1
|
Kim S, Yamada S, Li T, Canasto-Chibuque C, Kim JH, Marcet-Ortega M, Xu J, Eng DY, Feeney L, Petrini JHJ, Keeney S. Mouse MRE11-RAD50-NBS1 is needed to start and extend meiotic DNA end resection. Nat Commun 2025; 16:3613. [PMID: 40240347 PMCID: PMC12003770 DOI: 10.1038/s41467-025-57928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/07/2025] [Indexed: 04/18/2025] Open
Abstract
Nucleolytic resection of DNA ends is critical for homologous recombination, but its mechanism is not fully understood, particularly in mammalian meiosis. Here we examine roles of the conserved MRN complex (MRE11, RAD50, and NBS1) through genome-wide analysis of meiotic resection during spermatogenesis in mice with various MRN mutations, including several that cause chromosomal instability in humans. Meiotic DSBs form at elevated levels but remain unresected if Mre11 is conditionally deleted, thus MRN is required for both resection initiation and regulation of DSB numbers. Resection lengths are reduced to varying degrees in MRN hypomorphs or if MRE11 nuclease activity is attenuated in a conditional nuclease-dead Mre11 model. These findings unexpectedly establish that MRN is needed for longer-range extension of resection beyond that carried out by the orthologous proteins in budding yeast meiosis. Finally, resection defects are additively worsened by combining MRN and Exo1 mutations, and mice that are unable to initiate resection or have greatly curtailed resection lengths experience catastrophic spermatogenic failure. Our results elucidate MRN roles in meiotic DSB end processing and establish the importance of resection for mammalian meiosis.
Collapse
Affiliation(s)
- Soonjoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tao Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Jun Hyun Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marina Marcet-Ortega
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jiaqi Xu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Diana Y Eng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- PackGene Biotech, Houston, TX, USA
| | - Laura Feeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Translational Medicine, Oncology R&D, AstraZeneca, Barcelona, Spain
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Bhattacharya S, Tie G, Singh PNP, Malagola E, Eskiocak O, He R, Kraiczy J, Gu W, Perlov Y, Alici-Garipcan A, Beyaz S, Wang TC, Zhou Q, Shivdasani RA. Intestinal secretory differentiation reflects niche-driven phenotypic and epigenetic plasticity of a common signal-responsive terminal cell. Cell Stem Cell 2025:S1934-5909(25)00095-5. [PMID: 40203837 DOI: 10.1016/j.stem.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/27/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025]
Abstract
Enterocytes and four classic secretory cell types derive from intestinal epithelial stem cells. Based on morphology, location, and canonical markers, goblet and Paneth cells are considered distinct secretory types. Here, we report high overlap in their transcripts and sites of accessible chromatin, in marked contrast to those of their enteroendocrine or tuft cell siblings. Mouse and human goblet and Paneth cells express extraordinary fractions of few antimicrobial genes, which reflect specific responses to local niches. Wnt signaling retains some ATOH1+ secretory cells in crypt bottoms, where the absence of BMP signaling potently induces Paneth features. Cells that migrate away from crypt bottoms encounter BMPs and thereby acquire goblet properties. These phenotypes and underlying accessible cis-elements interconvert in post-mitotic cells. Thus, goblet and Paneth properties represent alternative phenotypic manifestations of a common signal-responsive terminal cell type. These findings reveal exquisite niche-dependent cell plasticity and cis-regulatory dynamics in likely response to antimicrobial needs.
Collapse
Affiliation(s)
- Swarnabh Bhattacharya
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Guodong Tie
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Pratik N P Singh
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, State University of New York, Stony Brook, NY 11794, USA
| | - Ruiyang He
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Judith Kraiczy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Gu
- Division of Regenerative Medicine & Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yakov Perlov
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Qiao Zhou
- Division of Regenerative Medicine & Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Yang L, Yu XX, Wang X, Jin CT, Xu CR. The expression order determines the pioneer functions of NGN3 and NEUROD1 in pancreatic endocrine differentiation. SCIENCE ADVANCES 2025; 11:eadt4770. [PMID: 40138419 PMCID: PMC11939047 DOI: 10.1126/sciadv.adt4770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
Pioneer transcription factors (TFs) initiate chromatin remodeling, which is crucial for gene regulation and cell differentiation. In this study, we investigated how the sequential expression of neurogenin 3 (NGN3) and NEUROD1 affects their pioneering functions during pancreatic endocrine differentiation. Using a genetically engineered mouse model, we mapped NGN3-binding sites, confirming the pivotal role of this molecule in regulating chromatin accessibility. The pioneering function of NGN3 involves dose tolerance, and low doses are sufficient. Although NEUROD1 generally acts as a conventional TF, it can assume a pioneering role in the absence of NGN3. The sequential expression of NeuroD1 and Ngn3 predominantly drives α cell generation, which may explain the inefficient β cell induction observed in vitro. Our findings demonstrate that pioneer activity is dynamically shaped by temporal TF expression and inter-TF interactions, providing insights into transcriptional regulation and its implications for disease mechanisms and therapeutic targeting and enhancing in vitro differentiation strategies.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin-Xin Yu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Chen-Tao Jin
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Cheng-Ran Xu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Lanzloth R, Harris NL, Cannon AM, Kaplan MH, O’Hagan HM. Mast cells interact directly with colorectal cancer cells to promote epithelial-to-mesenchymal transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644113. [PMID: 40166179 PMCID: PMC11957126 DOI: 10.1101/2025.03.19.644113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Mast cells (MCs), a type of granulocytic immune cell, can be both pro- and anti-tumorigenic in colorectal cancer (CRC). We hypothesized that these contrasting findings may be in part due to differential interactions of MCs with CRC subtypes. BRAF mutant CRC uniquely contains intestinal secretory cell types. In this study, we demonstrated that MCs are enriched in BRAF mutant CRC, likely because they are recruited by factors released from cancer secretory cells. To investigate the functional consequences of MC-CRC cell interactions, we performed direct coculture experiments. We demonstrated that MCs promote epithelial-to-mesenchymal transition (EMT) in CRC cells in a calcium- and contact-dependent fashion. Furthermore, inhibiting LFA-1 and ICAM1 integrin binding reduced the coculture-induced EMT-related marker expression in CRC cells. The MC-CRC cell interaction facilitates the transfer of biological materials, including mRNA molecules, from MCs to CRC cells. This study is the first to report a contact-dependent, pro-tumorigenic role of MCs in CRC, as well as the transfer of molecules encoded by MCs to CRC cells. These findings enhance our comprehension of cell-cell communication between immune and cancer cells. Furthermore, this work suggests that targeting MC-CRC interactions, particularly through modulating integrin pathways, could offer new therapeutic strategies for aggressive CRC subtypes.
Collapse
Affiliation(s)
- Rosie Lanzloth
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Nicole L. Harris
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Anthony M. Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Heather M. O’Hagan
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
5
|
Zheng Z, Zheng L, Arter M, Liu K, Yamada S, Ontoso D, Kim S, Keeney S. Reconstitution of SPO11-dependent double-strand break formation. Nature 2025; 639:784-791. [PMID: 39972129 PMCID: PMC11922745 DOI: 10.1038/s41586-025-08601-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/06/2025] [Indexed: 02/21/2025]
Abstract
Meiotic recombination starts with SPO11 generation of DNA double-strand breaks (DSBs)1. SPO11 is critical for meiosis in most species, but it generates dangerous DSBs with mutagenic2 and gametocidal3 potential. Cells must therefore utilize the beneficial functions of SPO11 while minimizing its risks4-how they do so remains poorly understood. Here we report reconstitution of DNA cleavage in vitro with purified recombinant mouse SPO11 bound to TOP6BL. SPO11-TOP6BL complexes are monomeric (1:1) in solution and bind tightly to DNA, but dimeric (2:2) assemblies cleave DNA to form covalent 5' attachments that require SPO11 active-site residues, divalent metal ions and SPO11 dimerization. SPO11 can also reseal DNA that it has nicked. Structure modelling with AlphaFold 3 suggests that DNA is bent prior to cleavage5. In vitro cleavage displays a sequence bias that partially explains DSB site preferences in vivo. Cleavage is inefficient on complex DNA substrates, partly because SPO11 is readily trapped in DSB-incompetent (presumably monomeric) binding states that exchange slowly. However, cleavage is improved with substrates that favour dimer assembly or by artificially dimerizing SPO11. Our results inform a model in which intrinsically weak dimerization restrains SPO11 activity in vivo, making it exquisitely dependent on accessory proteins that focus and control DSB formation.
Collapse
Affiliation(s)
- Zhi Zheng
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lyuqin Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The HAKUBI Center for Advanced Research and Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - David Ontoso
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soonjoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Scott Keeney
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Li KR, Yu PL, Zheng QQ, Wang X, Fang X, Li LC, Xu CR. Spatiotemporal and genetic cell lineage tracing of endodermal organogenesis at single-cell resolution. Cell 2025; 188:796-813.e24. [PMID: 39824184 DOI: 10.1016/j.cell.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025]
Abstract
During early mammalian development, the endoderm germ layer forms the foundation of the respiratory and digestive systems through complex patterning. This intricate process, guided by a series of cell fate decisions, remains only partially understood. Our study introduces innovative genetic tracing codes for 14 distinct endodermal regions using novel mouse strains. By integrating high-throughput and high-precision single-cell RNA sequencing with sophisticated imaging, we detailed the spatiotemporal and genetic lineage differentiation of the endoderm at single-cell resolution. We discovered an unexpected multipotentiality within early endodermal regions, allowing differentiation into various organ primordia. This research illuminates the complex and underestimated phenomenon where endodermal organs develop from multiple origins, prompting a reevaluation of traditional differentiation models. Our findings advance understanding in developmental biology and have significant implications for regenerative medicine and the development of advanced organoid models, providing insights into the intricate mechanisms that guide organogenesis.
Collapse
Affiliation(s)
- Ke-Ran Li
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Pei-Long Yu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qi-Qi Zheng
- PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xin Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuan Fang
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Lin-Chen Li
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Cheng-Ran Xu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Good HJ, Larsen F, Shin AE, Zhang L, Derouet M, Meriwether D, Worthley D, Reddy ST, Wang TC, Asfaha S. Prostaglandin E 2 and Akt Promote Stemness in Apc Mutant Dclk1+ Cells to Give Rise to Colitis-associated Cancer. Cell Mol Gastroenterol Hepatol 2025; 19:101469. [PMID: 39884575 PMCID: PMC11999635 DOI: 10.1016/j.jcmgh.2025.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND & AIMS Loss of the tumor suppressor gene Apc in Lgr5+ intestinal stem cells results in aberrant Wnt signaling and colonic tumorigenesis. In the setting of injury, however, we and others have also shown that non-stem cells can give rise to colonic tumors. The mechanism by which inflammation leads to cellular plasticity and cancer, however, remains largely unknown. METHODS RNA expression analysis of Wnt, COX, and Akt signaling was assessed in patients with quiescent or active ulcerative colitis (UC) and patients with UC-associated neoplasia using available datasets. The role of COX signaling in colonic tumorigenesis was examined using epithelial and doublecortin-like kinase 1 (Dclk1)+ cell-specific conditional COX-1 knockout mice and pharmacologic treatment with different nonsteroidal anti-inflammatory drugs. RESULTS In this study, we show that prostaglandins and phospho-Akt are key inflammatory mediators that promote stemness in Apc mutant Dclk1+ cells that give rise to colorectal cancer. Moreover, prostaglandin E2 (PGE2) and Akt are increased in colitis in both mice and humans, leading to inflammation-associated dysplasia upon activation of Wnt signaling. Importantly, inhibition of epithelial-derived COX-1 by aspirin or conditional knockout in Dclk1+ cells reduced PGE2 levels and prevented the development of inflammation-associated colorectal cancer. CONCLUSIONS Our data shows that epithelial and Dclk1+ cell-derived COX-1 plays an important role in inflammation-associated tumorigenesis. Importantly, low-dose aspirin was effective in chemo-prevention through inhibition of COX-1 that reduced colitis-associated cancer.
Collapse
Affiliation(s)
- Hayley J Good
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Frederikke Larsen
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Alice E Shin
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Liyue Zhang
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Mathieu Derouet
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - David Meriwether
- Department of Medicine, Division of Cardiology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Daniel Worthley
- South Australian Health Medical Research Institute, North Terrace Adelaide, Australia
| | - Srinivasa T Reddy
- Department of Medicine, Division of Cardiology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York
| | - Samuel Asfaha
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|
8
|
Zheng Z, Zheng L, Arter M, Liu K, Yamada S, Ontoso D, Kim S, Keeney S. Reconstitution of SPO11-dependent double-strand break formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624382. [PMID: 39605552 PMCID: PMC11601517 DOI: 10.1101/2024.11.20.624382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Homologous meiotic recombination starts with DNA double-strand breaks (DSBs) generated by SPO11 protein1. SPO11 is critical for meiosis in most species but the DSBs it makes are also dangerous because of their mutagenic2 and gametocidal3 potential, so cells must foster SPO11's beneficial functions while minimizing its risks4. SPO11 mechanism and regulation remain poorly understood. Here we report reconstitution of DNA cleavage in vitro with purified recombinant mouse SPO11 bound to its essential partner TOP6BL. Similar to their yeast orthologs5,6, SPO11-TOP6BL complexes are monomeric (1:1) in solution and bind tightly to DNA. Unlike in yeast, however, dimeric (2:2) assemblies of mouse SPO11-TOP6BL cleave DNA to form covalent 5´ attachments requiring SPO11 active site residues, divalent metal ions, and SPO11 dimerization. Surprisingly, SPO11 can also manifest topoisomerase activity by relaxing supercoils and resealing DNA that it has nicked. Structure modeling with AlphaFold37 illuminates the protein-DNA interface and suggests that DNA is bent prior to cleavage. Deep sequencing of in vitro cleavage products reveals a rotationally symmetric base composition bias that partially explains DSB site preferences in vivo. Cleavage is inefficient on complex DNA substrates, partly because SPO11 is readily trapped in DSB-incompetent (presumably monomeric) binding states that exchange slowly. However, cleavage is improved by using substrates that favor DSB-competent dimer assembly, or by fusing SPO11 to an artificial dimerization module. Our results inform a model in which intrinsically feeble dimerization restrains SPO11 activity in vivo, making it exquisitely dependent on accessory proteins that focus and control DSB formation so that it happens only at the right time and the right places.
Collapse
Affiliation(s)
- Zhi Zheng
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, New York, NY 10065
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Lyuqin Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- The HAKUBI Center for Advanced Research, and Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - David Ontoso
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Soonjoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Scott Keeney
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, New York, NY 10065
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
9
|
Nwako JG, McCauley HA. Enteroendocrine cells regulate intestinal homeostasis and epithelial function. Mol Cell Endocrinol 2024; 593:112339. [PMID: 39111616 PMCID: PMC11401774 DOI: 10.1016/j.mce.2024.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/11/2024]
Abstract
Enteroendocrine cells (EECs) are well-known for their systemic hormonal effects, especially in the regulation of appetite and glycemia. Much less is known about how the products made by EECs regulate their local environment within the intestine. Here, we focus on paracrine interactions between EECs and other intestinal cells as they regulate three essential aspects of intestinal homeostasis and physiology: 1) intestinal stem cell function and proliferation; 2) nutrient absorption; and 3) mucosal barrier function. We also discuss the ability of EECs to express multiple hormones, describe in vitro and in vivo models to study EECs, and consider how EECs are altered in GI disease.
Collapse
Affiliation(s)
- Jennifer G Nwako
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA
| | - Heather A McCauley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Kahraman S, De Jesus DF, Wei J, Brown NK, Zou Z, Hu J, Pirouz M, Gregory RI, He C, Kulkarni RN. m 6A mRNA methylation by METTL14 regulates early pancreatic cell differentiation. EMBO J 2024; 43:5445-5468. [PMID: 39322760 PMCID: PMC11574190 DOI: 10.1038/s44318-024-00213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant chemical modification in mRNA and plays important roles in human and mouse embryonic stem cell pluripotency, maintenance, and differentiation. We have recently reported that m6A is involved in the postnatal control of β-cell function in physiological states and in type 1 and 2 diabetes. However, the precise mechanisms by which m6A acts to regulate the development of human and mouse pancreas are unexplored. Here, we show that the m6A landscape is dynamic during human pancreas development, and that METTL14, one of the m6A writer complex proteins, is essential for the early differentiation of both human and mouse pancreatic cells.
Collapse
Affiliation(s)
- Sevim Kahraman
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Dario F De Jesus
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Natalie K Brown
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Zhongyu Zou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Jiang Hu
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Mehdi Pirouz
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Richard I Gregory
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA.
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Beumer J, Geurts MH, Geurts V, Andersson-Rolf A, Akkerman N, Völlmy F, Krueger D, Busslinger GA, Martínez-Silgado A, Boot C, Yousef Yengej FA, Puschhof J, Van de Wetering WJ, Knoops K, López-Iglesias C, Peters PJ, Vivié JA, Mooijman D, van Es JH, Clevers H. Description and functional validation of human enteroendocrine cell sensors. Science 2024; 386:341-348. [PMID: 39418382 PMCID: PMC7616728 DOI: 10.1126/science.adl1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Enteroendocrine cells (EECs) are gut epithelial cells that respond to intestinal contents by secreting hormones, including the incretins glucagon-like peptide 1 (GLP-1) and gastric inhibitory protein (GIP), which regulate multiple physiological processes. Hormone release is controlled through metabolite-sensing proteins. Low expression, interspecies differences, and the existence of multiple EEC subtypes have posed challenges to the study of these sensors. We describe differentiation of stomach EECs to complement existing intestinal organoid protocols. CD200 emerged as a pan-EEC surface marker, allowing deep transcriptomic profiling from primary human tissue along the stomach-intestinal tract. We generated loss-of-function mutations in 22 receptors and subjected organoids to ligand-induced secretion experiments. We delineate the role of individual human EEC sensors in the secretion of hormones, including GLP-1. These represent potential pharmacological targets to influence appetite, bowel movement, insulin sensitivity, and mucosal immunity.
Collapse
Affiliation(s)
- Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Maarten H. Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Veerle Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Amanda Andersson-Rolf
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Ninouk Akkerman
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Franziska Völlmy
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Daniel Krueger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Georg A. Busslinger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Adriana Martínez-Silgado
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Charelle Boot
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Fjodor A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CXUtrecht, the Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Wiline J. Van de Wetering
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | - Kevin Knoops
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | - Peter J. Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | | | - Dylan Mooijman
- Single Cell Discoveries BV, 3584 BWUtrecht, The Netherlands
| | - Johan H. van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| |
Collapse
|
12
|
McKimpson WM, Spiegel S, Mukhanova M, Kraakman M, Du W, Kitamoto T, Yu J, Deng Z, Pajvani U, Accili D. Calorie restriction activates a gastric Notch-FOXO1 pathway to expand ghrelin cells. J Cell Biol 2024; 223:e202305093. [PMID: 38958606 PMCID: PMC11222742 DOI: 10.1083/jcb.202305093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Calorie restriction increases lifespan. Among the tissue-specific protective effects of calorie restriction, the impact on the gastrointestinal tract remains unclear. We report increased numbers of chromogranin A-positive (+), including orexigenic ghrelin+ cells, in the stomach of calorie-restricted mice. This effect was accompanied by increased Notch target Hes1 and Notch ligand Jag1 and was reversed by blocking Notch with DAPT, a gamma-secretase inhibitor. Primary cultures and genetically modified reporter mice show that increased endocrine cell abundance is due to altered Lgr5+ stem and Neurog3+ endocrine progenitor cell proliferation. Different from the intestine, calorie restriction decreased gastric Lgr5+ stem cells, while increasing a FOXO1/Neurog3+ subpopulation of endocrine progenitors in a Notch-dependent manner. Further, activation of FOXO1 was sufficient to promote endocrine cell differentiation independent of Notch. The Notch inhibitor PF-03084014 or ghrelin receptor antagonist GHRP-6 reversed the phenotypic effects of calorie restriction in mice. Tirzepatide additionally expanded ghrelin+ cells in mice. In summary, calorie restriction promotes Notch-dependent, FOXO1-regulated gastric endocrine cell differentiation.
Collapse
Affiliation(s)
- Wendy M. McKimpson
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Sophia Spiegel
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Maria Mukhanova
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Michael Kraakman
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Wen Du
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Takumi Kitamoto
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Junjie Yu
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Zhaobin Deng
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Utpal Pajvani
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Domenico Accili
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| |
Collapse
|
13
|
Davidson RK, Wu W, Kanojia S, George RM, Huter K, Sandoval K, Osmulski M, Casey N, Spaeth JM. The SWI/SNF chromatin remodelling complex regulates pancreatic endocrine cell expansion and differentiation in mice in vivo. Diabetologia 2024; 67:2275-2288. [PMID: 38958700 PMCID: PMC11912225 DOI: 10.1007/s00125-024-06211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/16/2024] [Indexed: 07/04/2024]
Abstract
AIMS/HYPOTHESIS Strategies to augment functional beta cell mass include directed differentiation of stem cells towards a beta cell fate, which requires extensive knowledge of transcriptional programs governing endocrine progenitor cell differentiation in vivo. We aimed to study the contributions of the Brahma-related gene-1 (BRG1) and Brahma (BRM) ATPase subunits of the SWI/SNF chromatin remodelling complex to endocrine cell development. METHODS We generated mice with endocrine progenitor-specific Neurog3-Cre BRG1 removal in the presence of heterozygous (Brg1Δendo;Brm+/-) or homozygous (double knockout: DKOΔendo) BRM deficiency. Whole-body metabolic phenotyping, islet function characterisation, islet quantitative PCR and histological characterisation were performed on animals and tissues postnatally. To test the mechanistic actions of SWI/SNF in controlling gene expression during endocrine cell development, single-cell RNA-seq was performed on flow-sorted endocrine-committed cells from embryonic day 15.5 control and mutant embryos. RESULTS Brg1Δendo;Brm+/- mice exhibit severe glucose intolerance, hyperglycaemia and hypoinsulinaemia, resulting, in part, from reduced islet number; diminished alpha, beta and delta cell mass; compromised islet insulin secretion; and altered islet gene expression programs, including reductions in MAFA and urocortin 3 (UCN3). DKOΔendo mice were not recovered at weaning; however, postnatal day 6 DKOΔendo mice were severely hyperglycaemic with reduced serum insulin levels and beta cell area. Single-cell RNA-seq of embryonic day 15.5 lineage-labelled cells revealed endocrine progenitor, alpha and beta cell populations from SWI/SNF mutants have reduced expression of Mafa, Gcg, Ins1 and Ins2, suggesting limited differentiation capacity. Reduced Neurog3 transcripts were discovered in DKOΔendo endocrine progenitor clusters, and the proliferative capacity of neurogenin 3 (NEUROG3)+ cells was reduced in Brg1Δendo;Brm+/- and DKOΔendo mutants. CONCLUSIONS/INTERPRETATION Loss of BRG1 from developing endocrine progenitor cells has a severe postnatal impact on glucose homeostasis, and loss of both subunits impedes animal survival, with both groups exhibiting alterations in hormone transcripts embryonically. Taken together, these data highlight the critical role SWI/SNF plays in governing gene expression programs essential for endocrine cell development and expansion. DATA AVAILABILITY Raw and processed data for scRNA-seq have been deposited into the NCBI Gene Expression Omnibus (GEO) database under the accession number GSE248369.
Collapse
Grants
- DK127129 Division of Diabetes, Endocrinology, and Metabolic Diseases
- DK106846 Division of Diabetes, Endocrinology, and Metabolic Diseases
- R03 DK127129 NIDDK NIH HHS
- F32 DK104426 NIDDK NIH HHS
- DK097512 Division of Diabetes, Endocrinology, and Metabolic Diseases
- P30 CA082709 NCI NIH HHS
- DK129287 Division of Diabetes, Endocrinology, and Metabolic Diseases
- P30 DK097512 NIDDK NIH HHS
- R01 DK129287 NIDDK NIH HHS
- DK097771 Division of Diabetes, Endocrinology, and Metabolic Diseases
- F31 DK128918 NIDDK NIH HHS
- DK115633 Division of Diabetes, Endocrinology, and Metabolic Diseases
- K01 DK115633 NIDDK NIH HHS
- U24 DK097771 NIDDK NIH HHS
- DK128918 Division of Diabetes, Endocrinology, and Metabolic Diseases
- CA082709 Division of Cancer Prevention, National Cancer Institute
Collapse
Affiliation(s)
- Rebecca K Davidson
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenting Wu
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sukrati Kanojia
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajani M George
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kayla Huter
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kassandra Sandoval
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Meredith Osmulski
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nolan Casey
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jason M Spaeth
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
14
|
Kim S, Yamada S, Li T, Canasto-Chibuque C, Kim JH, Marcet-Ortega M, Xu J, Eng DY, Feeney L, Petrini JHJ, Keeney S. The MRE11-RAD50-NBS1 complex both starts and extends DNA end resection in mouse meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608390. [PMID: 39185212 PMCID: PMC11343206 DOI: 10.1101/2024.08.17.608390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Nucleolytic resection of DNA ends is critical for homologous recombination, but its mechanism is not fully understood, particularly in mammalian meiosis. Here we examine roles of the conserved MRN complex (MRE11, RAD50, and NBS1) through genome-wide analysis of meiotic resection in mice with various MRN mutations, including several that cause chromosomal instability in humans. Meiotic DSBs form at elevated levels but remain unresected if Mre11 is conditionally deleted, thus MRN is required for both resection initiation and regulation of DSB numbers. Resection lengths are reduced to varying degrees in MRN hypomorphs or if MRE11 nuclease activity is attenuated in a conditional nuclease-dead Mre11 model. These findings unexpectedly establish that MRN is needed for longer-range extension of resection, not just resection initiation. Finally, resection defects are additively worsened by combining MRN and Exo1 mutations, and mice that are unable to initiate resection or have greatly curtailed resection lengths experience catastrophic spermatogenic failure. Our results elucidate multiple functions of MRN in meiotic recombination, uncover unanticipated relationships between short- and long-range resection, and establish the importance of resection for mammalian meiosis.
Collapse
Affiliation(s)
- Soonjoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- The HAKUBI Center for Advanced Research, and Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tao Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Claudia Canasto-Chibuque
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jun Hyun Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Marina Marcet-Ortega
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jiaqi Xu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences
| | - Diana Y. Eng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Laura Feeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - John H. J. Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
15
|
Kane E, Mak TC, Latreille M. MicroRNA-7 regulates endocrine progenitor delamination and endocrine cell mass in developing pancreatic islets. iScience 2024; 27:110332. [PMID: 39055950 PMCID: PMC11269303 DOI: 10.1016/j.isci.2024.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
β-cell replenishment in patients with diabetes through cadaveric islet transplantation has been successful; however, it requires long-term immunosuppression and suitable islet donors are scarce. Stepwise in vitro differentiation of pluripotent stem cells into β-cells represents a viable alternative, but limitations in our current understanding of in vivo islet endocrine differentiation constrains its clinical use. Here, we show that microRNA-7 (miR-7) is highly expressed in embryonic pancreatic endocrine progenitors. Genetic deletion of the miR-7 gene family in endocrine progenitors leads to reduced islet endocrine cell mass, due to endocrine progenitors failing to delaminate from the epithelial plexus. This is associated with a reduction in neurogenin-3 levels and increased expression of Sry-box transcription factor 9. Further, we observe that a significant number of endocrine progenitors lacking miR-7 differentiate into ductal cells. Our study suggests that increasing miR-7 expression could improve efficiency of in vitro differentiation and augment stem cell-derived β-cell terminal maturity.
Collapse
Affiliation(s)
- Eva Kane
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Tracy C.S. Mak
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Mathieu Latreille
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
16
|
Accili D, Talchai SC, Bouchi R, Lee AY, Du W, Kitamoto T, McKimpson WM, Belvedere S, Lin HV. Diabetes treatment by conversion of gut epithelial cells to insulin-producing cells. J Diabetes Investig 2024; 15:797-804. [PMID: 38426644 PMCID: PMC11215681 DOI: 10.1111/jdi.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Insulin-deficient (type 1) diabetes is treated by providing insulin to maintain euglycemia. The current standard of care is a quasi-closed loop integrating automated insulin delivery with a continuous glucose monitoring sensor. Cell replacement technologies are advancing as an alternative treatment and have been tested as surrogates to cadaveric islets in transplants. In addition, immunomodulatory treatments to delay the onset of type 1 diabetes in high-risk (stage 2) individuals have gained regulatory approval. We have pioneered a cell conversion approach to restore insulin production through pharmacological conversion of intestinal epithelial cells into insulin-producing cells. We have advanced this approach along a translational trajectory through the discovery of small molecule forkhead box protein O1 inhibitors. When administered to different rodent models of insulin-deficient diabetes, these inhibitors have resulted in robust glucose-lowering responses and generation of insulin-producing cells in the gut epithelium. We review past work and delineate a path to human clinical trials.
Collapse
Affiliation(s)
- Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes CenterVagelos College of Physicians and Surgeons of Columbia UniversityNew York CityNew YorkUSA
| | | | - Ryotaro Bouchi
- Diabetes and Metabolism Information Center, Diabetes Research CenterResearch Institute, National Center for Global Health and MedicineTokyoJapan
| | | | - Wen Du
- School of Biomedical EngineeringGuangzhou Medical UniversityGuangzhouChina
| | - Takumi Kitamoto
- Department of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
| | - Wendy M McKimpson
- Department of Medicine and Naomi Berrie Diabetes CenterVagelos College of Physicians and Surgeons of Columbia UniversityNew York CityNew YorkUSA
| | - Sandro Belvedere
- ARMGO Pharma, Inc.ArdsleyNew YorkUSA
- Avicenna Biosciences, Inc.DurhamNorth CarolinaUSA
| | - Hua V Lin
- Render TherapeuticsLincolnMassachusettsUSA
| |
Collapse
|
17
|
Zutshi N, Mohapatra BC, Mondal P, An W, Goetz BT, Wang S, Li S, Storck MD, Mercer DF, Black AR, Thayer SP, Black JD, Lin C, Band V, Band H. Cbl and Cbl-b ubiquitin ligases are essential for intestinal epithelial stem cell maintenance. iScience 2024; 27:109912. [PMID: 38974465 PMCID: PMC11225835 DOI: 10.1016/j.isci.2024.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 07/09/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) control stem cell maintenance vs. differentiation decisions. Casitas B-lineage lymphoma (CBL) family ubiquitin ligases are negative regulators of RTKs, but their stem cell regulatory roles remain unclear. Here, we show that Lgr5+ intestinal stem cell (ISC)-specific inducible Cbl-knockout (KO) on a Cblb null mouse background (iDKO) induced rapid loss of the Lgr5 Hi ISCs with transient expansion of the Lgr5 Lo transit-amplifying population. LacZ-based lineage tracing revealed increased ISC commitment toward enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro, Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single-cell RNA sequencing in organoids identified Akt-mTOR (mammalian target of rapamycin) pathway hyperactivation upon iDKO, and pharmacological Akt-mTOR axis inhibition rescued the iDKO defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine-tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.
Collapse
Affiliation(s)
- Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhopal C. Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pinaki Mondal
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin T. Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shuo Wang
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sicong Li
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D. Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David F. Mercer
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adrian R. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarah P. Thayer
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer D. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chi Lin
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
18
|
Dai P, Ma C, Chen C, Liang M, Dong S, Chen H, Zhang X. Unlocking Genetic Mysteries during the Epic Sperm Journey toward Fertilization: Further Expanding Cre Mouse Lines. Biomolecules 2024; 14:529. [PMID: 38785936 PMCID: PMC11117649 DOI: 10.3390/biom14050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The spatiotemporal expression patterns of genes are crucial for maintaining normal physiological functions in animals. Conditional gene knockout using the cyclization recombination enzyme (Cre)/locus of crossover of P1 (Cre/LoxP) strategy has been extensively employed for functional assays at specific tissue or developmental stages. This approach aids in uncovering the associations between phenotypes and gene regulation while minimizing interference among distinct tissues. Various Cre-engineered mouse models have been utilized in the male reproductive system, including Dppa3-MERCre for primordial germ cells, Ddx4-Cre and Stra8-Cre for spermatogonia, Prm1-Cre and Acrv1-iCre for haploid spermatids, Cyp17a1-iCre for the Leydig cell, Sox9-Cre for the Sertoli cell, and Lcn5/8/9-Cre for differentiated segments of the epididymis. Notably, the specificity and functioning stage of Cre recombinases vary, and the efficiency of recombination driven by Cre depends on endogenous promoters with different sequences as well as the constructed Cre vectors, even when controlled by an identical promoter. Cre mouse models generated via traditional recombination or CRISPR/Cas9 also exhibit distinct knockout properties. This review focuses on Cre-engineered mouse models applied to the male reproductive system, including Cre-targeting strategies, mouse model screening, and practical challenges encountered, particularly with novel mouse strains over the past decade. It aims to provide valuable references for studies conducted on the male reproductive system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226001, China; (P.D.); (C.M.); (C.C.); (M.L.); (S.D.); (H.C.)
| |
Collapse
|
19
|
Wang Y, Liu Z, Li S, Su X, Lai KP, Li R. Biochemical pancreatic β-cell lineage reprogramming: Various cell fate shifts. Curr Res Transl Med 2024; 72:103412. [PMID: 38246021 DOI: 10.1016/j.retram.2023.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 01/23/2024]
Abstract
The incidence of pancreatic diseases has been continuously rising in recent years. Thus, research on pancreatic regeneration is becoming more popular. Chronic hyperglycemia is detrimental to pancreatic β-cells, leading to impairment of insulin secretion which is the main hallmark of pancreatic diseases. Obtaining plenty of functional pancreatic β-cells is the most crucial aspect when studying pancreatic biology and treating diabetes. According to the International Diabetes Federation, diabetes has become a global epidemic, with about 3 million people suffering from diabetes worldwide. Hyperglycemia can lead to many dangerous diseases, including amputation, blindness, neuropathy, stroke, and cardiovascular and kidney diseases. Insulin is widely used in the treatment of diabetes; however, innovative approaches are needed in the academic and preclinical stages. A new approach aims at synthesizing patient-specific functional pancreatic β-cells. The present article focuses on how cells from different tissues can be transformed into pancreatic β-cells.
Collapse
Affiliation(s)
- Yuqin Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Zhuoqing Liu
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Shengren Li
- Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Xuejuan Su
- Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China.
| |
Collapse
|
20
|
Puri S, Maachi H, Nair G, Russ HA, Chen R, Pulimeno P, Cutts Z, Ntranos V, Hebrok M. Sox9 regulates alternative splicing and pancreatic beta cell function. Nat Commun 2024; 15:588. [PMID: 38238288 PMCID: PMC10796970 DOI: 10.1038/s41467-023-44384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Despite significant research, mechanisms underlying the failure of islet beta cells that result in type 2 diabetes (T2D) are still under investigation. Here, we report that Sox9, a transcriptional regulator of pancreas development, also functions in mature beta cells. Our results show that Sox9-depleted rodent beta cells have defective insulin secretion, and aging animals develop glucose intolerance, mimicking the progressive degeneration observed in T2D. Using genome editing in human stem cells, we show that beta cells lacking SOX9 have stunted first-phase insulin secretion. In human and rodent cells, loss of Sox9 disrupts alternative splicing and triggers accumulation of non-functional isoforms of genes with key roles in beta cell function. Sox9 depletion reduces expression of protein-coding splice variants of the serine-rich splicing factor arginine SRSF5, a major splicing enhancer that regulates alternative splicing. Our data highlight the role of SOX9 as a regulator of alternative splicing in mature beta cell function.
Collapse
Affiliation(s)
- Sapna Puri
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, USA
- Minutia Inc., Oakland, CA, USA
| | - Hasna Maachi
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, USA
- Center for Organoid Systems, Klinikum Rechts der Isar (MRI) and Technical University Munich, 85748, Garching, Germany
- Institute for Diabetes Organoid Technology, Helmholtz Munich, Helmholtz Diabetes Center, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Munich Institute of Biomedical Engineering (MIBE), Technical University Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Gopika Nair
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, USA
- Eli Lilly, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Richard Chen
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Pamela Pulimeno
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Zachary Cutts
- Graduate Program in Bioinformatics, University of California, San Francisco, CA, USA
| | - Vasilis Ntranos
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, USA.
- Center for Organoid Systems, Klinikum Rechts der Isar (MRI) and Technical University Munich, 85748, Garching, Germany.
- Institute for Diabetes Organoid Technology, Helmholtz Munich, Helmholtz Diabetes Center, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Munich Institute of Biomedical Engineering (MIBE), Technical University Munich, Munich, Germany.
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
| |
Collapse
|
21
|
Vossen C, Schmidt P, Wunderlich CM, Mittenbühler MJ, Tapken C, Wienand P, Mirabella PN, Cabot L, Schumacher AL, Folz-Donahue K, Kukat C, Voigt I, Brüning JC, Fenselau H, Wunderlich FT. An Approach to Intersectionally Target Mature Enteroendocrine Cells in the Small Intestine of Mice. Cells 2024; 13:102. [PMID: 38201306 PMCID: PMC10778503 DOI: 10.3390/cells13010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Enteroendocrine cells (EECs) constitute only a small proportion of Villin-1 (Vil1)-expressing intestinal epithelial cells (IECs) of the gastrointestinal tract; yet, in sum, they build the largest endocrine organ of the body, with each of them storing and releasing a distinct set of peptides for the control of feeding behavior, glucose metabolism, and gastrointestinal motility. Like all IEC types, EECs are continuously renewed from intestinal stem cells in the crypt base and terminally differentiate into mature subtypes while moving up the crypt-villus axis. Interestingly, EECs adjust their hormonal secretion according to their migration state as EECs receive altering differentiation signals along the crypt-villus axis and thus undergo functional readaptation. Cell-specific targeting of mature EEC subtypes by specific promoters is challenging because the expression of EEC-derived peptides and their precursors is not limited to EECs but are also found in other organs, such as the brain (e.g., Cck and Sst) as well as in the pancreas (e.g., Sst and Gcg). Here, we describe an intersectional genetic approach that enables cell type-specific targeting of functionally distinct EEC subtypes by combining a newly generated Dre-recombinase expressing mouse line (Vil1-2A-DD-Dre) with multiple existing Cre-recombinase mice and mouse strains with rox and loxP sites flanked stop cassettes for transgene expression. We found that transgene expression in triple-transgenic mice is highly specific in I but not D and L cells in the terminal villi of the small intestine. The targeting of EECs only in terminal villi is due to the integration of a defective 2A separating peptide that, combined with low EEC intrinsic Vil1 expression, restricts our Vil1-2A-DD-Dre mouse line and the intersectional genetic approach described here only applicable for the investigation of mature EEC subpopulations.
Collapse
Affiliation(s)
- Christian Vossen
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Patricia Schmidt
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Claudia Maria Wunderlich
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Melanie Joyce Mittenbühler
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Claas Tapken
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Peter Wienand
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Paul Nicolas Mirabella
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Leonie Cabot
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Anna-Lena Schumacher
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.-L.S.)
| | - Kat Folz-Donahue
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.-L.S.)
| | - Christian Kukat
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.-L.S.)
| | - Ingo Voigt
- Transgenic Core Facility, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany;
| | - Jens C. Brüning
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Department of neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Henning Fenselau
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - F. Thomas Wunderlich
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
22
|
Abidov M, Sokolova K, Danilova I, Baykenova M, Gette I, Mychlynina E, Aydin Ozgur B, Gurol AO, Yilmaz MT. Hepatic insulin synthesis increases in rat models of diabetes mellitus type 1 and 2 differently. PLoS One 2023; 18:e0294432. [PMID: 38019818 PMCID: PMC10686419 DOI: 10.1371/journal.pone.0294432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Insulin-positive (+) cells (IPCs), detected in multiple organs, are of great interest as a probable alternative to ameliorate pancreatic beta-cells dysfunction and insulin deficiency in diabetes. Liver is a potential source of IPCs due to it common embryological origin with pancreas. We previously demonstrated the presence of IPCs in the liver of healthy and diabetic rats, but detailed description and analysis of the factors, which potentially can induced ectopic hepatic expression of insulin in type 1 (T1D) and type 2 diabetes (T2D), were not performed. In present study we evaluate mass of hepatic IPCs in the rat models of T1D and T2D and discuss factors, which may stimulate it generation: glycaemia, organ injury, involving of hepatic stem/progenitor cell compartment, expression of transcription factors and inflammation. Quantity of IPCs in the liver was up by 1.7-fold in rats with T1D and 10-fold in T2D compared to non-diabetic (ND) rats. We concluded that ectopic hepatic expression of insulin gene is activated by combined action of a number of factors, with inflammation playing a decision role.
Collapse
Affiliation(s)
- Musa Abidov
- Institute of Immunopathology and Preventive Medicine, Ljubljana, Slovenia
| | - Ksenia Sokolova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Irina Danilova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Madina Baykenova
- Kostanay Oblast Tuberculosis Dispensary, Kostanay, Republic of Kazakhstan
| | - Irina Gette
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Elena Mychlynina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Burcin Aydin Ozgur
- Department of Medical Biology and Genetics, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
- Diabetes Application and Research Center, Demiroglu Bilim University, Istanbul, Turkey
| | - Ali Osman Gurol
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Diabetes Application and Research Center, Istanbul University, Istanbul, Turkey
| | - M. Temel Yilmaz
- International Diabetes Center, Acibadem University, Istanbul, Turkey
| |
Collapse
|
23
|
Beydag-Tasöz BS, D'Costa JV, Hersemann L, Lee BH, Luppino F, Kim YH, Zechner C, Grapin-Botton A. Integrating single-cell imaging and RNA sequencing datasets links differentiation and morphogenetic dynamics of human pancreatic endocrine progenitors. Dev Cell 2023; 58:2292-2308.e6. [PMID: 37591246 DOI: 10.1016/j.devcel.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/20/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Basic helix-loop-helix genes, particularly proneural genes, are well-described triggers of cell differentiation, yet information on their dynamics is limited, notably in human development. Here, we focus on Neurogenin 3 (NEUROG3), which is crucial for pancreatic endocrine lineage initiation. By monitoring both NEUROG3 gene expression and protein in single cells using a knockin dual reporter in 2D and 3D models of human pancreas development, we show an approximately 2-fold slower expression of human NEUROG3 than that of the mouse. We observe heterogeneous peak levels of NEUROG3 expression and reveal through long-term live imaging that both low and high NEUROG3 peak levels can trigger differentiation into hormone-expressing cells. Based on fluorescence intensity, we statistically integrate single-cell transcriptome with dynamic behaviors of live cells and propose a data-mapping methodology applicable to other contexts. Using this methodology, we identify a role for KLK12 in motility at the onset of NEUROG3 expression.
Collapse
Affiliation(s)
- Belin Selcen Beydag-Tasöz
- The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen 2200, Denmark; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany
| | - Joyson Verner D'Costa
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany
| | - Lena Hersemann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany
| | - Byung Ho Lee
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany
| | - Federica Luppino
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany; Center for Systems Biology Dresden Dresden 01307, Germany
| | - Yung Hae Kim
- The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen 2200, Denmark; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany
| | - Christoph Zechner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany; Center for Systems Biology Dresden Dresden 01307, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden 01062, Germany
| | - Anne Grapin-Botton
- The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen 2200, Denmark; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany; Center for Systems Biology Dresden Dresden 01307, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden 01062, Germany; Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
24
|
Hibdon ES, Keeley TM, Merchant JL, Samuelson LC. The bHLH transcription factor ASCL1 promotes differentiation of endocrine cells in the stomach and is regulated by Notch signaling. Am J Physiol Gastrointest Liver Physiol 2023; 325:G458-G470. [PMID: 37698169 PMCID: PMC10887855 DOI: 10.1152/ajpgi.00043.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Notch signaling regulates gastrointestinal stem cell proliferation and differentiation yet Notch-regulated transcriptional effectors of gastric epithelial cell differentiation are poorly understood. Here we tested the role of the bHLH transcription factor Achaete-Scute homolog 1 (ASCL1) in gastric epithelial cell differentiation, and its regulation by Notch. Newborn Ascl1 null mice showed a loss of expression of markers of neurogenin-3-dependent enteroendocrine cells, with normal expression of enterochromaffin-like cells, mucous cells, chief cells, and parietal cells. In adult mice, Ascl1 gene expression was observed in the stomach, but not the intestine, with higher expression in antral than corpus epithelium. Lineage tracing in Ascl1-CreERT2; Rosa26-LSL-tdTomato mice revealed single, scattered ASCL1+ cells in the gastric epithelium, demonstrating expression in antral gastrin- and serotonin-producing endocrine cells. ASCL1-expressing endocrine cells persisted for several weeks posttamoxifen labeling with a half-life of approximately 2 months. Lineage tracing in Gastrin-CreERT2 mice demonstrated a similar lifespan for gastrin-producing cells, confirming that gastric endocrine cells are long-lived. Finally, treatment of Ascl1-CreERT2; Rosa26-LSL-tdTomato mice with the pan-Notch inhibitor dibenzazepine increased the number of lineage-labeled cells in the gastric antrum, suggesting that Notch signaling normally inhibits Ascl1 expression. Notch regulation of Ascl1 was also demonstrated in a genetic mouse model of Notch activation, as well as Notch-manipulated antral organoid cultures, thus suggesting that ASCL1 is a key downstream Notch pathway effector promoting endocrine cell differentiation in the gastric epithelium.NEW & NOTEWORTHY Although Notch signaling is known to regulate cellular differentiation in the stomach, downstream effectors are poorly described. Here we demonstrate that the bHLH transcription factor ASCL1 is expressed in endocrine cells in the stomach and is required for formation of neurogenin-3-dependent enteroendocrine cells but not enterochromaffin-like cells. We also demonstrate that Ascl1 expression is inhibited by Notch signaling, suggesting that ASCL1 is a Notch-regulated transcriptional effector directing enteroendocrine cell fate in the mouse stomach.
Collapse
Affiliation(s)
- Elise S Hibdon
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Theresa M Keeley
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Juanita L Merchant
- Department of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
25
|
Ho KKY, Kaiser UB, Chanson P, Gadelha M, Wass J, Nieman L, Little A, Aghi MK, Raetzman L, Post K, Raverot G, Borowsky AD, Erickson D, Castaño JP, Laws ER, Zatelli MC, Sisco J, Esserman L, Yuen KCJ, Reincke M, Melmed S. Pituitary adenoma or neuroendocrine tumour: the need for an integrated prognostic classification. Nat Rev Endocrinol 2023; 19:671-678. [PMID: 37592077 DOI: 10.1038/s41574-023-00883-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
In the 2022 fifth edition of the WHO Classification of Endocrine Tumours and of Central Nervous System Tumours, pituitary adenomas are reclassified as neuroendocrine tumours (NETs). This change confers an oncology label to neoplasms that are overwhelmingly benign. A comprehensive clinical classification schema is required to guide prognosis, therapy and outcomes for all patients with pituitary adenomas. Pituitary adenomas and NETs exhibit some morphological and ultrastructural similarities. However, unlike NETs, pituitary adenomas are highly prevalent, yet indolent and rarely become malignant. This Perspective presents the outcomes of an interdisciplinary international workshop that addressed the merit and clinical implications of the classification change of pituitary adenoma to NET. Many non-histological factors provide mechanistic insight and influence the prognosis and treatment of pituitary adenoma. We recommend the development of a comprehensive classification that integrates clinical, genetic, biochemical, radiological, pathological and molecular information for all anterior pituitary neoplasms.
Collapse
Affiliation(s)
- Ken K Y Ho
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- The University of New South Wales, Sydney, New South Wales, Australia.
| | - Ursula B Kaiser
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Phillippe Chanson
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Monica Gadelha
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Lynnette Nieman
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | - Manish K Aghi
- University of California, San Francisco, San Francisco, CA, USA
| | - Lori Raetzman
- University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Kalmon Post
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerald Raverot
- Hospices Civils de Lyon, Groupement Hospitalier Est, Université Claude Bernard Lyon 1, Bron, France
| | | | | | - Justo P Castaño
- Maimónides Biomedical Research Institute of Córdoba, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | | | | | - Jill Sisco
- The Acromegaly Community, Grove, OK, USA
| | - Laura Esserman
- University of California, San Francisco, San Francisco, CA, USA
| | - Kevin C J Yuen
- Barrow Neurological Institute, Phoenix, AZ, USA
- University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, AZ, USA
| | - Martin Reincke
- Klinikum der Universität, Ludwig-Maximilians-Universität, München, Germany
| | | |
Collapse
|
26
|
Alvina FB, Chen TCY, Lim HYG, Barker N. Gastric epithelial stem cells in development, homeostasis and regeneration. Development 2023; 150:dev201494. [PMID: 37746871 DOI: 10.1242/dev.201494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The stem/progenitor cell pool is indispensable for the development, homeostasis and regeneration of the gastric epithelium, owing to its defining ability to self-renew whilst supplying the various functional epithelial lineages needed to digest food efficiently. A detailed understanding of the intricacies and complexities surrounding the behaviours and roles of these stem cells offers insights, not only into the physiology of gastric epithelial development and maintenance, but also into the pathological consequences following aberrations in stem cell regulation. Here, we provide an insightful synthesis of the existing knowledge on gastric epithelial stem cell biology, including the in vitro and in vivo experimental techniques that have advanced such studies. We highlight the contributions of stem/progenitor cells towards patterning the developing stomach, specification of the differentiated cell lineages and maintenance of the mature epithelium during homeostasis and following injury. Finally, we discuss gaps in our understanding and identify key research areas for future work.
Collapse
Affiliation(s)
- Fidelia B Alvina
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Tanysha Chi-Ying Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Hui Yi Grace Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Nick Barker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117593, Republic of Singapore
| |
Collapse
|
27
|
Tixi W, Maldonado M, Chang YT, Chiu A, Yeung W, Parveen N, Nelson MS, Hart R, Wang S, Hsu WJ, Fueger P, Kopp JL, Huising MO, Dhawan S, Shih HP. Coordination between ECM and cell-cell adhesion regulates the development of islet aggregation, architecture, and functional maturation. eLife 2023; 12:e90006. [PMID: 37610090 PMCID: PMC10482429 DOI: 10.7554/elife.90006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
Pancreatic islets are three-dimensional cell aggregates consisting of unique cellular composition, cell-to-cell contacts, and interactions with blood vessels. Cell aggregation is essential for islet endocrine function; however, it remains unclear how developing islets establish aggregation. By combining genetic animal models, imaging tools, and gene expression profiling, we demonstrate that islet aggregation is regulated by extracellular matrix signaling and cell-cell adhesion. Islet endocrine cell-specific inactivation of extracellular matrix receptor integrin β1 disrupted blood vessel interactions but promoted cell-cell adhesion and the formation of larger islets. In contrast, ablation of cell-cell adhesion molecule α-catenin promoted blood vessel interactions yet compromised islet clustering. Simultaneous removal of integrin β1 and α-catenin disrupts islet aggregation and the endocrine cell maturation process, demonstrating that establishment of islet aggregates is essential for functional maturation. Our study provides new insights into understanding the fundamental self-organizing mechanism for islet aggregation, architecture, and functional maturation.
Collapse
Affiliation(s)
- Wilma Tixi
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Maricela Maldonado
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
- Department of Biomedical Engineering, College of Engineering, California State University, Long BeachLong BeachUnited States
| | - Ya-Ting Chang
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Amy Chiu
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Wilson Yeung
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Nazia Parveen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Michael S Nelson
- Light Microscopy Core, Beckman Research Institute, City of HopeDuarteUnited States
| | - Ryan Hart
- Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Shihao Wang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British ColumbiaVancouverCanada
| | - Wu Jih Hsu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British ColumbiaVancouverCanada
| | - Patrick Fueger
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Janel L Kopp
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British ColumbiaVancouverCanada
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
- Department of Physiology and Membrane Biology, School of Medicine, University of California, DavisDavisUnited States
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| | - Hung Ping Shih
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of HopeDuarteUnited States
| |
Collapse
|
28
|
Zheng X, Betjes MA, Ender P, Goos YJ, Huelsz-Prince G, Clevers H, van Zon JS, Tans SJ. Organoid cell fate dynamics in space and time. SCIENCE ADVANCES 2023; 9:eadd6480. [PMID: 37595032 PMCID: PMC10438469 DOI: 10.1126/sciadv.add6480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
Organoids are a major new tool to study tissue renewal. However, characterizing the underlying differentiation dynamics remains challenging. Here, we developed TypeTracker, which identifies cell fates by AI-enabled cell tracking and propagating end point fates back along the branched lineage trees. Cells that ultimately migrate to the villus commit to their new type early, when still deep inside the crypt, with important consequences: (i) Secretory cells commit before terminal division, with secretory fates emerging symmetrically in sister cells. (ii) Different secretory types descend from distinct stem cell lineages rather than an omnipotent secretory progenitor. (iii) The ratio between secretory and absorptive cells is strongly affected by proliferation after commitment. (iv) Spatial patterning occurs after commitment through type-dependent cell rearrangements. This "commit-then-sort" model contrasts with the conventional conveyor belt picture, where cells differentiate by moving up the crypt-villus axis and hence raises new questions about the underlying commitment and sorting mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Uppsalalaan 8, Utrecht 3584 CT, Netherlands
| | | | - Sander J Tans
- Bionanoscience Department, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
- AMOLF, Amsterdam, Netherlands.
| |
Collapse
|
29
|
Kahraman S, De Jesus DF, Wei J, Brown NK, Zou Z, Hu J, He C, Kulkarni RN. m 6 A mRNA Methylation Regulates Early Pancreatic β-Cell Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551675. [PMID: 37577492 PMCID: PMC10418275 DOI: 10.1101/2023.08.03.551675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
N 6 -methyladenosine (m 6 A) is the most abundant chemical modification in mRNA, and plays important roles in human and mouse embryonic stem cell pluripotency, maintenance, and differentiation. We have recently reported, for the first time, the role of m 6 A in the postnatal control of β-cell function in physiological states and in Type 1 and 2 Diabetes. However, the precise mechanisms by which m 6 A acts to regulate the development of human and mouse β-cells are unexplored. Here, we show that the m 6 A landscape is dynamic during human pancreas development, and that METTL14, one of the m 6 A writer complex proteins, is essential for the early differentiation of both human and mouse β-cells.
Collapse
|
30
|
Zutshi N, Mohapatra BC, Mondal P, An W, Goetz BT, Wang S, Li S, Storck MD, Mercer DF, Black AR, Thayer SP, Black JD, Lin C, Band V, Band H. Cbl and Cbl-b Ubiquitin Ligases are Essential for Intestinal Epithelial Stem Cell Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541154. [PMID: 37292716 PMCID: PMC10245689 DOI: 10.1101/2023.05.17.541154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Among the signaling pathways that control the stem cell self-renewal and maintenance vs. acquisition of differentiated cell fates, those mediated by receptor tyrosine kinase (RTK) activation are well established as key players. CBL family ubiquitin ligases are negative regulators of RTKs but their physiological roles in regulating stem cell behaviors are unclear. While hematopoietic Cbl/Cblb knockout (KO) leads to a myeloproliferative disease due to expansion and reduced quiescence of hematopoietic stem cells, mammary epithelial KO led to stunted mammary gland development due to mammary stem cell depletion. Here, we examined the impact of inducible Cbl/Cblb double-KO (iDKO) selectively in the Lgr5-defined intestinal stem cell (ISC) compartment. Cbl/Cblb iDKO led to rapid loss of the Lgr5 Hi ISC pool with a concomitant transient expansion of the Lgr5 Lo transit amplifying population. LacZ reporter-based lineage tracing showed increased ISC commitment to differentiation, with propensity towards enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro , Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single cell RNAseq analysis of organoids revealed Akt-mTOR pathway hyperactivation in iDKO ISCs and progeny cells, and pharmacological inhibition of the Akt-mTOR axis rescued the organoid maintenance and propagation defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.
Collapse
|
31
|
Parveen N, Wang JK, Bhattacharya S, Cuala J, Rajkumar MS, Butler AE, Wu X, Shih HP, Georgia SK, Dhawan S. DNA Methylation-Dependent Restriction of Tyrosine Hydroxylase Contributes to Pancreatic β-Cell Heterogeneity. Diabetes 2023; 72:575-589. [PMID: 36607262 PMCID: PMC10130487 DOI: 10.2337/db22-0506] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
The molecular and functional heterogeneity of pancreatic β-cells is well recognized, but the underlying mechanisms remain unclear. Pancreatic islets harbor a subset of β-cells that co-express tyrosine hydroxylase (TH), an enzyme involved in synthesis of catecholamines that repress insulin secretion. Restriction of the TH+ β-cells within islets is essential for appropriate function in mice, such that a higher proportion of these cells corresponds to reduced insulin secretion. Here, we use these cells as a model to dissect the developmental control of β-cell heterogeneity. We define the specific molecular and metabolic characteristics of TH+ β-cells and show differences in their developmental restriction in mice and humans. We show that TH expression in β-cells is restricted by DNA methylation during β-cell differentiation. Ablation of de novo DNA methyltransferase Dnmt3a in the embryonic progenitors results in a dramatic increase in the proportion of TH+ β-cells, whereas β-cell-specific ablation of Dnmt3a does not. We demonstrate that maintenance of Th promoter methylation is essential for its continued restriction in postnatal β-cells. Loss of Th promoter methylation in response to chronic overnutrition increases the number of TH+ β-cells, corresponding to impaired β-cell function. These results reveal a regulatory role of DNA methylation in determining β-cell heterogeneity.
Collapse
Affiliation(s)
- Nazia Parveen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Jean Kimi Wang
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | | | - Janielle Cuala
- Medical Biophysics Program, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Mohan Singh Rajkumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope, Duarte, CA
| | - Hung-Ping Shih
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Senta K. Georgia
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Center for Endocrinology, Diabetes, and Metabolism, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| |
Collapse
|
32
|
Gobé C, Ialy-Radio C, Pierre R, Cocquet J. Generation and Characterization of a Transgenic Mouse That Specifically Expresses the Cre Recombinase in Spermatids. Genes (Basel) 2023; 14:genes14050983. [PMID: 37239343 DOI: 10.3390/genes14050983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Spermiogenesis is the step during which post-meiotic cells, called spermatids, undergo numerous morphological changes and differentiate into spermatozoa. Thousands of genes have been described to be expressed at this stage and could contribute to spermatid differentiation. Genetically-engineered mouse models using Cre/LoxP or CrispR/Cas9 are the favored approaches to characterize gene function and better understand the genetic basis of male infertility. In the present study, we produced a new spermatid-specific Cre transgenic mouse line, in which the improved iCre recombinase is expressed under the control of the acrosomal vesicle protein 1 gene promoter (Acrv1-iCre). We show that Cre protein expression is restricted to the testis and only detected in round spermatids of stage V to VIII seminiferous tubules. The Acrv1-iCre line can conditionally knockout a gene during spermiogenesis with a > 95% efficiency. Therefore, it could be useful to unravel the function of genes during the late stage of spermatogenesis, but it can also be used to produce an embryo with a paternally deleted allele without causing early spermatogenesis defects.
Collapse
Affiliation(s)
- Clara Gobé
- Université Paris Cité, INSERM, CNRS, Institut Cochin, F-75014 Paris, France
| | - Côme Ialy-Radio
- Université Paris Cité, INSERM, CNRS, Institut Cochin, F-75014 Paris, France
| | - Rémi Pierre
- Université Paris Cité, INSERM, CNRS, Institut Cochin, F-75014 Paris, France
- Homologous Recombination, Embryo Transfer and Cryopreservation Facility, Cochin Institute, University of Paris, F-75006 Paris, France
| | - Julie Cocquet
- Université Paris Cité, INSERM, CNRS, Institut Cochin, F-75014 Paris, France
| |
Collapse
|
33
|
Sasaki S, Miyatsuka T. Heterogeneity of Islet Cells during Embryogenesis and Differentiation. Diabetes Metab J 2023; 47:173-184. [PMID: 36631992 PMCID: PMC10040626 DOI: 10.4093/dmj.2022.0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 01/13/2023] Open
Abstract
Diabetes is caused by insufficient insulin secretion due to β-cell dysfunction and/or β-cell loss. Therefore, the restoration of functional β-cells by the induction of β-cell differentiation from embryonic stem (ES) and induced-pluripotent stem (iPS) cells, or from somatic non-β-cells, may be a promising curative therapy. To establish an efficient and feasible method for generating functional insulin-producing cells, comprehensive knowledge of pancreas development and β-cell differentiation, including the mechanisms driving cell fate decisions and endocrine cell maturation is crucial. Recent advances in single-cell RNA sequencing (scRNA-seq) technologies have opened a new era in pancreas development and diabetes research, leading to clarification of the detailed transcriptomes of individual insulin-producing cells. Such extensive high-resolution data enables the inference of developmental trajectories during cell transitions and gene regulatory networks. Additionally, advancements in stem cell research have not only enabled their immediate clinical application, but also has made it possible to observe the genetic dynamics of human cell development and maturation in a dish. In this review, we provide an overview of the heterogeneity of islet cells during embryogenesis and differentiation as demonstrated by scRNA-seq studies on the developing and adult pancreata, with implications for the future application of regenerative medicine for diabetes.
Collapse
Affiliation(s)
- Shugo Sasaki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takeshi Miyatsuka
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan
- Corresponding author: Takeshi Miyatsuka https://orcid.org/0000-0003-2618-3450 Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan E-mail:
| |
Collapse
|
34
|
Hayashi M, Kaye JA, Douglas ER, Joshi NR, Gribble FM, Reimann F, Liberles SD. Enteroendocrine cell lineages that differentially control feeding and gut motility. eLife 2023; 12:78512. [PMID: 36810133 PMCID: PMC10032656 DOI: 10.7554/elife.78512] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Enteroendocrine cells are specialized sensory cells of the gut-brain axis that are sparsely distributed along the intestinal epithelium. The functions of enteroendocrine cells have classically been inferred by the gut hormones they release. However, individual enteroendocrine cells typically produce multiple, sometimes apparently opposing, gut hormones in combination, and some gut hormones are also produced elsewhere in the body. Here, we developed approaches involving intersectional genetics to enable selective access to enteroendocrine cells in vivo in mice. We targeted FlpO expression to the endogenous Villin1 locus (in Vil1-p2a-FlpO knock-in mice) to restrict reporter expression to intestinal epithelium. Combined use of Cre and Flp alleles effectively targeted major transcriptome-defined enteroendocrine cell lineages that produce serotonin, glucagon-like peptide 1, cholecystokinin, somatostatin, or glucose-dependent insulinotropic polypeptide. Chemogenetic activation of different enteroendocrine cell types variably impacted feeding behavior and gut motility. Defining the physiological roles of different enteroendocrine cell types provides an essential framework for understanding sensory biology of the intestine.
Collapse
Affiliation(s)
- Marito Hayashi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Judith A Kaye
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Ella R Douglas
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Narendra R Joshi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Fiona M Gribble
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Frank Reimann
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Stephen D Liberles
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
35
|
Barton JR, Londregan AK, Alexander TD, Entezari AA, Bar-Ad S, Cheng L, Lepore AC, Snook AE, Covarrubias M, Waldman SA. Intestinal neuropod cell GUCY2C regulates visceral pain. J Clin Invest 2023; 133:e165578. [PMID: 36548082 PMCID: PMC9927949 DOI: 10.1172/jci165578] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Visceral pain (VP) is a global problem with complex etiologies and limited therapeutic options. Guanylyl cyclase C (GUCY2C), an intestinal receptor producing cyclic GMP(cGMP), which regulates luminal fluid secretion, has emerged as a therapeutic target for VP. Indeed, FDA-approved GUCY2C agonists ameliorate VP in patients with chronic constipation syndromes, although analgesic mechanisms remain obscure. Here, we revealed that intestinal GUCY2C was selectively enriched in neuropod cells, a type of enteroendocrine cell that synapses with submucosal neurons in mice and humans. GUCY2Chi neuropod cells associated with cocultured dorsal root ganglia neurons and induced hyperexcitability, reducing the rheobase and increasing the resulting number of evoked action potentials. Conversely, the GUCY2C agonist linaclotide eliminated neuronal hyperexcitability produced by GUCY2C-sufficient - but not GUCY2C-deficient - neuropod cells, an effect independent of bulk epithelial cells or extracellular cGMP. Genetic elimination of intestinal GUCY2C amplified nociceptive signaling in VP that was comparable with chemically induced VP but refractory to linaclotide. Importantly, eliminating GUCY2C selectively in neuropod cells also increased nociceptive signaling and VP that was refractory to linaclotide. In the context of loss of GUCY2C hormones in patients with VP, these observations suggest a specific role for neuropod GUCY2C signaling in the pathophysiology and treatment of these pain syndromes.
Collapse
Affiliation(s)
| | | | | | | | - Shely Bar-Ad
- Department of Pharmacology, Physiology, & Cancer Biology
| | | | | | - Adam E. Snook
- Department of Pharmacology, Physiology, & Cancer Biology
- Department of Microbiology & Immunology, and
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Scott A. Waldman
- Department of Pharmacology, Physiology, & Cancer Biology
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Sun YH, Cui H, Song C, Shen JT, Zhuo X, Wang RH, Yu X, Ndamba R, Mu Q, Gu H, Wang D, Murthy GG, Li P, Liang F, Liu L, Tao Q, Wang Y, Orlowski S, Xu Q, Zhou H, Jagne J, Gokcumen O, Anthony N, Zhao X, Li XZ. Amniotes co-opt intrinsic genetic instability to protect germ-line genome integrity. Nat Commun 2023; 14:812. [PMID: 36781861 PMCID: PMC9925758 DOI: 10.1038/s41467-023-36354-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Unlike PIWI-interacting RNA (piRNA) in other species that mostly target transposable elements (TEs), >80% of piRNAs in adult mammalian testes lack obvious targets. However, mammalian piRNA sequences and piRNA-producing loci evolve more rapidly than the rest of the genome for unknown reasons. Here, through comparative studies of chickens, ducks, mice, and humans, as well as long-read nanopore sequencing on diverse chicken breeds, we find that piRNA loci across amniotes experience: (1) a high local mutation rate of structural variations (SVs, mutations ≥ 50 bp in size); (2) positive selection to suppress young and actively mobilizing TEs commencing at the pachytene stage of meiosis during germ cell development; and (3) negative selection to purge deleterious SV hotspots. Our results indicate that genetic instability at pachytene piRNA loci, while producing certain pathogenic SVs, also protects genome integrity against TE mobilization by driving the formation of rapid-evolving piRNA sequences.
Collapse
Affiliation(s)
- Yu H Sun
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hongxiao Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chi Song
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
| | - Jiafei Teng Shen
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Xiaoyu Zhuo
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ruoqiao Huiyi Wang
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaohui Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rudo Ndamba
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Qian Mu
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hanwen Gu
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Duolin Wang
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Gayathri Guru Murthy
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Pidong Li
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Fan Liang
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Lei Liu
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Qing Tao
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Ying Wang
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Sara Orlowski
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Qi Xu
- Department of Animal Science, McGill University, Quebec, H9X 3V9, Canada
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Jarra Jagne
- Animal Health Diagnostic Center, Cornell University College of Veterinary Medicine, Ithaca, NY, 14850, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Nick Anthony
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Xin Zhao
- Department of Animal Science, McGill University, Quebec, H9X 3V9, Canada.
| | - Xin Zhiguo Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
37
|
Legrand JMD, Hobbs RM. Defining Gene Function in Spermatogonial Stem Cells Through Conditional Knockout Approaches. Methods Mol Biol 2023; 2656:261-307. [PMID: 37249877 DOI: 10.1007/978-1-0716-3139-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian male fertility is maintained throughout life by a population of self-renewing mitotic germ cells known as spermatogonial stem cells (SSCs). Much of our current understanding regarding the molecular mechanisms underlying SSC activity is derived from studies using conditional knockout mouse models. Here, we provide a guide for the selection and use of mouse strains to develop conditional knockout models for the study of SSCs, as well as their precursors and differentiation-committed progeny. We describe Cre recombinase-expressing strains, breeding strategies to generate experimental groups, and treatment regimens for inducible knockout models and provide advice for verifying and improving conditional knockout efficiency. This resource can be beneficial to those aiming to develop conditional knockout models for the study of SSC development and postnatal function.
Collapse
Affiliation(s)
- Julien M D Legrand
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Robin M Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
38
|
Du W, Wang J, Kuo T, Wang L, McKimpson WM, Son J, Watanabe H, Kitamoto T, Lee Y, Creusot RJ, Ratner LE, McCune K, Chen YW, Grubbs BH, Thornton ME, Fan J, Sultana N, Diaz BS, Balasubramanian I, Gao N, Belvedere S, Accili D. Pharmacological conversion of gut epithelial cells into insulin-producing cells lowers glycemia in diabetic animals. J Clin Invest 2022; 132:e162720. [PMID: 36282594 PMCID: PMC9754100 DOI: 10.1172/jci162720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/18/2022] [Indexed: 01/05/2023] Open
Abstract
As a highly regenerative organ, the intestine is a promising source for cellular reprogramming for replacing lost pancreatic β cells in diabetes. Gut enterochromaffin cells can be converted to insulin-producing cells by forkhead box O1 (FoxO1) ablation, but their numbers are limited. In this study, we report that insulin-immunoreactive cells with Paneth/goblet cell features are present in human fetal intestine. Accordingly, lineage-tracing experiments show that, upon genetic or pharmacologic FoxO1 ablation, the Paneth/goblet lineage can also undergo conversion to the insulin lineage. We designed a screening platform in gut organoids to accurately quantitate β-like cell reprogramming and fine-tune a combination treatment to increase the efficiency of the conversion process in mice and human adult intestinal organoids. We identified a triple blockade of FOXO1, Notch, and TGF-β that, when tested in insulin-deficient streptozotocin (STZ) or NOD diabetic animals, resulted in near normalization of glucose levels, associated with the generation of intestinal insulin-producing cells. The findings illustrate a therapeutic approach for replacing insulin treatment in diabetes.
Collapse
Affiliation(s)
- Wen Du
- Department of Medicine and Naomi Berrie Diabetes Center and
| | - Junqiang Wang
- Systems Biology Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Taiyi Kuo
- Department of Medicine and Naomi Berrie Diabetes Center and
- Department of Neurobiology, Physiology, & Behavior, College of Biological Sciences, University of California, Davis, California, USA
| | - Liheng Wang
- Department of Medicine and Naomi Berrie Diabetes Center and
| | | | - Jinsook Son
- Department of Medicine and Naomi Berrie Diabetes Center and
| | | | | | - Yunkyoung Lee
- Forkhead BioTherapeutics Corp., New York, New York, USA
| | - Remi J. Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Lloyd E. Ratner
- Department of Surgery, Columbia University Medical Center, New York, New York, USA
| | - Kasi McCune
- Department of Surgery, Columbia University Medical Center, New York, New York, USA
| | - Ya-Wen Chen
- Department of Otolaryngology
- Department of Cell, Developmental, and Regenerative Biology, and
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brendan H. Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Matthew E. Thornton
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jason Fan
- Bascom Palmer Eye Institute, Department of Ophthalmology, Miami, Florida, USA
| | - Nishat Sultana
- Department of Medicine and Naomi Berrie Diabetes Center and
| | - Bryan S. Diaz
- Department of Medicine and Naomi Berrie Diabetes Center and
| | | | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | | |
Collapse
|
39
|
Kitamoto T, Lee YK, Sultana N, Watanabe H, McKimpson WM, Du W, Fan J, Diaz B, Lin HV, Leibel RL, Belvedere S, Accili D, Accili D. Chemical induction of gut β-like-cells by combined FoxO1/Notch inhibition as a glucose-lowering treatment for diabetes. Mol Metab 2022; 66:101624. [PMID: 36341906 PMCID: PMC9664469 DOI: 10.1016/j.molmet.2022.101624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Lifelong insulin replacement remains the mainstay of type 1 diabetes treatment. Genetic FoxO1 ablation promotes enteroendocrine cell (EECs) conversion into glucose-responsive β-like cells. Here, we tested whether chemical FoxO1 inhibitors can generate β-like gut cells. METHODS We used Ngn3-or Villin-driven FoxO1 ablation to capture the distinctive developmental effects of FoxO1 on EEC pool. We combined FoxO1 ablation with Notch inhibition to enhance the expansion of EEC pool. We tested the ability of an orally available small molecule of FoxO1 inhibitor, Cpd10, to phenocopy genetic ablation of FoxO1. We evaluated the therapeutic impact of genetic ablation or chemical inhibition of FoxO1 on insulin-deficient diabetes in Ins2Akita/+ mice. RESULTS Pan-intestinal epithelial FoxO1 ablation expanded the EEC pool, induced β-like cells, and improved glucose tolerance in Ins2Akita/+ mice. This genetic effect was phenocopied by Cpd10. Cpd10 induced β-like cells that released insulin in response to glucose in gut organoids, and this effect was enhanced by the Notch inhibitor, DBZ. In Ins2Akita/+ mice, a five-day course of either Cpd10 or DBZ induced intestinal insulin-immunoreactive β-like cells, lowered glycemia, and increased plasma insulin levels without apparent adverse effects. CONCLUSION These results provide proof of principle of gut cell conversion into β-like cells by a small molecule FoxO1 inhibitor, paving the way for clinical applications.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Chiba University Graduate School of Medicine, Chiba, Japan, 2608670.
| | | | - Nishat Sultana
- Department of Pediatrics Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hitoshi Watanabe
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Wendy M McKimpson
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Wen Du
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Jason Fan
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, 33146, USA
| | - Bryan Diaz
- Department of Pediatrics Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hua V Lin
- BioFront Therapeutics, Beijing, China
| | - Rudolph L Leibel
- Department of Pediatrics Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Domenico Accili
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
40
|
Enriquez JR, McCauley HA, Zhang KX, Sanchez JG, Kalin GT, Lang RA, Wells JM. A dietary change to a high-fat diet initiates a rapid adaptation of the intestine. Cell Rep 2022; 41:111641. [PMID: 36384107 DOI: 10.1016/j.celrep.2022.111641] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/27/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term impacts of diet have been well studied; however, the immediate response of the intestinal epithelium to a change in nutrients remains poorly understood. We use physiological metrics and single-cell transcriptomics to interrogate the intestinal epithelial cell response to a high-fat diet (HFD). Within 1 day of HFD exposure, mice exhibit altered whole-body physiology and increased intestinal epithelial proliferation. Single-cell transcriptional analysis on day 1 reveals a cell-stress response in intestinal crypts and a shift toward fatty acid metabolism. By 3 days of HFD, computational trajectory analysis suggests an emergence of progenitors, with a transcriptional profile shifting from secretory populations toward enterocytes. Furthermore, enterocytes upregulate lipid absorption genes and show increased lipid absorption in vivo over 7 days of HFD. These findings demonstrate the rapid intestinal epithelial response to a dietary change and help illustrate the essential ability of animals to adapt to shifting nutritional environments.
Collapse
Affiliation(s)
- Jacob R Enriquez
- Division of Developmental Biology, Abrahamson Pediatric Eye Institute-Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Heather A McCauley
- Division of Developmental Biology, Abrahamson Pediatric Eye Institute-Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Kevin X Zhang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute-Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - J Guillermo Sanchez
- Division of Developmental Biology, Abrahamson Pediatric Eye Institute-Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Gregory T Kalin
- Division of Developmental Biology, Abrahamson Pediatric Eye Institute-Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Richard A Lang
- Division of Developmental Biology, Abrahamson Pediatric Eye Institute-Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute-Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA; Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James M Wells
- Division of Developmental Biology, Abrahamson Pediatric Eye Institute-Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA; Division of Endocrinology, Abrahamson Pediatric Eye Institute-Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Abrahamson Pediatric Eye Institute-Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
41
|
Lafferty RA, McShane LM, Franklin ZJ, Flatt PR, O’Harte FPM, Irwin N. Sustained glucagon receptor antagonism in insulin-deficient high-fat-fed mice. J Endocrinol 2022; 255:91-101. [PMID: 36005280 PMCID: PMC9513641 DOI: 10.1530/joe-22-0106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Discerning modification to the amino acid sequence of native glucagon can generate specific glucagon receptor (GCGR) antagonists, that include desHis1Pro4Glu9-glucagon and the acylated form desHis1Pro4Glu9(Lys12PAL)-glucagon. In the current study, we have evaluated the metabolic benefits of once-daily injection of these peptide-based GCGR antagonists for 18 days in insulin-resistant high-fat-fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF-STZ mice. Administration of desHis1Pro4Glu9-glucagon moderately (P < 0.05) decreased STZ-induced elevations of food intake. Body weight was not different between groups of HFF-STZ mice and both treatment interventions delayed (P < 0.05) the onset of hyperglycaemia. The treatments reduced (P < 0.05-P < 0.001) circulating and pancreatic glucagon, whilst desHis1Pro4Glu9(Lys12PAL)-glucagon also substantially increased (P < 0.001) pancreatic insulin stores. Oral glucose tolerance was appreciably improved (P < 0.05) by both antagonists, despite the lack of augmentation of glucose-stimulated insulin release. Interestingly, positive effects on i.p. glucose tolerance were less obvious suggesting important beneficial effects on gut function. Metabolic benefits were accompanied by decreased (P < 0.05-P < 0.01) locomotor activity and increases (P < 0.001) in energy expenditure and respiratory exchange ratio in both treatment groups. In addition, desHis1Pro4Glu9-glucagon increased (P < 0.01-P < 0.001) O2 consumption and CO2 production. Together, these data provide further evidence that peptidic GCGR antagonists are effective treatment options for obesity-driven forms of diabetes, even when accompanied by insulin deficiency.
Collapse
Affiliation(s)
- Ryan A Lafferty
- Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Laura M McShane
- Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Zara J Franklin
- Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Finbarr P M O’Harte
- Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
- Correspondence should be addressed to N Irwin:
| |
Collapse
|
42
|
Bakhti M, Bastidas-Ponce A, Tritschler S, Czarnecki O, Tarquis-Medina M, Nedvedova E, Jaki J, Willmann SJ, Scheibner K, Cota P, Salinno C, Boldt K, Horn N, Ueffing M, Burtscher I, Theis FJ, Coskun Ü, Lickert H. Synaptotagmin-13 orchestrates pancreatic endocrine cell egression and islet morphogenesis. Nat Commun 2022; 13:4540. [PMID: 35927244 PMCID: PMC9352765 DOI: 10.1038/s41467-022-31862-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
During pancreas development endocrine cells leave the ductal epithelium to form the islets of Langerhans, but the morphogenetic mechanisms are incompletely understood. Here, we identify the Ca2+-independent atypical Synaptotagmin-13 (Syt13) as a key regulator of endocrine cell egression and islet formation. We detect specific upregulation of the Syt13 gene and encoded protein in endocrine precursors and the respective lineage during islet formation. The Syt13 protein is localized to the apical membrane of endocrine precursors and to the front domain of egressing endocrine cells, marking a previously unidentified apical-basal to front-rear repolarization during endocrine precursor cell egression. Knockout of Syt13 impairs endocrine cell egression and skews the α-to-β-cell ratio. Mechanistically, Syt13 is a vesicle trafficking protein, transported via the microtubule cytoskeleton, and interacts with phosphatidylinositol phospholipids for polarized localization. By internalizing a subset of plasma membrane proteins at the front domain, including α6β4 integrins, Syt13 modulates cell-matrix adhesion and allows efficient endocrine cell egression. Altogether, these findings uncover an unexpected role for Syt13 as a morphogenetic driver of endocrinogenesis and islet formation.
Collapse
Affiliation(s)
- Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany
| | - Oliver Czarnecki
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Technische Universität München, School of Medicine, München, Germany
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Technische Universität München, School of Medicine, München, Germany
| | - Eva Nedvedova
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
- SOTIO a.s, Jankovcova 1518/2, Prague, Czech Republic
| | - Jessica Jaki
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stefanie J Willmann
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Technische Universität München, School of Medicine, München, Germany
| | - Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Technische Universität München, School of Medicine, München, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Nicola Horn
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Technical University of Munich, Department of Mathematics, Garching b, Munich, Germany
| | - Ünal Coskun
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
- Center of Membrane Biochemistry and Lipid Research, Carl Gustav Carus School of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Technische Universität München, School of Medicine, München, Germany.
| |
Collapse
|
43
|
Toren E, Liu Y, Bethea M, Wade A, Hunter CS. The Ldb1 transcriptional co-regulator is required for establishment and maintenance of the pancreatic endocrine lineage. FASEB J 2022; 36:e22460. [PMID: 35881062 PMCID: PMC9397370 DOI: 10.1096/fj.202200410r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Pancreatic islet cell development is regulated by transcription factors (TFs) that mediate embryonic progenitor differentiation toward mature endocrine cells. Prior studies from our lab and others showed that the islet-enriched TF, Islet-1 (Isl1), interacts with the broadly-expressed transcriptional co-regulator, Ldb1, to regulate islet cell maturation and postnhyperatal function (by embryonic day (E)18.5). However, Ldb1 is expressed in the developing pancreas prior to Isl1 expression, notably in multipotent progenitor cells (MPCs) marked by Pdx1 and endocrine progenitors (EPs) expressing Neurogenin-3 (Ngn3). MPCs give rise to the endocrine and exocrine pancreas, while Ngn3+ EPs specify pancreatic islet endocrine cells. We hypothesized that Ldb1 is required for progenitor identity in MPC and EP populations during development to impact islet appearance and function. To test this, we generated a whole-pancreas Ldb1 knockout, termed Ldb1ΔPanc , and observed severe developmental and postnatal pancreas defects including disorganized progenitor pools, a significant reduction of Ngn3-expressing EPs, Pdx1HI β-cells, and early hormone+ cells. Ldb1ΔPanc neonates presented with severe hyperglycemia, hypoinsulinemia, and drastically reduced hormone expression in islets, yet no change in total pancreas mass. This supports the endocrine-specific actions of Ldb1. Considering this, we also developed an endocrine-enriched model of Ldb1 loss, termed Ldb1ΔEndo . We observed similar dysglycemia in this model, as well as a loss of islet identity markers. Through in vitro and in vivo chromatin immunoprecipitation experiments, we found that Ldb1 occupies key Pdx1 and Ngn3 promoter domains. Our findings provide insight into novel regulation of endocrine cell differentiation that may be vital toward improving cell-based diabetes therapies.
Collapse
Affiliation(s)
- Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yanping Liu
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maigen Bethea
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexa Wade
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
44
|
Singh PNP, Madha S, Leiter AB, Shivdasani RA. Cell and chromatin transitions in intestinal stem cell regeneration. Genes Dev 2022; 36:684-698. [PMID: 35738677 PMCID: PMC9296007 DOI: 10.1101/gad.349412.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
The progeny of intestinal stem cells (ISCs) dedifferentiate in response to ISC attrition. The precise cell sources, transitional states, and chromatin remodeling behind this activity remain unclear. In the skin, stem cell recovery after injury preserves an epigenetic memory of the damage response; whether similar memories arise and persist in regenerated ISCs is not known. We addressed these questions by examining gene activity and open chromatin at the resolution of single Neurog3-labeled mouse intestinal crypt cells, hence deconstructing forward and reverse differentiation of the intestinal secretory (Sec) lineage. We show that goblet, Paneth, and enteroendocrine cells arise by multilineage priming in common precursors, followed by selective access at thousands of cell-restricted cis-elements. Selective ablation of the ISC compartment elicits speedy reversal of chromatin and transcriptional features in large fractions of precursor and mature crypt Sec cells without obligate cell cycle re-entry. ISC programs decay and reappear along a cellular continuum lacking discernible discrete interim states. In the absence of gross tissue damage, Sec cells simply reverse their forward trajectories, without invoking developmental or other extrinsic programs, and starting chromatin identities are effectively erased. These findings identify strikingly plastic molecular frameworks in assembly and regeneration of a self-renewing tissue.
Collapse
Affiliation(s)
- Pratik N P Singh
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shariq Madha
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Andrew B Leiter
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
45
|
Brown RE, Jacobse J, Anant SA, Blunt KM, Chen B, Vega PN, Jones CT, Pilat JM, Revetta F, Gorby AH, Stengel KR, Choksi YA, Palin K, Piazuelo MB, Washington MK, Lau KS, Goettel JA, Hiebert SW, Short SP, Williams CS. MTG16 regulates colonic epithelial differentiation, colitis, and tumorigenesis by repressing E protein transcription factors. JCI Insight 2022; 7:e153045. [PMID: 35503250 PMCID: PMC9220854 DOI: 10.1172/jci.insight.153045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Aberrant epithelial differentiation and regeneration contribute to colon pathologies, including inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Myeloid translocation gene 16 (MTG16, also known as CBFA2T3) is a transcriptional corepressor expressed in the colonic epithelium. MTG16 deficiency in mice exacerbates colitis and increases tumor burden in CAC, though the underlying mechanisms remain unclear. Here, we identified MTG16 as a central mediator of epithelial differentiation, promoting goblet and restraining enteroendocrine cell development in homeostasis and enabling regeneration following dextran sulfate sodium-induced (DSS-induced) colitis. Transcriptomic analyses implicated increased Ephrussi box-binding transcription factor (E protein) activity in MTG16-deficient colon crypts. Using a mouse model with a point mutation that attenuates MTG16:E protein interactions (Mtg16P209T), we showed that MTG16 exerts control over colonic epithelial differentiation and regeneration by repressing E protein-mediated transcription. Mimicking murine colitis, MTG16 expression was increased in biopsies from patients with active IBD compared with unaffected controls. Finally, uncoupling MTG16:E protein interactions partially phenocopied the enhanced tumorigenicity of Mtg16-/- colon in the azoxymethane/DSS-induced model of CAC, indicating that MTG16 protects from tumorigenesis through additional mechanisms. Collectively, our results demonstrate that MTG16, via its repression of E protein targets, is a key regulator of cell fate decisions during colon homeostasis, colitis, and cancer.
Collapse
Affiliation(s)
- Rachel E. Brown
- Program in Cancer Biology and
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Justin Jacobse
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Koral M. Blunt
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bob Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paige N. Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
| | - Chase T. Jones
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Frank Revetta
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Aidan H. Gorby
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristy R. Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yash A. Choksi
- Program in Cancer Biology and
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kimmo Palin
- Department of Medical and Clinical Genetics
- Applied Tumor Genomics Research Program, Research Programs Unit, and
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - M. Blanca Piazuelo
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mary Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ken S. Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeremy A. Goettel
- Program in Cancer Biology and
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Scott W. Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarah P. Short
- Program in Cancer Biology and
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christopher S. Williams
- Program in Cancer Biology and
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
46
|
McKimpson WM, Kuo T, Kitamoto T, Higuchi S, Mills JC, Haeusler RA, Accili D. FOXO1 Is Present in Stomach Epithelium and Determines Gastric Cell Distribution. GASTRO HEP ADVANCES 2022; 1:733-745. [PMID: 36117550 PMCID: PMC9481069 DOI: 10.1016/j.gastha.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Stomach cells can be converted to insulin-producing cells by Neurog3, MafA, and Pdxl over-expression. Enteroendocrine cells can be similarly made to produce insulin by the deletion of FOXO1. Characteristics and functional properties of FOXO1-expressing stomach cells are not known. METHODS Using mice bearing a FOXO1-GFP knock-in allele and primary cell cultures, we examined the identity of FOXO1-expressing stomach cells and analyzed their features through loss-of-function studies with red-to-green fluorescent reporters. RESULTS FOXO1 localizes to a subset of Neurog3 and parietal cells. FOXO1 deletion ex vivo or in vivo using Neurog3-cre or Atp4b-cre increased numbers of parietal cells, generated insulin- and C-peptide-immunoreactive cells, and raised Neurog3 messenger RNA. Gene expression and ChIP- seq experiments identified the cell cycle regulator cyclin E1 (CCNE1) as a FOXO1 target. CONCLUSION FOXO1 is expressed in a subset of stomach cells. Its ablation increases parietal cells and yields insulin-immunoreactive cells, consistent with a role in lineage determination.
Collapse
Affiliation(s)
- Wendy M. McKimpson
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Taiyi Kuo
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Takumi Kitamoto
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Sei Higuchi
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Jason C. Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rebecca A. Haeusler
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Domenico Accili
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| |
Collapse
|
47
|
Chen B, Scurrah CR, McKinley ET, Simmons AJ, Ramirez-Solano MA, Zhu X, Markham NO, Heiser CN, Vega PN, Rolong A, Kim H, Sheng Q, Drewes JL, Zhou Y, Southard-Smith AN, Xu Y, Ro J, Jones AL, Revetta F, Berry LD, Niitsu H, Islam M, Pelka K, Hofree M, Chen JH, Sarkizova S, Ng K, Giannakis M, Boland GM, Aguirre AJ, Anderson AC, Rozenblatt-Rosen O, Regev A, Hacohen N, Kawasaki K, Sato T, Goettel JA, Grady WM, Zheng W, Washington MK, Cai Q, Sears CL, Goldenring JR, Franklin JL, Su T, Huh WJ, Vandekar S, Roland JT, Liu Q, Coffey RJ, Shrubsole MJ, Lau KS. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell 2021; 184:6262-6280.e26. [PMID: 34910928 PMCID: PMC8941949 DOI: 10.1016/j.cell.2021.11.031] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when analyzed at high resolution. We present a single-cell transcriptomic and imaging atlas of the two most common human colorectal polyps, conventional adenomas and serrated polyps, and their resulting CRC counterparts. Integrative analysis of 128 datasets from 62 participants reveals adenomas arise from WNT-driven expansion of stem cells, while serrated polyps derive from differentiated cells through gastric metaplasia. Metaplasia-associated damage is coupled to a cytotoxic immune microenvironment preceding hypermutation, driven partly by antigen-presentation differences associated with tumor cell-differentiation status. Microsatellite unstable CRCs contain distinct non-metaplastic regions where tumor cells acquire stem cell properties and cytotoxic immune cells are depleted. Our multi-omic atlas provides insights into malignant progression of colorectal polyps and their microenvironment, serving as a framework for precision surveillance and prevention of CRC.
Collapse
Affiliation(s)
- Bob Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cherie' R Scurrah
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Marisol A Ramirez-Solano
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiangzhu Zhu
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas O Markham
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cody N Heiser
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andrea Rolong
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Hyeyon Kim
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julia L Drewes
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuan Zhou
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Austin N Southard-Smith
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James Ro
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela L Jones
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lynne D Berry
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hiroaki Niitsu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mirazul Islam
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Karin Pelka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan H Chen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Siranush Sarkizova
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marios Giannakis
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Genevieve M Boland
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew J Aguirre
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | | | - Aviv Regev
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Kenta Kawasaki
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jeremy A Goettel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and Gastroenterology Division, University of Washington School of Medicine, Seattle, WA, USA
| | - Wei Zheng
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cynthia L Sears
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R Goldenring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey L Franklin
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy Su
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Won Jae Huh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon Vandekar
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Martha J Shrubsole
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Ken S Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
48
|
Liu R, Kasowitz SD, Homolka D, Leu NA, Shaked JT, Ruthel G, Jain D, Lin H, Keeney S, Luo M, Pillai RS, Wang PJ. YTHDC2 is essential for pachytene progression and prevents aberrant microtubule-driven telomere clustering in male meiosis. Cell Rep 2021; 37:110110. [PMID: 34910909 PMCID: PMC8720241 DOI: 10.1016/j.celrep.2021.110110] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023] Open
Abstract
Mechanisms driving the prolonged meiotic prophase I in mammals are poorly understood. RNA helicase YTHDC2 is critical for mitosis to meiosis transition. However, YTHDC2 is highly expressed in pachytene cells. Here we identify an essential role for YTHDC2 in meiotic progression. Specifically, YTHDC2 deficiency causes microtubule-dependent telomere clustering and apoptosis at the pachytene stage of prophase I. Depletion of YTHDC2 results in a massively dysregulated transcriptome in pachytene cells, with a tendency toward upregulation of genes normally expressed in mitotic germ cells and downregulation of meiotic transcripts. Dysregulation does not correlate with m6A status, and YTHDC2-bound mRNAs are enriched in genes upregulated in mutant germ cells, revealing that YTHDC2 primarily targets mRNAs for degradation. Furthermore, altered transcripts in mutant pachytene cells encode microtubule network proteins. Our results demonstrate that YTHDC2 regulates the pachytene stage by perpetuating a meiotic transcriptome and preventing microtubule network changes that could lead to telomere clustering.
Collapse
Affiliation(s)
- Rong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China; Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Seth D Kasowitz
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - David Homolka
- Department of Molecular Biology, Science III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Jordan T Shaked
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Devanshi Jain
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA; Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Huijuan Lin
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China; Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Mengcheng Luo
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Ramesh S Pillai
- Department of Molecular Biology, Science III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Campbell SA, Bégin J, McDonald CL, Vanderkruk B, Stephan TL, Hoffman BG. H3K4 Trimethylation Is Required for Postnatal Pancreatic Endocrine Cell Functional Maturation. Diabetes 2021; 70:2568-2579. [PMID: 34376477 DOI: 10.2337/db20-1214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/03/2021] [Indexed: 11/13/2022]
Abstract
During pancreas development, endocrine progenitors differentiate into the islet cell subtypes, which undergo further functional maturation in postnatal islet development. In islet β-cells, genes involved in glucose-stimulated insulin secretion are activated, and glucose exposure increases the insulin response as β-cells mature. We investigated the role of H3K4 trimethylation in endocrine cell differentiation and functional maturation by disrupting TrxG complex histone methyltransferase activity in mouse endocrine progenitors. In the embryo, genetic inactivation of TrxG component Dpy30 in NEUROG3+ cells did not affect the number of endocrine progenitors or endocrine cell differentiation. H3K4 trimethylation was progressively lost in postnatal islets, and the mice displayed elevated nonfasting and fasting glycemia as well as impaired glucose tolerance by postnatal day 24. Although postnatal endocrine cell proportions were equivalent to controls, islet RNA sequencing revealed a downregulation of genes involved in glucose-stimulated insulin secretion and an upregulation of immature β-cell genes. Comparison of histone modification enrichment profiles in NEUROG3+ endocrine progenitors and mature islets suggested that genes downregulated by loss of H3K4 trimethylation more frequently acquire active histone modifications during maturation. Taken together, these findings suggest that H3K4 trimethylation is required for the activation of genes involved in the functional maturation of pancreatic islet endocrine cells.
Collapse
Affiliation(s)
- Stephanie A Campbell
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Jocelyn Bégin
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Cassandra L McDonald
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ben Vanderkruk
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Tabea L Stephan
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brad G Hoffman
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
Coupled protein synthesis and ribosome-guided piRNA processing on mRNAs. Nat Commun 2021; 12:5970. [PMID: 34645830 PMCID: PMC8514520 DOI: 10.1038/s41467-021-26233-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting small RNAs (piRNAs) protect the germline genome and are essential for fertility. piRNAs originate from transposable element (TE) RNAs, long non-coding RNAs, or 3´ untranslated regions (3´UTRs) of protein-coding messenger genes, with the last being the least characterized of the three piRNA classes. Here, we demonstrate that the precursors of 3´UTR piRNAs are full-length mRNAs and that post-termination 80S ribosomes guide piRNA production on 3´UTRs in mice and chickens. At the pachytene stage, when other co-translational RNA surveillance pathways are sequestered, piRNA biogenesis degrades mRNAs right after pioneer rounds of translation and fine-tunes protein production from mRNAs. Although 3´UTR piRNA precursor mRNAs code for distinct proteins in mice and chickens, they all harbor embedded TEs and produce piRNAs that cleave TEs. Altogether, we discover a function of the piRNA pathway in fine-tuning protein production and reveal a conserved piRNA biogenesis mechanism that recognizes translating RNAs in amniotes.
Collapse
|