1
|
Sertori R, Truong B, Singh MK, Shinton S, Price R, Sharo A, Shultes P, Sunderam U, Rana S, Srinivasan R, Datta S, Font-Burgada J, Brenner SE, Puck JM, Wiest DL. Disruption of the moonlighting function of CTF18 in a patient with T-lymphopenia. Front Immunol 2025; 16:1539848. [PMID: 40028343 PMCID: PMC11868726 DOI: 10.3389/fimmu.2025.1539848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Newborn screening for immunodeficiency has led to the identification of numerous cases for which the causal etiology is unknown. Methods Here we report the diagnosis of T lymphopenia of unknown etiology in a male proband. Whole exome sequencing (WES) was employed to nominate candidate variants, which were then analyzed functionally in zebrafish and in mice bearing orthologous mutations. Results WES revealed missense mutations in CHTF18 that were inherited in an autosomal recessive manner. CTF18, encoded by the CHTF18 gene, is a component of a secondary clamp loader, which is primarily thought to function by promoting DNA replication. We determined that the patient's variants in CHTF18 (CTF18 R751W and E851Q) were damaging to function and severely attenuated the capacity of CTF18 to support hematopoiesis and lymphoid development, strongly suggesting that they were responsible for his T lymphopenia; however, the function of CTF18 appeared to be unrelated to its role as a clamp loader. DNA-damage, expected when replication is impaired, was not evident by expression profiling in murine Chtf18 mutant hematopoietic stem and progenitor cells (HSPC), nor was development of Ctf18-deficient progenitors rescued by p53 loss. Instead, we observed an expression signature suggesting disruption of HSPC positioning and migration. Indeed, the positioning of HSPC in ctf18 morphant zebrafish embryos was perturbed, suggesting that HSPC function was impaired through disrupted positioning in hematopoietic organs. Discussion Accordingly, we propose that T lymphopenia in our patient resulted from disturbed cell-cell contacts and migration of HSPC, caused by a non-canonical function of CHTF18 in regulating gene expression.
Collapse
Affiliation(s)
- Robert Sertori
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Billy Truong
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Manoj K. Singh
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Susan Shinton
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Rachael Price
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Andrew Sharo
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Paulameena Shultes
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Uma Sunderam
- Innovation Labs, Tata Consultancy Services, Hyderabad, India
| | - Sadhna Rana
- Innovation Labs, Tata Consultancy Services, Hyderabad, India
| | | | - Sutapa Datta
- Innovation Labs, Tata Consultancy Services, Hyderabad, India
| | - Joan Font-Burgada
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Steven E. Brenner
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Jennifer M. Puck
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco (UCSF) and UCSF Benioff Children’s Hospital, San Francisco, CA, United States
| | - David L. Wiest
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
2
|
Shimizu R, Sakamoto J, Adhitama N, Fujikawa M, Religia P, Kamei Y, Watanabe H, Kato Y. Spatiotemporal control of transgene expression using an infrared laser in the crustacean Daphnia magna. Sci Rep 2024; 14:25696. [PMID: 39465323 PMCID: PMC11514169 DOI: 10.1038/s41598-024-77458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
The crustacean Daphnia magna is an emerging model for ecological and toxicological genomics. However, the lack of methods for spatial and temporal control of gene expression has impaired the elucidation of molecular mechanisms underlying responses to environments in vivo. Here we report local activation of the hsp70 promoter-driven gene cassette in D. magna by the infrared laser-evoked gene operator (IR-LEGO), a method for heating the target cells with infrared irradiation. We identified the heat-inducible promoter upstream of the D. magna hsp70-A gene. Using this promoter, we generated a transgenic Daphnia harboring the heat-shock responsive GFP reporter gene and confirmed that the GFP gene responds to heat treatment not only in juveniles and adults but also in embryos. We collected embryos from the reporter line and irradiated four different regions of interest in the embryos: a proximal region of the third thoracic segment, a part of the midline, a second maxilla, and a distal region of the endopodite of the second antenna, all of which increased GFP fluorescence with an infrared laser. Our results suggest that the IR-LEGO method is useful for spatial and temporal control of gene expression and would advance the functional genomics in D. magna.
Collapse
Grants
- 22NIBB505, 21-405, 20-509, 19-511 NIBB Collaborative Research Project for Integrative Imaging
- 23K21753, 21H03602 Japan Society for the Promotion of Science
- 24H01367 , 23K23964, 23K18048, 22H05598, 22H02701, 20H04923, 19H05423 Japan Society for the Promotion of Science
Collapse
Affiliation(s)
- Rina Shimizu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Joe Sakamoto
- Optics and Imaging Facility, National Institute for Basic Biology, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Nikko Adhitama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Mana Fujikawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Pijar Religia
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yasuhiro Kamei
- Optics and Imaging Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
3
|
Doll L, Welte K, Skokowa J, Bajoghli B. A JAGN1-associated severe congenital neutropenia zebrafish model revealed an altered G-CSFR signaling and UPR activation. Blood Adv 2024; 8:4050-4065. [PMID: 38739706 PMCID: PMC11342096 DOI: 10.1182/bloodadvances.2023011656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
ABSTRACT A variety of autosomal recessive mutations in the JAGN1 gene cause severe congenital neutropenia (CN). However, the underlying pathomechanism remains poorly understood, mainly because of the limited availability of primary hematopoietic stem cells from JAGN1-CN patients and the absence of animal models. In this study, we aimed to address these limitations by establishing a zebrafish model of JAGN1-CN. We found 2 paralogs of the human JAGN1 gene, namely jagn1a and jagn1b, which play distinct roles during zebrafish hematopoiesis. Using various approaches such as morpholino-based knockdown, CRISPR/Cas9-based gene editing, and misexpression of a jagn1b harboring a specific human mutation, we successfully developed neutropenia while leaving other hematopoietic lineages unaffected. Further analysis of our model revealed significant upregulation of apoptosis and genes involved in the unfolded protein response (UPR). However, neither UPR nor apoptosis is the primary mechanism that leads to neutropenia in zebrafish. Instead, Jagn1b has a critical role in granulocyte colony-stimulating factor receptor signaling and steady-state granulopoiesis, shedding light on the pathogenesis of neutropenia associated with JAGN1 mutations. The establishment of a zebrafish model for JAGN1-CN represents a significant advancement in understanding the specific pathologic pathways underlying the disease. This model provides a valuable in vivo tool for further investigation and exploration of potential therapeutic strategies.
Collapse
Affiliation(s)
- Larissa Doll
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Karl Welte
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Children’s Hospital, University Hospital Tuebingen, Tuebingen, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Gene and RNA Therapy Center, Tuebingen University, Tuebingen, Germany
| | - Baubak Bajoghli
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Austrian BioImaging/CMI, Vienna, Austria
| |
Collapse
|
4
|
Tomoi T, Tameshige T, Betsuyaku E, Hamada S, Sakamoto J, Uchida N, Torii K, Shimizu KK, Tamada Y, Urawa H, Okada K, Fukuda H, Tatematsu K, Kamei Y, Betsuyaku S. Targeted single-cell gene induction by optimizing the dually regulated CRE/ loxP system by a newly defined heat-shock promoter and the steroid hormone in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1171531. [PMID: 37351202 PMCID: PMC10283073 DOI: 10.3389/fpls.2023.1171531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 06/24/2023]
Abstract
Multicellular organisms rely on intercellular communication systems to organize their cellular functions. In studies focusing on intercellular communication, the key experimental techniques include the generation of chimeric tissue using transgenic DNA recombination systems represented by the CRE/loxP system. If an experimental system enables the induction of chimeras at highly targeted cell(s), it will facilitate the reproducibility and precision of experiments. However, multiple technical limitations have made this challenging. The stochastic nature of DNA recombination events, especially, hampers reproducible generation of intended chimeric patterns. Infrared laser-evoked gene operator (IR-LEGO), a microscopic system that irradiates targeted cells using an IR laser, can induce heat shock-mediated expression of transgenes, for example, CRE recombinase gene, in the cells. In this study, we developed a method that induces CRE/loxP recombination in the target cell(s) of plant roots and leaves in a highly specific manner. We combined IR-LEGO, an improved heat-shock-specific promoter, and dexamethasone-dependent regulation of CRE. The optimal IR-laser power and irradiation duration were estimated via exhaustive irradiation trials and subsequent statistical modeling. Under optimized conditions, CRE/loxP recombination was efficiently induced without cellular damage. We also found that the induction efficiency varied among tissue types and cellular sizes. The developed method offers an experimental system to generate a precisely designed chimeric tissue, and thus, will be useful for analyzing intercellular communication at high resolution in roots and leaves.
Collapse
Affiliation(s)
- Takumi Tomoi
- Center for Innovation Support, Institute for Social Innovation and Cooperation, Utsunomiya University, Utsunomiya, Japan
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research (KIBR), Yokohama City University, Yokohama, Japan
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Eriko Betsuyaku
- Department of Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Saki Hamada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Joe Sakamoto
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Japan
| | - Naoyuki Uchida
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Keiko U. Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Molecular Biosciences and Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, United States
| | - Kentaro K. Shimizu
- Kihara Institute for Biological Research (KIBR), Yokohama City University, Yokohama, Japan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Japan
- Robotics, Engineering and Agriculture-Technology Laboratory (REAL), Utsunomiya University, Utsunomiya, Japan
| | - Hiroko Urawa
- Faculty of Education, Gifu Shotoku Gakuen University, Gifu, Japan
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Japan
| | - Kiyotaka Okada
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Japan
- Ryukoku Extention Center Shiga, Ryukoku University, Otsu, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kyoto, Japan
| | - Kiyoshi Tatematsu
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Yasuhiro Kamei
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan
- Robotics, Engineering and Agriculture-Technology Laboratory (REAL), Utsunomiya University, Utsunomiya, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- Optics and Imaging Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan
| | - Shigeyuki Betsuyaku
- Department of Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
5
|
Sertori R, Zhang Y, Wiest DL. Zebrafish: A Tractable Model for Analysis of T Cell Development. Methods Mol Biol 2023; 2580:355-377. [PMID: 36374469 DOI: 10.1007/978-1-0716-2740-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While the zebrafish has for some time been regarded as a powerful model organism with which to study early events in hematopoiesis, recent evidence suggests that it also ideal for unraveling the molecular requirements for T cell development in the thymus. Like mammals, zebrafish possess an adaptive immune system, comprising B lymphocytes as well as both the γδ and αβ lineages of T cells, which develop in the thymus. Moreover, the molecular processes underlying T cell development in zebrafish appear to be remarkably conserved. Thus, findings in the zebrafish model will be of high relevance to the equivalent processes in mammals. Finally, molecular processes can be interrogated in zebrafish far more rapidly than is possible in mammals because the zebrafish possesses many unique advantages. Here, we describe these unique attributes and the methods by which they can be exploited to investigate the role of novel genes in T cell development.
Collapse
Affiliation(s)
- Robert Sertori
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Sertori R, Lin JX, Martinez E, Rana S, Sharo A, Kazemian M, Sunderam U, Andrake M, Shinton S, Truong B, Dunbrack RM, Liu C, Srinivasan R, Brenner SE, Seroogy CM, Puck JM, Leonard WJ, Wiest DL. Investigation of the causal etiology in a patient with T-B+NK+ immunodeficiency. Front Immunol 2022; 13:928252. [PMID: 35967429 PMCID: PMC9372720 DOI: 10.3389/fimmu.2022.928252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Newborn screening for severe combined immunodeficiency (SCID) has not only accelerated diagnosis and improved treatment for affected infants, but also led to identification of novel genes required for human T cell development. A male proband had SCID newborn screening showing very low T cell receptor excision circles (TRECs), a biomarker for thymic output of nascent T cells. He had persistent profound T lymphopenia, but normal numbers of B and natural killer (NK) cells. Despite an allogeneic hematopoietic stem cell transplant from his brother, he failed to develop normal T cells. Targeted resequencing excluded known SCID genes; however, whole exome sequencing (WES) of the proband and parents revealed a maternally inherited X-linked missense mutation in MED14 (MED14V763A), a component of the mediator complex. Morpholino (MO)-mediated loss of MED14 function attenuated T cell development in zebrafish. Moreover, this arrest was rescued by ectopic expression of cDNA encoding the wild type human MED14 ortholog, but not by MED14V763A , suggesting that the variant impaired MED14 function. Modeling of the equivalent mutation in mouse (Med14V769A) did not disrupt T cell development at baseline. However, repopulation of peripheral T cells upon competitive bone marrow transplantation was compromised, consistent with the incomplete T cell reconstitution experienced by the proband upon transplantation with bone marrow from his healthy male sibling, who was found to have the same MED14V763A variant. Suspecting that the variable phenotypic expression between the siblings was influenced by further mutation(s), we sought to identify genetic variants present only in the affected proband. Indeed, WES revealed a mutation in the L1 cell adhesion molecule (L1CAMQ498H); however, introducing that mutation in vivo in mice did not disrupt T cell development. Consequently, immunodeficiency in the proband may depend upon additional, unidentified gene variants.
Collapse
Affiliation(s)
- Robert Sertori
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Esteban Martinez
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Sadhna Rana
- Innovation Labs, Tata Consultancy Services, Hyderabad, India
| | - Andrew Sharo
- Center for Computational Biology, University of California, Berkeley, CA, United States
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, United States
| | - Uma Sunderam
- Innovation Labs, Tata Consultancy Services, Hyderabad, India
| | - Mark Andrake
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Susan Shinton
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Billy Truong
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Roland M. Dunbrack
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | | | - Steven E. Brenner
- Center for Computational Biology, University of California, Berkeley, CA, United States
| | - Christine M. Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jennifer M. Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children’s Hospital, San Francisco, CA, United States
| | - Warren J. Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - David L. Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
7
|
Shkarina K, Hasel de Carvalho E, Santos JC, Ramos S, Leptin M, Broz P. Optogenetic activators of apoptosis, necroptosis, and pyroptosis. J Cell Biol 2022; 221:e202109038. [PMID: 35420640 PMCID: PMC9014795 DOI: 10.1083/jcb.202109038] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/20/2022] Open
Abstract
Targeted and specific induction of cell death in an individual or groups of cells hold the potential for new insights into the response of tissues or organisms to different forms of death. Here, we report the development of optogenetically controlled cell death effectors (optoCDEs), a novel class of optogenetic tools that enables light-mediated induction of three types of programmed cell death (PCD)-apoptosis, pyroptosis, and necroptosis-using Arabidopsis thaliana photosensitive protein Cryptochrome-2. OptoCDEs enable a rapid and highly specific induction of PCD in human, mouse, and zebrafish cells and are suitable for a wide range of applications, such as sub-lethal cell death induction or precise elimination of single cells or cell populations in vitro and in vivo. As the proof-of-concept, we utilize optoCDEs to assess the differences in neighboring cell responses to apoptotic or necrotic PCD, revealing a new role for shingosine-1-phosphate signaling in regulating the efferocytosis of the apoptotic cell by epithelia.
Collapse
Affiliation(s)
- Kateryna Shkarina
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - José Carlos Santos
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Saray Ramos
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Maria Leptin
- Director’s Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
8
|
IQ-Switch is a QF-based innocuous, silencing-free, and inducible gene switch system in zebrafish. Commun Biol 2021; 4:1405. [PMID: 34916605 PMCID: PMC8677817 DOI: 10.1038/s42003-021-02923-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022] Open
Abstract
Though various transgene expression switches have been adopted in a wide variety of organisms for basic and biomedical research, intrinsic obstacles of those existing systems, including toxicity and silencing, have been limiting their use in vertebrate transgenesis. Here we demonstrate a novel QF-based binary transgene switch (IQ-Switch) that is relatively free of driver toxicity and transgene silencing, and exhibits potent and highly tunable transgene activation by the chemical inducer tebufenozide, a non-toxic lipophilic molecule to developing zebrafish with negligible background. The interchangeable IQ-Switch makes it possible to elicit ubiquitous and tissue specific transgene expression in a spatiotemporal manner. We generated a RASopathy disease model using IQ-Switch and demonstrated that the RASopathy symptoms were ameliorated by the specific BRAF(V600E) inhibitor vemurafenib, validating the therapeutic use of the gene switch. The orthogonal IQ-Switch provides a state-of-the-art platform for flexible regulation of transgene expression in zebrafish, potentially applicable in cell-based systems and other model organisms.
Collapse
|
9
|
Zhu C, Li Z, Tang Y, Zhang L, Wen J, Wang Z, Su Y, Chen Y, Zhang H. TaWRKY10 plays a key role in the upstream of circadian gene TaLHY in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110973. [PMID: 34315591 DOI: 10.1016/j.plantsci.2021.110973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
TaLHY is an MYB transcription factor (TF) that is upregulated by salicylic acid induction and shows circadian rhythms. However, the study of the upstream regulatory factors is still unclear. In this study, we cloned the promoter sequence of the TaLHY homologous genes, verified the activity of the promoters, and identified important regions that affect promoter activity. Furthermore, we explored a possible upstream regulator of TaLHY, named TaWRKY10, which played a key role in the expression of TaLHY. We found that the three promoters pTaLHYa, pTaLHYb, and pTaLHYd had transcriptional activity in wheat protoplasts. All three promoters have W-Box, which can bind to WRKY TFs. Using virus-induced gene silencing (VIGS), after silencing TaWRKY10, the resistance of ChuanNong 19 (CN19) to stripe rust pathogen strain CYR32 was lost, and the expression level of the TaLHY homologous gene decreased. At the same time, in wheat protoplasts, the transcriptional activity of TaLHY homologous promoters improved after TaWRKY10 overexpression. This indicates that TaWRKY10 is a key gene for wheat immune response to stripe rust, and this gene may bind to TaLHYa, TaLHYb, and TaLHYd promoters to regulate the expression of TaLHY.
Collapse
Affiliation(s)
- Chaoyang Zhu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Zhongyuan Li
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yizhen Tang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Liqiang Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Jiahe Wen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Zhiming Wang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yongying Su
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yang'er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Huaiyu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, PR China.
| |
Collapse
|
10
|
Aghaallaei N, Dick AM, Tsingos E, Inoue D, Hasel E, Thumberger T, Toyoda A, Leptin M, Wittbrodt J, Bajoghli B. αβ/γδ T cell lineage outcome is regulated by intrathymic cell localization and environmental signals. SCIENCE ADVANCES 2021; 7:7/29/eabg3613. [PMID: 34261656 PMCID: PMC8279519 DOI: 10.1126/sciadv.abg3613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/28/2021] [Indexed: 05/07/2023]
Abstract
αβ and γδ T cells are two distinct sublineages that develop in the vertebrate thymus. Thus far, their differentiation from a common progenitor is mostly understood to be regulated by intrinsic mechanisms. However, the proportion of αβ/γδ T cells varies in different vertebrate taxa. How this process is regulated in species that tend to produce a high frequency of γδ T cells is unstudied. Using an in vivo teleost model, the medaka, we report that progenitors first enter a thymic niche where their development into γδ T cells is favored. Translocation from this niche, mediated by chemokine receptor Ccr9b, is a prerequisite for their differentiation into αβ T cells. On the other hand, the thymic niche also generates opposing gradients of the cytokine interleukin-7 and chemokine Ccl25a, and, together, they influence the lineage outcome. We propose a previously unknown mechanism that determines the proportion of αβ/γδ lineages within species.
Collapse
Affiliation(s)
- Narges Aghaallaei
- Department of Hematology, Oncology, Immunology, and Rheumatology, University Hospital of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Advaita M Dick
- Department of Hematology, Oncology, Immunology, and Rheumatology, University Hospital of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Erika Tsingos
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Daigo Inoue
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Eva Hasel
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Maria Leptin
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- EMBO, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Baubak Bajoghli
- Department of Hematology, Oncology, Immunology, and Rheumatology, University Hospital of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany.
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
11
|
Doll L, Aghaallaei N, Dick AM, Welte K, Skokowa J, Bajoghli B. A zebrafish model for HAX1-associated congenital neutropenia. Haematologica 2021; 106:1311-1320. [PMID: 32327498 PMCID: PMC8094079 DOI: 10.3324/haematol.2019.240200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
Severe congenital neutropenia is a rare heterogeneous group of diseases, characterized by an arrest of granulocyte maturation. Autosomal recessive mutations in the HAX1 gene are frequently detected in affected individuals. However, the precise role of HAX1 during neutrophil differentiation is poorly understood. To date, no reliable animal model has been established to study HAX1-associated congenital neutropenia. Here we show that knockdown of zebrafish hax1 impairs neutrophil development without affecting other myeloid cells and erythrocytes. Furthermore, we found that interference with Hax1 function decreases the expression level of key target genes of the granulocyte colony-stimulating factor signaling pathway. The reduced neutrophil numbers in the morphants could be reversed by granulocyte colony-stimulating factor, which is also the main therapeutic intervention for patients who have congenital neutropenia. Our results demonstrate that the zebrafish is a suitable model for HAX1-associated neutropenia. We anticipate that this model will serve as an in vivo platform to identify new avenues for developing tailored therapeutic strategies for patients with congenital neutropenia, particularly for those individuals who do not respond to granulocyte colony-stimulating factor treatment.
Collapse
Affiliation(s)
- Larissa Doll
- Dept. of Oncology, Hematology, Immunology and Rheumatology, University Hospital Tübingen, Germany
| | - Narges Aghaallaei
- Dept. of Oncology, Hematology, Immunology and Rheumatology, University Hospital Tübingen, Germany
| | - Advaita M Dick
- Dept. of Oncology, Hematology, Immunology and Rheumatology, University Hospital Tübingen, Germany
| | - Karl Welte
- University Children Hospital Tübingen, Tübingen, Germany
| | - Julia Skokowa
- Dept. of Oncology, Hematology, Immunology and Rheumatology, University Hospital Tübingen, Germany
| | - Baubak Bajoghli
- Dept. of Oncology, Hematology, Immunology and Rheumatology, University Hospital Tübingen, Germany
| |
Collapse
|
12
|
The Kunitz-type serine protease inhibitor Spint2 is required for cellular cohesion, coordinated cell migration and cell survival during zebrafish hatching gland development. Dev Biol 2021; 476:148-170. [PMID: 33826923 DOI: 10.1016/j.ydbio.2021.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/19/2021] [Accepted: 03/19/2021] [Indexed: 12/23/2022]
Abstract
We have previously shown that the Kunitz-type serine protease inhibitor Spint1a, also named Hai1a, is required in the zebrafish embryonic epidermis to restrict the activity of the type II transmembrane serine protease (TTSP) Matriptase1a/St14a, thereby ensuring epidermal homeostasis. A closely related Kunitz-type inhibitor is Spint2/Hai2, which in mammals plays multiple developmental roles that are either redundant or non-redundant with those of Spint1. However, the molecular bases for these non-redundancies are not fully understood. Here, we study spint2 during zebrafish development. It is co-expressed with spint1a in multiple embryonic epithelia, including the outer/peridermal layer of the epidermis. However, unlike spint1a, spint2 expression is absent from the basal epidermal layer but present in hatching gland cells. Hatching gland cells derive from the mesendodermal prechordal plate, from where they undergo a thus far undescribed transit into, and coordinated sheet migration within, the interspace between the outer and basal layer of the epidermis to reach their final destination on the yolk sac. Hatching gland cells usually survive their degranulation that drives embryo hatching but die several days later. In spint2 mutants, cohesion among hatching gland cells and their collective intra-epidermal migration are disturbed, leading to a discontinuous organization of the gland. In addition, cells undergo precocious cell death before degranulation, so that embryos fail to hatch. Chimera analyses show that Spint2 is required in hatching gland cells, but not in the overlying periderm, their potential migration and adhesion substrate. Spint2 acts independently of all tested Matriptases, Prostasins and other described Spint1 and Spint2 mediators. However, it displays a tight genetic interaction with and acts at least partly via the cell-cell adhesion protein E-cadherin, promoting both hatching gland cell cohesiveness and survival, in line with formerly reported effects of E-cadherin during morphogenesis and cell death suppression. In contrast, no such genetic interaction was observed between Spint2 and the cell-cell adhesion molecule EpCAM, which instead interacts with Spint1a. Our data shed new light onto the mechanisms of hatching gland morphogenesis and hatching gland cell survival. In addition, they reveal developmental roles of Spint2 that are strikingly different from those of Spint1, most likely due to differences in the expression patterns and relevant target proteins.
Collapse
|
13
|
Abstract
Metastasis, the dispersal of cancer cells from a primary tumor to secondary sites within the body, is the leading cause of cancer-related death. Animal models have been an indispensable tool to investigate the complex interactions between the cancer cells and the tumor microenvironment during the metastatic cascade. The zebrafish (Danio rerio) has emerged as a powerful vertebrate model for studying metastatic events in vivo. The zebrafish has many attributes including ex-utero development, which facilitates embryonic manipulation, as well as optically transparent tissues, which enables in vivo imaging of fluorescently labeled cells in real time. Here, we summarize the techniques which have been used to study cancer biology and metastasis in the zebrafish model organism, including genetic manipulation and transgenesis, cell transplantation, live imaging, and high-throughput compound screening. Finally, we discuss studies using the zebrafish, which have complemented and benefited metastasis research.
Collapse
Affiliation(s)
- Katy R Astell
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Dirk Sieger
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
14
|
Garcia-Marques J, Espinosa-Medina I, Ku KY, Yang CP, Koyama M, Yu HH, Lee T. A programmable sequence of reporters for lineage analysis. Nat Neurosci 2020; 23:1618-1628. [PMID: 32719561 DOI: 10.1038/s41593-020-0676-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Abstract
We present CLADES (cell lineage access driven by an edition sequence), a technology for cell lineage studies based on CRISPR-Cas9 techniques. CLADES relies on a system of genetic switches to activate and inactivate reporter genes in a predetermined order. Targeting CLADES to progenitor cells allows the progeny to inherit a sequential cascade of reporters, thereby coupling birth order to reporter expression. This system, which can also be temporally induced by heat shock, enables the temporal resolution of lineage development and can therefore be used to deconstruct an extended cell lineage by tracking the reporters expressed in the progeny. When targeted to the germ line, the same cascade progresses across animal generations, predominantly marking each generation with the corresponding combination of reporters. CLADES therefore offers an innovative strategy for making programmable cascades of genes that can be used for genetic manipulation or to record serial biological events.
Collapse
Affiliation(s)
| | | | - Kai-Yuan Ku
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Po Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Hung-Hsiang Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tzumin Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
15
|
Zebrafish and Medaka: Two Teleost Models of T-Cell and Thymic Development. Int J Mol Sci 2019; 20:ijms20174179. [PMID: 31454991 PMCID: PMC6747487 DOI: 10.3390/ijms20174179] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 01/26/2023] Open
Abstract
Over the past two decades, studies have demonstrated that several features of T-cell and thymic development are conserved from teleosts to mammals. In particular, works using zebrafish (Danio rerio) and medaka (Oryzias latipes) have shed light on the cellular and molecular mechanisms underlying these biological processes. In particular, the ease of noninvasive in vivo imaging of these species enables direct visualization of all events associated with these processes, which are, in mice, technically very demanding. In this review, we focus on defining the similarities and differences between zebrafish and medaka in T-cell development and thymus organogenesis; and highlight their advantages as two complementary model systems for T-cell immunobiology and modeling of human diseases.
Collapse
|
16
|
Namikawa K, Dorigo A, Zagrebelsky M, Russo G, Kirmann T, Fahr W, Dübel S, Korte M, Köster RW. Modeling Neurodegenerative Spinocerebellar Ataxia Type 13 in Zebrafish Using a Purkinje Neuron Specific Tunable Coexpression System. J Neurosci 2019; 39:3948-3969. [PMID: 30862666 PMCID: PMC6520513 DOI: 10.1523/jneurosci.1862-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Purkinje cells (PCs) are primarily affected in neurodegenerative spinocerebellar ataxias (SCAs). For generating animal models for SCAs, genetic regulatory elements specifically targeting PCs are required, thereby linking pathological molecular effects with impaired function and organismic behavior. Because cerebellar anatomy and function are evolutionary conserved, zebrafish represent an excellent model to study SCAs in vivo We have isolated a 258 bp cross-species PC-specific enhancer element that can be used in a bidirectional manner for bioimaging of transgene-expressing PCs in zebrafish (both sexes) with variable copy numbers for tuning expression strength. Emerging ectopic expression at high copy numbers can be further eliminated by repurposing microRNA-mediated posttranslational mRNA regulation.Subsequently, we generated a transgenic SCA type 13 (SCA13) model, using a zebrafish-variant mimicking a human pathological SCA13R420H mutation, resulting in cell-autonomous progressive PC degeneration linked to cerebellum-driven eye-movement deficits as observed in SCA patients. This underscores that investigating PC-specific cerebellar neuropathologies in zebrafish allows for interconnecting bioimaging of disease mechanisms with behavioral analysis suitable for therapeutic compound testing.SIGNIFICANCE STATEMENT SCA13 patients carrying a KCNC3R420H allele have been shown to display mid-onset progressive cerebellar atrophy, but genetic modeling of SCA13 by expressing this pathogenic mutant in different animal models has not resulted in neuronal degeneration so far; likely because the transgene was expressed in heterologous cell types. We developed a genetic system for tunable PC-specific coexpression of several transgenes to manipulate and simultaneously monitor cerebellar PCs. We modeled a SCA13 zebrafish accessible for bioimaging to investigate disease progression, revealing robust PC degeneration, resulting in impaired eye movement. Our transgenic zebrafish mimicking both neuropathological and behavioral changes manifested in SCA-affected patients will be suitable for investigating causes of cerebellar diseases in vivo from the molecular to the behavioral level.
Collapse
Affiliation(s)
| | | | - Marta Zagrebelsky
- Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig 38106, Germany
| | - Giulio Russo
- Cellular and Molecular Neurobiology
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | | | - Wieland Fahr
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | - Stefan Dübel
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | - Martin Korte
- Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig 38106, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, Braunschweig 38106, Germany
| | | |
Collapse
|
17
|
Doenz G, Dorn S, Aghaallaei N, Bajoghli B, Riegel E, Aigner M, Bock H, Werner B, Lindhorst T, Czerny T. The function of tcf3 in medaka embryos: efficient knockdown with pePNAs. BMC Biotechnol 2018; 18:1. [PMID: 29316906 PMCID: PMC5759164 DOI: 10.1186/s12896-017-0411-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022] Open
Abstract
Background The application of antisense molecules, such as morpholino oligonucleotides, is an efficient method of gene inactivation in vivo. We recently introduced phosphonic ester modified peptide nucleic acids (PNA) for in vivo loss-of-function experiments in medaka embryos. Here we tested novel modifications of the PNA backbone to knockdown the medaka tcf3 gene. Results A single tcf3 gene exists in the medaka genome and its inactivation strongly affected eye development of the embryos, leading to size reduction and anophthalmia in severe cases. The function of Tcf3 strongly depends on co-repressor interactions. We found interactions with Groucho/Tle proteins to be most important for eye development. Using a dominant negative approach for combined inactivation of all groucho/tle genes also resulted in eye phenotypes, as did interference with three individual tle genes. Conclusions Our results show that side chain modified PNAs come close to the knockdown efficiency of morpholino oligonucleotides in vivo. A single medaka tcf3 gene combines the function of the two zebrafish paralogs hdl and tcf3b. In combination with Groucho/Tle corepressor proteins Tcf3 acts in anterior development and is critical for eye formation. Electronic supplementary material The online version of this article (10.1186/s12896-017-0411-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerlinde Doenz
- Department for Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| | - Sebastian Dorn
- Department for Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| | - Narges Aghaallaei
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.,Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Mueller-Strasse 10, 72076, Tübingen, Germany
| | - Baubak Bajoghli
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Mueller-Strasse 10, 72076, Tübingen, Germany
| | - Elisabeth Riegel
- Department for Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| | | | - Holger Bock
- CAST Gründungszentrum GmbH, Wilhelm-Greil-Straße 15, A-6020, Innsbruck, Austria
| | - Birgit Werner
- UGISense AG, c/o Nordwind Capital GmbH, Residenzstrasse 18, 80333, München, Germany
| | - Thomas Lindhorst
- UGISense AG, c/o Nordwind Capital GmbH, Residenzstrasse 18, 80333, München, Germany
| | - Thomas Czerny
- Department for Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria.
| |
Collapse
|
18
|
Somech R, Lev A, Lee YN, Simon AJ, Barel O, Schiby G, Avivi C, Barshack I, Rhodes M, Yin J, Wang M, Yang Y, Rhodes J, Marcus N, Garty BZ, Stein J, Amariglio N, Rechavi G, Wiest DL, Zhang Y. Disruption of Thrombocyte and T Lymphocyte Development by a Mutation in ARPC1B. THE JOURNAL OF IMMUNOLOGY 2017; 199:4036-4045. [PMID: 29127144 DOI: 10.4049/jimmunol.1700460] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/06/2017] [Indexed: 01/21/2023]
Abstract
Regulation of the actin cytoskeleton is crucial for normal development and function of the immune system, as evidenced by the severe immune abnormalities exhibited by patients bearing inactivating mutations in the Wiskott-Aldrich syndrome protein (WASP), a key regulator of actin dynamics. WASP exerts its effects on actin dynamics through a multisubunit complex termed Arp2/3. Despite the critical role played by Arp2/3 as an effector of WASP-mediated control over actin polymerization, mutations in protein components of the Arp2/3 complex had not previously been identified as a cause of immunodeficiency. Here, we describe two brothers with hematopoietic and immunologic symptoms reminiscent of Wiskott-Aldrich syndrome (WAS). However, these patients lacked mutations in any of the genes previously associated with WAS. Whole-exome sequencing revealed a homozygous 2 bp deletion, n.c.G623DEL-TC (p.V208VfsX20), in Arp2/3 complex component ARPC1B that causes a frame shift resulting in premature termination. Modeling of the disease in zebrafish revealed that ARPC1B plays a critical role in supporting T cell and thrombocyte development. Moreover, the defects in development caused by ARPC1B loss could be rescued by the intact human ARPC1B ortholog, but not by the p.V208VfsX20 variant identified in the patients. Moreover, we found that the expression of ARPC1B is restricted to hematopoietic cells, potentially explaining why a mutation in ARPC1B has now been observed as a cause of WAS, whereas mutations in other, more widely expressed, components of the Arp2/3 complex have not been observed.
Collapse
Affiliation(s)
- Raz Somech
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel
| | - Atar Lev
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel
| | - Yu Nee Lee
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel
| | - Amos J Simon
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel.,Hematology Laboratory, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Ortal Barel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel.,Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Ginette Schiby
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Camila Avivi
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Michele Rhodes
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Jiejing Yin
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Minshi Wang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Yibin Yang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Jennifer Rhodes
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Nufar Marcus
- Allergy and Immunology Unit, Schneider Children's Medical Center of Israel, Felsenstein Medical Research Center, Kipper Institute of Immunology, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 4920235, Israel
| | - Ben-Zion Garty
- Allergy and Immunology Unit, Schneider Children's Medical Center of Israel, Felsenstein Medical Research Center, Kipper Institute of Immunology, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 4920235, Israel
| | - Jerry Stein
- Bone Marrow Transplantation Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 4920235, Israel; and
| | - Ninette Amariglio
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel.,Hematology Laboratory, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Gideon Rechavi
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel.,Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111;
| | - Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111;
| |
Collapse
|
19
|
Giger FA, David NB. Endodermal germ-layer formation through active actin-driven migration triggered by N-cadherin. Proc Natl Acad Sci U S A 2017; 114:10143-10148. [PMID: 28874564 PMCID: PMC5617292 DOI: 10.1073/pnas.1708116114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Germ-layer formation during gastrulation is both a fundamental step of development and a paradigm for tissue formation and remodeling. However, the cellular and molecular basis of germ-layer segregation is poorly understood, mostly because of the lack of direct in vivo observations. We used mosaic zebrafish embryos to investigate the formation of the endoderm. High-resolution live imaging and functional analyses revealed that endodermal cells reach their characteristic innermost position through an active, oriented, and actin-based migration dependent on Rac1, which contrasts with the previously proposed differential adhesion cell sorting. Rather than being attracted to their destination, the yolk syncytial layer, cells appear to migrate away from their neighbors. This migration depends on N-cadherin that, when imposed in ectodermal cells, is sufficient to trigger their internalization without affecting their fate. Overall, these results lead to a model of germ-layer formation in which, upon N-cadherin expression, endodermal cells actively migrate away from their epiblastic neighbors to reach their internal position, revealing cell-contact avoidance as an unexplored mechanism driving germ-layer formation.
Collapse
Affiliation(s)
- Florence A Giger
- CNRS UMR8197, F-75005 Paris, France
- INSERM U1024, F-75005 Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure, F-75005 Paris, France
| | - Nicolas B David
- CNRS UMR8197, F-75005 Paris, France;
- INSERM U1024, F-75005 Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure, F-75005 Paris, France
- Laboratory for Optics and Biosciences, Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
20
|
A gene network regulated by FGF signalling during ear development. Sci Rep 2017; 7:6162. [PMID: 28733657 DOI: 10.1038/s41598-017-05472-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/31/2017] [Indexed: 02/08/2023] Open
Abstract
During development cell commitment is regulated by inductive signals that are tightly controlled in time and space. In response, cells activate specific programmes, but the transcriptional circuits that maintain cell identity in a changing signalling environment are often poorly understood. Specification of inner ear progenitors is initiated by FGF signalling. Here, we establish the genetic hierarchy downstream of FGF by systematic analysis of many ear factors combined with a network inference approach. We show that FGF rapidly activates a small circuit of transcription factors forming positive feedback loops to stabilise otic progenitor identity. Our predictive network suggests that subsequently, transcriptional repressors ensure the transition of progenitors to mature otic cells, while simultaneously repressing alternative fates. Thus, we reveal the regulatory logic that initiates ear formation and highlight the hierarchical organisation of the otic gene network.
Collapse
|
21
|
Kuri P, Schieber NL, Thumberger T, Wittbrodt J, Schwab Y, Leptin M. Dynamics of in vivo ASC speck formation. J Cell Biol 2017; 216:2891-2909. [PMID: 28701426 PMCID: PMC5584180 DOI: 10.1083/jcb.201703103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 12/18/2022] Open
Abstract
The inflammasome adaptor ASC forms enormous intracellular complexes called specks. Live imaging of endogenous ASC in keratinocytes reveals speck formation dynamics and their lethal effects, as well as macrophages’ engulfment and digestion of the specks left behind by dead cells. Activated danger or pathogen sensors trigger assembly of the inflammasome adaptor ASC into specks, large signaling platforms considered hallmarks of inflammasome activation. Because a lack of in vivo tools has prevented the study of endogenous ASC dynamics, we generated a live ASC reporter through CRISPR/Cas9 tagging of the endogenous gene in zebrafish. We see strong ASC expression in the skin and other epithelia that act as barriers to insult. A toxic stimulus triggered speck formation and rapid pyroptosis in keratinocytes in vivo. Macrophages engulfed and digested that speck-containing, pyroptotic debris. A three-dimensional, ultrastructural reconstruction, based on correlative light and electron microscopy of the in vivo assembled specks revealed a compact network of highly intercrossed filaments, whereas pyrin domain (PYD) or caspase activation and recruitment domain alone formed filamentous aggregates. The effector caspase is recruited through PYD, whose overexpression induced pyroptosis but only after substantial delay. Therefore, formation of a single, compact speck and rapid cell-death induction in vivo requires a full-length ASC.
Collapse
Affiliation(s)
- Paola Kuri
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nicole L Schieber
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Leptin
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany .,Institute of Genetics, University of Cologne, Cologne, Germany.,European Molecular Biology Organization, Heidelberg, Germany
| |
Collapse
|
22
|
Yu T, Winkler C. Drug Treatment and In Vivo Imaging of Osteoblast-Osteoclast Interactions in a Medaka Fish Osteoporosis Model. J Vis Exp 2017. [PMID: 28117826 DOI: 10.3791/55025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bone-forming osteoblasts interact with bone-resorbing osteoclasts to coordinate the turnover of bone matrix and to control skeletal homeostasis. Medaka and zebrafish larvae are widely used to analyze the behavior of bone cells during bone formation, degeneration, and repair. Their optical clarity allows the visualization of fluorescently labeled bone cells and fluorescent dyes bound to the mineralized skeletal matrix. Our lab has generated transgenic medaka fish that express the osteoclast-inducing factor Receptor Activator of Nuclear-factor κB Ligand (RANKL) under the control of a heat shock-inducible promoter. Ectopic expression of RANKL results in the excess formation of activated osteoclasts, which can be visualized in reporter lines with nlGFP expression under the control of the cathepsin K (ctsk) promoter. RANKL induction and ectopic osteoclast formation leads to severe osteoporosis-like phenotypes. Compound transgenic medaka lines that express ctsk:nlGFP in osteoclasts, as well as mCherry under the control of the osterix (osx) promoter in premature osteoblasts, can be used to study the interaction of both cell types. This facilitates the in vivo observation of cellular behavior under conditions of bone degeneration and repair. Here, we describe the use of this system to test a drug commonly used in human osteoporosis therapy and describe a protocol for live imaging. The medaka model complements studies in cell culture and mice, and offers a novel system for the in vivo analysis of drug action in the skeletal system.
Collapse
Affiliation(s)
- Tingsheng Yu
- Department of Biological Sciences, National University of Singapore; NUS Centre for Bioimaging Sciences (CBIS), National University of Singapore
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore; NUS Centre for Bioimaging Sciences (CBIS), National University of Singapore;
| |
Collapse
|
23
|
Kuri P, Ellwanger K, Kufer TA, Leptin M, Bajoghli B. A high-sensitivity bi-directional reporter to monitor NF-κB activity in cell culture and zebrafish in real time. J Cell Sci 2016; 130:648-657. [PMID: 27980067 DOI: 10.1242/jcs.196485] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor (NF)-κB transcription factors play major roles in numerous biological processes including development and immunity. Here, we engineered a novel bi-directional NF-κB-responsive reporter, pSGNluc, in which a high-affinity NF-κB promoter fragment simultaneously drives expression of luciferase and GFP. Treatment with TNFα (also known as TNF) induced a strong, dose-dependent luciferase signal in cell culture. The degree of induction over background was comparable to that of other NF-κB-driven luciferase reporters, but the absolute level of expression was at least 20-fold higher. This extends the sensitivity range of otherwise difficult assays mediated exclusively by endogenously expressed receptors, as we show for Nod1 signaling in HEK293 cells. To measure NF-κB activity in the living organism, we established a transgenic zebrafish line carrying the pSGNluc construct. Live in toto imaging of transgenic embryos revealed the activation patterns of NF-κB signaling during embryonic development and as responses to inflammatory stimuli. Taken together, by integrating qualitative and quantitative NF-κB reporter activity, pSGNluc is a valuable tool for studying NF-κB signaling at high spatiotemporal resolution in cultured cells and living animals that goes beyond the possibilities provided by currently available reporters.
Collapse
Affiliation(s)
- Paola Kuri
- Directors' Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - Maria Leptin
- Directors' Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany .,Institute of Genetics, University of Cologne, Zülpicherstrasse 47a, 50674 Cologne, Germany.,EMBO, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Baubak Bajoghli
- Directors' Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
24
|
Punwani D, Zhang Y, Yu J, Cowan MJ, Rana S, Kwan A, Adhikari AN, Lizama CO, Mendelsohn BA, Fahl SP, Chellappan A, Srinivasan R, Brenner SE, Wiest DL, Puck JM. Multisystem Anomalies in Severe Combined Immunodeficiency with Mutant BCL11B. N Engl J Med 2016; 375:2165-2176. [PMID: 27959755 PMCID: PMC5215776 DOI: 10.1056/nejmoa1509164] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) is characterized by arrested T-lymphocyte production and by B-lymphocyte dysfunction, which result in life-threatening infections. Early diagnosis of SCID through population-based screening of newborns can aid clinical management and help improve outcomes; it also permits the identification of previously unknown factors that are essential for lymphocyte development in humans. METHODS SCID was detected in a newborn before the onset of infections by means of screening of T-cell-receptor excision circles, a biomarker for thymic output. On confirmation of the condition, the affected infant was treated with allogeneic hematopoietic stem-cell transplantation. Exome sequencing in the patient and parents was followed by functional analysis of a prioritized candidate gene with the use of human hematopoietic stem cells and zebrafish embryos. RESULTS The infant had "leaky" SCID (i.e., a form of SCID in which a minimal degree of immune function is preserved), as well as craniofacial and dermal abnormalities and the absence of a corpus callosum; his immune deficit was fully corrected by hematopoietic stem-cell transplantation. Exome sequencing revealed a heterozygous de novo missense mutation, p.N441K, in BCL11B. The resulting BCL11B protein had dominant negative activity, which abrogated the ability of wild-type BCL11B to bind DNA, thereby arresting development of the T-cell lineage and disrupting hematopoietic stem-cell migration; this revealed a previously unknown function of BCL11B. The patient's abnormalities, when recapitulated in bcl11ba-deficient zebrafish, were reversed by ectopic expression of functionally intact human BCL11B but not mutant human BCL11B. CONCLUSIONS Newborn screening facilitated the identification and treatment of a previously unknown cause of human SCID. Coupling exome sequencing with an evaluation of candidate genes in human hematopoietic stem cells and in zebrafish revealed that a constitutional BCL11B mutation caused human multisystem anomalies with SCID and also revealed a prethymic role for BCL11B in hematopoietic progenitors. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- Divya Punwani
- From the Department of Pediatrics, University of California, San Francisco (UCSF), School of Medicine and UCSF Benioff Children's Hospital (D.P., J.Y., M.J.C., A.K., B.A.M., J.M.P.), and the Cardiovascular Research Institute, UCSF (C.O.L.), San Francisco, and the Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley (A.N.A., S.E.B.) - all in California; the Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia (Y.Z., S.P.F., D.L.W.); and Innovation Labs, Tata Consultancy Services, Telangana, India (S.R., A.C., R.S.)
| | - Yong Zhang
- From the Department of Pediatrics, University of California, San Francisco (UCSF), School of Medicine and UCSF Benioff Children's Hospital (D.P., J.Y., M.J.C., A.K., B.A.M., J.M.P.), and the Cardiovascular Research Institute, UCSF (C.O.L.), San Francisco, and the Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley (A.N.A., S.E.B.) - all in California; the Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia (Y.Z., S.P.F., D.L.W.); and Innovation Labs, Tata Consultancy Services, Telangana, India (S.R., A.C., R.S.)
| | - Jason Yu
- From the Department of Pediatrics, University of California, San Francisco (UCSF), School of Medicine and UCSF Benioff Children's Hospital (D.P., J.Y., M.J.C., A.K., B.A.M., J.M.P.), and the Cardiovascular Research Institute, UCSF (C.O.L.), San Francisco, and the Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley (A.N.A., S.E.B.) - all in California; the Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia (Y.Z., S.P.F., D.L.W.); and Innovation Labs, Tata Consultancy Services, Telangana, India (S.R., A.C., R.S.)
| | - Morton J Cowan
- From the Department of Pediatrics, University of California, San Francisco (UCSF), School of Medicine and UCSF Benioff Children's Hospital (D.P., J.Y., M.J.C., A.K., B.A.M., J.M.P.), and the Cardiovascular Research Institute, UCSF (C.O.L.), San Francisco, and the Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley (A.N.A., S.E.B.) - all in California; the Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia (Y.Z., S.P.F., D.L.W.); and Innovation Labs, Tata Consultancy Services, Telangana, India (S.R., A.C., R.S.)
| | - Sadhna Rana
- From the Department of Pediatrics, University of California, San Francisco (UCSF), School of Medicine and UCSF Benioff Children's Hospital (D.P., J.Y., M.J.C., A.K., B.A.M., J.M.P.), and the Cardiovascular Research Institute, UCSF (C.O.L.), San Francisco, and the Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley (A.N.A., S.E.B.) - all in California; the Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia (Y.Z., S.P.F., D.L.W.); and Innovation Labs, Tata Consultancy Services, Telangana, India (S.R., A.C., R.S.)
| | - Antonia Kwan
- From the Department of Pediatrics, University of California, San Francisco (UCSF), School of Medicine and UCSF Benioff Children's Hospital (D.P., J.Y., M.J.C., A.K., B.A.M., J.M.P.), and the Cardiovascular Research Institute, UCSF (C.O.L.), San Francisco, and the Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley (A.N.A., S.E.B.) - all in California; the Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia (Y.Z., S.P.F., D.L.W.); and Innovation Labs, Tata Consultancy Services, Telangana, India (S.R., A.C., R.S.)
| | - Aashish N Adhikari
- From the Department of Pediatrics, University of California, San Francisco (UCSF), School of Medicine and UCSF Benioff Children's Hospital (D.P., J.Y., M.J.C., A.K., B.A.M., J.M.P.), and the Cardiovascular Research Institute, UCSF (C.O.L.), San Francisco, and the Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley (A.N.A., S.E.B.) - all in California; the Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia (Y.Z., S.P.F., D.L.W.); and Innovation Labs, Tata Consultancy Services, Telangana, India (S.R., A.C., R.S.)
| | - Carlos O Lizama
- From the Department of Pediatrics, University of California, San Francisco (UCSF), School of Medicine and UCSF Benioff Children's Hospital (D.P., J.Y., M.J.C., A.K., B.A.M., J.M.P.), and the Cardiovascular Research Institute, UCSF (C.O.L.), San Francisco, and the Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley (A.N.A., S.E.B.) - all in California; the Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia (Y.Z., S.P.F., D.L.W.); and Innovation Labs, Tata Consultancy Services, Telangana, India (S.R., A.C., R.S.)
| | - Bryce A Mendelsohn
- From the Department of Pediatrics, University of California, San Francisco (UCSF), School of Medicine and UCSF Benioff Children's Hospital (D.P., J.Y., M.J.C., A.K., B.A.M., J.M.P.), and the Cardiovascular Research Institute, UCSF (C.O.L.), San Francisco, and the Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley (A.N.A., S.E.B.) - all in California; the Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia (Y.Z., S.P.F., D.L.W.); and Innovation Labs, Tata Consultancy Services, Telangana, India (S.R., A.C., R.S.)
| | - Shawn P Fahl
- From the Department of Pediatrics, University of California, San Francisco (UCSF), School of Medicine and UCSF Benioff Children's Hospital (D.P., J.Y., M.J.C., A.K., B.A.M., J.M.P.), and the Cardiovascular Research Institute, UCSF (C.O.L.), San Francisco, and the Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley (A.N.A., S.E.B.) - all in California; the Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia (Y.Z., S.P.F., D.L.W.); and Innovation Labs, Tata Consultancy Services, Telangana, India (S.R., A.C., R.S.)
| | - Ajithavalli Chellappan
- From the Department of Pediatrics, University of California, San Francisco (UCSF), School of Medicine and UCSF Benioff Children's Hospital (D.P., J.Y., M.J.C., A.K., B.A.M., J.M.P.), and the Cardiovascular Research Institute, UCSF (C.O.L.), San Francisco, and the Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley (A.N.A., S.E.B.) - all in California; the Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia (Y.Z., S.P.F., D.L.W.); and Innovation Labs, Tata Consultancy Services, Telangana, India (S.R., A.C., R.S.)
| | - Rajgopal Srinivasan
- From the Department of Pediatrics, University of California, San Francisco (UCSF), School of Medicine and UCSF Benioff Children's Hospital (D.P., J.Y., M.J.C., A.K., B.A.M., J.M.P.), and the Cardiovascular Research Institute, UCSF (C.O.L.), San Francisco, and the Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley (A.N.A., S.E.B.) - all in California; the Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia (Y.Z., S.P.F., D.L.W.); and Innovation Labs, Tata Consultancy Services, Telangana, India (S.R., A.C., R.S.)
| | - Steven E Brenner
- From the Department of Pediatrics, University of California, San Francisco (UCSF), School of Medicine and UCSF Benioff Children's Hospital (D.P., J.Y., M.J.C., A.K., B.A.M., J.M.P.), and the Cardiovascular Research Institute, UCSF (C.O.L.), San Francisco, and the Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley (A.N.A., S.E.B.) - all in California; the Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia (Y.Z., S.P.F., D.L.W.); and Innovation Labs, Tata Consultancy Services, Telangana, India (S.R., A.C., R.S.)
| | - David L Wiest
- From the Department of Pediatrics, University of California, San Francisco (UCSF), School of Medicine and UCSF Benioff Children's Hospital (D.P., J.Y., M.J.C., A.K., B.A.M., J.M.P.), and the Cardiovascular Research Institute, UCSF (C.O.L.), San Francisco, and the Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley (A.N.A., S.E.B.) - all in California; the Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia (Y.Z., S.P.F., D.L.W.); and Innovation Labs, Tata Consultancy Services, Telangana, India (S.R., A.C., R.S.)
| | - Jennifer M Puck
- From the Department of Pediatrics, University of California, San Francisco (UCSF), School of Medicine and UCSF Benioff Children's Hospital (D.P., J.Y., M.J.C., A.K., B.A.M., J.M.P.), and the Cardiovascular Research Institute, UCSF (C.O.L.), San Francisco, and the Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley (A.N.A., S.E.B.) - all in California; the Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia (Y.Z., S.P.F., D.L.W.); and Innovation Labs, Tata Consultancy Services, Telangana, India (S.R., A.C., R.S.)
| |
Collapse
|
25
|
Fabian P, Pantzartzi CN, Kozmikova I, Kozmik Z. vox homeobox gene: a novel regulator of midbrain-hindbrain boundary development in medaka fish? Dev Genes Evol 2016; 226:99-107. [PMID: 26965282 DOI: 10.1007/s00427-016-0533-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/17/2016] [Indexed: 11/27/2022]
Abstract
The midbrain-hindbrain boundary (MHB) is one of the key organizing centers of the vertebrate central nervous system (CNS). Its patterning is governed by a well-described gene regulatory network (GRN) involving several transcription factors, namely, pax, gbx, en, and otx, together with signaling molecules of the Wnt and Fgf families. Here, we describe the onset of these markers in Oryzias latipes (medaka) early brain development in comparison to previously known zebrafish expression patterns. Moreover, we show for the first time that vox, a member of the vent gene family, is expressed in the developing neural tube similarly to CNS markers. Overexpression of vox leads to profound changes in the gene expression patterns of individual components of MHB-specific GRN, most notably of fgf8, a crucial organizer molecule of MHB. Our data suggest that genes from the vent family, in addition to their crucial role in body axis formation, may play a role in regionalization of vertebrate CNS.
Collapse
Affiliation(s)
- Peter Fabian
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic
| | - Chrysoula N Pantzartzi
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic
| | - Iryna Kozmikova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic.
| |
Collapse
|
26
|
Xu J, Cui J, Del Campo A, Shin CH. Four and a Half LIM Domains 1b (Fhl1b) Is Essential for Regulating the Liver versus Pancreas Fate Decision and for β-Cell Regeneration. PLoS Genet 2016; 12:e1005831. [PMID: 26845333 PMCID: PMC4741517 DOI: 10.1371/journal.pgen.1005831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
The liver and pancreas originate from overlapping embryonic regions, and single-cell lineage tracing in zebrafish has shown that Bone morphogenetic protein 2b (Bmp2b) signaling is essential for determining the fate of bipotential hepatopancreatic progenitors towards the liver or pancreas. Despite its pivotal role, the gene regulatory networks functioning downstream of Bmp2b signaling in this process are poorly understood. We have identified four and a half LIM domains 1b (fhl1b), which is primarily expressed in the prospective liver anlage, as a novel target of Bmp2b signaling. fhl1b depletion compromised liver specification and enhanced induction of pancreatic cells from endodermal progenitors. Conversely, overexpression of fhl1b favored liver specification and inhibited induction of pancreatic cells. By single-cell lineage tracing, we showed that fhl1b depletion led lateral endodermal cells, destined to become liver cells, to become pancreatic cells. Reversely, when fhl1b was overexpressed, medially located endodermal cells, fated to differentiate into pancreatic and intestinal cells, contributed to the liver by directly or indirectly modulating the discrete levels of pdx1 expression in endodermal progenitors. Moreover, loss of fhl1b increased the regenerative capacity of β-cells by increasing pdx1 and neurod expression in the hepatopancreatic ductal system. Altogether, these data reveal novel and critical functions of Fhl1b in the hepatic versus pancreatic fate decision and in β-cell regeneration. Lineage-specific multipotent progenitors play crucial roles in embryonic development, regeneration in adult tissues, and diseases such as cancer. Bone morphogenetic protein (Bmp) signaling is critical for regulating the cell fate choice of liver versus pancreas, two essential organs of body metabolism. Through transcriptome profiling of endodermal tissues exposed to increased or decreased Bmp2b signaling, we have discovered the zebrafish gene four and a half LIM domains 1b (fhl1b) as a novel target of Bmp2b signaling. fhl1b is primarily expressed in the prospective liver anlage. Loss- and gain-of-function analyses indicate that Fhl1b suppresses specification of the pancreas and induces the liver. By single-cell lineage tracing, we showed that depletion of fhl1b caused a liver-to-pancreas fate switch, while fhl1b overexpression redirected pancreatic progenitors to become liver cells. At later stages, Fhl1b regulates regeneration of insulin-secreting β-cells by directly or indirectly modulating pdx1 and neurod expression in the hepatopancreatic ductal system. Therefore, our work provides a novel paradigm of how Bmp signaling regulates the hepatic versus pancreatic fate decision and β-cell regeneration through its novel target Fhl1b.
Collapse
Affiliation(s)
- Jin Xu
- School of Biology and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jiaxi Cui
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Chong Hyun Shin
- School of Biology and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
27
|
Abstract
While zebrafish have for some time been regarded as a powerful model organism with which to study early events in hematopoiesis, recent evidence suggests that it also ideal for unraveling the molecular requirements for T cell development in the thymus. Like mammals, zebrafish possess an adaptive immune system, comprising B lymphocytes as well as both the γδ and αβ lineages of T cells, which develop in the thymus. Moreover, the molecular processes underlying T cell development in zebrafish appear to be remarkably conserved. Thus, findings in the zebrafish model will be of high relevance to the equivalent processes in mammals. Finally, molecular processes can be interrogated in zebrafish far more rapidly than is possible in mammals because the zebrafish possesses many unique advantages. These unique attributes, and the methods by which they can be exploited to investigate the role of novel genes in T cell development, are described here.
Collapse
Affiliation(s)
- Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, R364, Reimann Building, Philadelphia, PA, 19111, USA,
| | | |
Collapse
|
28
|
Abstract
The Japanese medaka, Oryzias latipes, is a vertebrate teleost model with a long history of genetic research. A number of unique features and established resources distinguish medaka from other vertebrate model systems. A large number of laboratory strains from different locations are available. Due to a high tolerance to inbreeding, many highly inbred strains have been established, thus providing a rich resource for genetic studies. Furthermore, closely related species native to different habitats in Southeast Asia permit comparative evolutionary studies. The transparency of embryos, larvae, and juveniles allows a detailed in vivo analysis of development. New tools to study diverse aspects of medaka biology are constantly being generated. Thus, medaka has become an important vertebrate model organism to study development, behavior, and physiology. In this review, we provide a comprehensive overview of established genetic and molecular-genetic tools that render medaka fish a full-fledged vertebrate system.
Collapse
|
29
|
Shen L, Zhu J, Chen F, Lin W, Cai J, Zhong J, Zhong H. RUNX1-Evi-1 fusion gene inhibited differentiation and apoptosis in myelopoiesis: an in vivo study. BMC Cancer 2015; 15:970. [PMID: 26674644 PMCID: PMC4682245 DOI: 10.1186/s12885-015-1961-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 11/30/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) 1-Evi-1 is a chimeric gene generated by the t (3; 21) (q26; q22) translocation, which leads into malignant transformation of hematopoietic stem cells by unclear mechanisms. This in vivo study aimed to establish a stable line of zebrafish expressing the human RUNX1-Evi-1 fusion gene under the control of a heat stress-inducible bidirectional promoter, and investigate its roles in hematopoiesis and hematologic malignancies. METHODS We introduced human RUNX1-Evi-1 fusion gene into embryonic zebrafish through a heat-shock promoter to establish Tg(RE:HSE:EGFP) zebrafish. Two males and one female mosaic F0 zebrafish embryos (2.1%) were identified as stable positive germline transgenic zebrafish. RESULTS The population of immature myeloid cells and hematopoietic blast cells were accumulated in peripheral blood and single cell suspension from kidney of adult Tg(RE:HSE:EGFP) zebrafish. RUNX1-Evi-1 presented an intensive influence on hematopoietic regulatory factors. Consequently, primitive hematopoiesis was enhanced by upregulation of gata2 and scl, while erythropoiesis was downregulated due to the suppression of gata1. Early stage of myelopoiesis was flourishing with the high expression of pu.1, but it was inhibited along with the low expression of mpo. Microarray analysis demonstrated that RUNX1-Evi-1 not only upregulated proteasome, cell cycle, glycolysis/gluconeogenesis, tyrosine metabolism, drug metabolism, and PPAR pathway, but also suppressed transforming growth factor β, Jak-STAT, DNA replication, mismatch repair, p53 pathway, JNK signaling pathway, and nucleotide excision repair. Interestingly, histone deacetylase 4 was significantly up-regulated. Factors in cell proliferation were obviously suppressed after 3-day treatment with histone deacetylase inhibitor, valproic acid. Accordingly, higher proportion of G1 arrest and apoptosis were manifested by the propidium iodide staining. CONCLUSION RUNX1-Evi-1 may promote proliferation and apoptosis resistance of primitive hematopoietic cell, and inhibit the differentiation of myeloid cells with the synergy of different pathways and factors. VPA may be a promising choice in the molecular targeting therapy of RUNX1-Evi-1-related leukemia.
Collapse
Affiliation(s)
- Lijing Shen
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianyi Zhu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Fangyuan Chen
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| | - Wenjie Lin
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jiayi Cai
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jihua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
30
|
Kawasumi-Kita A, Hayashi T, Kobayashi T, Nagayama C, Hayashi S, Kamei Y, Morishita Y, Takeuchi T, Tamura K, Yokoyama H. Application of local gene induction by infrared laser-mediated microscope and temperature stimulator to amphibian regeneration study. Dev Growth Differ 2015; 57:601-13. [DOI: 10.1111/dgd.12241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Aiko Kawasumi-Kita
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
- Laboratory for Developmental Morphogeometry; RIKEN Quantitative Biology Center; Kobe Hyogo 650-0047 Japan
| | - Toshinori Hayashi
- School of Life Science; Faculty of Medicine; Tottori University; Yonago Tottori 683-8503 Japan
| | - Takuya Kobayashi
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Chikashi Nagayama
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Shinichi Hayashi
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility; National Institute for Basic Biology; Myodaiji Okazaki Aichi 445-8585 Japan
- Department of Basic Biology in the School of Life Science of the Graduate University for Advanced Studies (SOKENDAI); Okazaki Aichi 445-8585 Japan
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry; RIKEN Quantitative Biology Center; Kobe Hyogo 650-0047 Japan
| | - Takashi Takeuchi
- School of Life Science; Faculty of Medicine; Tottori University; Yonago Tottori 683-8503 Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Hitoshi Yokoyama
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
- Department of Biochemistry and Molecular Biology; Faculty of Agriculture and Life Science; Hirosaki University; Hirosaki Aomori 036-8561 Japan
| |
Collapse
|
31
|
Wong L, Power N, Miles A, Tropepe V. Mutual antagonism of the paired-type homeobox genes, vsx2 and dmbx1, regulates retinal progenitor cell cycle exit upstream of ccnd1 expression. Dev Biol 2015; 402:216-28. [PMID: 25872183 DOI: 10.1016/j.ydbio.2015.03.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/17/2015] [Accepted: 03/25/2015] [Indexed: 01/04/2023]
Abstract
Understanding the mechanisms that regulate the transition between the proliferative and a post-mitotic state of retinal progenitor cells (RPCs) is key to advancing our knowledge of retinal growth and maturation. In the present study we determined that during zebrafish embryonic retinal neurogenesis, two paired-type homeobox genes - vsx2 and dmbx1 - function in a mutually antagonistic manner. We demonstrate that vsx2 gene expression requires active Fgf signaling and that this in turn suppresses dmbx1 expression and maintains cells in an undifferentiated, proliferative RPC state. This vsx2-dependent RPC state can be prolonged cell-autonomously by knockdown of dmbx1, or it can be suppressed prematurely by the over-expression of dmbx1, which we show can inhibit vsx2 expression and lead to precocious neuronal differentiation. dmbx1 loss of function also results in altered expression of canonical cell cycle genes, and in particular up-regulation of ccnd1, which correlates with our previous finding of a prolonged RPC cell cycle. By knocking down ccnd1 and dmbx1 simultaneously, we show that RPCs can overcome this phenotype to exit the cell cycle on time and differentiate normally into retinal neurons. Collectively, our data provide novel insight into the mechanism that enables RPCs to exit the cell cycle through a previously unrecognized antagonistic interaction of two paired-type homeobox genes that are central regulators of an Fgf-vsx2-dmbx1-ccnd1 signaling axis.
Collapse
Affiliation(s)
- Loksum Wong
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Namita Power
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Amanda Miles
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada M5T 3A9; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2.
| |
Collapse
|
32
|
Ortner V, Ludwig A, Riegel E, Dunzinger S, Czerny T. An artificial HSE promoter for efficient and selective detection of heat shock pathway activity. Cell Stress Chaperones 2015; 20:277-88. [PMID: 25168173 PMCID: PMC4326385 DOI: 10.1007/s12192-014-0540-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 11/26/2022] Open
Abstract
Detection of cellular stress is of major importance for the survival of cells. During evolution, a network of stress pathways developed, with the heat shock (HS) response playing a major role. The key transcription factor mediating HS signalling activity in mammalian cells is the HS factor HSF1. When activated it binds to the heat shock elements (HSE) in the promoters of target genes like heat shock protein (HSP) genes. They are induced by HSF1 but in addition they integrate multiple signals from different stress pathways. Here, we developed an artificial promoter consisting only of HSEs and therefore selectively reacting to HSF-mediated pathway activation. The promoter is highly inducible but has an extreme low basal level. Direct comparison with the HSPA1A promoter activity indicates that heat-dependent expression can be fully recapitulated by isolated HSEs in human cells. Using this sensitive reporter, we measured the HS response for different temperatures and exposure times. In particular, long heat induction times of 1 or 2 h were compared with short heat durations down to 1 min, conditions typical for burn injuries. We found similar responses to both long and short heat durations but at completely different temperatures. Exposure times of 2 h result in pathway activation at 41 to 44 °C, whereas heat pulses of 1 min lead to a maximum HS response between 47 and 50 °C. The results suggest that the HS response is initiated by a combination of temperature and exposure time but not by a certain threshold temperature.
Collapse
Affiliation(s)
- Viktoria Ortner
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| | - Alfred Ludwig
- Department of Agrarian Production, Genetics and Microbiology Research Group Public, University of Navarre, Pamplona, Navarre Spain
| | - Elisabeth Riegel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| | - Sarah Dunzinger
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| | - Thomas Czerny
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| |
Collapse
|
33
|
Weber T, Köster R. Genetic tools for multicolor imaging in zebrafish larvae. Methods 2013; 62:279-91. [DOI: 10.1016/j.ymeth.2013.07.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/08/2013] [Accepted: 07/16/2013] [Indexed: 02/06/2023] Open
|
34
|
Okuyama T, Isoe Y, Hoki M, Suehiro Y, Yamagishi G, Naruse K, Kinoshita M, Kamei Y, Shimizu A, Kubo T, Takeuchi H. Controlled Cre/loxP site-specific recombination in the developing brain in medaka fish, Oryzias latipes. PLoS One 2013; 8:e66597. [PMID: 23825546 PMCID: PMC3692484 DOI: 10.1371/journal.pone.0066597] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/08/2013] [Indexed: 01/12/2023] Open
Abstract
Background Genetic mosaic techniques have been used to visualize and/or genetically modify a neuronal subpopulation within complex neural circuits in various animals. Neural populations available for mosaic analysis, however, are limited in the vertebrate brain. Methodology/Principal Findings To establish methodology to genetically manipulate neural circuits in medaka, we first created two transgenic (Tg) medaka lines, Tg (HSP:Cre) and Tg (HuC:loxP-DsRed-loxP-GFP). We confirmed medaka HuC promoter-derived expression of the reporter gene in juvenile medaka whole brain, and in neuronal precursor cells in the adult brain. We then demonstrated that stochastic recombination can be induced by micro-injection of Cre mRNA into Tg (HuC:loxP-DsRed-loxP-GFP) embryos at the 1-cell stage, which allowed us to visualize some subpopulations of GFP-positive cells in compartmentalized regions of the telencephalon in the adult medaka brain. This finding suggested that the distribution of clonally-related cells derived from single or a few progenitor cells was restricted to a compartmentalized region. Heat treatment of Tg(HSP:Cre x HuC:loxP-DsRed-loxP-GFP) embryos (0–1 day post fertilization [dpf]) in a thermalcycler (39°C) led to Cre/loxP recombination in the whole brain. The recombination efficiency was notably low when using 2–3 dpf embyos compared with 0–1 dpf embryos, indicating the possibility of stage-dependent sensitivity of heat-inducible recombination. Finally, using an infrared laser-evoked gene operator (IR-LEGO) system, heat shock induced in a micro area in the developing brains led to visualization of clonally-related cells in both juvenile and adult medaka fish. Conclusions/Significance We established a noninvasive method to control Cre/loxP site-specific recombination in the developing nervous system in medaka fish. This method will broaden the neural population available for mosaic analyses and allow for lineage tracing of the vertebrate nervous system in both juvenile and adult stages.
Collapse
Affiliation(s)
- Teruhiro Okuyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Yasuko Isoe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masahito Hoki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuji Suehiro
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Genki Yamagishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Naruse
- National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasuhiro Kamei
- National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Atushi Shimizu
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
35
|
Yao S, Cheng M, Zhang Q, Wasik M, Kelsh R, Winkler C. Anaplastic lymphoma kinase is required for neurogenesis in the developing central nervous system of zebrafish. PLoS One 2013; 8:e63757. [PMID: 23667670 PMCID: PMC3648509 DOI: 10.1371/journal.pone.0063757] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/27/2013] [Indexed: 11/18/2022] Open
Abstract
Anaplastic Lymphoma Kinase (ALK) was initially discovered as an oncogene in human lymphoma and other cancers, including neuroblastoma. However, little is known about the physiological function of ALK. We identified the alk ortholog in zebrafish (Danio rerio) and found that it is highly expressed in the developing central nervous system (CNS). Heat-shock inducible transgenic zebrafish lines were generated to over-express alk during early neurogenesis. Its ectopic expression resulted in activation of the MEK/ERK pathway, increased cell proliferation, and aberrant neurogenesis leading to mis-positioning of differentiated neurons. Thus, overexpressed alk is capable of promoting cell proliferation in the nervous system, similar to the situation in ALK-related cancers. Next, we used Morpholino mediated gene knock-down and a pharmacological inhibitor to interfere with expression and function of endogenous Alk. Alk inhibition did not affect neuron progenitor formation but severely compromised neuronal differentiation and neuron survival in the CNS. These data indicate that tightly controlled alk expression is critical for the balance between neural progenitor proliferation, differentiation and survival during embryonic neurogenesis.
Collapse
Affiliation(s)
- Sheng Yao
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore
| | - Mangeng Cheng
- In Vitro Pharmacology, Merck Research Laboratory, Boston, Massachusetts, United States of America
| | - Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mariusz Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert Kelsh
- Centre for Regenerative Medicine, Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Christoph Winkler
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
36
|
Zhang Y, Duc ACE, Rao S, Sun XL, Bilbee AN, Rhodes M, Li Q, Kappes DJ, Rhodes J, Wiest DL. Control of hematopoietic stem cell emergence by antagonistic functions of ribosomal protein paralogs. Dev Cell 2013; 24:411-25. [PMID: 23449473 DOI: 10.1016/j.devcel.2013.01.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 11/15/2012] [Accepted: 01/20/2013] [Indexed: 01/14/2023]
Abstract
It remains controversial whether the highly homologous ribosomal protein (RP) paralogs found in lower eukaryotes have distinct functions and this has not been explored in vertebrates. Here we demonstrate that despite ubiquitous expression, the RP paralogs, Rpl22 and Rpl22-like1 (Rpl22l1) play essential, distinct, and antagonistic roles in hematopoietic development. Knockdown of Rpl22 in zebrafish embryos selectively blocks the development of T lineage progenitors after they have seeded the thymus. In contrast, knockdown of the Rpl22 paralog, Rpl22l1, impairs the emergence of hematopoietic stem cells (HSC) in the aorta-gonad-mesonephros by abrogating Smad1 expression and the consequent induction of essential transcriptional regulator, Runx1. Indeed, despite the ability of both paralogs to bind smad1 RNA, Rpl22 and Rpl22l1 have opposing effects on Smad1 expression. Accordingly, circumstances that tip the balance of these paralogs in favor of Rpl22 (e.g., Rpl22l1 knockdown or Rpl22 overexpression) result in repression of Smad1 and blockade of HSC emergence.
Collapse
Affiliation(s)
- Yong Zhang
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shen LJ, Chen FY, Zhang Y, Cao LF, Kuang Y, Zhong M, Wang T, Zhong H. MYCN transgenic zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis. PLoS One 2013; 8:e59070. [PMID: 23554972 PMCID: PMC3598662 DOI: 10.1371/journal.pone.0059070] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/11/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Amplification of MYCN (N-Myc) oncogene has been reported as a frequent event and a poor prognostic marker in human acute myeloid leukemia (AML). The molecular mechanisms and transcriptional networks by which MYCN exerts its influence in AML are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS We introduced murine MYCN gene into embryonic zebrafish through a heat-shock promoter and established the stable germline Tg(MYCN:HSE:EGFP) zebrafish. N-Myc downstream regulated gene 1 (NDRG1), negatively controlled by MYCN in human and functionally involved in neutrophil maturation, was significantly under-expressed in this model. Using peripheral blood smear detection, histological section and flow cytometric analysis of single cell suspension from kidney and spleen, we found that MYCN overexpression promoted cell proliferation, enhanced the repopulating activity of myeloid cells and the accumulation of immature hematopoietic blast cells. MYCN enhanced primitive hematopoiesis by upregulating scl and lmo2 expression and promoted myelopoiesis by inhibiting gata1 expression and inducing pu.1, mpo expression. Microarray analysis identified that cell cycle, glycolysis/gluconeogenesis, MAPK/Ras, and p53-mediated apoptosis pathways were upregulated. In addition, mismatch repair, transforming and growth factor β (TGFβ) were downregulated in MYCN-overexpressing blood cells (p<0.01). All of these signaling pathways are critical in the proliferation and malignant transformation of blood cells. CONCLUSION/SIGNIFICANCE The above results induced by overexpression of MYCN closely resemble the main aspects of human AML, suggesting that MYCN plays a role in the etiology of AML. MYCN reprograms hematopoietic cell fate by regulating NDRG1 and several lineage-specific hematopoietic transcription factors. Therefore, this MYCN transgenic zebrafish model facilitates dissection of MYCN-mediated signaling in vivo, and enables high-throughput scale screens to identify the potential therapeutic targets.
Collapse
Affiliation(s)
- Li-Jing Shen
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang-Yuan Chen
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| | - Yong Zhang
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan-Fang Cao
- Department of Pediatric, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Kuang
- Shanghai Research Center for Biomodel Organisms, Shanghai, China
| | - Min Zhong
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Wang
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Zhong
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Nord H, Nygård Skalman L, von Hofsten J. Six1 regulates proliferation of Pax7-positive muscle progenitors in zebrafish. J Cell Sci 2013; 126:1868-80. [PMID: 23444384 DOI: 10.1242/jcs.119917] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the embryonic zebrafish, skeletal muscle fibres are formed from muscle progenitors in the paraxial mesoderm. The embryonic myotome is mostly constituted of fast-twitch-specific fibres, which are formed from a fast-specific progenitor cell pool. The most lateral fraction of the fast domain in the myotome of zebrafish embryos derives from the Pax7-positive dermomyotome-like cells. In this study, we show that two genes, belonging to the sine oculus class 1 (six1) genes (six1a and six1b), are both essential for the regulation of Pax7(+) cell proliferation and, consequently, in their differentiation during the establishment of the zebrafish dermomyotome. In both six1a and six1b morphant embryos, Pax7(+) cells are initially formed but fail to proliferate, as detected by reduced levels of the proliferation marker phosphohistone3 and reduced brdU incorporation. In congruence, overexpression of six1a or six1b leads to increased Pax7(+) cell number and reduced or alternatively delayed fibre cell differentiation. Bone morphogenetic protein signalling has previously been suggested to inhibit differentiation of Pax7(+) cells in the dermomyotome. Here we show that the remaining Pax7(+) cells in six1a and six1b morphant embryos also have significantly reduced pSmad1/5/8 levels and propose that this leads to a reduced proliferative activity, which may result in a premature differentiation of Pax7(+) cells in the zebrafish dermomyotome. In summary, we show a mechanism for Six1a and Six1b in establishing the Pax7(+) cell derived part of the fast muscle and suggest new important roles for Six1 in the regulation of the Pax7(+) muscle cell population through pSmad1/5/8 signalling.
Collapse
Affiliation(s)
- Hanna Nord
- Umeå Center for Molecular Medicine, UCMM, Umeå University, 901 87 Umeå, Sweden
| | | | | |
Collapse
|
39
|
Kobayashi K, Kamei Y, Kinoshita M, Czerny T, Tanaka M. A heat-inducible CRE/LOXP gene induction system in medaka. Genesis 2012; 51:59-67. [PMID: 23019184 DOI: 10.1002/dvg.22348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/05/2012] [Accepted: 09/18/2012] [Indexed: 11/05/2022]
Abstract
We established three lines of transgenic medaka, a heat-shock element (HSE) monitor line (hse-GFP line), heat-inducible driver lines (hse-cre lines), and effector lines (gapdh-loxP[DsRed]-GFP lines). We employed these to comprehensively analyze gene induction at different time points in various tissues. These analyses demonstrate a good response of synthetic HSEs by heat treatment during embryogenesis and the mosaic gene induction by cre/loxP-mediated recombination, thus providing practical information regarding the feasibility of a heat-inducible cre/loxP-mediated system in medaka. We also activated recombination by local heat-treatment using a metal probe and an infrared laser. Our results collectively indicate that these lines allow us to perform lineage tracing and mosaic analysis and provide the platform to investigate gene functions at later developmental stage and adult.
Collapse
Affiliation(s)
- Kayo Kobayashi
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | | | | | | | | |
Collapse
|
40
|
Robu ME, Zhang Y, Rhodes J. Rereplication in emi1-deficient zebrafish embryos occurs through a Cdh1-mediated pathway. PLoS One 2012; 7:e47658. [PMID: 23082190 PMCID: PMC3474755 DOI: 10.1371/journal.pone.0047658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/13/2012] [Indexed: 01/27/2023] Open
Abstract
Disruption of early mitotic inhibitor 1 (Emi1) interferes with normal cell cycle progression and results in early embryonic lethality in vertebrates. During S and G2 phases the ubiquitin ligase complex APC/C is inhibited by Emi1 protein, thereby enabling the accumulation of Cyclins A and B so they can regulate replication and promote the transition from G2 phase to mitosis, respectively. Depletion of Emi1 prevents mitotic entry and causes rereplication and an increase in cell size. In this study, we show that the developmental and cell cycle defects caused by inactivation of zebrafish emi1 are due to inappropriate activation of APC/C through its cofactor Cdh1. Inhibiting/slowing progression into S-phase by depleting Cdt1, an essential replication licensing factor, partially rescued emi1 deficiency-induced rereplication and the increased cell size. The cell size effect was enhanced by co-depletion of cell survival regulator p53. These data suggest that the increased size of emi1-deficient cells is either directly or indirectly caused by the rereplication defects. Moreover, enforced expression of Cyclin A partially ablated the rereplicating population in emi1-deficient zebrafish embryos, consistent with the role of Cyclin A in origin licensing. Forced expression of Cyclin B partially restored the G1 population, in agreement with the established role of Cyclin B in mitotic progression and exit. However, expression of Cyclin B also partially inhibited rereplication in emi1-deficient embryos, suggesting a role for Cyclin B in regulating replication in this cellular context. As Cyclin A and B are substrates for APC/C-Cdh1 - mediated degradation, and Cdt1 is under control of Cyclin A, these data indicate that emi1 deficiency-induced defects in vivo are due to the dysregulation of an APC/C-Cdh1 molecular axis.
Collapse
Affiliation(s)
- Mara E. Robu
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania, United States of America
| | - Yong Zhang
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania, United States of America
| | - Jennifer Rhodes
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
Schinko JB, Hillebrand K, Bucher G. Heat shock-mediated misexpression of genes in the beetle Tribolium castaneum. Dev Genes Evol 2012; 222:287-98. [PMID: 22890852 DOI: 10.1007/s00427-012-0412-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/29/2012] [Indexed: 12/18/2022]
Abstract
Insect gene function has mainly been studied in the fruit fly Drosophila melanogaster because in this species many techniques and resources are available for gene knock down and the ectopic activation of gene function. However, in order to study biological aspects that are not represented by the Drosophila model, and in order to test to what degree gene functions are conserved within insects and what changes in gene function accompanied the evolution of novel traits, the establishment of respective tools in other insect species is required. While gene knock down can be induced by RNA interference in many insects, methods to misexpress genes are much less developed. In order to allow misexpression of genes in a timely controlled manner in the red flour beetle Tribolium castaneum, we have established a heat shock-mediated misexpression system. We show that endogenous heat shock elements perform better than artificial heat shock elements derived from vertebrates. We carefully determine the optimal conditions for heat shock and define a core promoter for use in future constructs. Finally, using this system, we study the effects of misexpressing the head patterning gene Tc-orthodenticle1 (Tc-otd1), We show that Tc-otd1 suppresses Tc-wingless (Tc-wg) in the trunk and to some degree in the head.
Collapse
Affiliation(s)
- Johannes Benno Schinko
- Institute of Molecular Biology and Biotechnology, Nik. Plastira 100, 71110 Heraklion, Crete, Greece.
| | | | | |
Collapse
|
42
|
McCarroll MN, Lewis ZR, Culbertson MD, Martin BL, Kimelman D, Nechiporuk AV. Graded levels of Pax2a and Pax8 regulate cell differentiation during sensory placode formation. Development 2012; 139:2740-50. [PMID: 22745314 PMCID: PMC3392703 DOI: 10.1242/dev.076075] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2012] [Indexed: 01/11/2023]
Abstract
Pax gene haploinsufficiency causes a variety of congenital defects. Renal-coloboma syndrome, resulting from mutations in Pax2, is characterized by kidney hypoplasia, optic nerve malformation, and hearing loss. Although this underscores the importance of Pax gene dosage in normal development, how differential levels of these transcriptional regulators affect cell differentiation and tissue morphogenesis is still poorly understood. We show that differential levels of zebrafish Pax2a and Pax8 modulate commitment and behavior in cells that eventually contribute to the otic vesicle and epibranchial placodes. Initially, a subset of epibranchial placode precursors lie lateral to otic precursors within a single Pax2a/8-positive domain; these cells subsequently move to segregate into distinct placodes. Using lineage-tracing and ablation analyses, we show that cells in the Pax2a/8+ domain become biased towards certain fates at the beginning of somitogenesis. Experiments involving either Pax2a overexpression or partial, combinatorial Pax2a and Pax8 loss of function reveal that high levels of Pax favor otic differentiation whereas low levels increase cell numbers in epibranchial ganglia. In addition, the Fgf and Wnt signaling pathways control Pax2a expression: Fgf is necessary to induce Pax2a, whereas Wnt instructs the high levels of Pax2a that favor otic differentiation. Our studies reveal the importance of Pax levels during sensory placode formation and provide a mechanism by which these levels are controlled.
Collapse
Affiliation(s)
- Matthew N. McCarroll
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Zachary R. Lewis
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Maya Deza Culbertson
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | | | - David Kimelman
- Department of Biochemistry, Box 357350, Seattle, Washington 98195, USA
| | - Alex V. Nechiporuk
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon, 97239, USA
| |
Collapse
|
43
|
Ninov N, Borius M, Stainier DYR. Different levels of Notch signaling regulate quiescence, renewal and differentiation in pancreatic endocrine progenitors. Development 2012; 139:1557-67. [PMID: 22492351 DOI: 10.1242/dev.076000] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genetic studies have implicated Notch signaling in the maintenance of pancreatic progenitors. However, how Notch signaling regulates the quiescent, proliferative or differentiation behaviors of pancreatic progenitors at the single-cell level remains unclear. Here, using single-cell genetic analyses and a new transgenic system that allows dynamic assessment of Notch signaling, we address how discrete levels of Notch signaling regulate the behavior of endocrine progenitors in the zebrafish intrapancreatic duct. We find that these progenitors experience different levels of Notch signaling, which in turn regulate distinct cellular outcomes. High levels of Notch signaling induce quiescence, whereas lower levels promote progenitor amplification. The sustained downregulation of Notch signaling triggers a multistep process that includes cell cycle entry and progenitor amplification prior to endocrine differentiation. Importantly, progenitor amplification and differentiation can be uncoupled by modulating the duration and/or extent of Notch signaling downregulation, indicating that these processes are triggered by distinct levels of Notch signaling. These data show that different levels of Notch signaling drive distinct behaviors in a progenitor population.
Collapse
Affiliation(s)
- Nikolay Ninov
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
44
|
Huang HY, Liu JT, Yan HY, Tsai HJ. Arl6ip1 Plays a Role in Proliferation during Zebrafish Retinogenesis. Cells Tissues Organs 2012; 196:161-74. [DOI: 10.1159/000331589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2011] [Indexed: 11/19/2022] Open
|
45
|
Martin BL, Kimelman D. Canonical Wnt signaling dynamically controls multiple stem cell fate decisions during vertebrate body formation. Dev Cell 2012; 22:223-32. [PMID: 22264734 PMCID: PMC3465166 DOI: 10.1016/j.devcel.2011.11.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/23/2011] [Accepted: 11/01/2011] [Indexed: 12/11/2022]
Abstract
The vertebrate body forms in an anterior-to-posterior progression, driven by a population of undifferentiated cells at the posterior-most end of the embryo. Recent studies have demonstrated that these undifferentiated cells are multipotent stem cells, suggesting that local signaling factors specify cell fate. However, the mechanism of cell fate specification during this process is unknown. Using a combination of single cell transplantation and newly developed cell-autonomous inducible Wnt inhibitor and activator transgenic zebrafish lines, we show that canonical Wnt signaling is continuously necessary and sufficient to specify mesoderm from a bipotential neural/mesodermal precursor. Surprisingly, we also find that Wnt signaling functions subsequently within the mesoderm to specify somites instead of posterior vascular endothelium. Our results demonstrate that dynamic local Wnt signaling cues specify germ layer contribution and mesodermal tissue type specification of multipotent stem cells throughout the formation of the early vertebrate embryonic body.
Collapse
Affiliation(s)
- Benjamin L. Martin
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
46
|
Ortner V, Kaspar C, Halter C, Töllner L, Mykhaylyk O, Walzer J, Günzburg WH, Dangerfield JA, Hohenadl C, Czerny T. Magnetic field-controlled gene expression in encapsulated cells. J Control Release 2011; 158:424-32. [PMID: 22197778 PMCID: PMC3329627 DOI: 10.1016/j.jconrel.2011.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 11/22/2022]
Abstract
Cell and gene therapies have an enormous range of potential applications, but as for most other therapies, dosing is a critical issue, which makes regulated gene expression a prerequisite for advanced strategies. Several inducible expression systems have been established, which mainly rely on small molecules as inducers, such as hormones or antibiotics. The application of these inducers is difficult to control and the effects on gene regulation are slow. Here we describe a novel system for induction of gene expression in encapsulated cells. This involves the modification of cells to express potential therapeutic genes under the control of a heat inducible promoter and the co-encapsulation of these cells with magnetic nanoparticles. These nanoparticles produce heat when subjected to an alternating magnetic field; the elevated temperatures in the capsules then induce gene expression. In the present study we define the parameters of such systems and provide proof-of-principle using reporter gene constructs. The fine-tuned heating of nanoparticles in the magnetic field allows regulation of gene expression from the outside over a broad range and within short time. Such a system has great potential for advancement of cell and gene therapy approaches.
Collapse
Affiliation(s)
- Viktoria Ortner
- University of Applied Sciences, FH Campus Wien, Department for Applied Life Sciences, Helmut-Qualtinger-Gasse 2, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
To TT, Witten PE, Renn J, Bhattacharya D, Huysseune A, Winkler C. Rankl-induced osteoclastogenesis leads to loss of mineralization in a medaka osteoporosis model. Development 2011; 139:141-50. [PMID: 22096076 DOI: 10.1242/dev.071035] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Osteoclasts are macrophage-related bone resorbing cells of hematopoietic origin. Factors that regulate osteoclastogenesis are of great interest for investigating the pathology and treatment of bone diseases such as osteoporosis. In mammals, receptor activator of NF-κB ligand (Rankl) is a regulator of osteoclast formation and activation: its misexpression causes osteoclast stimulation and osteoporotic bone loss. Here, we report an osteoporotic phenotype that is induced by overexpression of Rankl in the medaka model. We generated transgenic medaka lines that express GFP under control of the cathepsin K promoter in osteoclasts starting at 12 days post-fertilization (dpf), or Rankl together with CFP under control of a bi-directional heat-shock promoter. Using long-term confocal time-lapse imaging of double and triple transgenic larvae, we monitored in vivo formation and activation of osteoclasts, as well as their interaction with osteoblasts. Upon Rankl induction, GFP-positive osteoclasts are first observed in the intervertebral regions and then quickly migrate to the surface of mineralized neural and haemal arches, as well as to the centra of the vertebral bodies. These osteoclasts are TRAP (tartrate-resistant acid phosphatase) and cathepsin K positive, mononuclear and highly mobile with dynamically extending protrusions. They are exclusively found in tight contact with mineralized matrix. Rankl-induced osteoclast formation resulted in severe degradation of the mineralized matrix in vertebral bodies and arches. In conclusion, our in vivo imaging approach confirms a conserved role of Rankl in osteoclastogenesis in teleost fish and provides new insight into the cellular interactions during bone resorption in an animal model that is useful for genetic and chemical screening.
Collapse
Affiliation(s)
- Thuy Thanh To
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | | | | | | | | | | |
Collapse
|
48
|
Row RH, Maître JL, Martin BL, Stockinger P, Heisenberg CP, Kimelman D. Completion of the epithelial to mesenchymal transition in zebrafish mesoderm requires Spadetail. Dev Biol 2011; 354:102-10. [PMID: 21463614 PMCID: PMC3090540 DOI: 10.1016/j.ydbio.2011.03.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 12/18/2022]
Abstract
The process of gastrulation is highly conserved across vertebrates on both the genetic and morphological levels, despite great variety in embryonic shape and speed of development. This mechanism spatially separates the germ layers and establishes the organizational foundation for future development. Mesodermal identity is specified in a superficial layer of cells, the epiblast, where cells maintain an epithelioid morphology. These cells involute to join the deeper hypoblast layer where they adopt a migratory, mesenchymal morphology. Expression of a cascade of related transcription factors orchestrates the parallel genetic transition from primitive to mature mesoderm. Although the early and late stages of this process are increasingly well understood, the transition between them has remained largely mysterious. We present here the first high resolution in vivo observations of the blebby transitional morphology of involuting mesodermal cells in a vertebrate embryo. We further demonstrate that the zebrafish spadetail mutation creates a reversible block in the maturation program, stalling cells in the transition state. This mutation creates an ideal system for dissecting the specific properties of cells undergoing the morphological transition of maturing mesoderm, as we demonstrate with a direct measurement of cell-cell adhesion.
Collapse
Affiliation(s)
- Richard H. Row
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jean-Léon Maître
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | | | - Petra Stockinger
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | | | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
49
|
Martin BL, Kimelman D. Brachyury establishes the embryonic mesodermal progenitor niche. Genes Dev 2011; 24:2778-83. [PMID: 21159819 DOI: 10.1101/gad.1962910] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Formation of the early vertebrate embryo depends on a Brachyury/Wnt autoregulatory loop within the posterior mesodermal progenitors. We show that exogenous retinoic acid (RA), which dramatically truncates the embryo, represses expression of the zebrafish brachyury ortholog no tail (ntl), causing a failure to sustain the loop. We found that Ntl functions normally to protect the autoregulatory loop from endogenous RA by directly activating cyp26a1 expression. Thus, the embryonic mesodermal progenitors uniquely establish their own niche--with Brachyury being essential for creating a domain of high Wnt and low RA signaling--rather than having a niche created by separate support cells.
Collapse
Affiliation(s)
- Benjamin L Martin
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
50
|
Oda S, Mikami S, Urushihara Y, Murata Y, Kamei Y, Deguchi T, Kitano T, Fujimori KE, Yuba S, Todo T, Mitani H. Identification of a functional medaka heat shock promoter and characterization of its ability to induce exogenous gene expression in medaka in vitro and in vivo. Zoolog Sci 2010; 27:410-5. [PMID: 20443688 DOI: 10.2108/zsj.27.410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heat shock protein promoters (hsp promoters) are powerful tools for investigating gene functions, as the expression of targeted genes can be controlled simply by heating. However, there have been no reports of the utilization of an endogeneous medaka (Oryzias latipes) hsp promoter to induce exogenous gene expression in medaka. We identified and cloned a functional medaka hsp promoter (olphsp70.1) and verified its ability to act as an inducible promoter both in vitro and in vivo. The hsp promoter efficiently induced exogenous gene expression in cultured cells, developing embryos, and also in adult fishes. When used to control the expression of Venus, a variant of yellow fluorescent protein, in transgenic medaka, the hsp promoter was functional in all tissues except for the gonads of adults. These results indicate that the medaka hsp promoter can be a powerful tool for inducing exogenous gene expression and investigating gene functions both in vitro and in vivo in medaka.
Collapse
Affiliation(s)
- Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8562, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|