1
|
Dubaissi E, Hilton EN, Lilley S, Collins R, Holt C, March P, Danahay H, Gosling M, Grencis RK, Roberts IS, Thornton DJ. The Tmem16a chloride channel is required for mucin maturation after secretion from goblet-like cells in the Xenopus tropicalis tadpole skin. Sci Rep 2024; 14:25555. [PMID: 39461969 PMCID: PMC11514049 DOI: 10.1038/s41598-024-76482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The TMEM16A chloride channel is proposed as a therapeutic target in cystic fibrosis, where activation of this ion channel might restore airway surface hydration and mitigate respiratory symptoms. While TMEM16A is associated with increased mucin production under stimulated or pro-inflammatory conditions, its role in baseline mucin production, secretion and/or maturation is less well understood. Here, we use the Xenopus tadpole skin mucociliary surface as a model of human upper airway epithelium to study Tmem16a function in mucus production. We found that Xenopus tropicalis Tmem16a is present at the apical membrane surface of tadpole skin small secretory cells that express canonical markers of mammalian "goblet cells" such as Foxa1 and spdef. X. tropicalis Tmem16a functions as a voltage-gated, calcium-activated chloride channel when transfected into mammalian cells in culture. Depletion of Tmem16a from the tadpole skin results in dysregulated mucin maturation post-secretion, with secreted mucins having a disrupted molecular size distribution and altered morphology assessed by sucrose gradient centrifugation and electron microscopy, respectively. Our results show that in the Xenopus tadpole skin, Tmem16a is necessary for normal mucus barrier formation and demonstrate the utility of this model system to discover new biology relevant to human mucosal biology in health and disease.
Collapse
Affiliation(s)
- Eamon Dubaissi
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Emma N Hilton
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Sarah Lilley
- Sussex Drug Discovery Centre, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - Richard Collins
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Charlotte Holt
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Peter March
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Henry Danahay
- Enterprise Therapeutics, Sussex Innovation Centre, Science Park Square, Falmer, Brighton, BN1 9SB, UK
| | - Martin Gosling
- Sussex Drug Discovery Centre, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
- Enterprise Therapeutics, Sussex Innovation Centre, Science Park Square, Falmer, Brighton, BN1 9SB, UK
| | - Richard K Grencis
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ian S Roberts
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - David J Thornton
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK.
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK.
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK.
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
2
|
Tzung KW, Lalonde RL, Prummel KD, Mahabaleshwar H, Moran HR, Stundl J, Cass AN, Le Y, Lea R, Dorey K, Tomecka MJ, Zhang C, Brombacher EC, White WT, Roehl HH, Tulenko FJ, Winkler C, Currie PD, Amaya E, Davis MC, Bronner ME, Mosimann C, Carney TJ. A median fin derived from the lateral plate mesoderm and the origin of paired fins. Nature 2023; 618:543-549. [PMID: 37225983 PMCID: PMC10266977 DOI: 10.1038/s41586-023-06100-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
The development of paired appendages was a key innovation during evolution and facilitated the aquatic to terrestrial transition of vertebrates. Largely derived from the lateral plate mesoderm (LPM), one hypothesis for the evolution of paired fins invokes derivation from unpaired median fins via a pair of lateral fin folds located between pectoral and pelvic fin territories1. Whilst unpaired and paired fins exhibit similar structural and molecular characteristics, no definitive evidence exists for paired lateral fin folds in larvae or adults of any extant or extinct species. As unpaired fin core components are regarded as exclusively derived from paraxial mesoderm, any transition presumes both co-option of a fin developmental programme to the LPM and bilateral duplication2. Here, we identify that the larval zebrafish unpaired pre-anal fin fold (PAFF) is derived from the LPM and thus may represent a developmental intermediate between median and paired fins. We trace the contribution of LPM to the PAFF in both cyclostomes and gnathostomes, supporting the notion that this is an ancient trait of vertebrates. Finally, we observe that the PAFF can be bifurcated by increasing bone morphogenetic protein signalling, generating LPM-derived paired fin folds. Our work provides evidence that lateral fin folds may have existed as embryonic anlage for elaboration to paired fins.
Collapse
Affiliation(s)
- Keh-Weei Tzung
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Robert L Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karin D Prummel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Harsha Mahabaleshwar
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Hannah R Moran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Amanda N Cass
- Biology Department, Wesleyan University, Middletown, CT, USA
| | - Yao Le
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Robert Lea
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Karel Dorey
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Monika J Tomecka
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Changqing Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Eline C Brombacher
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - William T White
- CSIRO National Research Collections Australia, Australia National Fish Collection, Hobart, Tasmania, Australia
| | - Henry H Roehl
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Frank J Tulenko
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Christoph Winkler
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- EMBL Australia, Victorian Node, Monash University, Clayton, Victoria, Australia
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Marcus C Davis
- Department of Physical and Biological Sciences, Western New England University, Springfield, MA, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Tom J Carney
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
3
|
Abstract
Understanding how to promote organ and appendage regeneration is a key goal of regenerative medicine. The frog, Xenopus, can achieve both scar-free healing and tissue regeneration during its larval stages, although it predominantly loses these abilities during metamorphosis and adulthood. This transient regenerative capacity, alongside their close evolutionary relationship with humans, makes Xenopus an attractive model to uncover the mechanisms underlying functional regeneration. Here, we present an overview of Xenopus as a key model organism for regeneration research and highlight how studies of Xenopus have led to new insights into the mechanisms governing regeneration.
Collapse
Affiliation(s)
- Lauren S Phipps
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Lindsey Marshall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Karel Dorey
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
4
|
Melchert J, Henningfeld KA, Richts S, Lingner T, Jonigk D, Pieler T. The secreted BMP antagonist ERFE is required for the development of a functional circulatory system in Xenopus. Dev Biol 2019; 459:138-148. [PMID: 31846624 DOI: 10.1016/j.ydbio.2019.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 01/24/2023]
Abstract
The hormone Erythroferrone (ERFE) is a member of the C1q/TNF-related protein family that regulates iron homeostasis through the suppression of hamp. In a gain of function screen in Xenopus embryos, we identified ERFE as a potent secondary axis-inducing agent. Experiments in Xenopus embryos and ectodermal explants revealed that ERFE functions as a selective inhibitor of the BMP pathway and the conserved C1q domain is not required for this activity. Inhibition occurs at the extracelluar level, through the interaction of ERFE with the BMP ligand. During early Xenopus embryogenesis, erfe is first expressed in the ventral blood islands where initial erythropoiesis occurs and later in circulating blood cells. ERFE knockdown does not alter the expression of etv.2, aplnr and flt1 in tailbud stage embryos indicating endothelial cell specification is independent of ERFE. However, in tadpole embryos, defects of the vascular network and primitive blood circulation are observed as well as edema formation. RNAseq analysis of ERFE morphant embryos also revealed the inhibition of gja4 indicating disruption of dorsal aorta formation.
Collapse
Affiliation(s)
- Juliane Melchert
- Institute of Developmental Biochemistry, University Medical Center Göttingen, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Kristine A Henningfeld
- Institute of Developmental Biochemistry, University Medical Center Göttingen, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Sven Richts
- Institute of Developmental Biochemistry, University Medical Center Göttingen, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Thomas Lingner
- Transcriptome and Genome Analysis Laboratory, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Danny Jonigk
- Institut für Pathologie, Medizinische Hochschule Hannover (MHH) Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Tomas Pieler
- Institute of Developmental Biochemistry, University Medical Center Göttingen, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| |
Collapse
|
5
|
Gere-Becker MB, Pommerenke C, Lingner T, Pieler T. Retinoic acid-induced expression of Hnf1b and Fzd4 is required for pancreas development in Xenopus laevis. Development 2018; 145:dev.161372. [PMID: 29769220 PMCID: PMC6031401 DOI: 10.1242/dev.161372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 05/04/2018] [Indexed: 12/17/2022]
Abstract
Retinoic acid (RA) is required for pancreas specification in Xenopus and other vertebrates. However, the gene network that is directly induced by RA signalling in this context remains to be defined. By RNA sequencing of in vitro-generated pancreatic explants, we identified the genes encoding the transcription factor Hnf1β and the Wnt-receptor Fzd4/Fzd4s as direct RA target genes. Functional analyses of Hnf1b and Fzd4/Fzd4s in programmed pancreatic explants and whole embryos revealed their requirement for pancreatic progenitor formation and differentiation. Thus, Hnf1β and Fzd4/Fzd4s appear to be involved in pre-patterning events of the embryonic endoderm that allow pancreas formation in Xenopus.
Collapse
Affiliation(s)
- Maja B Gere-Becker
- Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Claudia Pommerenke
- Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.,Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | - Thomas Lingner
- Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.,Genevention GmbH, Rudolf-Wissel-Str. 28, 37079 Goettingen, Germany
| | - Tomas Pieler
- Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| |
Collapse
|
6
|
Nguyen TA, Smith BRC, Tate MD, Belz GT, Barrios MH, Elgass KD, Weisman AS, Baker PJ, Preston SP, Whitehead L, Garnham A, Lundie RJ, Smyth GK, Pellegrini M, O'Keeffe M, Wicks IP, Masters SL, Hunter CP, Pang KC. SIDT2 Transports Extracellular dsRNA into the Cytoplasm for Innate Immune Recognition. Immunity 2017; 47:498-509.e6. [PMID: 28916264 DOI: 10.1016/j.immuni.2017.08.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 06/26/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022]
Abstract
Double-stranded RNA (dsRNA) is a common by-product of viral infections and acts as a potent trigger of antiviral immunity. In the nematode C. elegans, sid-1 encodes a dsRNA transporter that is highly conserved throughout animal evolution, but the physiological role of SID-1 and its orthologs remains unclear. Here, we show that the mammalian SID-1 ortholog, SIDT2, is required to transport internalized extracellular dsRNA from endocytic compartments into the cytoplasm for immune activation. Sidt2-deficient mice exposed to extracellular dsRNA, encephalomyocarditis virus (EMCV), and herpes simplex virus 1 (HSV-1) show impaired production of antiviral cytokines and-in the case of EMCV and HSV-1-reduced survival. Thus, SIDT2 has retained the dsRNA transport activity of its C. elegans ortholog, and this transport is important for antiviral immunity.
Collapse
Affiliation(s)
- Tan A Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Blake R C Smith
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marilou H Barrios
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kirstin D Elgass
- Monash Micro Imaging, Monash University, Clayton, VIC, Australia
| | - Alexandra S Weisman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Paul J Baker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Simon P Preston
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Alexandra Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rachel J Lundie
- Burnet Institute, Melbourne, VIC, Australia; Biomedicine Discovery Institute, Department Biochemistry & Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; School of Mathematics & Statistics, University of Melbourne, Parkville, VIC, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Meredith O'Keeffe
- Burnet Institute, Melbourne, VIC, Australia; Biomedicine Discovery Institute, Department Biochemistry & Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ian P Wicks
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Seth L Masters
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Craig P Hunter
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Ken C Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Murdoch Childrens Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia; Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Li J, Zhang S, Amaya E. The cellular and molecular mechanisms of tissue repair and regeneration as revealed by studies in Xenopus. ACTA ACUST UNITED AC 2016; 3:198-208. [PMID: 27800170 PMCID: PMC5084359 DOI: 10.1002/reg2.69] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
Survival of any living organism critically depends on its ability to repair and regenerate damaged tissues and/or organs during its lifetime following injury, disease, or aging. Various animal models from invertebrates to vertebrates have been used to investigate the molecular and cellular mechanisms of wound healing and tissue regeneration. It is hoped that such studies will form the framework for identifying novel clinical treatments that will improve the healing and regenerative capacity of humans. Amongst these models, Xenopus stands out as a particularly versatile and powerful system. This review summarizes recent findings using this model, which have provided fundamental knowledge of the mechanisms responsible for efficient and perfect tissue repair and regeneration.
Collapse
Affiliation(s)
- Jingjing Li
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of BiologyMedicine and HealthUniversity of ManchesterManchesterM13 9PTUK
| | - Siwei Zhang
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of BiologyMedicine and HealthUniversity of ManchesterManchesterM13 9PTUK
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of BiologyMedicine and HealthUniversity of ManchesterManchesterM13 9PTUK
| |
Collapse
|
8
|
Blitz IL, Paraiso KD, Patrushev I, Chiu WTY, Cho KWY, Gilchrist MJ. A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo. Dev Biol 2016; 426:409-417. [PMID: 27475627 PMCID: PMC5596316 DOI: 10.1016/j.ydbio.2016.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 12/30/2022]
Abstract
Gene regulatory networks (GRNs) involve highly combinatorial interactions between transcription factors and short sequence motifs in cis-regulatory modules of target genes to control cellular phenotypes. The GRNs specifying most cell types are largely unknown and are the subject of wide interest. A catalog of transcription factors is a valuable tool toward obtaining a deeper understanding of the role of these critical effectors in any biological setting. Here we present a comprehensive catalog of the transcription factors for the diploid frog Xenopus tropicalis. We identify 1235 genes encoding DNA-binding transcription factors, comparable to the numbers found in typical mammalian species. In detail, the repertoire of X. tropicalis transcription factor genes is nearly identical to human and mouse, with the exception of zinc finger family members, and a small number of species/lineage-specific gene duplications and losses relative to the mammalian repertoires. We applied this resource to the identification of transcription factors differentially expressed in the early gastrula stage embryo. We find transcription factor enrichment in Spemann's organizer, the ventral mesoderm, ectoderm and endoderm, and report 218 TFs that show regionalized expression patterns at this stage. Many of these have not been previously reported as expressed in the early embryo, suggesting thus far unappreciated roles for many transcription factors in the GRNs regulating early development. We expect our transcription factor catalog will facilitate myriad studies using Xenopus as a model system to understand basic biology and human disease.
Collapse
Affiliation(s)
- Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, United States.
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, United States
| | - Ilya Patrushev
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway Mill Hill, London NW7 1AA, UK
| | - William T Y Chiu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, United States
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, United States.
| | - Michael J Gilchrist
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
9
|
Plautz CZ, Williams HC, Grainger RM. Functional Cloning Using a Xenopus Oocyte Expression System. J Vis Exp 2016:e53518. [PMID: 26862700 DOI: 10.3791/53518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Identification of genes responsible for embryonic induction poses a number of challenges; to name a few, secreted molecules of interest may be low in abundance, may not be secreted but tethered to the signaling cell(s), or may require the presence of binding partners or upstream regulatory molecules. Thus in a search for gene products capable of eliciting an early lens-inductive response in competent ectoderm, we utilized an expression cloning system that would allow identification of paracrine or juxtacrine factors as well as transcriptional or other regulatory proteins. Pools of mRNA were injected into Xenopus oocytes, and responding tissue placed directly on the oocytes and co-cultured. Following functional cloning of ldb1 from a neural plate stage cDNA library based on its ability to elicit the expression of the early lens placode marker foxe3 in lens-competent animal cap ectoderm, we characterized the mRNA expression pattern, and assayed developmental progression following overexpression or knockdown of ldb1. This system is suitable in a very wide variety of contexts where identification of an inducer or its upstream regulatory molecules is sought using a functional response in competent tissue.
Collapse
|
10
|
De Domenico E, Owens NDL, Grant IM, Gomes-Faria R, Gilchrist MJ. Molecular asymmetry in the 8-cell stage Xenopus tropicalis embryo described by single blastomere transcript sequencing. Dev Biol 2015; 408:252-68. [PMID: 26100918 PMCID: PMC4684228 DOI: 10.1016/j.ydbio.2015.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/17/2022]
Abstract
Correct development of the vertebrate body plan requires the early definition of two asymmetric, perpendicular axes. The first axis is established during oocyte maturation, and the second is established by symmetry breaking shortly after fertilization. The physical processes generating the second asymmetric, or dorsal-ventral, axis are well understood, but the specific molecular determinants, presumed to be maternal gene products, are poorly characterized. Whilst enrichment of maternal mRNAs at the animal and vegetal poles in both the oocyte and the early embryo has been studied, little is known about the distribution of maternal mRNAs along either the dorsal-ventral or left-right axes during the early cleavage stages. Here we report an unbiased analysis of the distribution of maternal mRNA on all axes of the Xenopus tropicalis 8-cell stage embryo, based on sequencing of single blastomeres whose positions within the embryo are known. Analysis of pooled data from complete sets of blastomeres from four embryos has identified 908 mRNAs enriched in either the animal or vegetal blastomeres, of which 793 are not previously reported as enriched. In contrast, we find no evidence for asymmetric distribution along either the dorsal-ventral or left-right axes. We confirm that animal pole enrichment is on average distinctly lower than vegetal pole enrichment, and that considerable variation is found between reported enrichment levels in different studies. We use publicly available data to show that there is a significant association between genes with human disease annotation and enrichment at the animal pole. Mutations in the human ortholog of the most animally enriched novel gene, Slc35d1, are causative for Schneckenbecken dysplasia, and we show that a similar phenotype is produced by depletion of the orthologous protein in Xenopus embryos.
Collapse
Affiliation(s)
- Elena De Domenico
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Nick D L Owens
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Ian M Grant
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Rosa Gomes-Faria
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Michael J Gilchrist
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
11
|
Freeman J, Smith D, Latinkic B, Ewan K, Samuel L, Zollo M, Marino N, Tyas L, Jones N, Dale TC. A functional connectome: regulation of Wnt/TCF-dependent transcription by pairs of pathway activators. Mol Cancer 2015; 14:206. [PMID: 26643252 PMCID: PMC4672529 DOI: 10.1186/s12943-015-0475-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/23/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Wnt/β-catenin signaling is often portrayed as a simple pathway that is initiated by Wnt ligand at the cell surface leading, via linear series of interactions between 'core pathway' members, to the induction of nuclear transcription from genes flanked by β-catenin/TCF transcription factor binding sites. Wnt/β-catenin signaling is also regulated by a much larger set of 'non-core regulators'. However the relationship between 'non-core regulators' is currently not well understood. Aberrant activation of the pathway has been shown to drive tumorgenesis in a number of different tissues. METHODS Mammalian cells engineered to have a partially-active level of Wnt/β-catenin signaling were screened by transfection for proteins that up or down-regulated a mid-level of TCF-dependent transcription induced by transient expression of an activated LRP6 Wnt co-receptor (∆NLRP). RESULTS 141 novel regulators of TCF-dependent transcription were identified. Surprisingly, when tested without ∆NLRP activation, most up-regulators failed to alter TCF-dependent transcription. However, when expressed in pairs, 27 % (466/1170) functionally interacted to alter levels of TCF-dependent transcription. When proteins were displayed as nodes connected by their ability to co-operate in the regulation of TCF-dependent transcription, a network of functional interactions was revealed. In this network, 'core pathway' components (Eg. β-catenin, GSK-3, Dsh) were found to be the most highly connected nodes. Activation of different nodes in this network impacted on the sensitivity to Wnt pathway small molecule antagonists. CONCLUSIONS The 'functional connectome' identified here strongly supports an alternative model of the Wnt pathway as a complex context-dependent network. The network further suggests that mutational activation of highly connected Wnt signaling nodes predisposed cells to further context-dependent alterations in levels of TCF-dependent transcription that may be important during tumor progression and treatment.
Collapse
Affiliation(s)
- Jamie Freeman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - David Smith
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Branko Latinkic
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - Ken Ewan
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - Lee Samuel
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - Massimo Zollo
- Department of Molecular Medicine and Biotechnology and Centro di Ingegneria Genetica e Biotecnologia Avanzate, Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Natascia Marino
- Department of Molecular Medicine and Biotechnology and Centro di Ingegneria Genetica e Biotecnologia Avanzate, Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Lorraine Tyas
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - Nick Jones
- Department of Mathematics, Imperial College, London, SW7 2AZ, UK
| | - Trevor C Dale
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales, UK.
| |
Collapse
|
12
|
Grant IM, Balcha D, Hao T, Shen Y, Trivedi P, Patrushev I, Fortriede JD, Karpinka JB, Liu L, Zorn AM, Stukenberg PT, Hill DE, Gilchrist MJ. The Xenopus ORFeome: A resource that enables functional genomics. Dev Biol 2015; 408:345-57. [PMID: 26391338 PMCID: PMC4684507 DOI: 10.1016/j.ydbio.2015.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 08/18/2015] [Accepted: 09/09/2015] [Indexed: 12/18/2022]
Abstract
Functional characterisation of proteins and large-scale, systems-level studies are enabled by extensive sets of cloned open reading frames (ORFs) in an easily-accessible format that enables many different applications. Here we report the release of the first stage of the Xenopus ORFeome, which contains 8673 ORFs from the Xenopus Gene Collection (XGC) for Xenopus laevis, cloned into a Gateway® donor vector enabling rapid in-frame transfer of the ORFs to expression vectors. This resource represents an estimated 7871 unique genes, approximately 40% of the non-redundant X. laevis gene complement, and includes 2724 genes where the human ortholog has an association with disease. Transfer into the Gateway system was validated by 5' and 3' end sequencing of the entire collection and protein expression of a set of test clones. In a parallel process, the underlying ORF predictions from the original XGC collection were re-analysed to verify quality and full-length status, identifying those proteins likely to exhibit truncations when translated. These data are integrated into Xenbase, the Xenopus community database, which associates genomic, expression, function and human disease model metadata to each ORF, enabling end-users to search for ORFeome clones with links to commercial distributors of the collection. When coupled with the experimental advantages of Xenopus eggs and embryos, the ORFeome collection represents a valuable resource for functional genomics and disease modelling.
Collapse
Affiliation(s)
- Ian M Grant
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Dawit Balcha
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yun Shen
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Prasad Trivedi
- University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| | - Ilya Patrushev
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Joshua D Fortriede
- Xenbase, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - John B Karpinka
- Xenbase, Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Limin Liu
- University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| | - Aaron M Zorn
- Xenbase, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - P Todd Stukenberg
- University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Michael J Gilchrist
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
13
|
A pipeline for the systematic identification of non-redundant full-ORF cDNAs for polymorphic and evolutionary divergent genomes: Application to the ascidian Ciona intestinalis. Dev Biol 2015; 404:149-63. [PMID: 26025923 PMCID: PMC4528069 DOI: 10.1016/j.ydbio.2015.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/17/2022]
Abstract
Genome-wide resources, such as collections of cDNA clones encoding for complete proteins (full-ORF clones), are crucial tools for studying the evolution of gene function and genetic interactions. Non-model organisms, in particular marine organisms, provide a rich source of functional diversity. Marine organism genomes are, however, frequently highly polymorphic and encode proteins that diverge significantly from those of well-annotated model genomes. The construction of full-ORF clone collections from non-model organisms is hindered by the difficulty of predicting accurately the N-terminal ends of proteins, and distinguishing recent paralogs from highly polymorphic alleles. We report a computational strategy that overcomes these difficulties, and allows for accurate gene level clustering of transcript data followed by the automated identification of full-ORFs with correct 5'- and 3'-ends. It is robust to polymorphism, includes paralog calling and does not require evolutionary proximity to well annotated model organisms. We developed this pipeline for the ascidian Ciona intestinalis, a highly polymorphic member of the divergent sister group of the vertebrates, emerging as a powerful model organism to study chordate gene function, Gene Regulatory Networks and molecular mechanisms underlying human pathologies. Using this pipeline we have generated the first full-ORF collection for a highly polymorphic marine invertebrate. It contains 19,163 full-ORF cDNA clones covering 60% of Ciona coding genes, and full-ORF orthologs for approximately half of curated human disease-associated genes.
Collapse
|
14
|
Geach TJ, Hirst EMA, Zimmerman LB. Contractile activity is required for Z-disc sarcomere maturation in vivo. Genesis 2015; 53:299-307. [PMID: 25845369 PMCID: PMC4676352 DOI: 10.1002/dvg.22851] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 01/16/2023]
Abstract
Sarcomere structure underpins structural integrity, signaling, and force transmission in the muscle. In embryos of the frog Xenopus tropicalis, muscle contraction begins even while sarcomerogenesis is ongoing. To determine whether contractile activity plays a role in sarcomere formation in vivo, chemical tools were used to block acto-myosin contraction in embryos of the frog X. tropicalis, and Z-disc assembly was characterized in the paralyzed dicky ticker mutant. Confocal and ultrastructure analysis of paralyzed embryos showed delayed Z-disc formation and defects in thick filament organization. These results suggest a previously undescribed role for contractility in sarcomere maturation in vivo. genesis 53:299–307, 2015. © 2015 The Authors. Genesis Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Timothy J Geach
- Division of Developmental Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Elizabeth M A Hirst
- Division of Developmental Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Lyle B Zimmerman
- Division of Developmental Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| |
Collapse
|
15
|
Fellgett SW, Maguire RJ, Pownall ME. Sulf1 has ligand-dependent effects on canonical and non-canonical Wnt signalling. J Cell Sci 2015; 128:1408-21. [PMID: 25681501 PMCID: PMC4379729 DOI: 10.1242/jcs.164467] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Wnt signalling plays essential roles during embryonic development and is known to be mis-regulated in human disease. There are many molecular mechanisms that ensure tight regulation of Wnt activity. One such regulator is the heparan-sulfate-specific 6-O-endosulfatase Sulf1. Sulf1 acts extracellularly to modify the structure of heparan sulfate chains to affect the bio-availability of Wnt ligands. Sulf1 could, therefore, influence the formation of Wnt signalling complexes to modulate the activation of both canonical and non-canonical pathways. In this study, we use well-established assays in Xenopus to investigate the ability of Sulf1 to modify canonical and non-canonical Wnt signalling. In addition, we model the ability of Sulf1 to influence morphogen gradients using fluorescently tagged Wnt ligands in ectodermal explants. We show that Sulf1 overexpression has ligand-specific effects on Wnt signalling: it affects membrane accumulation and extracellular levels of tagged Wnt8a and Wnt11b ligands differently, and inhibits the activity of canonical Wnt8a but enhances the activity of non-canonical Wnt11b.
Collapse
|
16
|
Chiu WT, Charney Le R, Blitz IL, Fish MB, Li Y, Biesinger J, Xie X, Cho KWY. Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program. Development 2014; 141:4537-47. [PMID: 25359723 DOI: 10.1242/dev.107227] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nodal/TGFβ signaling regulates diverse biological responses. By combining RNA-seq on Foxh1 and Nodal signaling loss-of-function embryos with ChIP-seq of Foxh1 and Smad2/3, we report a comprehensive genome-wide interaction between Foxh1 and Smad2/3 in mediating Nodal signaling during vertebrate mesendoderm development. This study significantly increases the total number of Nodal target genes regulated by Foxh1 and Smad2/3, and reinforces the notion that Foxh1-Smad2/3-mediated Nodal signaling directly coordinates the expression of a cohort of genes involved in the control of gene transcription, signaling pathway modulation and tissue morphogenesis during gastrulation. We also show that Foxh1 may function independently of Nodal signaling, in addition to its role as a transcription factor mediating Nodal signaling via Smad2/3. Finally, we propose an evolutionarily conserved interaction between Foxh1 and PouV, a mechanism observed in Pou5f1-mediated regulation of pluripotency in human embryonic stem and epiblast cells.
Collapse
Affiliation(s)
- William T Chiu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Rebekah Charney Le
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Margaret B Fish
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Yi Li
- Department of Computer Science, University of California, Irvine, CA 92697-2300, USA
| | - Jacob Biesinger
- Department of Computer Science, University of California, Irvine, CA 92697-2300, USA
| | - Xiaohui Xie
- Department of Computer Science, University of California, Irvine, CA 92697-2300, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| |
Collapse
|
17
|
Zhu R, Chen ZY, Wang J, Yuan JD, Liao XY, Gui JF, Zhang QY. Thymus cDNA library survey uncovers novel features of immune molecules in Chinese giant salamander Andrias davidianus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:413-422. [PMID: 24909429 DOI: 10.1016/j.dci.2014.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
A ranavirus-induced thymus cDNA library was constructed from Chinese giant salamander, the largest extant amphibian species. Among the 137 putative immune-related genes derived from this library, these molecules received particular focus: immunoglobulin heavy chains (IgM, IgD, and IgY), IFN-inducible protein 6 (IFI6), and T cell receptor beta chain (TCRβ). Several unusual features were uncovered: IgD displays a structure pattern distinct from those described for other amphibians by having only four constant domains plus a hinge region. A unique IgY form (IgY(ΔFc)), previously undescribed in amphibians, is present in serum. Alternative splicing is observed to generate IgH diversification. IFI6 is newly-identified in amphibians, which occurs in two forms divergent in subcelluar distribution and antiviral activity. TCRβ immunoscope profile follows the typical vertebrate pattern, implying a polyclonal T cell repertoire. Collectively, the pioneering survey of ranavirus-induced thymus cDNA library from Chinese giant salamander reveals immune components and characteristics in this primitive amphibian.
Collapse
Affiliation(s)
- Rong Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhong-Yuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jiang-Di Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiang-Yong Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
18
|
Carboxy terminus of GATA4 transcription factor is required for its cardiogenic activity and interaction with CDK4. Mech Dev 2014; 134:31-41. [PMID: 25241353 PMCID: PMC4259525 DOI: 10.1016/j.mod.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/02/2014] [Accepted: 09/15/2014] [Indexed: 12/15/2022]
Abstract
Carboxy terminal region of GATA4 is required for cardiogenesis in Xenopus pluripotent explants and in embryos. Carboxy terminus of GATA4 interacts with CDK4. CDK4 enhances transcriptional and cardiogenic activity of GATA4. GATA4-Tbx5 and GATA4-FOG2 interactions are not required for cardiogenesis.
GATA4-6 transcription factors regulate numerous aspects of development and homeostasis in multiple tissues of mesodermal and endodermal origin. In the heart, the best studied of these factors, GATA4, has multiple distinct roles in cardiac specification, differentiation, morphogenesis, hypertrophy and survival. To improve understanding of how GATA4 achieves its numerous roles in the heart, here we have focused on the carboxy-terminal domain and the residues required for interaction with cofactors FOG2 and Tbx5. We present evidence that the carboxy terminal region composed of amino acids 362–400 is essential for mediating cardiogenesis in Xenopus pluripotent explants and embryos. In contrast, the same region is not required for endoderm-inducing activity of GATA4. Further evidence is presented that the carboxy terminal cardiogenic region of GATA4 does not operate as a generic transcriptional activator. Potential mechanism of action of the carboxy terminal end of GATA4 is provided by the results showing physical and functional interaction with CDK4, including the enhancement of cardiogenic activity of GATA4 by CDK4. These results establish CDK4 as a GATA4 partner in cardiogenesis. The interactions of GATA4 with its other well described cofactors Tbx5 and FOG2 are known to be involved in heart morphogenesis, but their requirement for cardiac differentiation is unknown. We report that the mutations that disrupt interactions of GATA4 with Tbx5 and FOG2, G295S and V217G, respectively, do not impair cardiogenic activity of GATA4. These findings add support to the view that distinct roles of GATA4 in the heart are mediated by different determinants of the protein. Finally, we show that the rat GATA4 likely induces cardiogenesis cell autonomously or directly as it does not require activity of endodermal transcription factor Sox17, a GATA4 target gene that induces cardiogenesis non-cell autonomously.
Collapse
|
19
|
Collart C, Owens NDL, Bhaw-Rosun L, Cooper B, De Domenico E, Patrushev I, Sesay AK, Smith JN, Smith JC, Gilchrist MJ. High-resolution analysis of gene activity during the Xenopus mid-blastula transition. Development 2014; 141:1927-39. [PMID: 24757007 PMCID: PMC3994770 DOI: 10.1242/dev.102012] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss of synchronous cell divisions. Little is known about what triggers the activation of transcription or how newly expressed genes interact with each other. Here, we use high-resolution expression profiling to identify three waves of gene activity: a post-fertilisation wave involving polyadenylation of maternal transcripts; a broad wave of zygotic transcription detectable as early as the seventh cleavage and extending beyond the MBT at the twelfth cleavage; and a shorter post-MBT wave of transcription that becomes apparent as development proceeds. Our studies have also allowed us to define a set of maternal mRNAs that are deadenylated shortly after fertilisation, and are likely to be degraded thereafter. Experimental analysis indicates that the polyadenylation of maternal transcripts is necessary for the establishment of proper levels of zygotic transcription at the MBT, and that genes activated in the second wave of expression, including Brachyury and Mixer, contribute to the regulation of genes expressed in the third. Together, our high-resolution time series and experimental studies have yielded a deeper understanding of the temporal organisation of gene regulatory networks in the early Xenopus embryo.
Collapse
Affiliation(s)
- Clara Collart
- Division of Systems Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Young JJ, Kjolby RAS, Kong NR, Monica SD, Harland RM. Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus. Development 2014; 141:1683-93. [PMID: 24715458 DOI: 10.1242/dev.099374] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amphibian neural development occurs as a two-step process: (1) induction specifies a neural fate in undifferentiated ectoderm; and (2) transformation induces posterior spinal cord and hindbrain. Signaling through the Fgf, retinoic acid (RA) and Wnt/β-catenin pathways is necessary and sufficient to induce posterior fates in the neural plate, yet a mechanistic understanding of the process is lacking. Here, we screened for factors enriched in posterior neural tissue and identify spalt-like 4 (sall4), which is induced by Fgf. Knockdown of Sall4 results in loss of spinal cord marker expression and increased expression of pou5f3.2 (oct25), pou5f3.3 (oct60) and pou5f3.1 (oct91) (collectively, pou5f3 genes), the closest Xenopus homologs of mammalian stem cell factor Pou5f1 (Oct4). Overexpression of the pou5f3 genes results in the loss of spinal cord identity and knockdown of pou5f3 function restores spinal cord marker expression in Sall4 morphants. Finally, knockdown of Sall4 blocks the posteriorizing effects of Fgf and RA signaling in the neurectoderm. These results suggest that Sall4, activated by posteriorizing signals, represses the pou5f3 genes to provide a permissive environment allowing for additional Wnt/Fgf/RA signals to posteriorize the neural plate.
Collapse
Affiliation(s)
- John J Young
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Some organisms have a remarkable ability to heal wounds without scars and to regenerate complex tissues following injury. By gaining a more complete understanding of the biological mechanisms that promote scar-free healing and tissue regeneration, it is hoped that novel treatments that can enhance the healing and regenerative capacity of human patients can be found. In the present article, we briefly examine the genetic, molecular and cellular mechanisms underlying the regeneration of the Xenopus tadpole tail.
Collapse
|
22
|
Bansal A, Kwon ES, Conte D, Liu H, Gilchrist MJ, MacNeil LT, Tissenbaum HA. Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan. LONGEVITY & HEALTHSPAN 2014; 3:5. [PMID: 24834345 PMCID: PMC4022319 DOI: 10.1186/2046-2395-3-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/04/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Insulin/IGF-1 signaling plays a central role in longevity across phylogeny. In C. elegans, the forkhead box O (FOXO) transcription factor, DAF-16, is the primary target of insulin/IGF-1 signaling, and multiple isoforms of DAF-16 (a, b, and d/f) modulate lifespan, metabolism, dauer formation, and stress resistance. Thus far, across phylogeny modulation of mammalian FOXOs and DAF-16 have focused on post-translational regulation with little focus on transcriptional regulation. In C. elegans, we have previously shown that DAF-16d/f cooperates with DAF-16a to promote longevity. In this study, we generated transgenic strains expressing near-endogenous levels of either daf-16a or daf-16d/f, and examined temporal expression of the isoforms to further define how these isoforms contribute to lifespan regulation. RESULTS Here, we show that DAF-16a is sensitive both to changes in gene dosage and to alterations in the level of insulin/IGF-1 signaling. Interestingly, we find that as worms age, the intestinal expression of daf-16d/f but not daf-16a is dramatically upregulated at the level of transcription. Preventing this transcriptional upregulation shortens lifespan, indicating that transcriptional regulation of daf-16d/f promotes longevity. In an RNAi screen of transcriptional regulators, we identify elt-2 (GATA transcription factor) and swsn-1 (core subunit of SWI/SNF complex) as key modulators of daf-16d/f gene expression. ELT-2 and another GATA factor, ELT-4, promote longevity via both DAF-16a and DAF-16d/f while the components of SWI/SNF complex promote longevity specifically via DAF-16d/f. CONCLUSIONS Our findings indicate that transcriptional control of C. elegans FOXO/daf-16 is an essential regulatory event. Considering the conservation of FOXO across species, our findings identify a new layer of FOXO regulation as a potential determinant of mammalian longevity and age-related diseases such as cancer and diabetes.
Collapse
Affiliation(s)
- Ankita Bansal
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eun-Soo Kwon
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 306-809, Korea
| | - Darryl Conte
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Haibo Liu
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael J Gilchrist
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | - Lesley T MacNeil
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Heidi A Tissenbaum
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
23
|
Dubaissi E, Rousseau K, Lea R, Soto X, Nardeosingh S, Schweickert A, Amaya E, Thornton DJ, Papalopulu N. A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis. Development 2014; 141:1514-25. [PMID: 24598166 PMCID: PMC3957375 DOI: 10.1242/dev.102426] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/02/2014] [Indexed: 02/05/2023]
Abstract
The larval epidermis of Xenopus is a bilayered epithelium, which is an excellent model system for the study of the development and function of mucosal and mucociliary epithelia. Goblet cells develop in the outer layer while multiciliated cells and ionocytes sequentially intercalate from the inner to the outer layer. Here, we identify and characterise a fourth cell type, the small secretory cell (SSC). We show that the development of these cells is controlled by the transcription factor Foxa1 and that they intercalate into the outer layer of the epidermis relatively late, at the same time as embryonic hatching. Ultrastructural and molecular characterisation shows that these cells have an abundance of large apical secretory vesicles, which contain highly glycosylated material, positive for binding of the lectin, peanut agglutinin, and an antibody to the carbohydrate epitope, HNK-1. By specifically depleting SSCs, we show that these cells are crucial for protecting the embryo against bacterial infection. Mass spectrometry studies show that SSCs secrete a glycoprotein similar to Otogelin, which may form the structural component of a mucus-like protective layer, over the surface of the embryo, and several potential antimicrobial substances. Our study completes the characterisation of all the epidermal cell types in the early tadpole epidermis and reinforces the suitability of this system for the in vivo study of complex epithelia, including investigation of innate immune defences.
Collapse
Affiliation(s)
- Eamon Dubaissi
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Karine Rousseau
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Robert Lea
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- The Healing Foundation Centre, University of Manchester, Manchester M13 9PT, UK
| | - Ximena Soto
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Siddarth Nardeosingh
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Axel Schweickert
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, D-70593 Stuttgart, Germany
| | - Enrique Amaya
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- The Healing Foundation Centre, University of Manchester, Manchester M13 9PT, UK
| | - David J. Thornton
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
24
|
Love NR, Ziegler M, Chen Y, Amaya E. Carbohydrate metabolism during vertebrate appendage regeneration: what is its role? How is it regulated?: A postulation that regenerating vertebrate appendages facilitate glycolytic and pentose phosphate pathways to fuel macromolecule biosynthesis. Bioessays 2013; 36:27-33. [PMID: 24264888 PMCID: PMC3992846 DOI: 10.1002/bies.201300110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We recently examined gene expression during Xenopus tadpole tail appendage regeneration and found that carbohydrate regulatory genes were dramatically altered during the regeneration process. In this essay, we speculate that these changes in gene expression play an essential role during regeneration by stimulating the anabolic pathways required for the reconstruction of a new appendage. We hypothesize that during regeneration, cells use leptin, slc2a3, proinsulin, g6pd, hif1α expression, receptor tyrosine kinase (RTK) signaling, and the production of reactive oxygen species (ROS) to promote glucose entry into glycolysis and the pentose phosphate pathway (PPP), thus stimulating macromolecular biosynthesis. We suggest that this metabolic shift is integral to the appendage regeneration program and that the Xenopus model is a powerful experimental system to further explore this phenomenon. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Nick R Love
- Department of Molecular Biology, University of Bergen, Bergen, Norway; The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK; Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Chuo-Ku, Kobe, Japan
| | | | | | | |
Collapse
|
25
|
A functional genome-wide in vivo screen identifies new regulators of signalling pathways during early Xenopus embryogenesis. PLoS One 2013; 8:e79469. [PMID: 24244509 PMCID: PMC3828355 DOI: 10.1371/journal.pone.0079469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/01/2013] [Indexed: 01/09/2023] Open
Abstract
Embryonic development requires exquisite regulation of several essential processes, such as patterning of tissues and organs, cell fate decisions, and morphogenesis. Intriguingly, these diverse processes are controlled by only a handful of signalling pathways, and mis-regulation in one or more of these pathways may result in a variety of congenital defects and diseases. Consequently, investigating how these signalling pathways are regulated at the molecular level is essential to understanding the mechanisms underlying vertebrate embryogenesis, as well as developing treatments for human diseases. Here, we designed and performed a large-scale gain-of-function screen in Xenopus embryos aimed at identifying new regulators of MAPK/Erk, PI3K/Akt, BMP, and TGF-β/Nodal signalling pathways. Our gain-of-function screen is based on the identification of gene products that alter the phosphorylation state of key signalling molecules, which report the activation state of the pathways. In total, we have identified 20 new molecules that regulate the activity of one or more signalling pathways during early Xenopus development. This is the first time that such a functional screen has been performed, and the findings pave the way toward a more comprehensive understanding of the molecular mechanisms regulating the activity of important signalling pathways under normal and pathological conditions.
Collapse
|
26
|
Li J, Zhang S, Soto X, Woolner S, Amaya E. ERK and phosphoinositide 3-kinase temporally coordinate different modes of actin-based motility during embryonic wound healing. J Cell Sci 2013; 126:5005-17. [PMID: 23986484 PMCID: PMC3820245 DOI: 10.1242/jcs.133421] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Embryonic wound healing provides a perfect example of efficient recovery of tissue integrity and homeostasis, which is vital for survival. Tissue movement in embryonic wound healing requires two functionally distinct actin structures: a contractile actomyosin cable and actin protrusions at the leading edge. Here, we report that the discrete formation and function of these two structures is achieved by the temporal segregation of two intracellular upstream signals and distinct downstream targets. The sequential activation of ERK and phosphoinositide 3-kinase (PI3K) signalling divides Xenopus embryonic wound healing into two phases. In the first phase, activated ERK suppresses PI3K activity, and is responsible for the activation of Rho and myosin-2, which drives actomyosin cable formation and constriction. The second phase is dominated by restored PI3K signalling, which enhances Rac and Cdc42 activity, leading to the formation of actin protrusions that drive migration and zippering. These findings reveal a new mechanism for coordinating different modes of actin-based motility in a complex tissue setting, namely embryonic wound healing.
Collapse
Affiliation(s)
- Jingjing Li
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
27
|
Massé KL, Collins RJ, Bhamra S, Seville RA, Jones EA. Anxa4 Genes are Expressed in Distinct Organ Systems in Xenopus laevis and tropicalis But are Functionally Conserved. Organogenesis 2012; 3:83-92. [PMID: 19279706 DOI: 10.4161/org.3.2.4945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 11/12/2007] [Indexed: 11/19/2022] Open
Abstract
Anxa4 belongs to the multigenic annexin family of proteins which are characterized by their ability to interact with membranes in a calcium-dependent manner. Defined as a marker for polarized epithelial cells, Anxa4 is believed to be involved in many cellular processes but its functions in vivo are still poorly understood. Previously, we cloned Xanx4 in Xenopus laevis (now referred to as anxa4a) and demonstrated its role during organogenesis of the pronephros, providing the first evidence of a specific function for this protein during the development of a vertebrate. Here, we describe the strict conservation of protein sequence and functional domains of anxa4 during vertebrate evolution. We also identify the paralog of anxa4a, anxa4b and show its specific temporal and spatial expression pattern is different from anxa4a. We show that anxa4 orthologs in X. laevis and tropicalis display expression domains in different organ systems. Whilst the anxa4a gene is mainly expressed in the kidney, Xt anxa4 is expressed in the liver. Finally, we demonstrate Xt anxa4 and anxa4a can display conserved function during kidney organogenesis, despite the fact that Xt anxa4 transcripts are not expressed in this domain. This study highlights the divergence of expression of homologous genes during Xenopus evolution and raises the potential problems of using X. tropicalis promoters in X. laevis.
Collapse
Affiliation(s)
- Karine L Massé
- Molecular Physiology Group; Department of Biological Sciences; University of Warwick; Coventry, UK
| | | | | | | | | |
Collapse
|
28
|
Tan MH, Au KF, Yablonovitch AL, Wills AE, Chuang J, Baker JC, Wong WH, Li JB. RNA sequencing reveals a diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. Genome Res 2012; 23:201-16. [PMID: 22960373 PMCID: PMC3530680 DOI: 10.1101/gr.141424.112] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Xenopus embryo has provided key insights into fate specification, the cell cycle, and other fundamental developmental and cellular processes, yet a comprehensive understanding of its transcriptome is lacking. Here, we used paired end RNA sequencing (RNA-seq) to explore the transcriptome of Xenopus tropicalis in 23 distinct developmental stages. We determined expression levels of all genes annotated in RefSeq and Ensembl and showed for the first time on a genome-wide scale that, despite a general state of transcriptional silence in the earliest stages of development, approximately 150 genes are transcribed prior to the midblastula transition. In addition, our splicing analysis uncovered more than 10,000 novel splice junctions at each stage and revealed that many known genes have additional unannotated isoforms. Furthermore, we used Cufflinks to reconstruct transcripts from our RNA-seq data and found that ∼13.5% of the final contigs are derived from novel transcribed regions, both within introns and in intergenic regions. We then developed a filtering pipeline to separate protein-coding transcripts from noncoding RNAs and identified a confident set of 6686 noncoding transcripts in 3859 genomic loci. Since the current reference genome, XenTro3, consists of hundreds of scaffolds instead of full chromosomes, we also performed de novo reconstruction of the transcriptome using Trinity and uncovered hundreds of transcripts that are missing from the genome. Collectively, our data will not only aid in completing the assembly of the Xenopus tropicalis genome but will also serve as a valuable resource for gene discovery and for unraveling the fundamental mechanisms of vertebrate embryogenesis.
Collapse
Affiliation(s)
- Meng How Tan
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gilchrist MJ. From expression cloning to gene modeling: the development of Xenopus gene sequence resources. Genesis 2012; 50:143-54. [PMID: 22344767 PMCID: PMC3488295 DOI: 10.1002/dvg.22008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/09/2011] [Accepted: 12/21/2011] [Indexed: 11/08/2022]
Abstract
The Xenopus community has made concerted efforts over the last 10–12 years systematically to improve the available sequence information for this amphibian model organism ideally suited to the study of early development in vertebrates. Here I review progress in the collection of both sequence data and physical clone reagents for protein coding genes. I conclude that we have cDNA sequences for around 50% and full-length clones for about 35% of the genes in Xenopus tropicalis, and similar numbers but a smaller proportion for Xenopus laevis. In addition, I demonstrate that the gaps in the current genome assembly create problems for the computational elucidation of gene sequences, and suggest some ways to ameliorate the effects of this. genesis 50:143–154, 2012. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael J Gilchrist
- Division of Systems Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
| |
Collapse
|
30
|
Love NR, Thuret R, Chen Y, Ishibashi S, Sabherwal N, Paredes R, Alves-Silva J, Dorey K, Noble AM, Guille MJ, Sasai Y, Papalopulu N, Amaya E. pTransgenesis: a cross-species, modular transgenesis resource. Development 2012; 138:5451-8. [PMID: 22110059 DOI: 10.1242/dev.066498] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As studies aim increasingly to understand key, evolutionarily conserved properties of biological systems, the ability to move transgenesis experiments efficiently between organisms becomes essential. DNA constructions used in transgenesis usually contain four elements, including sequences that facilitate transgene genome integration, a selectable marker and promoter elements driving a coding gene. Linking these four elements in a DNA construction, however, can be a rate-limiting step in the design and creation of transgenic organisms. In order to expedite the construction process and to facilitate cross-species collaborations, we have incorporated the four common elements of transgenesis into a modular, recombination-based cloning system called pTransgenesis. Within this framework, we created a library of useful coding sequences, such as various fluorescent protein, Gal4, Cre-recombinase and dominant-negative receptor constructs, which are designed to be coupled to modular, species-compatible selectable markers, promoters and transgenesis facilitation sequences. Using pTransgenesis in Xenopus, we demonstrate Gal4-UAS binary expression, Cre-loxP-mediated fate-mapping and the establishment of novel, tissue-specific transgenic lines. Importantly, we show that the pTransgenesis resource is also compatible with transgenesis in Drosophila, zebrafish and mammalian cell models. Thus, the pTransgenesis resource fosters a cross-model standardization of commonly used transgenesis elements, streamlines DNA construct creation and facilitates collaboration between researchers working on different model organisms.
Collapse
Affiliation(s)
- Nick R Love
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bowes J. On-line resources for Xenopus. Methods Mol Biol 2012; 917:541-562. [PMID: 22956109 PMCID: PMC4300944 DOI: 10.1007/978-1-61779-992-1_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Since the advent of computational methods in biology, the quantity of biological data has grown exponentially. These data support genomic, genetic, developmental, and other forms of biological experimentation. The number of on-line resources has kept pace with the growth in data. Xenopus has perhaps lagged some of the other model organisms in developing resources, but is now quickly catching up. There are now a number of well-established and developing resources for Xenopus. This chapter looks beyond the widely known public databases, Genbank and the EBI, and describes how the researcher can use a number of central sites such as Xenbase, UniProtKB, and major genome browsers to navigate to a variety of different resources.
Collapse
Affiliation(s)
- Jeff Bowes
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
32
|
Abstract
Gene expression data for Xenopus are collected and curated in diverse forms and locations. The intention of this chapter is to give the reader a guide to the publicly accessible databases where these data can be found and an idea of the current scope and limitations of the data in these resources. Instructions are given on how to access and interpret the data provided by the NCBI Gene database, Xenbase, and the Xenopus full-length EST, quickImage, and Xenmark databases.
Collapse
|
33
|
Lee-Liu D, Almonacid LI, Faunes F, Melo F, Larrain J. Transcriptomics using next generation sequencing technologies. Methods Mol Biol 2012; 917:293-317. [PMID: 22956096 DOI: 10.1007/978-1-61779-992-1_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Next generation sequencing technologies may now be applied to the study of transcriptomics. RNA-Seq or RNA sequencing employs high-throughput sequencing of complementary DNA fragments delivering a transcriptional profile. In this chapter, we aim to provide a starting point for Xenopus researchers planning on starting an RNA-Seq transcriptomics study. We begin by providing a section on template isolation and library preparation. The next section comprises the main bioinformatics procedures that need to be performed for raw data processing, normalization, and differential gene expression. Finally, we have included a section on studying deep sequencing results in Xenopus, which offers general guidance as to what can be done in this model.
Collapse
Affiliation(s)
- Dasfne Lee-Liu
- Center for Aging and Regeneration and Millennium Nucleus in Regenerative Biology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
34
|
Harland RM, Grainger RM. Xenopus research: metamorphosed by genetics and genomics. Trends Genet 2011; 27:507-15. [PMID: 21963197 PMCID: PMC3601910 DOI: 10.1016/j.tig.2011.08.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/25/2011] [Accepted: 08/25/2011] [Indexed: 01/18/2023]
Abstract
Research using Xenopus takes advantage of large, abundant eggs and readily manipulated embryos in addition to conserved cellular, developmental and genomic organization with mammals. Research on Xenopus has defined key principles of gene regulation and signal transduction, embryonic induction, morphogenesis and patterning as well as cell cycle regulation. Genomic and genetic advances in this system, including the development of Xenopus tropicalis as a genetically tractable complement to the widely used Xenopus laevis, capitalize on the classical strengths and wealth of achievements. These attributes provide the tools to tackle the complex biological problems of the new century, including cellular reprogramming, organogenesis, regeneration, gene regulatory networks and protein interactions controlling growth and development, all of which provide insights into a multitude of human diseases and their potential treatments.
Collapse
Affiliation(s)
- Richard M Harland
- Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California Berkeley, CA 94720, USA
| | | |
Collapse
|
35
|
Love NR, Chen Y, Bonev B, Gilchrist MJ, Fairclough L, Lea R, Mohun TJ, Paredes R, Zeef LAH, Amaya E. Genome-wide analysis of gene expression during Xenopus tropicalis tadpole tail regeneration. BMC DEVELOPMENTAL BIOLOGY 2011; 11:70. [PMID: 22085734 PMCID: PMC3247858 DOI: 10.1186/1471-213x-11-70] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 11/15/2011] [Indexed: 01/08/2023]
Abstract
Background The molecular mechanisms governing vertebrate appendage regeneration remain poorly understood. Uncovering these mechanisms may lead to novel therapies aimed at alleviating human disfigurement and visible loss of function following injury. Here, we explore tadpole tail regeneration in Xenopus tropicalis, a diploid frog with a sequenced genome. Results We found that, like the traditionally used Xenopus laevis, the Xenopus tropicalis tadpole has the capacity to regenerate its tail following amputation, including its spinal cord, muscle, and major blood vessels. We examined gene expression using the Xenopus tropicalis Affymetrix genome array during three phases of regeneration, uncovering more than 1,000 genes that are significantly modulated during tail regeneration. Target validation, using RT-qPCR followed by gene ontology (GO) analysis, revealed a dynamic regulation of genes involved in the inflammatory response, intracellular metabolism, and energy regulation. Meta-analyses of the array data and validation by RT-qPCR and in situ hybridization uncovered a subset of genes upregulated during the early and intermediate phases of regeneration that are involved in the generation of NADP/H, suggesting that these pathways may be important for proper tail regeneration. Conclusions The Xenopus tropicalis tadpole is a powerful model to elucidate the genetic mechanisms of vertebrate appendage regeneration. We have produced a novel and substantial microarray data set examining gene expression during vertebrate appendage regeneration.
Collapse
Affiliation(s)
- Nick R Love
- Faculty of Life Sciences, University of Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rana AA, Roper SJ, Palmer EA, Smith JC. Loss of Xenopus tropicalis EMSY causes impairment of gastrulation and upregulation of p53. N Biotechnol 2011; 28:334-41. [PMID: 21056705 PMCID: PMC3122151 DOI: 10.1016/j.nbt.2010.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 10/29/2010] [Accepted: 10/30/2010] [Indexed: 01/06/2023]
Abstract
EMSY interacts directly with BRCA2 and links the BRCA2 pathway to sporadic breast and ovarian cancer. It also interacts with BS69 and HP1b, both of which are involved in chromatin remodelling, and with NIF-1 and DBC-1 in the regulation of nuclear receptor-mediated transcription. Here we investigate the function of EMSY during amphibian development, and in doing so provide the first loss-of-function analysis of this protein. Injection of Xenopus tropicalis embryos with antisense morpholino oligonucleotides targeting XtEMSY impairs gastrulation movements, disrupts dorsal structures, and kills embryos by tailbud stages. Consistent with these observations, regional markers such as Xbra, Chd, Gsc, Shh, Sox3 and Sox17 are downregulated. In contrast to these regional markers, expression of p53 is upregulated in such embryos, and at later stages Bax expression is elevated and apoptotic cells can be detected. Our results demonstrate that EMSY has an essential role in development and they provide an in vivo loss-of-function model that might be used to explore the biochemical functions of this protein in more detail.
Collapse
Affiliation(s)
- Amer A. Rana
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Zoology, University of Cambridge, Cambridge, UK
- Division of Respiratory Medicine, Department of Medicine, Box 157, 5th Floor, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Stephen J. Roper
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Zoology, University of Cambridge, Cambridge, UK
- The Babraham Institute, Cambridge CB22 3AT, UK
| | - Elizabeth A. Palmer
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Zoology, University of Cambridge, Cambridge, UK
- Protein Technology Group, Babraham Bioscience Technologies, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - James C. Smith
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Zoology, University of Cambridge, Cambridge, UK
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
37
|
Figueirêdo LC, Faria-Campos AC, Astolfi-Filho S, Azevedo JL. Identification and isolation of full-length cDNA sequences by sequencing and analysis of expressed sequence tags from guarana (Paullinia cupana). GENETICS AND MOLECULAR RESEARCH 2011; 10:1188-99. [PMID: 21732283 DOI: 10.4238/vol10-2gmr1124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The current intense production of biological data, generated by sequencing techniques, has created an ever-growing volume of unanalyzed data. We reevaluated data produced by the guarana (Paullinia cupana) transcriptome sequencing project to identify cDNA clones with complete coding sequences (full-length clones) and complete sequences of genes of biotechnological interest, contributing to the knowledge of biological characteristics of this organism. We analyzed 15,490 ESTs of guarana in search of clones with complete coding regions. A total of 12,402 sequences were analyzed using BLAST, and 4697 full-length clones were identified, responsible for the production of 2297 different proteins. Eighty-four clones were identified as full-length for N-methyltransferase and 18 were sequenced in both directions to obtain the complete genome sequence, and confirm the search made in silico for full-length clones. Phylogenetic analyses were made with the complete genome sequences of three clones, which showed only 0.017% dissimilarity; these are phylogenetically close to the caffeine synthase of Theobroma cacao. The search for full-length clones allowed the identification of numerous clones that had the complete coding region, demonstrating this to be an efficient and useful tool in the process of biological data mining. The sequencing of the complete coding region of identified full-length clones corroborated the data from the in silico search, strengthening its efficiency and utility.
Collapse
Affiliation(s)
- L C Figueirêdo
- Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, AM, Brasil.
| | | | | | | |
Collapse
|
38
|
Wu MY, Ramel MC, Howell M, Hill CS. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. PLoS Biol 2011; 9:e1000593. [PMID: 21358802 PMCID: PMC3039673 DOI: 10.1371/journal.pbio.1000593] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/31/2010] [Indexed: 11/18/2022] Open
Abstract
Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and thus neural crest specification.
Collapse
Affiliation(s)
- Mary Y. Wu
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
| | - Marie-Christine Ramel
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
| | - Michael Howell
- High-Throughput Screening Facility, Cancer Research UK London Research Institute, London, United Kingdom
| | - Caroline S. Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
The ANISEED database: digital representation, formalization, and elucidation of a chordate developmental program. Genome Res 2010; 20:1459-68. [PMID: 20647237 DOI: 10.1101/gr.108175.110] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions.
Collapse
|
40
|
Cai X, Patel S. Degeneration of an intracellular ion channel in the primate lineage by relaxation of selective constraints. Mol Biol Evol 2010; 27:2352-9. [PMID: 20463046 DOI: 10.1093/molbev/msq122] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ion channel genes are highly conserved and are rarely degenerated in the primate lineage leading to humans. So far, the only well-characterized ion channel known to be degenerated in primates is the plasma membrane transient receptor potential channel TRPC2, possibly due to changes in the pheromone signaling. Here, by analyzing the sequence data from ten primate species, we have determined the degeneration process of the TPC3 gene that encodes a member of the two-pore channel (TPC) family recently implicated in Ca(2+) release by nicotinic acid adenine dinucleotide phosphate from intracellular acidic stores in animals. We show that degeneration of TPC3 likely began in the common ancestors of Apes and Old World monkeys through a conserved inactivating mutation, followed by additional deleterious mutations resulting in the generation of a TPC3 pseudogene in the descendant catarrhine lineage. Located at a chromosome recombination hot spot, catarrhine TPC3 pseudogenes underwent a series of lineage-specific rearrangements, including exon deletion and duplication. In contrast, we identify near full-length TPC3 sequences in New World monkeys and Prosimians and show that the gene is subjected to strong purifying selection and therefore likely functional. Our data provide the first evidence for relaxed functional constraints for an intracellular ion channel in primates and shed novel insights into the evolution and regulation of Ca(2+) signaling in the primate lineage.
Collapse
Affiliation(s)
- Xinjiang Cai
- Division of Cardiology, Department of Medicine, Duke University Medical Center, USA.
| | | |
Collapse
|
41
|
Nygard AB, Cirera S, Gilchrist MJ, Gorodkin J, Jørgensen CB, Fredholm M. A study of alternative splicing in the pig. BMC Res Notes 2010; 3:123. [PMID: 20444244 PMCID: PMC2882375 DOI: 10.1186/1756-0500-3-123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 05/05/2010] [Indexed: 11/10/2022] Open
Abstract
Background Since at least half of the genes in mammalian genomes are subjected to alternative splicing, alternative pre-mRNA splicing plays an important contribution to the complexity of the mammalian proteome. Expressed sequence tags (ESTs) provide evidence of a great number of possible alternative isoforms. With the EST resource for the domestic pig now containing more than one million porcine ESTs, it is possible to identify alternative splice forms of the individual transcripts in this species from the EST data with some confidence. Results The pig EST data generated by the Sino-Danish Pig Genome project has been assembled with publicly available ESTs and made available in the PigEST database. Using the Distiller package 2,515 EST clusters with candidate alternative isoforms were identified in the EST data with high confidence. In agreement with general observations in human and mouse, we find putative splice variants in about 30% of the contigs with more than 50 ESTs. Based on the criteria that a minimum of two EST sequences confirmed each splice event, a list of 100 genes with the most distinct tissue-specific alternative splice events was generated from the list of candidates. To confirm the tissue specificity of the splice events, 10 genes with functional annotation were randomly selected from which 16 individual splice events were chosen for experimental verification by quantitative PCR (qPCR). Six genes were shown to have tissue specific alternatively spliced transcripts with expression patterns matching those of the EST data. The remaining four genes had tissue-restricted expression of alternative spliced transcripts. Five out of the 16 splice events that were experimentally verified were found to be putative pig specific. Conclusions In accordance with human and rodent studies we estimate that approximately 30% of the porcine genes undergo alternative splicing. We found a good correlation between EST predicted tissue-specificity and experimentally validated splice events in different porcine tissue. This study indicates that a cluster size of around 50 ESTs is optimal for in silico detection of alternative splicing. Although based on a limited number of splice events, the study supports the notion that alternative splicing could have an important impact on species differentiation since 31% of the splice events studied appears to be species specific.
Collapse
Affiliation(s)
- Ann-Britt Nygard
- University of Copenhagen, Faculty of Life Sciences, Department of Basic Animal and Veterinary Sciences, Division of Genetics and Bioinformatics, Groennegaardsvej 3, 1870 Frederiksberg C, Denmark.
| | | | | | | | | | | |
Collapse
|
42
|
Endocytosis is required for efficient apical constriction during Xenopus gastrulation. Curr Biol 2010; 20:253-8. [PMID: 20096583 DOI: 10.1016/j.cub.2009.12.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 10/19/2022]
Abstract
Coordinated apical constriction (AC) in epithelial sheets drives tissue invagination [1, 2] and is required for diverse morphogenetic movements such as gastrulation [3], neurulation [4, 5], and organogenesis [6]. We showed previously that actomyosin contractility drives AC in Xenopus laevis bottle cells [7]; however, it remained unclear whether it does so in concert with other processes. Here we report that endocytosis-driven membrane remodeling is required for efficient AC. We found endosomes exclusively in bottle cells in the early gastrula. Disrupting endocytosis with dominant-negative dynamin or rab5 perturbed AC, with a significant decrease in constriction rate late in the process, suggesting that endocytosis operates downstream of actomyosin contractility to remove excess membrane. Additionally, disrupting endocytosis during neurulation inhibits AC in hingepoint cells, resulting in neural tube closure defects. Thus, membrane remodeling during AC could be a general mechanism to achieve efficient invagination in embryos.
Collapse
|
43
|
Collart C, Ramis JM, Down TA, Smith JC. Smicl is required for phosphorylation of RNA polymerase II and affects 3'-end processing of RNA at the midblastula transition in Xenopus. Development 2009; 136:3451-61. [PMID: 19783735 DOI: 10.1242/dev.027714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Smicl (Smad-interacting CPSF 30-like) is an unusual protein that interacts with transcription factors as well as with the cleavage and polyadenylation specificity factor (CPSF). Previous work has shown that Smicl is expressed maternally in the Xenopus embryo and is later required for transcription of Chordin. In this paper we search for additional targets of Smicl. We identify many genes whose onset of expression at the midblastula transition (MBT) requires Smicl and is correlated with the translocation of Smicl from cytoplasm to nucleus. At least one such gene, Xiro1, is regulated via 3'-end processing. In searching for a general mechanism by which Smicl might regulate gene expression at the MBT, we have discovered that it interacts with the tail of Rpb1, the largest subunit of RNA polymerase II. Our results show that Smicl is required for the phosphorylation of the Rpb1 tail at serine 2 of the repeated heptapeptide YSPTSPS. This site becomes hyperphosphorylated at the MBT, thus allowing the docking of proteins required for elongation of transcription and RNA processing. Our work links the onset of zygotic gene expression in the Xenopus embryo with the translocation of Smicl from cytoplasm to nucleus, the phosphorylation of Rpb1 and the 3'-end processing of newly transcribed mRNAs.
Collapse
Affiliation(s)
- Clara Collart
- Wellcome Trust/CR-UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
44
|
A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell 2009; 17:425-34. [PMID: 19758566 DOI: 10.1016/j.devcel.2009.08.005] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/30/2009] [Accepted: 08/17/2009] [Indexed: 12/27/2022]
Abstract
Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryogenesis. Here, we report on the epigenetic and transcriptome genome-wide maps of gastrula-stage Xenopus tropicalis embryos using massive parallel sequencing of cDNA (RNA-seq) and DNA obtained by chromatin immunoprecipitation (ChIP-seq) of histone H3 K4 and K27 trimethylation and RNA Polymerase II (RNAPII). These maps identify promoters and transcribed regions. Strikingly, genomic regions featuring opposing histone modifications are mostly transcribed, reflecting spatially regulated expression rather than bivalency as determined by expression profile analyses, sequential ChIP, and ChIP-seq on dissected embryos. Spatial differences in H3K27me3 deposition are predictive of localized gene expression. Moreover, the appearance of H3K4me3 coincides with zygotic gene activation, whereas H3K27me3 is predominantly deposited upon subsequent spatial restriction or repression of transcriptional regulators. These results reveal a hierarchy in the spatial control of zygotic gene activation.
Collapse
|
45
|
Chen Y, Costa RMB, Love NR, Soto X, Roth M, Paredes R, Amaya E. C/EBPalpha initiates primitive myelopoiesis in pluripotent embryonic cells. Blood 2009; 114:40-8. [PMID: 19420355 PMCID: PMC3747498 DOI: 10.1182/blood-2008-11-189159] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms that underlie the development of primitive myeloid cells in vertebrate embryos are not well understood. Here we characterize the role of cebpa during primitive myeloid cell development in Xenopus. We show that cebpa is one of the first known hematopoietic genes expressed in the embryo. Loss- and gain-of-function studies show that it is both necessary and sufficient for the development of functional myeloid cells. In addition, we show that cebpa misexpression leads to the precocious induction of myeloid cell markers in pluripotent prospective ectodermal cells, without the cells transitioning through a general mesodermal state. Finally, we use live imaging to show that cebpa-expressing cells exhibit many attributes of terminally differentiated myeloid cells, such as highly active migratory behavior, the ability to quickly and efficiently migrate toward wounds and phagocytose bacteria, and the ability to enter the circulation. Thus, C/EPBalpha is the first known single factor capable of initiating an entire myelopoiesis pathway in pluripotent cells in the embryo.
Collapse
Affiliation(s)
- Yaoyao Chen
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Ricardo M. B. Costa
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Nick R. Love
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Ximena Soto
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Martin Roth
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Roberto Paredes
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Enrique Amaya
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
46
|
Oka T, Miyahara M, Yamamoto J, Mitsui N, Fujii T, Tooi O, Kashiwagi K, Takase M, Kashiwagi A, Iguchi T. Application of metamorphosis assay to a native Japanese amphibian species, Rana rugosa, for assessing effects of thyroid system affecting chemicals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1400-1405. [PMID: 19394694 DOI: 10.1016/j.ecoenv.2009.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/27/2009] [Accepted: 03/30/2009] [Indexed: 05/27/2023]
Abstract
The aims of this study were to assess the utility of a metamorphosis assay for detecting thyroid hormone-disrupting chemicals using Rana rugosa, a domestic frog species in Japan, and to compare species differences in sensitivity to thyroxine (T(4)) and propylthiouracil (PTU) among R. rugosa, Xenopus laevis and Xenopus (Silurana) tropicalis. Tadpoles of R. rugosa (TK stages III/IV) were exposed to standard test chemicals for acceleration (T(4)) and inhibition (PTU) of metamorphosis for 28 days in semi-static condition and total body length and developmental stage (TK stage) were recorded every week. T(4) (0.61 and 2.24 microg/L in actual concentrations) and PTU (19.73, 76.83, and 155.67 mg/L in actual concentrations) induced significant acceleration and inhibition of metamorphosis, respectively. The present results indicate that the metamorphosis assay is successfully applied to the domestic frog species, R. rugosa, suggesting this assay can be used for the assessment of chemicals on ecological impacts in wild frog species.
Collapse
Affiliation(s)
- Tomohiro Oka
- Institute of Environmental Ecology, IDEA Consultants, Inc, Yaizu, Shizuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ogino H, Ochi H. Resources and transgenesis techniques for functional genomics in Xenopus. Dev Growth Differ 2009; 51:387-401. [PMID: 19382936 DOI: 10.1111/j.1440-169x.2009.01098.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent developments in genomic resources and high-throughput transgenesis techniques have allowed Xenopus to 'metamorphose' from a classic model for embryology to a leading-edge experimental system for functional genomics. This process has incorporated the fast-breeding diploid frog, Xenopus tropicalis, as a new model-system for vertebrate genomics and genetics. Sequencing of the X. tropicalis genome is nearly complete, and its comparison with mammalian sequences offers a reliable guide for the genome-wide prediction of cis-regulatory elements. Unique cDNA sets have been generated for both X. tropicalis and X. laevis, which have facilitated non-redundant, systematic gene expression screening and comprehensive gene expression analysis. A variety of transgenesis techniques are available for both X. laevis and X. tropicalis, and the appropriate procedure may be chosen depending on the purpose for which it is required. Effective use of these resources and techniques will help to reveal the overall picture of the complex wiring of gene regulatory networks that control vertebrate development.
Collapse
Affiliation(s)
- Hajime Ogino
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan.
| | | |
Collapse
|
48
|
Abstract
Phosphorylation is universally used for controlling protein function, but knowledge of the phosphoproteome in vertebrate embryos has been limited. However, recent technical advances make it possible to define an organism's phosphoproteome at a more comprehensive level. Xenopus laevis offers established advantages for analyzing the regulation of protein function by phosphorylation. Functionally unbiased, comprehensive information about the Xenopus phosphoproteome would provide a powerful guide for future studies of phosphorylation in a developmental context. To this end, we performed a phosphoproteomic analysis of Xenopus oocytes, eggs, and embryos using recently developed mass spectrometry methods. We identified 1,441 phosphorylation sites present on 654 different Xenopus proteins, including hundreds of previously unknown phosphorylation sites. This approach identified several phosphorylation sites described in the literature and/or evolutionarily conserved in other organisms, validating the data's quality. These data will serve as a powerful resource for the exploration of phosphorylation and protein function within a developmental context. Developmental Dynamics 238:1433-1443, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jered V. McGivern
- Department of Biomolecular Chemistry. University of Wisconsin, Madison. 1300 University Ave, Madison, WI 53706
| | - Danielle L. Swaney
- Department of Chemistry. University of Wisconsin, Madison. 1101 University Ave, Madison, WI 53706
| | - Joshua J. Coon
- Department of Biomolecular Chemistry. University of Wisconsin, Madison. 1300 University Ave, Madison, WI 53706
- Department of Chemistry. University of Wisconsin, Madison. 1101 University Ave, Madison, WI 53706
| | - Michael D. Sheets
- Department of Biomolecular Chemistry. University of Wisconsin, Madison. 1300 University Ave, Madison, WI 53706
| |
Collapse
|
49
|
Lea R, Papalopulu N, Amaya E, Dorey K. Temporal and spatial expression of FGF ligands and receptors during Xenopus development. Dev Dyn 2009; 238:1467-79. [PMID: 19322767 PMCID: PMC3737481 DOI: 10.1002/dvdy.21913] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor (FGF) signalling plays a major role during early vertebrate development. It is involved in the specification of the mesoderm, control of morphogenetic movements, patterning of the anterior-posterior axis, and neural induction. In mammals, 22 FGF ligands have been identified, which can be grouped into seven subfamilies according to their sequence homology and function. We have cloned 17 fgf genes from Xenopus tropicalis and have analysed their temporal expression by RT-PCR and spatial expression by whole mount in situ hybridisation at key developmental stages. It reveals the diverse expression pattern of fgf genes during early embryonic development. Furthermore, our analysis shows the transient nature of expression of several fgfs in a number of embryonic tissues. This study constitutes the most comprehensive description of the temporal and spatial expression pattern of fgf ligands and receptors during vertebrate development to date. Developmental Dynamics 238:1467-1479, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Robert Lea
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Nancy Papalopulu
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Enrique Amaya
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Karel Dorey
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
50
|
Lin AC, Tan CL, Lin CL, Strochlic L, Huang YS, Richter JD, Holt CE. Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development. Neural Dev 2009; 4:8. [PMID: 19254368 PMCID: PMC2661069 DOI: 10.1186/1749-8104-4-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 03/02/2009] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Translation in axons is required for growth cone chemotropic responses to many guidance cues. Although locally synthesized proteins are beginning to be identified, how specific mRNAs are selected for translation remains unclear. Control of poly(A) tail length by cytoplasmic polyadenylation element (CPE) binding protein 1 (CPEB1) is a conserved mechanism for mRNA-specific translational regulation that could be involved in regulating translation in axons. RESULTS We show that cytoplasmic polyadenylation is required in Xenopus retinal ganglion cell (RGC) growth cones for translation-dependent, but not translation-independent, chemotropic responses in vitro, and that inhibition of CPE binding through dominant-negative interference severely reduces axon outgrowth in vivo. CPEB1 mRNA transcripts are present at low levels in RGCs but, surprisingly, CPEB1 protein was not detected in eye or brain tissue, and CPEB1 loss-of-function does not affect chemotropic responses or pathfinding in vivo. UV cross-linking experiments suggest that CPE-binding proteins other than CPEB1 in the retina regulate retinal axon development. CONCLUSION These results indicate that cytoplasmic polyadenylation and CPE-mediated translational regulation are involved in retinal axon development, but that CPEB1 may not be the key regulator of polyadenylation in the developing retina.
Collapse
Affiliation(s)
- Andrew C Lin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Chin Lik Tan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge, CB2 2PY, UK
| | - Chien-Ling Lin
- Program in Molecular Medicine, University of Massachusetts Medical School, Plantation St, Worcester, MA 01605, USA
| | - Laure Strochlic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
- Institut National de la Santé et de la Recherche Médicale, Biologie des Jonctions Neuromusculaires, Université Paris V, Paris, France
| | - Yi-Shuian Huang
- Program in Molecular Medicine, University of Massachusetts Medical School, Plantation St, Worcester, MA 01605, USA
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2 Academia Road, Taipei 11529, Taiwan
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Plantation St, Worcester, MA 01605, USA
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| |
Collapse
|