1
|
Engelhardt D, Petersen JR, Martyr C, Kuhn-Gale H, Niswander LA. Moderate levels of folic acid benefit outcomes for cilia based neural tube defects. Dev Biol 2025; 520:62-74. [PMID: 39755226 DOI: 10.1016/j.ydbio.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Folic acid (FA) supplementation is a potent tool to reduce devastating birth defects known as neural tube defects (NTDs). Though effective, questions remain how FA achieves its protective effect and which gene mutations are sensitive to folic acid levels. We explore the relationship between FA dosage and NTD rates using NTD mouse models. We demonstrate that NTD rates in mouse models harboring mutations in cilia genes depend on FA dosage. Cilia mutant mouse models demonstrate reductions in NTD rates when exposed to moderate levels of FA that are not observed at higher fortified levels of FA. This trend continues with a moderate level of FA being beneficial for primary and motile cilia formation. We present a mechanism through which fortified FA levels reduce basal levels of reactive oxygen species (ROS) which in turn reduces ROS-sensitive GTPase activity required for ciliogenesis. Our data indicates that genes involved in cilia formation and function represent a FA sensitive category of mutations and a possible avenue for further reducing NTD and ciliopathy incidences.
Collapse
Affiliation(s)
- David Engelhardt
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Juliette R Petersen
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Cara Martyr
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Hannah Kuhn-Gale
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Lee A Niswander
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
2
|
Zeng H, Ali S, Sebastian A, Ramos-Medero AS, Albert I, Dean C, Liu A. CPLANE protein INTU regulates growth and patterning of the mouse lungs through cilia-dependent Hh signaling. Dev Biol 2024; 515:92-101. [PMID: 39029571 PMCID: PMC11361757 DOI: 10.1016/j.ydbio.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Congenital lung malformations are fatal at birth in their severe forms. Prevention and early intervention of these birth defects require a comprehensive understanding of the molecular mechanisms of lung development. We find that the loss of inturned (Intu), a cilia and planar polarity effector gene, severely disrupts growth and branching morphogenesis of the mouse embryonic lungs. Consistent with our previous results indicating an important role for Intu in ciliogenesis and hedgehog (Hh) signaling, we find greatly reduced number of primary cilia in both the epithelial and mesenchymal tissues of the lungs. We also find significantly reduced expression of Gli1 and Ptch1, direct targets of Hh signaling, suggesting disruption of cilia-dependent Hh signaling in Intu mutant lungs. An agonist of the Hh pathway activator, smoothened, increases Hh target gene expression and tubulogenesis in explanted wild type, but not Intu mutant, lungs, suggesting impaired Hh signaling response underlying lung morphogenetic defects in Intu mutants. Furthermore, removing both Gli2 and Intu completely abolishes branching morphogenesis of the lung, strongly supporting a mechanism by which Intu regulates lung growth and patterning through cilia-dependent Hh signaling. Moreover, a transcriptomics analysis identifies around 200 differentially expressed genes (DEGs) in Intu mutant lungs, including known Hh target genes Gli1, Ptch1/2 and Hhip. Genes involved in muscle differentiation and function are highly enriched among the DEGs, consistent with an important role of Hh signaling in airway smooth muscle differentiation. In addition, we find that the difference in gene expression between the left and right lungs diminishes in Intu mutants, suggesting an important role of Intu in asymmetrical growth and patterning of the mouse lungs.
Collapse
Affiliation(s)
- Huiqing Zeng
- Department of Biology, Eberly College of Science, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Shimaa Ali
- Department of Biology, Eberly College of Science, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA; Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt
| | - Aswathy Sebastian
- Department of Biochemistry and Molecular Biology, Eberly College of Science, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Adriana Sophia Ramos-Medero
- Department of Biology, Eberly College of Science, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, Eberly College of Science, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Charlotte Dean
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Aimin Liu
- Department of Biology, Eberly College of Science, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
3
|
Vazquez N, Lee C, Valenzuela I, Phan TP, Derderian C, Chávez M, Mooney NA, Demeter J, Aziz-Zanjani MO, Cusco I, Codina M, Martínez-Gil N, Valverde D, Solarat C, Buel AL, Thauvin-Robinet C, Steichen E, Filges I, Joset P, De Geyter J, Vaidyanathan K, Gardner T, Toriyama M, Marcotte EM, Roberson EC, Jackson PK, Reiter JF, Tizzano EF, Wallingford JB. The human ciliopathy protein RSG1 links the CPLANE complex to transition zone architecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614984. [PMID: 39386566 PMCID: PMC11463498 DOI: 10.1101/2024.09.25.614984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cilia are essential organelles and variants in genes governing ciliary function result in ciliopathic diseases. The Ciliogenesis and PLANar polarity Effectors (CPLANE) protein complex is essential for ciliogenesis in animals models but remains poorly defined. Notably, all but one subunit of the CPLANE complex have been implicated in human ciliopathy. Here, we identify three families in which variants in the remaining CPLANE subunit CPLANE2/RSG1 also cause ciliopathy. These patients display cleft palate, tongue lobulations and polydactyly, phenotypes characteristic of Oral-Facial-Digital Syndrome. We further show that these alleles disrupt two vital steps of ciliogenesis, basal body docking and recruitment of intraflagellar transport proteins. Moreover, APMS reveals that Rsg1 binds the CPLANE and also the transition zone protein Fam92 in a GTP-dependent manner. Finally, we show that CPLANE is generally required for normal transition zone architecture. Our work demonstrates that CPLANE2/RSG1 is a causative gene for human ciliopathy and also sheds new light on the mechanisms of ciliary transition zone assembly.
Collapse
|
4
|
Caiaffa CD, Ambekar YS, Singh M, Lin YL, Wlodarczyk B, Aglyamov SR, Scarcelli G, Larin KV, Finnell RH. Disruption of Fuz in mouse embryos generates hypoplastic hindbrain development and reduced cranial nerve ganglia. Dev Dyn 2024; 253:846-858. [PMID: 38501709 PMCID: PMC11411014 DOI: 10.1002/dvdy.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The brain and spinal cord formation is initiated in the earliest stages of mammalian pregnancy in a highly organized process known as neurulation. Environmental or genetic interferences can impair neurulation, resulting in clinically significant birth defects known collectively as neural tube defects. The Fuz gene encodes a subunit of the CPLANE complex, a macromolecular planar polarity effector required for ciliogenesis. Ablation of Fuz in mouse embryos results in exencephaly and spina bifida, including dysmorphic craniofacial structures due to defective cilia formation and impaired Sonic Hedgehog signaling. RESULTS We demonstrate that knocking Fuz out during embryonic mouse development results in a hypoplastic hindbrain phenotype, displaying abnormal rhombomeres with reduced length and width. This phenotype is associated with persistent reduction of ventral neuroepithelial stiffness in a notochord adjacent area at the level of the rhombomere 5. The formation of cranial and paravertebral ganglia is also impaired in these embryos. CONCLUSIONS This study reveals that hypoplastic hindbrain development, identified by abnormal rhombomere morphology and persistent loss of ventral neuroepithelial stiffness, precedes exencephaly in Fuz ablated murine mutants, indicating that the gene Fuz has a critical function sustaining normal neural tube development and neuronal differentiation.
Collapse
Affiliation(s)
- Carlo Donato Caiaffa
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | | | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Ying Linda Lin
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Bogdan Wlodarczyk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Salavat R. Aglyamov
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Richard H. Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Sharma R, Kalot R, Levin Y, Babayeva S, Kachurina N, Chung CF, Liu KJ, Bouchard M, Torban E. The CPLANE protein Fuzzy regulates ciliogenesis by suppressing actin polymerization at the base of the primary cilium via p190A RhoGAP. Development 2024; 151:dev202322. [PMID: 38546045 PMCID: PMC11006408 DOI: 10.1242/dev.202322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 04/12/2024]
Abstract
The primary cilium decorates most eukaryotic cells and regulates tissue morphogenesis and maintenance. Structural or functional defects of primary cilium result in ciliopathies, congenital human disorders affecting multiple organs. Pathogenic variants in the ciliogenesis and planar cell polarity effectors (CPLANE) genes FUZZY, INTU and WDPCP disturb ciliogenesis, causing severe ciliopathies in humans and mice. Here, we show that the loss of Fuzzy in mice results in defects of primary cilia, accompanied by increased RhoA activity and excessive actin polymerization at the basal body. We discovered that, mechanistically, Fuzzy interacts with and recruits the negative actin regulator ARHGAP35 (also known as p190A RhoGAP) to the basal body. We identified genetic interactions between the two genes and found that a mutant ArhGAP35 allele increases the severity of phenotypic defects observed in Fuzzy-/- mice. Based on our findings, we propose that Fuzzy regulates ciliogenesis by recruiting ARHGAP35 to the basal body, where the latter likely restricts actin polymerization and modifies the actin network. Our study identifies a mechanism whereby CPLANE proteins control both actin polymerization and primary cilium formation.
Collapse
Affiliation(s)
- Rhythm Sharma
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Rita Kalot
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Yossef Levin
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Sima Babayeva
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, McGill University, Montreal H4A 3J1, QC, Canada
| | - Nadezda Kachurina
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, McGill University, Montreal H4A 3J1, QC, Canada
| | - Chen-Feng Chung
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Maxime Bouchard
- Rosalind and Morris Goodman Cancer Institute, Department of Medicine of the McGill University,McGill University, Montreal H3A 1A3, QC, Canada
| | - Elena Torban
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, McGill University, Montreal H4A 3J1, QC, Canada
| |
Collapse
|
6
|
Caiaffa CD, Ambekar YS, Singh M, Lin YL, Wlodarczyk B, Aglyamov SR, Scarcelli G, Larin KV, Finnell R. Disruption of Fuz in mouse embryos generates hypoplastic hindbrain development and reduced cranial nerve ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552068. [PMID: 37577618 PMCID: PMC10418252 DOI: 10.1101/2023.08.04.552068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The formation of the brain and spinal cord is initiated in the earliest stages of mammalian pregnancy in a highly organized process known as neurulation. Convergent and extension movements transforms a flat sheet of ectodermal cells into a narrow and elongated line of neuroepithelia, while a major source of Sonic Hedgehog signaling from the notochord induces the overlying neuroepithelial cells to form two apposed neural folds. Afterward, neural tube closure occurs by synchronized coordination of the surface ectoderm and adjacent neuroepithelial walls at specific axial regions known as neuropores. Environmental or genetic interferences can impair neurulation resulting in neural tube defects. The Fuz gene encodes a subunit of the CPLANE complex, which is a macromolecular planar polarity effector required for ciliogenesis. Ablation of Fuz in mouse embryos results in exencephaly and spina bifida, including dysmorphic craniofacial structures due to defective cilia formation and impaired Sonic Hedgehog signaling. In this work, we demonstrate that knocking Fuz out during embryonic mouse development results in a hypoplastic hindbrain phenotype, displaying abnormal rhombomeres with reduced length and width. This phenotype is associated with persistent loss of ventral neuroepithelial stiffness, in a notochord adjacent area at the level of the rhombomere 5, preceding the development of exencephaly in Fuz ablated mutants. The formation of cranial and paravertebral ganglia is also impaired in these embryos, indicating that Fuz has a critical function sustaining normal neural tube development and neuronal differentiation. SIGNIFICANCE STATEMENT Neural tube defects (NTDs) are a common cause of disability in children, representing the second most common congenital structural malformation in humans following only congenital cardiovascular malformations. NTDs affect approximately 1 to 2 pregnancies per 1000 births every year worldwide, when the mechanical forces folding the neural plate fails to close at specific neuropores located anteriorly (cranial) or posteriorly (caudal) along the neural tube, in a process known as neurulation, which happens throughout the third and fourth weeks of human pregnancy.
Collapse
|
7
|
Zeng H, Liu A. TMEM132A regulates mouse hindgut morphogenesis and caudal development. Development 2023; 150:dev201630. [PMID: 37390294 PMCID: PMC10357036 DOI: 10.1242/dev.201630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Caudal developmental defects, including caudal regression, caudal dysgenesis and sirenomelia, are devastating conditions affecting the skeletal, nervous, digestive, reproductive and excretory systems. Defects in mesodermal migration and blood supply to the caudal region have been identified as possible causes of caudal developmental defects, but neither satisfactorily explains the structural malformations in all three germ layers. Here, we describe caudal developmental defects in transmembrane protein 132a (Tmem132a) mutant mice, including skeletal, posterior neural tube closure, genitourinary tract and hindgut defects. We show that, in Tmem132a mutant embryos, visceral endoderm fails to be excluded from the medial region of early hindgut, leading directly to the loss or malformation of cloaca-derived genitourinary and gastrointestinal structures, and indirectly to the neural tube and kidney/ureter defects. We find that TMEM132A mediates intercellular interaction, and physically interacts with planar cell polarity (PCP) regulators CELSR1 and FZD6. Genetically, Tmem132a regulates neural tube closure synergistically with another PCP regulator Vangl2. In summary, we have identified Tmem132a as a new regulator of PCP, and hindgut malformation as the underlying cause of developmental defects in multiple caudal structures.
Collapse
Affiliation(s)
- Huiqing Zeng
- Department of Biology, Eberly College of Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Aimin Liu
- Department of Biology, Eberly College of Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Rai S, Leydier L, Sharma S, Katwala J, Sahu A. A quest for genetic causes underlying signaling pathways associated with neural tube defects. Front Pediatr 2023; 11:1126209. [PMID: 37284286 PMCID: PMC10241075 DOI: 10.3389/fped.2023.1126209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 06/08/2023] Open
Abstract
Neural tube defects (NTDs) are serious congenital deformities of the nervous system that occur owing to the failure of normal neural tube closures. Genetic and non-genetic factors contribute to the etiology of neural tube defects in humans, indicating the role of gene-gene and gene-environment interaction in the occurrence and recurrence risk of neural tube defects. Several lines of genetic studies on humans and animals demonstrated the role of aberrant genes in the developmental risk of neural tube defects and also provided an understanding of the cellular and morphological programs that occur during embryonic development. Other studies observed the effects of folate and supplementation of folic acid on neural tube defects. Hence, here we review what is known to date regarding altered genes associated with specific signaling pathways resulting in NTDs, as well as highlight the role of various genetic, and non-genetic factors and their interactions that contribute to NTDs. Additionally, we also shine a light on the role of folate and cell adhesion molecules (CAMs) in neural tube defects.
Collapse
Affiliation(s)
- Sunil Rai
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Larissa Leydier
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Shivani Sharma
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Jigar Katwala
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Anurag Sahu
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
9
|
Yan L, Yin H, Mi Y, Wu Y, Zheng Y. Deficiency of Wdr60 and Wdr34 cause distinct neural tube malformation phenotypes in early embryos. Front Cell Dev Biol 2023; 11:1084245. [PMID: 37228654 PMCID: PMC10203710 DOI: 10.3389/fcell.2023.1084245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Cilia are specialized organelles that extend from plasma membrane, functioning as antennas for signal transduction and are involved in embryonic morphogenesis. Dysfunction of cilia lead to many developmental defects, including neural tube defects (NTDs). Heterodimer WDR60-WDR34 (WD repeat domain 60 and 34) are intermediate chains of motor protein dynein-2, which play important roles in ciliary retrograde transport. It has been reported that disruption of Wdr34 in mouse model results in NTDs and defects of Sonic Hedgehog (SHH) signaling. However, no Wdr60 deficiency mouse model has been reported yet. In this study, piggyBac (PB) transposon is used to interfere Wdr60 and Wdr34 expression respectively to establish Wdr60 PB/PB and Wdr34 PB/PB mouse models. We found that the expression of Wdr60 or Wdr34 is significantly decreased in the homozygote mice. Wdr60 homozygote mice die around E13.5 to E14.5, while Wdr34 homozygote mice die around E10.5 to E11.5. WDR60 is highly expressed in the head region at E10.5 and Wdr60 PB/PB embryos have head malformation. RNAseq and qRT-PCR experiments revealed that Sonic Hedgehog signaling is also downregulated in Wdr60 PB/PB head tissue, demonstrating that WDR60 is also required for promoting SHH signaling. Further experiments on mouse embryos also revealed that the expression levels of planar cell polarity (PCP) components such as CELSR1 and downstream signal molecule c-Jun were downregulated in WDR34 homozygotes compared to wildtype littermates. Coincidently, we observed much higher ratio of open cranial and caudal neural tube in Wdr34 PB/PB mice. CO-IP experiment showed that WDR60 and WDR34 both interact with IFT88, but only WDR34 interacts with IFT140. Taken together, WDR60 and WDR34 play overlapped and distinct functions in modulating neural tube development.
Collapse
Affiliation(s)
- Lu Yan
- Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hailing Yin
- Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Obstetrics Department of the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwei Mi
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Wu
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Wang S, Liu A, Su Y, Dong Z. Deficiency of the Planar Cell Polarity Protein Intu Delays Kidney Repair and Suppresses Renal Fibrosis after Acute Kidney Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:275-285. [PMID: 36586478 PMCID: PMC10013037 DOI: 10.1016/j.ajpath.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022]
Abstract
Planar cell polarity (PCP), a process of coordinated alignment of cell polarity across the tissue plane, may contribute to the repair of renal tubules after kidney injury. Intu is a key effector protein of PCP. Herein, conditional knockout (KO) mouse models that ablate Intu specifically from kidney tubules (Intu KO) were established. Intu KO mice and wild-type littermates were subjected to unilateral renal ischemia/reperfusion injury (IRI) or unilateral ureteral obstruction. Kidney repair was evaluated by histologic, biochemical, and immunohistochemical analyses. In vitro, scratch wound healing was examined in Intu-knockdown and control renal tubular cells. Ablation of Intu in renal tubules delayed kidney repair and ameliorated renal fibrosis after renal IRI. Intu KO mice had less renal fibrosis during unilateral ureteral obstruction. Mechanistically, Intu KO kidneys had less senescence but higher levels of cell proliferation and apoptosis during kidney repair after renal IRI. In vitro, Intu knockdown suppressed scratch wound healing in renal tubular cells, accompanied by the abnormality of centrosome orientation. Together, the results provide the first evidence for the involvement of PCP in tubular repair after kidney injury, shedding light on new strategies for improving kidney repair and recovery.
Collapse
Affiliation(s)
- Shixuan Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia.
| | - Aimin Liu
- Department of Biology, Eberly College of Sciences, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia; Research Department, Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia; Research Department, Charlie Norwood VA Medical Center, Augusta, Georgia.
| |
Collapse
|
11
|
Martín-Salazar JE, Valverde D. CPLANE Complex and Ciliopathies. Biomolecules 2022; 12:biom12060847. [PMID: 35740972 PMCID: PMC9221175 DOI: 10.3390/biom12060847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Primary cilia are non-motile organelles associated with the cell cycle, which can be found in most vertebrate cell types. Cilia formation occurs through a process called ciliogenesis, which involves several mechanisms including planar cell polarity (PCP) and the Hedgehog (Hh) signaling pathway. Some gene complexes, such as BBSome or CPLANE (ciliogenesis and planar polarity effector), have been linked to ciliogenesis. CPLANE complex is composed of INTU, FUZ and WDPCP, which bind to JBTS17 and RSG1 for cilia formation. Defects in these genes have been linked to a malfunction of intraflagellar transport and defects in the planar cell polarity, as well as defective activation of the Hedgehog signalling pathway. These faults lead to defective cilium formation, resulting in ciliopathies, including orofacial-digital syndrome (OFDS) and Bardet-Biedl syndrome (BBS). Considering the close relationship, between the CPLANE complex and cilium formation, it can be expected that defects in the genes that encode subunits of the CPLANE complex may be related to other ciliopathies.
Collapse
Affiliation(s)
| | - Diana Valverde
- CINBIO, Biomedical Research Centre, University of Vigo, 36310 Vigo, Spain;
- Galicia Sur Health Research Institute (IIS-GS), 36310 Vigo, Spain
- Correspondence:
| |
Collapse
|
12
|
Cilia and their role in neural tube development and defects. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2022. [DOI: 10.1097/rd9.0000000000000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
Abstract
Primary cilia play a key role in the ability of cells to respond to extracellular stimuli, such as signaling molecules and environmental cues. These sensory organelles are crucial to the development of many organ systems, and defects in primary ciliogenesis lead to multisystemic genetic disorders, known as ciliopathies. Here, we review recent advances in the understanding of several key aspects of the regulation of ciliogenesis. Primary ciliogenesis is thought to take different pathways depending on cell type, and some recent studies shed new light on the cell-type-specific mechanisms regulating ciliogenesis at the apical surface in polarized epithelial cells, which are particularly relevant for many ciliopathies. Furthermore, recent findings have demonstrated the importance of actin cytoskeleton dynamics in positively and negatively regulating multiple stages of ciliogenesis, including the vesicular trafficking of ciliary components and the positioning and docking of the basal body. Finally, studies on the formation of motile cilia in multiciliated epithelial cells have revealed requirements for actin remodeling in this process too, as well as showing evidence of an additional alternative ciliogenesis pathway.
Collapse
Affiliation(s)
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Langousis G, Cavadini S, Boegholm N, Lorentzen E, Kempf G, Matthias P. Structure of the ciliogenesis-associated CPLANE complex. SCIENCE ADVANCES 2022; 8:eabn0832. [PMID: 35427153 PMCID: PMC9012472 DOI: 10.1126/sciadv.abn0832] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Dysfunctional cilia cause pleiotropic human diseases termed ciliopathies. These hereditary maladies are often caused by defects in cilia assembly, a complex event that is regulated by the ciliogenesis and planar polarity effector (CPLANE) proteins Wdpcp, Inturned, and Fuzzy. CPLANE proteins are essential for building the cilium and are mutated in multiple ciliopathies, yet their structure and molecular functions remain elusive. Here, we show that mammalian CPLANE proteins comprise a bona fide complex and report the near-atomic resolution structures of the human Wdpcp-Inturned-Fuzzy complex and of the mouse Wdpcp-Inturned-Fuzzy complex bound to the small guanosine triphosphatase Rsg1. Notably, the crescent-shaped CPLANE complex binds phospholipids such as phosphatidylinositol 3-phosphate via multiple modules and a CPLANE ciliopathy mutant exhibits aberrant lipid binding. Our study provides critical structural and functional insights into an enigmatic ciliogenesis-associated complex as well as unexpected molecular rationales for ciliopathies.
Collapse
Affiliation(s)
- Gerasimos Langousis
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Niels Boegholm
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
15
|
Li J, Glover JD, Zhang H, Peng M, Tan J, Mallick CB, Hou D, Yang Y, Wu S, Liu Y, Peng Q, Zheng SC, Crosse EI, Medvinsky A, Anderson RA, Brown H, Yuan Z, Zhou S, Xu Y, Kemp JP, Ho YYW, Loesch DZ, Wang L, Li Y, Tang S, Wu X, Walters RG, Lin K, Meng R, Lv J, Chernus JM, Neiswanger K, Feingold E, Evans DM, Medland SE, Martin NG, Weinberg SM, Marazita ML, Chen G, Chen Z, Zhou Y, Cheeseman M, Wang L, Jin L, Headon DJ, Wang S. Limb development genes underlie variation in human fingerprint patterns. Cell 2022; 185:95-112.e18. [PMID: 34995520 PMCID: PMC8740935 DOI: 10.1016/j.cell.2021.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/20/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized "pattern-block" correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning.
Collapse
Affiliation(s)
- Jinxi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, PRC; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - James D Glover
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Haiguo Zhang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Meifang Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Chandana Basu Mallick
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK; Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Dan Hou
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Yajun Yang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Sijie Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, PRC; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Yu Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Qianqian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Shijie C Zheng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Edie I Crosse
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | | | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Helen Brown
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Ziyu Yuan
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu 225326, PRC
| | - Shen Zhou
- Shanghai Foreign Language School, Shanghai 200083, PRC
| | - Yanqing Xu
- Forest Ridge School of the Sacred Heart, Bellevue, WA 98006, USA
| | - John P Kemp
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, Australia
| | - Yvonne Y W Ho
- QIMR Berghofer Medical Rese Institute, Brisbane, QLD, Australia
| | - Danuta Z Loesch
- Psychology Department, La Trobe University, Melbourne, VIC, Australia
| | | | | | | | - Xiaoli Wu
- WeGene, Shenzhen, Guangdong 518040, PRC
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Medical Research Council Population Health Research Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Ruogu Meng
- Center for Data Science in Health and Medicine, Peking University, Beijing 100191, PRC
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, PRC
| | - Jonathan M Chernus
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Katherine Neiswanger
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David M Evans
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Sarah E Medland
- QIMR Berghofer Medical Rese Institute, Brisbane, QLD, Australia
| | | | - Seth M Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Anthropology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mary L Marazita
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15219, USA; Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gang Chen
- WeGene, Shenzhen, Guangdong 518040, PRC
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Medical Research Council Population Health Research Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Yong Zhou
- Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PRC
| | - Michael Cheeseman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Lan Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, PRC; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai 200438, PRC.
| | - Denis J Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, PRC.
| |
Collapse
|
16
|
Langhans MT, Gao J, Tang Y, Wang B, Alexander P, Tuan RS. Wdpcp regulates cellular proliferation and differentiation in the developing limb via hedgehog signaling. BMC DEVELOPMENTAL BIOLOGY 2021; 21:10. [PMID: 34225660 PMCID: PMC8258940 DOI: 10.1186/s12861-021-00241-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/07/2021] [Indexed: 12/27/2022]
Abstract
Background Mice with a loss of function mutation in Wdpcp were described previously to display severe birth defects in the developing heart, neural tube, and limb buds. Further characterization of the skeletal phenotype of Wdpcp null mice was limited by perinatal lethality. Results We utilized Prx1-Cre mice to generate limb bud mesenchyme specific deletion of Wdpcp. These mice recapitulated the appendicular skeletal phenotype of the Wdpcp null mice including polydactyl and limb bud signaling defects. Examination of late stages of limb development demonstrated decreased size of cartilage anlagen, delayed calcification, and abnormal growth plates. Utilizing in vitro assays, we demonstrated that loss of Wdpcp in skeletal progenitors lead to loss of hedgehog signaling responsiveness and associated proliferative response. In vitro chondrogenesis assays showed this loss of hedgehog and proliferative response was associated with decreased expression of early chondrogenic marker N-Cadherin. E14.5 forelimbs demonstrated delayed ossification and expression of osteoblast markers Runx2 and Sp7. P0 growth plates demonstrated loss of hedgehog signaling markers and expansion of the hypertrophic zones of the growth plate. In vitro osteogenesis assays demonstrated decreased osteogenic differentiation of Wdpcp null mesenchymal progenitors in response to hedgehog stimulation. Conclusions These findings demonstrate how Wdpcp and associated regulation of the hedgehog signaling pathway plays an important role at multiple stages of skeletal development. Wdpcp is necessary for positive regulation of hedgehog signaling and associated proliferation is key to the initiation of chondrogenesis. At later stages, Wdpcp facilitates the robust hedgehog response necessary for chondrocyte hypertrophy and osteogenic differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-021-00241-9.
Collapse
Affiliation(s)
- Mark T Langhans
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Jingtao Gao
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Peter Alexander
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Rocky S Tuan
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA. .,Present Address: Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
17
|
Torban E, Sokol SY. Planar cell polarity pathway in kidney development, function and disease. Nat Rev Nephrol 2021; 17:369-385. [PMID: 33547419 PMCID: PMC8967065 DOI: 10.1038/s41581-021-00395-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.
Collapse
Affiliation(s)
- Elena Torban
- McGill University and McGill University Health Center Research Institute, 1001 Boulevard Decarie, Block E, Montreal, Quebec, Canada, H4A3J1.,Corresponding authors: Elena Torban (); Sergei Sokol ()
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, USA,Corresponding authors: Elena Torban (); Sergei Sokol ()
| |
Collapse
|
18
|
Abstract
During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
19
|
Sanchez-Pulido L, Ponting CP. Hexa-Longin domain scaffolds for inter-Rab signalling. Bioinformatics 2020; 36:990-993. [PMID: 31562761 PMCID: PMC7703760 DOI: 10.1093/bioinformatics/btz739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/26/2019] [Accepted: 09/25/2019] [Indexed: 11/13/2022] Open
Abstract
Summary CPLANE is a protein complex required for assembly and maintenance of primary cilia. It contains several proteins, such as INTU, FUZ, WDPCP, JBTS17 and RSG1 (REM2- and RAB-like small GTPase 1), whose genes are mutated in ciliopathies. Using two contrasting evolutionary analyses, coevolution-based contact prediction and sequence conservation, we first identified the INTU/FUZ heterodimer as a novel member of homologous HerMon (Hermansky-Pudlak syndrome and MON1-CCZ1) complexes. Subsequently, we identified homologous Longin domains that are triplicated in each of these six proteins (MON1A, CCZ1, HPS1, HPS4, INTU and FUZ). HerMon complexes are known to be Rab effectors and Rab GEFs (Guanine nucleotide Exchange Factors) that regulate vesicular trafficking. Consequently, INTU/FUZ, their homologous complex, is likely to act as a GEF during activation of Rab GTPases involved in ciliogenesis. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- Medical Research Council Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Chris P Ponting
- Medical Research Council Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
20
|
Xiong Z, Dankova G, Howe LJ, Lee MK, Hysi PG, de Jong MA, Zhu G, Adhikari K, Li D, Li Y, Pan B, Feingold E, Marazita ML, Shaffer JR, McAloney K, Xu SH, Jin L, Wang S, de Vrij FMS, Lendemeijer B, Richmond S, Zhurov A, Lewis S, Sharp GC, Paternoster L, Thompson H, Gonzalez-Jose R, Bortolini MC, Canizales-Quinteros S, Gallo C, Poletti G, Bedoya G, Rothhammer F, Uitterlinden AG, Ikram MA, Wolvius E, Kushner SA, Nijsten TEC, Palstra RJTS, Boehringer S, Medland SE, Tang K, Ruiz-Linares A, Martin NG, Spector TD, Stergiakouli E, Weinberg SM, Liu F, Kayser M. Novel genetic loci affecting facial shape variation in humans. eLife 2019; 8:e49898. [PMID: 31763980 PMCID: PMC6905649 DOI: 10.7554/elife.49898] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
The human face represents a combined set of highly heritable phenotypes, but knowledge on its genetic architecture remains limited, despite the relevance for various fields. A series of genome-wide association studies on 78 facial shape phenotypes quantified from 3-dimensional facial images of 10,115 Europeans identified 24 genetic loci reaching study-wide suggestive association (p < 5 × 10-8), among which 17 were previously unreported. A follow-up multi-ethnic study in additional 7917 individuals confirmed 10 loci including six unreported ones (padjusted < 2.1 × 10-3). A global map of derived polygenic face scores assembled facial features in major continental groups consistent with anthropological knowledge. Analyses of epigenomic datasets from cranial neural crest cells revealed abundant cis-regulatory activities at the face-associated genetic loci. Luciferase reporter assays in neural crest progenitor cells highlighted enhancer activities of several face-associated DNA variants. These results substantially advance our understanding of the genetic basis underlying human facial variation and provide candidates for future in-vivo functional studies.
Collapse
Affiliation(s)
- Ziyi Xiong
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamNetherlands
- Department of EpidemiologyErasmus MC University Medical Center RotterdamRotterdamNetherlands
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of GenomicsUniversity of Chinese Academy of Sciences (CAS)BeijingChina
| | - Gabriela Dankova
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - Laurence J Howe
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUnited Kingdom
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral BiologyUniversity of PittsburghPittsburghUnited States
| | - Pirro G Hysi
- Department of Twin Research and Genetic EpidemiologyKing’s College LondonLondonUnited Kingdom
| | - Markus A de Jong
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamNetherlands
- Department of Oral & Maxillofacial Surgery, Special Dental Care, and OrthodonticsErasmus MC University Medical Center RotterdamRotterdamNetherlands
- Department of Biomedical Data SciencesLeiden University Medical CenterLeidenNetherlands
| | - Gu Zhu
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Kaustubh Adhikari
- Department of Genetics, Evolution, and EnvironmentUniversity College LondonLondonUnited Kingdom
| | - Dan Li
- CAS Key Laboratory of Computational BiologyChinese Academy of Sciences (CAS)ShanghaiChina
- CAS-MPG Partner Institute for Computational Biology (PICB)Chinese Academy of Sciences (CAS)ShanghaiChina
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)ShanghaiChina
| | - Yi Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of GenomicsUniversity of Chinese Academy of Sciences (CAS)BeijingChina
| | - Bo Pan
- Department of Auricular ReconstructionPlastic Surgery HospitalBeijingChina
| | - Eleanor Feingold
- Center for Craniofacial and Dental Genetics, Department of Oral BiologyUniversity of PittsburghPittsburghUnited States
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral BiologyUniversity of PittsburghPittsburghUnited States
- Department of Human GeneticsUniversity of PittsburghPittsburghUnited States
| | - John R Shaffer
- Center for Craniofacial and Dental Genetics, Department of Oral BiologyUniversity of PittsburghPittsburghUnited States
- Department of Human GeneticsUniversity of PittsburghPittsburghUnited States
| | | | - Shu-Hua Xu
- CAS Key Laboratory of Computational BiologyChinese Academy of Sciences (CAS)ShanghaiChina
- CAS-MPG Partner Institute for Computational Biology (PICB)Chinese Academy of Sciences (CAS)ShanghaiChina
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)ShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| | - Li Jin
- CAS Key Laboratory of Computational BiologyChinese Academy of Sciences (CAS)ShanghaiChina
- CAS-MPG Partner Institute for Computational Biology (PICB)Chinese Academy of Sciences (CAS)ShanghaiChina
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)ShanghaiChina
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life SciencesFudan UniversityShanghaiChina
| | - Sijia Wang
- CAS Key Laboratory of Computational BiologyChinese Academy of Sciences (CAS)ShanghaiChina
- CAS-MPG Partner Institute for Computational Biology (PICB)Chinese Academy of Sciences (CAS)ShanghaiChina
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)ShanghaiChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| | - Femke MS de Vrij
- Department of PsychiatryErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - Bas Lendemeijer
- Department of PsychiatryErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - Stephen Richmond
- Applied Clinical Research and Public Health, University Dental SchoolCardiff UniversityCardiffUnited Kingdom
| | - Alexei Zhurov
- Applied Clinical Research and Public Health, University Dental SchoolCardiff UniversityCardiffUnited Kingdom
| | - Sarah Lewis
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUnited Kingdom
| | - Gemma C Sharp
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUnited Kingdom
- School of Oral and Dental SciencesUniversity of BristolBristolUnited Kingdom
| | - Lavinia Paternoster
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUnited Kingdom
| | - Holly Thompson
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUnited Kingdom
| | - Rolando Gonzalez-Jose
- Instituto Patagonico de Ciencias Sociales y Humanas, CENPAT-CONICETPuerto MadrynArgentina
| | | | - Samuel Canizales-Quinteros
- UNAM-Instituto Nacional de Medicina Genomica, Facultad de QuımicaUnidad de Genomica de Poblaciones Aplicada a la SaludMexico CityMexico
| | - Carla Gallo
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y FilosofıaUniversidad Peruana Cayetano HerediaLimaPeru
| | - Giovanni Poletti
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y FilosofıaUniversidad Peruana Cayetano HerediaLimaPeru
| | - Gabriel Bedoya
- GENMOL (Genetica Molecular)Universidad de AntioquiaMedellınColombia
| | | | - André G Uitterlinden
- Department of EpidemiologyErasmus MC University Medical Center RotterdamRotterdamNetherlands
- Department of Internal MedicineErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - M Arfan Ikram
- Department of EpidemiologyErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - Eppo Wolvius
- Department of Oral & Maxillofacial Surgery, Special Dental Care, and OrthodonticsErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - Steven A Kushner
- Department of PsychiatryErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - Tamar EC Nijsten
- Department of DermatologyErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - Robert-Jan TS Palstra
- Department of BiochemistryErasmus MC University Medical Center RotterdamRotterdamNetherlands
| | - Stefan Boehringer
- Department of Biomedical Data SciencesLeiden University Medical CenterLeidenNetherlands
| | | | - Kun Tang
- CAS Key Laboratory of Computational BiologyChinese Academy of Sciences (CAS)ShanghaiChina
- CAS-MPG Partner Institute for Computational Biology (PICB)Chinese Academy of Sciences (CAS)ShanghaiChina
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)ShanghaiChina
| | - Andres Ruiz-Linares
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life SciencesFudan UniversityShanghaiChina
- Aix-Marseille Université, CNRS, EFS, ADESMarseilleFrance
| | | | - Timothy D Spector
- Department of Twin Research and Genetic EpidemiologyKing’s College LondonLondonUnited Kingdom
| | - Evie Stergiakouli
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUnited Kingdom
- School of Oral and Dental SciencesUniversity of BristolBristolUnited Kingdom
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral BiologyUniversity of PittsburghPittsburghUnited States
- Department of Human GeneticsUniversity of PittsburghPittsburghUnited States
- Department of AnthropologyUniversity of PittsburghPittsburghUnited States
| | - Fan Liu
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamNetherlands
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of GenomicsUniversity of Chinese Academy of Sciences (CAS)BeijingChina
| | - Manfred Kayser
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamNetherlands
| |
Collapse
|
21
|
Gerondopoulos A, Strutt H, Stevenson NL, Sobajima T, Levine TP, Stephens DJ, Strutt D, Barr FA. Planar Cell Polarity Effector Proteins Inturned and Fuzzy Form a Rab23 GEF Complex. Curr Biol 2019; 29:3323-3330.e8. [PMID: 31564489 PMCID: PMC6864590 DOI: 10.1016/j.cub.2019.07.090] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023]
Abstract
A subset of Rab GTPases have been implicated in cilium formation in cultured mammalian cells [1-6]. Rab11 and Rab8, together with their GDP-GTP exchange factors (GEFs), TRAPP-II and Rabin8, promote recruitment of the ciliary vesicle to the mother centriole and its subsequent maturation, docking, and fusion with the cell surface [2-5]. Rab23 has been linked to cilium formation and membrane trafficking at mature cilia [1, 7, 8]; however, the identity of the GEF pathway activating Rab23, a member of the Rab7 subfamily of Rabs, remains unclear. Longin-domain-containing complexes have been shown to act as GEFs for Rab7 subfamily GTPases [9-12]. Here, we show that Inturned and Fuzzy, proteins previously implicated as planar cell polarity (PCP) effectors and in developmentally regulated cilium formation [13, 14], contain multiple longin domains characteristic of the Mon1-Ccz1 family of Rab7 GEFs and form a specific Rab23 GEF complex. In flies, loss of Rab23 function gave rise to defects in planar-polarized trichome formation consistent with this biochemical relationship. In cultured human and mouse cells, Inturned and Fuzzy localized to the basal body and proximal region of cilia, and cilium formation was compromised by depletion of either Inturned or Fuzzy. Cilium formation arrested after docking of the ciliary vesicle to the mother centriole but prior to axoneme elongation and fusion of the ciliary vesicle and plasma membrane. These findings extend the family of longin domain GEFs and define a molecular activity linking Rab23-regulated membrane traffic to cilia and planar cell polarity.
Collapse
Affiliation(s)
- Andreas Gerondopoulos
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Helen Strutt
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Nicola L Stevenson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Tomoaki Sobajima
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tim P Levine
- Institute of Ophthalmology, University College London, 11-43 Bath St., London EC1V 9EL, UK
| | - David J Stephens
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Francis A Barr
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
22
|
Mathewson AW, Berman DG, Moens CB. Microtubules are required for the maintenance of planar cell polarity in monociliated floorplate cells. Dev Biol 2019; 452:21-33. [PMID: 31029691 PMCID: PMC6661169 DOI: 10.1016/j.ydbio.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 11/21/2022]
Abstract
The asymmetric localization of planar cell polarity (PCP) proteins is essential for the establishment of many planar polarized cellular processes, but the mechanisms that maintain these asymmetric distributions remain poorly understood. A body of evidence has tied oriented subapical microtubules (MTs) to the establishment of PCP protein polarity, yet recent studies have suggested that the MT cytoskeleton is later dispensable for the maintenance of this asymmetry. As MTs underlie the vesicular trafficking of membrane-bound proteins within cells, the requirement for MTs in the maintenance of PCP merited further investigation. We investigated the complex interactions between PCP proteins and the MT cytoskeleton in the polarized context of the floorplate of the zebrafish neural tube. We demonstrated that the progressive posterior polarization of the primary cilia of floorplate cells requires not only Vangl2 but also Fzd3a. We determined that GFP-Vangl2 asymmetrically localizes to anterior membranes whereas Fzd3a-GFP does not polarize on anterior or posterior membranes but maintains a cytosolic enrichment at the base of the primary cilium. Vesicular Fzd3a-GFP is rapidly trafficked along MTs primarily toward the apical membrane during a period of PCP maintenance, whereas vesicular GFP-Vangl2 is less frequently observed. Nocodazole-induced loss of MT polymerization disrupts basal body positioning as well as GFP-Vangl2 localization and reduces cytosolic Fzd3a-GFP movements. Removal of nocodazole after MT disruption restores MT polymerization but does not restore basal body polarity. Interestingly, GFP-Vangl2 repolarizes to anterior membranes and vesicular Fzd3a-GFP dynamics recover after multiple hours of recovery, even in the context of unpolarized basal bodies. Together our findings challenge previous work by revealing an ongoing role for MT-dependent transport of PCP proteins in maintaining both cellular and PCP protein asymmetry during development.
Collapse
Affiliation(s)
- Andrew W Mathewson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Daniel G Berman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA; Biology Graduate Program, University of Washington, Seattle, WA, USA.
| |
Collapse
|
23
|
Abstract
Formin homology proteins (formins) are a highly conserved family of cytoskeletal remodeling proteins that are involved in a diverse array of cellular functions. Formins are best known for their ability to regulate actin dynamics, but the same functional domains also govern stability and organization of microtubules. It is thought that this dual activity allows them to coordinate the activity of these two major cytoskeletal networks and thereby influence cellular architecture. Golgi ribbon assembly is dependent upon cooperative interactions between actin filaments and cytoplasmic microtubules originating both at the Golgi itself and from the centrosome. Similarly, centrosome assembly, centriole duplication, and centrosome positioning are also reliant on a dialogue between both cytoskeletal networks. As presented in this chapter, a growing body of evidence suggests that multiple formin proteins play essential roles in these central cellular processes.
Collapse
Affiliation(s)
- John Copeland
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
24
|
Insights into the Etiology of Mammalian Neural Tube Closure Defects from Developmental, Genetic and Evolutionary Studies. J Dev Biol 2018; 6:jdb6030022. [PMID: 30134561 PMCID: PMC6162505 DOI: 10.3390/jdb6030022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
The human neural tube defects (NTD), anencephaly, spina bifida and craniorachischisis, originate from a failure of the embryonic neural tube to close. Human NTD are relatively common and both complex and heterogeneous in genetic origin, but the genetic variants and developmental mechanisms are largely unknown. Here we review the numerous studies, mainly in mice, of normal neural tube closure, the mechanisms of failure caused by specific gene mutations, and the evolution of the vertebrate cranial neural tube and its genetic processes, seeking insights into the etiology of human NTD. We find evidence of many regions along the anterior–posterior axis each differing in some aspect of neural tube closure—morphology, cell behavior, specific genes required—and conclude that the etiology of NTD is likely to be partly specific to the anterior–posterior location of the defect and also genetically heterogeneous. We revisit the hypotheses explaining the excess of females among cranial NTD cases in mice and humans and new developments in understanding the role of the folate pathway in NTD. Finally, we demonstrate that evidence from mouse mutants strongly supports the search for digenic or oligogenic etiology in human NTD of all types.
Collapse
|
25
|
Bruel AL, Levy J, Elenga N, Defo A, Favre A, Lucron H, Capri Y, Perrin L, Passemard S, Vial Y, Tabet AC, Faivre L, Thauvin-Robinet C, Verloes A. INTU-related oral-facial-digital syndrome type VI: A confirmatory report. Clin Genet 2018; 93:1205-1209. [PMID: 29451301 DOI: 10.1111/cge.13238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 01/02/2023]
Abstract
Oral-facial-digital (OFD) syndromes are a subgroup of ciliopathies distinguished by the co-occurrence of hamartomas and/or multiple frenula of the oral region and digital anomalies. Several clinical forms of OFD syndromes are distinguished by their associated anomalies and/or inheritance patterns, and at least 20 genetic types of OFD syndromes have been delineated. We describe here a child with preaxial and postaxial polydactyly, lingual hamartoma, a congenital heart defect, delayed development and cerebellar peduncles displaying the molar tooth sign. Whole-exome sequencing and SNP array identified compound heterozygous variants in the INTU gene, which encodes a protein involved in the positioning of the ciliary basal body. INTU is a subunit of the CPLANE multiprotein complex essential for the assembly of IFT-A particles and intraflagellar transport. This report of a second patient with INTU-related OFD syndrome and the further delineation of its neuroimaging and skeletal phenotype now allow INTU-related OFD syndromes to be classified within the OFD syndrome type VI group. Patients display a phenotype similar to that of mice with a hypomorphic mutation of Intu, but with the addition of a heart defect.
Collapse
Affiliation(s)
- A-L Bruel
- UMR 1231 GAD, Génétique des Anomalies du Développement, Université de Bourgogne- et Franche-Comté, Dijon, France.,FHU TRANSLAD, Centre Hospitalier Universitaire de Bourgogne et Franche Comté, Dijon, France
| | - J Levy
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - N Elenga
- Department of Pediatrics Andrée Rosémon Regional Hospital, Cayenne, French Guiana, France.,Antilles-Guyane University, Cayenne, French Guiana, France
| | - A Defo
- Department of Pediatrics Andrée Rosémon Regional Hospital, Cayenne, French Guiana, France
| | - A Favre
- Neonatal intensive care Unit, Andrée Rosémon Regional Hospital, Cayenne, French Guiana, France
| | - H Lucron
- Antilles-Guyane M3C Pediatric Cardiology Center, Centre Hospitalier Universitaire de Martinique, Fort-de-France, France
| | - Y Capri
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - L Perrin
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - S Passemard
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France.,Denis Diderot Medical School, Sorbonne-Paris-Cité University and INSERM U1141, Paris, France
| | - Y Vial
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - A-C Tabet
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - L Faivre
- UMR 1231 GAD, Génétique des Anomalies du Développement, Université de Bourgogne- et Franche-Comté, Dijon, France.,FHU TRANSLAD, Centre Hospitalier Universitaire de Bourgogne et Franche Comté, Dijon, France.,Centre de Génétique, Centre de référence Labellisé Maladies rares Anomalies du Développement et syndromes malformatifs de l'est, Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
| | - C Thauvin-Robinet
- UMR 1231 GAD, Génétique des Anomalies du Développement, Université de Bourgogne- et Franche-Comté, Dijon, France.,FHU TRANSLAD, Centre Hospitalier Universitaire de Bourgogne et Franche Comté, Dijon, France.,Centre de Génétique, Centre de référence Labellisé Maladies rares Anomalies du Développement et syndromes malformatifs de l'est, Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
| | - A Verloes
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France.,Denis Diderot Medical School, Sorbonne-Paris-Cité University and INSERM U1141, Paris, France
| |
Collapse
|
26
|
Wang S, Liu A, Wu G, Ding HF, Huang S, Nahman S, Dong Z. The CPLANE protein Intu protects kidneys from ischemia-reperfusion injury by targeting STAT1 for degradation. Nat Commun 2018; 9:1234. [PMID: 29581513 PMCID: PMC5964315 DOI: 10.1038/s41467-018-03628-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/01/2018] [Indexed: 12/29/2022] Open
Abstract
Intu is known as a ciliogenesis and planar polarity effector (CPLANE) protein. Although roles for Intu have been reported during embryonic development and in the context of developmental disorders, its function and regulation in adult tissues remain poorly understood. Here we show that ablation of Intu specifically in kidney proximal tubules aggravates renal ischemia-reperfusion injury, and leads to defective post-injury ciliogenesis. We identify signal transducer and activator of transcription 1 (STAT1) as a novel interacting partner of Intu. In vitro, Intu and STAT1 colocalize at the centriole/basal body area, and Intu promotes proteasomal degradation of STAT1. During cell stress, Intu expression preserves cilia length and cell viability, and these actions are antagonized by STAT1 expression. Thus, we propose a role for Intu in protecting cells and tissues after injury by targeting STAT1 for degradation and maintaining primary cilia.
Collapse
Affiliation(s)
- Shixuan Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Aimin Liu
- Department of Biology, Eberly College of Sciences, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Han-Fei Ding
- Cancer Center and Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Shuang Huang
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Stanley Nahman
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA. .,Department of Nephrology and Institute of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
27
|
Burga A, Wang W, Ben-David E, Wolf PC, Ramey AM, Verdugo C, Lyons K, Parker PG, Kruglyak L. A genetic signature of the evolution of loss of flight in the Galapagos cormorant. Science 2018; 356:356/6341/eaal3345. [PMID: 28572335 PMCID: PMC5567675 DOI: 10.1126/science.aal3345] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/13/2017] [Indexed: 01/19/2023]
Abstract
We have a limited understanding of the genetic and molecular basis of evolutionary changes in the size and proportion of limbs. We studied wing and pectoral skeleton reduction leading to flightlessness in the Galapagos cormorant (Phalacrocorax harrisi). We sequenced and de novo assembled the genomes of four cormorant species and applied a predictive and comparative genomics approach to find candidate variants that may have contributed to the evolution of flightlessness. These analyses and cross-species experiments in Caenorhabditis elegans and in chondrogenic cell lines implicated variants in genes necessary for transcriptional regulation and function of the primary cilium. Cilia are essential for Hedgehog signaling, and humans affected by skeletal ciliopathies suffer from premature bone growth arrest, mirroring skeletal features associated with loss of flight.
Collapse
Affiliation(s)
- Alejandro Burga
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA.
| | - Weiguang Wang
- Departments of Molecular, Cell and Developmental Biology and Orthopaedic Surgery, University of California and Orthopaedic Institute for Children, Los Angeles, CA, USA
| | - Eyal Ben-David
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
| | - Paul C Wolf
- Wildlife Services, U.S. Department of Agriculture, Roseburg, OR, USA
| | - Andrew M Ramey
- U.S. Geological Survey Alaska Science Center, Anchorage, AK, USA
| | - Claudio Verdugo
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Karen Lyons
- Departments of Molecular, Cell and Developmental Biology and Orthopaedic Surgery, University of California and Orthopaedic Institute for Children, Los Angeles, CA, USA
| | - Patricia G Parker
- Department of Biology and Whitney Harris World Ecology Center, University of Missouri, St. Louis, MO, USA.,WildCare Institute, Saint Louis Zoo, St. Louis, MO, USA
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Ma Y, Sun Y, Jiang L, Zuo K, Chen H, Guo J, Chen F, Lai Y, Shi J. WDPCP regulates the ciliogenesis of human sinonasal epithelial cells in chronic rhinosinusitis. Cytoskeleton (Hoboken) 2017; 74:82-90. [PMID: 28001338 DOI: 10.1002/cm.21351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 11/06/2022]
Abstract
Damage to the mucociliary clearance system is a typical change in the pathogenesis in chronic rhinosinusitis. However, the mechanisms underlying cilia loss remain unclear. WDPCP is a key protein essential for ciliogenesis, and is also an effector of the planar cell polarity signaling system. In this study, we sought to determine the role of WDPCP in cilia loss in patients with chronic rhinosinusitis. We demonstrated the expression of WDPCP in human sinonasal epithelium from patients with chronic rhinosinusitis and control subjects. We also used air-liquid interface to culture primary human sinonasal epithelial cells in-vitro model and to investigate WDPCP function. We then explored links between rhinosinusitis, WDPCP and inflammation. Accompanied with cilia loss, expression of WDPCP in human sinonasal epithelium from patients with chronic rhinosinusitis was decreased significantly compared with control subjects. In vitro study, we found that WDPCP level increased at first, and then decreased. Inhibiting WDPCP expression could lead to the poor quantity and length of cilia with reduced expression of Septin7. Also, Th1 type inflammatory mediators could decrease the expression of WDPCP. In conclusion, inflammatory cytokines cause reduced WDPCP expression, which contributes to impaired ciliogenesis in human rhinosinusitis.
Collapse
Affiliation(s)
- Yun Ma
- The Otorhinolaryngology Hospital, First Affiliated Hospital of Sun Yat-sen, University, SunYat-sen University, Guangzhou, P.R. China
| | - Yueqi Sun
- The Otorhinolaryngology Hospital, First Affiliated Hospital of Sun Yat-sen, University, SunYat-sen University, Guangzhou, P.R. China
| | - Lijie Jiang
- The Otorhinolaryngology Hospital, First Affiliated Hospital of Sun Yat-sen, University, SunYat-sen University, Guangzhou, P.R. China
| | - Kejun Zuo
- The Otorhinolaryngology Hospital, First Affiliated Hospital of Sun Yat-sen, University, SunYat-sen University, Guangzhou, P.R. China
| | - Hexin Chen
- The Otorhinolaryngology Hospital, First Affiliated Hospital of Sun Yat-sen, University, SunYat-sen University, Guangzhou, P.R. China
| | - Jiebo Guo
- The Otorhinolaryngology Hospital, First Affiliated Hospital of Sun Yat-sen, University, SunYat-sen University, Guangzhou, P.R. China
| | - Fenghong Chen
- The Otorhinolaryngology Hospital, First Affiliated Hospital of Sun Yat-sen, University, SunYat-sen University, Guangzhou, P.R. China
| | - Yinyan Lai
- The Otorhinolaryngology Hospital, First Affiliated Hospital of Sun Yat-sen, University, SunYat-sen University, Guangzhou, P.R. China
| | - Jianbo Shi
- The Otorhinolaryngology Hospital, First Affiliated Hospital of Sun Yat-sen, University, SunYat-sen University, Guangzhou, P.R. China
| |
Collapse
|
29
|
Agbu SO, Liang Y, Liu A, Anderson KV. The small GTPase RSG1 controls a final step in primary cilia initiation. J Cell Biol 2017; 217:413-427. [PMID: 29038301 PMCID: PMC5748968 DOI: 10.1083/jcb.201604048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/18/2016] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Primary cilia are essential for normal development and tissue homeostasis, but the mechanisms that remodel the centriole to promote cilia initiation are not well understood. Agbu et al. report that mouse RSG1, a small GTPase, regulates a late step in cilia initiation, downstream of TTBK2 and the CPLANE protein INTU. Primary cilia, which are essential for normal development and tissue homeostasis, are extensions of the mother centriole, but the mechanisms that remodel the centriole to promote cilia initiation are poorly understood. Here we show that mouse embryos that lack the small guanosine triphosphatase RSG1 die at embryonic day 12.5, with developmental abnormalities characteristic of decreased cilia-dependent Hedgehog signaling. Rsg1 mutant embryos have fewer primary cilia than wild-type embryos, but the cilia that form are of normal length and traffic Hedgehog pathway proteins within the cilium correctly. Rsg1 mother centrioles recruit proteins required for cilia initiation and dock onto ciliary vesicles, but axonemal microtubules fail to elongate normally. RSG1 localizes to the mother centriole in a process that depends on tau tubulin kinase 2 (TTBK2), the CPLANE complex protein Inturned (INTU), and its own GTPase activity. The data suggest a specific role for RSG1 in the final maturation of the mother centriole and ciliary vesicle that allows extension of the ciliary axoneme.
Collapse
Affiliation(s)
- Stephanie O Agbu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY.,Biochemistry, Cell and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY
| | - Yinwen Liang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aimin Liu
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
30
|
Bangs F, Anderson KV. Primary Cilia and Mammalian Hedgehog Signaling. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028175. [PMID: 27881449 DOI: 10.1101/cshperspect.a028175] [Citation(s) in RCA: 448] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It has been a decade since it was discovered that primary cilia have an essential role in Hedgehog (Hh) signaling in mammals. This discovery came from screens in the mouse that identified a set of genes that are required for both normal Hh signaling and for the formation of primary cilia. Since then, dozens of mouse mutations have been identified that disrupt cilia in a variety of ways and have complex effects on Hedgehog signaling. Here, we summarize the genetic and developmental studies used to deduce how Hedgehog signal transduction is linked to cilia and the complex effects that perturbation of cilia structure can have on Hh signaling. We conclude by describing the current status of our understanding of the cell-type-specific regulation of ciliogenesis and how that determines the ability of cells to respond to Hedgehog ligands.
Collapse
Affiliation(s)
- Fiona Bangs
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
31
|
Yang N, Leung ELH, Liu C, Li L, Eguether T, Jun Yao XJ, Jones EC, Norris DA, Liu A, Clark RA, Roop DR, Pazour GJ, Shroyer KR, Chen J. INTU is essential for oncogenic Hh signaling through regulating primary cilia formation in basal cell carcinoma. Oncogene 2017; 36:4997-5005. [PMID: 28459465 PMCID: PMC5578876 DOI: 10.1038/onc.2017.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/29/2016] [Accepted: 03/23/2017] [Indexed: 12/30/2022]
Abstract
Inturned (INTU), a cilia and planar polarity effector (CPLANE), performs prominent ciliogenic functions during morphogenesis, such as in the skin. INTU is expressed in adult tissues but its role in tissue maintenance is unknown. Here, we report that the expression of the INTU gene is aberrantly elevated in human basal cell carcinoma (BCC), coinciding with increased primary cilia formation and activated hedgehog (Hh) signaling. Disrupting Intu in an oncogenic mutant Smo (SmoM2)-driven BCC mouse model prevented the formation of BCC through suppressing primary cilia formation and Hh signaling, suggesting that Intu performs a permissive role during BCC formation. INTU is essential for IFT-A complex assembly during ciliogenesis. To further determine whether Intu is directly involved in the activation of Hh signaling downstream of ciliogenesis, we examined the Hh signaling pathway in mouse embryonic fibroblasts, which readily respond to Hh pathway activation. Depleting Intu blocked SAG-induced Hh pathway activation, whereas the expression of Gli2ΔN, a constitutively active Gli2, restored Hh pathway activation in Intu-deficient cells, suggesting that INTU functions upstream of Gli2 activation. In contrast, overexpressing Intu did not promote ciliogenesis or Hh signaling. Taken together, data obtained from this study suggest that INTU is indispensable during BCC tumorigenesis and that its aberrant upregulation is likely a prerequisite for primary cilia formation during Hh-dependent tumorigenesis.
Collapse
Affiliation(s)
- N Yang
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - E L-H Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - C Liu
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - L Li
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - T Eguether
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - X-J Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - E C Jones
- Department of Dermatology, Stony Brook University, Stony Brook, NY, USA
| | - D A Norris
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Denver, Aurora, CO, USA
| | - A Liu
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, PA, USA
| | - R A Clark
- Department of Dermatology, Stony Brook University, Stony Brook, NY, USA
| | - D R Roop
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Denver, Aurora, CO, USA.,Department of Dermatology, University of Colorado Denver, Aurora, CO, USA
| | - G J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - K R Shroyer
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - J Chen
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Department of Dermatology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
32
|
Zhang Q, Li G, Zhang L, Sun X, Zhang D, Lu J, Ma J, Yan J, Chen ZJ. Maternal common variant rs2305957 spanning PLK4 is associated with blastocyst formation and early recurrent miscarriage. Fertil Steril 2017; 107:1034-1040.e5. [PMID: 28238495 DOI: 10.1016/j.fertnstert.2017.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate whether the common variant rs2305957 spanning PLK4 (Polo-like kinase 4) confers risk to embryo development in Northern Chinese Han (CHN) women. DESIGN Genetic association study. SETTING University hospital. PATIENT(S) A total of 2,015 infertile women who underwent in vitro fertilization (IVF), 530 women with early recurrent miscarriage (ERM), and 600 fertile control women in the CHN population. INTERVENTION(S) Genotyping of rs2305957 was performed by means of high-resolution melting analysis. MAIN OUTCOME MEASURE(S) Blastocyst formation, implantation, early miscarriage, and live birth rates in infertile women; genotype distribution at rs2305957 in ERM case and control subjects. RESULT(S) In the first cohort of this study, infertile women with AA genotype had a lower blastocyst formation rate than those with AG or GG genotype. No significant differences were observed in implantation rate, early miscarriage rate, or live birth rate among AA, AG, and GG subgroups. In the second cohort, common variant rs2305957 was related to ERM. Genotype frequency differences were also significant in both additive model and dominant model. CONCLUSION(S) Common variant rs2305957 is associated with blastocyst formation and ERM in CHN women. Further investigations of PLK4 gene during embryo development could be worthwhile.
Collapse
Affiliation(s)
- Qian Zhang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, People's Republic of China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, People's Republic of China
| | - Guangyu Li
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, People's Republic of China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, People's Republic of China
| | - Lei Zhang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, People's Republic of China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, People's Republic of China
| | - Xiaohe Sun
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, People's Republic of China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, People's Republic of China
| | - Dandan Zhang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, People's Republic of China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, People's Republic of China
| | - Juanjuan Lu
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, People's Republic of China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, People's Republic of China
| | - Jinlong Ma
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, People's Republic of China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, People's Republic of China
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, People's Republic of China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, People's Republic of China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, People's Republic of China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, People's Republic of China; Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Diencephalic Size Is Restricted by a Novel Interplay Between GCN5 Acetyltransferase Activity and Retinoic Acid Signaling. J Neurosci 2017; 37:2565-2579. [PMID: 28154153 DOI: 10.1523/jneurosci.2121-16.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 01/20/2023] Open
Abstract
Diencephalic defects underlie an array of neurological diseases. Previous studies have suggested that retinoic acid (RA) signaling is involved in diencephalic development at late stages of embryonic development, but its roles and mechanisms of action during early neural development are still unclear. Here we demonstrate that mice lacking enzymatic activity of the acetyltransferase GCN5 ((Gcn5hat/hat )), which were previously characterized with respect to their exencephalic phenotype, exhibit significant diencephalic expansion, decreased diencephalic RA signaling, and increased diencephalic WNT and SHH signaling. Using a variety of molecular biology techniques in both cultured neuroepithelial cells treated with a GCN5 inhibitor and forebrain tissue from (Gcn5hat/hat ) embryos, we demonstrate that GCN5, RARα/γ, and the poorly characterized protein TACC1 form a complex in the nucleus that binds specific retinoic acid response elements in the absence of RA. Furthermore, RA triggers GCN5-mediated acetylation of TACC1, which results in dissociation of TACC1 from retinoic acid response elements and leads to transcriptional activation of RA target genes. Intriguingly, RA signaling defects caused by in vitro inhibition of GCN5 can be rescued through RA-dependent mechanisms that require RARβ. Last, we demonstrate that the diencephalic expansion and transcriptional defects seen in (Gcn5hat/hat ) mutants can be rescued with gestational RA supplementation, supporting a direct link between GCN5, TACC1, and RA signaling in the developing diencephalon. Together, our studies identify a novel, nonhistone substrate for GCN5 whose modification regulates a previously undescribed, tissue-specific mechanism of RA signaling that is required to restrict diencephalic size during early forebrain development.SIGNIFICANCE STATEMENT Changes in diencephalic size and shape, as well as SNPs associated with retinoic acid (RA) signaling-associated genes, have been linked to neuropsychiatric disorders. However, the mechanisms that regulate diencephalic morphogenesis and the involvement of RA signaling in this process are poorly understood. Here we demonstrate a novel role of the acetyltransferase GCN5 in a previously undescribed mechanism of RA signaling in the developing forebrain that is required to maintain the appropriate size of the diencephalon. Together, our experiments identify a novel nonhistone substrate of GCN5, highlight an essential role for both GCN5 and RA signaling in early diencephalic development, and elucidate a novel molecular regulatory mechanism for RA signaling that is specific to the developing forebrain.
Collapse
|
34
|
Adler PN, Wallingford JB. From Planar Cell Polarity to Ciliogenesis and Back: The Curious Tale of the PPE and CPLANE proteins. Trends Cell Biol 2017; 27:379-390. [PMID: 28153580 DOI: 10.1016/j.tcb.2016.12.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/28/2016] [Accepted: 12/23/2016] [Indexed: 12/29/2022]
Abstract
Why some genes are more popular than others remains an open question, but one example of this phenomenon involves the genes controlling planar cell polarity (PCP), the polarization of cells within a plane of a tissue. Indeed, the so-called 'core' PCP genes such as dishevelled, frizzled, and prickle have been extensively studied both in animal models and by human genetics. By contrast, other genes that influence PCP signaling have received far less attention. Among the latter are inturned, fuzzy, and fritz, but recent work should bring these once obscure regulators into the limelight. We provide here a brief history of planar polarity effector (PPE) and CPLANE (ciliogenesis and planar polarity effector) proteins, discuss recent advances in understanding their molecular mechanisms of action, and describe their roles in human disease.
Collapse
Affiliation(s)
- Paul N Adler
- Departments of Biology and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
35
|
Hudish LI, Galati DF, Ravanelli AM, Pearson CG, Huang P, Appel B. miR-219 regulates neural progenitors by dampening apical Par protein-dependent Hedgehog signaling. Development 2016; 143:2292-304. [PMID: 27226318 PMCID: PMC4958328 DOI: 10.1242/dev.137844] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/05/2016] [Indexed: 12/25/2022]
Abstract
The transition of dividing neuroepithelial progenitors to differentiated neurons and glia is essential for the formation of a functional nervous system. Sonic hedgehog (Shh) is a mitogen for spinal cord progenitors, but how cells become insensitive to the proliferative effects of Shh is not well understood. Because Shh reception occurs at primary cilia, which are positioned within the apical membrane of neuroepithelial progenitors, we hypothesized that loss of apical characteristics reduces the Shh signaling response, causing cell cycle exit and differentiation. We tested this hypothesis using genetic and pharmacological manipulation, gene expression analysis and time-lapse imaging of zebrafish embryos. Blocking the function of miR-219, a microRNA that downregulates apical Par polarity proteins and promotes progenitor differentiation, elevated Shh signaling. Inhibition of Shh signaling reversed the effects of miR-219 depletion and forced expression of Shh phenocopied miR-219 deficiency. Time-lapse imaging revealed that knockdown of miR-219 function accelerates the growth of primary cilia, revealing a possible mechanistic link between miR-219-mediated regulation of apical Par proteins and Shh signaling. Thus, miR-219 appears to decrease progenitor cell sensitivity to Shh signaling, thereby driving these cells towards differentiation.
Collapse
Affiliation(s)
- Laura I. Hudish
- Departments of Pediatrics and Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Domenico F. Galati
- Departments of Pediatrics and Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrew M. Ravanelli
- Departments of Pediatrics and Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chad G. Pearson
- Departments of Pediatrics and Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - Bruce Appel
- Departments of Pediatrics and Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA,Author for correspondence ()
| |
Collapse
|
36
|
Toriyama M, Lee C, Taylor SP, Duran I, Cohn DH, Bruel AL, Tabler JM, Drew K, Kelley MR, Kim S, Park TJ, Braun D, Pierquin G, Biver A, Wagner K, Malfroot A, Panigrahi I, Franco B, Al-lami HA, Yeung Y, Choi YJ, University of Washington Center for Mendelian Genomics, Duffourd Y, Faivre L, Rivière JB, Chen J, Liu KJ, Marcotte EM, Hildebrandt F, Thauvin-Robinet C, Krakow D, Jackson PK, Wallingford JB. The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nat Genet 2016; 48:648-56. [PMID: 27158779 PMCID: PMC4978421 DOI: 10.1038/ng.3558] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/01/2016] [Indexed: 12/21/2022]
Abstract
Cilia use microtubule-based intraflagellar transport (IFT) to organize intercellular signaling. Ciliopathies are a spectrum of human diseases resulting from defects in cilia structure or function. The mechanisms regulating the assembly of ciliary multiprotein complexes and the transport of these complexes to the base of cilia remain largely unknown. Combining proteomics, in vivo imaging and genetic analysis of proteins linked to planar cell polarity (Inturned, Fuzzy and Wdpcp), we identified and characterized a new genetic module, which we term CPLANE (ciliogenesis and planar polarity effector), and an extensive associated protein network. CPLANE proteins physically and functionally interact with the poorly understood ciliopathy-associated protein Jbts17 at basal bodies, where they act to recruit a specific subset of IFT-A proteins. In the absence of CPLANE, defective IFT-A particles enter the axoneme and IFT-B trafficking is severely perturbed. Accordingly, mutation of CPLANE genes elicits specific ciliopathy phenotypes in mouse models and is associated with ciliopathies in human patients.
Collapse
Affiliation(s)
| | - Chanjae Lee
- Dept. of Molecular Biosciences, University of Texas at Austin
| | - S. Paige Taylor
- Departments of Orthopaedic Surgery, Human Genetics and Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ivan Duran
- Departments of Orthopaedic Surgery, Human Genetics and Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Daniel H. Cohn
- Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, California, USA, 90095
| | - Ange-Line Bruel
- EA4271GAD Genetics of Developmental Anomalies, FHU-TRANSLAD, Medecine Faculty, Burgundy University, F-21079 Dijon, France
| | | | - Kevin Drew
- Dept. of Molecular Biosciences, University of Texas at Austin
| | - Marcus R. Kelley
- Stanford University School of Medicine, Baxter Laboratory, Department of Microbiology & Immunology, Stanford, California 94305
| | - Sukyoung Kim
- Dept. of Molecular Biosciences, University of Texas at Austin
| | - Tae Joo Park
- Dept. of Molecular Biosciences, University of Texas at Austin
| | - Daniella Braun
- HHMI and Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Kerstin Wagner
- Cardiological Pediatric unit, Hospital Center, Luxemburg
| | - Anne Malfroot
- Clinic of Pediatric Respiratory Diseases, Infectious Diseases, Travel Clinic and Cystic Fibrosis Clinic at the Universitair Ziekenhuis UZ Brussel, Belgium
| | - Inusha Panigrahi
- Department of Pediatrics Advanced, Pediatric Centre Pigmer, Chandigarh, India
| | - Brunella Franco
- Department of Medical Translational Sciences, Division of Pediatrics, Federico II University of Naples, Italy
- Telethon Institute of Genetics and Medicine-TIGEM , Naples Italy
| | - Hadeel Adel Al-lami
- Dept. of Craniofacial and Stem Cell Biology, Dental Institute, King's College London
| | - Yvonne Yeung
- Dept. of Craniofacial and Stem Cell Biology, Dental Institute, King's College London
| | - Yeon Ja Choi
- Departments of Pathology and Dermatology, Stony Brook University, Stony Brook, NY 11794
| | | | - Yannis Duffourd
- EA4271GAD Genetics of Developmental Anomalies, FHU-TRANSLAD, Medecine Faculty, Burgundy University, F-21079 Dijon, France
| | - Laurence Faivre
- EA4271GAD Genetics of Developmental Anomalies, FHU-TRANSLAD, Medecine Faculty, Burgundy University, F-21079 Dijon, France
- Clinical genetics centre and Eastern referral centre for developmental anomalies and malformative syndromes, FHU-TRANSLAD, Children Hospital, CHU Dijon, F-21079 Dijon, France
| | - Jean-Baptiste Rivière
- EA4271GAD Genetics of Developmental Anomalies, FHU-TRANSLAD, Medecine Faculty, Burgundy University, F-21079 Dijon, France
- Laboratory of Molecular Genetics, FHU-TRANSLAD, PTB, CHU Dijon, F-21079 Dijon, France
| | - Jiang Chen
- Departments of Pathology and Dermatology, Stony Brook University, Stony Brook, NY 11794
| | - Karen J. Liu
- Dept. of Craniofacial and Stem Cell Biology, Dental Institute, King's College London
| | | | - Friedhelm Hildebrandt
- HHMI and Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christel Thauvin-Robinet
- EA4271GAD Genetics of Developmental Anomalies, FHU-TRANSLAD, Medecine Faculty, Burgundy University, F-21079 Dijon, France
- Laboratory of Molecular Genetics, FHU-TRANSLAD, PTB, CHU Dijon, F-21079 Dijon, France
| | - Deborah Krakow
- Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, California, USA, 90095
| | - Peter K. Jackson
- Stanford University School of Medicine, Baxter Laboratory, Department of Microbiology & Immunology, Stanford, California 94305
| | | |
Collapse
|
37
|
Schenkelaars Q, Fierro-Constain L, Renard E, Borchiellini C. Retracing the path of planar cell polarity. BMC Evol Biol 2016; 16:69. [PMID: 27039172 PMCID: PMC4818920 DOI: 10.1186/s12862-016-0641-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/22/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Planar Cell Polarity pathway (PCP) has been described as the main feature involved in patterning cell orientation in bilaterian tissues. Recently, a similar phenomenon was revealed in cnidarians, in which the inhibition of this pathway results in the absence of cilia orientation in larvae, consequently proving the functional conservation of PCP signaling between Cnidaria and Bilateria. Nevertheless, despite the growing accumulation of databases concerning basal lineages of metazoans, very few information concerning the existence of PCP components have been gathered outside of Bilateria and Cnidaria. Thus, the origin of this module or its prevalence in early emerging metazoans has yet to be elucidated. RESULTS The present study addresses this question by investigating the genomes and transcriptomes from all poriferan lineages in addition to Trichoplax (Placozoa) and Mnemiopsis (Ctenophora) genomes for the presence of the core components of this pathway. Our results confirm that several PCP components are metazoan innovations. In addition, we show that all members of the PCP pathway, including a bona fide Strabismus ortholog (Van gogh), are retrieved only in one sponge lineage (Homoscleromorpha) out of four. This highly suggests that the full PCP pathway dates back at least to the emergence of homoscleromorph sponges. Consequently, several secondary gene losses would have occurred in the three other poriferan lineages including Amphimedon queenslandica (Demospongiae). Several proteins were not retrieved either in placozoans or ctenophores leading us to discuss the difficulties to predict orthologous proteins in basally branching animals. Finally, we reveal how the study of multigene families may be helpful to unravel the relationships at the base of the metazoan tree. CONCLUSION The PCP pathway antedates the radiation of Porifera and may have arisen in the last common ancestor of animals. Oscarella species now appear as key organisms to understand the ancestral function of PCP signaling and its potential links with Wnt pathways.
Collapse
Affiliation(s)
- Quentin Schenkelaars
- />Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE UMR 7263), Aix Marseille Université, CNRS, IRD, Avignon Université, Station marine d’Endoume, Batterie des Lions, 13007 Marseille, France
- />Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Laura Fierro-Constain
- />Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE UMR 7263), Aix Marseille Université, CNRS, IRD, Avignon Université, Station marine d’Endoume, Batterie des Lions, 13007 Marseille, France
| | - Emmanuelle Renard
- />Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE UMR 7263), Aix Marseille Université, CNRS, IRD, Avignon Université, Station marine d’Endoume, Batterie des Lions, 13007 Marseille, France
| | - Carole Borchiellini
- />Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE UMR 7263), Aix Marseille Université, CNRS, IRD, Avignon Université, Station marine d’Endoume, Batterie des Lions, 13007 Marseille, France
- />Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
38
|
Yadav SP, Sharma NK, Liu C, Dong L, Li T, Swaroop A. Centrosomal protein CP110 controls maturation of the mother centriole during cilia biogenesis. Development 2016; 143:1491-501. [PMID: 26965371 PMCID: PMC4909859 DOI: 10.1242/dev.130120] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/29/2016] [Indexed: 11/30/2022]
Abstract
Defects in cilia centrosomal genes cause pleiotropic clinical phenotypes, collectively called ciliopathies. Cilia biogenesis is initiated by the interaction of positive and negative regulators. Centriolar coiled coil protein 110 (CP110) caps the distal end of the mother centriole and is known to act as a suppressor to control the timing of ciliogenesis. Here, we demonstrate that CP110 promotes cilia formation in vivo, in contrast to findings in cultured cells. Cp110−/− mice die shortly after birth owing to organogenesis defects as in ciliopathies. Shh signaling is impaired in null embryos and primary cilia are reduced in multiple tissues. We show that CP110 is required for anchoring of basal bodies to the membrane during cilia formation. CP110 loss resulted in an abnormal distribution of core components of subdistal appendages (SDAs) and of recycling endosomes, which may be associated with premature extension of axonemal microtubules. Our data implicate CP110 in SDA assembly and ciliary vesicle docking, two requisite early steps in cilia formation. We suggest that CP110 has unique context-dependent functions, acting as both a suppressor and a promoter of ciliogenesis. Highlighted article: CP110 promotes the assembly of subdistal appendages and ciliary vesicle docking during cilia formation in vivo, thereby facilitating mammalian organogenesis.
Collapse
Affiliation(s)
- Sharda Prasad Yadav
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neel Kamal Sharma
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chunqiao Liu
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiansen Li
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Butler MT, Wallingford JB. Control of vertebrate core planar cell polarity protein localization and dynamics by Prickle 2. Development 2015; 142:3429-39. [PMID: 26293301 PMCID: PMC4631750 DOI: 10.1242/dev.121384] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 08/12/2015] [Indexed: 01/21/2023]
Abstract
Planar cell polarity (PCP) is a ubiquitous property of animal tissues and is essential for morphogenesis and homeostasis. In most cases, this fundamental property is governed by a deeply conserved set of 'core PCP' proteins, which includes the transmembrane proteins Van Gogh-like (Vangl) and Frizzled (Fzd), as well as the cytoplasmic effectors Prickle (Pk) and Dishevelled (Dvl). Asymmetric localization of these proteins is thought to be central to their function, and understanding the dynamics of these proteins is an important challenge in developmental biology. Among the processes that are organized by the core PCP proteins is the directional beating of cilia, such as those in the vertebrate node, airway and brain. Here, we exploit the live imaging capabilities of Xenopus to chart the progressive asymmetric localization of fluorescent reporters of Dvl1, Pk2 and Vangl1 in a planar polarized ciliated epithelium. Using this system, we also characterize the influence of Pk2 on the asymmetric dynamics of Vangl1 at the cell cortex, and we define regions of Pk2 that control its own localization and those impacting Vangl1. Finally, our data reveal a striking uncoupling of Vangl1 and Dvl1 asymmetry. This study advances our understanding of conserved PCP protein functions and also establishes a rapid, tractable platform to facilitate future in vivo studies of vertebrate PCP protein dynamics.
Collapse
Affiliation(s)
- Mitchell T Butler
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA Howard Hughes Medical Institute, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
40
|
Chang R, Petersen JR, Niswander LA, Liu A. A hypomorphic allele reveals an important role of inturned in mouse skeletal development. Dev Dyn 2015; 244:736-47. [PMID: 25774014 DOI: 10.1002/dvdy.24272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 03/02/2015] [Accepted: 03/06/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cilia are important for Hedgehog signaling in vertebrates and many genes that encode proteins involved in ciliogenesis have been studied for their roles in embryonic development. Null mutations in many of these genes cause early embryonic lethality, hence an understanding of their roles in postnatal development is limited. RESULTS The Inturned (Intu) gene is required for ciliogenesis and here we report a recessive hypomorphic mutation, resulting in substitution of a conserved hydrophobic residue (I813N) near the C-terminus, that sheds light on later functions of Intu. Mice homozygous for this Double-thumb (Intu(Dtm)) allele exhibit polydactyly, retarded growth, and reduced survival. There is a moderate loss of cilia in Intu(Dtm/Dtm) mutants, and Intu(I813N) exhibits compromised ability to increase ciliogenesis in cultured Intu null mutant cells. Intu(Dtm) mutants show rib defects and delay of endochondral ossification in long bones, digits, vertebrae, and the sternum. These skeletal defects correlate with a decrease in Hh signaling. However, patterning of the neural tube and planar cell polarity appear to be normal. CONCLUSIONS This hypomorphic Intu allele highlights an important role of Intu in mouse skeletal development.
Collapse
Affiliation(s)
- Rachel Chang
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania
| | - Juliette R Petersen
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lee A Niswander
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aimin Liu
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania.,Center for Cellular Dynamics, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
41
|
Liu J, Zeng H, Liu A. The loss of Hh responsiveness by a non-ciliary Gli2 variant. Development 2015; 142:1651-60. [PMID: 25834022 DOI: 10.1242/dev.119669] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/09/2015] [Indexed: 01/07/2023]
Abstract
Hedgehog signaling is crucial for vertebrate development and physiology. Gli2, the primary effector of Hedgehog signaling, localizes to the tip of the primary cilium, but the importance of its ciliary localization remains unclear. We address the roles of Gli2 ciliary localization by replacing endogenous Gli2 with Gli2(ΔCLR), a Gli2 variant not localizing to the cilium. The resulting Gli2(ΔCLRKI) and Gli2(ΔCLRKI);Gli3 double mutants resemble Gli2-null and Gli2;Gli3 double mutants, respectively, suggesting the lack of Gli2(ΔCLR) activation in development. Significantly, Gli2(ΔCLR) cannot be activated either by pharmacochemical activation of Smo in vitro or by loss of Ptch1 in vivo. Finally, Gli2(ΔCLR) exhibits strong transcriptional activator activity in the absence of Sufu, suggesting that the lack of its activation in vivo results from a specific failure in relieving the inhibitory function of Sufu. Our results provide strong evidence that the ciliary localization of Gli2 is crucial for cilium-dependent activation of Hedgehog signaling.
Collapse
Affiliation(s)
- Jinling Liu
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Huiqing Zeng
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Aimin Liu
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA Center for Cellular Dynamics, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
42
|
Abstract
Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies.
Collapse
Affiliation(s)
- Nicholas D E Greene
- Newlife Birth Defects Research Center, Institute of Child Health, University College London, WC1N 1EH, United Kingdom;
| | | |
Collapse
|
43
|
Bankhead EJ, Colasanto MP, Dyorich KM, Jamrich M, Murtaugh LC, Fuhrmann S. Multiple requirements of the focal dermal hypoplasia gene porcupine during ocular morphogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:197-213. [PMID: 25451153 DOI: 10.1016/j.ajpath.2014.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/25/2014] [Accepted: 09/02/2014] [Indexed: 12/13/2022]
Abstract
Wnt glycoproteins control key processes during development and disease by activating various downstream pathways. Wnt secretion requires post-translational modification mediated by the O-acyltransferase encoded by the Drosophila porcupine homolog gene (PORCN). In humans, PORCN mutations cause focal dermal hypoplasia (FDH, or Goltz syndrome), an X-linked dominant multisystem birth defect that is frequently accompanied by ocular abnormalities such as coloboma, microphthalmia, or even anophthalmia. Although genetic ablation of Porcn in mouse has provided insight into the etiology of defects caused by ectomesodermal dysplasia in FDH, the requirement for Porcn and the actual Wnt ligands during eye development have been unknown. In this study, Porcn hemizygosity occasionally caused ocular defects reminiscent of FDH. Conditional inactivation of Porcn in periocular mesenchyme led to defects in mid- and hindbrain and in craniofacial development, but was insufficient to cause ocular abnormalities. However, a combination of conditional Porcn depletion in optic vesicle neuroectoderm, lens, and neural crest-derived periocular mesenchyme induced severe eye abnormalities with high penetrance. In particular, we observed coloboma, transdifferentiation of the dorsal and ventral retinal pigment epithelium, defective optic cup periphery, and closure defects of the eyelid, as well as defective corneal morphogenesis. Thus, Porcn is required in both extraocular and neuroectodermal tissues to regulate distinct Wnt-dependent processes during morphogenesis of the posterior and anterior segments of the eye.
Collapse
Affiliation(s)
- Elizabeth J Bankhead
- Departments of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Mary P Colasanto
- Departments of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Kayla M Dyorich
- Departments of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Milan Jamrich
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Sabine Fuhrmann
- Departments of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
44
|
Merello E, Mascelli S, Raso A, Piatelli G, Consales A, Cama A, Kibar Z, Capra V, Marco PD. Expanding the mutational spectrum associated to neural tube defects: literature revision and description of novel VANGL1 mutations. ACTA ACUST UNITED AC 2014; 103:51-61. [PMID: 25208524 DOI: 10.1002/bdra.23305] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/30/2014] [Accepted: 08/11/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Neural Tube Defects (NTD) are a common class of birth defects that occur in approximately 1 in 1000 live births. Both genetic and nongenetic factors are involved in the etiology of NTD. Planar cell polarity (PCP) genes plays a critical role in neural tube closure in model organisms. Studies in humans have identified nonsynonymous mutations in PCP pathway genes, including the VANGL genes, that may play a role as risk factors for NTD. METHODS Here, we present the results of VANGL1 and VANGL2 mutational screening in a series of 53 NTD patients and 27 couples with a previous NTD affected pregnancy. RESULTS We identified three heterozygous missense variants in VANGL1, p.Ala187Val, p.Asp389His, and p.Arg517His, that are absent in controls and predicted to be detrimental on the protein function and, thus, we expanded the mutational spectrum of VANGL1 in NTD cases. We did not identify any new variants having an evident pathogenic effect on protein function in VANGL2. Moreover, we reviewed all the rare nonsynonymous or synonymous variants of VANGL1 and VANGL2 found in patients and controls so far published and re-evaluated them for their pathogenic role by in silico prediction tools. Association tests were performed to demonstrate the enrichment of deleterious variants in reviewed cases versus controls from Exome Variant Server (EVS). CONCLUSION We showed a significant (p = 7.0E-5) association between VANGL1 rare genetic variants, especially missense mutations, and NTDs risk.
Collapse
Affiliation(s)
- E Merello
- Istituto Giannina Gaslini, Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Collins MM, Ryan AK. Are there conserved roles for the extracellular matrix, cilia, and junctional complexes in left-right patterning? Genesis 2014; 52:488-502. [PMID: 24668924 DOI: 10.1002/dvg.22774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/19/2014] [Indexed: 01/11/2023]
Abstract
Many different types of molecules have essential roles in patterning the left-right axis and directing asymmetric morphogenesis. In particular, the relationship between signaling molecules and transcription factors has been explored extensively. Another group of proteins implicated in left-right patterning are components of the extracellular matrix, apical junctions, and cilia. These structural molecules have the potential to participate in the conversion of morphogenetic cues from the extracellular environment into morphogenetic patterning via their interactions with the actin cytoskeleton. Although it has been relatively easy to temporally position these proteins within the hierarchy of the left-right patterning pathway, it has been more difficult to define how they mechanistically fit into these pathways. Consequently, our understanding of how these factors impart patterning information to influence the establishment of the left-right axis remains limited. In this review, we will discuss those structural molecules that have been implicated in early phases of left-right axis development.
Collapse
Affiliation(s)
- Michelle M Collins
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
46
|
Vandenberg LN, Lemire JM, Levin M. It's never too early to get it Right: A conserved role for the cytoskeleton in left-right asymmetry. Commun Integr Biol 2013; 6:e27155. [PMID: 24505508 PMCID: PMC3912007 DOI: 10.4161/cib.27155] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/08/2023] Open
Abstract
For centuries, scientists and physicians have been captivated by the consistent left-right (LR) asymmetry of the heart, viscera, and brain. A recent study implicated tubulin proteins in establishing laterality in several experimental models, including asymmetric chemosensory receptor expression in C. elegans neurons, polarization of HL-60 human neutrophil-like cells in culture, and asymmetric organ placement in Xenopus. The same mutations that randomized asymmetry in these diverse systems also affect chirality in Arabidopsis, revealing a remarkable conservation of symmetry-breaking mechanisms among kingdoms. In Xenopus, tubulin mutants only affected LR patterning very early, suggesting that this axis is established shortly after fertilization. This addendum summarizes and extends the knowledge of the cytoskeleton's role in the patterning of the LR axis. Results from many species suggest a conserved role for the cytoskeleton as the initiator of asymmetry, and indicate that symmetry is first broken during early embryogenesis by an intracellular process.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Biology Department; Center for Regenerative and Developmental Biology; Tufts University; Medford, MA USA ; Current affiliation: Department of Public Health; Division of Environmental Health Sciences; University of Massachusetts, Amherst; Amherst, MA USA
| | - Joan M Lemire
- Biology Department; Center for Regenerative and Developmental Biology; Tufts University; Medford, MA USA
| | - Michael Levin
- Biology Department; Center for Regenerative and Developmental Biology; Tufts University; Medford, MA USA
| |
Collapse
|
47
|
Cauli: a mouse strain with an Ift140 mutation that results in a skeletal ciliopathy modelling Jeune syndrome. PLoS Genet 2013; 9:e1003746. [PMID: 24009529 PMCID: PMC3757063 DOI: 10.1371/journal.pgen.1003746] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 07/10/2013] [Indexed: 02/01/2023] Open
Abstract
Cilia are architecturally complex organelles that protrude from the cell membrane and have signalling, sensory and motility functions that are central to normal tissue development and homeostasis. There are two broad categories of cilia; motile and non-motile, or primary, cilia. The central role of primary cilia in health and disease has become prominent in the past decade with the recognition of a number of human syndromes that result from defects in the formation or function of primary cilia. This rapidly growing class of conditions, now known as ciliopathies, impact the development of a diverse range of tissues including the neural axis, craniofacial structures, skeleton, kidneys, eyes and lungs. The broad impact of cilia dysfunction on development reflects the pivotal position of the primary cilia within a signalling nexus involving a growing number of growth factor systems including Hedgehog, Pdgf, Fgf, Hippo, Notch and both canonical Wnt and planar cell polarity. We have identified a novel ENU mutant allele of Ift140, which causes a mid-gestation embryonic lethal phenotype in homozygous mutant mice. Mutant embryos exhibit a range of phenotypes including exencephaly and spina bifida, craniofacial dysmorphism, digit anomalies, cardiac anomalies and somite patterning defects. A number of these phenotypes can be attributed to alterations in Hedgehog signalling, although additional signalling systems are also likely to be involved. We also report the identification of a homozygous recessive mutation in IFT140 in a Jeune syndrome patient. This ENU-induced Jeune syndrome model will be useful in delineating the origins of dysmorphology in human ciliopathies. Skeletal ciliopathies are an emerging field of human disease in which skeletal birth defects arise due to abnormal communication between cells. This failure in communication arises following mutation in components of the primary cilia, a hair-like structure present on every cell. The skeletal ciliopathies are debilitating and in severe cases lead to death in early infancy. However, the mechanisms by which these malformations come about remains unclear. Mouse models are often used to delineate the causes of human birth defects and we have identified a model that mimics one of these conditions known as Jeune syndrome. It is the first mouse model with a mutation in the Ift140 gene, and these mice exhibit phenotypes that are often seen in this set of human syndromes. We have complimented this study with the discovery of a patient that presents with Jeune Syndrome resulting from mutation of human IFT140. This model will allow us to explore the role of IFT140 and the primary cilia in normal human development and provide insight into the field of human skeletal ciliopathies.
Collapse
|
48
|
Wang S, Dong Z. Primary cilia and kidney injury: current research status and future perspectives. Am J Physiol Renal Physiol 2013; 305:F1085-98. [PMID: 23904226 DOI: 10.1152/ajprenal.00399.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cilia, membrane-enclosed organelles protruding from the apical side of cells, can be divided into two classes: motile and primary cilia. During the past decades, motile cilia have been intensively studied. However, it was not until the 1990s that people began to realize the importance of primary cilia as cellular-specific sensors, particularly in kidney tubular epithelial cells. Furthermore, accumulating evidence indicates that primary cilia may be involved in the regulation of cell proliferation, differentiation, apoptosis, and planar cell polarity. Many signaling pathways, such as Wnt, Notch, Hedgehog, and mammalian target of rapamycin, have been located to the primary cilia. Thus primary cilia have been regarded as a hub that integrates signals from the extracellular environment. More importantly, dysfunction of this organelle may contribute to the pathogenesis of a large spectrum of human genetic diseases, named ciliopathies. The significance of primary cilia in acquired human diseases such as hypertension and diabetes has gradually drawn attention. Interestingly, recent reports disclosed that cilia length varies during kidney injury, and shortening of cilia enhances the sensitivity of epithelial cells to injury cues. This review briefly summarizes the current status of cilia research and explores the potential mechanisms of cilia-length changes during kidney injury as well as provides some thoughts to allure more insightful ideas and promotes the further study of primary cilia in the context of kidney injury.
Collapse
Affiliation(s)
- Shixuan Wang
- Dept. of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912.
| | | |
Collapse
|
49
|
Vogel TW, Carter CS, Abode-Iyamah K, Zhang Q, Robinson S. The role of primary cilia in the pathophysiology of neural tube defects. Neurosurg Focus 2013; 33:E2. [PMID: 23025443 DOI: 10.3171/2012.6.focus12222] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neural tube defects (NTDs) are a set of disorders that occur from perturbation of normal neural development. They occur in open or closed forms anywhere along the craniospinal axis and often result from a complex interaction between environmental and genetic factors. One burgeoning area of genetics research is the effect of cilia signaling on the developing neural tube and how the disruption of primary cilia leads to the development of NTDs. Recent progress has implicated the hedgehog (Hh), wingless-type integration site family (Wnt), and planar cell polarity (PCP) pathways in primary cilia as involved in normal neural tube patterning. A set of disorders involving cilia function, known as ciliopathies, offers insight into abnormal neural development. In this article, the authors discuss the common ciliopathies, such as Meckel-Gruber and Joubert syndromes, that are associated with NTDs, and review cilia-related signaling cascades responsible for mammalian neural tube development. Understanding the contribution of cilia in the formation of NTDs may provide greater insight into this common set of pediatric neurological disorders.
Collapse
Affiliation(s)
- Timothy W Vogel
- Department of Neurosurgery, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
50
|
Vandenberg LN, Levin M. A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev Biol 2013; 379:1-15. [PMID: 23583583 PMCID: PMC3698617 DOI: 10.1016/j.ydbio.2013.03.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 12/31/2022]
Abstract
Understanding how and when the left-right (LR) axis is first established is a fundamental question in developmental biology. A popular model is that the LR axis is established relatively late in embryogenesis, due to the movement of motile cilia and the resultant directed fluid flow during late gastrulation/early neurulation. Yet, a large body of evidence suggests that biophysical, molecular, and bioelectrical asymmetries exist much earlier in development, some as early as the first cell cleavage after fertilization. Alternative models of LR asymmetry have been proposed that accommodate these data, postulating that asymmetry is established due to a chiral cytoskeleton and/or the asymmetric segregation of chromatids. There are some similarities, and many differences, in how these various models postulate the origin and timing of symmetry breaking and amplification, and these events' linkage to the well-conserved subsequent asymmetric transcriptional cascades. This review examines experimental data that lend strong support to an early origin of LR asymmetry, yet are also consistent with later roles for cilia in the amplification of LR pathways. In this way, we propose that the various models of asymmetry can be unified: early events are needed to initiate LR asymmetry, and later events could be utilized by some species to maintain LR-biases. We also present an alternative hypothesis, which proposes that individual embryos stochastically choose one of several possible pathways with which to establish their LR axis. These two hypotheses are both tractable in appropriate model species; testing them to resolve open questions in the field of LR patterning will reveal interesting new biology of wide relevance to developmental, cell, and evolutionary biology.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| |
Collapse
|