1
|
Lee CJ, Jang SH, Lim J, Park H, Ahn SH, Park SY, Seo H, Song SJ, Shin JA, Choi C, Gee HY, Choi YH. Exosome-based targeted delivery of NF-κB ameliorates age-related neuroinflammation in the aged mouse brain. Exp Mol Med 2025; 57:235-248. [PMID: 39833561 PMCID: PMC11799301 DOI: 10.1038/s12276-024-01388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 01/22/2025] Open
Abstract
Neuroinflammation, a significant contributor to various neurodegenerative diseases, is strongly associated with the aging process; however, to date, no efficacious treatments for neuroinflammation have been developed. In aged mouse brains, the number of infiltrating immune cells increases, and the key transcription factor associated with increased chemokine levels is nuclear factor kappa B (NF-κB). Exosomes are potent therapeutics or drug delivery vehicles for various materials, including proteins and regulatory genes, to target cells. In the present study, we evaluated the therapeutic efficacy of exosomes loaded with a nondegradable form of IκB (Exo-srIκB), which inhibits the nuclear translocation of NF-κB to suppress age-related neuroinflammation. Single-cell RNA sequencing revealed that these anti-inflammatory exosomes targeted macrophages and microglia, reducing the expression of inflammation-related genes. Treatment with Exo-srIκB also suppressed the interactions between macrophages/microglia and T and B cells in the aged brain. We demonstrated that Exo-srIκB successfully alleviates neuroinflammation by primarily targeting activated macrophages and partially modulating the functions of age-related interferon-responsive microglia in the brain. Thus, our findings highlight Exo-srIκB as a potential therapeutic agent for treating age-related neuroinflammation.
Collapse
Affiliation(s)
- Chae-Jeong Lee
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea
| | - Seung Hyun Jang
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jiwoo Lim
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea
| | - Hyunju Park
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea
| | - So-Hee Ahn
- ILIAS Biologics Inc., Daejeon, 34014, Republic of Korea
| | | | - Hyangmi Seo
- ILIAS Biologics Inc., Daejeon, 34014, Republic of Korea
| | - Soo-Jin Song
- Department of Anatomy, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea
| | - Jung-A Shin
- Department of Anatomy, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea
| | - Chulhee Choi
- ILIAS Biologics Inc., Daejeon, 34014, Republic of Korea.
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Youn-Hee Choi
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea.
| |
Collapse
|
2
|
Huang T, Fakurazi S, Cheah PS, Ling KH. Dysregulation of REST and its target genes impacts the fate of neural progenitor cells in down syndrome. Sci Rep 2025; 15:2818. [PMID: 39843579 PMCID: PMC11754635 DOI: 10.1038/s41598-025-87314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Increasing shreds of evidence suggest that neurogenic-to-gliogenic shift may be critical to the abnormal neurodevelopment observed in individuals with Down syndrome (DS). REST, the Repressor Element-1 Silencing Transcription factor, regulates the differentiation and development of neural cells. Downregulation of REST may lead to defects in post-differentiation neuronal morphology in the brain of the DS fetal. This study aims to elucidate the role of REST in DS-derived NPCs using bioinformatics analyses and laboratory validations. We identified and validated vital REST-targeted DEGs: CD44, TGFB1, FN1, ITGB1, and COL1A1. Interestingly, these genes are involved in neurogenesis and gliogenesis in DS-derived NPCs. Furthermore, we identified nuclear REST loss and the neuroblast marker, DCX, was downregulated in DS human trisomic induced pluripotent stem cells (hiPSCs)-derived NPCs, whereas the glioblast marker, NFIA, was upregulated. Our findings indicate that the loss of REST is critical in the neurogenic-to-gliogenic shift observed in DS-derived NPCs. REST and its target genes may collectively regulate the NPC phenotype.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA® BRAIN), Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA® BRAIN), Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
- Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| |
Collapse
|
3
|
Jin M, Ma Z, Zhang H, Papetti AV, Dang R, Stillitano AC, Zou L, Goldman SA, Jiang P. Human-Mouse Chimeric Brain Models to Study Human Glial-Neuronal and Macroglial-Microglial Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601990. [PMID: 39005270 PMCID: PMC11244967 DOI: 10.1101/2024.07.03.601990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Human-mouse chimeric brain models, generated by transplanting human induced pluripotent stem cell (hiPSC)-derived neural cells, are valuable for studying the development and function of human neural cells in vivo. Understanding glial-glial and glial-neuronal interactions is essential for unraveling the complexities of brain function and developing treatments for neurological disorders. To explore these interactions between human neural cells in vivo, we co-engrafted hiPSC-derived neural progenitor cells together with primitive macrophage progenitors into the neonatal mouse brain. This approach creates human-mouse chimeric brains containing human microglia, macroglia (astroglia and oligodendroglia), and neurons. Using super-resolution imaging and 3D reconstruction techniques, we examine the dynamics between human neurons and glia, and observe human microglia pruning synapses of human neurons, and often engulfing neurons themselves. Single-cell RNA sequencing analysis of the chimeric brain uncovers a close recapitulation of the human glial progenitor cell population, along with a dynamic stage in astroglial development that mirrors the processes found in the human brain. Furthermore, cell-cell communication analysis highlights significant neuronal-glial and macroglial-microglial interactions, especially the interaction between adhesion molecules neurexins and neuroligins between neurons and astroglia, emphasizing their key role in synaptogenesis. We also observed interactions between microglia and astroglia mediated by SPP1, crucial for promoting microglia growth and astrogliosis, and the PTN-MK pathways, instrumental in homeostatic maintenance and development in macroglial progenitors. This innovative co-transplantation model opens up new avenues for exploring the complex pathophysiological mechanisms underlying human neurological diseases. It holds particular promise for studying disorders where glial-neuronal interactions and non-cell-autonomous effects play crucial roles.
Collapse
Affiliation(s)
- Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Ziyuan Ma
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Haiwei Zhang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Ava V. Papetti
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Rui Dang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Lisa Zou
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Steven A. Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Szeky B, Jurakova V, Fouskova E, Feher A, Zana M, Karl VR, Farkas J, Bodi-Jakus M, Zapletalova M, Pandey S, Kucera R, Lochman J, Dinnyes A. Efficient derivation of functional astrocytes from human induced pluripotent stem cells (hiPSCs). PLoS One 2024; 19:e0313514. [PMID: 39630626 PMCID: PMC11616838 DOI: 10.1371/journal.pone.0313514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
Astrocytes are specialized glial cell types of the central nervous system (CNS) with remarkably high abundance, morphological and functional diversity. Astrocytes maintain neural metabolic support, synapse regulation, blood-brain barrier integrity and immunological homeostasis through intricate interactions with other cells, including neurons, microglia, pericytes and lymphocytes. Due to their extensive intercellular crosstalks, astrocytes are also implicated in the pathogenesis of CNS disorders, such as ALS (amyotrophic lateral sclerosis), Parkinson's disease and Alzheimer's disease. Despite the critical importance of astrocytes in neurodegeneration and neuroinflammation are recognized, the lack of suitable in vitro systems limits their availability for modeling human brain pathologies. Here, we report the time-efficient, reproducible generation of astrocytes from human induced pluripotent stem cells (hiPSCs). Our hiPSC-derived astrocytes expressed characteristic astrocyte markers, such as GFAP, S100b, ALDH1L1 and AQP4. Furthermore, hiPSC-derived astrocytes displayed spontaneous calcium transients and responded to inflammatory stimuli by the secretion of type A1 and type A2 astrocyte-related cytokines.
Collapse
Affiliation(s)
| | - Veronika Jurakova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eliska Fouskova
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | | | | | | | | | - Martina Zapletalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Shashank Pandey
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Radek Kucera
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Immunochemistry Diagnostics, University Hospital Pilsen, Pilsen, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Andras Dinnyes
- BioTalentum Ltd, Godollo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Godollo, Hungary
| |
Collapse
|
5
|
Li C, Huynh NPT, Schanz SJ, Windrem MS, Goldman SA. JC virus spread is potentiated by glial replication and demyelination-linked glial proliferation. Brain 2024; 147:4131-4146. [PMID: 39133566 PMCID: PMC12098017 DOI: 10.1093/brain/awae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/02/2024] [Accepted: 06/29/2024] [Indexed: 11/14/2024] Open
Abstract
Progressive multifocal leukoencephalopathy is a demyelinating infection of the immunosuppressed brain, mediated by the gliotropic polyomavirus JCV. JCV replicates in human glial progenitor cells and astrocytes, which undergo viral T-antigen-triggered mitosis, enabling viral replication. We asked whether JCV spread might therefore be accelerated by glial proliferation. Using both in vitro analysis and a human glial chimeric mouse model of JCV infection, we found that dividing human astrocytes supported JCV propagation to a substantially greater degree than did mitotically quiescent cells. Accordingly, bulk and single-cell RNA-sequence analysis revealed that JCV-infected glia differentially manifested cell cycle-linked disruption of both DNA damage response and transcriptional regulatory pathways. In vivo, JCV infection of humanized glial chimeras was greatly accentuated by cuprizone-induced demyelination and its associated mobilization of glial progenitor cells. Importantly, in vivo infection triggered the death of both uninfected and infected glia, reflecting significant bystander death. Together, these data suggest that JCV propagation in progressive multifocal leukoencephalopathy might be accelerated by glial cell division. As such, the accentuated glial proliferation attending disease-associated demyelination might provide an especially favourable environment for JCV propagation, thus potentiating oligodendrocytic bystander death and further accelerating demyelination in susceptible hosts.
Collapse
Affiliation(s)
- Cui Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester NY 14604, USA
| | - Nguyen P T Huynh
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester NY 14604, USA
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen 1017, Denmark
- Sana Biotechnology, Cambridge, MA 02139, USA
| | - Steven J Schanz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester NY 14604, USA
| | - Martha S Windrem
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester NY 14604, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester NY 14604, USA
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen 1017, Denmark
- Sana Biotechnology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Thomas RA, Sirois J, Li S, Gestin A, Deyab G, Piscopo VE, Lépine P, Mathur M, Chen CXQ, Soubannier V, Goldsmith TM, Fawaz L, Durcan TM, Fon EA. CelltypeR: A flow cytometry pipeline to characterize single cells from brain organoids. iScience 2024; 27:110613. [PMID: 39224516 PMCID: PMC11367488 DOI: 10.1016/j.isci.2024.110613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/06/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Motivated by the cellular heterogeneity in complex tissues, particularly in brain and induced pluripotent stem cell (iPSC)-derived brain models, we developed a complete workflow to reproducibly characterize cell types in complex tissues. Our approach combines a flow cytometry (FC) antibody panel with our computational pipeline CelltypeR, enabling dataset aligning, unsupervised clustering optimization, cell type annotating, and statistical comparisons. Applied to human iPSC derived midbrain organoids, it successfully identified the major brain cell types. We performed fluorescence-activated cell sorting of CelltypeR-defined astrocytes, radial glia, and neurons, exploring transcriptional states by single-cell RNA sequencing. Among the sorted neurons, we identified subgroups of dopamine neurons: one reminiscent of substantia nigra cells most vulnerable in Parkinson's disease. Finally, we used our workflow to track cell types across a time course of organoid differentiation. Overall, our adaptable analysis framework provides a generalizable method for reproducibly identifying cell types across FC datasets in complex tissues.
Collapse
Affiliation(s)
- Rhalena A. Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Julien Sirois
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Shuming Li
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexandre Gestin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Ghislaine Deyab
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Valerio E.C. Piscopo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Paula Lépine
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Meghna Mathur
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Carol X.-Q. Chen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Vincent Soubannier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Taylor M. Goldsmith
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Lama Fawaz
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Thomas M. Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Edward A. Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
7
|
Yi R, Chen S, Guan M, Liao C, Zhu Y, Ip JPK, Ye T, Chen Y. A single-cell transcriptomic dataset of pluripotent stem cell-derived astrocytes via NFIB/SOX9 overexpression. Sci Data 2024; 11:987. [PMID: 39256463 PMCID: PMC11387634 DOI: 10.1038/s41597-024-03823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Astrocytes, the predominant glial cells in the central nervous system, play essential roles in maintaining brain function. Reprogramming induced pluripotent stem cells (iPSCs) to become astrocytes through overexpression of the transcription factors, NFIB and SOX9, is a rapid and efficient approach for studying human neurological diseases and identifying therapeutic targets. However, the precise differentiation path and molecular signatures of induced astrocytes remain incompletely understood. Accordingly, we performed single-cell RNA sequencing analysis on 64,736 cells to establish a comprehensive atlas of NFIB/SOX9-directed astrocyte differentiation from human iPSCs. Our dataset provides detailed information about the path of astrocyte differentiation, highlighting the stepwise molecular changes that occur throughout the differentiation process. This dataset serves as a valuable reference for dissecting uncharacterized transcriptomic features of NFIB/SOX9-induced astrocytes and investigating lineage progression during astrocyte differentiation. Moreover, these findings pave the way for future studies on neurological diseases using the NFIB/SOX9-induced astrocyte model.
Collapse
Affiliation(s)
- Ran Yi
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China
| | - Shuai Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingfeng Guan
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Chunyan Liao
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Yao Zhu
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Jacque Pak Kan Ip
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Institute, the Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, China
| | - Tao Ye
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| |
Collapse
|
8
|
Kırbaş OK, Bozkurt BT, Yıldırım MR, Taşlı PN, Abdik H, Şahin F, Avşar Abdik E. A Perspective on the Characterization of Early Neural Progenitor Cell-Derived Extracellular Vesicles for Targeted Delivery to Neuroblastoma Cells. Neurochem Res 2024; 49:2364-2378. [PMID: 38837091 PMCID: PMC11310242 DOI: 10.1007/s11064-024-04165-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
As an element of the cellular signaling systems, extracellular vesicles (EVs) exhibit many desirable traits for usage as targeted delivery vehicles. When administered, EVs cause little to no toxic or immune response, stay in circulation for longer periods compared to synthetic carriers, preferentially accumulate in tissues that are the same or similar to their cell-of-origin and can pass through the blood-brain barrier. Combined, these traits make neural EVs a particularly promising tool for delivering drugs to the brain. This study aims to combine tissue and EVs engineering to prepare neural differentiated cells derived EVs that exhibit neural properties, to develop an effective, tissue-homing drug and gene delivery platform for the brain. Early neural differentiated cell-derived EVs were produced with neural characteristics from neural differentiated human neonatal dermal fibroblasts. The EVs carried key neural proteins such as Nestin, Sox2 and Doublecortin. The cellular uptake of early neural differentiated cell-derived EVs was higher compared to non-neural EVs during in vitro uptake assays on neuroblastoma cells. Moreover, eND-EVs were significantly decreased the viability of neuroblastoma cells. In conclusion, this study revealed that early neural differentiated cell-derived EVs have potential as a promising drug carrier for the treatment of various neural disorders.
Collapse
Affiliation(s)
- Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, 34755, Turkey
| | - Batuhan Turhan Bozkurt
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, 34755, Turkey
| | - Melis Rahime Yıldırım
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, 34755, Turkey
| | - Pakize Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, 34755, Turkey
| | - Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, İstanbul Sabahattin Zaim University, Istanbul, 34303, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, 34755, Turkey
| | - Ezgi Avşar Abdik
- Department of Genomics, Faculty of Aquatic Sciences, Istanbul University, Istanbul, 34134, Turkey.
| |
Collapse
|
9
|
Yu H, Liu Y, Xu F, Fu Y, Yang M, Ding L, Wu Y, Tang F, Qiao J, Wen L. A human fetal cerebellar map of the late second trimester reveals developmental molecular characteristics and abnormality in trisomy 21. Cell Rep 2024; 43:114586. [PMID: 39137113 DOI: 10.1016/j.celrep.2024.114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Our understanding of human fetal cerebellum development during the late second trimester, a critical period for the generation of astrocytes, oligodendrocytes, and unipolar brush cells (UBCs), remains limited. Here, we performed single-cell RNA sequencing (scRNA-seq) in human fetal cerebellum samples from gestational weeks (GWs) 18-25. We find that proliferating UBC progenitors distribute in the subventricular zone of the rhombic lip (RLSVZ) near white matter (WM), forming a layer structure. We also delineate two trajectories from astrogenic radial glia (ARGs) to Bergmann glial progenitors (BGPs) and recognize oligodendrogenic radial glia (ORGs) as one source of primitive oligodendrocyte progenitor cells (PriOPCs). Additionally, our scRNA-seq analysis of the trisomy 21 fetal cerebellum at this stage reveals abnormal upregulated genes in pathways such as the cell adhesion pathway and focal adhesion pathway, which potentially promote neuronal differentiation. Overall, our research provides valuable insights into normal and abnormal development of the human fetal cerebellum.
Collapse
Affiliation(s)
- Hongmin Yu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yun Liu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Changping Laboratory, Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Fanqing Xu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yuanyuan Fu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Ming Yang
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ling Ding
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yixuan Wu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Changping Laboratory, Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Jie Qiao
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China.
| | - Lu Wen
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Changping Laboratory, Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China.
| |
Collapse
|
10
|
Piscopo VEC, Chapleau A, Blaszczyk GJ, Sirois J, You Z, Soubannier V, Chen CXQ, Bernard G, Antel JP, Durcan TM. The use of a SOX10 reporter toward ameliorating oligodendrocyte lineage differentiation from human induced pluripotent stem cells. Glia 2024; 72:1165-1182. [PMID: 38497409 DOI: 10.1002/glia.24524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Oligodendrocytes (OLs) are key players in the central nervous system, critical for the formation and maintenance of the myelin sheaths insulating axons, ensuring efficient neuronal communication. In the last decade, the use of human induced pluripotent stem cells (iPSCs) has become essential for recapitulating and understanding the differentiation and role of OLs in vitro. Current methods include overexpression of transcription factors for rapid OL generation, neglecting the complexity of OL lineage development. Alternatively, growth factor-based protocols offer physiological relevance but struggle with efficiency and cell heterogeneity. To address these issues, we created a novel SOX10-P2A-mOrange iPSC reporter line to track and purify oligodendrocyte precursor cells. Using this reporter cell line, we analyzed an existing differentiation protocol and shed light on the origin of glial cell heterogeneity. Additionally, we have modified the differentiation protocol, toward enhancing reproducibility, efficiency, and terminal maturity. Our approach not only advances OL biology but also holds promise to accelerate research and translational work with iPSC-derived OLs.
Collapse
Affiliation(s)
- Valerio E C Piscopo
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Alexandra Chapleau
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Gabriela J Blaszczyk
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Julien Sirois
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Zhipeng You
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Vincent Soubannier
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Carol X-Q Chen
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
- Department of Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada
- Division of Medical Genetics, Department of Internal Medicine, McGill University Health Center, Montreal, Quebec, Canada
| | - Jack P Antel
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Leventoux N, Morimoto S, Ishikawa M, Nakamura S, Ozawa F, Kobayashi R, Watanabe H, Supakul S, Okamoto S, Zhou Z, Kobayashi H, Kato C, Hirokawa Y, Aiba I, Takahashi S, Shibata S, Takao M, Yoshida M, Endo F, Yamanaka K, Kokubo Y, Okano H. Aberrant CHCHD2-associated mitochondriopathy in Kii ALS/PDC astrocytes. Acta Neuropathol 2024; 147:84. [PMID: 38750212 DOI: 10.1007/s00401-024-02734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.
Collapse
Affiliation(s)
- Nicolas Leventoux
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shiho Nakamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Fumiko Ozawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Reona Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
| | - Sopak Supakul
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Okamoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Zhi Zhou
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroya Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Chris Kato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Ikuko Aiba
- Department of Neurology, NHO, Higashinagoya National Hospital, Aichi, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Department of Neurology and Stroke, International Medical Centre, Saitama Medical University, Saitama, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Centre of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Yasumasa Kokubo
- Kii ALS/PDC Research Centre, Mie University Graduate School of Regional Innovation Studies, Mie, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan.
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| |
Collapse
|
12
|
Huber RE, Babbitt C, Peyton SR. Heterogeneity of brain extracellular matrix and astrocyte activation. J Neurosci Res 2024; 102:e25356. [PMID: 38773875 DOI: 10.1002/jnr.25356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/01/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
From the blood brain barrier to the synaptic space, astrocytes provide structural, metabolic, ionic, and extracellular matrix (ECM) support across the brain. Astrocytes include a vast array of subtypes, their phenotypes and functions varying both regionally and temporally. Astrocytes' metabolic and regulatory functions poise them to be quick and sensitive responders to injury and disease in the brain as revealed by single cell sequencing. Far less is known about the influence of the local healthy and aging microenvironments on these astrocyte activation states. In this forward-looking review, we describe the known relationship between astrocytes and their local microenvironment, the remodeling of the microenvironment during disease and injury, and postulate how they may drive astrocyte activation. We suggest technology development to better understand the dynamic diversity of astrocyte activation states, and how basal and activation states depend on the ECM microenvironment. A deeper understanding of astrocyte response to stimuli in ECM-specific contexts (brain region, age, and sex of individual), paves the way to revolutionize how the field considers astrocyte-ECM interactions in brain injury and disease and opens routes to return astrocytes to a healthy quiescent state.
Collapse
Affiliation(s)
- Rebecca E Huber
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Courtney Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
13
|
Vieira R, Mariani JN, Huynh NPT, Stephensen HJT, Solly R, Tate A, Schanz S, Cotrupi N, Mousaei M, Sporring J, Benraiss A, Goldman SA. Young glial progenitor cells competitively replace aged and diseased human glia in the adult chimeric mouse brain. Nat Biotechnol 2024; 42:719-730. [PMID: 37460676 PMCID: PMC11098747 DOI: 10.1038/s41587-023-01798-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/20/2023] [Indexed: 08/26/2023]
Abstract
Competition among adult brain cells has not been extensively researched. To investigate whether healthy glia can outcompete diseased human glia in the adult forebrain, we engrafted wild-type (WT) human glial progenitor cells (hGPCs) produced from human embryonic stem cells into the striata of adult mice that had been neonatally chimerized with mutant Huntingtin (mHTT)-expressing hGPCs. The WT hGPCs outcompeted and ultimately eliminated their human Huntington's disease (HD) counterparts, repopulating the host striata with healthy glia. Single-cell RNA sequencing revealed that WT hGPCs acquired a YAP1/MYC/E2F-defined dominant competitor phenotype upon interaction with the host HD glia. WT hGPCs also outcompeted older resident isogenic WT cells that had been transplanted neonatally, suggesting that competitive success depended primarily on the relative ages of competing populations, rather than on the presence of mHTT. These data indicate that aged and diseased human glia may be broadly replaced in adult brain by younger healthy hGPCs, suggesting a therapeutic strategy for the replacement of aged and diseased human glia.
Collapse
Affiliation(s)
- Ricardo Vieira
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - John N Mariani
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Nguyen P T Huynh
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Sana Biotechnology, Inc, Cambridge, MA, USA
| | - Hans J T Stephensen
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen Faculty of Science, Copenhagen, Denmark
| | - Renee Solly
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Sana Biotechnology, Inc, Cambridge, MA, USA
| | - Ashley Tate
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Sana Biotechnology, Inc, Cambridge, MA, USA
| | - Steven Schanz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Natasha Cotrupi
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Marzieh Mousaei
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Jon Sporring
- Department of Computer Science, University of Copenhagen Faculty of Science, Copenhagen, Denmark
| | - Abdellatif Benraiss
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
- Sana Biotechnology, Inc, Cambridge, MA, USA.
| |
Collapse
|
14
|
Jeon J, Park YS, Kim SH, Kong E, Kim J, Yang JM, Lee JY, Kim YM, Kim IB, Kim P. Deciphering perivascular macrophages and microglia in the retinal ganglion cell layers. Front Cell Dev Biol 2024; 12:1368021. [PMID: 38596358 PMCID: PMC11002095 DOI: 10.3389/fcell.2024.1368021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction: The classically defined two retinal microglia layers are distributed in inner and outer plexiform layers. Although there are some reports that retinal microglia are also superficially located around the ganglion cell layer (GCL) in contact with the vitreous, there has been a lack of detailed descriptions and not fully understood yet. Methods: We visualized the microglial layers by using CX3CR1-GFP (C57BL6) transgenic mice with both healthy and disease conditions including NaIO3-induced retinal degeneration models and IRBP-induced auto-immune uveitis models. Result: We found the GCL microglia has two subsets; peripheral (pph) microglia located on the retinal parenchyma and BAM (CNS Border Associated Macrophage) which have a special stretched phenotype only located on the surface of large retinal veins. First, in the pph microglia subset, but not in BAM, Galectin-3 and LYVE1 are focally expressed. However, LYVE1 is specifically expressed in the amoeboid or transition forms, except the typical dendritic morphology in the pph microglia. Second, BAM is tightly attached to the surface of the retinal veins and has similar morphology patterns in both the healthy and disease conditions. CD86+ BAM has a longer process which vertically passes the proximal retinal veins. Our data helps decipher the basic anatomy and pathophysiology of the retinal microglia in the GCL. Discussion: Our data helps decipher the basic anatomy and pathophysiology of the retinal microglia in the GCL.
Collapse
Affiliation(s)
- Jehwi Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Hoon Kim
- Institute for Basic Science, Daejeon, Republic of Korea
| | - Eunji Kong
- Department of Neuroscience, Columbia University, New York, NY, United States
| | - Jay Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jee Myung Yang
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joo Yong Lee
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - You-Me Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
15
|
Franklin RJM, Bodini B, Goldman SA. Remyelination in the Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041371. [PMID: 38316552 PMCID: PMC10910446 DOI: 10.1101/cshperspect.a041371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, while this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granule neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this work, we will (1) review the biology of remyelination, including the cells and signals involved; (2) describe when remyelination occurs and when and why it fails, including the consequences of its failure; and (3) discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs Cambridge Institute of Science, Cambridge CB21 6GH, United Kingdom
| | - Benedetta Bodini
- Sorbonne Université, Paris Brain Institute, CNRS, INSERM, Paris 75013, France
- Saint-Antoine Hospital, APHP, Paris 75012, France
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA
- University of Copenhagen Faculty of Medicine, Copenhagen 2200, Denmark
| |
Collapse
|
16
|
Han B, Zhou S, Zhang Y, Chen S, Xi W, Liu C, Zhou X, Yuan M, Yu X, Li L, Wang Y, Ren H, Xie J, Li B, Ju M, Zhou Y, Liu Z, Xiong Z, Shen L, Zhang Y, Bai Y, Chen J, Jiang W, Yao H. Integrating spatial and single-cell transcriptomics to characterize the molecular and cellular architecture of the ischemic mouse brain. Sci Transl Med 2024; 16:eadg1323. [PMID: 38324639 DOI: 10.1126/scitranslmed.adg1323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Neuroinflammation is acknowledged as a pivotal pathological event after cerebral ischemia. However, there is limited knowledge of the molecular and spatial characteristics of nonneuronal cells, as well as of the interactions between cell types in the ischemic brain. Here, we used spatial transcriptomics to study the ischemic hemisphere in mice after stroke and sequenced the transcriptomes of 19,777 spots, allowing us to both visualize the transcriptional landscape within the tissue and identify gene expression profiles linked to specific histologic entities. Cell types identified by single-cell RNA sequencing confirmed and enriched the spatial annotation of ischemia-associated gene expression in the peri-infarct area of the ischemic hemisphere. Analysis of ligand-receptor interactions in cell communication revealed galectin-9 to cell-surface glycoprotein CD44 (LGALS9-CD44) as a critical signaling pathway after ischemic injury and identified microglia and macrophages as the main source of galectins after stroke. Extracellular vesicle-mediated Lgals9 delivery improved the long-term functional recovery in photothrombotic stroke mice. Knockdown of Cd44 partially reversed these therapeutic effects, inhibiting oligodendrocyte differentiation and remyelination. In summary, our study provides a detailed molecular and cellular characterization of the peri-infact area in a murine stroke model and revealed Lgals9 as potential treatment target that warrants further investigation.
Collapse
Affiliation(s)
- Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shunheng Zhou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yuan Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Sina Chen
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wen Xi
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Chenchen Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xu Zhou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xiaoyu Yu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Lu Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yu Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hui Ren
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jian Xie
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bin Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Minzi Ju
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - You Zhou
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ziqi Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhongli Xiong
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuan Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Wei Jiang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210009, China
| |
Collapse
|
17
|
Goldman SA, Franklin RJM, Osorio J. Stem and progenitor cell-based therapy of myelin disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:283-295. [PMID: 39341659 DOI: 10.1016/b978-0-323-90120-8.00015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Much of clinical neurology is concerned with diseases of-or involving-the brain's subcortical white matter. Common to these disorders is the loss of myelin, reflecting the elimination or dysfunction of oligodendrocytes and fibrous astrocytes. As such, the introduction of glial progenitor cells, which can give rise to new oligodendrocytes and astrocytes alike, may be a feasible strategy for treating a broad variety of conditions in which white matter loss is causally involved. This review first covers the sourcing and production of human glial progenitor cells, and the preclinical evidence for their efficacy in achieving myelin restoration in vivo. It then discusses both pediatric and adult disease targets for which transplanted glial progenitors may prove of therapeutic value, those challenges that remain in the clinical application of a glial cell replacement strategy, and the clinical endpoints by which the efficacy of this approach may be assessed.
Collapse
Affiliation(s)
- Steven A Goldman
- Sana Biotechnology, Cambridge, MA, United States; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, United States; University of Copenhagen Faculty of Medicine, Copenhagen, Denmark.
| | | | - Joana Osorio
- Sana Biotechnology, Cambridge, MA, United States; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
18
|
Lee J, Lee H, Lee H, Shin M, Shin MG, Seo J, Lee EJ, Park SA, Park S. ANKS1A regulates LDL receptor-related protein 1 (LRP1)-mediated cerebrovascular clearance in brain endothelial cells. Nat Commun 2023; 14:8463. [PMID: 38123547 PMCID: PMC10733300 DOI: 10.1038/s41467-023-44319-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Brain endothelial LDL receptor-related protein 1 (LRP1) is involved in the clearance of Aβ peptides across the blood-brain barrier (BBB). Here we show that endothelial deficiency of ankyrin repeat and SAM domain containing 1 A (ANKS1A) reduces both the cell surface levels of LRP1 and the Aβ clearance across the BBB. Association of ANKS1A with the NPXY motifs of LRP1 facilitates the transport of LRP1 from the endoplasmic reticulum toward the cell surface. ANKS1A deficiency in an Alzheimer's disease mouse model results in exacerbated Aβ pathology followed by cognitive impairments. These deficits are reversible by gene therapy with brain endothelial-specific ANKS1A. In addition, human induced pluripotent stem cell-derived BBBs (iBBBs) were generated from endothelial cells lacking ANKS1A or carrying the rs6930932 variant. Those iBBBs exhibit both reduced cell surface LRP1 and impaired Aβ clearance. Thus, our findings demonstrate that ANKS1A regulates LRP1-mediated Aβ clearance across the BBB.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Hyein Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Miram Shin
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Min-Gi Shin
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Sun Ah Park
- Lab for Neurodegenerative Dementia, Department of Anatomy, and Department of Neurology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea.
| |
Collapse
|
19
|
Yan Y, Truitt B, Tao J, Boyles SM, Antoine D, Hulme W, Roy S. Single-cell profiling of glial cells from the mouse amygdala under opioid dependent and withdrawal states. iScience 2023; 26:108166. [PMID: 37915593 PMCID: PMC10616319 DOI: 10.1016/j.isci.2023.108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/28/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
The cycle of substance use disorder (SUD) leading to dependence is a complex process involving multiple neurocircuitries and brain regions. The amygdala is the core brain region that is involved in processing withdrawal and anxiety and depressive-like behaviors. However, the transcriptional changes in each cell type within the amygdala during SUD remains unknown. Here, we performed single-cell RNA sequencing and classified all cell types in the mouse amygdala. We particularly focused on gene expression changes in glial cells under dependent state and compared to either naive or withdrawal state. Our data revealed distinct changes in key biological processes, such as gene expression, immune response, inflammation, synaptic transmission, and mitochondrial respiration. Significant differences were unraveled in the transcriptional profiles between dependence and withdrawal states. This report is the first single-cell RNA sequencing dataset from the amygdala under opioid dependence and withdrawal conditions, providing unique insights in understanding brain alterations during SUD.
Collapse
Affiliation(s)
- Yan Yan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bridget Truitt
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Junyi Tao
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sean Michael Boyles
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Danielle Antoine
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - William Hulme
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
20
|
Sun J, Osenberg S, Irwin A, Ma LH, Lee N, Xiang Y, Li F, Wan YW, Park IH, Maletic-Savatic M, Ballas N. Mutations in the transcriptional regulator MeCP2 severely impact key cellular and molecular signatures of human astrocytes during maturation. Cell Rep 2023; 42:111942. [PMID: 36640327 PMCID: PMC10857774 DOI: 10.1016/j.celrep.2022.111942] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/12/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Mutations in the MECP2 gene underlie a spectrum of neurodevelopmental disorders, most commonly Rett syndrome (RTT). We ask whether MECP2 mutations interfere with human astrocyte developmental maturation, thereby affecting their ability to support neurons. Using human-based models, we show that RTT-causing MECP2 mutations greatly impact the key role of astrocytes in regulating overall brain bioenergetics and that these metabolic aberrations are likely mediated by dysfunctional mitochondria. During post-natal maturation, astrocytes rely on neurons to induce their complex stellate morphology and transcriptional changes. While MECP2 mutations cause cell-intrinsic aberrations in the astrocyte transcriptional landscape, surprisingly, they do not affect the neuron-induced astrocyte gene expression. Notably, however, astrocytes are unable to develop complex mature morphology due to cell- and non-cell-autonomous aberrations caused by MECP2 mutations. Thus, MECP2 mutations critically impact key cellular and molecular features of human astrocytes and, hence, their ability to interact and support the structural and functional maturation of neurons.
Collapse
Affiliation(s)
- Jialin Sun
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sivan Osenberg
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA; Departments of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Austin Irwin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Li-Hua Ma
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nigel Lee
- Departments of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Feng Li
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mirjana Maletic-Savatic
- Departments of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| | - Nurit Ballas
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
21
|
Galiakberova AA, Brovkina OI, Kondratyev NV, Artyuhov AS, Momotyuk ED, Kulmukhametova ON, Lagunin AA, Shilov BV, Zadorozhny AD, Zakharov IS, Okorokova LS, Golimbet VE, Dashinimaev EB. Different iPSC-derived neural stem cells shows various spectrums of spontaneous differentiation during long term cultivation. Front Mol Neurosci 2023; 16:1037902. [PMID: 37201156 PMCID: PMC10186475 DOI: 10.3389/fnmol.2023.1037902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/23/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Culturing of human neural stem cells (NSCs) derived from induced pluripotent stem cells (iPSC) is a promising area of research, as these cells have the potential to treat a wide range of neurological, neurodegenerative and psychiatric diseases. However, the development of optimal protocols for the production and long-term culturing of NSCs remains a challenge. One of the most important aspects of this problem is to determine the stability of NSCs during long-term in vitro passaging. To address this problem, our study was aimed at investigating the spontaneous differentiation profile in different iPSC-derived human NSCs cultures during long-term cultivation using. Methods Four different IPSC lines were used to generate NSC and spontaneously differentiated neural cultures using DUAL SMAD inhibition. These cells were analyzed at different passages using immunocytochemistry, qPCR, bulk transcriptomes and scRNA-seq. Results We found that various NSC lines generate significantly different spectrums of differentiated neural cells, which can also change significantly during long-term cultivation in vitro. Discussion Our results indicate that both internal (genetic and epigenetic) and external (conditions and duration of cultivation) factors influence the stability of NSCs. These results have important implications for the development of optimal NSCs culturing protocols and highlight the need to further investigate the factors influencing the stability of these cells in vitro.
Collapse
Affiliation(s)
- Adelya Albertovna Galiakberova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Igorevna Brovkina
- Federal Research and Clinical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | | | - Alexander Sergeevich Artyuhov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina Dmitrievna Momotyuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Alexey Aleksandrovich Lagunin
- Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - Igor Sergeevitch Zakharov
- Department of Bioinformatics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Erdem Bairovich Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Bioinformatics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
- *Correspondence: Erdem Bairovich Dashinimaev,
| |
Collapse
|
22
|
Boot J, Rosser G, Kancheva D, Vinel C, Lim YM, Pomella N, Zhang X, Guglielmi L, Sheer D, Barnes M, Brandner S, Nelander S, Movahedi K, Marino S. Global hypo-methylation in a proportion of glioblastoma enriched for an astrocytic signature is associated with increased invasion and altered immune landscape. eLife 2022; 11:e77335. [PMID: 36412091 PMCID: PMC9681209 DOI: 10.7554/elife.77335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
We describe a subset of glioblastoma, the most prevalent malignant adult brain tumour, harbouring a bias towards hypomethylation at defined differentially methylated regions. This epigenetic signature correlates with an enrichment for an astrocytic gene signature, which together with the identification of enriched predicted binding sites of transcription factors known to cause demethylation and to be involved in astrocytic/glial lineage specification, point to a shared ontogeny between these glioblastomas and astroglial progenitors. At functional level, increased invasiveness, at least in part mediated by SRPX2, and macrophage infiltration characterise this subset of glioblastoma.
Collapse
Affiliation(s)
- James Boot
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary UniversityLondonUnited Kingdom
| | - Gabriel Rosser
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary UniversityLondonUnited Kingdom
| | - Dailya Kancheva
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit BrusselBrusselsBelgium
| | - Claire Vinel
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary UniversityLondonUnited Kingdom
| | - Yau Mun Lim
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, and Department of Neurodegenerative Disease, Queen Square, Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Nicola Pomella
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary UniversityLondonUnited Kingdom
| | - Xinyu Zhang
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary UniversityLondonUnited Kingdom
| | - Loredana Guglielmi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary UniversityLondonUnited Kingdom
| | - Denise Sheer
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary UniversityLondonUnited Kingdom
| | - Michael Barnes
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, and Department of Neurodegenerative Disease, Queen Square, Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Sven Nelander
- Department of Immunology Genetics and Pathology, Uppsala UniversityUppsalaSweden
| | - Kiavash Movahedi
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit BrusselBrusselsBelgium
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary UniversityLondonUnited Kingdom
| |
Collapse
|
23
|
Secretomics Alterations and Astrocyte Dysfunction in Human iPSC of Leukoencephalopathy with Vanishing White Matter. Neurochem Res 2022; 47:3747-3760. [PMID: 36198922 DOI: 10.1007/s11064-022-03765-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 10/10/2022]
Abstract
Leukoencephalopathy with vanishing white matter (VWM) is an inherited leukoencephalopathy characterized by progressive rarefaction of cerebral white matter. Dysfunction of patient astrocyte plays a central role in the pathogenesis, while the immaturity of oligodendrocyte is probably secondary. How eIF2B mutant astrocytes affect the maturation and myelination of oligodendrocyte precursor cells (OPCs) is unclear yet. We used induced pluripotent stem cells (iPSCs) derived from our patient with EIF2B5 mutations to differentiate into astrocytes (AS) and OPCs, and aimed to verify that patient astrocytes inhibited the differentiation of OPCs by abnormalities of secreted proteins. eIF2B mutant astrocytes and astrocyte-conditioned medium (ACM) both inhibited the maturation of OPCs. It was revealed that 13 promising proteins exhibited a similar up- or downregulation by the PRM method correlated well with TMT results. eIF2B mutant astrocytes may secrete abnormal extracellular matrix (HA, LAMA4, BGN, FBN1, VASN, PCOLCE, MFAP4), cytokines (IL-6, CRABP1, ISG15), growth factors (PDGF-AA, CNTF, IGF-II, sFRP1, SERPINF1) and increased FABP7, which might lead to the differentiation and maturation disorder of OPCs. We analyzed the astrocyte-conditioned medium to find the key secretory molecules affecting the differentiation and maturation of OPCs, which provides potential clues for further research on the mechanism of VWM.
Collapse
|
24
|
Knittel J, Srinivasan G, Frisch C, Brookhouser N, Raman S, Essuman A, Brafman DA. A microcarrier-based protocol for scalable generation and purification of human induced pluripotent stem cell-derived neurons and astrocytes. STAR Protoc 2022; 3:101632. [PMID: 36035791 PMCID: PMC9405537 DOI: 10.1016/j.xpro.2022.101632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Here, we describe a protocol for a microcarrier (MC)-based, large-scale generation and cryopreservation of human-induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes. We also detail steps to isolate these populations with a high degree of purity. Finally, we describe how to cryopreserve these cell types while maintaining high levels of viability and preserving cellular function post-thaw. For complete details on the use and execution of this protocol, please refer to Brookhouser et al. (2021).
Collapse
Affiliation(s)
- Jacob Knittel
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Gayathri Srinivasan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Carlye Frisch
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA; Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Sreedevi Raman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Albert Essuman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
25
|
Zheng Y, Gallegos CM, Xue H, Li S, Kim DH, Zhou H, Xia X, Liu Y, Cao Q. Transplantation of Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Promotes Forelimb Functional Recovery after Cervical Spinal Cord Injury. Cells 2022; 11:2765. [PMID: 36078173 PMCID: PMC9454923 DOI: 10.3390/cells11172765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Locomotor function after spinal cord injury (SCI) is critical for assessing recovery. Currently, available means to improve locomotor function include surgery, physical therapy rehabilitation and exoskeleton. Stem cell therapy with neural progenitor cells (NPCs) transplantation is a promising reparative strategy. Along this line, patient-specific induced pluripotent stem cells (iPSCs) are a remarkable autologous cell source, which offer many advantages including: great potential to generate isografts avoiding immunosuppression; the availability of a variety of somatic cells without ethical controversy related to embryo use; and vast differentiation. In this current work, to realize the therapeutic potential of iPSC-NPCs for the treatment of SCI, we transplanted purified iPSCs-derived NPCs into a cervical contusion SCI rat model. Our results showed that the iPSC-NPCs were able to survive and differentiate into both neurons and astrocytes and, importantly, improve forelimb locomotor function as assessed by the grooming task and horizontal ladder test. Purified iPSC-NPCs represent a promising cell type that could be further tested and developed into a clinically useful cell source for targeted cell therapy for cervical SCI patients.
Collapse
Affiliation(s)
- Yiyan Zheng
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chrystine M. Gallegos
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haipeng Xue
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shenglan Li
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dong H. Kim
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hongxia Zhou
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Xugang Xia
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Ying Liu
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qilin Cao
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
26
|
Fernández-Tabanera E, Melero-Fernández de Mera RM, Alonso J. CD44 In Sarcomas: A Comprehensive Review and Future Perspectives. Front Oncol 2022; 12:909450. [PMID: 35785191 PMCID: PMC9247467 DOI: 10.3389/fonc.2022.909450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
It is widely accepted that the tumor microenvironment, particularly the extracellular matrix, plays an essential role in the development of tumors through the interaction with specific protein-membrane receptors. One of the most relevant proteins in this context is the transmembrane protein CD44. The role of CD44 in tumor progression, invasion, and metastasis has been well established in many cancers, although a comprehensive review concerning its role in sarcomas has not been published. CD44 is overexpressed in most sarcomas and several in vitro and in vivo experiments have shown a direct effect on tumor progression, dissemination, and drug resistance. Moreover, CD44 has been revealed as a useful marker for prognostic and diagnostic (CD44v6 isoform) in osteosarcoma. Besides, some innovative treatments such as HA-functionalized liposomes therapy have become an excellent CD44-mediated intracellular delivery system for osteosarcoma. Unfortunately, the reduced number of studies deciphering the prognostic/diagnostic value of CD44 in other sarcoma subgroups, neither than osteosarcoma, in addition to the low number of patients involved in those studies, have produced inconclusive results. In this review, we have gone through the information available on the role of CD44 in the development, maintenance, and progression of sarcomas, analyzing their implications at the prognostic, therapeutic, and mechanistic levels. Moreover, we illustrate how research involving the specific role of CD44 in the different sarcoma subgroups could suppose a chance to advance towards a more innovative perspective for novel therapies and future clinical trials.
Collapse
Affiliation(s)
- Enrique Fernández-Tabanera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
- Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Raquel M. Melero-Fernández de Mera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
- *Correspondence: Javier Alonso,
| |
Collapse
|
27
|
Verploegh ISC, Conidi A, Brouwer RWW, Balcioglu HE, Karras P, Makhzami S, Korporaal A, Marine JC, Lamfers M, Van IJcken WFJ, Leenstra S, Huylebroeck D. Comparative single-cell RNA-sequencing profiling of BMP4-treated primary glioma cultures reveals therapeutic markers. Neuro Oncol 2022; 24:2133-2145. [PMID: 35639831 PMCID: PMC9713526 DOI: 10.1093/neuonc/noac143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive primary brain tumor. Its cellular composition is very heterogeneous, with cells exhibiting stem-cell characteristics (GSCs) that co-determine therapy resistance and tumor recurrence. Bone Morphogenetic Protein (BMP)-4 promotes astroglial and suppresses oligodendrocyte differentiation in GSCs, processes associated with superior patient prognosis. We characterized variability in cell viability of patient-derived GBM cultures in response to BMP4 and, based on single-cell transcriptome profiling, propose predictive positive and early-response markers for sensitivity to BMP4. METHODS Cell viability was assessed in 17 BMP4-treated patient-derived GBM cultures. In two cultures, one highly-sensitive to BMP4 (high therapeutic efficacy) and one with low-sensitivity, response to treatment with BMP4 was characterized. We applied single-cell RNA-sequencing, analyzed the relative abundance of cell clusters, searched for and identified the aforementioned two marker types, and validated these results in all 17 cultures. RESULTS High variation in cell viability was observed after treatment with BMP4. In three cultures with highest sensitivity for BMP4, a substantial new cell subpopulation formed. These cells displayed decreased cell proliferation and increased apoptosis. Neuronal differentiation was reduced most in cultures with little sensitivity for BMP4. OLIG1/2 levels were found predictive for high sensitivity to BMP4. Activation of ribosomal translation (RPL27A, RPS27) was up-regulated within one day in cultures that were very sensitive to BMP4. CONCLUSION The changes in composition of patient-derived GBM cultures obtained after treatment with BMP4 correlate with treatment efficacy. OLIG1/2 expression can predict this efficacy, and upregulation of RPL27A and RPS27 are useful early-response markers.
Collapse
Affiliation(s)
| | | | - Rutger W W Brouwer
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Center for Biomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | | | - Samira Makhzami
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Anne Korporaal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Martine Lamfers
- Department of Neurosurgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wilfred F J Van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Corresponding Author: Danny Huylebroeck, Department of Cell Biology, Erasmus University Medical Center, Building Ee, room Ee-1040b, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands ()
| |
Collapse
|
28
|
Liu X, Li C, Li J, Xie L, Hong Z, Zheng K, Zhao X, Yang A, Xu X, Tao H, Qiu M, Yang J. EGF signaling promotes the lineage conversion of astrocytes into oligodendrocytes. Mol Med 2022; 28:50. [PMID: 35508991 PMCID: PMC9066914 DOI: 10.1186/s10020-022-00478-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background The conversion of astrocytes activated by nerve injuries to oligodendrocytes is not only beneficial to axonal remyelination, but also helpful for reversal of glial scar. Recent studies have shown that pathological niche promoted the Sox10-mediated astrocytic transdifferentiation to oligodendrocytes. The extracellular factors underlying the cell fate switching are not known. Methods Astrocytes were obtained from mouse spinal cord dissociation culture and purified by differential adherent properties. The lineage conversion of astrocytes into oligodendrocyte lineage cells was carried out by Sox10-expressing virus infection both in vitro and in vivo, meanwhile, epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) inhibitor Gefitinib were adopted to investigate the function of EGF signaling in this fate transition process. Pharmacological inhibition analyses were performed to examine the pathway connecting the EGF with the expression of oligodendrogenic genes and cell fate transdifferentiation. Results EGF treatment facilitated the Sox10-induced transformation of astrocytes to O4+ induced oligodendrocyte precursor cells (iOPCs) in vitro. The transdifferentiation of astrocytes to iOPCs went through two distinct but interconnected processes: (1) dedifferentiation of astrocytes to astrocyte precursor cells (APCs); (2) transformation of APCs to iOPCs, EGF signaling was involved in both processes. And EGF triggered astrocytes to express oligodendrogenic genes Olig1 and Olig2 by activating extracellular signal-regulated kinase 1 and 2 (Erk1/2) pathway. In addition, we discovered that EGF can enhance astrocyte transdifferentiation in injured spinal cord tissues. Conclusions These findings provide strong evidence that EGF facilitates the transdifferentiation of astrocytes to oligodendrocytes, and suggest that targeting the EGF-EGFR-Erk1/2 signaling axis may represent a novel therapeutic strategy for myelin repair in injured central nervous system (CNS) tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00478-5.
Collapse
Affiliation(s)
- Xinyu Liu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China
| | - Conghui Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China
| | - Jiao Li
- Department of Eugenics and Genetics, Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China
| | - Lesi Xie
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zeng Hong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China
| | - Kang Zheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China
| | - Xiaofeng Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China
| | - Aifen Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China
| | - Xiaofeng Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China
| | - Huaping Tao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China
| | - Mengsheng Qiu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China. .,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China. .,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China.
| | - Junlin Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China. .,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China.
| |
Collapse
|
29
|
Li L, Zhou J, Han L, Wu X, Shi Y, Cui W, Zhang S, Hu Q, Wang J, Bai H, Liu H, Guo W, Feng D, Qu Y. The Specific Role of Reactive Astrocytes in Stroke. Front Cell Neurosci 2022; 16:850866. [PMID: 35321205 PMCID: PMC8934938 DOI: 10.3389/fncel.2022.850866] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023] Open
Abstract
Astrocytes are essential in maintaining normal brain functions such as blood brain barrier (BBB) homeostasis and synapse formation as the most abundant cell type in the central nervous system (CNS). After the stroke, astrocytes are known as reactive astrocytes (RAs) because they are stimulated by various damage-associated molecular patterns (DAMPs) and cytokines, resulting in significant changes in their reactivity, gene expression, and functional characteristics. RAs perform multiple functions after stroke. The inflammatory response of RAs may aggravate neuro-inflammation and release toxic factors to exert neurological damage. However, RAs also reduce excitotoxicity and release neurotrophies to promote neuroprotection. Furthermore, RAs contribute to angiogenesis and axonal remodeling to promote neurological recovery. Therefore, RAs' biphasic roles and mechanisms make them an effective target for functional recovery after the stroke. In this review, we summarized the dynamic functional changes and internal molecular mechanisms of RAs, as well as their therapeutic potential and strategies, in order to comprehensively understand the role of RAs in the outcome of stroke disease and provide a new direction for the clinical treatment of stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
30
|
Ding Z, Dai C, Shan W, Liu R, Lu W, Gao W, Zhang H, Huang W, Guan J, Yin Z. TNF-α up-regulates Nanog by activating NF-κB pathway to induce primary rat spinal cord astrocytes dedifferentiation. Life Sci 2021; 287:120126. [PMID: 34758295 DOI: 10.1016/j.lfs.2021.120126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/10/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
AIMS Astrocytes re-acquire stem cell potential upon inflammation, thereby becoming a promising source of cells for regenerative medicine. Nanog is an essential transcription factor to maintain the characteristics of stem cells. We aimed to investigate the role of Nanog in astrocyte dedifferentiation. MAIN METHODS TNF-α was used to induce the dedifferentiation of primary rat spinal cord astrocytes. The expression of immature markers CD44 and Musashi-1 was detected by qRT-PCR and immunofluorescence. The Nanog gene is knocked down by small interference RNA. Nanog expression was measured by qRT-PCR and western blotting. BAY 11-7082 was used to suppress NF-κB signals in astrocytes. NF-κB signaling was evaluated by Western blotting. KEY FINDINGS Our results showed that TNF-α promoted the re-expression of CD44 and Musashi-1 in astrocytes. Dedifferentiated astrocytes could be induced to differentiate into oligodendrocyte lineage cells indicating that the astrocytes had pluripotency. In addition, TNF-α treatment activated NF-κB signaling pathway and up-regulated Nanog. Knockdown of Nanog reversed the increase of CD44 and Musashi-1 induced by TNF-α without affecting the activation of NF-κB signaling. Importantly, blocking NF-κB signaling by BAY 11-7082 inhibited the expression of immature markers suggesting that TNF-α induces dedifferentiation of astrocytes through the NF-κB signaling pathway. BAY 11-7082 could also inhibit the expression of Nanog, which indicated that Nanog was regulated by NF-κB signaling pathway. SIGNIFICANCE These findings indicate that activation of the NF-κB signaling pathway through TNF-α leads to astrocytes dedifferentiation via Nanog. These results expand our understanding of the mechanism of astrocytes dedifferentiation.
Collapse
Affiliation(s)
- Zhenfei Ding
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, 287#Chang Huai Road, Bengbu 230071, Anhui, China; Department of Orthopaedics, The Second People's Hospital of Hefei, Intersection of Guangde Road and Leshui Road, Hefei 230011, Anhui, China
| | - Ce Dai
- Department of Orthopaedics, The Second People's Hospital of Hefei, Intersection of Guangde Road and Leshui Road, Hefei 230011, Anhui, China
| | - Wenshan Shan
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei 230032, Anhui, China
| | - Rui Liu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei 230032, Anhui, China
| | - Wei Lu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei 230032, Anhui, China
| | - Weilu Gao
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei 230032, Anhui, China
| | - Hui Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei 230032, Anhui, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Jianzhong Guan
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, 287#Chang Huai Road, Bengbu 230071, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, 2600#Dong Hai Avenue, Bengbu 233030, Anhui, China.
| | - Zongsheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei 230032, Anhui, China.
| |
Collapse
|
31
|
Nelson DW, Gilbert RJ. Extracellular Matrix-Mimetic Hydrogels for Treating Neural Tissue Injury: A Focus on Fibrin, Hyaluronic Acid, and Elastin-Like Polypeptide Hydrogels. Adv Healthc Mater 2021; 10:e2101329. [PMID: 34494398 PMCID: PMC8599642 DOI: 10.1002/adhm.202101329] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Neurological and functional recovery is limited following central nervous system injury and severe injury to the peripheral nervous system. Extracellular matrix (ECM)-mimetic hydrogels are of particular interest as regenerative scaffolds for the injured nervous system as they provide 3D bioactive interfaces that modulate cellular response to the injury environment and provide naturally degradable scaffolding for effective tissue remodeling. In this review, three unique ECM-mimetic hydrogels used in models of neural injury are reviewed: fibrin hydrogels, which rely on a naturally occurring enzymatic gelation, hyaluronic acid hydrogels, which require chemical modification prior to chemical crosslinking, and elastin-like polypeptide (ELP) hydrogels, which exhibit a temperature-sensitive gelation. The hydrogels are reviewed by summarizing their unique biological properties, their use as drug depots, and their combination with other biomaterials, such as electrospun fibers and nanoparticles. This review is the first to focus on these three ECM-mimetic hydrogels for their use in neural tissue engineering. Additionally, this is the first review to summarize the use of ELP hydrogels for nervous system applications. ECM-mimetic hydrogels have shown great promise in preclinical models of neural injury and future advancements in their design and use can likely lead to viable treatments for patients with neural injury.
Collapse
Affiliation(s)
- Derek W Nelson
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| |
Collapse
|
32
|
Brookhouser N, Raman S, Frisch C, Srinivasan G, Brafman DA. APOE2 mitigates disease-related phenotypes in an isogenic hiPSC-based model of Alzheimer's disease. Mol Psychiatry 2021; 26:5715-5732. [PMID: 33837271 PMCID: PMC8501163 DOI: 10.1038/s41380-021-01076-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
Genome-wide association studies (GWAS) have identified polymorphism in the Apolipoprotein E gene (APOE) to be the most prominent risk factor for Alzheimer's disease (AD). Compared to individuals homozygous for the APOE3 variant, individuals with the APOE4 variant have a significantly elevated risk of AD. On the other hand, longitudinal studies have shown that the presence of the APOE2 variant reduces the lifetime risk of developing AD by 40 percent. While there has been significant research that has identified the risk-inducing effects of APOE4, the underlying mechanisms by which APOE2 influences AD onset and progression have not been extensively explored. In this study, we utilize an isogenic human induced pluripotent stem cell (hiPSC)-based system to demonstrate that conversion of APOE3 to APOE2 greatly reduced the production of amyloid-beta (Aβ) peptides in hiPSC-derived neural cultures. Mechanistically, analysis of pure populations of neurons and astrocytes derived from these neural cultures revealed that mitigating effects of APOE2 are mediated by cell autonomous and non-autonomous effects. In particular, we demonstrated the reduction in Aβ is potentially driven by a mechanism related to non-amyloidogenic processing of amyloid precursor protein (APP), suggesting a gain of the protective function of the APOE2 variant. Together, this study provides insights into the risk-modifying effects associated with the APOE2 allele and establishes a platform to probe the mechanisms by which APOE2 enhances neuroprotection against AD.
Collapse
Affiliation(s)
- Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
- Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Sreedevi Raman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Carlye Frisch
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Gayathri Srinivasan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
33
|
Benraiss A, Mariani JN, Osipovitch M, Cornwell A, Windrem MS, Villanueva CB, Chandler-Militello D, Goldman SA. Cell-intrinsic glial pathology is conserved across human and murine models of Huntington's disease. Cell Rep 2021; 36:109308. [PMID: 34233199 DOI: 10.1016/j.celrep.2021.109308] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/22/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Glial pathology is a causal contributor to the striatal neuronal dysfunction of Huntington's disease (HD). We investigate mutant HTT-associated changes in gene expression by mouse and human striatal astrocytes, as well as in mouse microglia, to identify commonalities in glial pathobiology across species and models. Mouse striatal astrocytes are fluorescence-activated cell sorted (FACS) from R6/2 and zQ175 mice, which respectively express exon1-only or full-length mHTT, and human astrocytes are generated either from human embryonic stem cells (hESCs) expressing full-length mHTT or from fetal striatal astrocytes transduced with exon1-only mHTT. Comparison of differential gene expression across these conditions, all with respect to normal HTT controls, reveals cell-type-specific changes in transcription common to both species, yet with differences that distinguish glia expressing truncated mHTT versus full-length mHTT. These data indicate that the differential gene expression of glia expressing truncated mHTT may differ from that of cells expressing full-length mHTT, while identifying a conserved set of dysregulated pathways in HD glia.
Collapse
Affiliation(s)
- Abdellatif Benraiss
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - John N Mariani
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mikhail Osipovitch
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health, Copenhagen 2200, Denmark
| | - Adam Cornwell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Martha S Windrem
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Carlos Benitez Villanueva
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health, Copenhagen 2200, Denmark
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health, Copenhagen 2200, Denmark; Neuroscience Center, Rigshospitalet-Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
34
|
Pantazopoulos H, Katsel P, Haroutunian V, Chelini G, Klengel T, Berretta S. Molecular signature of extracellular matrix pathology in schizophrenia. Eur J Neurosci 2021; 53:3960-3987. [PMID: 33070392 PMCID: PMC8359380 DOI: 10.1111/ejn.15009] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Growing evidence points to a critical involvement of the extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Decreases of perineuronal nets (PNNs) and altered expression of chondroitin sulphate proteoglycans (CSPGs) in glial cells have been identified in several brain regions. GWAS data have identified several SZ vulnerability variants of genes encoding for ECM molecules. Given the potential relevance of ECM functions to the pathophysiology of this disorder, it is necessary to understand the extent of ECM changes across brain regions, their region- and sex-specificity and which ECM components contribute to these changes. We tested the hypothesis that the expression of genes encoding for ECM molecules may be broadly disrupted in SZ across several cortical and subcortical brain regions and include key ECM components as well as factors such as ECM posttranslational modifications and regulator factors. Gene expression profiling of 14 neocortical brain regions, caudate, putamen and hippocampus from control subjects (n = 14/region) and subjects with SZ (n = 16/region) was conducted using Affymetrix microarray analysis. Analysis across brain regions revealed widespread dysregulation of ECM gene expression in cortical and subcortical brain regions in SZ, impacting several ECM functional key components. SRGN, CD44, ADAMTS1, ADAM10, BCAN, NCAN and SEMA4G showed some of the most robust changes. Region-, sex- and age-specific gene expression patterns and correlation with cognitive scores were also detected. Taken together, these findings contribute to emerging evidence for large-scale ECM dysregulation in SZ and point to molecular pathways involved in PNN decreases, glial cell dysfunction and cognitive impairment in SZ.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Department of Neurobiology and Anatomical SciencesUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Pavel Katsel
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of NeuroscienceThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mental Illness Research Education ClinicalCenters of Excellence (MIRECC)JJ Peters VA Medical CenterBronxNYUSA
| | - Vahram Haroutunian
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of NeuroscienceThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mental Illness Research Education ClinicalCenters of Excellence (MIRECC)JJ Peters VA Medical CenterBronxNYUSA
| | - Gabriele Chelini
- Translational Neuroscience LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
| | - Torsten Klengel
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
- Translational Molecular Genomics LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryUniversity Medical Center GöttingenGöttingenGermany
| | - Sabina Berretta
- Translational Neuroscience LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
- Program in NeuroscienceHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
35
|
Yeon GB, Shin WH, Yoo SH, Kim D, Jeon BM, Park WU, Bae Y, Park JY, You S, Na D, Kim DS. NFIB induces functional astrocytes from human pluripotent stem cell-derived neural precursor cells mimicking in vivo astrogliogenesis. J Cell Physiol 2021; 236:7625-7641. [PMID: 33949692 DOI: 10.1002/jcp.30405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
The ability to generate astrocytes from human pluripotent stem cells (hPSCs) offers a promising cellular model to study the development and physiology of human astrocytes. The extant methods for generating functional astrocytes required long culture periods and there remained much ambiguity on whether such paradigms follow the innate developmental program. In this report, we provided an efficient and rapid method for generating physiologically functional astrocytes from hPSCs. Overexpressing the nuclear factor IB in hPSC-derived neural precursor cells induced a highly enriched astrocyte population in 2 weeks. RNA sequencing and functional analyses demonstrated progressive transcriptomic and physiological changes in the cells, resembling in vivo astrocyte development. Further analyses substantiated previous results and established the MAPK pathway necessary for astrocyte differentiation. Hence, this differentiation paradigm provides a prospective in vitro model for human astrogliogenesis studies and the pathophysiology of neurological diseases concerning astrocytes.
Collapse
Affiliation(s)
- Gyu-Bum Yeon
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Won-Ho Shin
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Korea
| | - Seo Hyun Yoo
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Dongyun Kim
- Department of Biotechnology, Korea University, Seoul, Korea
| | | | - Won-Ung Park
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Yeonju Bae
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Korea
| | - Seungkwon You
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul, Korea
| | - Dae-Sung Kim
- Department of Biotechnology, Korea University, Seoul, Korea.,Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Llorente IL, Xie Y, Mazzitelli JA, Hatanaka EA, Cinkornpumin J, Miller DR, Lin Y, Lowry WE, Carmichael ST. Patient-derived glial enriched progenitors repair functional deficits due to white matter stroke and vascular dementia in rodents. Sci Transl Med 2021; 13:13/590/eaaz6747. [PMID: 33883275 DOI: 10.1126/scitranslmed.aaz6747] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/05/2020] [Accepted: 01/16/2021] [Indexed: 01/24/2023]
Abstract
Subcortical white matter stroke (WMS) accounts for up to 30% of all stroke events. WMS damages primarily astrocytes, axons, oligodendrocytes, and myelin. We hypothesized that a therapeutic intervention targeting astrocytes would be ideally suited for brain repair after WMS. We characterize the cellular properties and in vivo tissue repair activity of glial enriched progenitor (GEP) cells differentiated from human-induced pluripotent stem cells, termed hiPSC-derived GEPs (hiPSC-GEPs). hiPSC-GEPs are derived from hiPSC-neural progenitor cells via an experimental manipulation of hypoxia inducible factor activity by brief treatment with a prolyl hydroxylase inhibitor, deferoxamine. This treatment permanently biases these cells to further differentiate toward an astrocyte fate. hiPSC-GEPs transplanted into the brain in the subacute period after WMS in mice migrated widely, matured into astrocytes with a prorepair phenotype, induced endogenous oligodendrocyte precursor proliferation and remyelination, and promoted axonal sprouting. hiPSC-GEPs enhanced motor and cognitive recovery compared to other hiPSC-differentiated cell types. This approach establishes an hiPSC-derived product with easy scale-up capabilities that might be effective for treating WMS.
Collapse
Affiliation(s)
- Irene L Llorente
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yuan Xie
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jose A Mazzitelli
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Emily A Hatanaka
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.,Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Jessica Cinkornpumin
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - David R Miller
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ying Lin
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - William E Lowry
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA.
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
37
|
Ding Z, Dai C, Zhong L, Liu R, Gao W, Zhang H, Yin Z. Neuregulin-1 converts reactive astrocytes toward oligodendrocyte lineage cells via upregulating the PI3K-AKT-mTOR pathway to repair spinal cord injury. Biomed Pharmacother 2021; 134:111168. [PMID: 33395598 DOI: 10.1016/j.biopha.2020.111168] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/21/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
Axonal demyelination is a consistent pathological characteristic of Spinal cord injury (SCI). Promoting differentiation of oligodendrocytes is of importance for remyelination. Conversion of reactive astrocytes with stem cell potential to oligodendrocytes is proposed as an innovative strategy for SCI repair. Neuregulin-1 (Nrg1) plays an essential role in the differentiation of oligodendrocytes. Therefore, it's a potential treatment for demyelination in SCI that using Nrg1 to drive reactive astrocytes toward oligodendrocyte lineage cells. In this study, tumor necrosis factor-α (TNF-α) was used to induce dedifferentiation of primary rat spinal cord astrocytes into reactive astrocytes and Nrg1 was used to induce astrocytes in vitro and in vivo. The results showed that astrocytes treated with TNF-α expressed immaturity markers CD44 and Musashi1 at mRNA and protein levels, indicating that TNF-α induced the stem cell state of astrocytes. Nrg1 induced reactive astrocytes to express oligodendrocyte markers PDGFR-α and O4 at mRNA and protein levels, indicating that Nrg1 directly converts reactive astrocytes toward oligodendrocyte lineage cells. Moreover, upregulation of PI3K-AKT-mTOR signaling activation in response to Nrg1 was observed. In rats with SCI, intrathecal treatment with Nrg1 converted reactive astrocytes to oligodendrocyte lineage cells, inhibited astrogliosis, promoted remyelination, protected axons and eventually improved BBB score. All the biological effects of Nrg1 were significantly reversed by the co-administration of Nrg1 and ErbB inhibitor, suggesting that Nrg1 functioned through the receptor ErbB. Our findings indicate that Nrg1 is sufficient to trans-differentiate reactive astrocytes to oligodendrocytes via the PI3K-AKT-mTOR signaling pathway and repair SCI. Delivery of Nrg1 for the remyelination processes could be a promising strategy for spinal cord repair.
Collapse
Affiliation(s)
- Zhenfei Ding
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei, 230032, Anhui, China
| | - Ce Dai
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei, 230032, Anhui, China
| | - Lin Zhong
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei, 230032, Anhui, China
| | - Rui Liu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei, 230032, Anhui, China
| | - Weilu Gao
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei, 230032, Anhui, China
| | - Hui Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei, 230032, Anhui, China
| | - Zongsheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
38
|
Leventoux N, Morimoto S, Imaizumi K, Sato Y, Takahashi S, Mashima K, Ishikawa M, Sonn I, Kondo T, Watanabe H, Okano H. Human Astrocytes Model Derived from Induced Pluripotent Stem Cells. Cells 2020; 9:E2680. [PMID: 33322219 PMCID: PMC7763297 DOI: 10.3390/cells9122680] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cell (iPSC)-based disease modeling has a great potential for uncovering the mechanisms of pathogenesis, especially in the case of neurodegenerative diseases where disease-susceptible cells can usually not be obtained from patients. So far, the iPSC-based modeling of neurodegenerative diseases has mainly focused on neurons because the protocols for generating astrocytes from iPSCs have not been fully established. The growing evidence of astrocytes' contribution to neurodegenerative diseases has underscored the lack of iPSC-derived astrocyte models. In the present study, we established a protocol to efficiently generate iPSC-derived astrocytes (iPasts), which were further characterized by RNA and protein expression profiles as well as functional assays. iPasts exhibited calcium dynamics and glutamate uptake activity comparable to human primary astrocytes. Moreover, when co-cultured with neurons, iPasts enhanced neuronal synaptic maturation. Our protocol can be used for modeling astrocyte-related disease phenotypes in vitro and further exploring the contribution of astrocytes to neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicolas Leventoux
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (N.L.); (S.M.); (K.I.); (S.T.); (K.M.); (M.I.); (I.S.); (T.K.); (H.W.)
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (N.L.); (S.M.); (K.I.); (S.T.); (K.M.); (M.I.); (I.S.); (T.K.); (H.W.)
| | - Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (N.L.); (S.M.); (K.I.); (S.T.); (K.M.); (M.I.); (I.S.); (T.K.); (H.W.)
| | - Yuta Sato
- Keio University Graduate School of Science and Technology, Kanagawa 223-8522, Japan;
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (N.L.); (S.M.); (K.I.); (S.T.); (K.M.); (M.I.); (I.S.); (T.K.); (H.W.)
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi, Saitama 350-1298, Japan
| | - Kyoko Mashima
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (N.L.); (S.M.); (K.I.); (S.T.); (K.M.); (M.I.); (I.S.); (T.K.); (H.W.)
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (N.L.); (S.M.); (K.I.); (S.T.); (K.M.); (M.I.); (I.S.); (T.K.); (H.W.)
| | - Iki Sonn
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (N.L.); (S.M.); (K.I.); (S.T.); (K.M.); (M.I.); (I.S.); (T.K.); (H.W.)
| | - Takahiro Kondo
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (N.L.); (S.M.); (K.I.); (S.T.); (K.M.); (M.I.); (I.S.); (T.K.); (H.W.)
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (N.L.); (S.M.); (K.I.); (S.T.); (K.M.); (M.I.); (I.S.); (T.K.); (H.W.)
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (N.L.); (S.M.); (K.I.); (S.T.); (K.M.); (M.I.); (I.S.); (T.K.); (H.W.)
| |
Collapse
|
39
|
Bozic I, Savic D, Lavrnja I. Astrocyte phenotypes: Emphasis on potential markers in neuroinflammation. Histol Histopathol 2020; 36:267-290. [PMID: 33226087 DOI: 10.14670/hh-18-284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes, the most abundant glial cells in the central nervous system (CNS), have numerous integral roles in all CNS functions. They are essential for synaptic transmission and support neurons by providing metabolic substrates, secreting growth factors and regulating extracellular concentrations of ions and neurotransmitters. Astrocytes respond to CNS insults through reactive astrogliosis, in which they go through many functional and molecular changes. In neuroinflammatory conditions reactive astrocytes exert both beneficial and detrimental functions, depending on the context and heterogeneity of astrocytic populations. In this review we profile astrocytic diversity in the context of neuroinflammation; with a specific focus on multiple sclerosis (MS) and its best-described animal model experimental autoimmune encephalomyelitis (EAE). We characterize two main subtypes, protoplasmic and fibrous astrocytes and describe the role of intermediate filaments in the physiology and pathology of these cells. Additionally, we outline a variety of markers that are emerging as important in investigating astrocytic biology in both physiological conditions and neuroinflammation.
Collapse
Affiliation(s)
- Iva Bozic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Savic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
40
|
Martins-Macedo J, Lepore AC, Domingues HS, Salgado AJ, Gomes ED, Pinto L. Glial restricted precursor cells in central nervous system disorders: Current applications and future perspectives. Glia 2020; 69:513-531. [PMID: 33052610 DOI: 10.1002/glia.23922] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022]
Abstract
The crosstalk between glial cells and neurons represents an exceptional feature for maintaining the normal function of the central nervous system (CNS). Increasing evidence has revealed the importance of glial progenitor cells in adult neurogenesis, reestablishment of cellular pools, neuroregeneration, and axonal (re)myelination. Several types of glial progenitors have been described, as well as their potentialities for recovering the CNS from certain traumas or pathologies. Among these precursors, glial-restricted precursor cells (GRPs) are considered the earliest glial progenitors and exhibit tripotency for both Type I/II astrocytes and oligodendrocytes. GRPs have been derived from embryos and embryonic stem cells in animal models and have maintained their capacity for self-renewal. Despite the relatively limited knowledge regarding the isolation, characterization, and function of these progenitors, GRPs are promising candidates for transplantation therapy and reestablishment/repair of CNS functions in neurodegenerative and neuropsychiatric disorders, as well as in traumatic injuries. Herein, we review the definition, isolation, characterization and potentialities of GRPs as cell-based therapies in different neurological conditions. We briefly discuss the implications of using GRPs in CNS regenerative medicine and their possible application in a clinical setting. MAIN POINTS: GRPs are progenitors present in the CNS with differentiation potential restricted to the glial lineage. These cells have been employed in the treatment of a myriad of neurodegenerative and traumatic pathologies, accompanied by promising results, herein reviewed.
Collapse
Affiliation(s)
- Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Helena S Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
41
|
Byun JS, Oh M, Lee S, Gil JE, Mo Y, Ku B, Kim WK, Oh KJ, Lee EW, Bae KH, Lee SC, Han BS. The transcription factor PITX1 drives astrocyte differentiation by regulating the SOX9 gene. J Biol Chem 2020; 295:13677-13690. [PMID: 32759168 DOI: 10.1074/jbc.ra120.013352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Astrocytes perform multiple essential functions in the developing and mature brain, including regulation of synapse formation, control of neurotransmitter release and uptake, and maintenance of extracellular ion balance. As a result, astrocytes have been implicated in the progression of neurodegenerative disorders such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. Despite these critical functions, the study of human astrocytes can be difficult because standard differentiation protocols are time-consuming and technically challenging, but a differentiation protocol recently developed in our laboratory enables the efficient derivation of astrocytes from human embryonic stem cells. We used this protocol along with microarrays, luciferase assays, electrophoretic mobility shift assays, and ChIP assays to explore the genes involved in astrocyte differentiation. We demonstrate that paired-like homeodomain transcription factor 1 (PITX1) is critical for astrocyte differentiation. PITX1 overexpression induced early differentiation of astrocytes, and its knockdown blocked astrocyte differentiation. PITX1 overexpression also increased and PITX1 knockdown decreased expression of sex-determining region Y box 9 (SOX9), known initiator of gliogenesis, during early astrocyte differentiation. Moreover, we determined that PITX1 activates the SOX9 promoter through a unique binding motif. Taken together, these findings indicate that PITX1 drives astrocyte differentiation by sustaining activation of the SOX9 promoter.
Collapse
Affiliation(s)
- Jeong Su Byun
- Biodefence Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Mihee Oh
- Biodefence Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Seonha Lee
- Biodefence Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Functional Genomics, University of Science and Technology of Korea, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jung-Eun Gil
- Biodefence Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yeajin Mo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Won-Kon Kim
- Department of Functional Genomics, University of Science and Technology of Korea, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Department of Functional Genomics, University of Science and Technology of Korea, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Department of Functional Genomics, University of Science and Technology of Korea, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sang Chul Lee
- Department of Functional Genomics, University of Science and Technology of Korea, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Baek-Soo Han
- Biodefence Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Functional Genomics, University of Science and Technology of Korea, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
42
|
Benavente F, Piltti KM, Hooshmand MJ, Nava AA, Lakatos A, Feld BG, Creasman D, Gershon PD, Anderson A. Novel C1q receptor-mediated signaling controls neural stem cell behavior and neurorepair. eLife 2020; 9:e55732. [PMID: 32894219 PMCID: PMC7476762 DOI: 10.7554/elife.55732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
C1q plays a key role as a recognition molecule in the immune system, driving autocatalytic complement cascade activation and acting as an opsonin. We have previously reported a non-immune role of complement C1q modulating the migration and fate of human neural stem cells (hNSC); however, the mechanism underlying these effects has not yet been identified. Here, we show for the first time that C1q acts as a functional hNSC ligand, inducing intracellular signaling to control cell behavior. Using an unbiased screening strategy, we identified five transmembrane C1q signaling/receptor candidates in hNSC (CD44, GPR62, BAI1, c-MET, and ADCY5). We further investigated the interaction between C1q and CD44 , demonstrating that CD44 mediates C1q induced hNSC signaling and chemotaxis in vitro, and hNSC migration and functional repair in vivo after spinal cord injury. These results reveal a receptor-mediated mechanism for C1q modulation of NSC behavior and show that modification of C1q receptor expression can expand the therapeutic window for hNSC transplantation.
Collapse
Affiliation(s)
- Francisca Benavente
- Sue and Bill Gross Stem Cell Research CenterIrvineUnited States
- Department of Anatomy and NeurobiologyIrvineUnited States
- Center of Regenerative Medicine, Facultad de Medicina, Universidad del DesarrolloSantiagoChile
| | - Katja M Piltti
- Sue and Bill Gross Stem Cell Research CenterIrvineUnited States
- Institute for Memory Impairments and Neurological DisordersIrvineUnited States
| | - Mitra J Hooshmand
- Sue and Bill Gross Stem Cell Research CenterIrvineUnited States
- Institute for Memory Impairments and Neurological DisordersIrvineUnited States
| | - Aileen A Nava
- Sue and Bill Gross Stem Cell Research CenterIrvineUnited States
| | - Anita Lakatos
- Sue and Bill Gross Stem Cell Research CenterIrvineUnited States
- Institute for Memory Impairments and Neurological DisordersIrvineUnited States
| | - Brianna G Feld
- Sue and Bill Gross Stem Cell Research CenterIrvineUnited States
- Bridges to Stem Cell Research Program (BSCR), California State UniversityLong BeachUnited States
| | - Dana Creasman
- Sue and Bill Gross Stem Cell Research CenterIrvineUnited States
- Department of Anatomy and NeurobiologyIrvineUnited States
| | - Paul D Gershon
- Department of Physical Medicine and RehabilitationIrvineUnited States
- Department of Molecular Biology & Biochemistry, UC-IrvineIrvineUnited States
| | - Aileen Anderson
- Sue and Bill Gross Stem Cell Research CenterIrvineUnited States
- Department of Anatomy and NeurobiologyIrvineUnited States
- Institute for Memory Impairments and Neurological DisordersIrvineUnited States
| |
Collapse
|
43
|
Diverse Roles for Hyaluronan and Hyaluronan Receptors in the Developing and Adult Nervous System. Int J Mol Sci 2020; 21:ijms21175988. [PMID: 32825309 PMCID: PMC7504301 DOI: 10.3390/ijms21175988] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic acid (HA) plays a vital role in the extracellular matrix of neural tissues. Originally thought to hydrate tissues and provide mechanical support, it is now clear that HA is also a complex signaling molecule that can regulate cell processes in the developing and adult nervous systems. Signaling properties are determined by molecular weight, bound proteins, and signal transduction through specific receptors. HA signaling regulates processes such as proliferation, differentiation, migration, and process extension in a variety of cell types including neural stem cells, neurons, astrocytes, microglia, and oligodendrocyte progenitors. The synthesis and catabolism of HA and the expression of HA receptors are altered in disease and influence neuroinflammation and disease pathogenesis. This review discusses the roles of HA, its synthesis and breakdown, as well as receptor expression in neurodevelopment, nervous system function and disease.
Collapse
|
44
|
Raman S, Srinivasan G, Brookhouser N, Nguyen T, Henson T, Morgan D, Cutts J, Brafman DA. A Defined and Scalable Peptide-Based Platform for the Generation of Human Pluripotent Stem Cell-Derived Astrocytes. ACS Biomater Sci Eng 2020; 6:3477-3490. [PMID: 32550261 PMCID: PMC7284803 DOI: 10.1021/acsbiomaterials.0c00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 01/07/2023]
Abstract
![]()
Astrocytes
comprise the most abundant cell type in the central
nervous system (CNS) and play critical roles in maintaining neural
tissue homeostasis. In addition, astrocyte dysfunction and death has
been implicated in numerous neurological disorders such as multiple
sclerosis, Alzheimer’s disease, amyotrophic lateral sclerosis
(ALS), and Parkinson’s disease (PD). As such, there is much
interest in using human pluripotent stem cell (hPSC)-derived astrocytes
for drug screening, disease modeling, and regenerative medicine applications.
However, current protocols for generation of astrocytes from hPSCs
are limited by the use of undefined xenogeneic components and two-dimensional
(2D) culture surfaces, which limits their downstream applications
where large-quantities of cells generated under defined conditions
are required. Here, we report the use of a completely synthetic, peptide-based
substrate that allows for the differentiation of highly pure populations
of astrocytes from several independent hPSC lines, including those
derived from patients with neurodegenerative disease. This substrate,
which we demonstrate is compatible with both conventional 2D culture
formats and scalable microcarrier (MC)-based technologies, leads to
the generation of cells that express high levels of canonical astrocytic
markers as well as display properties characteristic of functionally
mature cells including production of apolipoprotein E (ApoE), responsiveness
to inflammatory stimuli, ability to take up amyloid-β (Aβ),
and appearance of robust calcium transients. Finally, we show that
these astrocytes can be cryopreserved without any loss of functionality.
In the future, we anticipate that these methods will enable the development
of bioprocesses for the production of hPSC-derived astrocytes needed
for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Sreedevi Raman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Gayathri Srinivasan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States.,Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona 85004, United States
| | - Toan Nguyen
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Tanner Henson
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Daylin Morgan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Joshua Cutts
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
45
|
Early AN, Gorman AA, Van Eldik LJ, Bachstetter AD, Morganti JM. Effects of advanced age upon astrocyte-specific responses to acute traumatic brain injury in mice. J Neuroinflammation 2020; 17:115. [PMID: 32290848 PMCID: PMC7158022 DOI: 10.1186/s12974-020-01800-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Older-age individuals are at the highest risk for disability from a traumatic brain injury (TBI). Astrocytes are the most numerous glia in the brain, necessary for brain function, yet there is little known about unique responses of astrocytes in the aged-brain following TBI. METHODS Our approach examined astrocytes in young adult, 4-month-old, versus aged, 18-month-old mice, at 1, 3, and 7 days post-TBI. We selected these time points to span the critical period in the transition from acute injury to presumably irreversible tissue damage and disability. Two approaches were used to define the astrocyte contribution to TBI by age interaction: (1) tissue histology and morphological phenotyping, and (2) transcriptomics on enriched astrocytes from the injured brain. RESULTS Aging was found to have a profound effect on the TBI-induced loss of astrocyte function needed for maintaining water transport and edema-namely, aquaporin-4. The aged brain also demonstrated a progressive exacerbation of astrogliosis as a function of time after injury. Moreover, clasmatodendrosis, an underrecognized astrogliopathy, was found to be significantly increased in the aged brain, but not in the young brain. As a function of TBI, we observed a transitory refraction in the number of these astrocytes, which rebounded by 7 days post-injury in the aged brain. Transcriptomic data demonstrated disproportionate changes in genes attributed to reactive astrocytes, inflammatory response, complement pathway, and synaptic support in aged mice following TBI compared to young mice. Additionally, our data highlight that TBI did not evoke a clear alignment with the previously defined "A1/A2" dichotomy of reactive astrogliosis. CONCLUSIONS Overall, our findings point toward a progressive phenotype of aged astrocytes following TBI that we hypothesize to be maladaptive, shedding new insights into potentially modifiable astrocyte-specific mechanisms that may underlie increased fragility of the aged brain to trauma.
Collapse
Affiliation(s)
- Alexandria N Early
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Amy A Gorman
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Josh M Morganti
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA. .,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA. .,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
46
|
Kruminis-Kaszkiel E, Osowski A, Bejer-Oleńska E, Dziekoński M, Wojtkiewicz J. Differentiation of Human Mesenchymal Stem Cells from Wharton's Jelly Towards Neural Stem Cells Using A Feasible and Repeatable Protocol. Cells 2020; 9:cells9030739. [PMID: 32192154 PMCID: PMC7140706 DOI: 10.3390/cells9030739] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/15/2022] Open
Abstract
The transplantation of neural stem cells (NSCs) capable of regenerating to the cells of the central nervous system (CNS) is a promising strategy in the treatment of CNS diseases and injury. As previous studies have highlighted mesenchymal stem cells (MSCs) as a source of NSCs, this study aimed to develop a feasible, efficient, and reproducible method for the neural induction of MSCs isolated from Wharton's jelly (hWJ-MSCs). We induced neural differentiation in a monolayer culture using epidermal growth factor, basic fibroblast growth factor, N2, and B27 supplements. This resulted in a homogenous population of proliferating cells that expressed certain neural markers at both the protein and mRNA levels. Flow cytometry and immunocytochemistry confirmed the expression of neural markers: nestin, sex-determining region Y (SRY) box 1 and 2 (SOX1 and SOX2), microtubule-associated protein 2 (MAP2), and glial fibrillary acidic protein (GFAP). The qRT-PCR analysis revealed significantly enhanced expression of nestin and MAP2 in differentiated cells. This study confirms that it is possible to generate NSCs-like cells from hWJ-MSCs in a 2D culture using a practical method. However, the therapeutic effectiveness of such differentiated cells should be extended to confirm the terminal differentiation ability and electrophysiological properties of neurons derived from them.
Collapse
Affiliation(s)
- Ewa Kruminis-Kaszkiel
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (A.O.); (E.B.-O.); (J.W.)
- Correspondence:
| | - Adam Osowski
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (A.O.); (E.B.-O.); (J.W.)
| | - Ewa Bejer-Oleńska
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (A.O.); (E.B.-O.); (J.W.)
| | - Mariusz Dziekoński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (A.O.); (E.B.-O.); (J.W.)
| |
Collapse
|
47
|
Chung SH, Shen W, Davidson KC, Pébay A, Wong RCB, Yau B, Gillies M. Differentiation of Retinal Glial Cells From Human Embryonic Stem Cells by Promoting the Notch Signaling Pathway. Front Cell Neurosci 2019; 13:527. [PMID: 31849614 PMCID: PMC6901827 DOI: 10.3389/fncel.2019.00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/12/2019] [Indexed: 01/21/2023] Open
Abstract
Dysfunction of retinal glial cells, particularly Müller cells, has been implicated in several retinal diseases. Despite their important contribution to retinal homeostasis, a specific way to differentiate retinal glial cells from human pluripotent stem cells has not yet been described. Here, we report a method to differentiate retinal glial cells from human embryonic stem cells (hESCs) through promoting the Notch signaling pathway. We first generated retinal progenitor cells (RPCs) from hESCs then promoted the Notch signaling pathway using Notch ligands, including Delta-like ligand 4 and Jagged-1. We validated glial cell differentiation with qRT-PCR, immunocytochemistry, western blots and fluorescence-activated cell sorting as we promoted Notch signaling in RPCs. We found that promoting Notch signaling in RPCs for 2 weeks led to upregulation of glial cell markers, including glial fibrillary acidic protein (GFAP), glutamine synthetase, vimentin and cellular retinaldehyde-binding protein (CRALBP). Of these markers, we found the greatest increase in expression of the pan glial cell marker, GFAP. Conversely, we also found that inhibition of Notch signaling in RPCs led to upregulation of retinal neuronal markers including cone-rod homeobox (CRX) and orthodenticle homeobox 2 (OTX2) but with little expression of GFAP. This retinal glial differentiation method will help advance the generation of stem cell disease models to study the pathogenesis of retinal diseases associated with glial dysfunction such as macular telangiectasia type 2. This method may also be useful for the development of future therapeutics such as drug screening and gene editing using patient-derived retinal glial cells.
Collapse
Affiliation(s)
- Sook Hyun Chung
- Save Sight Institute, Department of Clinical Ophthalmology and Eye Health, The University of Sydney, Sydney, NSW, Australia
| | - Weiyong Shen
- Save Sight Institute, Department of Clinical Ophthalmology and Eye Health, The University of Sydney, Sydney, NSW, Australia
| | - Kathryn C Davidson
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Alice Pébay
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
| | - Raymond C B Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Department of Surgery, The University of Melbourne, Parkville, VIC, Australia.,Shenzhen Eye Hospital, Shenzhen, China
| | - Belinda Yau
- Save Sight Institute, Department of Clinical Ophthalmology and Eye Health, The University of Sydney, Sydney, NSW, Australia
| | - Mark Gillies
- Save Sight Institute, Department of Clinical Ophthalmology and Eye Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
48
|
Abstract
Leukodystrophies are genetically determined disorders affecting the white matter of the central nervous system. The combination of MRI pattern recognition and next-generation sequencing for the definition of novel disease entities has recently demonstrated that many leukodystrophies are due to the primary involvement and/or mutations in genes selectively expressed by cell types other than the oligodendrocytes, the myelin-forming cells in the brain. This has led to a new definition of leukodystrophies as genetic white matter disorders resulting from the involvement of any white matter structural component. As a result, the research has shifted its main focus from oligodendrocytes to other types of neuroglia. Astrocytes are the housekeeping cells of the nervous system, responsible for maintaining homeostasis and normal brain physiology and to orchestrate repair upon injury. Several lines of evidence show that astrocytic interactions with the other white matter cellular constituents play a primary pathophysiologic role in many leukodystrophies. These are thus now classified as astrocytopathies. This chapter addresses how the crosstalk between astrocytes, other glial cells, axons and non-neural cells are essential for the integrity and maintenance of the white matter in health. It also addresses the current knowledge of the cellular pathomechanisms of astrocytic leukodystrophies, and specifically Alexander disease, vanishing white matter, megalencephalic leukoencephalopathy with subcortical cysts and Aicardi-Goutière Syndrome.
Collapse
Affiliation(s)
- M S Jorge
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Single-cell transcriptomic profiling of the aging mouse brain. Nat Neurosci 2019; 22:1696-1708. [PMID: 31551601 DOI: 10.1038/s41593-019-0491-3] [Citation(s) in RCA: 436] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 08/09/2019] [Indexed: 01/09/2023]
Abstract
The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand-receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain ) provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process.
Collapse
|
50
|
Megías J, Martínez A, San-Miguel T, Gil-Benso R, Muñoz-Hidalgo L, Albert-Bellver D, Carratalá A, Gozalbo D, López-Ginés C, Gil ML, Cerdá-Nicolás M. Pam3CSK4, a TLR2 ligand, induces differentiation of glioblastoma stem cells and confers susceptibility to temozolomide. Invest New Drugs 2019; 38:299-310. [DOI: 10.1007/s10637-019-00788-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
|