HIV Cure. Front Immunol 2022; 13:885272. [PMID: 35911681 PMCID: PMC9325996 DOI: 10.3389/fimmu.2022.885272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
Early initiation of antiretroviral therapy (ART) significantly improves clinical outcomes and reduces mortality of infants/children living with HIV. However, the ability of infected cells to establish latent viral reservoirs shortly after infection and to persist during long-term ART remains a major barrier to cure. In addition, while early ART treatment of infants living with HIV can limit the size of the virus reservoir, it can also blunt HIV-specific immune responses and does not mediate clearance of latently infected viral reservoirs. Thus, adjunctive immune-based therapies that are geared towards limiting the establishment of the virus reservoir and/or mediating the clearance of persistent reservoirs are of interest for their potential to achieve viral remission in the setting of pediatric HIV. Because of the differences between the early life and adult immune systems, these interventions may need to be tailored to the pediatric settings. Understanding the attributes and specificities of the early life immune milieu that are likely to impact the virus reservoir is important to guide the development of pediatric-specific immune-based interventions towards viral remission and cure. In this review, we compare the immune profiles of pediatric and adult HIV elite controllers, discuss the characteristics of cellular and anatomic HIV reservoirs in pediatric populations, and highlight the potential values of current cure strategies using immune-based therapies for long-term viral remission in the absence of ART in children living with HIV.
Collapse
Affiliation(s)
- Stella J. Berendam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States,*Correspondence: Stella J. Berendam, ; Genevieve G. Fouda,
| | - Ashley N. Nelson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Bhrugu Yagnik
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Tiffany M. Styles
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Margaret A. Neja
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Caroline T. Phan
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Sedem Dankwa
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Alliyah U. Byrd
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Carolina Garrido
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Rama R. Amara
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States,Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States,*Correspondence: Stella J. Berendam, ; Genevieve G. Fouda,
| |
Collapse
|
13
|
Vieira VA, Herbert N, Cromhout G, Adland E, Goulder P. Role of Early Life Cytotoxic T Lymphocyte and Natural Killer Cell Immunity in Paediatric HIV Cure/Remission in the Anti-Retroviral Therapy Era. Front Immunol 2022; 13:886562. [PMID: 35634290 PMCID: PMC9130627 DOI: 10.3389/fimmu.2022.886562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Only three well-characterised cases of functional cure have been described in paediatric HIV infection over the past decade. This underlines the fact that early initiation of combination antiretroviral therapy (cART), whilst minimising the size of the viral reservoir, is insufficient to achieve cure, unless other factors contribute. In this review, we consider these additional factors that may facilitate functional cure in paediatric infection. Among the early life immune activity, these include HIV-specific cytotoxic T-lymphocyte (CTL) and natural killer (NK) cell responses. The former have less potent antiviral efficacy in paediatric compared with adult infection, and indeed, in early life, NK responses have greater impact in suppressing viral replication than CTL. This fact may contribute to a greater potential for functional cure to be achieved in paediatric versus adult infection, since post-treatment control in adults is associated less with highly potent CTL activity, and more with effective antiviral NK cell responses. Nonetheless, antiviral CTL responses can play an increasingly effective role through childhood, especially in individuals expressing then 'protective' HLA-I molecules HLA-B*27/57/58:01/8101. The role of the innate system on preventing infection, in shaping the particular viruses transmitted, and influencing outcome is discussed. The susceptibility of female fetuses to in utero mother-to-child transmission, especially in the setting of recent maternal infection, is a curiosity that also provides clues to mechanisms by which cure may be achieved, since initial findings are that viral rebound is less frequent among males who interrupt cART. The potential of broadly neutralising antibody therapy to facilitate cure in children who have received early cART is discussed. Finally, we draw attention to the impact of the changing face of the paediatric HIV epidemic on cure potential. The effect of cART is not limited to preventing AIDS and reducing the risk of transmission. cART also affects which mothers transmit. No longer are mothers who transmit those who carry genes associated with poor immune control of HIV. In the cART era, a high proportion (>70% in our South African study) of transmitting mothers are those who seroconvert in pregnancy or who for social reasons are diagnosed late in pregnancy. As a result, now, genes associated with poor immune control of HIV are not enriched in mothers who transmit HIV to their child. These changes will likely influence the effectiveness of HLA-associated immune responses and therefore cure potential among children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas Herbert
- Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa
| | - Gabriela Cromhout
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom,Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa,*Correspondence: Philip Goulder,
| |
Collapse
|
14
|
Thomas AS, Coote C, Moreau Y, Isaac JE, Ewing AC, Kourtis AP, Sagar M. Antibody-dependent cellular cytotoxicity (ADCC) responses along with ADCC susceptibility influence HIV-1 mother to child transmission. JCI Insight 2022; 7:159435. [PMID: 35324477 PMCID: PMC9090239 DOI: 10.1172/jci.insight.159435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND HIV-1 vaccine efforts are primarily directed towards eliciting neutralizing antibodies (nAbs). However, vaccine trials and mother to child natural history cohort investigations indicate that antibody-dependent cellular cytotoxicity (ADCC), not nAbs, correlate with prevention. The ADCC characteristics associated with lack of HIV-1 acquisition remain unclear. METHODS Here we examine ADCC and nAb properties in pre-transmission plasma from HIV-1 exposed infants and from the corresponding transmitting and non-transmitting mothers' breast milk and plasma. Breadth and potency (BP) is assessed against a panel of heterologous, non-maternal, variants. ADCC and neutralization sensitivity is estimated for the strains present in the infected mothers. RESULTS Infants that eventually acquire HIV-1 and those that remain uninfected have similar pre-transmission ADCC BP. The viruses circulating in the transmitting and the non-transmitting mothers also have similar ADCC susceptibility. Infants with a combination of higher pre-transmission ADCC BP and exposure to more ADCC susceptible strains are less likely to acquire HIV-1. In contrast, higher pre-existing infant neutralization BP and greater maternal virus neutralization sensitivity does not associate with transmission. Infants have higher ADCC BP closer to birth and in the presence of high plasma IgG relative to IgA levels. Mothers with potent humoral responses against their autologous viruses harbor more ADCC sensitive strains. CONCLUSION ADCC sensitivity of the exposure variants along with preexisting ADCC BP influence mother to child HIV-1 transmission during breastfeeding. Vaccination strategies that enhance ADCC responses are likely not sufficient to prevent HIV-1 transmission because strains present in chronically infected individuals can have low ADCC susceptibility. TRIAL REGISTRATION NCT00164736 for BAN study.
Collapse
Affiliation(s)
- Allison S Thomas
- Department of Microbiology, Boston University School of Medicine, Boston, United States of America
| | - Carolyn Coote
- Department of Medicine, Boston Medical Center, Boston, United States of America
| | - Yvetane Moreau
- Department of Medicine, Boston Medical Center, Boston, United States of America
| | - John E Isaac
- Department of Medicine, Boston Medical Center, Boston, United States of America
| | - Alexander C Ewing
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, United States of America
| | - Athena P Kourtis
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, United States of America
| | - Manish Sagar
- Department of Medicine, Boston Medical Center, Boston, United States of America
| |
Collapse
|
15
|
Xu H, Locarnini S, Wong D, Hammond R, Colledge D, Soppe S, Huynh T, Shaw T, Thompson AJ, Revill PA, Hogarth PM, Wines BD, Walsh R, Warner N. Role of anti-HBs in functional cure of HBeAg+ chronic hepatitis B patients infected with HBV genotype A. J Hepatol 2022; 76:34-45. [PMID: 34371070 DOI: 10.1016/j.jhep.2021.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS HBsAg-specific antibody responses are difficult to detect during chronic hepatitis B infection (CHB) and are often overlooked. The aim of this study was to examine whether anti-HBs may be involved in functional cure (FC) by profiling anti-HBs responses in patients with CHB using a panel of specific assays. METHODS Longitudinal serum samples were obtained from 25 patients with CHB who were infected with HBV genotype A and were undergoing nucleos(t)ide analogue (NA) treatment: 14 achieved FC while 11 remained infected (non-FC). Anti-HBs immune complexes (HBsAg-IC), FcγRIIIa dimer binding, epitope specificity and neutralisation efficacy were measured. RESULTS HBsAg-IC peaks were detected prior to HBsAg loss in 10/14 FC patients. These HBsAg-IC peaks overlapped with either an alanine aminotransferase (ALT) flare (8/10 patients), or a rise in ALT (2/10 patients). HBsAg-IC peaks were detected in 7/11 non-FC patients, but were not associated with an ALT flare. FCγRIIIa binding was detected in 9/14 FC patients, independent from detection of overlapping HBsAg-IC/ALT peaks. FC patients had stable HBsAg epitope occupancy across the study, whereas non-FC patients had a reduction in HBsAg epitope occupancy within the first 12-24 weeks of NA treatment. Convalescent sera from FC patients recognised more HBsAg epitopes and neutralised HBV infection more potently than anti-HBs derived from vaccinees. Neutralisation potency appeared to increase post-HBsAg loss in 4/5 FC patients examined. CONCLUSIONS Using these assays, we confirm that anti-HBs responses are present and fluctuate over time in this cohort of patients with HBeAg+ CHB, who were infected with HBV genotype A and treated with NAs. Key anti-HBs profiles associated with either FC or failure to achieve FC were also identified, suggesting a role for anti-HBs responses in FC. LAY SUMMARY Using a panel of assays to characterise hepatitis B surface antibody (anti-HBs) responses in a group of patients with chronic hepatitis B, we identified anti-HBs profiles associated with either functional cure, or failure to achieve functional cure. Functional cure was associated with immune complex peaks which overlapped with alanine aminotransferase flares. Conversely, in those who did not achieve functional cure, immune complex peaks were present, but were not associated with alanine aminotransferase flares, and a decline in anti-HBs diversity was observed early during treatment.
Collapse
Affiliation(s)
- Hui Xu
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Stephen Locarnini
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Darren Wong
- Department of Gastroenterology, Royal Melbourne Hospital, Victoria, Australia
| | - Rachel Hammond
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Danni Colledge
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Sally Soppe
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Victoria, Australia; WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Thao Huynh
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Tim Shaw
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | | | - Peter A Revill
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Victoria, Australia; Department of Clinical Pathology, University of Melbourne, Victoria, Australia; Department of Immunology and Pathology, Monash University, Victoria, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Victoria, Australia; Department of Clinical Pathology, University of Melbourne, Victoria, Australia; Department of Immunology and Pathology, Monash University, Victoria, Australia
| | - Renae Walsh
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Victoria, Australia; ClearB Therapeutics, Boston, MA, USA
| | - Nadia Warner
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Victoria, Australia.
| |
Collapse
|
16
|
Thomas AS, Moreau Y, Jiang W, Isaac JE, Ewing A, White LF, Kourtis AP, Sagar M. Pre-existing infant antibody-dependent cellular cytotoxicity associates with reduced HIV-1 acquisition and lower morbidity. Cell Rep Med 2021; 2:100412. [PMID: 34755132 PMCID: PMC8561235 DOI: 10.1016/j.xcrm.2021.100412] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022]
Abstract
In humans, pre-existing anti-HIV-1 neutralizing antibodies (nAbs) have not been associated with decreased HIV-1 acquisition. Here, we evaluate antibody-dependent cellular cytotoxicity (ADCC) present in pre-transmission infant and maternal plasma and breast milk (BM) against the contemporaneous maternal HIV-1 variants. HIV-1-exposed uninfected compared with HIV-1-exposed infected infants have higher ADCC and a combination of ADCC and nAb responses against their corresponding mother's strains. ADCC does not correlate with nAbs, suggesting they are independent activities. The infected infants with high ADCC compared with low ADCC, but not those with higher ADCC plus nAbs, have lower morbidity up to 1 year after birth. A higher IgA to IgG ratio, observed in BM supernatants and in a higher proportion of the infected compared with the uninfected infants, associates with lower ADCC. Against the exposure strains, ADCC, more than nAbs, associates with both lower mother-to-child transmission and decreased post-infection infant morbidity.
Collapse
Affiliation(s)
- Allison S. Thomas
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Yvetane Moreau
- Department of Medicine, Boston Medical Center, Boston, MA, USA
| | - Wenqing Jiang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - John E. Isaac
- Department of Medicine, Boston Medical Center, Boston, MA, USA
| | - Alexander Ewing
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laura F. White
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Athena P. Kourtis
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Manish Sagar
- Department of Medicine, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
17
|
Yaffe ZA, Overbaugh J. HIV-1 protection: Antibodies move in for the kill. Cell Rep Med 2021; 2:100428. [PMID: 34755139 PMCID: PMC8561314 DOI: 10.1016/j.xcrm.2021.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Identifying the immune responses needed for protection against HIV is critical to finding an effective vaccine. In this issue of Cell Reports Medicine, Thomas and colleagues1 show that antibodies that kill infected cells correlate with infant HIV infection outcomes more so than antibodies that block viral entry.
Collapse
Affiliation(s)
- Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
18
|
Hvilsom CT, Søgaard OS. TLR-Agonist Mediated Enhancement of Antibody-Dependent Effector Functions as Strategy For an HIV-1 Cure. Front Immunol 2021; 12:704617. [PMID: 34630386 PMCID: PMC8495198 DOI: 10.3389/fimmu.2021.704617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background The current treatment for HIV-1 is based on blocking various stages in the viral replication cycle using combination antiretroviral therapy (ART). Even though ART effectively controls the infection, it is not curative, and patients must therefore continue treatment life-long. Aim Here we review recent literature investigating the single or combined effect of toll-like receptor (TLR) agonists and broadly neutralizing antibodies (bNAbs) with the objective to evaluate the evidence for this combination as a means towards an HIV-1 cure. Results Multiple preclinical studies found significantly enhanced killing of HIV-1 infected cells by TLR agonist-induced innate immune activation or by Fc-mediated effector functions following bNAb administration. However, monotherapy with either agent did not lead to sustained HIV-1 remission in clinical trials among individuals on long-term ART. Notably, findings in non-human primates suggest that a combination of TLR agonists and bNAbs may be able to induce long-term remission after ART cessation and this approach is currently being further investigated in clinical trials. Conclusion Preclinical findings show beneficial effects of either TLR agonist or bNAb administration for enhancing the elimination of HIV-1 infected cells. Further, TLR agonist-mediated stimulation of innate effector functions in combination with bNAbs may enhance antibody-dependent cellular cytotoxicity and non-human primate studies have shown promising results for this combination strategy. Factors such as immune exhaustion, proviral bNAb sensitivity and time of intervention might impact the clinical success.
Collapse
Affiliation(s)
| | - Ole Schmeltz Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Disease, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|