1
|
Baral K, D'amato G, Kuschel B, Bogan F, Jones BW, Large CL, Whatley JD, Red-Horse K, Sharma B. APJ+ cells in the SHF contribute to the cells of aorta and pulmonary trunk through APJ signaling. Dev Biol 2023; 498:77-86. [PMID: 37037405 DOI: 10.1016/j.ydbio.2023.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Outflow tract develops from cardiac progenitor cells in the second heart field (SHF) domain. APJ, a G-Protein Coupled Receptor, is expressed by cardiac progenitor cells in the SHF. By lineage tracing APJ + SHF cells, we show that these cardiac progenitor cell contribute to the cells of outflow tract (OFT), which eventually give rise to aorta and pulmonary trunk/artery upon its morphogenesis. Furthermore, we show that early APJ + cells give rise to both aorta and pulmonary cells but late APJ + cells predominantly give rise to pulmonary cells. APJ is expressed by the outflow tract progenitors but its role in the SHF is unclear. We performed knockout studies to determine the role of APJ in SHF cell proliferation and survival. Our data suggested that APJ knockout in the SHF reduced the proliferation of SHF progenitors, while there was no significant impact on survival of the SHF progenitors. In addition, we show that ectopic overexpression of WNT in these cells disrupted aorta and pulmonary morphogenesis from outflow tract. Overall, our study have identified APJ + progenitor population within the SHF that give rise to aorta and pulmonary trunk/artery cells. Furthermore, we show that APJ signaling stimulate proliferation of these cells in the SHF.
Collapse
Affiliation(s)
- Kamal Baral
- Department of Biology, Ball State University, Muncie, IN, USA
| | - Gaetano D'amato
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Bryce Kuschel
- Department of Biology, Ball State University, Muncie, IN, USA
| | - Frank Bogan
- Department of Biology, Ball State University, Muncie, IN, USA
| | - Brendan W Jones
- Department of Biology, Ball State University, Muncie, IN, USA
| | - Colton L Large
- Department of Biology, Ball State University, Muncie, IN, USA
| | | | | | - Bikram Sharma
- Department of Biology, Ball State University, Muncie, IN, USA.
| |
Collapse
|
2
|
Regulatory role of apelin receptor signaling in migration and differentiation of mouse embryonic stem cell-derived mesoderm cells and mesenchymal stem/stromal cells. Hum Cell 2023; 36:612-630. [PMID: 36692671 DOI: 10.1007/s13577-023-00861-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Mesoderm-derived cells, including bone, muscle, and mesenchymal stem/stromal cells (MSCs), constitute various parts of vertebrate body. Cell therapy with mesoderm specification in vitro may be a promising treatment for diseases affecting organs of mesodermal origin. Repair and regeneration of damaged organs with in vitro generation of mesoderm-derived tissues and MSCs hold a great potential for regenerative therapy. Therefore, understanding the signaling pathways involving mesoderm and mesoderm-derived cellular differentiation is important. Previous findings indicated the importance of Apelin receptor (Aplnr) signaling, during embryonic development, in gastrulation, cell migration, and differentiation. Nevertheless, regulatory role of Aplnr pathway in differentiation of mesoderm and mesoderm-derived MSCs remains unclear. In the current study, we tried to elucidate the role of Aplnr signaling during mesoderm cell migration and differentiation from mouse embryonic stem cells (mESCs). By activating and suppressing Aplnr signaling pathway via peptide, small molecule, and genetic modifications including siRNA- and shRNA-mediated knockdown and CRISPR-Cas9-mediated knockout (KO), we revealed that Aplnr signaling not only induces migration of cells during germ layer formation but also enhances mesoderm differentiation through FGF/MAPK pathway. Antibody array and LC/MS protein profiling data demonstrated that Apelin-13 treatment enhanced cell cycle, EGFR, FGF, Wnt, and Integrin signaling pathway proteins. Furthermore, Aplelin-13 treatment improved MSC characteristics, with mesenchymal phenotype and high expression of MSC markers, and silencing Aplnr signaling components resulted in significantly reduced expression of MSC markers. Also, Aplnr signaling activity enhanced proliferation and survival of the cells during MSC derivation from mesoderm.
Collapse
|
3
|
Ameen M, Sundaram L, Shen M, Banerjee A, Kundu S, Nair S, Shcherbina A, Gu M, Wilson KD, Varadarajan A, Vadgama N, Balsubramani A, Wu JC, Engreitz JM, Farh K, Karakikes I, Wang KC, Quertermous T, Greenleaf WJ, Kundaje A. Integrative single-cell analysis of cardiogenesis identifies developmental trajectories and non-coding mutations in congenital heart disease. Cell 2022; 185:4937-4953.e23. [PMID: 36563664 PMCID: PMC10122433 DOI: 10.1016/j.cell.2022.11.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
To define the multi-cellular epigenomic and transcriptional landscape of cardiac cellular development, we generated single-cell chromatin accessibility maps of human fetal heart tissues. We identified eight major differentiation trajectories involving primary cardiac cell types, each associated with dynamic transcription factor (TF) activity signatures. We contrasted regulatory landscapes of iPSC-derived cardiac cell types and their in vivo counterparts, which enabled optimization of in vitro differentiation of epicardial cells. Further, we interpreted sequence based deep learning models of cell-type-resolved chromatin accessibility profiles to decipher underlying TF motif lexicons. De novo mutations predicted to affect chromatin accessibility in arterial endothelium were enriched in congenital heart disease (CHD) cases vs. controls. In vitro studies in iPSCs validated the functional impact of identified variation on the predicted developmental cell types. This work thus defines the cell-type-resolved cis-regulatory sequence determinants of heart development and identifies disruption of cell type-specific regulatory elements in CHD.
Collapse
Affiliation(s)
- Mohamed Ameen
- Department of Cancer Biology, Stanford University, Stanford, CA, USA; Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA
| | - Laksshman Sundaram
- Department of Computer Science, Stanford University, Stanford, CA, USA; Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA
| | - Mengcheng Shen
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Abhimanyu Banerjee
- Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA; Department of Physics, Stanford University, Stanford, CA, USA
| | - Soumya Kundu
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Surag Nair
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Anna Shcherbina
- Department of Biomedical Informatics, Stanford University, Stanford, CA, USA
| | - Mingxia Gu
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Avyay Varadarajan
- Department of Computer Science, California Institute of Technology, Pasadena, CA, USA
| | - Nirmal Vadgama
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Joseph C Wu
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | | | - Kyle Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA
| | - Ioannis Karakikes
- Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.
| | - Kevin C Wang
- Department of Cancer Biology, Stanford University, Stanford, CA, USA; Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Applied Physics, Stanford University, Stanford, CA, USA.
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Jackson M, Fidanza A, Taylor AH, Rybtsov S, Axton R, Kydonaki M, Meek S, Burdon T, Medvinsky A, Forrester LM. Modulation of APLNR Signaling Is Required during the Development and Maintenance of the Hematopoietic System. Stem Cell Reports 2021; 16:727-740. [PMID: 33667414 PMCID: PMC8072025 DOI: 10.1016/j.stemcr.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
Apelin receptor (APLNR/AGTRLl1/APJ) marks a transient cell population during the differentiation of hematopoietic stem and progenitor cells (HSPCs) from pluripotent stem cells, but its function during the production and maintenance of hematopoietic stem cells is not clear. We generated an Aplnr-tdTomato reporter mouse embryonic stem cell (mESC) line and showed that HSPCs are generated exclusively from mesodermal cells that express Aplnr-tdTomato. HSPC production from mESCs was impaired when Aplnr was deleted, implying that this pathway is required for their production. To address the role of APLNR signaling in HSPC maintenance, we added APELIN ligands to ex vivo AGM cultures. Activation of the APLNR pathway in this system impaired the generation of long-term reconstituting HSPCs and appeared to drive myeloid differentiation. Our data suggest that the APLNR signaling is required for the generation of cells that give rise to HSCs, but that its subsequent downregulation is required for their maintenance.
Collapse
Affiliation(s)
- Melany Jackson
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Antonella Fidanza
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - A Helen Taylor
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Stanislav Rybtsov
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Richard Axton
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Maria Kydonaki
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Stephen Meek
- Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Tom Burdon
- Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Alexander Medvinsky
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Lesley M Forrester
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
5
|
Apelin Receptor Signaling During Mesoderm Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32648246 DOI: 10.1007/5584_2020_567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The Apelin receptor (Aplnr) is a G-protein coupled receptor which has a wide body distribution and various physiological roles including homeostasis, angiogenesis, cardiovascular and neuroendocrine function. Apelin and Elabela are two peptide components of the Aplnr signaling and are cleaved to give different isoforms which are active in different tissues and organisms.Aplnr signaling is related to several pathologies including obesity, heart disases and cancer in the adult body. However, the developmental role in mammalian embryogenesis is crucial for migration of early cardiac progenitors and cardiac function. Aplnr and peptide components have a role in proliferation, differentiation and movement of endodermal precursors. Although expression of Aplnr signaling is observed in endodermal lineages, the main function is the control of mesoderm cell movement and cardiac development. Mutant of the Aplnr signaling components results in the malformations, defects and lethality mainly due to the deformed heart function. This developmental role share similarity with the cardiovascular functions in the adult body.Determination of Aplnr signaling and underlying mechanisms during mammalian development might enable understanding of regulatory molecular mechanisms which not only control embryonic development process but also control tissue function and disease pathology in the adult body.
Collapse
|
6
|
Mohammadi C, Sameri S, Najafi R. Insight into adipokines to optimize therapeutic effects of stem cell for tissue regeneration. Cytokine 2020; 128:155003. [PMID: 32000014 DOI: 10.1016/j.cyto.2020.155003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 11/29/2022]
Abstract
Stem cell therapy is considered as a promising regenerative medicine for repairing and treating damaged tissues and/or preventing various diseases. But there are still some obstacles such as low cell migration, poor stem cell engraftment and decreased cell survival that need to be overcome before transplantation. Therefore, a large body of studies has focused on improving the efficiency of stem cell therapy. For instance, preconditioning of stem cells has emerged as an effective strategy to reinforce therapeutic efficacy. Adipokines are signaling molecules, secreted by adipose tissue, which regulate a variety of biological processes in adipose tissue and other organs including the brain, liver, and muscle. In this review article, we shed light on the biological effects of some adipokines including apelin, oncostatin M, omentin-1 and vaspin on stem cell therapy and the most recent preclinical advances in our understanding of how these functions ameliorate stem cell therapy outcome.
Collapse
Affiliation(s)
- Chiman Mohammadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Sameri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Aktan M, Ozmen HK. A Preliminary Study of Serum Apelin Levels in Patients with Head and Neck Cancer. Eurasian J Med 2019; 51:57-59. [PMID: 30911258 DOI: 10.5152/eurasianjmed.2018.18411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective Treatment planning is primarily based on the tumor node metastasis (TNM) staging system for head and neck cancer (HNC). However, TNM does not give sufficient information about biological aggressiveness, treatment response, and prognosis. New molecular markers are needed for individualized cancer treatment. Apelin is a bioactive peptide and an endogenous ligand for the G protein-coupled receptor (APJ). Its expression is induced under hypoxic conditions. Apelin and its receptor APJ are important factors in physiological angiogenesis and may be novel targets for anti-angiogenic tumor therapies. This preliminary study aimed to investigate whether there was a difference in serum apelin levels between patients with HNC and control group and also to compare the serum apelin levels before and after radiotherapy. Materials and Methods Twenty-two patients with HNC (patient group) and 30 healthy individuals (control group) were included in the study. In the patient group, blood samples were collected before and after radiotherapy. Serum apelin-36 levels were measured by enzyme-linked immunosorbent assay. Results Serum apelin-36 levels were significantly higher in patients with HNC than in the control group (p<0.001). Coverage of the measured apelin-36 levels showed a significant decrease after radiotherapy according to the levels before radiotherapy. There was no statistically significant difference between the groups (p>0.05). Conclusion Apelin may be a potential therapeutic target and a novel biomarker. Additional studies are needed to reveal the relationships between serum apelin and radiotherapy in solid human tumors.
Collapse
Affiliation(s)
- Meryem Aktan
- Department of Radiation Oncology, Necmettin Erbakan University School of Medicine, Konya, Turkey
| | - Hilal Kiziltunc Ozmen
- Department of Radiation Oncology, Atatürk University School of Medicine, Erzurum, Turkey
| |
Collapse
|
8
|
Doğan A. Apelin receptor (Aplnr) signaling promotes fibroblast migration. Tissue Cell 2019; 56:98-106. [PMID: 30736911 DOI: 10.1016/j.tice.2019.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 01/26/2023]
Abstract
Cell migration is one of the major cellular processes in development, tissue regeneration, wound healing, cancer and immune function. Underlying molecular mechanism behind the fibroblast cell migration and matrix interactions generates the basis of tissue homeostasis. The role of Apelin receptor (Aplnr) signaling in gastrulation movements has emerged in recent years but how Aplnr regulates cell movement remains unclear. In the current study, the migratory activity of Aplnr signaling has been shown in cultured fibroblast cells in vitro by scratch assay, gene and protein expression analyses. Aplnr signaling was activated and knocked down in MEFs and NIH-3T3 mouse fibroblast cells to analyze whether cell migration is affected by Aplnr signalling. Activation of Aplnr signaling by Apelin peptide and small molecule ML-233 increased cell movement and expression of migration related gene and proteins including Actin and Vimentin. Similarly, reducing the expression of Aplnr and Apelin (Apln) by siRNA exposure inhibited cell migration of mouse fibroblast cells. Application of Apelin peptide and small molecule ML-233 to human fibroblast cells enhanced scratch closure rate significantly compared to control. This study demonstrated that activation of Aplnr signaling promotes cell migration of fibroblast cells in vitro. Aplnr signaling could be a potential therapeutic candidate as a migration related regulatory mechanism in cancer and wound healing for further research.
Collapse
Affiliation(s)
- Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey.
| |
Collapse
|
9
|
Abstract
Apelin is a vasoactive peptide and is an endogenous ligand for APJ receptors, which are widely expressed in blood vessels, heart, and cardiovascular regulatory regions of the brain. A growing body of evidence now demonstrates a regulatory role for the apelin/APJ receptor system in cardiovascular physiology and pathophysiology, thus making it a potential target for cardiovascular drug discovery and development. Indeed, ongoing studies are investigating the potential benefits of apelin and apelin-mimetics for disorders such as heart failure and pulmonary arterial hypertension. Apelin causes relaxation of isolated arteries, and systemic administration of apelin typically results in a reduction in systolic and diastolic blood pressure and an increase in blood flow. Nonetheless, vasopressor responses and contraction of vascular smooth muscle in response to apelin have also been observed under certain conditions. The goal of the current review is to summarize major findings regarding the apelin/APJ receptor system in blood vessels, with an emphasis on regulation of vascular tone, and to identify areas of investigation that may provide guidance for the development of novel therapeutic agents that target this system.
Collapse
Affiliation(s)
- Amreen Mughal
- Department of Pharmaceutical Sciences, North Dakota State University Fargo, ND, USA
| | - Stephen T O'Rourke
- Department of Pharmaceutical Sciences, North Dakota State University Fargo, ND, USA.
| |
Collapse
|
10
|
Freyer L, Hsu CW, Nowotschin S, Pauli A, Ishida J, Kuba K, Fukamizu A, Schier AF, Hoodless PA, Dickinson ME, Hadjantonakis AK. Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives. Cell Rep 2018; 20:2116-2130. [PMID: 28854362 DOI: 10.1016/j.celrep.2017.08.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/22/2017] [Accepted: 08/01/2017] [Indexed: 01/22/2023] Open
Abstract
Apela (also known as Elabela, Ende, and Toddler) is a small signaling peptide that activates the G-protein-coupled receptor Aplnr to stimulate cell migration during zebrafish gastrulation. Here, using CRISPR/Cas9 to generate a null, reporter-expressing allele, we study the role of Apela in the developing mouse embryo. We found that loss of Apela results in low-penetrance cardiovascular defects that manifest after the onset of circulation. Three-dimensional micro-computed tomography revealed a higher penetrance of vascular remodeling defects, from which some mutants recover, and identified extraembryonic anomalies as the earliest morphological distinction in Apela mutant embryos. Transcriptomics at late gastrulation identified aberrant upregulation of erythroid and myeloid markers in mutant embryos prior to the appearance of physical malformations. Double-mutant analyses showed that loss of Apela signaling impacts early Aplnr-expressing mesodermal populations independently of the alternative ligand Apelin, leading to lethal cardiac defects in some Apela null embryos.
Collapse
Affiliation(s)
- Laina Freyer
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Andrea Pauli
- The Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | - Junji Ishida
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University, Akita 010-8543, Japan
| | - Akiyoshi Fukamizu
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
11
|
Dala AG, Ebied OM, Abo-Raia GY. Is serum apelin related to portal hemodynamics in patients with liver cirrhosis? THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2018. [DOI: 10.4103/ejim.ejim_61_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Sharma B, Ho L, Ford GH, Chen HI, Goldstone AB, Woo YJ, Quertermous T, Reversade B, Red-Horse K. Alternative Progenitor Cells Compensate to Rebuild the Coronary Vasculature in Elabela- and Apj-Deficient Hearts. Dev Cell 2017; 42:655-666.e3. [PMID: 28890073 DOI: 10.1016/j.devcel.2017.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/05/2017] [Accepted: 08/10/2017] [Indexed: 11/16/2022]
Abstract
Organogenesis during embryonic development occurs through the differentiation of progenitor cells. This process is extraordinarily accurate, but the mechanisms ensuring high fidelity are poorly understood. Coronary vessels of the mouse heart derive from at least two progenitor pools, the sinus venosus and endocardium. We find that the ELABELA (ELA)-APJ signaling axis is only required for sinus venosus-derived progenitors. Because they do not depend on ELA-APJ, endocardial progenitors are able to expand and compensate for faulty sinus venosus development in Apj mutants, leading to normal adult heart function. An upregulation of endocardial SOX17 accompanied compensation in Apj mutants, which was also seen in Ccbe1 knockouts, indicating that the endocardium is activated in multiple cases where sinus venosus angiogenesis is stunted. Our data demonstrate that by diversifying their responsivity to growth cues, distinct coronary progenitor pools are able to compensate for each other during coronary development, thereby providing robustness to organ development.
Collapse
Affiliation(s)
- Bikram Sharma
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lena Ho
- Human Genetics and Embryology Laboratory, Institute of Medical Biology, A(∗)STAR, Singapore 138648, Singapore
| | - Gretchen Hazel Ford
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Heidi I Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew B Goldstone
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Quertermous
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bruno Reversade
- Human Genetics and Embryology Laboratory, Institute of Medical Biology, A(∗)STAR, Singapore 138648, Singapore
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Targeting the apelin pathway as a novel therapeutic approach for cardiovascular diseases. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1942-1950. [DOI: 10.1016/j.bbadis.2016.11.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/14/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023]
|
14
|
In vivo modulation of endothelial polarization by Apelin receptor signalling. Nat Commun 2016; 7:11805. [PMID: 27248505 PMCID: PMC4895482 DOI: 10.1038/ncomms11805] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 05/02/2016] [Indexed: 12/18/2022] Open
Abstract
Endothelial cells (ECs) respond to shear stress by aligning in the direction of flow. However, how ECs respond to flow in complex in vivo environments is less clear. Here we describe an endothelial-specific transgenic zebrafish line, whereby the Golgi apparatus is labelled to allow for in vivo analysis of endothelial polarization. We find that most ECs polarize within 4.5 h after the onset of vigorous blood flow and, by manipulating cardiac function, observe that flow-induced EC polarization is a dynamic and reversible process. Based on its role in EC migration, we analyse the role of Apelin signalling in EC polarization and find that it is critical for this process. Knocking down Apelin receptor function in human primary ECs also affects their polarization. Our study provides new tools to analyse the mechanisms of EC polarization in vivo and reveals an important role in this process for a signalling pathway implicated in cardiovascular disease.
Collapse
|
15
|
Wang L, Zhu ZM, Zhang NK, Fang ZR, Xu XH, Zheng N, Gao LR. Apelin: an endogenous peptide essential for cardiomyogenic differentiation of mesenchymal stem cells via activating extracellular signal-regulated kinase 1/2 and 5. Cell Biol Int 2016; 40:501-14. [PMID: 26787000 DOI: 10.1002/cbin.10581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/12/2016] [Indexed: 01/25/2023]
Abstract
Growing evidence has shown that apelin/APJ system functions as a critical mediator of cardiac development as well as cardiovascular function. Here, we investigated the role of apelin in the cardiomyogenic differentiation of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord in vitro. In this research, we used RNA interference methodology and gene transfection technique to regulate the expression of apelin in Wharton's jelly-derived mesenchymal stem cells and induced cells with a effective cardiac differentiation protocol including 5-azacytidine and bFGF. Four weeks after induction, induced cells assumed a stick-like morphology and myotube-like structures except apelin-silenced cells and the control group. The silencing expression of apelin in Wharton's jelly-derived mesenchymal stem cells decreased the expression of several critical cardiac progenitor transcription factors (Mesp1, Mef2c, NKX2.5) and cardiac phenotypes (cardiac α-actin, β-MHC, cTnT, and connexin-43). Meanwhile, endogenous compensation of apelin contributed to differentiating into cells with characteristics of cardiomyocytes in vitro. Further experiment showed that exogenous apelin peptide rescued the cardiomyogenic differentiation of apelin-silenced mesenchymal stem cells in the early stage (1-4 days) of induction. Remarkably, our experiment indicated that apelin up-regulated cardiac specific genes in Wharton's jelly-derived mesenchymal stem cells via activating extracellular signal-regulated kinase (ERK) 1/2 and 5.
Collapse
Affiliation(s)
- Li Wang
- Cardiovascular Center, Navy General Hospital, Beijing, 100048, China
- Department of Internal Medicine, The 413th Hospital of P. L. A., Zhoushan, Zhejiang, 316000, China
| | - Zhi-Ming Zhu
- Cardiovascular Center, Navy General Hospital, Beijing, 100048, China
| | - Ning-Kun Zhang
- Cardiovascular Center, Navy General Hospital, Beijing, 100048, China
| | - Zhi-Rong Fang
- Department of Internal Medicine, The 413th Hospital of P. L. A., Zhoushan, Zhejiang, 316000, China
| | - Xiao-Hong Xu
- Cardiovascular Center, Navy General Hospital, Beijing, 100048, China
| | - Nan Zheng
- Cardiovascular Center, Navy General Hospital, Beijing, 100048, China
| | - Lian-Ru Gao
- Cardiovascular Center, Navy General Hospital, Beijing, 100048, China
| |
Collapse
|
16
|
Characterization of apela, a novel endogenous ligand of apelin receptor, in the adult heart. Basic Res Cardiol 2015; 111:2. [DOI: 10.1007/s00395-015-0521-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/06/2015] [Indexed: 01/04/2023]
|
17
|
|
18
|
Ogawa-Otomo A, Kurisaki A, Ito Y. Aminolevulinate synthase 2 mediates erythrocyte differentiation by regulating larval globin expression during Xenopus primary hematopoiesis. Biochem Biophys Res Commun 2014; 456:476-81. [PMID: 25482442 DOI: 10.1016/j.bbrc.2014.11.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Hemoglobin synthesis by erythrocytes continues throughout a vertebrate's lifetime. The mechanism of mammalian heme synthesis has been studied for many years; aminolevulinate synthase 2 (ALAS2), a heme synthetase, is associated with X-linked dominant protoporphyria in humans. Amphibian and mammalian blood cells differ, but little is known about amphibian embryonic hemoglobin synthesis. We investigated the function of the Xenopus alas2 gene (Xalas2) in primitive amphibian erythrocytes and found that it is first expressed in primitive erythroid cells before hemoglobin alpha 3 subunit (hba3) during primary hematopoiesis and in the posterior ventral blood islands at the tailbud stage. Xalas2 is not expressed during secondary hematopoiesis in the dorsal lateral plate. Hemoglobin was barely detectable by o-dianisidine staining and hba3 transcript levels decreased in Xalas2-knockdown embryos. These results suggest that Xalas2 might be able to synthesize hemoglobin during hematopoiesis and mediate erythrocyte differentiation by regulating hba3 expression in Xenopus laevis.
Collapse
Affiliation(s)
- Asako Ogawa-Otomo
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan; Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Akira Kurisaki
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan; Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Yuzuru Ito
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan.
| |
Collapse
|
19
|
Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development. Dev Biol 2014; 397:175-90. [PMID: 25446030 DOI: 10.1016/j.ydbio.2014.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/07/2014] [Accepted: 10/26/2014] [Indexed: 11/23/2022]
Abstract
The respective role of Pax2 and Pax8 in early kidney development in vertebrates is poorly understood. In this report, we have studied the roles of Pax8 and Pax2 in Xenopus pronephros development using a loss-of-function approach. Our results highlight a differential requirement of these two transcription factors for proper pronephros formation. Pax8 is necessary for the earliest steps of pronephric development and its depletion leads to a complete absence of pronephric tubule. Pax2 is required after the establishment of the tubule pronephric anlage, for the expression of several terminal differentiation markers of the pronephric tubule. Neither Pax2 nor Pax8 is essential to glomus development. We further show that Pax8 controls hnf1b, but not lhx1 and Osr2, expression in the kidney field as soon as the mid-neurula stage. Pax8 is also required for cell proliferation of pronephric precursors in the kidney field. It may exert its action through the wnt/beta-catenin pathway since activation of this pathway can rescue MoPax8 induced proliferation defect and Pax8 regulates expression of the wnt pathway components, dvl1 and sfrp3. Finally, we observed that loss of pronephros in Pax8 morphants correlates with an expanded vascular/blood gene expression domain indicating that Pax8 function is important to delimit the blood/endothelial genes expression domain in the anterior part of the dorso-lateral plate.
Collapse
|
20
|
Xie F, Lv D, Chen L. ELABELA: a novel hormone in cardiac development acting as a new endogenous ligand for the APJ receptor. Acta Biochim Biophys Sin (Shanghai) 2014; 46:620-2. [PMID: 24829400 DOI: 10.1093/abbs/gmu032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Feng Xie
- Learning Key Laboratory for Pharmaco-proteomics, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Deguan Lv
- Learning Key Laboratory for Pharmaco-proteomics, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Learning Key Laboratory for Pharmaco-proteomics, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| |
Collapse
|
21
|
Effects of Apelin-13 on Rat Bone Marrow-Derived Mesenchymal Stem Cell Proliferation Through the AKT/GSK3β/Cyclin D1 Pathway. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9404-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Pauli A, Norris ML, Valen E, Chew GL, Gagnon JA, Zimmerman S, Mitchell A, Ma J, Dubrulle J, Reyon D, Tsai SQ, Joung JK, Saghatelian A, Schier AF. Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science 2014; 343:1248636. [PMID: 24407481 DOI: 10.1126/science.1248636] [Citation(s) in RCA: 481] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It has been assumed that most, if not all, signals regulating early development have been identified. Contrary to this expectation, we identified 28 candidate signaling proteins expressed during zebrafish embryogenesis, including Toddler, a short, conserved, and secreted peptide. Both absence and overproduction of Toddler reduce the movement of mesendodermal cells during zebrafish gastrulation. Local and ubiquitous production of Toddler promote cell movement, suggesting that Toddler is neither an attractant nor a repellent but acts globally as a motogen. Toddler drives internalization of G protein-coupled APJ/Apelin receptors, and activation of APJ/Apelin signaling rescues toddler mutants. These results indicate that Toddler is an activator of APJ/Apelin receptor signaling, promotes gastrulation movements, and might be the first in a series of uncharacterized developmental signals.
Collapse
Affiliation(s)
- Andrea Pauli
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sato T, Suzuki T, Watanabe H, Kadowaki A, Fukamizu A, Liu PP, Kimura A, Ito H, Penninger JM, Imai Y, Kuba K. Apelin is a positive regulator of ACE2 in failing hearts. J Clin Invest 2013; 123:5203-11. [PMID: 24177423 DOI: 10.1172/jci69608] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 08/29/2013] [Indexed: 11/17/2022] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is a negative regulator of the renin-angiotensin system (RAS), catalyzing the conversion of Angiotensin II to Angiotensin 1-7. Apelin is a second catalytic substrate for ACE2 and functions as an inotropic and cardioprotective peptide. While an antagonistic relationship between the RAS and apelin has been proposed, such functional interplay remains elusive. Here we found that ACE2 was downregulated in apelin-deficient mice. Pharmacological or genetic inhibition of angiotensin II type 1 receptor (AT1R) rescued the impaired contractility and hypertrophy of apelin mutant mice, which was accompanied by restored ACE2 levels. Importantly, treatment with angiotensin 1-7 rescued hypertrophy and heart dysfunctions of apelin-knockout mice. Moreover, apelin, via activation of its receptor, APJ, increased ACE2 promoter activity in vitro and upregulated ACE2 expression in failing hearts in vivo. Apelin treatment also increased cardiac contractility and ACE2 levels in AT1R-deficient mice. These data demonstrate that ACE2 couples the RAS to the apelin system, adding a conceptual framework for the apelin-ACE2-angiotensin 1-7 axis as a therapeutic target for cardiovascular diseases.
Collapse
|
24
|
O'Carroll AM, Lolait SJ, Harris LE, Pope GR. The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis. J Endocrinol 2013; 219:R13-35. [PMID: 23943882 DOI: 10.1530/joe-13-0227] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The apelin receptor (APJ; gene symbol APLNR) is a member of the G protein-coupled receptor gene family. Neural gene expression patterns of APJ, and its cognate ligand apelin, in the brain implicate the apelinergic system in the regulation of a number of physiological processes. APJ and apelin are highly expressed in the hypothalamo-neurohypophysial system, which regulates fluid homeostasis, in the hypothalamic-pituitary-adrenal axis, which controls the neuroendocrine response to stress, and in the forebrain and lower brainstem regions, which are involved in cardiovascular function. Recently, apelin, synthesised and secreted by adipocytes, has been described as a beneficial adipokine related to obesity, and there is growing awareness of a potential role for apelin and APJ in glucose and energy metabolism. In this review we provide a comprehensive overview of the structure, expression pattern and regulation of apelin and its receptor, as well as the main second messengers and signalling proteins activated by apelin. We also highlight the physiological and pathological roles that support this system as a novel therapeutic target for pharmacological intervention in treating conditions related to altered water balance, stress-induced disorders such as anxiety and depression, and cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Anne-Marie O'Carroll
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | | | | | | |
Collapse
|
25
|
Myocardial injection of apelin-overexpressing bone marrow cells improves cardiac repair via upregulation of Sirt3 after myocardial infarction. PLoS One 2013; 8:e71041. [PMID: 24039710 PMCID: PMC3765164 DOI: 10.1371/journal.pone.0071041] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/26/2013] [Indexed: 12/29/2022] Open
Abstract
Our previous study shows that treatment with apelin increases bone marrow cells (BMCs) recruitment and promotes cardiac repair after myocardial infarction (MI). The objective of this study was to investigate whether overexpression of apelin in BMCs improved cell therapy and accelerated cardiac repair and functional recovery in post-MI mice. Mouse myocardial infarction was achieved by coronary artery ligation and BMCs overexpressing apelin (apelin-BMCs) or GFP (GFP-BMCs) were injected into ischemic area immediately after surgery. In vitro, exposure of cultured BMCs to apelin led to a gradual increase in SDF-1á and CXCR4 expression. Intramyocardial delivery of apelin-BMCs in post-MI mice resulted in a significant increase number of APJ+/c-kit+/Sca1+ cells in the injected area compared to GFP-BMCs treated post-MI mice. Treatment with apelin-BMCs increased expression of VEGF, Ang-1 and Tie-2 in post-MI mice. Apelin-BMCs treatment also significantly increased angiogenesis and attenuated cardiac fibrosis formation in post-MI mice. Most importantly, treatment with apelin-BMCs significantly improved left ventricular (LV) systolic function in post-MI mice. Mechanistically, Apelin-BMCs treatment led to a significant increase in Sirtuin3 (Sirt3) expression and reduction of reactive oxygen species (ROS) formation. Treatment of cultured BMCs with apelin also increased Notch3 expression and Akt phosphorylation. Apelin treatment further attenuated stress-induced apoptosis whereas knockout of Sirt3 abolished anti-apoptotic effect of apelin in cultured BMCs. Moreover, knockout of Sirt3 significantly attenuated apelin-BMCs-induced VEGF expression and angiogenesis in post-MI mice. Knockout of Sirt3 further blunted apelin-BMCs-mediated improvement of cardiac repair and systolic functional recovery in post-MI mice. These data suggest that apelin improves BMCs therapy on cardiac repair and systolic function in post-MI mice. Upregulation of Sirt3 may contribute to the protective effect of apelin-BMCs therapy.
Collapse
|
26
|
The G-protein-coupled receptor APJ is expressed in the second heart field and regulates Cerberus–Baf60c axis in embryonic stem cell cardiomyogenesis. Cardiovasc Res 2013; 100:95-104. [DOI: 10.1093/cvr/cvt166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
27
|
Ciau-Uitz A, Pinheiro P, Kirmizitas A, Zuo J, Patient R. VEGFA-dependent and -independent pathways synergise to drive Scl expression and initiate programming of the blood stem cell lineage in Xenopus. Development 2013; 140:2632-42. [PMID: 23637333 PMCID: PMC3666388 DOI: 10.1242/dev.090829] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2013] [Indexed: 01/23/2023]
Abstract
The first haematopoietic stem cells share a common origin with the dorsal aorta and derive from putative adult haemangioblasts in the dorsal lateral plate (DLP) mesoderm. Here we show that the transcription factor (TF) stem cell leukaemia (Scl/Tal1) is crucial for development of these adult haemangioblasts in Xenopus and establish the regulatory cascade controlling its expression. We show that VEGFA produced in the somites is required to initiate adult haemangioblast programming in the adjacent DLP by establishing endogenous VEGFA signalling. This response depends on expression of the VEGF receptor Flk1, driven by Fli1 and Gata2. Scl activation requires synergy between this VEGFA-controlled pathway and a VEGFA-independent pathway controlled by Fli1, Gata2 and Etv2/Etsrp/ER71, which also drives expression of the Scl partner Lmo2. Thus, the two ETS factors Fli1 and Etv6, which drives the VEGFA expression in both somites and the DLP, sit at the top of the adult haemangioblast gene regulatory network (GRN). Furthermore, Gata2 is initially activated by Fli1 but later maintained by another ETS factor, Etv2. We also establish that Flk1 and Etv2 act independently in the two pathways to Scl activation. Thus, detailed temporal, epistatic measurements of key TFs and VEGFA plus its receptor have enabled us to build a Xenopus adult haemangioblast GRN.
Collapse
Affiliation(s)
- Aldo Ciau-Uitz
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Philip Pinheiro
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Arif Kirmizitas
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Jie Zuo
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Roger Patient
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| |
Collapse
|
28
|
Kang Y, Kim J, Anderson JP, Wu J, Gleim SR, Kundu RK, McLean DL, Kim JD, Park H, Jin SW, Hwa J, Quertermous T, Chun HJ. Apelin-APJ signaling is a critical regulator of endothelial MEF2 activation in cardiovascular development. Circ Res 2013; 113:22-31. [PMID: 23603510 DOI: 10.1161/circresaha.113.301324] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The peptide ligand apelin and its receptor APJ constitute a signaling pathway with numerous effects on the cardiovascular system, including cardiovascular development in model organisms such as xenopus and zebrafish. OBJECTIVE This study aimed to characterize the embryonic lethal phenotype of the Apj-/- mice and to define the involved downstream signaling targets. METHODS AND RESULTS We report the first characterization of the embryonic lethality of the Apj-/- mice. More than half of the expected Apj-/- embryos died in utero because of cardiovascular developmental defects. Those succumbing to early embryonic death had markedly deformed vasculature of the yolk sac and the embryo, as well as poorly looped hearts with aberrantly formed right ventricles and defective atrioventricular cushion formation. Apj-/- embryos surviving to later stages demonstrated incomplete vascular maturation because of a deficiency of vascular smooth muscle cells and impaired myocardial trabeculation and ventricular wall development. The molecular mechanism implicates a novel, noncanonical signaling pathway downstream of apelin-APJ involving Gα13, which induces histone deacetylase (HDAC) 4 and HDAC5 phosphorylation and cytoplasmic translocation, resulting in activation of myocyte enhancer factor 2. Apj-/- mice have greater endocardial Hdac4 and Hdac5 nuclear localization and reduced expression of the myocyte enhancer factor 2 (MEF2) transcriptional target Krüppel-like factor 2. We identify a number of commonly shared transcriptional targets among apelin-APJ, Gα13, and MEF2 in endothelial cells, which are significantly decreased in the Apj-/- embryos and endothelial cells. CONCLUSIONS Our results demonstrate a novel role for apelin-APJ signaling as a potent regulator of endothelial MEF2 function in the developing cardiovascular system.
Collapse
Affiliation(s)
- Yujung Kang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tempel D, de Boer M, van Deel ED, Haasdijk RA, Duncker DJ, Cheng C, Schulte-Merker S, Duckers HJ. Apelin enhances cardiac neovascularization after myocardial infarction by recruiting aplnr+ circulating cells. Circ Res 2012; 111:585-98. [PMID: 22753078 DOI: 10.1161/circresaha.111.262097] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE Neovascularization stimulated by local or recruited stem cells after ischemia is a key process that salvages damaged tissue and shows similarities with embryonic vascularization. Apelin receptor (Aplnr) and its endogenous ligand apelin play an important role in cardiovascular development. However, the role of apelin signaling in stem cell recruitment after ischemia is unknown. OBJECTIVE To investigate the role of apelin signaling in recruitment after ischemia. METHODS AND RESULTS Aplnr was specifically expressed in circulating cKit+/Flk1+ cells but not in circulating Sca1+/Flk1+ and Lin+ cells. cKit+/Flk1+/Aplnr+ cells increased significantly early after myocardial ischemia but not after hind limb ischemia, indicative of an important role for apelin/Aplnr in cell recruitment during the nascent biological repair response after myocardial damage. In line with this finding, apelin expression was upregulated in the infarcted myocardium. Injection of apelin into the ischemic myocardium resulted in accelerated and increased recruitment of cKit+/Flk1+/Aplnr+ cells to the heart. Recruited Aplnr+/cKit+/Flk1+ cells promoted neovascularization in the peri-infarct area by paracrine activity rather than active transdifferentiation, resulting into cardioprotection as indicated by diminished scar formation and improved residual cardiac function. Aplnr knockdown in the bone marrow resulted in aggravation of myocardial ischemia-associated damage, which could not be rescued by apelin. CONCLUSIONS We conclude that apelin functions as a new and potent chemoattractant for circulating cKit+/Flk1+/Aplnr+ cells during early myocardial repair, providing myocardial protection against ischemic damage by improving neovascularization via paracine action.
Collapse
Affiliation(s)
- Dennie Tempel
- FESC, Molecular Cardiology Laboratory, Ee2389a, Thoraxcenter Rotterdam, Erasmus University Medical Center, 's-Gravendijkwal 230, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Li L, Zeng H, Chen JX. Apelin-13 increases myocardial progenitor cells and improves repair postmyocardial infarction. Am J Physiol Heart Circ Physiol 2012; 303:H605-18. [PMID: 22752632 DOI: 10.1152/ajpheart.00366.2012] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Apelin is an endogenous ligand for the angiotensin-like 1 receptor (APJ) and has beneficial effects against myocardial ischemia-reperfusion injury. Little is known about the role of apelin in the homing of vascular progenitor cells (PCs) and cardiac functional recovery postmyocardial infarction (post-MI). The present study investigated whether apelin affects PC homing to the infarcted myocardium, thereby mediating repair and functional recovery post-MI. Mice were infarcted by coronary artery ligation, and apelin-13 (1 mg·kg(-1)·day(-1)) was injected for 3 days before MI and for 14 days post-MI. Homing of vascular PCs [CD133(+)/c-Kit(+)/Sca1(+), CD133(+)/stromal cell-derived factor (SDF)-1α(+), and CD133(+)/CXC chemokine receptor (CXCR)-4(+)] into the ischemic area was examined. Myocardial Akt, endothelial nitric oxide synthase (eNOS), VEGF, jagged1, notch3, SDF-1α, and CXCR-4 expression were assessed at 24 h and 14 days post-MI. Functional analyses were performed on day 14 post-MI. Mice that received apelin-13 treatment demonstrated upregulation of SDF-1α/CXCR-4 expression and dramatically increased the number of CD133(+)/c-Kit(+)/Sca1(+), CD133(+)/SDF-1α(+), and c-Kit(+)/CXCR-4(+) cells in infarcted hearts. Apelin-13 also significantly increased Akt and eNOS phosphorylation and upregulated VEGF, jagged1, and notch3 expression in ischemic hearts. This was accompanied by a significant reduction of myocardial apoptosis. Furthermore, treatment with apelin-13 promoted myocardial angiogenesis and attenuated cardiac fibrosis and hypertrophy together with a significant improvement of cardiac function at 14 days post-MI. Apelin-13 increases angiogenesis and improves cardiac repair post-MI by a mechanism involving the upregulation of SDF-1α/CXCR-4 and homing of vascular PCs.
Collapse
Affiliation(s)
- Lanfang Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | |
Collapse
|
31
|
Abstract
Abstract
Transcriptional profiling of differentiating human embryonic stem cells (hESCs) revealed that MIXL1-positive mesodermal precursors were enriched for transcripts encoding the G-protein–coupled APELIN receptor (APLNR). APLNR-positive cells, identified by binding of the fluoresceinated peptide ligand, APELIN (APLN), or an anti-APLNR mAb, were found in both posterior mesoderm and anterior mesendoderm populations and were enriched in hemangioblast colony-forming cells (Bl-CFC). The addition of APLN peptide to the media enhanced the growth of embryoid bodies (EBs), increased the expression of hematoendothelial genes in differentiating hESCs, and increased the frequency of Bl-CFCs by up to 10-fold. Furthermore, APLN peptide also synergized with VEGF to promote the growth of hESC-derived endothelial cells. These studies identified APLN as a novel growth factor for hESC-derived hematopoietic and endothelial cells.
Collapse
|
32
|
Wang INE, Wang X, Ge X, Anderson J, Ho M, Ashley E, Liu J, Butte MJ, Yazawa M, Dolmetsch RE, Quertermous T, Yang PC. Apelin enhances directed cardiac differentiation of mouse and human embryonic stem cells. PLoS One 2012; 7:e38328. [PMID: 22675543 PMCID: PMC3365885 DOI: 10.1371/journal.pone.0038328] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/03/2012] [Indexed: 12/12/2022] Open
Abstract
Apelin is a peptide ligand for an orphan G-protein coupled receptor (APJ receptor) and serves as a critical gradient for migration of mesodermal cells fated to contribute to the myocardial lineage. The present study was designed to establish a robust cardiac differentiation protocol, specifically, to evaluate the effect of apelin on directed differentiation of mouse and human embryonic stem cells (mESCs and hESCs) into cardiac lineage. Different concentrations of apelin (50, 100, 500 nM) were evaluated to determine its differentiation potential. The optimized dose of apelin was then combined with mesodermal differentiation factors, including BMP-4, activin-A, and bFGF, in a developmentally specific temporal sequence to examine the synergistic effects on cardiac differentiation. Cellular, molecular, and physiologic characteristics of the apelin-induced contractile embryoid bodies (EBs) were analyzed. It was found that 100 nM apelin resulted in highest percentage of contractile EB for mESCs while 500 nM had the highest effects on hESCs. Functionally, the contractile frequency of mESCs-derived EBs (mEBs) responded appropriately to increasing concentration of isoprenaline and diltiazem. Positive phenotype of cardiac specific markers was confirmed in the apelin-treated groups. The protocol, consisting of apelin and mesodermal differentiation factors, induced contractility in significantly higher percentage of hESC-derived EBs (hEBs), up-regulated cardiac-specific genes and cell surface markers, and increased the contractile force. In conclusion, we have demonstrated that the treatment of apelin enhanced cardiac differentiation of mouse and human ESCs and exhibited synergistic effects with mesodermal differentiation factors.
Collapse
Affiliation(s)
- I-Ning E Wang
- Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
14-3-3 Is Involved in ERK1/2 Signaling Pathway of Rat Vascular Smooth Muscle Cells Proliferation Induced by Apelin-13*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Abstract
The study of gene function in developmental biology has been significantly furthered by advances in antisense technology made in the early 2000s. This was achieved, in particular, by the introduction of morpholino (MO) oligonucleotides. The introduction of antisense MO oligonucleotides into cells enables researchers to readily reduce the levels of their protein of interest without investing huge financial or temporal resources, in both in vivo and in vitro model systems. Historically, the African clawed frog Xenopus has been used to study vertebrate embryological development, due to its ability to produce vast numbers of offspring that develop rapidly, in synchrony, and can be cultured in buffers with ease. The developmental progress of Xenopus embryos has been extensively characterized and this model organism is very easy to maintain. It is these attributes that enable MO-based knockdown strategies to be so effective in Xenopus. In this chapter, we will detail the methods of microinjecting MO oligonucleotides into early embryos of X. laevis and X. tropicalis. We will discuss how MOs can be used to prevent either pre-mRNA splicing or translation of the specific gene of interest resulting in abrogation of that gene's function and advise on what control experiments should be undertaken to verify their efficacy.
Collapse
Affiliation(s)
- Panna Tandon
- Department of Genetics, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
35
|
Kaltenbrun E, Tandon P, Amin NM, Waldron L, Showell C, Conlon FL. Xenopus: An emerging model for studying congenital heart disease. ACTA ACUST UNITED AC 2011; 91:495-510. [PMID: 21538812 DOI: 10.1002/bdra.20793] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/18/2011] [Accepted: 01/28/2011] [Indexed: 02/02/2023]
Abstract
Congenital heart defects affect nearly 1% of all newborns and are a significant cause of infant death. Clinical studies have identified a number of congenital heart syndromes associated with mutations in genes that are involved in the complex process of cardiogenesis. The African clawed frog, Xenopus, has been instrumental in studies of vertebrate heart development and provides a valuable tool to investigate the molecular mechanisms underlying human congenital heart diseases. In this review, we discuss the methodologies that make Xenopus an ideal model system to investigate heart development and disease. We also outline congenital heart conditions linked to cardiac genes that have been well studied in Xenopus and describe some emerging technologies that will further aid in the study of these complex syndromes.
Collapse
Affiliation(s)
- Erin Kaltenbrun
- University of North Carolina McAllister Heart Institute, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
36
|
Vodyanik MA, Yu J, Zhang X, Tian S, Stewart R, Thomson JA, Slukvin II. A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell 2011; 7:718-29. [PMID: 21112566 DOI: 10.1016/j.stem.2010.11.011] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/05/2010] [Accepted: 09/13/2010] [Indexed: 01/17/2023]
Abstract
Among the three embryonic germ layers, the mesoderm is a major source of the mesenchymal precursors giving rise to skeletal and connective tissues, but these precursors have not previously been identified and characterized. Using human embryonic stem cells directed toward mesendodermal differentiation, we show that mesenchymal stem/stromal cells (MSCs) originate from a population of mesodermal cells identified by expression of apelin receptor. In semisolid medium, these precursors form FGF2-dependent compact spheroid colonies containing mesenchymal cells with a transcriptional profile representative of mesoderm-derived embryonic mesenchyme. When transferred to adherent cultures, individual colonies give rise to MSC lines with chondro-, osteo-, and adipogenic differentiation potentials. Although the MSC lines lacked endothelial potential, endothelial cells could be derived from the mesenchymal colonies, suggesting that, similar to hematopoietic cells, MSCs arise from precursors with angiogenic potential. Together, these studies identified a common precursor of mesenchymal and endothelial cells, mesenchymoangioblast, as the source of mesoderm-derived MSCs.
Collapse
Affiliation(s)
- Maxim A Vodyanik
- National Primate Research Center, University of Wisconsin Graduate School, Madison, 53715, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Neuhaus H, Müller F, Hollemann T. Xenopus er71 is involved in vascular development. Dev Dyn 2011; 239:3436-45. [PMID: 21069823 DOI: 10.1002/dvdy.22487] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vasculogenesis and hematopoiesis are closely linked in developing vertebrates. Recently, the existence of a common progenitor of these two tissues, the hemangioblast, has been demonstrated in different organisms. In Xenopus early vascular and hematopoietic cells differentiate in a region called the anterior ventral blood island (aVBI). Differentiating cells from this region migrate out to form embryonic blood and part of the vascular structures of the early frog embryo. A number of members of the ETS family of transcription factors are expressed in endothelial cells and some of them play important roles at various stages of vascular development. The loss of ER71 function in mice led to a complete loss of blood and vascular structures. Similarly, knock down of the zebrafish homolog of er71, etsrp, greatly affected development of vascular structures and myeloid cells. We have identified the Xenopus ortholog of er71 and could show that er71 function in Xenopus is required for vasculogenesis, but not for the development of hematopoietic cells.
Collapse
Affiliation(s)
- Herbert Neuhaus
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, Halle, Germany.
| | | | | |
Collapse
|
38
|
Rastaldo R, Cappello S, Folino A, Losano G. Effect of apelin-apelin receptor system in postischaemic myocardial protection: a pharmacological postconditioning tool? Antioxid Redox Signal 2011; 14:909-22. [PMID: 20615122 DOI: 10.1089/ars.2010.3355] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the heart, a great part of ischaemia and reperfusion injuries occurs mainly during the first minutes of reperfusion. The opening of the mitochondrial permeability transition pores is the end point of the cascade to myocardial damage. Also, oxidative stress contributes to cell death. Postconditioning is a protective maneuver that can be selectively timed at the beginning of reperfusion. It is hypothesized that it acts via the reperfusion injury salvage kinase pathway, which includes nitric oxide-dependent and nitric oxide-independent cascades. Apelin is an endogenous peptide that can protect the heart from reperfusion injury if given at the beginning of reperfusion but not before ischaemia. It is hypothesized that it may trigger the reperfusion injury salvage kinase pathway via a specific apelin receptor. Apelin can also limit the oxidative stress by the activation of superoxide dismutase. Apelin and apelin receptor expression increase early after ischaemia and at the beginning of an ischaemic heart failure. These observations suggest that the endogenous release of the peptide can limit the severity of an infarction and ameliorate myocardial contractility compromised by the appearance of the failure. Due to its protective activities, apelin could be a therapeutic tool if administered with the same catheter used for angioplasty or after the maneuvers aimed at bypassing a coronary occlusion.
Collapse
|
39
|
Pitkin SL, Maguire JJ, Bonner TI, Davenport AP. International Union of Basic and Clinical Pharmacology. LXXIV. Apelin receptor nomenclature, distribution, pharmacology, and function. Pharmacol Rev 2010; 62:331-42. [PMID: 20605969 DOI: 10.1124/pr.110.002949] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
A gene encoding a novel class a G-protein-coupled receptor was discovered in 1993 by homology cloning and was called APJ. It was designated an "orphan" receptor until 1998, when its endogenous ligand was identified and named apelin (for APJ endogenous ligand). Since this pairing, both apelin and its receptor have been found to have a widespread distribution in both the central nervous system and the periphery. A number of physiological and pathophysiological roles for the receptor have emerged, including regulation of cardiovascular function, fluid homeostasis, and the adipoinsular axis. This review outlines the official International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification nomenclature, designating the receptor protein as the apelin receptor, together with current knowledge of its pharmacology, distribution, and functions.
Collapse
Affiliation(s)
- Sarah L Pitkin
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | | | | | | |
Collapse
|
40
|
Liu C, Su T, Li F, Li L, Qin X, Pan W, Feng F, Chen F, Liao D, Chen L. PI3K/Akt signaling transduction pathway is involved in rat vascular smooth muscle cell proliferation induced by apelin-13. Acta Biochim Biophys Sin (Shanghai) 2010; 42:396-402. [PMID: 20539939 DOI: 10.1093/abbs/gmq035] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) were prepared from thoracic aortas of male Sprague-Dawley rats by the explant method to observe VSMC proliferation via phosphoinositide 3 kinase (PI3K)/Akt signaling transduction pathway induced by apelin-13. Expression of PI3K, phospho-PI3K, phospho-Akt, ERK1/2, phospho-ERK1/2 and cyclin D1 was detected by western blot analysis. Results showed that apelin-13 promoted the expression of phospho-PI3K and phospho-Akt in dose- and timedependent manner. PI3K inhibitor LY294002 significantly decreased the expression of phospho-PI3K, phospho-Akt, phospho-ERK1/2, and cyclin D1 induced by apelin-13. The Akt inhibitor 1701-1 significantly diminished the expression of phospho-Akt, phospho-ERK1/2, and cyclin D1 stimulated by apelin-13. MTT assay results showed that PI3K inhibitor LY294002 and Akt inhibitor 1701-1 significantly inhibited the VSMC proliferation induced by apelin-13. Apelin-13 promoted VSMC proliferation through PI3K/Akt signaling transduction pathway.
Collapse
Affiliation(s)
- Changhui Liu
- Department of Cardiology, The First Affiliated Hospital, University of South China, Hengyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Falcão-Pires I, Ladeiras-Lopes R, Leite-Moreira AF. The apelinergic system: a promising therapeutic target. Expert Opin Ther Targets 2010; 14:633-45. [DOI: 10.1517/14728221003752743] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Gessert S, Kühl M. Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis. Dev Biol 2009; 334:395-408. [PMID: 19660447 DOI: 10.1016/j.ydbio.2009.07.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 07/17/2009] [Accepted: 07/28/2009] [Indexed: 11/24/2022]
Abstract
Retrospective clonal analysis in mice suggested that the vertebrate heart develops from two sources of cells called first and second lineages, respectively. Cells of the first lineage enter the linear heart tube and initiate terminal differentiation earlier than cells of the second lineage. It is thought that both heart lineages arise from a common progenitor cell population prior to the cardiac crescent stage (E7.5 of mouse development). The timing of segregation of different lineages as well as the molecular mechanisms underlying this process is not yet known. Furthermore, gene expression data for those lineages are very limited. Here we provide the first comparative study of cardiac marker gene expression during Xenopus laevis embryogenesis complemented by single cell RT-PCR analysis. In addition we provide fate mapping data of cardiac progenitor cells at different stages of development. Our analysis indicates an early segregation of cardiac lineages and a fairly complex heterogeneity of gene expression in the cardiac progenitor cells. Furthermore, this study sets a reference for all further studies analyzing cardiac development in X. laevis.
Collapse
Affiliation(s)
- Susanne Gessert
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | |
Collapse
|
43
|
Kirby ML. Why don't they beat?: Cripto, apelin/APJ, and myocardial differentiation. Circ Res 2009; 105:211-3. [PMID: 19644056 DOI: 10.1161/circresaha.109.203042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
D'Aniello C, Lonardo E, Iaconis S, Guardiola O, Liguoro AM, Liguori GL, Autiero M, Carmeliet P, Minchiotti G. G protein-coupled receptor APJ and its ligand apelin act downstream of Cripto to specify embryonic stem cells toward the cardiac lineage through extracellular signal-regulated kinase/p70S6 kinase signaling pathway. Circ Res 2009; 105:231-8. [PMID: 19574549 DOI: 10.1161/circresaha.109.201186] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Pluripotent stem cells represent a powerful model system to study the early steps of cardiac specification for which the molecular control is largely unknown. The EGF-CFC (epidermal growth factor-Cripto/FRL-1/Cryptic) Cripto protein is essential for cardiac myogenesis in embryonic stem cells (ESCs). OBJECTIVE Here, we study the role of apelin and its G protein-coupled receptor, APJ, as downstream targets of Cripto both in vivo and in ESC differentiation. METHODS AND RESULTS Gain-of-function experiments show that APJ suppresses neuronal differentiation and restores the cardiac program in Cripto(-/-) ESCs. Loss-of-function experiments point for a central role for APJ/apelin in the gene regulatory cascade promoting cardiac specification and differentiation in ESCs. Remarkably, we show for the first time that apelin promotes mammalian cardiomyogenesis via activation of mitogen-activated protein kinase/p70S6 through coupling to a Go/Gi protein. CONCLUSIONS Together our data provide evidence for a previously unrecognized function of APJ/apelin in the Cripto signaling pathway governing mesoderm patterning and cardiac specification in mammals.
Collapse
Affiliation(s)
- Cristina D'Aniello
- Institute of Genetics and Biophysics "A. Buzzati-Traverso," CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Masri B, van den Berghe L, Sorli C, Knibiehler B, Audigier Y. [Apelin signalisation and vascular physiopathology]. ACTA ACUST UNITED AC 2009; 203:171-9. [PMID: 19527631 DOI: 10.1051/jbio/2009021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The formation of the vascular system is an early step in organogenesis that involves the participation of various signalling pathways. Integration of the extracellular signals decoded by their cognate membrane receptors orchestrate the cell events, which act at different stages, from the primitive network formed by vasculogenesis to the arborescent network remodeled by angiogenesis. Our laboratory showed the participation of a new signalling pathway in physiological angiogenesis and tumour neovascularisation. This signalling pathway named apelin comprises a G protein-coupled receptor and a peptide ligand. Expression of apelin receptors is observed during the embryonic formation of blood vessels where it is localized in the endothelium. In HUVECs, which endogenously express apelin receptors, apelin promotes the phosphorylation of ERKs, Akt and p70 S6 Kinase. In addition, apelin increases in vitro the proliferation of these endothelial cells. Finally, injection of apelin in the vitreous induces in vivo the sprouting and the proliferation of endothelial cells from the retinal vascular network. Accordingly, all these results led us to study the role of apelin signalling in tumour neovascularisation. In two tumoral cell lines, we showed that hypoxia induces the expression of apelin gene. In addition, the overexpression of apelin gene resulting from stable transfection of these cell lines clearly accelerates in vivo tumour growth, as a consequence of an increased number of vessels irrigating these tumours. The pathological relevance of these data has been validated by the characterization of an overexpression of apelin gene in one third of human tumours. Taken together, apelin signalling is both involved in physiological angiogenesis and pathological neoangiogenesis, and therefore represents an interesting pharmacological target for anti-angiogenic therapies.
Collapse
Affiliation(s)
- Bernard Masri
- Unité INSERM U858, Institut de Médecine Moléculaire de Rangueil, BP 84225, 31432 Toulouse, France
| | | | | | | | | |
Collapse
|
46
|
Wuebbles RD, Hanel ML, Jones PL. FSHD region gene 1 (FRG1) is crucial for angiogenesis linking FRG1 to facioscapulohumeral muscular dystrophy-associated vasculopathy. Dis Model Mech 2009; 2:267-74. [PMID: 19383939 PMCID: PMC2675802 DOI: 10.1242/dmm.002261] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 01/21/2009] [Indexed: 01/20/2023] Open
Abstract
The genetic lesion that is diagnostic for facioscapulohumeral muscular dystrophy (FSHD) results in an epigenetic misregulation of gene expression, which ultimately leads to the disease pathology. FRG1 (FSHD region gene 1) is a leading candidate for a gene whose misexpression might lead to FSHD. Because FSHD pathology is most prominent in the musculature, most research and therapy efforts focus on muscle cells. Previously, using Xenopus development as a model, we showed that altering frg1 expression levels systemically leads to aberrant muscle development, illustrating the potential for aberrant FRG1 levels to disrupt the musculature. However, 50-75% of FSHD patients also exhibit retinal vasculopathy and FSHD muscles have increased levels of vascular- and endothelial-related FRG1 transcripts, illustrating an underlying vascular component to the disease. To date, no FSHD candidate gene has been proposed to affect the vasculature. Here, we focus on a role for FRG1 expression in the vasculature. We found that endogenous frg1 is expressed in both the developing and adult vasculature in Xenopus. Furthermore, expression of FRG1 was found to be essential for the development of the vasculature, as a knockdown of FRG1 resulted in decreased angiogenesis and reduced expression of the angiogenic regulator DAB2. Conversely, tadpoles subjected to frg1 overexpression displayed the pro-angiogenic phenotypes of increased blood vessel branching and dilation of blood vessels, and developed edemas, suggesting that their circulation was disrupted. Thus, the systemic upregulation of the FRG1 protein shows the potential for acquiring a disrupted vascular phenotype, providing the first link between a FSHD candidate gene and the vascular component of FSHD pathology. Overall, in conjunction with our previous analysis, we show that FRG1 overexpression is capable of disrupting both the musculature and vasculature, recapitulating the two most prominent features of FSHD.
Collapse
Affiliation(s)
- Ryan D. Wuebbles
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meredith L. Hanel
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Peter L. Jones
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
47
|
Tiani C, Garcia-Pras E, Mejias M, de Gottardi A, Berzigotti A, Bosch J, Fernandez M. Apelin signaling modulates splanchnic angiogenesis and portosystemic collateral vessel formation in rats with portal hypertension. J Hepatol 2009; 50:296-305. [PMID: 19070926 DOI: 10.1016/j.jhep.2008.09.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/19/2008] [Accepted: 09/23/2008] [Indexed: 01/22/2023]
Abstract
BACKGROUND/AIMS Angiogenesis is a pathological hallmark of portal hypertension. Although VEGF is considered to be the most important proangiogenic factor in neoangiogenesis, this process requires the coordinated action of a variety of factors. Identification of novel molecules involved in angiogenesis is highly relevant, since they may represent potential new targets to suppress pathological neovascularization in angiogenesis-related diseases like portal hypertension. The apelin/APJ signaling pathway plays a crucial role in angiogenesis. Therefore, we determined whether the apelin system modulates angiogenesis-driven processes in portal hypertension. METHODS Partial portal vein-ligated rats were treated with the APJ antagonist F13A for seven days. Splanchnic neovascularization and expression of angiogenesis mediators (Western blotting) was determined. Portosystemic collateral formation (microspheres), and hemodynamic parameters (flowmetry) were also assessed. RESULTS Apelin and its receptor APJ were overexpressed in the splanchnic vasculature of portal hypertensive rats. F13A effectively decreased, by 52%, splanchnic neovascularization and expression of proangiogenic factors VEGF, PDGF and angiopoietin-2 in portal hypertensive rats. F13A also reduced, by 35%, the formation of portosystemic collateral vessels. CONCLUSIONS This study provides the first experimental evidence showing that the apelin/APJ system contributes to portosystemic collateralization and splanchnic neovascularization in portal hypertensive rats, presenting a potential novel therapeutic target for portal hypertension.
Collapse
Affiliation(s)
- Carolina Tiani
- Hepatic Hemodynamic Laboratory, Liver Unit, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Ciberehd, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Liu F, Walmsley M, Rodaway A, Patient R. Fli1 acts at the top of the transcriptional network driving blood and endothelial development. Curr Biol 2008; 18:1234-40. [PMID: 18718762 DOI: 10.1016/j.cub.2008.07.048] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 07/09/2008] [Accepted: 07/10/2008] [Indexed: 01/27/2023]
Abstract
Blood and endothelium arise in close association during development, possibly from a common precursor, the hemangioblast [1-4]. Genes essential for blood and endothelial development contain functional ETS binding sites, and binding and expression data implicate the transcription factor, friend leukaemia integration 1 (Fli1) [5-10]. However, loss-of-function phenotypes in mice, although suffering both blood and endothelial defects, have thus far precluded the conclusion that Fli1 is essential for these two lineages [11, 12]. By using Xenopus and zebrafish embryos, we show that loss of Fli1 function results in a substantial reduction or absence of hemangioblasts, revealing an absolute requirement. TUNEL assays show that the cells are eventually lost by apoptosis, but only after the regulatory circuit has been disrupted by loss of Fli1. In addition, a constitutively active form of Fli1 is sufficient to induce expression of key hemangioblast genes, such as Scl/Tal1, Lmo2, Gata2, Etsrp, and Flk1. Epistasis assays show that Fli1 expression is induced by Bmp signaling or Cloche, depending on the hemangioblast population, and in both cases Fli1 acts upstream of Gata2, Scl, Lmo2, and Etsrp. Taken together, these results place Fli1 at the top of the transcriptional regulatory hierarchy for hemangioblast specification in vertebrate embryos.
Collapse
Affiliation(s)
- Feng Liu
- John Radcliffe Hospital, University of Oxford, OX3 9DS Oxford, United Kingdom
| | | | | | | |
Collapse
|
49
|
|
50
|
Kasai A, Shintani N, Kato H, Matsuda S, Gomi F, Haba R, Hashimoto H, Kakuda M, Tano Y, Baba A. Retardation of Retinal Vascular Development in Apelin-Deficient Mice. Arterioscler Thromb Vasc Biol 2008; 28:1717-22. [DOI: 10.1161/atvbaha.108.163402] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objective—
Apelin is an endogenous ligand for the G protein-coupled receptor, APJ, and participates in multiple physiological processes. To identify the roles of endogenous apelin, we investigated the phenotype of apelin-deficient (apelin-KO) mice.
Methods and Results—
Apelin-KO mice showed impaired retinal vascularization and ocular development, which were analyzed by histology, immunohistochemistry, real-time polymerase chain reaction, and the mouse corneal micropocket assay. Apelin-KO mice showed significantly impaired retinal vascularization in the early postnatal period. Retinal apelin/APJ mRNAs were transiently upregulated during the first 2 postnatal weeks but were undetectable in adults. There were no differences in VEGF or FGF2 mRNA expression, or in the morphology and localization of GFAP-positive astrocytes, in the apelin-KO retinas at P5. The corneal pocket assay showed that angiogenic responses to VEGF and FGF2 were remarkably decreased in apelin-KO mice. The reduced responses to VEGF and FGF2 in apelin-KO mice were partially restored by apelin, but apelin alone did not induce angiogenesis.
Conclusions—
Our results suggest that spatiotemporally regulated apelin/APJ signaling participates in retinal vascularization in a cooperative manner with VEGF or FGF2, and contributes to normal ocular development.
Collapse
Affiliation(s)
- Atsushi Kasai
- From the Laboratory of Molecular Neuropharmacology (A.K., N.S., H.K., R.H., H.H., A.B.), Graduate School of Pharmaceutical Sciences, Osaka University, Japan; the Department of Pharmacotherapeutics (A.K.), Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan; and the Departments of Ophthalmology (S.M., F.G., Y.T.), and Experimental Disease Model, the Osaka-Hamamatsu Joint Research Center for Child Mental Development (H.H., M.K.), Graduate School of Medicine, Osaka
| | - Norihito Shintani
- From the Laboratory of Molecular Neuropharmacology (A.K., N.S., H.K., R.H., H.H., A.B.), Graduate School of Pharmaceutical Sciences, Osaka University, Japan; the Department of Pharmacotherapeutics (A.K.), Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan; and the Departments of Ophthalmology (S.M., F.G., Y.T.), and Experimental Disease Model, the Osaka-Hamamatsu Joint Research Center for Child Mental Development (H.H., M.K.), Graduate School of Medicine, Osaka
| | - Hideaki Kato
- From the Laboratory of Molecular Neuropharmacology (A.K., N.S., H.K., R.H., H.H., A.B.), Graduate School of Pharmaceutical Sciences, Osaka University, Japan; the Department of Pharmacotherapeutics (A.K.), Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan; and the Departments of Ophthalmology (S.M., F.G., Y.T.), and Experimental Disease Model, the Osaka-Hamamatsu Joint Research Center for Child Mental Development (H.H., M.K.), Graduate School of Medicine, Osaka
| | - Satoshi Matsuda
- From the Laboratory of Molecular Neuropharmacology (A.K., N.S., H.K., R.H., H.H., A.B.), Graduate School of Pharmaceutical Sciences, Osaka University, Japan; the Department of Pharmacotherapeutics (A.K.), Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan; and the Departments of Ophthalmology (S.M., F.G., Y.T.), and Experimental Disease Model, the Osaka-Hamamatsu Joint Research Center for Child Mental Development (H.H., M.K.), Graduate School of Medicine, Osaka
| | - Fumi Gomi
- From the Laboratory of Molecular Neuropharmacology (A.K., N.S., H.K., R.H., H.H., A.B.), Graduate School of Pharmaceutical Sciences, Osaka University, Japan; the Department of Pharmacotherapeutics (A.K.), Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan; and the Departments of Ophthalmology (S.M., F.G., Y.T.), and Experimental Disease Model, the Osaka-Hamamatsu Joint Research Center for Child Mental Development (H.H., M.K.), Graduate School of Medicine, Osaka
| | - Ryota Haba
- From the Laboratory of Molecular Neuropharmacology (A.K., N.S., H.K., R.H., H.H., A.B.), Graduate School of Pharmaceutical Sciences, Osaka University, Japan; the Department of Pharmacotherapeutics (A.K.), Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan; and the Departments of Ophthalmology (S.M., F.G., Y.T.), and Experimental Disease Model, the Osaka-Hamamatsu Joint Research Center for Child Mental Development (H.H., M.K.), Graduate School of Medicine, Osaka
| | - Hitoshi Hashimoto
- From the Laboratory of Molecular Neuropharmacology (A.K., N.S., H.K., R.H., H.H., A.B.), Graduate School of Pharmaceutical Sciences, Osaka University, Japan; the Department of Pharmacotherapeutics (A.K.), Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan; and the Departments of Ophthalmology (S.M., F.G., Y.T.), and Experimental Disease Model, the Osaka-Hamamatsu Joint Research Center for Child Mental Development (H.H., M.K.), Graduate School of Medicine, Osaka
| | - Michiya Kakuda
- From the Laboratory of Molecular Neuropharmacology (A.K., N.S., H.K., R.H., H.H., A.B.), Graduate School of Pharmaceutical Sciences, Osaka University, Japan; the Department of Pharmacotherapeutics (A.K.), Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan; and the Departments of Ophthalmology (S.M., F.G., Y.T.), and Experimental Disease Model, the Osaka-Hamamatsu Joint Research Center for Child Mental Development (H.H., M.K.), Graduate School of Medicine, Osaka
| | - Yasuo Tano
- From the Laboratory of Molecular Neuropharmacology (A.K., N.S., H.K., R.H., H.H., A.B.), Graduate School of Pharmaceutical Sciences, Osaka University, Japan; the Department of Pharmacotherapeutics (A.K.), Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan; and the Departments of Ophthalmology (S.M., F.G., Y.T.), and Experimental Disease Model, the Osaka-Hamamatsu Joint Research Center for Child Mental Development (H.H., M.K.), Graduate School of Medicine, Osaka
| | - Akemichi Baba
- From the Laboratory of Molecular Neuropharmacology (A.K., N.S., H.K., R.H., H.H., A.B.), Graduate School of Pharmaceutical Sciences, Osaka University, Japan; the Department of Pharmacotherapeutics (A.K.), Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan; and the Departments of Ophthalmology (S.M., F.G., Y.T.), and Experimental Disease Model, the Osaka-Hamamatsu Joint Research Center for Child Mental Development (H.H., M.K.), Graduate School of Medicine, Osaka
| |
Collapse
|