1
|
Parker LE, Papanicolaou KN, Zalesak-Kravec S, Weinberger EM, Kane MA, Foster DB. Retinoic acid signaling and metabolism in heart failure. Am J Physiol Heart Circ Physiol 2025; 328:H792-H813. [PMID: 39933792 DOI: 10.1152/ajpheart.00871.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/24/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Nearly 70 years after studies first showed that the offspring of vitamin A (retinol, ROL)-deficient rats exhibit structural cardiac defects and over 20 years since the role of vitamin A's potent bioactive metabolite hormone, all-trans retinoic acid (ATRA), was elucidated in embryonic cardiac development, the role of the vitamin A metabolites, or retinoids, in adult heart physiology and heart and vascular disease, remains poorly understood. Studies have shown that low serum levels of retinoic acid correlate with higher all-cause and cardiovascular mortality, though the relationship between circulating retinol and ATRA levels, cardiac tissue ATRA levels, and intracellular cardiac ATRA signaling in the context of heart and vascular disease has only begun to be addressed. We have recently shown that patients with idiopathic dilated cardiomyopathy show a nearly 40% decline of in situ cardiac ATRA levels, despite adequate local stores of retinol. Moreover, we and others have shown that the administration of ATRA forestalls the development of heart failure (HF) in rodent models. In this review, we summarize key facets of retinoid metabolism and signaling and discuss mechanisms by which impaired ATRA signaling contributes to several HF hallmarks including hypertrophy, contractile dysfunction, poor calcium handling, redox imbalance, and fibrosis. We highlight unresolved issues in cardiac ATRA metabolism whose pursuit will help refine therapeutic strategies aimed at restoring ATRA homeostasis.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Kyriakos N Papanicolaou
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | | | - Eva M Weinberger
- School of Medicine, Imperial College London, London, United Kingdom
| | - Maureen A Kane
- School of Pharmacy, University of Maryland, Baltimore, Maryland, United States
| | - D Brian Foster
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
2
|
Caño-Carrillo S, Garcia-Padilla C, Aranega AE, Lozano-Velasco E, Franco D. Mef2c- and Nkx2-5-Divergent Transcriptional Regulation of Chick WT1_76127 and Mouse Gm14014 lncRNAs and Their Implication in Epicardial Cell Migration. Int J Mol Sci 2024; 25:12904. [PMID: 39684625 DOI: 10.3390/ijms252312904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiac development is a complex developmental process. The early cardiac straight tube is composed of an external myocardial layer and an internal endocardial lining. Soon after rightward looping, the embryonic heart becomes externally covered by a new epithelial lining, the embryonic epicardium. A subset of these embryonic epicardial cells migrate and colonize the embryonic myocardium, contributing to the formation of distinct cell types. In recent years, our understanding of the molecular mechanisms that govern proepicardium and embryonic epicardium formation has greatly increased. We have recently witnessed the discovery of a novel layer of complexity governing gene regulation with the discovery of non-coding RNAs. Our laboratory recently identified three distinct lncRNAs, adjacent to the Wt1, Bmp4 and Fgf8 chicken gene loci, with enhanced expression in the proepicardium that are distinctly regulated by Bmp, Fgf and thymosin β4, providing support for their plausible implication in epicardial formation. The expression of lncRNAs was analyzed in different chicken and mouse tissues as well as their subcellular distribution in chicken proepicardial, epicardial, ventricle explants and in different murine cardiac cell types. lncRNA transcriptional regulation was analyzed by using siRNAs and expression vectors of different transcription factors in chicken and mouse models, whereas antisense oligonucleotides were used to inhibit Gm14014 expression. Furthermore, RT-qPCR, immunocytochemistry, RNA pulldown, Western blot, viability and cell migration assays were conducted to investigate the biological functions of Wt1_76127 and Gm14014. We demonstrated that Wt1_76127 in chicken and its putative conserved homologue Gm14014 in mice are widely distributed in different embryonic and adult tissues and distinctly regulated by cardiac-enriched transcription factors, particularly Mef2c and Nkx2.5. Furthermore, silencing assays demonstrated that mouse Gm14014, but not chicken Wt1_76127, is essential for epicardial, but not endocardial or myocardial, cell migration. Such processes are governed by partnering with Myl9, promoting cytoskeletal remodeling. Our data show that Gm14014 plays a pivotal role in epicardial cell migration essential for heart regeneration under these experimental conditions.
Collapse
Affiliation(s)
- Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Amelia E Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| |
Collapse
|
3
|
Jang J, Accornero F, Li D. Epigenetic determinants and non-myocardial signaling pathways contributing to heart growth and regeneration. Pharmacol Ther 2024; 257:108638. [PMID: 38548089 PMCID: PMC11931646 DOI: 10.1016/j.pharmthera.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Congenital heart disease is the most common birth defect worldwide. Defective cardiac myogenesis is either a major presentation or associated with many types of congenital heart disease. Non-myocardial tissues, including endocardium and epicardium, function as a supporting hub for myocardial growth and maturation during heart development. Recent research findings suggest an emerging role of epigenetics in nonmyocytes supporting myocardial development. Understanding how growth signaling pathways in non-myocardial tissues are regulated by epigenetic factors will likely identify new disease mechanisms for congenital heart diseases and shed lights for novel therapeutic strategies for heart regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| | - Federica Accornero
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| |
Collapse
|
4
|
Luo Y, He F, Zhang Y, Li S, Lu R, Wei X, Huang J. Transcription Factor 21: A Transcription Factor That Plays an Important Role in Cardiovascular Disease. Pharmacology 2024; 109:183-193. [PMID: 38493769 DOI: 10.1159/000536585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND According to the World Health Organisation's Health Report 2019, approximately 17.18 million people die from cardiovascular disease each year, accounting for more than 30% of all global deaths. Therefore, the occurrence of cardiovascular disease is still a global concern. The transcription factor 21 (TCF21) plays an important role in cardiovascular diseases. This article reviews the regulation mechanism of TCF21 expression and activity and focuses on its important role in atherosclerosis in order to contribute to the development of diagnosis and treatment of cardiovascular diseases. SUMMARY TCF21 is involved in the phenotypic regulation of vascular smooth muscle cells (VSMCs), promotes the proliferation and migration of VSMCs, and participates in the activation of inflammatory sequences. Increased proliferation and migration of VSMCs can lead to neointimal hyperplasia after vascular injury. Abnormal hyperplasia of neointima and inflammation are one of the main features of atherosclerosis. Therefore, targeting TCF21 may become a potential treatment for relieving atherosclerosis. KEY MESSAGES TCF21 as a member of basic helix-loop-helix transcription factors regulates cell growth and differentiation by modulating gene expression during the development of different organs and plays an important role in cardiovascular development and disease. VSMCs and cells derived from VSMCs constitute the majority of plaques in atherosclerosis. TCF21 plays a key role in regulation of VSMCs' phenotype, thus accelerating atherogenesis in the early stage. However, TCF21 enhances plaque stability in late-stage atherosclerosis. The dual role of TCF21 should be considered in the translational medicine.
Collapse
Affiliation(s)
- Yaqian Luo
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China,
| | - Fangzhou He
- Department of Anaesthesia, Chuanshan College, University of South China, Hengyang, China
| | - Yifang Zhang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Shufan Li
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Xing Wei
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Ji Huang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
5
|
Lin A, Ramaswamy Y, Misra A. Developmental heterogeneity of vascular cells: Insights into cellular plasticity in atherosclerosis? Semin Cell Dev Biol 2024; 155:3-15. [PMID: 37316416 DOI: 10.1016/j.semcdb.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Smooth muscle cells, endothelial cells and macrophages display remarkable heterogeneity within the healthy vasculature and under pathological conditions. During development, these cells arise from numerous embryological origins, which confound with different microenvironments to generate postnatal vascular cell diversity. In the atherosclerotic plaque milieu, all these cell types exhibit astonishing plasticity, generating a variety of plaque burdening or plaque stabilizing phenotypes. And yet how developmental origin influences intraplaque cell plasticity remains largely unexplored despite evidence suggesting this may be the case. Uncovering the diversity and plasticity of vascular cells is being revolutionized by unbiased single cell whole transcriptome analysis techniques that will likely continue to pave the way for therapeutic research. Cellular plasticity is only just emerging as a target for future therapeutics, and uncovering how intraplaque plasticity differs across vascular beds may provide key insights into why different plaques behave differently and may confer different risks of subsequent cardiovascular events.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, NSW, Australia; School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, NSW, Australia; Heart Research Institute, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Mann EA, Mogle MS, Park J, Reddy P. Transcription factor Tcf21 modulates urinary bladder size and differentiation. Dev Growth Differ 2024; 66:106-118. [PMID: 38197329 PMCID: PMC11457511 DOI: 10.1111/dgd.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Urinary bladder organogenesis requires coordinated cell growth, specification, and patterning of both mesenchymal and epithelial compartments. Tcf21, a gene that encodes a helix-loop-helix transcription factor, is specifically expressed in the mesenchyme of the bladder during development. Here we show that Tcf21 is required for normal development of the bladder. We found that the bladders of mice lacking Tcf21 were notably hypoplastic and that the Tcf21 mutant mesenchyme showed increased apoptosis. There was also a marked delay in the formation of visceral smooth muscle, accompanied by a defect in myocardin (Myocd) expression. Interestingly, there was also a marked delay in the formation of the basal cell layer of the urothelium, distinguished by diminished expression of Krt5 and Krt14. Our findings suggest that Tcf21 regulates the survival and differentiation of mesenchyme cell-autonomously and the maturation of the adjacent urothelium non-cell-autonomously during bladder development.
Collapse
Affiliation(s)
- Elizabeth A. Mann
- Division of Pediatric UrologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Melissa S. Mogle
- Division of Pediatric UrologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Joo‐Seop Park
- Division of Nephrology and HypertensionNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- The Feinberg Cardiovascular and Renal Research InstituteChicagoIllinoisUSA
| | - Pramod Reddy
- Division of Pediatric UrologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| |
Collapse
|
7
|
Fernandes I, Funakoshi S, Hamidzada H, Epelman S, Keller G. Modeling cardiac fibroblast heterogeneity from human pluripotent stem cell-derived epicardial cells. Nat Commun 2023; 14:8183. [PMID: 38081833 PMCID: PMC10713677 DOI: 10.1038/s41467-023-43312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Cardiac fibroblasts play an essential role in the development of the heart and are implicated in disease progression in the context of fibrosis and regeneration. Here, we establish a simple organoid culture platform using human pluripotent stem cell-derived epicardial cells and ventricular cardiomyocytes to study the development, maturation, and heterogeneity of cardiac fibroblasts under normal conditions and following treatment with pathological stimuli. We demonstrate that this system models the early interactions between epicardial cells and cardiomyocytes to generate a population of fibroblasts that recapitulates many aspects of fibroblast behavior in vivo, including changes associated with maturation and in response to pathological stimuli associated with cardiac injury. Using single cell transcriptomics, we show that the hPSC-derived organoid fibroblast population displays a high degree of heterogeneity that approximates the heterogeneity of populations in both the normal and diseased human heart. Additionally, we identify a unique subpopulation of fibroblasts possessing reparative features previously characterized in the hearts of model organisms. Taken together, our system recapitulates many aspects of human cardiac fibroblast specification, development, and maturation, providing a platform to investigate the role of these cells in human cardiovascular development and disease.
Collapse
Affiliation(s)
- Ian Fernandes
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Shunsuke Funakoshi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G1L7, Canada.
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan.
| | - Homaira Hamidzada
- Toronto General Hospital Research Institute, University Health Network Toronto, Toronto, ON, M5G1L7, Canada
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, M5G1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON, M5G1L7, Canada
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network Toronto, Toronto, ON, M5G1L7, Canada
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, M5G1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON, M5G1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G1L7, Canada
- Peter Munk Cardiac Centre, University Health Networ, Toronto, ON, M5G1L7, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G1L7, Canada.
| |
Collapse
|
8
|
Carmona R, López-Sánchez C, Garcia-Martinez V, Garcia-López V, Muñoz-Chápuli R, Lozano-Velasco E, Franco D. Novel Insights into the Molecular Mechanisms Governing Embryonic Epicardium Formation. J Cardiovasc Dev Dis 2023; 10:440. [PMID: 37998498 PMCID: PMC10672416 DOI: 10.3390/jcdd10110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/25/2023] Open
Abstract
The embryonic epicardium originates from the proepicardium, an extracardiac primordium constituted by a cluster of mesothelial cells. In early embryos, the embryonic epicardium is characterized by a squamous cell epithelium resting on the myocardium surface. Subsequently, it invades the subepicardial space and thereafter the embryonic myocardium by means of an epithelial-mesenchymal transition. Within the myocardium, epicardial-derived cells present multilineage potential, later differentiating into smooth muscle cells and contributing both to coronary vasculature and cardiac fibroblasts in the mature heart. Over the last decades, we have progressively increased our understanding of those cellular and molecular mechanisms driving proepicardial/embryonic epicardium formation. This study provides a state-of-the-art review of the transcriptional and emerging post-transcriptional mechanisms involved in the formation and differentiation of the embryonic epicardium.
Collapse
Affiliation(s)
- Rita Carmona
- Department of Human Anatomy, Legal Medicine and History of Science, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain;
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
| | - Virginio Garcia-Martinez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
| | - Virginio Garcia-López
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain;
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Málaga, 29071 Málaga, Spain;
| | - Estefanía Lozano-Velasco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain;
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain;
| |
Collapse
|
9
|
Sanchez-Fernandez C, Rodriguez-Outeiriño L, Matias-Valiente L, Ramírez de Acuña F, Franco D, Aránega AE. Understanding Epicardial Cell Heterogeneity during Cardiogenesis and Heart Regeneration. J Cardiovasc Dev Dis 2023; 10:376. [PMID: 37754805 PMCID: PMC10531887 DOI: 10.3390/jcdd10090376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
The outermost layer of the heart, the epicardium, is an essential cell population that contributes, through epithelial-to-mesenchymal transition (EMT), to the formation of different cell types and provides paracrine signals to the developing heart. Despite its quiescent state during adulthood, the adult epicardium reactivates and recapitulates many aspects of embryonic cardiogenesis in response to cardiac injury, thereby supporting cardiac tissue remodeling. Thus, the epicardium has been considered a crucial source of cell progenitors that offers an important contribution to cardiac development and injured hearts. Although several studies have provided evidence regarding cell fate determination in the epicardium, to date, it is unclear whether epicardium-derived cells (EPDCs) come from specific, and predetermined, epicardial cell subpopulations or if they are derived from a common progenitor. In recent years, different approaches have been used to study cell heterogeneity within the epicardial layer using different experimental models. However, the data generated are still insufficient with respect to revealing the complexity of this epithelial layer. In this review, we summarize the previous works documenting the cellular composition, molecular signatures, and diversity within the developing and adult epicardium.
Collapse
Affiliation(s)
- Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Lara Rodriguez-Outeiriño
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Lidia Matias-Valiente
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Felicitas Ramírez de Acuña
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Amelia Eva Aránega
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| |
Collapse
|
10
|
Alonso-Herranz L, Albarrán-Juárez J, Bentzon JF. Mechanisms of fibrous cap formation in atherosclerosis. Front Cardiovasc Med 2023; 10:1254114. [PMID: 37671141 PMCID: PMC10475556 DOI: 10.3389/fcvm.2023.1254114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
The fibrous cap is formed by smooth muscle cells that accumulate beneath the plaque endothelium. Cap rupture is the main cause of coronary thrombosis, leading to infarction and sudden cardiac death. Therefore, the qualities of the cap are primary determinants of the clinical outcome of coronary and carotid atherosclerosis. In this mini-review, we discuss current knowledge about the formation of the fibrous cap, including cell recruitment, clonal expansion, and central molecular signaling pathways. We also examine the differences between mouse and human fibrous caps and explore the impact of anti-atherosclerotic therapies on the state of the fibrous cap. We propose that the cap should be understood as a neo-media to substitute for the original media that becomes separated from the surface endothelium during atherogenesis and that embryonic pathways involved in the development of the arteria media contribute to cap formation.
Collapse
Affiliation(s)
- Laura Alonso-Herranz
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Julián Albarrán-Juárez
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob Fog Bentzon
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Du J, Yuan X, Deng H, Huang R, Liu B, Xiong T, Long X, Zhang L, Li Y, She Q. Single-cell and spatial heterogeneity landscapes of mature epicardial cells. J Pharm Anal 2023; 13:894-907. [PMID: 37719196 PMCID: PMC10499659 DOI: 10.1016/j.jpha.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023] Open
Abstract
Tbx18, Wt1, and Tcf21 have been identified as epicardial markers during the early embryonic stage. However, the gene markers of mature epicardial cells remain unclear. Single-cell transcriptomic analysis was performed with the Seurat, Monocle, and CellphoneDB packages in R software with standard procedures. Spatial transcriptomics was performed on chilled Visium Tissue Optimization Slides (10x Genomics) and Visium Spatial Gene Expression Slides (10x Genomics). Spatial transcriptomics analysis was performed with Space Ranger software and R software. Immunofluorescence, whole-mount RNA in situ hybridization and X-gal staining were performed to validate the analysis results. Spatial transcriptomics analysis revealed distinct transcriptional profiles and functions between epicardial tissue and non-epicardial tissue. Several gene markers specific to postnatal epicardial tissue were identified, including Msln, C3, Efemp1, and Upk3b. Single-cell transcriptomic analysis revealed that cardiac cells from wildtype mouse hearts (from embryonic day 9.5 to postnatal day 9) could be categorized into six major cell types, which included epicardial cells. Throughout epicardial development, Wt1, Tbx18, and Upk3b were consistently expressed, whereas genes including Msln, C3, and Efemp1 exhibited increased expression during the mature stages of development. Pseudotime analysis further revealed two epicardial cell fates during maturation. Moreover, Upk3b, Msln, Efemp1, and C3 positive epicardial cells were enriched in extracellular matrix signaling. Our results suggested Upk3b, Efemp1, Msln, C3, and other genes were mature epicardium markers. Extracellular matrix signaling was found to play a critical role in the mature epicardium, thus suggesting potential therapeutic targets for heart regeneration in future clinical practice.
Collapse
Affiliation(s)
- Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Haijun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Rongzhong Huang
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Tianhua Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xianglin Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ling Zhang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
12
|
Streef TJ, Groeneveld EJ, van Herwaarden T, Hjortnaes J, Goumans MJ, Smits AM. Single-cell analysis of human fetal epicardium reveals its cellular composition and identifies CRIP1 as a modulator of EMT. Stem Cell Reports 2023:S2213-6711(23)00229-1. [PMID: 37390825 PMCID: PMC10362506 DOI: 10.1016/j.stemcr.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023] Open
Abstract
The epicardium plays an essential role in cardiogenesis by providing cardiac cell types and paracrine cues to the developing myocardium. The human adult epicardium is quiescent, but recapitulation of developmental features may contribute to adult cardiac repair. The cell fate of epicardial cells is proposed to be determined by the developmental persistence of specific subpopulations. Reports on this epicardial heterogeneity have been inconsistent, and data regarding the human developing epicardium are scarce. Here we specifically isolated human fetal epicardium and used single-cell RNA sequencing to define its composition and to identify regulators of developmental processes. Few specific subpopulations were observed, but a clear distinction between epithelial and mesenchymal cells was present, resulting in novel population-specific markers. Additionally, we identified CRIP1 as a previously unknown regulator involved in epicardial epithelial-to-mesenchymal transition. Overall, our human fetal epicardial cell-enriched dataset provides an excellent platform to study the developing epicardium in great detail.
Collapse
Affiliation(s)
- Thomas J Streef
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Esmee J Groeneveld
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tessa van Herwaarden
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anke M Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
13
|
Uscategui Calderon M, Gonzalez BA, Yutzey KE. Cardiomyocyte-fibroblast crosstalk in the postnatal heart. Front Cell Dev Biol 2023; 11:1163331. [PMID: 37077417 PMCID: PMC10106698 DOI: 10.3389/fcell.2023.1163331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
During the postnatal period in mammals, the heart undergoes significant remodeling in response to increased circulatory demands. In the days after birth, cardiac cells, including cardiomyocytes and fibroblasts, progressively lose embryonic characteristics concomitant with the loss of the heart’s ability to regenerate. Moreover, postnatal cardiomyocytes undergo binucleation and cell cycle arrest with induction of hypertrophic growth, while cardiac fibroblasts proliferate and produce extracellular matrix (ECM) that transitions from components that support cellular maturation to production of the mature fibrous skeleton of the heart. Recent studies have implicated interactions of cardiac fibroblasts and cardiomyocytes within the maturing ECM environment to promote heart maturation in the postnatal period. Here, we review the relationships of different cardiac cell types and the ECM as the heart undergoes both structural and functional changes during development. Recent advances in the field, particularly in several recently published transcriptomic datasets, have highlighted specific signaling mechanisms that underlie cellular maturation and demonstrated the biomechanical interdependence of cardiac fibroblast and cardiomyocyte maturation. There is increasing evidence that postnatal heart development in mammals is dependent on particular ECM components and that resulting changes in biomechanics influence cell maturation. These advances, in definition of cardiac fibroblast heterogeneity and function in relation to cardiomyocyte maturation and the extracellular environment provide, support for complex cell crosstalk in the postnatal heart with implications for heart regeneration and disease mechanisms.
Collapse
Affiliation(s)
- Maria Uscategui Calderon
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brittany A. Gonzalez
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Katherine E. Yutzey,
| |
Collapse
|
14
|
Guahmich NL, Man L, Wang J, Arazi L, Kallinos E, Topper-Kroog A, Grullon G, Zhang K, Stewart J, Schatz-Siemers N, Jones SH, Bodine R, Zaninovic N, Schattman G, Rosenwaks Z, James D. Human theca arises from ovarian stroma and is comprised of three discrete subtypes. Commun Biol 2023; 6:7. [PMID: 36599970 DOI: 10.1038/s42003-022-04384-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Theca cells serve multiple essential functions during the growth and maturation of ovarian follicles, providing structural, metabolic, and steroidogenic support. While the function of theca during folliculogenesis is well established, their cellular origins and the differentiation hierarchy that generates distinct theca sub-types, remain unknown. Here, we performed single cell multi-omics analysis of primary cell populations purified from human antral stage follicles (1-3 mm) to define the differentiation trajectory of theca/stroma cells. We then corroborated the temporal emergence and growth kinetics of defined theca/stroma subpopulations using human ovarian tissue samples and xenografts of cryopreserved/thawed ovarian cortex, respectively. We identified three lineage specific derivatives termed structural, androgenic, and perifollicular theca cells, as well as their putative lineage-negative progenitor. These findings provide a framework for understanding the differentiation process that occurs in each primordial follicle and identifies specific cellular/molecular phenotypes that may be relevant to either diagnosis or treatment of ovarian pathologies.
Collapse
Affiliation(s)
- Nicole Lustgarten Guahmich
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Limor Man
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jerry Wang
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Laury Arazi
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Eleni Kallinos
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ariana Topper-Kroog
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Gabriel Grullon
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kimberly Zhang
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Joshua Stewart
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Nina Schatz-Siemers
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sam H Jones
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Richard Bodine
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Nikica Zaninovic
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Glenn Schattman
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zev Rosenwaks
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Daylon James
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
15
|
Knight-Schrijver VR, Davaapil H, Bayraktar S, Ross ADB, Kanemaru K, Cranley J, Dabrowska M, Patel M, Polanski K, He X, Vallier L, Teichmann S, Gambardella L, Sinha S. A single-cell comparison of adult and fetal human epicardium defines the age-associated changes in epicardial activity. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1215-1229. [PMID: 36938497 PMCID: PMC7614330 DOI: 10.1038/s44161-022-00183-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
Re-activating quiescent adult epicardium represents a potential therapeutic approach for human cardiac regeneration. However, the exact molecular differences between inactive adult and active fetal epicardium are not known. In this study, we combined fetal and adult human hearts using single-cell and single-nuclei RNA sequencing and compared epicardial cells from both stages. We found that a migratory fibroblast-like epicardial population only in the fetal heart and fetal epicardium expressed angiogenic gene programs, whereas the adult epicardium was solely mesothelial and immune responsive. Furthermore, we predicted that adult hearts may still receive fetal epicardial paracrine communication, including WNT signaling with endocardium, reinforcing the validity of regenerative strategies that administer or reactivate epicardial cells in situ. Finally, we explained graft efficacy of our human embryonic stem-cell-derived epicardium model by noting its similarity to human fetal epicardium. Overall, our study defines epicardial programs of regenerative angiogenesis absent in adult hearts, contextualizes animal studies and defines epicardial states required for effective human heart regeneration.
Collapse
Affiliation(s)
- Vincent R. Knight-Schrijver
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Hongorzul Davaapil
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Semih Bayraktar
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Alexander D. B. Ross
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | | | - James Cranley
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Monika Dabrowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Xiaoling He
- John van Geest Centre for Brain Repair, Cambridge University, Cambridge, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Berlin Institute of Health (BIH), BIH Centre for Regenerative Therapies (BCRT), Charité - Universitätsmedizin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sarah Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Laure Gambardella
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- These authors jointly supervised this work: Laure Gambardella, Sanjay Sinha
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- These authors jointly supervised this work: Laure Gambardella, Sanjay Sinha
| |
Collapse
|
16
|
Li C, Sun J, Liu Q, Dodlapati S, Ming H, Wang L, Li Y, Li R, Jiang Z, Francis J, Fu X. The landscape of accessible chromatin in quiescent cardiac fibroblasts and cardiac fibroblasts activated after myocardial infarction. Epigenetics 2022; 17:1020-1039. [PMID: 34551670 PMCID: PMC9487753 DOI: 10.1080/15592294.2021.1982158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022] Open
Abstract
After myocardial infarction, the massive death of cardiomyocytes leads to cardiac fibroblast proliferation and myofibroblast differentiation, which contributes to the extracellular matrix remodelling of the infarcted myocardium. We recently found that myofibroblasts further differentiate into matrifibrocytes, a newly identified cardiac fibroblast differentiation state. Cardiac fibroblasts of different states have distinct gene expression profiles closely related to their functions. However, the mechanism responsible for the gene expression changes during these activation and differentiation events is still not clear. In this study, the gene expression profiling and genome-wide accessible chromatin mapping of mouse cardiac fibroblasts isolated from the uninjured myocardium and the infarct at multiple time points corresponding to different differentiation states were performed by RNA sequencing (RNA-seq) and the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), respectively. ATAC-seq peaks were highly enriched in the promoter area and the distal area where the enhancers are located. A positive correlation was identified between the expression and promoter accessibility for many dynamically expressed genes, even though evidence showed that mechanisms independent of chromatin accessibility may also contribute to the gene expression changes in cardiac fibroblasts after MI. Moreover, motif enrichment analysis and gene regulatory network construction identified transcription factors that possibly contributed to the differential gene expression between cardiac fibroblasts of different states.
Collapse
Affiliation(s)
- Chaoyang Li
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Jiangwen Sun
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Qianglin Liu
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Sanjeeva Dodlapati
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Hao Ming
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Leshan Wang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Yuxia Li
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, La, USA
| | - Xing Fu
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
17
|
Regulation of Epicardial Cell Fate during Cardiac Development and Disease: An Overview. Int J Mol Sci 2022; 23:ijms23063220. [PMID: 35328640 PMCID: PMC8950551 DOI: 10.3390/ijms23063220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
The epicardium is the outermost cell layer in the vertebrate heart that originates during development from mesothelial precursors located in the proepicardium and septum transversum. The epicardial layer plays a key role during cardiogenesis since a subset of epicardial-derived cells (EPDCs) undergo an epithelial–mesenchymal transition (EMT); migrate into the myocardium; and differentiate into distinct cell types, such as coronary vascular smooth muscle cells, cardiac fibroblasts, endothelial cells, and presumably a subpopulation of cardiomyocytes, thus contributing to complete heart formation. Furthermore, the epicardium is a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis. Although several lineage trace studies have provided some evidence about epicardial cell fate determination, the molecular mechanisms underlying epicardial cell heterogeneity remain not fully understood. Interestingly, seminal works during the last decade have pointed out that the adult epicardium is reactivated after heart damage, re-expressing some embryonic genes and contributing to cardiac remodeling. Therefore, the epicardium has been proposed as a potential target in the treatment of cardiovascular disease. In this review, we summarize the previous knowledge regarding the regulation of epicardial cell contribution during development and the control of epicardial reactivation in cardiac repair after damage.
Collapse
|
18
|
Picchio V, Bordin A, Floris E, Cozzolino C, Dhori X, Peruzzi M, Frati G, De Falco E, Pagano F, Chimenti I. The dynamic facets of the cardiac stroma: from classical markers to omics and translational perspectives. Am J Transl Res 2022; 14:1172-1187. [PMID: 35273721 PMCID: PMC8902528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Cardiac stromal cells have been long underestimated in their functions in homeostasis and repair. Recent evidence has changed this perspective in that many more players and facets than just "cardiac fibroblasts" have entered the field. Single cell transcriptomic studies on cardiac interstitial cells have shed light on the phenotypic plasticity of the stroma, whose transcriptional profile is dynamically regulated in homeostatic conditions and in response to external stimuli. Different populations and/or functional states that appear in homeostasis and pathology have been described, particularly increasing the complexity of studying the cardiac response to injury. In this review, we outline current phenotypical and molecular markers, and the approaches developed for identifying and classifying cardiac stromal cells. Significant advances in our understanding of cardiac stromal populations will provide a deeper knowledge on myocardial functional cellular components, as well as a platform for future developments of novel therapeutic strategies to counteract cardiac fibrosis and adverse cardiac remodeling.
Collapse
Affiliation(s)
- Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
| | - Erica Floris
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
| | - Claudia Cozzolino
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
| | - Xhulio Dhori
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
| | - Mariangela Peruzzi
- Mediterranea CardiocentroNapoli, Italy
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of RomeItaly
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
- IRCCS NeuromedPozzilli, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
- Mediterranea CardiocentroNapoli, Italy
| | - Francesca Pagano
- Biochemistry and Cellular Biology Institute, CNRMonterotondo, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
- Mediterranea CardiocentroNapoli, Italy
| |
Collapse
|
19
|
Shen L, Yu J, Ge Y, Li H, Li Y, Cao Z, Luan P, Xiao F, Gao H, Zhang H. Associations of Transcription Factor 21 Gene Polymorphisms with the Growth and Body Composition Traits in Broilers. Animals (Basel) 2022; 12:ani12030393. [PMID: 35158719 PMCID: PMC8833368 DOI: 10.3390/ani12030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The functional SNPs discovered in this work will give helpful information on the crucial molecular markers that may be employed in breeding efforts to improve the heart development of broiler chickens. Abstract This study aims to identify molecular marker loci that could be applied in broiler breeding programs. In this study, we used public databases to locate the Transcription factor 21 (TCF21) gene that affected the economically important traits in broilers. Ten single nucleotide polymorphisms were detected in the TCF21 gene by monoclonal sequencing. The polymorphisms of these 10 SNPs in the TCF21 gene were significantly associated (p < 0.05) with multiple growth and body composition traits. Furthermore, the TT genotype of g.-911T>G was identified to significantly increase the heart weight trait without affecting the negative traits, such as abdominal fat and reproduction by multiple methods. Thus, it was speculated that the g.-911T>G identified in the TCF21 gene might be used in marker-assisted selection in the broiler breeding program.
Collapse
Affiliation(s)
- Linyong Shen
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Jiaqiang Yu
- Forest Investigating and Planning Institute of Daxinganling, Yakshi 022150, China;
| | - Yaowen Ge
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Zhiping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Fan Xiao
- Fujian Sunnzer Biotechnology Development Co., Ltd., Nanping 354100, China; (F.X.); (H.G.)
| | - Haihe Gao
- Fujian Sunnzer Biotechnology Development Co., Ltd., Nanping 354100, China; (F.X.); (H.G.)
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
- Correspondence: ; Tel.: +86-451-55191486
| |
Collapse
|
20
|
CDH18 is a fetal epicardial biomarker regulating differentiation towards vascular smooth muscle cells. NPJ Regen Med 2022; 7:14. [PMID: 35110584 PMCID: PMC8810917 DOI: 10.1038/s41536-022-00207-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/20/2021] [Indexed: 11/08/2022] Open
Abstract
The epicardium is a mesothelial layer covering the myocardium serving as a progenitor source during cardiac development. The epicardium reactivates upon cardiac injury supporting cardiac repair and regeneration. Fine-tuned balanced signaling regulates cell plasticity and cell-fate decisions of epicardial-derived cells (EPCDs) via epicardial-to-mesenchymal transition (EMT). However, powerful tools to investigate epicardial function, including markers with pivotal roles in developmental signaling, are still lacking. Here, we recapitulated epicardiogenesis using human induced pluripotent stem cells (hiPSCs) and identified type II classical cadherin CDH18 as a biomarker defining lineage specification in human active epicardium. The loss of CDH18 led to the onset of EMT and specific differentiation towards cardiac smooth muscle cells. Furthermore, GATA4 regulated epicardial CDH18 expression. These results highlight the importance of tracing CDH18 expression in hiPSC-derived epicardial cells, providing a model for investigating epicardial function in human development and disease and enabling new possibilities for regenerative medicine.
Collapse
|
21
|
Wiesinger A, Boink GJJ, Christoffels VM, Devalla HD. Retinoic acid signaling in heart development: Application in the differentiation of cardiovascular lineages from human pluripotent stem cells. Stem Cell Reports 2021; 16:2589-2606. [PMID: 34653403 PMCID: PMC8581056 DOI: 10.1016/j.stemcr.2021.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
Retinoic acid (RA) signaling plays an important role during heart development in establishing anteroposterior polarity, formation of inflow and outflow tract progenitors, and growth of the ventricular compact wall. RA is also utilized as a key ingredient in protocols designed for generating cardiac cell types from pluripotent stem cells (PSCs). This review discusses the role of RA in cardiogenesis, currently available protocols that employ RA for differentiation of various cardiovascular lineages, and plausible transcriptional mechanisms underlying this fate specification. These insights will inform further development of desired cardiac cell types from human PSCs and their application in preclinical and clinical research.
Collapse
Affiliation(s)
- Alexandra Wiesinger
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Cardiology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Harsha D Devalla
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Duong TB, Waxman JS. Patterning of vertebrate cardiac progenitor fields by retinoic acid signaling. Genesis 2021; 59:e23458. [PMID: 34665508 DOI: 10.1002/dvg.23458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
The influence of retinoic acid (RA) signaling on vertebrate development has a well-studied history. Cumulatively, we now understand that RA signaling has a conserved requirement early in development restricting cardiac progenitors within the anterior lateral plate mesoderm of vertebrate embryos. Moreover, genetic and pharmacological manipulations of RA signaling in vertebrate models have shown that proper heart development is achieved through the deployment of positive and negative feedback mechanisms, which maintain appropriate RA levels. In this brief review, we present a chronological overview of key work that has led to a current model of the critical role for early RA signaling in limiting the generation of cardiac progenitors within vertebrate embryos. Furthermore, we integrate the previous work in mice and our recent findings using zebrafish, which together show that RA signaling has remarkably conserved influences on the later-differentiating progenitor populations at the arterial and venous poles. We discuss how recognizing the significant conservation of RA signaling on the differentiation of these progenitor populations offers new perspectives and may impact future work dedicated to examining vertebrate heart development.
Collapse
Affiliation(s)
- Tiffany B Duong
- Molecular Genetics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
23
|
Da Silva F, Jian Motamedi F, Weerasinghe Arachchige LC, Tison A, Bradford ST, Lefebvre J, Dolle P, Ghyselinck NB, Wagner KD, Schedl A. Retinoic acid signaling is directly activated in cardiomyocytes and protects mouse hearts from apoptosis after myocardial infarction. eLife 2021; 10:68280. [PMID: 34623260 PMCID: PMC8530512 DOI: 10.7554/elife.68280] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022] Open
Abstract
Retinoic acid (RA) is an essential signaling molecule for cardiac development and plays a protective role in the heart after myocardial infarction (MI). In both cases, the effect of RA signaling on cardiomyocytes, the principle cell type of the heart, has been reported to be indirect. Here we have developed an inducible murine transgenic RA-reporter line using CreERT2 technology that permits lineage tracing of RA-responsive cells and faithfully recapitulates endogenous RA activity in multiple organs during embryonic development. Strikingly, we have observed a direct RA response in cardiomyocytes during mid-late gestation and after MI. Ablation of RA signaling through deletion of the Aldh1a1/a2/a3 genes encoding RA-synthesizing enzymes leads to increased cardiomyocyte apoptosis in adults subjected to MI. RNA sequencing analysis reveals Tgm2 and Ace1, two genes with well-established links to cardiac repair, as potential targets of RA signaling in primary cardiomyocytes, thereby providing novel links between the RA pathway and heart disease.
Collapse
Affiliation(s)
| | | | | | - Amelie Tison
- Université Côte d'Azur, Inserm, CNRS, iBV, Nice, France
| | | | | | - Pascal Dolle
- IGBMC, Inserm U1258, UNISTRA CNRS, Illkirch, France
| | | | - Kay D Wagner
- Université Côte d'Azur, Inserm, CNRS, iBV, Nice, France
| | | |
Collapse
|
24
|
Streef TJ, Smits AM. Epicardial Contribution to the Developing and Injured Heart: Exploring the Cellular Composition of the Epicardium. Front Cardiovasc Med 2021; 8:750243. [PMID: 34631842 PMCID: PMC8494983 DOI: 10.3389/fcvm.2021.750243] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The epicardium is an essential cell population during cardiac development. It contributes different cell types to the developing heart through epithelial-to-mesenchymal transition (EMT) and it secretes paracrine factors that support cardiac tissue formation. In the adult heart the epicardium is a quiescent layer of cells which can be reactivated upon ischemic injury, initiating an embryonic-like response in the epicardium that contributes to post-injury repair processes. Therefore, the epicardial layer is considered an interesting target population to stimulate endogenous repair mechanisms. To date it is still not clear whether there are distinct cell populations in the epicardium that contribute to specific lineages or aid in cardiac repair, or that the epicardium functions as a whole. To address this putative heterogeneity, novel techniques such as single cell RNA sequencing (scRNA seq) are being applied. In this review, we summarize the role of the epicardium during development and after injury and provide an overview of the most recent insights into the cellular composition and diversity of the epicardium.
Collapse
Affiliation(s)
| | - Anke M. Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
25
|
Coordination of endothelial cell positioning and fate specification by the epicardium. Nat Commun 2021; 12:4155. [PMID: 34230480 PMCID: PMC8260743 DOI: 10.1038/s41467-021-24414-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The organization of an integrated coronary vasculature requires the specification of immature endothelial cells (ECs) into arterial and venous fates based on their localization within the heart. It remains unclear how spatial information controls EC identity and behavior. Here we use single-cell RNA sequencing at key developmental timepoints to interrogate cellular contributions to coronary vessel patterning and maturation. We perform transcriptional profiling to define a heterogenous population of epicardium-derived cells (EPDCs) that express unique chemokine signatures. We identify a population of Slit2+ EPDCs that emerge following epithelial-to-mesenchymal transition (EMT), which we term vascular guidepost cells. We show that the expression of guidepost-derived chemokines such as Slit2 are induced in epicardial cells undergoing EMT, while mesothelium-derived chemokines are silenced. We demonstrate that epicardium-specific deletion of myocardin-related transcription factors in mouse embryos disrupts the expression of key guidance cues and alters EPDC-EC signaling, leading to the persistence of an immature angiogenic EC identity and inappropriate accumulation of ECs on the epicardial surface. Our study suggests that EC pathfinding and fate specification is controlled by a common mechanism and guided by paracrine signaling from EPDCs linking epicardial EMT to EC localization and fate specification in the developing heart. It remains unclear how spatial information controls endothelial cell identity and behavior in the developing heart. Here the authors perform single cell RNA sequencing at key developmental timepoints in mice to interrogate cellular contributions to coronary vessel patterning and maturation in the epicardium.
Collapse
|
26
|
Boschen KE, Ptacek TS, Berginski ME, Simon JM, Parnell SE. Transcriptomic analyses of gastrulation-stage mouse embryos with differential susceptibility to alcohol. Dis Model Mech 2021; 14:dmm049012. [PMID: 34137816 PMCID: PMC8246266 DOI: 10.1242/dmm.049012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 12/28/2022] Open
Abstract
Genetics are a known contributor to differences in alcohol sensitivity in humans with fetal alcohol spectrum disorders (FASDs) and in animal models. Our study profiled gene expression in gastrulation-stage embryos from two commonly used, genetically similar mouse substrains, C57BL/6J (6J) and C57BL/6NHsd (6N), that differ in alcohol sensitivity. First, we established normal gene expression patterns at three finely resolved time points during gastrulation and developed a web-based interactive tool. Baseline transcriptional differences across strains were associated with immune signaling. Second, we examined the gene networks impacted by alcohol in each strain. Alcohol caused a more pronounced transcriptional effect in the 6J versus 6N mice, matching the increased susceptibility of the 6J mice. The 6J strain exhibited dysregulation of pathways related to cell death, proliferation, morphogenic signaling and craniofacial defects, while the 6N strain showed enrichment of hypoxia and cellular metabolism pathways. These datasets provide insight into the changing transcriptional landscape across mouse gastrulation, establish a valuable resource that enables the discovery of candidate genes that may modify alcohol susceptibility that can be validated in humans, and identify novel pathogenic mechanisms of alcohol. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Karen E. Boschen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Travis S. Ptacek
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew E. Berginski
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy M. Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott E. Parnell
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Shen M, Quertermous T, Fischbein MP, Wu JC. Generation of Vascular Smooth Muscle Cells From Induced Pluripotent Stem Cells: Methods, Applications, and Considerations. Circ Res 2021; 128:670-686. [PMID: 33818124 PMCID: PMC10817206 DOI: 10.1161/circresaha.120.318049] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The developmental origin of vascular smooth muscle cells (VSMCs) has been increasingly recognized as a major determinant for regional susceptibility or resistance to vascular diseases. As a human material-based complement to animal models and human primary cultures, patient induced pluripotent stem cell iPSC-derived VSMCs have been leveraged to conduct basic research and develop therapeutic applications in vascular diseases. However, iPSC-VSMCs (induced pluripotent stem cell VSMCs) derived by most existing induction protocols are heterogeneous in developmental origins. In this review, we summarize signaling networks that govern in vivo cell fate decisions and in vitro derivation of distinct VSMC progenitors, as well as key regulators that terminally specify lineage-specific VSMCs. We then highlight the significance of leveraging patient-derived iPSC-VSMCs for vascular disease modeling, drug discovery, and vascular tissue engineering and discuss several obstacles that need to be circumvented to fully unleash the potential of induced pluripotent stem cells for precision vascular medicine.
Collapse
Affiliation(s)
- Mengcheng Shen
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
| | - Thomas Quertermous
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
| | | | - Joseph C. Wu
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
28
|
Su H, Cantrell AC, Zeng H, Zhu SH, Chen JX. Emerging Role of Pericytes and Their Secretome in the Heart. Cells 2021; 10:548. [PMID: 33806335 PMCID: PMC8001346 DOI: 10.3390/cells10030548] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Pericytes, as mural cells covering microvascular capillaries, play an essential role in vascular remodeling and maintaining vascular functions and blood flow. Pericytes are crucial participants in the physiological and pathological processes of cardiovascular disease. They actively interact with endothelial cells, vascular smooth muscle cells (VSMCs), fibroblasts, and other cells via the mechanisms involved in the secretome. The secretome of pericytes, along with diverse molecules including proinflammatory cytokines, angiogenic growth factors, and the extracellular matrix (ECM), has great impacts on the formation, stabilization, and remodeling of vasculature, as well as on regenerative processes. Emerging evidence also indicates that pericytes work as mesenchymal cells or progenitor cells in cardiovascular regeneration. Their capacity for differentiation also contributes to vascular remodeling in different ways. Previous studies primarily focused on the roles of pericytes in organs such as the brain, retina, lung, and kidney; very few studies have focused on pericytes in the heart. In this review, following a brief introduction of the origin and fundamental characteristics of pericytes, we focus on pericyte functions and mechanisms with respect to heart disease, ending with the promising use of cardiac pericytes in the treatment of ischemic heart failure.
Collapse
Affiliation(s)
- Han Su
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Aubrey C Cantrell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shai-Hong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
29
|
Hussain A, Voisin V, Poon S, Karamboulas C, Bui NHB, Meens J, Dmytryshyn J, Ho VW, Tang KH, Paterson J, Clarke BA, Bernardini MQ, Bader GD, Neel BG, Ailles LE. Distinct fibroblast functional states drive clinical outcomes in ovarian cancer and are regulated by TCF21. J Exp Med 2021; 217:151793. [PMID: 32434219 PMCID: PMC7398174 DOI: 10.1084/jem.20191094] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 03/06/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Recent studies indicate that cancer-associated fibroblasts (CAFs) are phenotypically and functionally heterogeneous. However, little is known about CAF subtypes, the roles they play in cancer progression, and molecular mediators of the CAF “state.” Here, we identify a novel cell surface pan-CAF marker, CD49e, and demonstrate that two distinct CAF states, distinguished by expression of fibroblast activation protein (FAP), coexist within the CD49e+ CAF compartment in high-grade serous ovarian cancers. We show for the first time that CAF state influences patient outcomes and that this is mediated by the ability of FAP-high, but not FAP-low, CAFs to aggressively promote proliferation, invasion and therapy resistance of cancer cells. Overexpression of the FAP-low–specific transcription factor TCF21 in FAP-high CAFs decreases their ability to promote invasion, chemoresistance, and in vivo tumor growth, indicating that it acts as a master regulator of the CAF state. Understanding CAF states in more detail could lead to better patient stratification and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ali Hussain
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Veronique Voisin
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Poon
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Christina Karamboulas
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ngoc Hoang Bao Bui
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jalna Meens
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Julia Dmytryshyn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Victor W Ho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kwan Ho Tang
- Laura and Isaac Perlmutter Cancer Center, New York Langone Health, New York, NY
| | - Joshua Paterson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Blaise A Clarke
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Marcus Q Bernardini
- Division of Gynaecologic Oncology, University Health Network, Toronto, Ontario, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin G Neel
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Laura and Isaac Perlmutter Cancer Center, New York Langone Health, New York, NY
| | - Laurie E Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Silva AC, Pereira C, Fonseca ACRG, Pinto-do-Ó P, Nascimento DS. Bearing My Heart: The Role of Extracellular Matrix on Cardiac Development, Homeostasis, and Injury Response. Front Cell Dev Biol 2021; 8:621644. [PMID: 33511134 PMCID: PMC7835513 DOI: 10.3389/fcell.2020.621644] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is an essential component of the heart that imparts fundamental cellular processes during organ development and homeostasis. Most cardiovascular diseases involve severe remodeling of the ECM, culminating in the formation of fibrotic tissue that is deleterious to organ function. Treatment schemes effective at managing fibrosis and promoting physiological ECM repair are not yet in reach. Of note, the composition of the cardiac ECM changes significantly in a short period after birth, concurrent with the loss of the regenerative capacity of the heart. This highlights the importance of understanding ECM composition and function headed for the development of more efficient therapies. In this review, we explore the impact of ECM alterations, throughout heart ontogeny and disease, on cardiac cells and debate available approaches to deeper insights on cell–ECM interactions, toward the design of new regenerative therapies.
Collapse
Affiliation(s)
- Ana Catarina Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Gladstone Institutes, San Francisco, CA, United States
| | - Cassilda Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Catarina R G Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Perpétua Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
31
|
Hu H, Lin S, Wang S, Chen X. The Role of Transcription Factor 21 in Epicardial Cell Differentiation and the Development of Coronary Heart Disease. Front Cell Dev Biol 2020; 8:457. [PMID: 32582717 PMCID: PMC7290112 DOI: 10.3389/fcell.2020.00457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/18/2020] [Indexed: 02/02/2023] Open
Abstract
Transcription factor 21 (TCF21) is specific for mesoderm and is expressed in the embryos' mesenchymal derived tissues, such as the epicardium. It plays a vital role in regulating cell differentiation and cell fate specificity through epithelial-mesenchymal transformation during cardiac development. For instance, TCF21 could promote cardiac fibroblast development and inhibit vascular smooth muscle cells (VSMCs) differentiation of epicardial cells. Recent large-scale genome-wide association studies have identified a mass of loci associated with coronary heart disease (CHD). There is mounting evidence that TCF21 polymorphism might confer genetic susceptibility to CHD. However, the molecular mechanisms of TCF21 in heart development and CHD remain fundamentally problematic. In this review, we are committed to providing a detailed introduction of the biological roles of TCF21 in epicardial fate determination and the development of CHD.
Collapse
Affiliation(s)
- Haochang Hu
- School of Medicine, Ningbo University, Ningbo, China.,Department of Cardiology, Ningbo City First Hospital, Ningbo, China
| | - Shaoyi Lin
- School of Medicine, Ningbo University, Ningbo, China.,Department of Cardiology, Ningbo City First Hospital, Ningbo, China
| | | | - Xiaomin Chen
- School of Medicine, Ningbo University, Ningbo, China.,Department of Cardiology, Ningbo City First Hospital, Ningbo, China
| |
Collapse
|
32
|
Lupu IE, Redpath AN, Smart N. Spatiotemporal Analysis Reveals Overlap of Key Proepicardial Markers in the Developing Murine Heart. Stem Cell Reports 2020; 14:770-787. [PMID: 32359445 PMCID: PMC7221110 DOI: 10.1016/j.stemcr.2020.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 01/05/2023] Open
Abstract
The embryonic epicardium, originating from the proepicardial organ (PEO), provides a source of multipotent progenitors for cardiac lineages, including pericytes, fibroblasts, and vascular smooth muscle cells. Maximizing the regenerative capacity of the adult epicardium depends on recapitulating embryonic cell fates. The potential of the epicardium to contribute coronary endothelium is unclear, due to conflicting Cre-based lineage trace data. Controversy also surrounds when epicardial cell fate becomes restricted. Here, we systematically investigate expression of five widely used epicardial markers, Wt1, Tcf21, Tbx18, Sema3d, and Scx, over the course of development. We show overlap of markers in all PEO and epicardial cells until E13.5, and find no evidence for discrete proepicardial sub-compartments that might contribute coronary endothelium via the epicardial layer. Our findings clarify a number of prevailing discrepancies and support the notion that epicardium-derived cell fate, to form fibroblasts or mural cells, is specified after epithelial-mesenchymal transition, not pre-determined within the PEO.
Collapse
Affiliation(s)
- Irina-Elena Lupu
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Andia N Redpath
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Nicola Smart
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
33
|
Abstract
As the first organ to form and function in all vertebrates, the heart is crucial to development. Tightly-regulated levels of retinoic acid (RA) are critical for the establishment of the regulatory networks that drive normal cardiac development. Thus, the heart is an ideal organ to investigate RA signaling, with much work remaining to be done in this area. Herein, we highlight the role of RA signaling in vertebrate heart development and provide an overview of the field's inception, its current state, and in what directions it might progress so that it may yield fruitful insight for therapeutic applications within the domain of regenerative medicine.
Collapse
|
34
|
Camilli M, Iannaccone G, Del Buono MG, Crea F, Aspromonte N. Genetic background of coronary artery disease: clinical implications and perspectives. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1746640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Giulia Iannaccone
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Marco G. Del Buono
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Nadia Aspromonte
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
35
|
Abstract
Cardiac fibroblasts and fibrosis contribute to the pathogenesis of heart failure, a prevalent cause of mortality. Therefore, a majority of the existing information regarding cardiac fibroblasts is focused on their function and behavior after heart injury. Less is understood about the signaling and transcriptional networks required for the development and homeostatic roles of these cells. This review is devoted to describing our current understanding of cardiac fibroblast development. I detail cardiac fibroblast formation during embryogenesis including the discovery of a second embryonic origin for cardiac fibroblasts. Additional information is provided regarding the roles of the genes essential for cardiac fibroblast development. It should be noted that many questions remain regarding the cell-fate specification of these fibroblast progenitors, and it is hoped that this review will provide a basis for future studies regarding this topic.
Collapse
|
36
|
Suffee N, Moore-Morris T, Jagla B, Mougenot N, Dilanian G, Berthet M, Proukhnitzky J, Le Prince P, Tregouet DA, Pucéat M, Hatem SN. Reactivation of the Epicardium at the Origin of Myocardial Fibro-Fatty Infiltration During the Atrial Cardiomyopathy. Circ Res 2020; 126:1330-1342. [PMID: 32175811 DOI: 10.1161/circresaha.119.316251] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RATIONALE Fibro-fatty infiltration of subepicardial layers of the atrial wall has been shown to contribute to the substrate of atrial fibrillation. OBJECTIVE Here, we examined if the epicardium that contains multipotent cells is involved in this remodeling process. METHODS AND RESULTS One hundred nine human surgical right atrial specimens were evaluated. There was a relatively greater extent of epicardial thickening and dense fibro-fatty infiltrates in atrial tissue sections from patients aged over 70 years who had mitral valve disease or atrial fibrillation when compared with patients aged less than 70 years with ischemic cardiomyopathy as indicated using logistic regression adjusted for age and gender. Cells coexpressing markers of epicardial progenitors and fibroblasts were detected in fibro-fatty infiltrates. Such epicardial remodeling was reproduced in an experimental model of atrial cardiomyopathy in rat and in Wilms tumor 1 (WT1)CreERT2/+;ROSA-tdT+/- mice. In the latter, genetic lineage tracing demonstrated the epicardial origin of fibroblasts within fibro-fatty infiltrates. A subpopulation of human adult epicardial-derived cells expressing PDGFR (platelet-derived growth factor receptor)-α were isolated and differentiated into myofibroblasts in the presence of Ang II (angiotensin II). Furthermore, single-cell RNA-sequencing analysis identified several clusters of adult epicardial-derived cells and revealed their specification from adipogenic to fibrogenic cells in the rat model of atrial cardiomyopathy. CONCLUSIONS Epicardium is reactivated during the formation of the atrial cardiomyopathy. Subsets of adult epicardial-derived cells, preprogrammed towards a specific cell fate, contribute to fibro-fatty infiltration of subepicardium of diseased atria. Our study reveals the biological basis for chronic atrial myocardial remodeling that paves the way of atrial fibrillation.
Collapse
Affiliation(s)
- Nadine Suffee
- From the INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France (N.S., G.D., M.B., J.P., D.A.T.)
| | - Thomas Moore-Morris
- INSERM U 1251, Aix-Marseille University, MMG, France (T.M.-M., M.P.).,IGF, University Montpellier, CNRS, INSERM, Montpellier, France (T.M.-M.)
| | - Bernd Jagla
- Pasteur Institute UtechS CB & Hub de Bioinformatique et Biostatistiques, C3BI, Paris (B.J.)
| | - Nathalie Mougenot
- Sorbonne Universités, INSERM UMR_S28, Faculté de médecine UPMC, Paris, France (N.M.)
| | - Gilles Dilanian
- From the INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France (N.S., G.D., M.B., J.P., D.A.T.)
| | - Myriam Berthet
- From the INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France (N.S., G.D., M.B., J.P., D.A.T.)
| | - Julie Proukhnitzky
- From the INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France (N.S., G.D., M.B., J.P., D.A.T.)
| | - Pascal Le Prince
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Institut de Cardiologie, Hôpital Pitié-Salpêtrière, Paris, France (P.L.P., S.N.H.)
| | - David A Tregouet
- From the INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France (N.S., G.D., M.B., J.P., D.A.T.)
| | - Michel Pucéat
- INSERM U 1251, Aix-Marseille University, MMG, France (T.M.-M., M.P.)
| | - Stéphane N Hatem
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Institut de Cardiologie, Hôpital Pitié-Salpêtrière, Paris, France (P.L.P., S.N.H.)
| |
Collapse
|
37
|
Weinberger M, Simões FC, Patient R, Sauka-Spengler T, Riley PR. Functional Heterogeneity within the Developing Zebrafish Epicardium. Dev Cell 2020; 52:574-590.e6. [PMID: 32084358 PMCID: PMC7063573 DOI: 10.1016/j.devcel.2020.01.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/07/2019] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
The epicardium is essential during cardiac development, homeostasis, and repair, and yet fundamental insights into its underlying cell biology, notably epicardium formation, lineage heterogeneity, and functional cross-talk with other cell types in the heart, are currently lacking. In this study, we investigated epicardial heterogeneity and the functional diversity of discrete epicardial subpopulations in the developing zebrafish heart. Single-cell RNA sequencing uncovered three epicardial subpopulations with specific genetic programs and distinctive spatial distribution. Perturbation of unique gene signatures uncovered specific functions associated with each subpopulation and established epicardial roles in cell adhesion, migration, and chemotaxis as a mechanism for recruitment of leukocytes into the heart. Understanding which mechanisms epicardial cells employ to establish a functional epicardium and how they communicate with other cardiovascular cell types during development will bring us closer to repairing cellular relationships that are disrupted during cardiovascular disease. scRNA-seq uncovered 3 developmental epicardial subpopulations (Epi1-3) in the zebrafish Epi1-specific gene, tgm2b, regulates the cell numbers in the main epicardial sheet Epi2-specific gene, sema3fb, restricts the number of tbx18+ cells in the cardiac outflow tract Epi3-specific gene, cxcl12a, guides ptprc/CD45+ myeloid cells to the developing heart
Collapse
Affiliation(s)
- Michael Weinberger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, UK; MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Filipa C Simões
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, UK; MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Roger Patient
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK.
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, UK.
| |
Collapse
|
38
|
Daniel E, Barlow HR, Sutton GI, Gu X, Htike Y, Cowdin MA, Cleaver O. Cyp26b1 is an essential regulator of distal airway epithelial differentiation during lung development. Development 2020; 147:dev181560. [PMID: 32001436 PMCID: PMC7044453 DOI: 10.1242/dev.181560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/23/2020] [Indexed: 12/16/2022]
Abstract
Proper organ development depends on coordinated communication between multiple cell types. Retinoic acid (RA) is an autocrine and paracrine signaling molecule essential for the development of most organs, including the lung. Despite extensive work detailing effects of RA deficiency in early lung morphogenesis, little is known about how RA regulates late gestational lung maturation. Here, we investigate the role of the RA catabolizing protein Cyp26b1 in the lung. Cyp26b1 is highly enriched in lung endothelial cells (ECs) throughout development. We find that loss of Cyp26b1 leads to reduction of alveolar type 1 cells, failure of alveolar inflation and early postnatal lethality in mouse. Furthermore, we observe expansion of distal epithelial progenitors, but no appreciable changes in proximal airways, ECs or stromal populations. Exogenous administration of RA during late gestation partially mimics these defects; however, transcriptional analyses comparing Cyp26b1-/- with RA-treated lungs reveal overlapping, but distinct, responses. These data suggest that defects observed in Cyp26b1-/- lungs are caused by both RA-dependent and RA-independent mechanisms. This work reports crucial cellular crosstalk during lung development involving Cyp26b1-expressing endothelium and identifies a novel RA modulator in lung development.
Collapse
Affiliation(s)
- Edward Daniel
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haley R Barlow
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gabrielle I Sutton
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaowu Gu
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yadanar Htike
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mitzy A Cowdin
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ondine Cleaver
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
39
|
Nagao M, Lyu Q, Zhao Q, Wirka RC, Bagga J, Nguyen T, Cheng P, Kim JB, Pjanic M, Miano JM, Quertermous T. Coronary Disease-Associated Gene TCF21 Inhibits Smooth Muscle Cell Differentiation by Blocking the Myocardin-Serum Response Factor Pathway. Circ Res 2020; 126:517-529. [PMID: 31815603 PMCID: PMC7274203 DOI: 10.1161/circresaha.119.315968] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
RATIONALE The gene encoding TCF21 (transcription factor 21) has been linked to coronary artery disease risk by human genome-wide association studies in multiple racial ethnic groups. In murine models, Tcf21 is required for phenotypic modulation of smooth muscle cells (SMCs) in atherosclerotic tissues and promotes a fibroblast phenotype in these cells. In humans, TCF21 expression inhibits risk for coronary artery disease. The molecular mechanism by which TCF21 regulates SMC phenotype is not known. OBJECTIVE To better understand how TCF21 affects the SMC phenotype, we sought to investigate the possible mechanisms by which it regulates the lineage determining MYOCD (myocardin)-SRF (serum response factor) pathway. METHODS AND RESULTS Modulation of TCF21 expression in human coronary artery SMC revealed that TCF21 suppresses a broad range of SMC markers, as well as key SMC transcription factors MYOCD and SRF, at the RNA and protein level. We conducted chromatin immunoprecipitation-sequencing to map SRF-binding sites in human coronary artery SMC, showing that binding is colocalized in the genome with TCF21, including at a novel enhancer in the SRF gene, and at the MYOCD gene promoter. In vitro genome editing indicated that the SRF enhancer CArG box regulates transcription of the SRF gene, and mutation of this conserved motif in the orthologous mouse SRF enhancer revealed decreased SRF expression in aorta and heart tissues. Direct TCF21 binding and transcriptional inhibition at colocalized sites were established by reporter gene transfection assays. Chromatin immunoprecipitation and protein coimmunoprecipitation studies provided evidence that TCF21 blocks MYOCD and SRF association by direct TCF21-MYOCD interaction. CONCLUSIONS These data indicate that TCF21 antagonizes the MYOCD-SRF pathway through multiple mechanisms, further establishing a role for this coronary artery disease-associated gene in fundamental SMC processes and indicating the importance of smooth muscle response to vascular stress and phenotypic modulation of this cell type in coronary artery disease risk.
Collapse
Affiliation(s)
- Manabu Nagao
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| | - Qing Lyu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14624
| | - Quanyi Zhao
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| | - Robert C Wirka
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| | - Joetsaroop Bagga
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| | - Trieu Nguyen
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| | - Paul Cheng
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| | - Milos Pjanic
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| | - Joseph M. Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14624
| | - Thomas Quertermous
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| |
Collapse
|
40
|
Abstract
The epicardium, the outermost tissue layer that envelops all vertebrate hearts, plays a crucial role in cardiac development and regeneration and has been implicated in potential strategies for cardiac repair. The heterogenous cell population that composes the epicardium originates primarily from a transient embryonic cell cluster known as the proepicardial organ (PE). Characterized by its high cellular plasticity, the epicardium contributes to both heart development and regeneration in two critical ways: as a source of progenitor cells and as a critical signaling hub. Despite this knowledge, there are many unanswered questions in the field of epicardial biology, the resolution of which will advance the understanding of cardiac development and repair. We review current knowledge in cross-species epicardial involvement, specifically in relation to lineage specification and differentiation during cardiac development.
Collapse
Affiliation(s)
- Yingxi Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, New York 10021, USA
| | - Sierra Duca
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, New York 10021, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, New York 10021, USA
| |
Collapse
|
41
|
Abstract
The heart is lined by a single layer of mesothelial cells called the epicardium that provides important cellular contributions for embryonic heart formation. The epicardium harbors a population of progenitor cells that undergo epithelial-to-mesenchymal transition displaying characteristic conversion of planar epithelial cells into multipolar and invasive mesenchymal cells before differentiating into nonmyocyte cardiac lineages, such as vascular smooth muscle cells, pericytes, and fibroblasts. The epicardium is also a source of paracrine cues that are essential for fetal cardiac growth, coronary vessel patterning, and regenerative heart repair. Although the epicardium becomes dormant after birth, cardiac injury reactivates developmental gene programs that stimulate epithelial-to-mesenchymal transition; however, it is not clear how the epicardium contributes to disease progression or repair in the adult. In this review, we will summarize the molecular mechanisms that control epicardium-derived progenitor cell migration, and the functional contributions of the epicardium to heart formation and cardiomyopathy. Future perspectives will be presented to highlight emerging therapeutic strategies aimed at harnessing the regenerative potential of the fetal epicardium for cardiac repair.
Collapse
Affiliation(s)
- Pearl Quijada
- From the Aab Cardiovascular Research Institute (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY.,Department of Medicine (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY
| | | | - Eric M Small
- From the Aab Cardiovascular Research Institute (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY.,Department of Medicine (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
42
|
Wong D, Turner AW, Miller CL. Genetic Insights Into Smooth Muscle Cell Contributions to Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2020; 39:1006-1017. [PMID: 31043074 DOI: 10.1161/atvbaha.119.312141] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coronary artery disease is a complex cardiovascular disease involving an interplay of genetic and environmental influences over a lifetime. Although considerable progress has been made in understanding lifestyle risk factors, genetic factors identified from genome-wide association studies may capture additional hidden risk undetected by traditional clinical tests. These genetic discoveries have highlighted many candidate genes and pathways dysregulated in the vessel wall, including those involving smooth muscle cell phenotypic modulation and injury responses. Here, we summarize experimental evidence for a few genome-wide significant loci supporting their roles in smooth muscle cell biology and disease. We also discuss molecular quantitative trait locus mapping as a powerful discovery and fine-mapping approach applied to smooth muscle cell and coronary artery disease-relevant tissues. We emphasize the critical need for alternative genetic strategies, including cis/trans-regulatory network analysis, genome editing, and perturbations, as well as single-cell sequencing in smooth muscle cell tissues and model organisms, under both normal and disease states. By integrating multiple experimental and analytical modalities, these multidimensional datasets should improve the interpretation of coronary artery disease genome-wide association studies and molecular quantitative trait locus signals and inform candidate targets for therapeutic intervention or risk prediction.
Collapse
Affiliation(s)
- Doris Wong
- From the Center for Public Health Genomics (D.W., A.W.T., C.L.M.), University of Virginia, Charlottesville.,Department of Biochemistry and Molecular Genetics (D.W., C.L.M.), University of Virginia, Charlottesville
| | - Adam W Turner
- From the Center for Public Health Genomics (D.W., A.W.T., C.L.M.), University of Virginia, Charlottesville
| | - Clint L Miller
- From the Center for Public Health Genomics (D.W., A.W.T., C.L.M.), University of Virginia, Charlottesville.,Department of Biochemistry and Molecular Genetics (D.W., C.L.M.), University of Virginia, Charlottesville.,Department of Biomedical Engineering (C.L.M.), University of Virginia, Charlottesville.,Department of Public Health Sciences (C.L.M.), University of Virginia, Charlottesville
| |
Collapse
|
43
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
44
|
Gambardella L, McManus SA, Moignard V, Sebukhan D, Delaune A, Andrews S, Bernard WG, Morrison MA, Riley PR, Göttgens B, Gambardella Le Novère N, Sinha S. BNC1 regulates cell heterogeneity in human pluripotent stem cell-derived epicardium. Development 2019; 146:dev174441. [PMID: 31767620 PMCID: PMC6955213 DOI: 10.1242/dev.174441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 11/21/2019] [Indexed: 02/02/2023]
Abstract
The murine developing epicardium heterogeneously expresses the transcription factors TCF21 and WT1. Here, we show that this cell heterogeneity is conserved in human epicardium, regulated by BNC1 and associated with cell fate and function. Single cell RNA sequencing of epicardium derived from human pluripotent stem cells (hPSC-epi) revealed that distinct epicardial subpopulations are defined by high levels of expression for the transcription factors BNC1 or TCF21. WT1+ cells are included in the BNC1+ population, which was confirmed in human foetal hearts. THY1 emerged as a membrane marker of the TCF21 population. We show that THY1+ cells can differentiate into cardiac fibroblasts (CFs) and smooth muscle cells (SMCs), whereas THY1- cells were predominantly restricted to SMCs. Knocking down BNC1 during the establishment of the epicardial populations resulted in a homogeneous, predominantly TCF21high population. Network inference methods using transcriptomic data from the different cell lineages derived from the hPSC-epi delivered a core transcriptional network organised around WT1, TCF21 and BNC1. This study unveils a list of epicardial regulators and is a step towards engineering subpopulations of epicardial cells with selective biological activities.
Collapse
Affiliation(s)
- Laure Gambardella
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge CB2 0AZ, UK
| | - Sophie A McManus
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge CB2 0AZ, UK
| | - Victoria Moignard
- Department of Haematology, Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AZ, UK
| | | | | | | | - William G Bernard
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge CB2 0AZ, UK
| | - Maura A Morrison
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge CB2 0AZ, UK
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AZ, UK
| | | | - Sanjay Sinha
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge CB2 0AZ, UK
| |
Collapse
|
45
|
Wang S, Yu J, Kane MA, Moise AR. Modulation of retinoid signaling: therapeutic opportunities in organ fibrosis and repair. Pharmacol Ther 2019; 205:107415. [PMID: 31629008 DOI: 10.1016/j.pharmthera.2019.107415] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
The vitamin A metabolite, retinoic acid, is an important signaling molecule during embryonic development serving critical roles in morphogenesis, organ patterning and skeletal and neural development. Retinoic acid is also important in postnatal life in the maintenance of tissue homeostasis, while retinoid-based therapies have long been used in the treatment of a variety of cancers and skin disorders. As the number of people living with chronic disorders continues to increase, there is great interest in extending the use of retinoid therapies in promoting the maintenance and repair of adult tissues. However, there are still many conflicting results as we struggle to understand the role of retinoic acid in the multitude of processes that contribute to tissue injury and repair. This review will assess our current knowledge of the role retinoic acid signaling in the development of fibroblasts, and their transformation to myofibroblasts, and of the potential use of retinoid therapies in the treatment of organ fibrosis.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
46
|
Abstract
The function of the mammalian heart depends on the interplay between different cardiac cell types. The deployment of these cells, with precise spatiotemporal regulation, is also important during development to establish the heart structure. In this Review, we discuss the diverse origins of cardiac cell types and the lineage relationships between cells of a given type that contribute to different parts of the heart. The emerging lineage tree shows the progression of cell fate diversification, with patterning cues preceding cell type segregation, as well as points of convergence, with overlapping lineages contributing to a given tissue. Several cell lineage markers have been identified. However, caution is required with genetic-tracing experiments in comparison with clonal analyses. Genetic studies on cell populations provided insights into the mechanisms for lineage decisions. In the past 3 years, results of single-cell transcriptomics are beginning to reveal cell heterogeneity and early developmental trajectories. Equating this information with the in vivo location of cells and their lineage history is a current challenge. Characterization of the progenitor cells that form the heart and of the gene regulatory networks that control their deployment is of major importance for understanding the origin of congenital heart malformations and for producing cardiac tissue for use in regenerative medicine.
Collapse
|
47
|
MicroRNA-30-3p Suppresses Inflammatory Factor-Induced Endothelial Cell Injury by Targeting TCF21. Mediators Inflamm 2019; 2019:1342190. [PMID: 31354385 PMCID: PMC6636441 DOI: 10.1155/2019/1342190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/08/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023] Open
Abstract
Atherosclerosis is one of the leading causes of mortality worldwide. Growing evidence suggested that miRNAs contributed to the progression of atherosclerosis. miR-30-5p was found involved in various diseases. However, the role of miR-30-5p in regulation of atherosclerosis is not known. Here, we aim to investigate the effects of miR-30-5p on regulating the progression of atherosclerosis. The expression levels of miR-30-5p in serum collected from atherosclerosis patients and normal healthy people were analyzed by qRT-PCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway bioinformatics were carried out to reveal the possible signaling pathways involved in the mode of action of miR-30-5p. A potential target gene of miRNA-30-5p was searched and examined by a luciferase reporter assay. ELISA, Western blot, proliferation, and flow cytometry assays were performed to assess the biological functional role of miR-30-5p in vitro. Also, an in vitro monocyte-endothelial cell coculture model was used to study the functional role of miR-30-5p in atherosclerosis. We found that miR-30-5p was significantly decreased in serum samples from atherosclerosis patients compared with control subjects. GO and KEGG analysis results showed that miR-30-5p is highly associated with genetic profile of cardiovascular disease. TCF21 was verified as a target gene of miR-30-5p. Overexpression of miR-30-5p in THP-1 not only protected endothelial cell viability but also inhibited endothelial cell apoptosis, and similar results were observed in cells with that of TCF21 knocked down. Moreover, miR-30-5p decreased the expression levels of lactate dehydrogenase (LDH) and tumor necrosis factor-α (TNF-α) and reduced reactive oxygen species (ROS) accumulation. NF-κB and MAPK/p38 pathways played an indispensable role in the protection ability of miR-30-5p against atherosclerosis. Our results reveal that miR-30-5p suppresses the progression of atherosclerosis through targeting TCF21 in vitro. Therefore, the miR-30-5p-TCF21-MAPK/p38 signaling pathway may be a potential biomarker or therapeutic target in atherosclerosis.
Collapse
|
48
|
Wang S, Moise AR. Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Genesis 2019; 57:e23303. [PMID: 31066193 PMCID: PMC6682438 DOI: 10.1002/dvg.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
The vitamin A metabolite, retinoic acid, carries out essential and conserved roles in vertebrate heart development. Retinoic acid signals via retinoic acid receptors (RAR)/retinoid X receptors (RXRs) heterodimers to induce the expression of genes that control cell fate specification, proliferation, and differentiation. Alterations in retinoic acid levels are often associated with congenital heart defects. Therefore, embryonic levels of retinoic acid need to be carefully regulated through the activity of enzymes, binding proteins and transporters involved in vitamin A metabolism. Here, we review evidence of the complex mechanisms that control the fetal uptake and synthesis of retinoic acid from vitamin A precursors. Next, we highlight recent evidence of the role of retinoic acid in orchestrating myocardial compact zone growth and coronary vascular development.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6 Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
49
|
Perl E, Waxman JS. Reiterative Mechanisms of Retinoic Acid Signaling during Vertebrate Heart Development. J Dev Biol 2019; 7:jdb7020011. [PMID: 31151214 PMCID: PMC6631158 DOI: 10.3390/jdb7020011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 01/07/2023] Open
Abstract
Tightly-regulated levels of retinoic acid (RA) are critical for promoting normal vertebrate development. The extensive history of research on RA has shown that its proper regulation is essential for cardiac progenitor specification and organogenesis. Here, we discuss the roles of RA signaling and its establishment of networks that drive both early and later steps of normal vertebrate heart development. We focus on studies that highlight the drastic effects alternative levels of RA have on early cardiomyocyte (CM) specification and cardiac chamber morphogenesis, consequences of improper RA synthesis and degradation, and known effectors downstream of RA. We conclude with the implications of these findings to our understanding of cardiac regeneration and the etiologies of congenital heart defects.
Collapse
Affiliation(s)
- Eliyahu Perl
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- The Heart Institute and Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Joshua S Waxman
- The Heart Institute and Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
50
|
Zhao Q, Wirka R, Nguyen T, Nagao M, Cheng P, Miller CL, Kim JB, Pjanic M, Quertermous T. TCF21 and AP-1 interact through epigenetic modifications to regulate coronary artery disease gene expression. Genome Med 2019; 11:23. [PMID: 31014396 PMCID: PMC6480881 DOI: 10.1186/s13073-019-0635-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified over 160 loci that are associated with coronary artery disease. As with other complex human diseases, risk in coronary disease loci is determined primarily by altered expression of the causal gene, due to variation in binding of transcription factors and chromatin-modifying proteins that directly regulate the transcriptional apparatus. We have previously identified a coronary disease network downstream of the disease-associated transcription factor TCF21, and in work reported here extends these studies to investigate the mechanisms by which it interacts with the AP-1 transcription complex to regulate local epigenetic effects in these downstream coronary disease loci. METHODS Genomic studies, including chromatin immunoprecipitation sequencing, RNA sequencing, and protein-protein interaction studies, were performed in human coronary artery smooth muscle cells. RESULTS We show here that TCF21 and JUN regulate expression of two presumptive causal coronary disease genes, SMAD3 and CDKN2B-AS1, in part by interactions with histone deacetylases and acetyltransferases. Genome-wide TCF21 and JUN binding is jointly localized and particularly enriched in coronary disease loci where they broadly modulate H3K27Ac and chromatin state changes linked to disease-related processes in vascular cells. Heterozygosity at coronary disease causal variation, or genome editing of these variants, is associated with decreased binding of both JUN and TCF21 and loss of expression in cis, supporting a transcriptional mechanism for disease risk. CONCLUSIONS These data show that the known chromatin remodeling and pioneer functions of AP-1 are a pervasive aspect of epigenetic control of transcription, and thus, the risk in coronary disease-associated loci, and that interaction of AP-1 with TCF21 to control epigenetic features, contributes to the genetic risk in loci where they co-localize.
Collapse
Affiliation(s)
- Quanyi Zhao
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Robert Wirka
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Trieu Nguyen
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Manabu Nagao
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Paul Cheng
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Public Health Genomics, Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Milos Pjanic
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA.
| |
Collapse
|