1
|
Ishii Y, Orr JC, El Mdawar MB, de Pilger DRB, Pearce DR, Lazarus KA, Graham RE, Nikolić MZ, Ketteler R, Carragher NO, Janes SM, Hynds RE. Compound screening in human airway basal cells identifies Wnt pathway activators as potential pro-regenerative therapies. J Cell Sci 2025; 138:jcs263487. [PMID: 40065746 PMCID: PMC12045047 DOI: 10.1242/jcs.263487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
Regeneration of the airway epithelium restores barrier function and mucociliary clearance following lung injury and infection. The mechanisms regulating the proliferation and differentiation of tissue-resident airway basal stem cells remain incompletely understood. To identify compounds that promote human airway basal cell proliferation, we performed phenotype-based compound screening of 1429 compounds (from the ENZO and Prestwick Chemical libraries) in 384-well format using primary cells transduced with lentiviral luciferase. A total of 17 pro-proliferative compounds were validated in independent donor cell cultures, including the antiretroviral therapy agent abacavir and several Wnt signalling pathway-activating compounds. The effects of compounds on proliferation were further explored in colony formation and 3D organoid assays. Structurally and functionally related compounds that more potently induced Wnt pathway activation were investigated. One such compound, 1-azakenpaullone, induced Wnt target gene activation and basal cell proliferation in mice. Our results demonstrate the pro-proliferative effect of small-molecule Wnt pathway activators on airway basal cells. These findings contribute to the rationale to develop novel approaches to modulate Wnt signalling during airway epithelial repair.
Collapse
Affiliation(s)
- Yuki Ishii
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Jessica C. Orr
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
- Epithelial Cell Biology in ENT Research Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Marie-Belle El Mdawar
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | | | - David R. Pearce
- UCL Cancer Institute, University College London, London WC1N 6DD, UK
| | - Kyren A. Lazarus
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Rebecca E. Graham
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Marko Z. Nikolić
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Neil O. Carragher
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Robert E. Hynds
- Epithelial Cell Biology in ENT Research Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
- UCL Cancer Institute, University College London, London WC1N 6DD, UK
| |
Collapse
|
2
|
Takigawa-Imamura H, Fumoto K, Takesue H, Miura T. Exploiting mechanisms for hierarchical branching structure of lung airway. PLoS One 2024; 19:e0309464. [PMID: 39213428 PMCID: PMC11364422 DOI: 10.1371/journal.pone.0309464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The lung airways exhibit distinct features with long, wide proximal branches and short, thin distal branches, crucial for optimal respiratory function. In this study, we investigated the mechanism behind this hierarchical structure through experiments and modeling, focusing on the regulation of branch length and width during the pseudoglandular stage. To evaluate the response of mouse lung epithelium to fibroblast growth factor 10 (FGF10), we monitored the activity of extracellular signal-regulated kinase (ERK). ERK activity exhibited an increase dependent on the curvature of the epithelial tissue, which gradually decreased with the progression of development. We then constructed a computational model that incorporates curvature-dependent growth to predict its impact on branch formation. It was demonstrated that branch length is determined by the curvature dependence of growth. Next, in exploring branch width regulation, we considered the effect of apical constriction, a mechanism we had previously proposed to be regulated by Wnt signaling. Analysis of a mathematical model representing apical constriction showed that branch width is determined by cell shape. Finally, we constructed an integrated computational model that includes curvature-dependent growth and cell shape controls, confirming their coordination in regulating branch formation. This study proposed that changes in the autonomous property of the epithelium may be responsible for the progressive branch morphology.
Collapse
Affiliation(s)
- Hisako Takigawa-Imamura
- Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsumi Fumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroaki Takesue
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Miura
- Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Yang X, Chen Y, Yang Y, Li S, Mi P, Jing N. The molecular and cellular choreography of early mammalian lung development. MEDICAL REVIEW (2021) 2024; 4:192-206. [PMID: 38919401 PMCID: PMC11195428 DOI: 10.1515/mr-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 06/27/2024]
Abstract
Mammalian lung development starts from a specific cluster of endodermal cells situated within the ventral foregut region. With the orchestrating of delicate choreography of transcription factors, signaling pathways, and cell-cell communications, the endodermal diverticulum extends into the surrounding mesenchyme, and builds the cellular and structural basis of the complex respiratory system. This review provides a comprehensive overview of the current molecular insights of mammalian lung development, with a particular focus on the early stage of lung cell fate differentiation and spatial patterning. Furthermore, we explore the implications of several congenital respiratory diseases and the relevance to early organogenesis. Finally, we summarize the unprecedented knowledge concerning lung cell compositions, regulatory networks as well as the promising prospect for gaining an unbiased understanding of lung development and lung malformations through state-of-the-art single-cell omics.
Collapse
Affiliation(s)
- Xianfa Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yingying Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yun Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shiting Li
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan Province, China
| | - Panpan Mi
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Werder RB, Zhou X, Cho MH, Wilson AA. Breathing new life into the study of COPD with genes identified from genome-wide association studies. Eur Respir Rev 2024; 33:240019. [PMID: 38811034 PMCID: PMC11134200 DOI: 10.1183/16000617.0019-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 05/31/2024] Open
Abstract
COPD is a major cause of morbidity and mortality globally. While the significance of environmental exposures in disease pathogenesis is well established, the functional contribution of genetic factors has only in recent years drawn attention. Notably, many genes associated with COPD risk are also linked with lung function. Because reduced lung function precedes COPD onset, this association is consistent with the possibility that derangements leading to COPD could arise during lung development. In this review, we summarise the role of leading genes (HHIP, FAM13A, DSP, AGER and TGFB2) identified by genome-wide association studies in lung development and COPD. Because many COPD genome-wide association study genes are enriched in lung epithelial cells, we focus on the role of these genes in the lung epithelium in development, homeostasis and injury.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, Australia
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Lea G, Hanna CW. Loss of DNA methylation disrupts syncytiotrophoblast development: Proposed consequences of aberrant germline gene activation. Bioessays 2024; 46:e2300140. [PMID: 37994176 DOI: 10.1002/bies.202300140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
DNA methylation is a repressive epigenetic modification that is essential for development and its disruption is widely implicated in disease. Yet, remarkably, ablation of DNA methylation in transgenic mouse models has limited impact on transcriptional states. Across multiple tissues and developmental contexts, the predominant transcriptional signature upon loss of DNA methylation is the de-repression of a subset of germline genes, normally expressed in gametogenesis. We recently reported loss of de novo DNA methyltransferase DNMT3B resulted in up-regulation of germline genes and impaired syncytiotrophoblast formation in the murine placenta. This defect led to embryonic lethality. We hypothesize that de-repression of germline genes in the Dnmt3b knockout underpins aspects of the placental phenotype by interfering with normal developmental processes. Specifically, we discuss molecular mechanisms by which aberrant expression of the piRNA pathway, meiotic proteins or germline transcriptional regulators may disrupt syncytiotrophoblast development.
Collapse
Affiliation(s)
- Georgia Lea
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Courtney W Hanna
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Luo G, Gong R, Ai Y, Zhu T, Ren Z. Identification of N6-Methyladenosine-Related Factors and the Prediction of the Regulatory Mechanism of Hair Follicle Development in Rex and Hycole Rabbits. BIOLOGY 2023; 12:1448. [PMID: 37998047 PMCID: PMC10669094 DOI: 10.3390/biology12111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Hair follicle development directly affects the development of the rabbit fur industry. The growth and development of a hair follicle is modified and regulated by many genes and mechanisms. M6A is an important RNA modification. However, there are few studies on the effects of the regulation of m6A on hair follicle growth and development. In this study, hematoxylin-eosin (HE) staining was used to explore the difference in hair follicle development between Rex rabbits and Hycole rabbits, and we performed m6A sequencing to identify the key genes with m6A modification in hair follicle growth. The results showed that the hair length, coarse hair percentage, primary hair follicle ratio, and skin thickness of Hycole rabbits were significantly higher than those of Rex rabbits. However, the proportion of secondary hair follicles in Hycole rabbits was significantly lower than that in Rex rabbits. In addition, we found five differential methylases, 20 differential genes, and 24 differential signaling pathways related to hair growth and development. The results of the Sankey diagram showed that 12 genes were related to 13 signal pathways. Finally, we found that five methylases regulated the development of hair follicles through differential genes/signal pathways. These findings laid a molecular foundation for the function of m6A modification in hair development.
Collapse
Affiliation(s)
- Gang Luo
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Ruiguang Gong
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
| | - Yaotian Ai
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
| | - Tongyan Zhu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
| |
Collapse
|
7
|
Zhang S, Mulder C, Riddle S, Song R, Yue D. Mesenchymal stromal/stem cells and bronchopulmonary dysplasia. Front Cell Dev Biol 2023; 11:1247339. [PMID: 37965579 PMCID: PMC10642488 DOI: 10.3389/fcell.2023.1247339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication in preterm infants, leading to chronic respiratory disease. There has been an improvement in perinatal care, but many infants still suffer from impaired branching morphogenesis, alveolarization, and pulmonary capillary formation, causing lung function impairments and BPD. There is an increased risk of respiratory infections, pulmonary hypertension, and neurodevelopmental delays in infants with BPD, all of which can lead to long-term morbidity and mortality. Unfortunately, treatment options for Bronchopulmonary dysplasia are limited. A growing body of evidence indicates that mesenchymal stromal/stem cells (MSCs) can treat various lung diseases in regenerative medicine. MSCs are multipotent cells that can differentiate into multiple cell types, including lung cells, and possess immunomodulatory, anti-inflammatory, antioxidative stress, and regenerative properties. MSCs are regulated by mitochondrial function, as well as oxidant stress responses. Maintaining mitochondrial homeostasis will likely be key for MSCs to stimulate proper lung development and regeneration in Bronchopulmonary dysplasia. In recent years, MSCs have demonstrated promising results in treating and preventing bronchopulmonary dysplasia. Studies have shown that MSC therapy can reduce inflammation, mitochondrial impairment, lung injury, and fibrosis. In light of this, MSCs have emerged as a potential therapeutic option for treating Bronchopulmonary dysplasia. The article explores the role of MSCs in lung development and disease, summarizes MSC therapy's effectiveness in treating Bronchopulmonary dysplasia, and delves into the mechanisms behind this treatment.
Collapse
Affiliation(s)
- Shuqing Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Cassidy Mulder
- Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Chen Y, Zhou H, Wu H, Lu W, He Y. Abnormal Fetal Lung of Hoxa1 -/- Piglets Is Rescued by Maternal Feeding with All-Trans Retinoic Acid. Animals (Basel) 2023; 13:2850. [PMID: 37760250 PMCID: PMC10525738 DOI: 10.3390/ani13182850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Neonatal Hoxa1-/- piglets were characterized by dyspnea owing to the Hoxa1 mutation, and maternal administration with ATRA alleviated the dyspnea of neonatal Hoxa1-/- piglets. The purpose of this experiment was to explore how maternal ATRA administration rescued the abnormal fetal lungs of Hoxa1-/- piglets. Samples of the lungs were collected from neonatal Hoxa1-/- and non-Hoxa1-/- piglets delivered by sows in the control group, and from neonatal Hoxa1-/- piglets born by sows administered with ATRA at 4 mg/kg body weight on dpc 12, 13, or 14, respectively. These were used for the analysis of ELISA, histological morphology, immunofluorescence staining, immunohistochemistry staining, and quantitative real-time PCR. The results indicate that the Hoxa1 mutation had adverse impacts on the development of the alveoli and pulmonary microvessels of Hoxa1-/- piglets. Maternal administration with ATRA at 4 mg/kg body weight on dpc 14 rescued the abnormal lung development of Hoxa1-/- piglets by increasing the IFN-γ concentration (p < 0.05), airspace area (p < 0.01) and pulmonary microvessel density (p < 0.01); increasing the expression of VEGFD (p < 0.01), PDGFD (p < 0.01), KDR (p < 0.01), ID1 (p < 0.01), and NEDD4 (p < 0.01); and decreasing the septal wall thickness (p < 0.01) and the expression of SFTPC (p < 0.01) and FOXO3 (p < 0.01). Maternal administration with ATRA plays a vital role in rescuing the abnormal development of lung of Hoxa1-/- fetal piglets.
Collapse
Affiliation(s)
- Yixin Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (W.L.)
- Department of Animal Science, Ganzhou Polytechnic, Ganzhou 341000, China
| | - Haimei Zhou
- Department of Animal Science, Jiangxi Agricultural Engineering College, Zhangshu 331200, China;
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| |
Collapse
|
9
|
Wang H, Bienz M, Yan XX, Xu W. Structural basis of the interaction between BCL9-Pygo and LDB-SSBP complexes in assembling the Wnt enhanceosome. Nat Commun 2023; 14:3702. [PMID: 37349336 PMCID: PMC10287724 DOI: 10.1038/s41467-023-39439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
The Wnt enhanceosome is responsible for transactivation of Wnt-responsive genes and a promising therapeutic target for treatment of numerous cancers with Adenomatous Polyposis Coli (APC) or β-catenin mutations. How the Wnt enhanceosome is assembled remains poorly understood. Here we show that B-cell lymphoma 9 protein (BCL9), Pygopus (Pygo), LIM domain-binding protein 1 (LDB1) and single-stranded DNA-binding protein (SSBP) form a stable core complex within the Wnt enhanceosome. Their mutual interactions rely on a highly conserved N-terminal asparagine proline phenylalanine (NPF) motif of Pygo, through which the BCL9-Pygo complex binds to the LDB-SSBP core complex. Our crystal structure of a ternary complex comprising the N-terminus of human Pygo2, LDB1 and SSBP2 reveals a single LDB1-SSBP2 complex binding simultaneously to two Pygo2 molecules via their NPF motifs. These interactions critically depend on the NPF motifs which bind to a deep groove formed between LDB1 and SSBP2, potentially constituting a binding site for drugs blocking Wnt/β-catenin signaling. Analysis of human cell lines lacking LDB or Pygo supports the functional relevance of the Pygo-LDB1-SSBP2 interaction for Wnt/β-catenin-dependent transcription.
Collapse
Affiliation(s)
- Hongyang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mariann Bienz
- Medical Research Council Laboratory of Molecular Biology, CB2 0QH, Cambridge, United Kingdom
| | - Xiao-Xue Yan
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Wenqing Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
10
|
Quan YZ, Wei W, Ergin V, Rameshbabu A, Huang M, Tian C, Saladi S, Indzhykulian A, Chen ZY. Reprogramming by drug-like molecules leads to regeneration of cochlear hair cell-like cells in adult mice. Proc Natl Acad Sci U S A 2023; 120:e2215253120. [PMID: 37068229 PMCID: PMC10151514 DOI: 10.1073/pnas.2215253120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/02/2023] [Indexed: 04/19/2023] Open
Abstract
Strategies to overcome irreversible cochlear hair cell (HC) damage and loss in mammals are of vital importance to hearing recovery in patients with permanent hearing loss. In mature mammalian cochlea, co-activation of Myc and Notch1 reprograms supporting cells (SC) and promotes HC regeneration. Understanding of the underlying mechanisms may aid the development of a clinically relevant approach to achieve HC regeneration in the nontransgenic mature cochlea. By single-cell RNAseq, we show that MYC/NICD "rejuvenates" the adult mouse cochlea by activating multiple pathways including Wnt and cyclase activator of cyclic AMP (cAMP), whose blockade suppresses HC-like cell regeneration despite Myc/Notch activation. We screened and identified a combination (the cocktail) of drug-like molecules composing of small molecules and small interfering RNAs to activate the pathways of Myc, Notch1, Wnt and cAMP. We show that the cocktail effectively replaces Myc and Notch1 transgenes and reprograms fully mature wild-type (WT) SCs for HC-like cells regeneration in vitro. Finally, we demonstrate the cocktail is capable of reprogramming adult cochlea for HC-like cells regeneration in WT mice with HC loss in vivo. Our study identifies a strategy by a clinically relevant approach to reprogram mature inner ear for HC-like cells regeneration, laying the foundation for hearing restoration by HC regeneration.
Collapse
Affiliation(s)
- Yi-Zhou Quan
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Wei Wei
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
- Department of Otolaryngology-Head and Necks, Shengjing Hospital of China Medical University, Shenyang110004, China
| | - Volkan Ergin
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Arun Prabhu Rameshbabu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Mingqian Huang
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Chunjie Tian
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Srinivas Vinod Saladi
- Broad Institute of MIT and Harvard, Cambridge, MA02142
- Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA02114
| | - Artur A. Indzhykulian
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA02114
| |
Collapse
|
11
|
Bock-Marquette I, Maar K, Maar S, Lippai B, Faskerti G, Gallyas F, Olson EN, Srivastava D. Thymosin beta-4 denotes new directions towards developing prosperous anti-aging regenerative therapies. Int Immunopharmacol 2023; 116:109741. [PMID: 36709593 DOI: 10.1016/j.intimp.2023.109741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/28/2023]
Abstract
Our dream of defeating the processes of organ damage and aging remains a challenge scientists pursued for hundreds of years. Although the goal is to successfully treat the body as a whole, steps towards regenerating individual organs are even considered significant. Since initial approaches utilizing only progenitor cells appear limited, we propose interconnecting our collective knowledge regarding aging and embryonic development may lead to the discovery of molecules which provide alternatives to effectively reverse cellular damage. In this review, we introduce and summarize our results regarding Thymosin beta-4 (TB4) to support our hypothesis using the heart as model system. Accordingly, we investigated the developmental expression of TB4 in mouse embryos and determined the impact of the molecule in adult animals by systemically injecting the peptide following acute cardiac infarction or with no injury. Our results proved, TB4 is expressed in the developing heart and promotes cardiac cell migration and survival. In adults, the peptide enhances myocyte survival and improves cardiac function after coronary artery ligation. Moreover, intravenous injections of TB4 alter the morphology of the adult epicardium, and the changes resemble the characteristics of the embryo. Reactivation of the embryonic program became equally reflected by the increased number of cardiac vessels and by the alteration of the gene expression profile typical of the embryonic state. Moreover, we discovered TB4 is capable of epicardial progenitor activation, and revealed the effect is independent of hypoxic injury. By observing the above results, we believe, further discoveries and consequential postnatal administration of developmentally relevant candidate molecules such as TB4 may likely result in reversing aging processes and accelerate organ regeneration in the human body.
Collapse
Affiliation(s)
- Ildiko Bock-Marquette
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary.
| | - Klaudia Maar
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Szabolcs Maar
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Balint Lippai
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Gabor Faskerti
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Roddenberry Stem Cell Center, Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
12
|
Yang W, Li Y, Shi F, Liu H. Human lung organoid: Models for respiratory biology and diseases. Dev Biol 2023; 494:26-34. [PMID: 36470449 DOI: 10.1016/j.ydbio.2022.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The human respiratory system, consisting of the airway and alveoli, is one of the most complex organs directly interfaced with the external environment. The diverse epithelial cells lining the surface are usually the first cell barrier that comes into contact with pathogens that could lead to deadly pulmonary disease. There is an urgent need to understand the mechanisms of self-renewal and protection of these epithelial cells against harmful pathogens, such as SARS-CoV-2. Traditional models, including cell lines and mouse models, have extremely limited native phenotypic features. Therefore, in recent years, to mimic the complexity of the lung, airway and alveoli organoid technology has been developed and widely applied. TGF-β/BMP/SMAD, FGF and Wnt/β-catenin signaling have been proven to play a key role in lung organoid expansion and differentiation. Thus, we summarize the current novel lung organoid culture strategies and discuss their application for understanding the lung biological features and pathophysiology of pulmonary diseases, especially COVID-19. Lung organoids provide an excellent in vitro model and research platform.
Collapse
Affiliation(s)
- Wenhao Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yingna Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fang Shi
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Fröhlich J, Rose K, Hecht A. Transcriptional activity mediated by β-CATENIN and TCF/LEF family members is completely dispensable for survival and propagation of multiple human colorectal cancer cell lines. Sci Rep 2023; 13:287. [PMID: 36609428 PMCID: PMC9822887 DOI: 10.1038/s41598-022-27261-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/29/2022] [Indexed: 01/08/2023] Open
Abstract
Unrestrained transcriptional activity of β-CATENIN and its binding partner TCF7L2 frequently underlies colorectal tumor initiation and is considered an obligatory oncogenic driver throughout intestinal carcinogenesis. Yet, the TCF7L2 gene carries inactivating mutations in about 10% of colorectal tumors and is non-essential in colorectal cancer (CRC) cell lines. To determine whether CRC cells acquire TCF7L2-independence through cancer-specific compensation by other T-cell factor (TCF)/lymphoid enhancer-binding factor (LEF) family members, or rather lose addiction to β-CATENIN/TCF7L2-driven gene expression altogether, we generated multiple CRC cell lines entirely negative for TCF/LEF or β-CATENIN expression. Survival of these cells and the ability to propagate them demonstrate their complete β-CATENIN- and TCF/LEF-independence. Nonetheless, one β-CATENIN-deficient cell line eventually became senescent, and absence of TCF/LEF proteins and β-CATENIN consistently impaired CRC cell proliferation, reminiscent of mitogenic effects of WNT/β-CATENIN signaling in the healthy intestine. Despite this common phenotype, β-CATENIN-deficient cells exhibited highly cell-line-specific gene expression changes with little overlap between β-CATENIN- and TCF7L2-dependent transcriptomes. Apparently, β-CATENIN and TCF7L2 independently control sizeable fractions of their target genes. The observed divergence of β-CATENIN and TCF7L2 transcriptional programs, and the finding that neither β-CATENIN nor TCF/LEF activity is strictly required for CRC cell survival has important implications when evaluating these factors as potential drug targets.
Collapse
Affiliation(s)
- Janna Fröhlich
- grid.5963.9Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany ,grid.5963.9Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Katja Rose
- grid.5963.9Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
| | - Andreas Hecht
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany. .,Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW To provide an update on the current understanding of the role of wingless/integrase-1 (Wnt) signaling in pediatric allergic asthma and other pediatric lung diseases. RECENT FINDINGS The Wnt signaling pathway is critical for normal lung development. Genetic and epigenetic human studies indicate a link between Wnt signaling and the development and severity of asthma in children. Mechanistic studies using animal models of allergic asthma demonstrate a key role for Wnt signaling in allergic airway inflammation and remodeling. More recently, data on bronchopulmonary dysplasia (BPD) pathogenesis points to the Wnt signaling pathway as an important regulator. SUMMARY Current data indicates that the Wnt signaling pathway is an important mediator in allergic asthma and BPD pathogenesis. Further studies are needed to characterize the roles of individual Wnt signals in childhood disease, and to identify potential novel therapeutic targets to slow or prevent disease processes.
Collapse
Affiliation(s)
- Nooralam Rai
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Jeanine D’Armiento
- Department of Anesthesiology, Medicine, and Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
15
|
Brownfield DG, de Arce AD, Ghelfi E, Gillich A, Desai TJ, Krasnow MA. Alveolar cell fate selection and lifelong maintenance of AT2 cells by FGF signaling. Nat Commun 2022; 13:7137. [PMID: 36414616 PMCID: PMC9681748 DOI: 10.1038/s41467-022-34059-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
The lung's gas exchange surface is comprised of alveolar AT1 and AT2 cells that are corrupted in several common and deadly diseases. They arise from a bipotent progenitor whose differentiation is thought to be dictated by differential mechanical forces. Here we show the critical determinant is FGF signaling. Fgfr2 is expressed in the developing progenitors in mouse then restricts to nascent AT2 cells and remains on throughout life. Its ligands are expressed in surrounding mesenchyme and can, in the absence of exogenous mechanical cues, induce progenitors to form alveolospheres with intermingled AT2 and AT1 cells. FGF signaling directly and cell autonomously specifies AT2 fate; progenitors lacking Fgfr2 in vitro and in vivo exclusively acquire AT1 fate. Fgfr2 loss in AT2 cells perinatally results in reprogramming to AT1 identity, whereas loss or inhibition later in life triggers AT2 apoptosis and compensatory regeneration. We propose that Fgfr2 signaling selects AT2 fate during development, induces a cell non-autonomous AT1 differentiation signal, then continuously maintains AT2 identity and survival throughout life.
Collapse
Affiliation(s)
- Douglas G Brownfield
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305-5307, USA.
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Division of Pulmonary and Critical Care Medicine, Departments of Physiology and Biomedical Engineering and of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| | - Alex Diaz de Arce
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305-5307, USA
| | - Elisa Ghelfi
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Astrid Gillich
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305-5307, USA
| | - Tushar J Desai
- Department of Internal Medicine and Stem Cell Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Mark A Krasnow
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305-5307, USA.
| |
Collapse
|
16
|
Kim KB, Kim DW, Kim Y, Tang J, Kirk N, Gan Y, Kim B, Fang B, Park JI, Zheng Y, Park KS. WNT5A-RHOA Signaling Is a Driver of Tumorigenesis and Represents a Therapeutically Actionable Vulnerability in Small Cell Lung Cancer. Cancer Res 2022; 82:4219-4233. [PMID: 36102736 PMCID: PMC9669186 DOI: 10.1158/0008-5472.can-22-1170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/11/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022]
Abstract
WNT signaling represents an attractive target for cancer therapy due to its widespread oncogenic role. However, the molecular players involved in WNT signaling and the impact of their perturbation remain unknown for numerous recalcitrant cancers. Here, we characterize WNT pathway activity in small cell lung cancer (SCLC) and determine the functional role of WNT signaling using genetically engineered mouse models. β-Catenin, a master mediator of canonical WNT signaling, was dispensable for SCLC development, and its transcriptional program was largely silenced during tumor development. Conversely, WNT5A, a ligand for β-catenin-independent noncanonical WNT pathways, promoted neoplastic transformation and SCLC cell proliferation, whereas WNT5A deficiency inhibited SCLC development. Loss of p130 in SCLC cells induced expression of WNT5A, which selectively increased Rhoa transcription and activated RHOA protein to drive SCLC. Rhoa knockout suppressed SCLC development in vivo, and chemical perturbation of RHOA selectively inhibited SCLC cell proliferation. These findings suggest a novel requirement for the WNT5A-RHOA axis in SCLC, providing critical insights for the development of novel therapeutic strategies for this recalcitrant cancer. This study also sheds light on the heterogeneity of WNT signaling in cancer and the molecular determinants of its cell-type specificity. SIGNIFICANCE The p130-WNT5A-RHOA pathway drives SCLC progression and is a potential target for the development of therapeutic interventions and biomarkers to improve patient treatment.
Collapse
Affiliation(s)
- Kee-Beom Kim
- Department of Microbiology, Immunology, and Cancer Biology,
University of Virginia, Charlottesville, VA 22908, USA
| | - Dong-Wook Kim
- Department of Microbiology, Immunology, and Cancer Biology,
University of Virginia, Charlottesville, VA 22908, USA
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, Moffitt
Cancer Research Center, Tampa Bay, FL 33612, USA
| | - Jun Tang
- Department of Microbiology, Immunology, and Cancer Biology,
University of Virginia, Charlottesville, VA 22908, USA
| | - Nicole Kirk
- Department of Microbiology, Immunology, and Cancer Biology,
University of Virginia, Charlottesville, VA 22908, USA
| | - Yongyu Gan
- Department of Microbiology, Immunology, and Cancer Biology,
University of Virginia, Charlottesville, VA 22908, USA
| | - Bongjun Kim
- Department of Experimental Radiation Oncology, MD Anderson
Cancer Center, Houston, TX 77030, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, MD
Anderson Cancer Center, Houston, TX 77030, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, MD Anderson
Cancer Center, Houston, TX 77030, USA
| | - Yi Zheng
- Devision of Experimental Hematology and Cancer Biology,
Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,
USA
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology,
University of Virginia, Charlottesville, VA 22908, USA,Correspondence to Kwon-Sik Park, 1340 Jefferson
Park Avenue, Charlottesville, VA 22908 USA, ,
phone: 434-982-1947
| |
Collapse
|
17
|
Tamai K, Sakai K, Yamaki H, Moriguchi K, Igura K, Maehana S, Suezawa T, Takehara K, Hagiwara M, Hirai T, Gotoh S. iPSC-derived mesenchymal cells that support alveolar organoid development. CELL REPORTS METHODS 2022; 2:100314. [PMID: 36313800 PMCID: PMC9606132 DOI: 10.1016/j.crmeth.2022.100314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/14/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022]
Abstract
Mesenchymal cells are necessary for organ development. In the lung, distal tip fibroblasts contribute to alveolar and airway epithelial cell differentiation and homeostasis. Here, we report a method for generating human induced pluripotent stem cell (iPSC)-derived mesenchymal cells (iMESs) that can induce human iPSC-derived alveolar and airway epithelial lineages in organoids via epithelial-mesenchymal interaction, without the use of allogenic fetal lung fibroblasts. Through a transcriptome comparison of dermal and lung fibroblasts with their corresponding reprogrammed iPSC-derived iMESs, we found that iMESs had features of lung mesenchyme with the potential to induce alveolar type 2 (AT2) cells. Particularly, RSPO2 and RSPO3 expressed in iMESs directly contributed to AT2 cell induction during organoid formation. We demonstrated that the total iPSC-derived alveolar organoids were useful for characterizing responses to the influenza A (H1N1) virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, demonstrating their utility for disease modeling.
Collapse
Affiliation(s)
- Koji Tamai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kouji Sakai
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruka Yamaki
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keita Moriguchi
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Igura
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shotaro Maehana
- Department of Environmental Microbiology, Graduate School of Medical Sciences, Kitasato University, Kanagawa, Japan
- Department of Microbiology, School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
- Regenerative Medicine and Cell Design Research Facility, Kanagawa, Japan
| | - Takahiro Suezawa
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuaki Takehara
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Laboratory of Animal Health, Cooperative Division of Veterinary Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Setiawan AM, Kamarudin TA, Abd Ghafar N. The role of BMP4 in adipose-derived stem cell differentiation: A minireview. Front Cell Dev Biol 2022; 10:1045103. [PMID: 36340030 PMCID: PMC9634734 DOI: 10.3389/fcell.2022.1045103] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
Bone morphogenetic protein 4 (BMP4) is a member of the transforming growth factor beta (TGF-β) superfamily of cytokines responsible for stem cells’ commitment to differentiation, proliferation, and maturation. To date, various studies have utilized BMP4 as a chemical inducer for in vitro differentiation of human mesenchymal stem cells (MSCs) based on its potential. BMP4 drives in vitro differentiation of ADSC via TGF-β signaling pathway by interactions with BMP receptors leading to the activation of smad-dependent and smad-independent pathways. The BMP4 signaling pathways are regulated by intracellular and extracellular BMP4 antagonists. Extracellular BMP4 antagonist prevents interaction between BMP4 ligand to its receptors, while intracellular BMP4 antagonist shutdowns the smad-dependent pathways through multiple mechanisms. BMP4 proved as one of the popular differentiation factors to induce ADSC differentiation into cell from mesodermal origin. However, addition of all-trans retinoic acid is also needed in trans-differentiation of ADSC into ectodermal lineage cells. Suggesting that both BMP4 and RA signaling pathways may be necessary to be activated for in vitro trans-differentiation of ADSC.
Collapse
Affiliation(s)
- Abdul Malik Setiawan
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Anatomy, Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
| | - Taty Anna Kamarudin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Taty Anna Kamarudin,
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Hein RFC, Conchola AS, Fine AS, Xiao Z, Frum T, Brastrom LK, Akinwale MA, Childs CJ, Tsai YH, Holloway EM, Huang S, Mahoney J, Heemskerk I, Spence JR. Stable iPSC-derived NKX2-1+ lung bud tip progenitor organoids give rise to airway and alveolar cell types. Development 2022; 149:dev200693. [PMID: 36039869 PMCID: PMC9534489 DOI: 10.1242/dev.200693] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022]
Abstract
Bud tip progenitors (BTPs) in the developing lung give rise to all epithelial cell types found in the airways and alveoli. This work aimed to develop an iPSC organoid model enriched with NKX2-1+ BTP-like cells. Building on previous studies, we optimized a directed differentiation paradigm to generate spheroids with more robust NKX2-1 expression. Spheroids were expanded into organoids that possessed NKX2-1+/CPM+ BTP-like cells, which increased in number over time. Single cell RNA-sequencing analysis revealed a high degree of transcriptional similarity between induced BTPs (iBTPs) and in vivo BTPs. Using FACS, iBTPs were purified and expanded as induced bud tip progenitor organoids (iBTOs), which maintained an enriched population of bud tip progenitors. When iBTOs were directed to differentiate into airway or alveolar cell types using well-established methods, they gave rise to organoids composed of organized airway or alveolar epithelium, respectively. Collectively, iBTOs are transcriptionally and functionally similar to in vivo BTPs, providing an important model for studying human lung development and differentiation.
Collapse
Affiliation(s)
- Renee F. C. Hein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ansley S. Conchola
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexis S. Fine
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhiwei Xiao
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tristan Frum
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lindy K. Brastrom
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mayowa A. Akinwale
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Charlie J. Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M. Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sha Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John Mahoney
- Therapeutics Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jason R. Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Eenjes E, Tibboel D, Wijnen RM, Rottier RJ. Lung epithelium development and airway regeneration. Front Cell Dev Biol 2022; 10:1022457. [PMID: 36299482 PMCID: PMC9589436 DOI: 10.3389/fcell.2022.1022457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
The lung is composed of a highly branched airway structure, which humidifies and warms the inhaled air before entering the alveolar compartment. In the alveoli, a thin layer of epithelium is in close proximity with the capillary endothelium, allowing for an efficient exchange of oxygen and carbon dioxide. During development proliferation and differentiation of progenitor cells generates the lung architecture, and in the adult lung a proper function of progenitor cells is needed to regenerate after injury. Malfunctioning of progenitors during development results in various congenital lung disorders, such as Congenital Diaphragmatic Hernia (CDH) and Congenital Pulmonary Adenomatoid Malformation (CPAM). In addition, many premature neonates experience continuous insults on the lung caused by artificial ventilation and supplemental oxygen, which requires a highly controlled mechanism of airway repair. Malfunctioning of airway progenitors during regeneration can result in reduction of respiratory function or (chronic) airway diseases. Pathways that are active during development are frequently re-activated upon damage. Understanding the basic mechanisms of lung development and the behavior of progenitor cell in the ontogeny and regeneration of the lung may help to better understand the underlying cause of lung diseases, especially those occurring in prenatal development or in the immediate postnatal period of life. This review provides an overview of lung development and the cell types involved in repair of lung damage with a focus on the airway.
Collapse
Affiliation(s)
- Evelien Eenjes
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Rene M.H. Wijnen
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Robbert J. Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Robbert J. Rottier,
| |
Collapse
|
21
|
Lewis ZR, Kerney R, Hanken J. Developmental basis of evolutionary lung loss in plethodontid salamanders. SCIENCE ADVANCES 2022; 8:eabo6108. [PMID: 35977024 PMCID: PMC9385146 DOI: 10.1126/sciadv.abo6108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
One or more members of four living amphibian clades have independently dispensed with pulmonary respiration and lack lungs, but little is known of the developmental basis of lung loss in any taxon. We use morphological, molecular, and experimental approaches to examine the Plethodontidae, a dominant family of salamanders, all of which are lungless as adults. We confirm an early anecdotal report that plethodontids complete early stages of lung morphogenesis: Transient embryonic lung primordia form but regress by apoptosis before hatching. Initiation of pulmonary development coincides with expression of the lung-specification gene Wnt2b in adjacent mesoderm, and the lung rudiment expresses pulmonary markers Nkx2.1 and Sox9. Lung developmental-genetic pathways are at least partially conserved despite the absence of functional adult lungs for at least 25 and possibly exceeding 60 million years. Adult lung loss appears associated with altered expression of signaling molecules that mediate later stages of tracheal and pulmonary development.
Collapse
Affiliation(s)
- Zachary R. Lewis
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Ryan Kerney
- Department of Biology, Gettysburg College, Gettysburg, PA, USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
22
|
Liao CC, Chiu CJ, Yang YH, Chiang BL. Neonatal lung-derived SSEA-1 + cells exhibited distinct stem/progenitor characteristics and organoid developmental potential. iScience 2022; 25:104262. [PMID: 35521516 PMCID: PMC9062680 DOI: 10.1016/j.isci.2022.104262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/10/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Stem/progenitor cells, because of their self-renewal and multiple cell type differentiation abilities, have good potential in regenerative medicine. We previously reported a lung epithelial cell population that expressed the stem cell marker SSEA-1 was abundant in neonatal but scarce in adult mice. In the current study, neonatal and adult mouse-derived pulmonary SSEA-1+ cells were isolated for further characterization. The results showed that neonatal-derived pulmonary SSEA-1+ cells highly expressed lung development-associated genes and had enhanced organoid generation ability compared with the adult cells. Neonatal pulmonary SSEA-1+ cells generated airway-like and alveolar-like organoids, suggesting multilineage cell differentiation ability. Organoid generation of neonatal but not adult pulmonary SSEA-1+ cells was enhanced by fibroblast growth factor 7 (FGF 7). Furthermore, neonatal pulmonary SSEA-1+ cells colonized and developed in decellularized and injured lungs. These results suggest the potential of lung-derived neonatal-stage SSEA-1+ cells with enhanced stem/progenitor activity and shed light on future lung engineering applications. Pulmonary SSEA-1+ cells are abundant in neonatal and scarce in adult stages The stem/progenitor activity of pulmonary SSEA-1+ cells is enhanced in neonatal stage Neonatal pulmonary SSEA-1+ cells developed into airway- and alveolar-like organoids FGF7 regulates alveolar epithelium development of neonatal pulmonary SSEA-1+ cells
Collapse
Affiliation(s)
- Chien-Chia Liao
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiao-Juno Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, Taiwan
| |
Collapse
|
23
|
Fernandez RJ, Gardner ZJG, Slovik KJ, Liberti DC, Estep KN, Yang W, Chen Q, Santini GT, Perez JV, Root S, Bhatia R, Tobias JW, Babu A, Morley MP, Frank DB, Morrisey EE, Lengner CJ, Johnson FB. GSK3 inhibition rescues growth and telomere dysfunction in dyskeratosis congenita iPSC-derived type II alveolar epithelial cells. eLife 2022; 11:64430. [PMID: 35559731 PMCID: PMC9200405 DOI: 10.7554/elife.64430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/11/2022] [Indexed: 11/27/2022] Open
Abstract
Dyskeratosis congenita (DC) is a rare genetic disorder characterized by deficiencies in telomere maintenance leading to very short telomeres and the premature onset of certain age-related diseases, including pulmonary fibrosis (PF). PF is thought to derive from epithelial failure, particularly that of type II alveolar epithelial (AT2) cells, which are highly dependent on Wnt signaling during development and adult regeneration. We use human induced pluripotent stem cell-derived AT2 (iAT2) cells to model how short telomeres affect AT2 cells. Cultured DC mutant iAT2 cells accumulate shortened, uncapped telomeres and manifest defects in the growth of alveolospheres, hallmarks of senescence, and apparent defects in Wnt signaling. The GSK3 inhibitor, CHIR99021, which mimics the output of canonical Wnt signaling, enhances telomerase activity and rescues the defects. These findings support further investigation of Wnt agonists as potential therapies for DC-related pathologies.
Collapse
Affiliation(s)
- Rafael Jesus Fernandez
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, United States
| | - Zachary J G Gardner
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, United States
| | - Katherine J Slovik
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| | - Derek C Liberti
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, United States
| | - Katrina N Estep
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, United States
| | - Wenli Yang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| | - Qijun Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Garrett T Santini
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Javier V Perez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Sarah Root
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Philadelphia, United States
| | - Ranvir Bhatia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, United States
| | - Apoorva Babu
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - Michael P Morley
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - David B Frank
- Penn-CHOP Lung Biology Institute, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Edward E Morrisey
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| | - Christopher J Lengner
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
24
|
Toth A, Steinmeyer S, Kannan P, Gray J, Jackson CM, Mukherjee S, Demmert M, Sheak JR, Benson D, Kitzmiller J, Wayman JA, Presicce P, Cates C, Rubin R, Chetal K, Du Y, Miao Y, Gu M, Guo M, Kalinichenko VV, Kallapur SG, Miraldi ER, Xu Y, Swarr D, Lewkowich I, Salomonis N, Miller L, Sucre JS, Whitsett JA, Chougnet CA, Jobe AH, Deshmukh H, Zacharias WJ. Inflammatory blockade prevents injury to the developing pulmonary gas exchange surface in preterm primates. Sci Transl Med 2022; 14:eabl8574. [PMID: 35353543 PMCID: PMC9082785 DOI: 10.1126/scitranslmed.abl8574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Perinatal inflammatory stress is associated with early life morbidity and lifelong consequences for pulmonary health. Chorioamnionitis, an inflammatory condition affecting the placenta and fluid surrounding the developing fetus, affects 25 to 40% of preterm births. Severe chorioamnionitis with preterm birth is associated with significantly increased risk of pulmonary disease and secondary infections in childhood, suggesting that fetal inflammation may markedly alter the development of the lung. Here, we used intra-amniotic lipopolysaccharide (LPS) challenge to induce experimental chorioamnionitis in a prenatal rhesus macaque (Macaca mulatta) model that mirrors structural and temporal aspects of human lung development. Inflammatory injury directly disrupted the developing gas exchange surface of the primate lung, with extensive damage to alveolar structure, particularly the close association and coordinated differentiation of alveolar type 1 pneumocytes and specialized alveolar capillary endothelium. Single-cell RNA sequencing analysis defined a multicellular alveolar signaling niche driving alveologenesis that was extensively disrupted by perinatal inflammation, leading to a loss of gas exchange surface and alveolar simplification, with notable resemblance to chronic lung disease in newborns. Blockade of the inflammatory cytokines interleukin-1β and tumor necrosis factor-α ameliorated LPS-induced inflammatory lung injury by blunting stromal responses to inflammation and modulating innate immune activation in myeloid cells, restoring structural integrity and key signaling networks in the developing alveolus. These data provide new insight into the pathophysiology of developmental lung injury and suggest that modulating inflammation is a promising therapeutic approach to prevent fetal consequences of chorioamnionitis.
Collapse
Affiliation(s)
- Andrea Toth
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Shelby Steinmeyer
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Paranthaman Kannan
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Jerilyn Gray
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Courtney M. Jackson
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH USA
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester, Rochester, NY USA
| | - Shibabrata Mukherjee
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Martin Demmert
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, Institute for Systemic Inflammation Research, University of Lϋbeck, Lϋbeck, Germany
| | - Joshua R. Sheak
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Daniel Benson
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Joseph Kitzmiller
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Joseph A. Wayman
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Pietro Presicce
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA USA
| | - Christopher Cates
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Rhea Rubin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Yina Du
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Yifei Miao
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Mingxia Gu
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Minzhe Guo
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Vladimir V. Kalinichenko
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Suhas G. Kallapur
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA USA
| | - Emily R. Miraldi
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Yan Xu
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Daniel Swarr
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Nathan Salomonis
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Lisa Miller
- California National Primate Research Center, University of California Davis, Davis, CA USA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA USA
| | - Jennifer S. Sucre
- Division of Neonatology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Jeffrey A. Whitsett
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Alan H. Jobe
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Hitesh Deshmukh
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - William J. Zacharias
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
25
|
Fang Y, Shao H, Wu Q, Wong NC, Tsong N, Sime PJ, Que J. Epithelial Wntless regulates postnatal alveologenesis. Development 2022; 149:273807. [PMID: 34931663 PMCID: PMC8881739 DOI: 10.1242/dev.199505] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/09/2021] [Indexed: 01/12/2023]
Abstract
Alveologenesis requires the coordinated modulation of the epithelial and mesenchymal compartments to generate mature alveolar saccules for efficient gas exchange. However, the molecular mechanisms underlying the epithelial-mesenchymal interaction during alveologenesis are poorly understood. Here, we report that Wnts produced by epithelial cells are crucial for neonatal alveologenesis. Deletion of the Wnt chaperone protein Wntless homolog (Wls) disrupts alveolar formation, resulting in enlarged saccules in Sftpc-Cre/Nkx2.1-Cre; Wlsloxp/loxp mutants. Although commitment of the alveolar epithelium is unaffected, α-SMA+ mesenchymal cells persist in the alveoli, accompanied by increased collagen deposition, and mutants exhibit exacerbated fibrosis following bleomycin challenge. Notably, α-SMA+ cells include a significant number of endothelial cells resembling endothelial to mesenchymal transition (EndMT), which is also present in Ager-CreER; Wlsloxp/loxp mutants following early postnatal Wls deletion. These findings provide initial evidence that epithelial-derived Wnts are crucial for the differentiation of the surrounding mesenchyme during early postnatal alveologenesis.
Collapse
Affiliation(s)
- Yinshan Fang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Hongxia Shao
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Tianjin Haihe Hospital, Tianjin, Tianjin 300350, China
| | - Qi Wu
- Tianjin Haihe Hospital, Tianjin, Tianjin 300350, China
| | - Neng Chun Wong
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Natalie Tsong
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Patricia J. Sime
- Department of Internal Medicine, Virginia Commonwealth University in Richmond, Richmond, VA 23298, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Author for correspondence ()
| |
Collapse
|
26
|
Liberti DC, Morrisey EE. Organoid models: assessing lung cell fate decisions and disease responses. Trends Mol Med 2021; 27:1159-1174. [PMID: 34674972 DOI: 10.1016/j.molmed.2021.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Organoids can be derived from various cell types in the lung, and they provide a reproducible and tractable model for understanding the complex signals driving cell fate decisions in a regenerative context. In this review, we provide a retrospective account of organoid methodologies and outline new opportunities for optimizing these methods to further explore emerging concepts in lung biology. Moreover, we examine the benefits of integrating organoid assays with in vivo modeling to explore how the various niches and compartments in the respiratory system respond to both acute and chronic lung disease. The strategic implementation and improvement of organoid techniques will provide exciting new opportunities to understand and identify new therapeutic approaches to ameliorate lung disease states.
Collapse
Affiliation(s)
- Derek C Liberti
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Chen K, Fan Y, Gu J, Han Z, Wang Y, Gao L, Zeng H, Mao C, Wang C. Effect of lgals3a on embryo development of zebrafish. Transgenic Res 2021; 30:739-750. [PMID: 34347236 DOI: 10.1007/s11248-021-00276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/27/2021] [Indexed: 12/01/2022]
Abstract
Our study was aimed to investigate the effects of lgals3a (Gal-3 encoding gene) on the development of zebrafish embryo and its underlying mechanisms. Morpholino (MO) technology was used to inhibit the expression of zebrafish lgals3a, and the effect of lgals3a gene knockdown on zebrafish embryo development and the number of monocyte macrophages was observed. Effect of lgals3a-e3i3-MO on apoptosis of zebrafish was detected by acridine orange staining. In addition, the mRNA expression levels of Wnt/β-catenin signaling pathway-related genes were detected by RT-qPCR. Compared with control-MO group, the zebrafish embryos injected with lgals3a-e3i3-MO had obvious defects in the head, eyes, and tail, and pericardial edema. Lgals3a-e3i3-MO significantly reduced the number of mononuclear macrophages in zebrafish embryos compared with the control-MO group. The results of acridine orange staining showed that compared with the control-MO group, lgals3a-e3i3-MO promoted cardiomyocyte apoptosis in zebrafish. Furthermore, lgals3a-e3i3-MO significantly up-regulated the expression of dkk1b, wnt9a, lrp5, fzd7a, β-catenin, Gsk-3β, mycn, myca in the Wnt/β-catenin pathway, and decreased the expression of lef1. These results indicate that lgals3a-e3i3-MO inhibits zebrafish embryo development, reduces the number of mononuclear macrophages, activates Wnt/β-catenin signaling pathway and promotes cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Kan Chen
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yuqi Fan
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Zhihua Han
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yue Wang
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Lin Gao
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Huasu Zeng
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chengyu Mao
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
28
|
Aros CJ, Pantoja CJ, Gomperts BN. Wnt signaling in lung development, regeneration, and disease progression. Commun Biol 2021; 4:601. [PMID: 34017045 PMCID: PMC8138018 DOI: 10.1038/s42003-021-02118-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The respiratory tract is a vital, intricate system for several important biological processes including mucociliary clearance, airway conductance, and gas exchange. The Wnt signaling pathway plays several crucial and indispensable roles across lung biology in multiple contexts. This review highlights the progress made in characterizing the role of Wnt signaling across several disciplines in lung biology, including development, homeostasis, regeneration following injury, in vitro directed differentiation efforts, and disease progression. We further note uncharted directions in the field that may illuminate important biology. The discoveries made collectively advance our understanding of Wnt signaling in lung biology and have the potential to inform therapeutic advancements for lung diseases. Cody Aros, Carla Pantoja, and Brigitte Gomperts review the key role of Wnt signaling in all aspects of lung development, repair, and disease progression. They provide an overview of recent research findings and highlight where research is needed to further elucidate mechanisms of action, with the aim of improving disease treatments.
Collapse
Affiliation(s)
- Cody J Aros
- UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, USA.,UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Carla J Pantoja
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Brigitte N Gomperts
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Division of Pulmonary and Critical Care MedicineDavid Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA. .,Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Sutcliffe MD, Galvao RP, Wang L, Kim J, Rosenfeld LK, Singh S, Zong H, Janes KA. Premalignant Oligodendrocyte Precursor Cells Stall in a Heterogeneous State of Replication Stress Prior to Gliomagenesis. Cancer Res 2021; 81:1868-1882. [PMID: 33531372 PMCID: PMC8137536 DOI: 10.1158/0008-5472.can-20-1037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 11/16/2022]
Abstract
Cancer evolves from premalignant clones that adopt unusual cell states to achieve transformation. We previously pinpointed the oligodendrocyte precursor cell (OPC) as a cell of origin for glioma, but the early changes of mutant OPCs during premalignancy remained unknown. Using mice engineered for inducible Nf1-Trp53 loss in OPCs, we acutely isolated labeled mutant OPCs by laser-capture microdissection, determined global gene-expression changes by bulk RNA sequencing, and compared with cell-state fluctuations at the single-cell level by stochastic profiling, which uses RNA-sequencing measurements from random pools of 10 mutant cells. At 12 days after Nf1-Trp53 deletion, bulk differences were mostly limited to mitotic hallmarks and genes for ribosome biosynthesis, and stochastic profiling revealed a spectrum of stem-progenitor (Axl, Aldh1a1), proneural, and mesenchymal states as potential starting points for gliomagenesis. At 90 days, bulk sequencing detected few differentially expressed transcripts, whereas stochastic profiling revealed cell states for neurons and mural cells that do not give rise to glial tumors, suggesting cellular dead-ends for gliomagenesis. Importantly, mutant OPCs that strongly expressed key effectors of nonsense-mediated decay (Upf3b) and homology-dependent DNA repair (Rad51c, Slx1b, Ercc4) were identified along with DNA-damage markers, suggesting transcription-associated replication stress. Analysis of 10-cell transcriptomes at 90 days identified a locus of elevated gene expression containing an additional repair endonuclease (Mus81) and Rin1, a Ras-Raf antagonist and possible counterbalance to Nf1 loss, which was microdeleted or downregulated in gliomas at 150 days. These hidden cell-state variations uncover replication stress as a potential bottleneck that must be resolved for glioma initiation. SIGNIFICANCE: Profiling premalignant cell states in a mouse model of glioma uncovers regulatory heterogeneity in glioma cells-of-origin and defines a state of replication stress that precedes tumor initiation.See related articles by Singh and colleagues, p. 1840 and Schaff and colleagues, p. 1853.
Collapse
Affiliation(s)
- Matthew D Sutcliffe
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Rui P Galvao
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Lixin Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Jungeun Kim
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Lauren K Rosenfeld
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Shambhavi Singh
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Hui Zong
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, Virginia.
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia.
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
30
|
Bernatik O, Paclikova P, Kotrbova A, Bryja V, Cajanek L. Primary Cilia Formation Does Not Rely on WNT/β-Catenin Signaling. Front Cell Dev Biol 2021; 9:623753. [PMID: 33718363 PMCID: PMC7952446 DOI: 10.3389/fcell.2021.623753] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Primary cilia act as crucial regulators of embryo development and tissue homeostasis. They are instrumental for modulation of several signaling pathways, including Hedgehog, WNT, and TGF-β. However, gaps exist in our understanding of how cilia formation and function is regulated. Recent work has implicated WNT/β-catenin signaling pathway in the regulation of ciliogenesis, yet the results are conflicting. One model suggests that WNT/β-catenin signaling negatively regulates cilia formation, possibly via effects on cell cycle. In contrast, second model proposes a positive role of WNT/β-catenin signaling on cilia formation, mediated by the re-arrangement of centriolar satellites in response to phosphorylation of the key component of WNT/β-catenin pathway, β-catenin. To clarify these discrepancies, we investigated possible regulation of primary cilia by the WNT/β-catenin pathway in cell lines (RPE-1, NIH3T3, and HEK293) commonly used to study ciliogenesis. We used WNT3a to activate or LGK974 to block the pathway, and examined initiation of ciliogenesis, cilium length, and percentage of ciliated cells. We show that the treatment by WNT3a has no- or lesser inhibitory effect on cilia formation. Importantly, the inhibition of secretion of endogenous WNT ligands using LGK974 blocks WNT signaling but does not affect ciliogenesis. Finally, using knock-out cells for key WNT pathway components, namely DVL1/2/3, LRP5/6, or AXIN1/2 we show that neither activation nor deactivation of the WNT/β-catenin pathway affects the process of ciliogenesis. These results suggest that WNT/β-catenin-mediated signaling is not generally required for efficient cilia formation. In fact, activation of the WNT/β-catenin pathway in some systems seems to moderately suppress ciliogenesis.
Collapse
Affiliation(s)
- Ondrej Bernatik
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Paclikova
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Anna Kotrbova
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vitezslav Bryja
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Lukas Cajanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
31
|
Hu Y, Ciminieri C, Hu Q, Lehmann M, Königshoff M, Gosens R. WNT Signalling in Lung Physiology and Pathology. Handb Exp Pharmacol 2021; 269:305-336. [PMID: 34463851 DOI: 10.1007/164_2021_521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The main physiological function of the lung is gas exchange, mediated at the interface between the alveoli and the pulmonary microcapillary network and facilitated by conducting airway structures that regulate the transport of these gases from and to the alveoli. Exposure to microbial and environmental factors such as allergens, viruses, air pollution, and smoke contributes to the development of chronic lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. Respiratory diseases as a cluster are the commonest cause of chronic disease and of hospitalization in children and are among the three most common causes of morbidity and mortality in the adult population worldwide. Many of these chronic respiratory diseases are associated with inflammation and structural remodelling of the airways and/or alveolar tissues. They can often only be treated symptomatically with no disease-modifying therapies that normalize the pathological tissue destruction driven by inflammation and remodelling. In search for novel therapeutic strategies for these diseases, several lines of evidence revealed the WNT pathway as an emerging target for regenerative strategies in the lung. WNT proteins, their receptors, and signalling effectors have central regulatory roles under (patho)physiological conditions underpinning lung function and (chronic) lung diseases and we summarize these roles and discuss how pharmacological targeting of the WNT pathway may be utilized for the treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Chiara Ciminieri
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Qianjiang Hu
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany
| | - Mareike Lehmann
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany
| | - Melanie Königshoff
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany. .,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
32
|
Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM. Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic approaches. Semin Cancer Biol 2020; 83:100-120. [PMID: 33370605 DOI: 10.1016/j.semcancer.2020.12.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain cancer and one of the most aggressive cancers found in humans. Most of the signs and symptoms of GBM can be mild and slowly aggravated, although other symptoms might demonstrate it as an acute ailment. However, the precise mechanisms of the development of GBM remain unknown. Due to the improvement of molecular pathology, current researches have reported that glioma progression is strongly connected with different types of epigenetic phenomena, such as histone modifications, DNA methylation, chromatin remodeling, and aberrant microRNA. Furthermore, the genes and the proteins that control these alterations have become novel targets for treating glioma because of the reversibility of epigenetic modifications. In some cases, gene mutations including P16, TP53, and EGFR, have been observed in GBM. In contrast, monosomies, including removals of chromosome 10, particularly q23 and q25-26, are considered the standard markers for determining the development and aggressiveness of GBM. Recently, amid the epigenetic therapies, histone deacetylase inhibitors (HDACIs) and DNA methyltransferase inhibitors have been used for treating tumors, either single or combined. Specifically, HDACIs are served as a good choice and deliver a novel pathway to treat GBM. In this review, we focus on the epigenetics of GBM and the consequence of its mutations. We also highlight various treatment approaches, namely gene editing, epigenetic drugs, and microRNAs to combat GBM.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687, Reims Cedex 2, France
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
33
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
34
|
Bisso A, Filipuzzi M, Gamarra Figueroa GP, Brumana G, Biagioni F, Doni M, Ceccotti G, Tanaskovic N, Morelli MJ, Pendino V, Chiacchiera F, Pasini D, Olivero D, Campaner S, Sabò A, Amati B. Cooperation Between MYC and β-Catenin in Liver Tumorigenesis Requires Yap/Taz. Hepatology 2020; 72:1430-1443. [PMID: 31965581 DOI: 10.1002/hep.31120] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Activation of MYC and catenin beta-1 (CTNNB1, encoding β-catenin) can co-occur in liver cancer, but how these oncogenes cooperate in tumorigenesis remains unclear. APPROACH AND RESULTS We generated a mouse model allowing conditional activation of MYC and WNT/β-catenin signaling (through either β-catenin activation or loss of APC - adenomatous polyposis coli) upon expression of CRE recombinase in the liver and monitored their effects on hepatocyte proliferation, apoptosis, gene expression profiles, and tumorigenesis. Activation of WNT/β-catenin signaling strongly accelerated MYC-driven carcinogenesis in the liver. Both pathways also cooperated in promoting cellular transformation in vitro, demonstrating their cell-autonomous action. Short-term induction of MYC and β-catenin in hepatocytes, followed by RNA-sequencing profiling, allowed the identification of a "Myc/β-catenin signature," composed of a discrete set of Myc-activated genes whose expression increased in the presence of active β-catenin. Notably, this signature enriched for targets of Yes-associated protein (Yap) and transcriptional coactivator with PDZ-binding motif (Taz), two transcriptional coactivators known to be activated by WNT/β-catenin signaling and to cooperate with MYC in mitogenic activation and liver transformation. Consistent with these regulatory connections, Yap/Taz accumulated upon Myc/β-catenin activation and were required not only for the ensuing proliferative response, but also for tumor cell growth and survival. Finally, the Myc/β-catenin signature was enriched in a subset of human hepatocellular carcinomas characterized by comparatively poor prognosis. CONCLUSIONS Myc and β-catenin show a strong cooperative action in liver carcinogenesis, with Yap and Taz serving as mediators of this effect. These findings warrant efforts toward therapeutic targeting of Yap/Taz in aggressive liver tumors marked by elevated Myc/β-catenin activity.
Collapse
Affiliation(s)
- Andrea Bisso
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | | | | | - Giulia Brumana
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Francesca Biagioni
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Mirko Doni
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | | | | | - Marco Jacopo Morelli
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Vera Pendino
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Fulvio Chiacchiera
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy.,Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Diego Pasini
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Stefano Campaner
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Arianna Sabò
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | - Bruno Amati
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| |
Collapse
|
35
|
Structure and function of Pygo in organ development dependent and independent Wnt signalling. Biochem Soc Trans 2020; 48:1781-1794. [PMID: 32677664 DOI: 10.1042/bst20200393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 11/17/2022]
Abstract
Pygo is a nuclear protein containing two conserved domains, NHD and PHD, which play important roles in embryonic development and carcinogenesis. Pygo was first identified as a core component of the Wnt/β-catenin signalling pathway. However, it has also been reported that the function of Pygo is not always Wnt/β-catenin signalling dependent. In this review, we summarise the functions of both domains of Pygo and show that their functions are synergetic. The PHD domain mainly combines with transcription co-factors, including histone 3 and Bcl9/9l. The NHD domain mainly recruits histone methyltransferase/acetyltransferase (HMT/HAT) to modify lysine 4 of the histone 3 tail (H3K4) and interacts with Chip/LIM-domain DNA-binding proteins (ChiLS) to form enhanceosomes to regulate transcriptional activity. Furthermore, we summarised chromatin modification differences of Pygo in Drosophila (dPygo) and vertebrates, and found that Pygo displayes a chromatin silencing function in Drosophila, while in vertebates, Pygo has a chromatin-activating function due to the two substitution of two amino acid residues. Next, we confirmed the relationship between Pygo and Bcl9/9l and found that Pygo-Bcl/9l are specifically partnered both in the nucleus and in the cytoplasm. Finally, we discuss whether transcriptional activity of Pygo is Wnt/β-catenin dependent during embryonic development. Available information indications that the transcriptional activity of Pygo in embryonic development is either Wnt/β-catenin dependent or independent in both tissue-specific and cell-specific-modes.
Collapse
|
36
|
Li G, Gao L, Zhao J, Liu D, Li H, Hu M. LncRNA ANRIL/miR-7-5p/TCF4 axis contributes to the progression of T cell acute lymphoblastic leukemia. Cancer Cell Int 2020; 20:335. [PMID: 32714094 PMCID: PMC7376839 DOI: 10.1186/s12935-020-01376-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background Antisense non-coding RNA in the INK4 locus (ANRIL) is of great importance in cell biological behaviors, and ANRIL functions in many kinds of cancers including leukemia. However, the mechanism of ANRIL in the progression of T-cell acute lymphoblastic leukemia (T-ALL) has not been clarified clearly. Methods qRT-PCR was performed to detect ANRIL expression in T-ALL samples. T-ALL cell lines (MOLT4, CCRF-CEM and KOPT-K1) were used as the cell models. The function of ANRIL on T-ALL cells was investigated by CCK-8 assays, Transwell assays, and apoptosis experiments in vitro. qRT-PCR, Western blot, luciferase reporter assay and RIP assay were used to confirm the interactions between ANRIL and miR-7-5p, miR-7-5p and its target gene transcription factor 4 (TCF4). Results ANRIL was significantly up-regulated in T-ALL samples. Its knockdown markedly inhibited viability, migration and invasion of T-ALL cells, but its overexpression exerted the opposite effects. TCF4 was proved to be a target gene of miR-7-5p. ANRIL down-regulated miR-7-5p via sponging it and in turn up-regulated TCF4. Conclusions LncRNA ANRIL can modulate malignant phenotypes of T-ALL cells, possibly by regulating miR-7-5p/TCF4 axis, and it serves as a potential therapeutic target for T-ALL.
Collapse
Affiliation(s)
- Gang Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Lan Gao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Jing Zhao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Dejun Liu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Hui Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Min Hu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| |
Collapse
|
37
|
Rabata A, Fedr R, Soucek K, Hampl A, Koledova Z. 3D Cell Culture Models Demonstrate a Role for FGF and WNT Signaling in Regulation of Lung Epithelial Cell Fate and Morphogenesis. Front Cell Dev Biol 2020; 8:574. [PMID: 32850782 PMCID: PMC7396690 DOI: 10.3389/fcell.2020.00574] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023] Open
Abstract
FGF signaling plays an essential role in lung development, homeostasis, and regeneration. We employed mouse 3D cell culture models and imaging to study ex vivo the role of FGF ligands and the interplay of FGF signaling with epithelial growth factor (EGF) and WNT signaling pathways in lung epithelial morphogenesis and differentiation. In non-adherent conditions, FGF signaling promoted formation of lungospheres from lung epithelial stem/progenitor cells (LSPCs). Ultrastructural and immunohistochemical analyses showed that LSPCs produced more differentiated lung cell progeny. In a 3D extracellular matrix, FGF2, FGF7, FGF9, and FGF10 promoted lung organoid formation. FGF9 showed reduced capacity to promote lung organoid formation, suggesting that FGF9 has a reduced ability to sustain LSPC survival and/or initial divisions. FGF7 and FGF10 produced bigger organoids and induced organoid branching with higher frequency than FGF2 or FGF9. Higher FGF concentration and/or the use of FGF2 with increased stability and affinity to FGF receptors both increased lung organoid and lungosphere formation efficiency, respectively, suggesting that the level of FGF signaling is a crucial driver of LSPC survival and differentiation, and also lung epithelial morphogenesis. EGF signaling played a supportive but non-essential role in FGF-induced lung organoid formation. Analysis of tissue architecture and cell type composition confirmed that the lung organoids contained alveolar-like regions with cells expressing alveolar type I and type II cell markers, as well as airway-like structures with club cells and ciliated cells. FGF ligands showed differences in promoting distinct lung epithelial cell types. FGF9 was a potent inducer of more proximal cell types, including ciliated and basal cells. FGF7 and FGF10 directed the differentiation toward distal lung lineages. WNT signaling enhanced the efficiency of lung organoid formation, but in the absence of FGF10 signaling, the organoids displayed limited branching and less differentiated phenotype. In summary, we present lung 3D cell culture models as useful tools to study the role and interplay of signaling pathways in postnatal lung development and homeostasis, and we reveal distinct roles for FGF ligands in regulation of mouse lung morphogenesis and differentiation ex vivo.
Collapse
Affiliation(s)
- Anas Rabata
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Karel Soucek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Ales Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
38
|
Abstract
Glypicans are a family of heparan sulfate proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol anchor. Glypicans interact with multiple ligands, including morphogens, growth factors, chemokines, ligands, receptors, and components of the extracellular matrix through their heparan sulfate chains and core protein. Therefore, glypicans can function as coreceptors to regulate cell proliferation, cell motility, and morphogenesis. In addition, some glypicans are abnormally expressed in cancers, possibly involved in tumorigenesis, and have the potential to be cancer-specific biomarkers. Here, we provide a brief review focusing on the expression of glypicans in various cancers and their potential to be targets for cancer therapy.
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Madeline R Spetz
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
39
|
Miller AJ, Yu Q, Czerwinski M, Tsai YH, Conway RF, Wu A, Holloway EM, Walker T, Glass IA, Treutlein B, Camp JG, Spence JR. In Vitro and In Vivo Development of the Human Airway at Single-Cell Resolution. Dev Cell 2020; 53:117-128.e6. [PMID: 32109386 PMCID: PMC7396815 DOI: 10.1016/j.devcel.2020.01.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/09/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Bud tip progenitor cells give rise to all murine lung epithelial lineages and have been described in the developing human lung; however, the mechanisms controlling human bud tip differentiation into specific lineages are unclear. Here, we used homogeneous human bud tip organoid cultures and identified SMAD signaling as a key regulator of the bud tip-to-airway transition. SMAD induction led to the differentiation of airway-like organoids possessing functional basal cells capable of clonal expansion and multilineage differentiation. To benchmark in vitro-derived organoids, we developed a single-cell mRNA sequencing atlas of the human lung from 11.5 to 21 weeks of development, which revealed high degrees of similarity between the in vitro-derived and in vivo airway. Together, this work sheds light on human airway differentiation in vitro and provides a single-cell atlas of the developing human lung.
Collapse
Affiliation(s)
- Alyssa J Miller
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Qianhui Yu
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; University of Basel, Basel, Switzerland; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Michael Czerwinski
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Renee F Conway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Taylor Walker
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ian A Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; University of Basel, Basel, Switzerland; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Jason R Spence
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| |
Collapse
|
40
|
Hurley K, Ding J, Villacorta-Martin C, Herriges MJ, Jacob A, Vedaie M, Alysandratos KD, Sun YL, Lin C, Werder RB, Huang J, Wilson AA, Mithal A, Mostoslavsky G, Oglesby I, Caballero IS, Guttentag SH, Ahangari F, Kaminski N, Rodriguez-Fraticelli A, Camargo F, Bar-Joseph Z, Kotton DN. Reconstructed Single-Cell Fate Trajectories Define Lineage Plasticity Windows during Differentiation of Human PSC-Derived Distal Lung Progenitors. Cell Stem Cell 2020; 26:593-608.e8. [PMID: 32004478 PMCID: PMC7469703 DOI: 10.1016/j.stem.2019.12.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/04/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
Abstract
Alveolar epithelial type 2 cells (AEC2s) are the facultative progenitors responsible for maintaining lung alveoli throughout life but are difficult to isolate from patients. Here, we engineer AEC2s from human pluripotent stem cells (PSCs) in vitro and use time-series single-cell RNA sequencing with lentiviral barcoding to profile the kinetics of their differentiation in comparison to primary fetal and adult AEC2 benchmarks. We observe bifurcating cell-fate trajectories as primordial lung progenitors differentiate in vitro, with some progeny reaching their AEC2 fate target, while others diverge to alternative non-lung endodermal fates. We develop a Continuous State Hidden Markov model to identify the timing and type of signals, such as overexuberant Wnt responses, that induce some early multipotent NKX2-1+ progenitors to lose lung fate. Finally, we find that this initial developmental plasticity is regulatable and subsides over time, ultimately resulting in PSC-derived AEC2s that exhibit a stable phenotype and nearly limitless self-renewal capacity.
Collapse
Affiliation(s)
- Killian Hurley
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland; Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jun Ding
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Michael J Herriges
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anjali Jacob
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marall Vedaie
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Konstantinos D Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yuliang L Sun
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Chieh Lin
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15217, USA
| | - Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aditya Mithal
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Irene Oglesby
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland; Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ignacio S Caballero
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Susan H Guttentag
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University, Nashville, TN 37232, USA
| | - Farida Ahangari
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 16520, USA
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 16520, USA
| | | | - Fernando Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15217, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
41
|
González-Mariscal L, Miranda J, Gallego-Gutiérrez H, Cano-Cortina M, Amaya E. Relationship between apical junction proteins, gene expression and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183278. [PMID: 32240623 DOI: 10.1016/j.bbamem.2020.183278] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
The apical junctional complex (AJC) is a cell-cell adhesion system present at the upper portion of the lateral membrane of epithelial cells integrated by the tight junction (TJ) and the adherens junction (AJ). This complex is crucial to initiate and stabilize cell-cell adhesion, to regulate the paracellular transit of ions and molecules and to maintain cell polarity. Moreover, we now consider the AJC as a hub of signal transduction that regulates cell-cell adhesion, gene transcription and cell proliferation and differentiation. The molecular components of the AJC are multiple and diverse and depending on the cellular context some of the proteins in this complex act as tumor suppressors or as promoters of cell transformation, migration and metastasis outgrowth. Here, we describe these new roles played by TJ and AJ proteins and their potential use in cancer diagnostics and as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Helios Gallego-Gutiérrez
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Misael Cano-Cortina
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Elida Amaya
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
42
|
Yin Y, Ornitz DM. FGF9 and FGF10 activate distinct signaling pathways to direct lung epithelial specification and branching. Sci Signal 2020; 13:eaay4353. [PMID: 32127497 PMCID: PMC7271816 DOI: 10.1126/scisignal.aay4353] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factors (FGFs) 9 and 10 are essential during the pseudoglandular stage of lung development. Mesothelium-produced FGF9 is principally responsible for mesenchymal growth, whereas epithelium-produced FGF9 and mesenchyme-produced FGF10 guide lung epithelial development, and loss of either of these ligands affects epithelial branching. Because FGF9 and FGF10 activate distinct FGF receptors (FGFRs), we hypothesized that they would control distinct developmental processes. Here, we found that FGF9 signaled through epithelial FGFR3 to directly promote distal epithelial fate specification and inhibit epithelial differentiation. By contrast, FGF10 signaled through epithelial FGFR2b to promote epithelial proliferation and differentiation. Furthermore, FGF9-FGFR3 signaling functionally opposed FGF10-FGFR2b signaling, and FGFR3 preferentially used downstream phosphoinositide 3-kinase (PI3K) pathways, whereas FGFR2b relied on downstream mitogen-activated protein kinase (MAPK) pathways. These data demonstrate that, within lung epithelial cells, different FGFRs function independently; they bind receptor-specific ligands and direct distinct developmental functions through the activation of distinct downstream signaling pathways.
Collapse
Affiliation(s)
- Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
43
|
Zhu H, Liu D, Jia H. Analysis of Wnt7B and BMP4 expression patterns in congenital pulmonary airway malformation. Pediatr Pulmonol 2020; 55:765-770. [PMID: 31962011 DOI: 10.1002/ppul.24651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/07/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Congenital pulmonary airway malformation (CPAM) is a rare disorder characterized by aberrant overgrowth of terminal bronchioles. The objective of this study was to describe wingless-type MMTV integration site family 7B (Wnt7B) and bone morphogenetic protein 4 (BMP4) expression patterns in human CPAM lesions and to explore the possible roles of Wnt7B and BMP4 in the pathogenesis of CPAM. METHODS Fifteen tissue samples from patients with CPAM were obtained from the Pathology Department of Shengjing Hospital of China Medical University. Samples representing CPAM lesions and adjacent normal lung tissues were collected and Wnt7B and BMP4 expression was detected through immunohistochemical (IHC) staining, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. RESULTS IHC revealed that Wnt7B immunopositive cells were only detected in epithelial cells, whereas BMP4 immunopositive cells were detected in epithelial and mesenchymal cells. Expression of Wnt7B and BMP4 immunopositive cells was higher in CPAM lesions than that in adjacent normal lung tissue. qRT-PCR and Western blotting showed that Wnt7B and BMP4 mRNA and protein expression were significantly higher in CPAM lesions than in adjacent normal lung tissue (P < .05). Overall, the level of BMP4 was higher than that of Wnt7B. CONCLUSIONS Increased expression of Wnt7B and BMP4 appear to be related to the pathogenesis of CPAM and abnormal pulmonary development. Upregulation of Wnt7B and BMP4 could play an important role in the development of the bronchial-alveolar structures that characterize CPAM.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | - Dan Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| |
Collapse
|
44
|
Ikonomou L, Herriges MJ, Lewandowski SL, Marsland R, Villacorta-Martin C, Caballero IS, Frank DB, Sanghrajka RM, Dame K, Kańduła MM, Hicks-Berthet J, Lawton ML, Christodoulou C, Fabian AJ, Kolaczyk E, Varelas X, Morrisey EE, Shannon JM, Mehta P, Kotton DN. The in vivo genetic program of murine primordial lung epithelial progenitors. Nat Commun 2020; 11:635. [PMID: 32005814 PMCID: PMC6994558 DOI: 10.1038/s41467-020-14348-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022] Open
Abstract
Multipotent Nkx2-1-positive lung epithelial primordial progenitors of the foregut endoderm are thought to be the developmental precursors to all adult lung epithelial lineages. However, little is known about the global transcriptomic programs or gene networks that regulate these gateway progenitors in vivo. Here we use bulk RNA-sequencing to describe the unique genetic program of in vivo murine lung primordial progenitors and computationally identify signaling pathways, such as Wnt and Tgf-β superfamily pathways, that are involved in their cell-fate determination from pre-specified embryonic foregut. We integrate this information in computational models to generate in vitro engineered lung primordial progenitors from mouse pluripotent stem cells, improving the fidelity of the resulting cells through unbiased, easy-to-interpret similarity scores and modulation of cell culture conditions, including substratum elastic modulus and extracellular matrix composition. The methodology proposed here can have wide applicability to the in vitro derivation of bona fide tissue progenitors of all germ layers.
Collapse
Affiliation(s)
- Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA.
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Sara L Lewandowski
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Robert Marsland
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Ignacio S Caballero
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - David B Frank
- Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Reeti M Sanghrajka
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Keri Dame
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Maciej M Kańduła
- Department of Mathematics & Statistics, Boston University, Boston, MA, 02215, USA
- Chair of Bioinformatics Research Group, Boku University, 1190, Vienna, Austria
| | - Julia Hicks-Berthet
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Matthew L Lawton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Constantina Christodoulou
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Eric Kolaczyk
- Department of Mathematics & Statistics, Boston University, Boston, MA, 02215, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Edward E Morrisey
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA.
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
45
|
Zhou Y, Shi Y, Yang L, Sun Y, Han Y, Zhao Z, Wang Y, Liu Y, Ma Y, Zhang T, Ren T, Dale TP, Forsyth NR, Jin F, Qu J, Zuo W, Xu J. Genetically engineered distal airway stem cell transplantation protects mice from pulmonary infection. EMBO Mol Med 2020; 12:e10233. [PMID: 31782624 PMCID: PMC6949487 DOI: 10.15252/emmm.201810233] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022] Open
Abstract
Severe pulmonary infection is a major threat to human health accompanied by substantial medical costs, prolonged inpatient requirements, and high mortality rates. New antimicrobial therapeutic strategies are urgently required to address the emergence of antibiotic resistance and persistent bacterial infections. In this study, we show that the constitutive expression of a native antimicrobial peptide LL-37 in transgenic mice aids in clearing Pseudomonas aeruginosa (PAO1), a major pathogen of clinical pulmonary infection. Orthotopic transplantation of adult mouse distal airway stem cells (DASCs), genetically engineered to express LL-37, into injured mouse lung foci enabled large-scale incorporation of cells and long-term release of the host defense peptide, protecting the mice from bacterial pneumonia and hypoxemia. Further, correlates of DASCs in adult humans were isolated, expanded, and genetically engineered to demonstrate successful construction of an anti-infective artificial lung. Together, our stem cell-based gene delivery therapeutic platform proposes a new strategy for addressing recurrent pulmonary infections with future translational opportunities.
Collapse
Affiliation(s)
- Yue‐qing Zhou
- Department of Respiratory and Critical Care MedicineClinical Translation Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Yun Shi
- Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of Respiratory and Critical Care MedicineTangdu HospitalFourth Military Medical University of PLAXi'anChina
| | - Ling Yang
- Department of Respiratory and Critical Care MedicineClinical Translation Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Yu‐fen Sun
- Department of Respiratory and Critical Care MedicineClinical Translation Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Yu‐fei Han
- Department of Respiratory and Critical Care MedicineClinical Translation Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Zi‐xian Zhao
- Department of Respiratory and Critical Care MedicineClinical Translation Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Yu‐jia Wang
- Department of Respiratory and Critical Care MedicineClinical Translation Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Ying Liu
- Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yu Ma
- Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Regend Therapeutics Co. LtdZhejiangChina
| | - Ting Zhang
- Regend Therapeutics Co. LtdZhejiangChina
| | - Tao Ren
- Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Tina P Dale
- Guy Hilton Research CenterSchool of Pharmacy and BioengineeringKeele UniversityStaffordshireUK
| | - Nicholas R Forsyth
- Guy Hilton Research CenterSchool of Pharmacy and BioengineeringKeele UniversityStaffordshireUK
| | - Fa‐guang Jin
- Department of Respiratory and Critical Care MedicineTangdu HospitalFourth Military Medical University of PLAXi'anChina
| | - Jie‐ming Qu
- Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
- Institute of Respiratory DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Wei Zuo
- Department of Respiratory and Critical Care MedicineClinical Translation Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Regend Therapeutics Co. LtdZhejiangChina
- Guangzhou Institute of Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Ningxia Medical UniversityYinchuanChina
| | - Jin‐fu Xu
- Department of Respiratory and Critical Care MedicineClinical Translation Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
46
|
Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev 2020; 161-162:90-109. [PMID: 32835746 PMCID: PMC7442933 DOI: 10.1016/j.addr.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases remain major healthcare burdens, for which the only curative treatment is lung transplantation. In vitro human models are promising platforms for identifying and testing novel compounds to potentially decrease this burden. Directed differentiation of pluripotent stem cells is an important strategy to generate lung cells to create such models. Current lung directed differentiation protocols are limited as they do not 1) recapitulate the diversity of respiratory epithelium, 2) generate consistent or sufficient cell numbers for drug discovery platforms, and 3) establish the histologic tissue-level organization critical for modeling lung function. In this review, we describe how lung development has formed the basis for directed differentiation protocols, and discuss the utility of available protocols for lung epithelial cell generation and drug development. We further highlight tissue engineering strategies for manipulating biophysical signals during directed differentiation such that future protocols can recapitulate both chemical and physical cues present during lung development.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| |
Collapse
|
47
|
Sivakumar A, Frank DB. Paradigms that define lung epithelial progenitor cell fate in development and regeneration. CURRENT STEM CELL REPORTS 2019; 5:133-144. [PMID: 32587809 DOI: 10.1007/s40778-019-00166-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review Throughout the lifespan, lung injury impedes the primary critical function essential for life-respiration. To repair quickly and efficiently is critical and is orchestrated by a diverse repertoire of progenitor cells and their niche. This review incorporates knowledge gained from early studies in lung epithelial morphogenesis and cell fate and explores its relevance to more recent findings of lung progenitor and stem cells in development and regeneration. Recent Findings Cell fate in the lung is organized into an early specification phase and progressive differentiation phase in lung development. The advent of single cell analysis combined with lineage analysis and projections is uncovering new functional cell types in the lung providing a topographical atlas for progenitor cell lineage commitment during development, homeostasis, and regeneration. Summary Lineage commitment of lung progenitor cells is spatiotemporally regulated during development. Single cell sequencing technologies have significantly advanced our understanding of the similarities and differences between developmental and regenerative cell fate trajectories. Subsequent unraveling of the molecular mechanisms underlying these cell fate decisions will be essential to manipulating progenitor cells for regeneration.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David B Frank
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
48
|
The effects of tracheal occlusion on Wnt signaling in a rabbit model of congenital diaphragmatic hernia. J Pediatr Surg 2019; 54:937-944. [PMID: 30792093 DOI: 10.1016/j.jpedsurg.2019.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Tracheal occlusion (TO) reverses pulmonary hypoplasia (PH) in congenital diaphragmatic hernia (CDH), but its mechanism of action remains poorly understood. Wnt signaling plays a critical role in lung development, but few studies exist. The purpose of our study was to a) confirm that our CDH rabbit model produced PH which was reversed by TO and b) determine the effects of CDH +/- TO on Wnt signaling. METHODS CDH was created in fetal rabbits at 23 days, TO at 28 days, and lung collection at 31 days. Lung body weight ratio (LBWR) and mean terminal bronchiole density (MTBD) were determined. mRNA and miRNA expression was determined in the left lower lobe using RT-qPCR. RESULTS Fifteen CDH, 15 CDH + TO, 6 sham CDH, and 15 controls survived and were included in the study. LBWR was low in CDH, while CDH + TO was similar to controls (p = 0.003). MTBD was higher in CDH fetuses and restored to control levels in CDH + TO (p < 0.001). Reference genes TOP1, SDHA, and ACTB were consistently expressed within and between treatment groups. miR-33 and MKI67 were increased, and Lgl1 was decreased in CDH + TO. CONCLUSION TO reversed pulmonary hypoplasia and stimulated early Wnt signaling in CDH fetal rabbits. TYPE OF STUDY Basic science, prospective. LEVEL OF EVIDENCE II.
Collapse
|
49
|
Ling J, Wang F, Liu C, Dong X, Xue Y, Jia X, Song W, Li Q. FOXO1-regulated lncRNA LINC01197 inhibits pancreatic adenocarcinoma cell proliferation by restraining Wnt/β-catenin signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:179. [PMID: 31027497 PMCID: PMC6485178 DOI: 10.1186/s13046-019-1174-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Background Recent studies have revealed that numerous oncogenic long non-coding RNAs (lncRNAs) play pivotal roles in pancreatic ductal adenocarcinoma (PDAC) progression, but little is known about tumor-suppressive lncRNAs in PDAC. This study was conducted to evaluate the function of tumor-suppressive LINC01197 in PDAC progression and investigate the detailed mechanisms. Methods LncRNA microarray was used to identify differentially expressed lncRNAs in FOXO1-overexpressing PANC1 cells. LINC01197 expression was evaluated by quantitative PCR, Northern blotting, and fluorescence in situ hybridization. The Cancer Genome Atlas database was used to analyze the prognostic role of LNC01197 in PDAC. A luciferase reporter assay was performed to confirm the interaction between LNC01197 and FOXO1. The biological function of LINC01197 was evaluated by colony formation assay in vitro and in an animal subcutaneous tumorigenesis experiment and Ki67 staining in vivo. RNA-pulldown, western blotting, RNA immunoprecipitation assay, and co-immunoprecipitation were further performed to determine the molecular mechanism of LNC01197 and β-catenin in the Wnt pathway. Results We found that a FOXO1-related lncRNA, LINC01197, was significantly decreased in PDAC malignant tissues and that its low expression predicted poor prognosis. Moreover, LINC01197 was mainly localized in the nucleus and inhibited PDAC cell proliferation both in vitro and in vivo. Mechanistically, LINC01197 was found to bind to β-catenin and inhibit Wnt/β-catenin signaling activity by disrupting β-catenin binding to TCF4 in PDAC cells. Conclusions The novel FOXO1/LINC01197/β-catenin axis was dysregulated during PDAC progression. Our study provides insight into the mechanisms of LINC01197 in PDAC and reveal a potential target for PDAC clinical therapy and prognostic prediction.
Collapse
Affiliation(s)
- Jing Ling
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chuan Liu
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiao Dong
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ying Xue
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xuebing Jia
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Weifeng Song
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China. .,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai, 200080, China.
| |
Collapse
|
50
|
de Carvalho ALRT, Strikoudis A, Liu HY, Chen YW, Dantas TJ, Vallee RB, Correia-Pinto J, Snoeck HW. Glycogen synthase kinase 3 induces multilineage maturation of human pluripotent stem cell-derived lung progenitors in 3D culture. Development 2019; 146:dev.171652. [PMID: 30578291 DOI: 10.1242/dev.171652] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/13/2018] [Indexed: 01/02/2023]
Abstract
Although strategies for directed differentiation of human pluripotent stem cells (hPSCs) into lung and airway have been established, terminal maturation of the cells remains a vexing problem. We show here that in collagen I 3D cultures in the absence of glycogen synthase kinase 3 (GSK3) inhibition, hPSC-derived lung progenitors (LPs) undergo multilineage maturation into proximal cells, type I alveolar epithelial cells and morphologically mature type II cells. Enhanced cell cycling, one of the signaling outputs of GSK3 inhibition, plays a role in the maturation-inhibiting effect of GSK3 inhibition. Using this model, we show NOTCH signaling induced a distal cell fate at the expense of a proximal and ciliated cell fate, whereas WNT signaling promoted a proximal club cell fate, thus implicating both signaling pathways in proximodistal specification in human lung development. These findings establish an approach to achieve multilineage maturation of lung and airway cells from hPSCs, demonstrate a pivotal role of GSK3 in the maturation of lung progenitors and provide novel insight into proximodistal specification during human lung development.
Collapse
Affiliation(s)
- Ana Luisa Rodrigues Toste de Carvalho
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA.,Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Alexandros Strikoudis
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA.,Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Hsiao-Yun Liu
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA.,Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Ya-Wen Chen
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA.,Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Tiago J Dantas
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Hans-Willem Snoeck
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA .,Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|