1
|
Andrieu C, Hunyi Lee B, Franz A. Cell deformations generated by stochastic actomyosin waves drive in vivo random-walk swimming migration. J Cell Sci 2025; 138:jcs263787. [PMID: 40183280 DOI: 10.1242/jcs.263787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Amoeboid cell migration drives many developmental and disease-related processes, including immune responses and cancer metastasis. Swimming migration is a subtype of amoeboid migration that is observed in cells in suspension ex vivo. However, the mechanism underlying swimming migration in vivo is unknown. Using Drosophila fat body cells (FBCs) as a model, we show that FBCs actively swim to patrol the pupa by random walk. Their migration is powered through actomyosin waves that exert compressive forces as they travel to the cell rear, causing cell deformations. Unlike in other types of amoeboid migration, Rho1 (the Drosophila orthologue of RhoA), Cdc42 and Rac1 are all required for regulation of formin-driven actin polymerization during FBC migration. We find that Rho1 at the cell rear induces actomyosin contractions via Rho kinase and myosin II. We show that contractile actin waves display a stochastic behaviour, inducing either cell elongation or rounding, suggesting that non-reciprocal cell deformations drive locomotion. Importantly, our work in a physiological system reveals that stochastic actomyosin waves promote random-walk swimming migration to enable fast, long-range cell dispersal. We propose that this individualist migration behaviour collectively allows patrolling of the pupal body.
Collapse
Affiliation(s)
- Cyril Andrieu
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Bren Hunyi Lee
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Anna Franz
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
2
|
Goldstein B, Sheikh-Suliman S, Bakhrat A, Abdu U. The differential roles of rad9 alternatively spliced forms in double- strand DNA break repair during Drosophila meiosis. DNA Repair (Amst) 2025; 149:103833. [PMID: 40250145 DOI: 10.1016/j.dnarep.2025.103833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/20/2025]
Abstract
The 9-1-1 complex, comprising the Rad9, Hus1 and Rad1 proteins, is believed to operate as a component of a DNA damage checkpoint pathway. Our initial analysis of the Drosophila hus1 gene showed that Hus1 plays a dual role in meiosis, regulating both meiotic DNA damage checkpoint and homologous recombination repair. In this study, we further analyzed the meiotic roles of another protein in the complex, Rad9, which has two alternatively spliced forms, Rad9A and Rad9B. Using CRISPR/Cas9, we generated flies mutant for both rad9 isoforms. We found that, similarly to hus1, mutations in rad9 lead to female sterility. Also, double-strand DNA breaks (DSBs) that form during meiosis are not processed efficiently, and the DNA within the oocyte nucleus fails to form its characteristic shape in rad9 mutants. On the other hand, the hus1 mutation completely disrupts checkpoint activation in DSB repair enzyme mutants, whereas the rad9 mutation only partially impairs checkpoint activation in this context. Moreover, spatial rescue experiments revealed that Rad9B is efficient in repairing meiotic DSBs, while Rad9A is not. Furthermore, we found that female fertility in rad9 mutants depends on early efficient meiotic DSB repair but not on karyosome formation. In summary, our results demonstrate a differential role of Rad9 alternatively spliced forms during Drosophila meiosis in oogenesis, and while former studies showed that Hus1 is sufficient for the effective activation of the meiotic recombination checkpoint, our results revealed that this is not true for Rad9.
Collapse
Affiliation(s)
- Bareket Goldstein
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Suad Sheikh-Suliman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anna Bakhrat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
3
|
Martins CS, Iv F, Suman SK, Panagiotou TC, Sidor C, Ruso-López M, Plancke CN, Omi S, Pagès R, Gomes M, Llewellyn A, Bandi SR, Ramond L, Arbizzani F, Rimoli CV, Schnorrer F, Robin F, Wilde A, LeGoff L, Pedelacq JD, Jégou A, Cabantous S, Rincon SA, Chandre C, Brasselet S, Mavrakis M. Genetically encoded reporters of actin filament organization in living cells and tissues. Cell 2025; 188:2540-2559.e27. [PMID: 40179884 DOI: 10.1016/j.cell.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/09/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
The cytoskeletal protein actin is crucial for cell shape and integrity throughout eukaryotes. Actin filaments perform essential biological functions, including muscle contraction, cell division, and tissue morphogenesis. These diverse activities are achieved through the ability of actin filaments to be arranged into precise architectures. Much progress has been made in defining the proteome of the actin cytoskeleton, but a detailed appreciation of the dynamic organizational state of the actin filaments themselves has been hindered by available tools. Fluorescence polarization microscopy is uniquely placed for measuring actin filament organization by exploiting the sensitivity of polarized light excitation to the orientation of fluorophores attached to actin filaments. By engineering fusions of five widely used actin localization reporters to fluorescent proteins with constrained mobility, we have succeeded in developing genetically encoded, green- and red-fluorescent-protein-based reporters for non-invasive, quantitative measurements of actin filament organization in living cells and tissues by fluorescence polarization microscopy.
Collapse
Affiliation(s)
- Carla Silva Martins
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - François Iv
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Shashi Kumar Suman
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 75005 Paris, France
| | - Thomas C Panagiotou
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1M1, Canada
| | - Clara Sidor
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13009 Marseille, France
| | - María Ruso-López
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca 37007, Spain
| | - Camille N Plancke
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 75005 Paris, France
| | - Shizue Omi
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Rebecca Pagès
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Maxime Gomes
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Alexander Llewellyn
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Sourish Reddy Bandi
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Laurie Ramond
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | | | - Caio Vaz Rimoli
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Frank Schnorrer
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13009 Marseille, France
| | - François Robin
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 75005 Paris, France
| | - Andrew Wilde
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1M1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1M1, Canada
| | - Loïc LeGoff
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Inserm, Université Paul Sabatier - Toulouse III, CNRS, 31037 Toulouse, France
| | - Sergio A Rincon
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca 37007, Spain
| | | | - Sophie Brasselet
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France.
| | - Manos Mavrakis
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France.
| |
Collapse
|
4
|
Shatskiy D, Sivan A, Wedlich-Söldner R, Belyy A. Structure of the F-tractin-F-actin complex. J Cell Biol 2025; 224:e202409192. [PMID: 39928047 PMCID: PMC11809415 DOI: 10.1083/jcb.202409192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 02/11/2025] Open
Abstract
F-tractin is a peptide widely used to visualize the actin cytoskeleton in live eukaryotic cells but has been reported to impair cell migration and induce actin bundling at high expression levels. To elucidate these effects, we determined the cryo-EM structure of the F-tractin-F-actin complex, revealing that F-tractin consists of a flexible N-terminal region and an amphipathic C-terminal helix. The N-terminal part is dispensable for F-actin binding but responsible for the bundling effect. Based on these insights, we developed an optimized F-tractin, which eliminates the N-terminal region and minimizes bundling while retaining strong actin labeling. The C-terminal helix interacts with a hydrophobic pocket formed by two neighboring actin subunits, an interaction region shared by many actin-binding polypeptides, including the popular actin-binding probe Lifeact. Thus, rather than contrasting F-tractin and Lifeact, our data indicate that these peptides have analogous modes of interaction with F-actin. Our study dissects the structural elements of F-tractin and provides a foundation for developing future actin probes.
Collapse
Affiliation(s)
- Dmitry Shatskiy
- Membrane Enzymology Group, Groningen Institute of Biomolecular Sciences and Biotechnology (GBB), Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Athul Sivan
- Institute of Cell Dynamics and Imaging, and Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, Münster, Germany
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, and Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, Münster, Germany
| | - Alexander Belyy
- Membrane Enzymology Group, Groningen Institute of Biomolecular Sciences and Biotechnology (GBB), Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Tootle TL. Prostaglandins limit nuclear actin rod formation during Drosophila oogenesis. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001571. [PMID: 40255252 PMCID: PMC12006845 DOI: 10.17912/micropub.biology.001571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
Expression of GFP-Actin results in nuclear actin rod formation during specific stages of Drosophila melanogaster oogenesis. Loss of prostaglandin (PG) synthesis and signaling results in an increased frequency of cells with nuclear actin rods; there are less rods per cell, but the rods are longer. These findings suggest that loss of PGs results in increased nuclear actin and are consistent with prior findings assessing the roles of PGs in modulating endogenous nuclear actin. Thus, GFP-Actin rod formation can be used as a tool to screen for new regulators of nuclear actin.
Collapse
Affiliation(s)
- Tina L. Tootle
- Biology, University of Iowa, Iowa City, Iowa, United States
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| |
Collapse
|
6
|
Sánchez-Sánchez BJ, Marcotti S, Salvador-Garcia D, Díaz-de-la-Loza MDC, Burki M, Davidson AJ, Wood W, Stramer BM. Moesin integrates cortical and lamellar actin networks during Drosophila macrophage migration. Nat Commun 2025; 16:1414. [PMID: 39915456 PMCID: PMC11802916 DOI: 10.1038/s41467-024-55510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Cells are thought to adopt mechanistically distinct migration modes depending on cell-type and environmental factors. These modes are assumed to be driven by mutually exclusive actin cytoskeletal organizations, which are either lamellar (flat, branched network) or cortical (crosslinked to the plasma membrane). Here we exploit Drosophila macrophage (hemocyte) developmental dispersal to reveal that these cells maintain both a lamellar actin network at their cell front and a cortical actin network at the rear. Loss of classical actin cortex regulators, such as Moesin, perturb hemocyte morphology and cell migration. Furthermore, cortical and lamellipodial actin networks are interregulated. Upon phosphorylation and binding to the plasma membrane, Moesin is advected to the rear by lamellar actin flow. Simultaneously, the cortical actin network feeds back on the lamella to help regulate actin flow speed and leading-edge dynamics. These data reveal that hemocyte motility requires both lamellipodial and cortical actin architectures in homeostatic equilibrium.
Collapse
Affiliation(s)
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - David Salvador-Garcia
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | | | - Mubarik Burki
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - Andrew J Davidson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, G61 1BD, Glasgow, UK
| | - Will Wood
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh Bioquarter, EH16 4UU, Edinburgh, UK
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK.
| |
Collapse
|
7
|
Kroll KL, Sosnick TR, Rock RS. Design and Use of AsLOV2-Based Optogenetic Tools for Actin Imaging. Methods Mol Biol 2025; 2840:89-100. [PMID: 39724346 DOI: 10.1007/978-1-0716-4047-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
We present protocols for using an optogenetic tool called LILAC for actin imaging. LILAC is a light-controlled version of Lifeact that uses the Avena sativa LOV2 (AsLOV2) domain. By significantly reducing Lifeact's affinity for the cytoskeleton in the dark, LILAC reduces concentration-dependent negative side effects while enabling new image processing methods. We discuss the considerations for using this probe of live-cell actin dynamics, including fluorescent protein selection, cell maintenance, microscopy protocols, and image processing. Our work highlights the potential of AsLOV2-based optogenetics for novel imaging and control tools in cell biology.
Collapse
Affiliation(s)
- Kourtney L Kroll
- Department of Biochemistry and Molecular Biology & The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Tobin R Sosnick
- Department of Biochemistry and Molecular Biology & The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology & The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Ono S. Overexpression of Lifeact in the C. elegans body wall muscle causes sarcomere disorganization and embryonic or larval lethality. Front Cell Dev Biol 2024; 12:1504980. [PMID: 39605982 PMCID: PMC11599240 DOI: 10.3389/fcell.2024.1504980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Lifeact is a short peptide that is widely utilized as a probe for actin filaments in live imaging. However, high concentrations of Lifeact can alter actin filament dynamics and cause artificial modifications to the actin cytoskeleton. Here, I evaluated Caenorhabditis elegans strains expressing Lifeact fused to fluorescent proteins in the body wall muscle. I found that, while low-level expression of Lifeact from a single-copy transgene was appropriate for labeling sarcomeric actin filaments, overexpression of Lifeact from an extrachromosomal array causes severe disorganization of muscle sarcomeres and lethality at an embryonic or larval stage. Therefore, for imaging studies in C. elegans, Lifeact needs to be kept at a low level by proper management of the expression system.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
9
|
Green NM, Talbot D, Tootle TL. Nuclear actin is a critical regulator of Drosophila female germline stem cell maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609996. [PMID: 39253513 PMCID: PMC11383290 DOI: 10.1101/2024.08.27.609996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nuclear actin has been implicated in regulating cell fate, differentiation, and cellular reprogramming. However, its roles in development and tissue homeostasis remain largely unknown. Here we uncover the role of nuclear actin in regulating stemness using Drosophila ovarian germline stem cells (GSCs) as a model. We find that the localization and structure of nuclear actin is dynamic in the early germ cells. Nuclear actin recognized by anti-actin C4 is found in both the nucleoplasm and nucleolus of GSCs. The polymeric nucleoplasmic C4 pool is lost after the 2-cell stage, whereas the monomeric nucleolar pool persists to the 8-cell stage, suggesting that polymeric nuclear actin may contribute to stemness. To test this idea, we overexpressed nuclear targeted actin constructs to alter nuclear actin polymerization states in the GSCs and early germ cells. Increasing monomeric nuclear actin, but not polymerizable nuclear actin, causes GSC loss that ultimately results in germline loss. This GSC loss is rescued by simultaneous overexpression of monomeric and polymerizable nuclear actin. Together these data reveal that GSC maintenance requires polymeric nuclear actin. This polymeric nuclear actin likely plays numerous roles in the GSCs, as increasing monomeric nuclear actin disrupts nuclear architecture causing nucleolar hypertrophy, distortion of the nuclear lamina, and heterochromatin reorganization; all factors critical for GSC maintenance and function. These data provide the first evidence that nuclear actin, and in particular, its ability to polymerize, are critical for stem cell function and tissue homeostasis in vivo.
Collapse
Affiliation(s)
- Nicole M. Green
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, 51 Newton Rd, 1-500 BSB, Iowa City, IA 52242
- Current affiliation: Biology, Cornell College, 600 First Street SW, Mount Vernon, IA 52314
| | - Danielle Talbot
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, 51 Newton Rd, 1-500 BSB, Iowa City, IA 52242
- Current affiliation: Biology, University of Iowa, 129 E. Jefferson St, 246 BB, Iowa City, IA 52242
| | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, 51 Newton Rd, 1-500 BSB, Iowa City, IA 52242
- Current affiliation: Biology, University of Iowa, 129 E. Jefferson St, 246 BB, Iowa City, IA 52242
| |
Collapse
|
10
|
Shoyer TC, Collins KL, Ham TR, Blanchard AT, Malavade JN, Johns BA, West JL, Hoffman BD. Detection of fluorescent protein mechanical switching in cellulo. CELL REPORTS METHODS 2024; 4:100815. [PMID: 38986612 PMCID: PMC11294842 DOI: 10.1016/j.crmeth.2024.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/03/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
The ability of cells to sense and respond to mechanical forces is critical in many physiological and pathological processes. However, determining the mechanisms by which forces affect protein function inside cells remains challenging. Motivated by in vitro demonstrations of fluorescent proteins (FPs) undergoing reversible mechanical switching of fluorescence, we investigated whether force-sensitive changes in FP function could be visualized in cells. Guided by a computational model of FP mechanical switching, we develop a formalism for its detection in Förster resonance energy transfer (FRET)-based biosensors and demonstrate its occurrence in cellulo within a synthetic actin crosslinker and the mechanical linker protein vinculin. We find that in cellulo mechanical switching is reversible and altered by manipulation of cell force generation, external stiffness, and force-sensitive bond dynamics of the biosensor. This work describes a framework for assessing FP mechanical stability and provides a means of probing force-sensitive protein function inside cells.
Collapse
Affiliation(s)
- T Curtis Shoyer
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Kasie L Collins
- Department of Chemistry, Duke University, Durham NC 27708, USA
| | - Trevor R Ham
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Aaron T Blanchard
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Juilee N Malavade
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Benjamin A Johns
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA.
| |
Collapse
|
11
|
Zhao X, Fan C, Qie T, Fu X, Chen X, Wang Y, Wu Y, Fu X, Shi K, Yan W, Yu H. Diaph1 knockout inhibits mouse primordial germ cell proliferation and affects gonadal development. Reprod Biol Endocrinol 2024; 22:82. [PMID: 39010074 PMCID: PMC11247884 DOI: 10.1186/s12958-024-01257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Exploring the molecular mechanisms of primordial germ cell (PGC) migration and the involvement of gonadal somatic cells in gonad development is valuable for comprehending the origins and potential treatments of reproductive-related diseases. METHODS Diaphanous related formin 1 (Diaph1, also known as mDia1) was screened by analyzing publicly available datasets (ATAC-seq, DNase-seq, and RNA-seq). Subsequently, the CRISPR-Cas9 technology was used to construct Diaph1 knockout mice to investigate the role of Diaph1 in gonad development. RESULTS Based on data from public databases, a differentially expressed gene Diaph1, was identified in the migration of mouse PGC. Additionally, the number of PGCs was significantly reduced in Diaph1 knockout mice compared to wild type mice, and the expression levels of genes related to proliferation (Dicer1, Mcm9), adhesion (E-cadherin, Cdh1), and migration (Cxcr4, Hmgcr, Dazl) were significantly decreased. Diaph1 knockout also inhibited Leydig cell proliferation and induced apoptosis in the testis, as well as granulosa cell apoptosis in the ovary. Moreover, the sperm count in the epididymal region and the count of ovarian follicles were significantly reduced in Diaph1 knockout mice, resulting in decreased fertility, concomitant with lowered levels of serum testosterone and estradiol. Further research found that in Diaph1 knockout mice, the key enzymes involved in testosterone synthesis (CYP11A1, 3β-HSD) were decreased in Leydig cells, and the estradiol-associated factor (FSH receptor, AMH) in granulosa cells were also downregulated. CONCLUSIONS Overall, our findings indicate that the knockout of Diaph1 can disrupt the expression of factors that regulate sex hormone production, leading to impaired secretion of sex hormones, ultimately resulting in damage to reproductive function. These results provide a new perspective on the molecular mechanisms underlying PGC migration and gonadal development, and offer valuable insights for further research on the causes, diagnosis, and treatment of related diseases.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Chunbiao Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Tongtong Qie
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Xinrui Fu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Xiaoshuang Chen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Yujia Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Yuan Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Xinyao Fu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Kesong Shi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Wenlong Yan
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong Province, China.
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China.
| |
Collapse
|
12
|
Gillespie W, Zhang Y, Ruiz OE, Cerda J, Ortiz-Guzman J, Turner WD, Largoza G, Sherman M, Mosser LE, Fujimoto E, Chien CB, Kwan KM, Arenkiel BR, Devine WP, Wythe JD. Multisite Assembly of Gateway Induced Clones (MAGIC): a flexible cloning toolbox with diverse applications in vertebrate model systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603267. [PMID: 39026881 PMCID: PMC11257631 DOI: 10.1101/2024.07.13.603267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 "Entry" vector components, all into a fourth, standard high copy "Destination" plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation. Moreover, herein we describe novel vectors with flanking piggyBac transposon elements for stable genomic integration in vitro or in vivo when used with piggyBac transposase. Collectively, the MAGIC system facilitates transgenesis in cultured mammalian cells, electroporated mouse and chick embryos, as well as in injected zebrafish embryos, enabling the rapid generation of innovative DNA constructs for biological research due to a shared, common plasmid platform.
Collapse
|
13
|
Martin CG, Bent JS, Hill T, Topalidou I, Singhvi A. Epithelial UNC-23 limits mechanical stress to maintain glia-neuron architecture in C. elegans. Dev Cell 2024; 59:1668-1688.e7. [PMID: 38670103 PMCID: PMC11233253 DOI: 10.1016/j.devcel.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
For an organ to maintain correct architecture and function, its diverse cellular components must coordinate their size and shape. Although cell-intrinsic mechanisms driving homotypic cell-cell coordination are known, it is unclear how cell shape is regulated across heterotypic cells. We find that epithelial cells maintain the shape of neighboring sense-organ glia-neuron units in adult Caenorhabditis elegans (C. elegans). Hsp co-chaperone UNC-23/BAG2 prevents epithelial cell shape from deforming, and its loss causes head epithelia to stretch aberrantly during animal movement. In the sense-organ glia, amphid sheath (AMsh), this causes progressive fibroblast growth factor receptor (FGFR)-dependent disruption of the glial apical cytoskeleton. Resultant glial cell shape alteration causes concomitant shape change in glia-associated neuron endings. Epithelial UNC-23 maintenance of glia-neuron shape is specific both spatially, within a defined anatomical zone, and temporally, in a developmentally critical period. As all molecular components uncovered are broadly conserved across central and peripheral nervous systems, we posit that epithelia may similarly regulate glia-neuron architecture cross-species.
Collapse
Affiliation(s)
- Cecilia G Martin
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James S Bent
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tyler Hill
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Irini Topalidou
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Nashchekin D, Squires I, Prokop A, St Johnston D. The Shot CH1 domain recognises a distinct form of F-actin during Drosophila oocyte determination. Development 2024; 151:dev202370. [PMID: 38564309 PMCID: PMC11058685 DOI: 10.1242/dev.202370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
In Drosophila, only one cell in a multicellular female germline cyst is specified as an oocyte and a similar process occurs in mammals. The symmetry-breaking cue for oocyte selection is provided by the fusome, a tubular structure connecting all cells in the cyst. The Drosophila spectraplakin Shot localises to the fusome and translates its asymmetry into a polarised microtubule network that is essential for oocyte specification, but how Shot recognises the fusome is unclear. Here, we demonstrate that the actin-binding domain (ABD) of Shot is necessary and sufficient to localise Shot to the fusome and mediates Shot function in oocyte specification together with the microtubule-binding domains. The calponin homology domain 1 of the Shot ABD recognises fusomal F-actin and requires calponin homology domain 2 to distinguish it from other forms of F-actin in the cyst. By contrast, the ABDs of utrophin, Fimbrin, Filamin, Lifeact and F-tractin do not recognise fusomal F-actin. We therefore propose that Shot propagates fusome asymmetry by recognising a specific conformational state of F-actin on the fusome.
Collapse
Affiliation(s)
- Dmitry Nashchekin
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Iolo Squires
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester M13 9PT, UK
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
15
|
Xu L, Cao L, Li J, Staiger CJ. Cooperative actin filament nucleation by the Arp2/3 complex and formins maintains the homeostatic cortical array in Arabidopsis epidermal cells. THE PLANT CELL 2024; 36:764-789. [PMID: 38057163 PMCID: PMC10896301 DOI: 10.1093/plcell/koad301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Precise control over how and where actin filaments are created leads to the construction of unique cytoskeletal arrays within a common cytoplasm. Actin filament nucleators are key players in this activity and include the conserved actin-related protein 2/3 (Arp2/3) complex as well as a large family of formins. In some eukaryotic cells, these nucleators compete for a common pool of actin monomers and loss of one favors the activity of the other. To test whether this mechanism is conserved, we combined the ability to image single filament dynamics in the homeostatic cortical actin array of living Arabidopsis (Arabidopsis thaliana) epidermal cells with genetic and/or small molecule inhibitor approaches to stably or acutely disrupt nucleator activity. We found that Arp2/3 mutants or acute CK-666 treatment markedly reduced the frequency of side-branched nucleation events as well as overall actin filament abundance. We also confirmed that plant formins contribute to side-branched filament nucleation in vivo. Surprisingly, simultaneous inhibition of both classes of nucleator increased overall actin filament abundance and enhanced the frequency of de novo nucleation events by an unknown mechanism. Collectively, our findings suggest that multiple actin nucleation mechanisms cooperate to generate and maintain the homeostatic cortical array of plant epidermal cells.
Collapse
Affiliation(s)
- Liyuan Xu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Lingyan Cao
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jiejie Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- EMBRIO Institute, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
16
|
Phillips TA, Marcotti S, Cox S, Parsons M. Imaging actin organisation and dynamics in 3D. J Cell Sci 2024; 137:jcs261389. [PMID: 38236161 PMCID: PMC10906668 DOI: 10.1242/jcs.261389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
The actin cytoskeleton plays a critical role in cell architecture and the control of fundamental processes including cell division, migration and survival. The dynamics and organisation of F-actin have been widely studied in a breadth of cell types on classical two-dimensional (2D) surfaces. Recent advances in optical microscopy have enabled interrogation of these cytoskeletal networks in cells within three-dimensional (3D) scaffolds, tissues and in vivo. Emerging studies indicate that the dimensionality experienced by cells has a profound impact on the structure and function of the cytoskeleton, with cells in 3D environments exhibiting cytoskeletal arrangements that differ to cells in 2D environments. However, the addition of a third (and fourth, with time) dimension leads to challenges in sample preparation, imaging and analysis, necessitating additional considerations to achieve the required signal-to-noise ratio and spatial and temporal resolution. Here, we summarise the current tools for imaging actin in a 3D context and highlight examples of the importance of this in understanding cytoskeletal biology and the challenges and opportunities in this domain.
Collapse
Affiliation(s)
- Thomas A. Phillips
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
- Microscopy Innovation Centre, King's College London, Guys Campus, London SE1 1UL, UK
| | - Susan Cox
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| |
Collapse
|
17
|
Shoyer TC, Collins KL, Ham TR, Blanchard AT, Malavade JN, West JL, Hoffman BD. Detection of Fluorescent Protein Mechanical Switching in Cellulo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575065. [PMID: 38260589 PMCID: PMC10802509 DOI: 10.1101/2024.01.10.575065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The ability of cells to sense and respond to mechanical forces is critical in many physiological and pathological processes. However, the mechanisms by which forces affect protein function inside cells remain unclear. Motivated by in vitro demonstrations of fluorescent proteins (FPs) undergoing reversible mechanical switching of fluorescence, we investigated if force-sensitive changes in FP function could be visualized in cells. Guided by a computational model of FP mechanical switching, we develop a formalism for its detection in Förster resonance energy transfer (FRET)-based biosensors and demonstrate its occurrence in cellulo in a synthetic actin-crosslinker and the mechanical linker protein vinculin. We find that in cellulo mechanical switching is reversible and altered by manipulation of cellular force generation as well as force-sensitive bond dynamics of the biosensor. Together, this work describes a new framework for assessing FP mechanical stability and provides a means of probing force-sensitive protein function inside cells. MOTIVATION The ability of cells to sense mechanical forces is critical in developmental, physiological, and pathological processes. Cells sense mechanical cues via force-induced alterations in protein structure and function, but elucidation of the molecular mechanisms is hindered by the lack of approaches to directly probe the effect of forces on protein structure and function inside cells. Motivated by in vitro observations of reversible fluorescent protein mechanical switching, we developed an approach for detecting fluorescent protein mechanical switching in cellulo . This enables the visualization of force-sensitive protein function inside living cells.
Collapse
|
18
|
Wollscheid HP, Ulrich HD. Chromatin meets the cytoskeleton: the importance of nuclear actin dynamics and associated motors for genome stability. DNA Repair (Amst) 2023; 131:103571. [PMID: 37738698 DOI: 10.1016/j.dnarep.2023.103571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
The actin cytoskeleton is of fundamental importance for numerous cellular processes, including intracellular transport, cell plasticity, and cell migration. However, functions of filamentous actin (F-actin) in the nucleus remain understudied due to the comparatively low abundance of nuclear actin and the resulting experimental limitations to its visualization. Owing to recent technological advances such as super-resolution microscopy and the development of nuclear-specific actin probes, essential roles of the actin cytoskeleton in the context of genome maintenance are now emerging. In addition to the contributions of monomeric actin as a component of multiple important nuclear protein complexes, nuclear actin has been found to undergo polymerization in response to DNA damage and DNA replication stress. Consequently, nuclear F-actin plays important roles in the regulation of intra-nuclear mobility of repair and replication foci as well as the maintenance of nuclear shape, two important aspects of efficient stress tolerance. Beyond actin itself, there is accumulating evidence for the participation of multiple actin-binding proteins (ABPs) in the surveillance of genome integrity, including nucleation factors and motor proteins of the myosin family. Here we summarize recent findings highlighting the importance of actin cytoskeletal factors within the nucleus in key genome maintenance pathways.
Collapse
Affiliation(s)
- Hans-Peter Wollscheid
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, Mainz D - 55128, Germany.
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, Mainz D - 55128, Germany.
| |
Collapse
|
19
|
Kawanishi T, Heilig AK, Shimada A, Takeda H. Visualization of Actin Cytoskeleton in Cellular Protrusions in Medaka Embryos. Bio Protoc 2023; 13:e4710. [PMID: 37449037 PMCID: PMC10336567 DOI: 10.21769/bioprotoc.4710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 04/23/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular protrusions are fundamental structures for a wide variety of cellular behaviors, such as cell migration, cell-cell interaction, and signal reception. Visualization of cellular protrusions in living cells can be achieved by labeling of cytoskeletal actin with genetically encoded fluorescent probes. Here, we describe a detailed experimental procedure to visualize cellular protrusions in medaka embryos, which consists of the following steps: preparation of Actin-Chromobody-GFP and α-bungarotoxin mRNAs for actin labeling and immobilization of the embryo, respectively; microinjection of the mRNAs into embryos in a mosaic fashion to sparsely label individual cells; removal of the hard chorion, which hampers observation; and visualization of cellular protrusions in the embryo with a confocal microscope. Overall, our protocol provides a simple method to reveal cellular protrusions in vivo by confocal microscopy.
Collapse
Affiliation(s)
- Toru Kawanishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Ann Kathrin Heilig
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Oda H, Sato Y, Kawashima SA, Fujiwara Y, Pálfy M, Wu E, Vastenhouw NL, Kanai M, Kimura H. Actin filaments accumulated in the nucleus remain in the vicinity of condensing chromosomes in the zebrafish early embryo. Biol Open 2023; 12:bio059783. [PMID: 37071022 PMCID: PMC10214854 DOI: 10.1242/bio.059783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
In the cytoplasm, filamentous actin (F-actin) plays a critical role in cell regulation, including cell migration, stress fiber formation, and cytokinesis. Recent studies have shown that actin filaments that form in the nucleus are associated with diverse functions. Here, using live imaging of an F-actin-specific probe, superfolder GFP-tagged utrophin (UtrCH-sfGFP), we demonstrated the dynamics of nuclear actin in zebrafish (Danio rerio) embryos. In early zebrafish embryos up to around the high stage, UtrCH-sfGFP increasingly accumulated in nuclei during the interphase and reached a peak during the prophase. After nuclear envelope breakdown (NEBD), patches of UtrCH-sfGFP remained in the vicinity of condensing chromosomes during the prometaphase to metaphase. When zygotic transcription was inhibited by injecting α-amanitin, the nuclear accumulation of UtrCH-sfGFP was still observed at the sphere and dome stages, suggesting that zygotic transcription may induce a decrease in nuclear F-actin. The accumulation of F-actin in nuclei may contribute to proper mitotic progression of large cells with rapid cell cycles in zebrafish early embryos, by assisting in NEBD, chromosome congression, and/or spindle assembly.
Collapse
Affiliation(s)
- Haruka Oda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Shigehiro A. Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Fujiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Máté Pálfy
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden-01307, Germany
| | - Edlyn Wu
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden-01307, Germany
- University of Lausanne, Center for Integrative Genomics, Lausanne 1015, Switzerland
| | - Nadine L. Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden-01307, Germany
- University of Lausanne, Center for Integrative Genomics, Lausanne 1015, Switzerland
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
21
|
Zhou FY, Weems A, Gihana GM, Chen B, Chang BJ, Driscoll M, Danuser G. Surface-guided computing to analyze subcellular morphology and membrane-associated signals in 3D. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536640. [PMID: 37131779 PMCID: PMC10153113 DOI: 10.1101/2023.04.12.536640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Signal transduction and cell function are governed by the spatiotemporal organization of membrane-associated molecules. Despite significant advances in visualizing molecular distributions by 3D light microscopy, cell biologists still have limited quantitative understanding of the processes implicated in the regulation of molecular signals at the whole cell scale. In particular, complex and transient cell surface morphologies challenge the complete sampling of cell geometry, membrane-associated molecular concentration and activity and the computing of meaningful parameters such as the cofluctuation between morphology and signals. Here, we introduce u-Unwrap3D, a framework to remap arbitrarily complex 3D cell surfaces and membrane-associated signals into equivalent lower dimensional representations. The mappings are bidirectional, allowing the application of image processing operations in the data representation best suited for the task and to subsequently present the results in any of the other representations, including the original 3D cell surface. Leveraging this surface-guided computing paradigm, we track segmented surface motifs in 2D to quantify the recruitment of Septin polymers by blebbing events; we quantify actin enrichment in peripheral ruffles; and we measure the speed of ruffle movement along topographically complex cell surfaces. Thus, u-Unwrap3D provides access to spatiotemporal analyses of cell biological parameters on unconstrained 3D surface geometries and signals.
Collapse
Affiliation(s)
- Felix Y. Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Weems
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gabriel M. Gihana
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bingying Chen
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Meghan Driscoll
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Current address: Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
22
|
Yeh AR, Hoeprich GJ, Goode BL, Martin AC. Bitesize bundles F-actin and influences actin remodeling in syncytial Drosophila embryo development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537198. [PMID: 37131807 PMCID: PMC10153138 DOI: 10.1101/2023.04.17.537198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Actin networks undergo rearrangements that influence cell and tissue shape. Actin network assembly and organization is regulated in space and time by a host of actin binding proteins. The Drosophila Synaptotagmin-like protein, Bitesize (Btsz), is known to organize actin at epithelial cell apical junctions in a manner that depends on its interaction with the actin-binding protein, Moesin. Here, we showed that Btsz functions in actin reorganization at earlier, syncytial stages of Drosophila embryo development. Btsz was required for the formation of stable metaphase pseudocleavage furrows that prevented spindle collisions and nuclear fallout prior to cellularization. While previous studies focused on Btsz isoforms containing the Moesin Binding Domain (MBD), we found that isoforms lacking the MBD also function in actin remodeling. Consistent with this, we found that the C-terminal half of BtszB cooperatively binds to and bundles F-actin, suggesting a direct mechanism for Synaptotagmin-like proteins regulating actin organization during animal development.
Collapse
|
23
|
Zhou FY, Weems A, Gihana GM, Chen B, Chang BJ, Driscoll M, Danuser G. Surface-guided computing to analyze subcellular morphology and membrane-associated signals in 3D. ARXIV 2023:arXiv:2304.06176v1. [PMID: 37090235 PMCID: PMC10120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Signal transduction and cell function are governed by the spatiotemporal organization of membrane-associated molecules. Despite significant advances in visualizing molecular distributions by 3D light microscopy, cell biologists still have limited quantitative understanding of the processes implicated in the regulation of molecular signals at the whole cell scale. In particular, complex and transient cell surface morphologies challenge the complete sampling of cell geometry, membrane-associated molecular concentration and activity and the computing of meaningful parameters such as the cofluctuation between morphology and signals. Here, we introduce u-Unwrap3D, a framework to remap arbitrarily complex 3D cell surfaces and membrane-associated signals into equivalent lower dimensional representations. The mappings are bidirectional, allowing the application of image processing operations in the data representation best suited for the task and to subsequently present the results in any of the other representations, including the original 3D cell surface. Leveraging this surface-guided computing paradigm, we track segmented surface motifs in 2D to quantify the recruitment of Septin polymers by blebbing events; we quantify actin enrichment in peripheral ruffles; and we measure the speed of ruffle movement along topographically complex cell surfaces. Thus, u-Unwrap3D provides access to spatiotemporal analyses of cell biological parameters on unconstrained 3D surface geometries and signals.
Collapse
Affiliation(s)
- Felix Y. Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Weems
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gabriel M. Gihana
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bingying Chen
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Meghan Driscoll
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Current address: Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
24
|
Talbot DE, Vormezeele BJ, Kimble GC, Wineland DM, Kelpsch DJ, Giedt MS, Tootle TL. Prostaglandins limit nuclear actin to control nucleolar function during oogenesis. Front Cell Dev Biol 2023; 11:1072456. [PMID: 36875757 PMCID: PMC9981675 DOI: 10.3389/fcell.2023.1072456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Prostaglandins (PGs), locally acting lipid signals, regulate female reproduction, including oocyte development. However, the cellular mechanisms of PG action remain largely unknown. One cellular target of PG signaling is the nucleolus. Indeed, across organisms, loss of PGs results in misshapen nucleoli, and changes in nucleolar morphology are indicative of altered nucleolar function. A key role of the nucleolus is to transcribe ribosomal RNA (rRNA) to drive ribosomal biogenesis. Here we take advantage of the robust, in vivo system of Drosophila oogenesis to define the roles and downstream mechanisms whereby PGs regulate the nucleolus. We find that the altered nucleolar morphology due to PG loss is not due to reduced rRNA transcription. Instead, loss of PGs results in increased rRNA transcription and overall protein translation. PGs modulate these nucleolar functions by tightly regulating nuclear actin, which is enriched in the nucleolus. Specifically, we find that loss of PGs results in both increased nucleolar actin and changes in its form. Increasing nuclear actin, by either genetic loss of PG signaling or overexpression of nuclear targeted actin (NLS-actin), results in a round nucleolar morphology. Further, loss of PGs, overexpression of NLS-actin or loss of Exportin 6, all manipulations that increase nuclear actin levels, results in increased RNAPI-dependent transcription. Together these data reveal PGs carefully balance the level and forms of nuclear actin to control the level of nucleolar activity required for producing fertilization competent oocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
25
|
Abstract
In this chapter, we highlight examples of the diverse array of developmental, cellular, and biochemical insights that can be gained by using Drosophila melanogaster oogenesis as a model tissue. We begin with an overview of ovary development and adult oogenesis. Then we summarize how the adult Drosophila ovary continues to advance our understanding of stem cells, cell cycle, cell migration, cytoplasmic streaming, nurse cell dumping, and cell death. We also review emerging areas of study, including the roles of lipid droplets, ribosomes, and nuclear actin in egg development. Finally, we conclude by discussing the growing conservation of processes and signaling pathways that regulate oogenesis and female reproduction from flies to humans.
Collapse
|
26
|
Chen Y, Kotian N, McDonald JA. Quantitative Image Analysis of Dynamic Cell Behaviors During Border Cell Migration. Methods Mol Biol 2023; 2626:193-217. [PMID: 36715906 DOI: 10.1007/978-1-0716-2970-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Drosophila border cells have emerged as a genetically tractable model to investigate dynamic collective cell migration within the context of a developing organ. Studies of live border cell cluster migration have revealed similarities with other migrating collectives, including formation and restriction of cellular protrusions to the front of the cluster, supracellular actomyosin contractility of the entire collective, and intra-collective cell motility. Here, we describe protocols to prepare ex vivo cultures of stage 9 egg chambers followed by live time-lapse imaging of fluorescently labeled border cells to image dynamic cell behaviors. We provide options to perform live imaging using either a widefield epifluorescent microscope or a confocal microscope. We further outline steps to quantify various cellular behaviors and protein dynamics of live migrating border cells using the Fiji image processing package of ImageJ. These methods can be adapted to other migrating cell collectives in cultured tissues and organs.
Collapse
Affiliation(s)
- Yujun Chen
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Nirupama Kotian
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | | |
Collapse
|
27
|
Kroll KL, French AR, Sosnick TR, Rock RS. LILAC: enhanced actin imaging with an optogenetic Lifeact. Nat Methods 2023; 20:214-217. [PMID: 36717692 PMCID: PMC10986358 DOI: 10.1038/s41592-022-01761-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/20/2022] [Indexed: 01/31/2023]
Abstract
Lifeact is a popular peptide-based label of actin filaments in live cells. We have designed an improved Lifeact variant, LILAC, that binds to actin in light using the LOV2 protein. Light control allows the user to modulate actin labeling, enabling image analysis that leverages modulation for an enhanced view of F-actin dynamics in cells. Furthermore, the tool reduces actin perturbations and cell sickness caused by Lifeact overexpression.
Collapse
Affiliation(s)
- Kourtney L Kroll
- Biophysical Sciences Graduate Program, The University of Chicago, Chicago, IL, USA
| | - Alexander R French
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
28
|
Anderson MT, Sherrard K, Horne-Badovinac S. Optimized Fixation and Phalloidin Staining of Basally Localized F-Actin Networks in Collectively Migrating Follicle Cells. Methods Mol Biol 2023; 2626:179-191. [PMID: 36715905 PMCID: PMC11229081 DOI: 10.1007/978-1-0716-2970-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The follicular epithelial cells of the Drosophila egg chamber have become a premier model to study how cells globally orient their actin-based machinery for collective migration. The basal surface of each follicle cell has lamellipodial and filopodial protrusions that extend from its leading edge and an array of stress fibers that mediate its adhesion to the extracellular matrix; these migratory structures are all globally aligned in the direction of tissue movement. To understand how this global alignment is achieved, one must be able to reliably visualize the underlying F-actin; however, dynamic F-actin networks can be difficult to preserve in fixed tissues. Here, we describe an optimized protocol for the fixation and phalloidin staining of the follicular epithelium. We also provide a brief primer on relevant aspects of the image acquisition process to ensure high quality data are collected.
Collapse
Affiliation(s)
- Mitchell T Anderson
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Kristin Sherrard
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA.
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
29
|
Williams AM, Donoughe S, Munro E, Horne-Badovinac S. Fat2 polarizes the WAVE complex in trans to align cell protrusions for collective migration. eLife 2022; 11:e78343. [PMID: 36154691 PMCID: PMC9576270 DOI: 10.7554/elife.78343] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/11/2022] [Indexed: 11/13/2022] Open
Abstract
For a group of cells to migrate together, each cell must couple the polarity of its migratory machinery with that of the other cells in the cohort. Although collective cell migrations are common in animal development, little is known about how protrusions are coherently polarized among groups of migrating epithelial cells. We address this problem in the collective migration of the follicular epithelial cells in Drosophila melanogaster. In this epithelium, the cadherin Fat2 localizes to the trailing edge of each cell and promotes the formation of F-actin-rich protrusions at the leading edge of the cell behind. We show that Fat2 performs this function by acting in trans to concentrate the activity of the WASP family verprolin homolog regulatory complex (WAVE complex) at one long-lived region along each cell's leading edge. Without Fat2, the WAVE complex distribution expands around the cell perimeter and fluctuates over time, and protrusive activity is reduced and unpolarized. We further show that Fat2's influence is very local, with sub-micron-scale puncta of Fat2 enriching the WAVE complex in corresponding puncta just across the leading-trailing cell-cell interface. These findings demonstrate that a trans interaction between Fat2 and the WAVE complex creates stable regions of protrusive activity in each cell and aligns the cells' protrusions across the epithelium for directionally persistent collective migration.
Collapse
Affiliation(s)
- Audrey Miller Williams
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - Seth Donoughe
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
- Committee on Development, Regeneration, and Stem Cell Biology, University of ChicagoChicagoUnited States
- Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
- Committee on Development, Regeneration, and Stem Cell Biology, University of ChicagoChicagoUnited States
| |
Collapse
|
30
|
Sponge/DOCK-dependent regulation of F-actin networks directing cortical cap behaviors and syncytial furrow ingression. Dev Biol 2022; 491:82-93. [PMID: 36067836 DOI: 10.1016/j.ydbio.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022]
Abstract
In the early syncytial Drosophila embryo, rapid changes in filamentous actin networks and membrane trafficking pathways drive the formation and remodeling of cortical and furrow morphologies. Interestingly, genomic integrity and the completion of mitoses during cell cycles 10-13 depends on the formation of transient membrane furrows that serve to separate and anchor individual spindles during division. While substantial work has led to a better understanding of the core network components that are responsible for the formation of these furrows, less is known about the regulation that controls cytoskeletal and trafficking function. The DOCK protein Sponge was one of the first proteins identified as being required for syncytial furrow formation, and disruption of Sponge deeply compromises F-actin populations in the early embryo, but how this occurs is less clear. Here, we perform quantitative analysis of the effects of Sponge disruption on cortical cap growth, furrow formation, membrane trafficking, and cytoskeletal network regulation through live-imaging of the syncytial embryo. We find that membrane trafficking is relatively unaffected by the defects in branched actin networks that occur after Sponge disruption, but that Sponge acts as a master regulator of a diverse cohort of Arp2/3 regulatory proteins. As DOCK family proteins have been implicated in regulating GTP exchange on small GTPases, we also suggest that Rac GTPase activity bridges Sponge regulation to the regulators of Arp2/3 function. Finally, we demonstrate the phasic requirements for branched F-actin and linear F-actin networks in potentiating furrow ingression. In total, these results provide quantitative insights into how a large DOCK scaffolding protein coordinates the activity of a variety of different actin regulatory proteins to direct the remodeling of the apical cortex into cytokinetic-like furrows.
Collapse
|
31
|
Logan G, Chou WC, McCartney BM. A Diaphanous and Enabled-dependent asymmetric actin cable array repositions nuclei during Drosophila oogenesis. Development 2022; 149:275657. [DOI: 10.1242/dev.197442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Cells reposition their nuclei for diverse specialized functions through a wide variety of cytoskeletal mechanisms. During Drosophila oogenesis, 15 nurse cells connected by ring canals to each other and the oocyte contract, ‘dumping’ their cytoplasm into the oocyte. Prior to dumping, actin cables initiate from the nurse cell cortex and elongate toward their nuclei, pushing them away from ring canals to prevent obstruction. How the cable arrays reposition nuclei is unknown. We found that these arrays are asymmetric, with regional differences in actin cable growth rate dependent on the differential localization of the actin assembly factors Enabled and Diaphanous. Enabled mislocalization produces a uniform growth rate. In oocyte-contacting nurse cells with asymmetric cable arrays, nuclei move away from ring canals. With uniform arrays, these nuclei move toward the adjacent ring canal instead. This correlated with ring canal nuclear blockage and incomplete dumping. Our data suggest that nuclear repositioning relies on the regulated cortical localization of Diaphanous and Enabled to produce actin cable arrays with asymmetric growth that push nuclei away from ring canals, enabling successful oogenesis.
Collapse
Affiliation(s)
- Gregory Logan
- Carnegie Mellon University Department of Biological Sciences , , 4400 Fifth Avenue, Pittsburgh, PA 15213 , USA
| | - Wei-Chien Chou
- Carnegie Mellon University Department of Biological Sciences , , 4400 Fifth Avenue, Pittsburgh, PA 15213 , USA
| | - Brooke M. McCartney
- Carnegie Mellon University Department of Biological Sciences , , 4400 Fifth Avenue, Pittsburgh, PA 15213 , USA
| |
Collapse
|
32
|
Shah P, Bao Z, Zaidel-Bar R. Visualizing and quantifying molecular and cellular processes in C. elegans using light microscopy. Genetics 2022; 221:6619563. [PMID: 35766819 DOI: 10.1093/genetics/iyac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/14/2022] [Indexed: 11/14/2022] Open
Abstract
Light microscopes are the cell and developmental biologists' "best friend", providing a means to see structures and follow dynamics from the protein to the organism level. A huge advantage of C. elegans as a model organism is its transparency, which coupled with its small size means that nearly every biological process can be observed and measured with the appropriate probe and light microscope. Continuous improvement in microscope technologies along with novel genome editing techniques to create transgenic probes have facilitated the development and implementation of a dizzying array of methods for imaging worm embryos, larvae and adults. In this review we provide an overview of the molecular and cellular processes that can be visualized in living worms using light microscopy. A partial inventory of fluorescent probes and techniques successfully used in worms to image the dynamics of cells, organelles, DNA, and protein localization and activity is followed by a practical guide to choosing between various imaging modalities, including widefield, confocal, lightsheet, and structured illumination microscopy. Finally, we discuss the available tools and approaches, including machine learning, for quantitative image analysis tasks, such as colocalization, segmentation, object tracking, and lineage tracing. Hopefully, this review will inspire worm researchers who have not yet imaged their worms to begin, and push those who are imaging to go faster, finer, and longer.
Collapse
Affiliation(s)
- Pavak Shah
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles 90095, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
33
|
Moore RP, Fogerson SM, Tulu US, Yu JW, Cox AH, Sican MA, Li D, Legant WR, Weigel AV, Crawford JM, Betzig E, Kiehart DP. Super-resolution microscopy reveals actomyosin dynamics in medioapical arrays. Mol Biol Cell 2022; 33:ar94. [PMID: 35544300 DOI: 10.1091/mbc.e21-11-0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Arrays of actin filaments (F-actin) near the apical surface of epithelial cells (medioapical arrays) contribute to apical constriction and morphogenesis throughout phylogeny. Here, super-resolution approaches (grazing incidence structured illumination, GI-SIM and lattice light sheet, LLSM) microscopy resolve individual, fluorescently labeled F-actin and bipolar myosin filaments that drive amnioserosa cell shape changes during dorsal closure in Drosophila. In expanded cells, F-actin and myosin form loose, apically domed meshworks at the plasma membrane. The arrays condense as cells contract, drawing the domes into the plane of the junctional belts. As condensation continues, individual filaments are no longer uniformly apparent. As cells expand, arrays of actomyosin are again resolved - some F-actin turnover likely occurs, but a large fraction of existing filaments rearrange. In morphologically isotropic cells, actin filaments are randomly oriented and during contraction, are drawn together but remain essentially randomly oriented. In anisotropic cells, largely parallel actin filaments are drawn closer to one another. Our images offer unparalleled resolution of F-actin in embryonic tissue show that medioapical arrays are tightly apposed to the plasma membrane, are continuous with meshworks of lamellar F-actin and thereby constitute modified cell cortex. In concert with other tagged array components, super-resolution imaging of live specimens will offer new understanding of cortical architecture and function. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Regan P Moore
- Biology Department, Duke University, Durham, NC, 27708, USA.,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, 27599, USA and North Carolina State University, Raleigh, NC, 27695, USA
| | | | - U Serdar Tulu
- Biology Department, Duke University, Durham, NC, 27708, USA
| | - Jason W Yu
- Biology Department, Duke University, Durham, NC, 27708, USA
| | - Amanda H Cox
- Biology Department, Duke University, Durham, NC, 27708, USA
| | | | - Dong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wesley R Legant
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, 27599, USA and North Carolina State University, Raleigh, NC, 27695, USA
| | - Aubrey V Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | | | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.,Departments of Physics and Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | | |
Collapse
|
34
|
Chang M, Lee OC, Bu G, Oh J, Yunn NO, Ryu SH, Kwon HB, Kolomeisky AB, Shim SH, Doh J, Jeon JH, Lee JB. Formation of cellular close-ended tunneling nanotubes through mechanical deformation. SCIENCE ADVANCES 2022; 8:eabj3995. [PMID: 35353579 PMCID: PMC8967236 DOI: 10.1126/sciadv.abj3995] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Membrane nanotubes or tunneling nanotubes (TNTs) that connect cells have been recognized as a previously unidentified pathway for intercellular transport between distant cells. However, it is unknown how this delicate structure, which extends over tens of micrometers and remains robust for hours, is formed. Here, we found that a TNT develops from a double filopodial bridge (DFB) created by the physical contact of two filopodia through helical deformation of the DFB. The transition of a DFB to a close-ended TNT is most likely triggered by disruption of the adhesion of two filopodia by mechanical energy accumulated in a twisted DFB when one of the DFB ends is firmly attached through intercellular cadherin-cadherin interactions. These studies pinpoint the mechanistic questions about TNTs and elucidate a formation mechanism.
Collapse
Affiliation(s)
- Minhyeok Chang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - O-chul Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Gayun Bu
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jaeho Oh
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Na-Oh Yunn
- POSTECH Biotech Center, Pohang 37673, Korea
| | - Sung Ho Ryu
- Department of Life Sciences, POSTECH, Pohang 37673, Korea
| | - Hyung-Bae Kwon
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Sang-Hee Shim
- Department of Chemistry, Korea University, Seoul 02481, Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Jae-Hyung Jeon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Asia Pacific Center for Theoretical Physics (APCTP), Pohang 37673, Korea
- Corresponding author. (J.-B.L.); (J.-H.J.)
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Asia Pacific Center for Theoretical Physics (APCTP), Pohang 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Korea
- Corresponding author. (J.-B.L.); (J.-H.J.)
| |
Collapse
|
35
|
Erdener ŞE, Küreli G, Dalkara T. Contractile apparatus in CNS capillary pericytes. NEUROPHOTONICS 2022; 9:021904. [PMID: 35106320 PMCID: PMC8785978 DOI: 10.1117/1.nph.9.2.021904] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Significance: Whether or not capillary pericytes contribute to blood flow regulation in the brain and retina has long been debated. This was partly caused by failure of detecting the contractile protein α -smooth muscle actin ( α -SMA) in capillary pericytes. Aim: The aim of this review is to summarize recent developments in detecting α -SMA and contractility in capillary pericytes and the relevant literature on the biology of actin filaments. Results: Evidence suggests that for visualization of the small amounts of α -SMA in downstream mid-capillary pericytes, actin depolymerization must be prevented during tissue processing. Actin filaments turnover is mainly based on de/re-polymerization rather than transcription of the monomeric form, hence, small amounts of α -SMA mRNA may evade detection by transcriptomic studies. Similarly, transgenic mice expressing fluorescent reporters under the α -SMA promoter may yield low fluorescence due to limited transcriptional activity in mid-capillary pericytes. Recent studies show that pericytes including mid-capillary ones express several actin isoforms and myosin heavy chain type 11, the partner of α -SMA in mediating contraction. Emerging evidence also suggests that actin polymerization in pericytes may have a role in regulating the tone of downstream capillaries. Conclusions: With guidance of actin biology, innovative labeling and imaging techniques can reveal the molecular machinery of contraction in pericytes.
Collapse
Affiliation(s)
- Şefik E. Erdener
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| | - Gülce Küreli
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| | - Turgay Dalkara
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| |
Collapse
|
36
|
Lu W, Lakonishok M, Serpinskaya AS, Gelfand VI. A novel mechanism of bulk cytoplasmic transport by cortical dynein in Drosophila ovary. eLife 2022; 11:e75538. [PMID: 35170428 PMCID: PMC8896832 DOI: 10.7554/elife.75538] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
Cytoplasmic dynein, a major minus-end directed microtubule motor, plays essential roles in eukaryotic cells. Drosophila oocyte growth is mainly dependent on the contribution of cytoplasmic contents from the interconnected sister cells, nurse cells. We have previously shown that cytoplasmic dynein is required for Drosophila oocyte growth and assumed that it simply transports cargoes along microtubule tracks from nurse cells to the oocyte. Here, we report that instead of transporting individual cargoes along stationary microtubules into the oocyte, cortical dynein actively moves microtubules within nurse cells and from nurse cells to the oocyte via the cytoplasmic bridges, the ring canals. This robust microtubule movement is sufficient to drag even inert cytoplasmic particles through the ring canals to the oocyte. Furthermore, replacing dynein with a minus-end directed plant kinesin linked to the actin cortex is sufficient for transporting organelles and cytoplasm to the oocyte and driving its growth. These experiments show that cortical dynein performs bulk cytoplasmic transport by gliding microtubules along the cell cortex and through the ring canals to the oocyte. We propose that the dynein-driven microtubule flow could serve as a novel mode of fast cytoplasmic transport.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Anna S Serpinskaya
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
37
|
Ríos-Barrera LD, Leptin M. An endosome-associated actin network involved in directed apical plasma membrane growth. J Biophys Biochem Cytol 2022; 221:212975. [PMID: 35061016 PMCID: PMC8789128 DOI: 10.1083/jcb.202106124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
Membrane trafficking plays many roles in morphogenesis, from bulk membrane provision to targeted delivery of proteins and other cargos. In tracheal terminal cells of the Drosophila respiratory system, transport through late endosomes balances membrane delivery between the basal plasma membrane and the apical membrane, which forms a subcellular tube, but it has been unclear how the direction of growth of the subcellular tube with the overall cell growth is coordinated. We show here that endosomes also organize F-actin. Actin assembles around late endocytic vesicles in the growth cone of the cell, reaching from the tip of the subcellular tube to the leading filopodia of the basal membrane. Preventing nucleation of endosomal actin disturbs the directionality of tube growth, uncoupling it from the direction of cell elongation. Severing actin in this area affects tube integrity. Our findings show a new role for late endosomes in directing morphogenesis by organizing actin, in addition to their known role in membrane and protein trafficking.
Collapse
Affiliation(s)
- Luis Daniel Ríos-Barrera
- Directors’ Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Leptin
- Directors’ Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
38
|
Krishnan RK, Halachmi N, Baskar R, Bakhrat A, Zarivach R, Salzberg A, Abdu U. Revisiting the Role of ß-Tubulin in Drosophila Development: β-tubulin60D is not an Essential Gene, and its Novel Pin1 Allele has a Tissue-Specific Dominant-Negative Impact. Front Cell Dev Biol 2022; 9:787976. [PMID: 35111755 PMCID: PMC8802551 DOI: 10.3389/fcell.2021.787976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
Diversity in cytoskeleton organization and function may be achieved through alternative tubulin isotypes and by a variety of post-translational modifications. The Drosophila genome contains five different β-tubulin paralogs, which may play an isotype tissue-specific function in vivo. One of these genes, the β-tubulin60D gene, which is expressed in a tissue-specific manner, was found to be essential for fly viability and fertility. To further understand the role of the β-tubulin60D gene, we generated new β-tubulin60D null alleles (β-tubulin60DM) using the CRISPR/Cas9 system and found that the homozygous flies were viable and fertile. Moreover, using a combination of genetic complementation tests, rescue experiments, and cell biology analyses, we identified Pin1, an unknown dominant mutant with bristle developmental defects, as a dominant-negative allele of β-tubulin60D. We also found a missense mutation in the Pin1 mutant that results in an amino acid replacement from the highly conserved glutamate at position 75 to lysine (E75K). Analyzing the ß-tubulin structure suggests that this E75K alteration destabilizes the alpha-helix structure and may also alter the GTP-Mg2+ complex binding capabilities. Our results revisited the credence that β-tubulin60D is required for fly viability and revealed for the first time in Drosophila, a novel dominant-negative function of missense β-tubulin60D mutation in bristle morphogenesis.
Collapse
Affiliation(s)
| | - Naomi Halachmi
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Raju Baskar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer’Sheva, Israel
| | - Anna Bakhrat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer’Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer’Sheva, Israel
- National Institute for Biotechnology in the Negev and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Adi Salzberg
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer’Sheva, Israel
- *Correspondence: Uri Abdu,
| |
Collapse
|
39
|
Garcia G, Homentcovschi S, Kelet N, Higuchi-Sanabria R. Imaging of Actin Cytoskeletal Integrity During Aging in C. elegans. Methods Mol Biol 2022; 2364:101-137. [PMID: 34542850 DOI: 10.1007/978-1-0716-1661-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton plays a fundamental role in the regulation of multiple cellular pathways, including trafficking and locomotion. The functional integrity of the cytoskeleton is important during aging, as the decline of cytoskeletal integrity contributes to the physiological consequence of aging. Moreover, improving cytoskeletal form and function throughout aging is sufficient to drive life span extension and promote organismal health in multiple model systems. For these reasons, optimized protocols for visualization of the actin cytoskeleton and its downstream consequences on health span and life span are critical for understanding the aging process. In C. elegans, the actin cytoskeleton shows diverse morphologies across tissues, potentially due to the significantly different functions of each cell type. This chapter describes an imaging platform utilizing LifeAct to visualize the actin cytoskeleton in live, whole nematodes throughout the aging process and methods to perform follow-up studies on the life span and health span of these organisms.
Collapse
Affiliation(s)
- Gilberto Garcia
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Stefan Homentcovschi
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Naame Kelet
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ryo Higuchi-Sanabria
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Sing CN, Yang EJ, Swayne TC, Higuchi-Sanabria R, Tsang CA, Boldogh IR, Pon LA. Imaging the Actin Cytoskeleton in Live Budding Yeast Cells. Methods Mol Biol 2022; 2364:53-80. [PMID: 34542848 PMCID: PMC11060504 DOI: 10.1007/978-1-0716-1661-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Although budding yeast, Saccharomyces cerevisiae, is widely used as a model organism in biological research, studying cell biology in yeast was hindered due to its small size, rounded morphology, and cell wall. However, with improved techniques, researchers can acquire high-resolution images and carry out rapid multidimensional analysis of a yeast cell. As a result, imaging in yeast has emerged as an important tool to study cytoskeletal organization, function, and dynamics. This chapter describes techniques and approaches for visualizing the actin cytoskeleton in live yeast cells.
Collapse
Affiliation(s)
- Cierra N Sing
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Emily J Yang
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Theresa C Swayne
- Confocal and Specialized Microscopy Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Catherine A Tsang
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Istvan R Boldogh
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY, USA
- Confocal and Specialized Microscopy Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY, USA.
- Confocal and Specialized Microscopy Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
41
|
Pal D, Visconti F, Sepúlveda-Ramírez SP, Swartz SZ, Shuster CB. Use of Echinoderm Gametes and Early Embryos for Studying Meiosis and Mitosis. Methods Mol Biol 2022; 2415:1-17. [PMID: 34972942 DOI: 10.1007/978-1-0716-1904-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The early embryos of sea urchins and other echinoderms have served as experimental models for the study of cell division since the nineteenth century. Their rapid development, optical clarity, and ease of manipulation continue to offer advantages for studying spindle assembly and cytokinesis. In the absence of transgenic lines, alternative strategies must be employed to visualize microtubules and actin. Here, we describe methods to visualize actin and microtubule using either purified, recombinant proteins, or probes in in vitro-transcribed mRNAs.
Collapse
Affiliation(s)
- Debadrita Pal
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | | | | | | | - Charles B Shuster
- Department of Biology, New Mexico State University, Las Cruces, NM, USA.
| |
Collapse
|
42
|
Montero Llopis P, Senft RA, Ross-Elliott TJ, Stephansky R, Keeley DP, Koshar P, Marqués G, Gao YS, Carlson BR, Pengo T, Sanders MA, Cameron LA, Itano MS. Best practices and tools for reporting reproducible fluorescence microscopy methods. Nat Methods 2021; 18:1463-1476. [PMID: 34099930 DOI: 10.1038/s41592-021-01156-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/15/2021] [Indexed: 02/04/2023]
Abstract
Although fluorescence microscopy is ubiquitous in biomedical research, microscopy methods reporting is inconsistent and perhaps undervalued. We emphasize the importance of appropriate microscopy methods reporting and seek to educate researchers about how microscopy metadata impact data interpretation. We provide comprehensive guidelines and resources to enable accurate reporting for the most common fluorescence light microscopy modalities. We aim to improve microscopy reporting, thus improving the quality, rigor and reproducibility of image-based science.
Collapse
Affiliation(s)
| | - Rebecca A Senft
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Daniel P Keeley
- Neuroscience Microscopy Core, University of North Carolina, Chapel Hill, NC, USA
| | - Preman Koshar
- Neuroscience Microscopy Core, University of North Carolina, Chapel Hill, NC, USA
| | - Guillermo Marqués
- University Imaging Centers and Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Ya-Sheng Gao
- Duke Light Microscopy Core Facility, Duke University, Durham, NC, USA
| | | | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Mark A Sanders
- University Imaging Centers and Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Lisa A Cameron
- Duke Light Microscopy Core Facility, Duke University, Durham, NC, USA
| | - Michelle S Itano
- Neuroscience Microscopy Core, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
43
|
Xu R, Du S. Overexpression of Lifeact-GFP Disrupts F-Actin Organization in Cardiomyocytes and Impairs Cardiac Function. Front Cell Dev Biol 2021; 9:746818. [PMID: 34765602 PMCID: PMC8576398 DOI: 10.3389/fcell.2021.746818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022] Open
Abstract
Lifeact-GFP is a frequently used molecular probe to study F-actin structure and dynamic assembly in living cells. In this study, we generated transgenic zebrafish models expressing Lifeact-GFP specifically in cardiac muscles to investigate the effect of Lifeact-GFP on heart development and its application to study cardiomyopathy. The data showed that transgenic zebrafish with low to moderate levels of Lifeact-GFP expression could be used as a good model to study contractile dynamics of actin filaments in cardiac muscles in vivo. Using this model, we demonstrated that loss of Smyd1b, a lysine methyltransferase, disrupted F-actin filament organization in cardiomyocytes of zebrafish embryos. Our studies, however, also demonstrated that strong Lifeact-GFP expression in cardiomyocytes was detrimental to actin filament organization in cardiomyocytes that led to pericardial edema and early embryonic lethality of zebrafish embryos. Collectively, these data suggest that although Lifeact-GFP is a good probe for visualizing F-actin dynamics, transgenic models need to be carefully evaluated to avoid artifacts induced by Lifeact-GFP overexpression.
Collapse
Affiliation(s)
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
44
|
Kilo L, Stürner T, Tavosanis G, Ziegler AB. Drosophila Dendritic Arborisation Neurons: Fantastic Actin Dynamics and Where to Find Them. Cells 2021; 10:2777. [PMID: 34685757 PMCID: PMC8534399 DOI: 10.3390/cells10102777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Neuronal dendrites receive, integrate, and process numerous inputs and therefore serve as the neuron's "antennae". Dendrites display extreme morphological diversity across different neuronal classes to match the neuron's specific functional requirements. Understanding how this structural diversity is specified is therefore important for shedding light on information processing in the healthy and diseased nervous system. Popular models for in vivo studies of dendrite differentiation are the four classes of dendritic arborization (c1da-c4da) neurons of Drosophila larvae with their class-specific dendritic morphologies. Using da neurons, a combination of live-cell imaging and computational approaches have delivered information on the distinct phases and the time course of dendrite development from embryonic stages to the fully developed dendritic tree. With these data, we can start approaching the basic logic behind differential dendrite development. A major role in the definition of neuron-type specific morphologies is played by dynamic actin-rich processes and the regulation of their properties. This review presents the differences in the growth programs leading to morphologically different dendritic trees, with a focus on the key role of actin modulatory proteins. In addition, we summarize requirements and technological progress towards the visualization and manipulation of such actin regulators in vivo.
Collapse
Affiliation(s)
- Lukas Kilo
- Dendrite Differentiation, German Center for Neurodegenerative Diseases, 53115 Bonn, Germany; (L.K.); (G.T.)
| | - Tomke Stürner
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK;
| | - Gaia Tavosanis
- Dendrite Differentiation, German Center for Neurodegenerative Diseases, 53115 Bonn, Germany; (L.K.); (G.T.)
- LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Anna B. Ziegler
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| |
Collapse
|
45
|
Vlassakis J, Hansen LL, Higuchi-Sanabria R, Zhou Y, Tsui CK, Dillin A, Huang H, Herr AE. Measuring expression heterogeneity of single-cell cytoskeletal protein complexes. Nat Commun 2021; 12:4969. [PMID: 34404787 PMCID: PMC8371148 DOI: 10.1038/s41467-021-25212-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Multimeric cytoskeletal protein complexes orchestrate normal cellular function. However, protein-complex distributions in stressed, heterogeneous cell populations remain unknown. Cell staining and proximity-based methods have limited selectivity and/or sensitivity for endogenous multimeric protein-complex quantification from single cells. We introduce micro-arrayed, differential detergent fractionation to simultaneously detect protein complexes in hundreds of individual cells. Fractionation occurs by 60 s size-exclusion electrophoresis with protein complex-stabilizing buffer that minimizes depolymerization. Proteins are measured with a ~5-hour immunoassay. Co-detection of cytoskeletal protein complexes in U2OS cells treated with filamentous actin (F-actin) destabilizing Latrunculin A detects a unique subpopulation (~2%) exhibiting downregulated F-actin, but upregulated microtubules. Thus, some cells may upregulate other cytoskeletal complexes to counteract the stress of Latrunculin A treatment. We also sought to understand the effect of non-chemical stress on cellular heterogeneity of F-actin. We find heat shock may dysregulate filamentous and globular actin correlation. In this work, our assay overcomes selectivity limitations to biochemically quantify single-cell protein complexes perturbed with diverse stimuli.
Collapse
Affiliation(s)
- Julea Vlassakis
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Louise L Hansen
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Ryo Higuchi-Sanabria
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Yun Zhou
- Division of Biostatistics, University of California Berkeley, Berkeley, CA, USA
| | - C Kimberly Tsui
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Haiyan Huang
- Department of Statistics, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
| | - Amy E Herr
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
46
|
Lu W, Lakonishok M, Gelfand VI. Gatekeeper function for Short stop at the ring canals of the Drosophila ovary. Curr Biol 2021; 31:3207-3220.e4. [PMID: 34089646 DOI: 10.1016/j.cub.2021.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/15/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Growth of the Drosophila oocyte requires transport of cytoplasmic materials from the interconnected sister cells (nurse cells) through ring canals, the cytoplasmic bridges that remained open after incomplete germ cell division. Given the open nature of the ring canals, it is unclear how the direction of transport through the ring canal is controlled. In this work, we show that a single Drosophila spectraplakin Short stop (Shot) controls the direction of flow from nurse cells to the oocyte. Knockdown of shot changes the direction of transport through the ring canals from unidirectional (toward the oocyte) to bidirectional. After shot knockdown, the oocyte stops growing, resulting in a characteristic small oocyte phenotype. In agreement with this transport-directing function of Shot, we find that it is localized at the asymmetric actin baskets on the nurse cell side of the ring canals. In wild-type egg chambers, microtubules localized in the ring canals have uniform polarity (minus ends toward the oocyte), while in the absence of Shot, these microtubules have mixed polarity. Together, we propose that Shot functions as a gatekeeper directing transport from nurse cells to the oocyte via the organization of microtubule tracks to facilitate the transport driven by the minus-end-directed microtubule motor cytoplasmic dynein. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
47
|
Xie Y, Budhathoki R, Blankenship JT. Combinatorial deployment of F-actin regulators to build complex 3D actin structures in vivo. eLife 2021; 10:63046. [PMID: 33949307 PMCID: PMC8149123 DOI: 10.7554/elife.63046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
Despite extensive studies on the actin regulators that direct microfilament dynamics, how these regulators are combinatorially utilized in organismal tissues to generate 3D structures is an unresolved question. Here, we present an in-depth characterization of cortical actin cap dynamics and their regulation in vivo. We identify rapid phases of initiation, expansion, duplication, and disassembly and examine the functions of seven different actin and/or nucleator regulators (ANRPs) in guiding these behaviors. We find ANRPs provide distinct activities in building actin cap morphologies – specifically, while DPod1 is a major regulator of actin intensities, Cortactin is required for continued cortical growth, while Coronin functions in both growth and intensity and is required for Cortactin localization to the cap periphery. Unexpectedly, cortical actin populations recover more rapidly after regulator disruption, suggestive of a deep competition for limited G-actin pools, and we measure in vivo Arp2/3 recruitment efficiencies through an ectopic relocalization strategy. Our results illustrate how the coordination of multiple actin regulators can orchestrate organized and dynamic actin structures in a developmental system.
Collapse
Affiliation(s)
- Yi Xie
- Department of Biological Sciences, University of Denver, Denver, United States
| | - Rashmi Budhathoki
- Department of Biological Sciences, University of Denver, Denver, United States
| | - J Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, United States
| |
Collapse
|
48
|
Krishnan RK, Baskar R, Anna B, Elia N, Boermel M, Bausch AR, Abdu U. Recapitulating Actin Module Organization in the Drosophila Oocyte Reveals New Roles for Bristle-Actin-Modulating Proteins. Int J Mol Sci 2021; 22:ijms22084006. [PMID: 33924532 PMCID: PMC8070096 DOI: 10.3390/ijms22084006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
The generation of F-actin bundles is controlled by the action of actin-binding proteins. In Drosophila bristle development, two major actin-bundling proteins—Forked and Fascin—were identified, but still the molecular mechanism by which these actin-bundling proteins and other proteins generate bristle actin bundles is unknown. In this study, we developed a technique that allows recapitulation of bristle actin module organization using the Drosophila ovary by a combination of confocal microscopy, super-resolution structured illumination microscopy, and correlative light and electron microscope analysis. Since Forked generated a distinct ectopic network of actin bundles in the oocyte, the additive effect of two other actin-associated proteins, namely, Fascin and Javelin (Jv), was studied. We found that co-expression of Fascin and Forked demonstrated that the number of actin filaments within the actin bundles dramatically increased, and in their geometric organization, they resembled bristle-like actin bundles. On the other hand, co-expression of Jv with Forked increased the length and density of the actin bundles. When all three proteins co-expressed, the actin bundles were longer and denser, and contained a high number of actin filaments in the bundle. Thus, our results demonstrate that the Drosophila oocyte could serve as a test tube for actin bundle analysis.
Collapse
Affiliation(s)
- Ramesh Kumar Krishnan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
| | - Raju Baskar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
| | - Bakhrat Anna
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
| | - Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Mandy Boermel
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany;
| | - Andreas R. Bausch
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany;
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
- Correspondence:
| |
Collapse
|
49
|
Abstract
The maintenance of stem cell populations and the differentiation of their progeny is coordinated by specific communication with associated niche cells. Here, we describe a protocol for short-term live imaging of the Drosophila ovarian germline stem cell niche ex vivo. By immobilizing the ovarian tissue in a fibrinogen-thrombin clot, we are able to maintain the tissue for short-term high-temporal live imaging. This enables the visualization of dynamic cellular processes, such as the cytoskeletal dynamics that control stem cell niche communication. For complete details on the use and execution of this protocol, please refer to Wilcockson and Ashe (2019).
Collapse
Affiliation(s)
- Scott G. Wilcockson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Corresponding author
| | - Hilary L. Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Corresponding author
| |
Collapse
|
50
|
Mazloom-Farsibaf H, Farzam F, Fazel M, Wester MJ, Meddens MBM, Lidke KA. Comparing lifeact and phalloidin for super-resolution imaging of actin in fixed cells. PLoS One 2021; 16:e0246138. [PMID: 33508018 PMCID: PMC7842966 DOI: 10.1371/journal.pone.0246138] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/13/2021] [Indexed: 01/14/2023] Open
Abstract
Visualizing actin filaments in fixed cells is of great interest for a variety of topics in cell biology such as cell division, cell movement, and cell signaling. We investigated the possibility of replacing phalloidin, the standard reagent for super-resolution imaging of F-actin in fixed cells, with the actin binding peptide 'lifeact'. We compared the labels for use in single molecule based super-resolution microscopy, where AlexaFluor 647 labeled phalloidin was used in a dSTORM modality and Atto 655 labeled lifeact was used in a single molecule imaging, reversible binding modality. We found that imaging with lifeact had a comparable resolution in reconstructed images and provided several advantages over phalloidin including lower costs, the ability to image multiple regions of interest on a coverslip without degradation, simplified sequential super-resolution imaging, and more continuous labeling of thin filaments.
Collapse
Affiliation(s)
- Hanieh Mazloom-Farsibaf
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Farzin Farzam
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Mohamadreza Fazel
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Michael J Wester
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Marjolein B M Meddens
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|