1
|
Han S, Wu X, Peng X, Zhang C. Association of asthma with the risk of cardiovascular disease: A Mendelian randomization study. Exp Gerontol 2024; 195:112549. [PMID: 39159834 DOI: 10.1016/j.exger.2024.112549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Association of asthma with the risk of cardiovascular disease has not been fully elucidated. So, this study tried to explore the genetic effect of asthma on five cardiovascular diseases and 90 peripheral cardiovascular proteins to answer the above topic. METHODS Instrumental variables predicting asthma was extracted from its genome-wide association study data. Two-sample and multivariate MR approaches were used to assess the genetic association of exposure factor (i.e., asthma) with outcome factors (i.e., hypertension, atrial fibrillation, angina pectoris, myocardial infarction, heart failure, and 90 peripheral cardiovascular proteins). RESULTS First, asthma nominally increased the risk of hypertension and atrial fibrillation (OR = 1.009, 95%CI = 1.003-1.016, P = 0.004; OR = 1.074, 95%CI = 1.024-1.127, P = 0.003). Second, of the 90 cardiovascular proteins, asthma was associated with the increased levels of tumor necrosis factor ligand superfamily member 14 and CC motif chemokine 4 (β = 0.145, 95%CI = 0.077-0.212, P = 2.936e-05; β = 0.128, 95%CI = 0.063-0.193, P = 1.036e-04). Third, CC motif chemokine 4 increased the risk of hypertension (P = 0.043); and after adjusting for this protein, asthma still increased the risk of hypertension, but the strength of its P-value changed from 0.004 to 0.011. CONCLUSION Asthma was a risk factor for hypertension and atrial fibrillation at the genetic level, and CC motif chemokine 4 might play a mediating role in the mechanism by which asthma promoted hypertension. Thus, effective control of asthma may help reduce the risk of some cardiovascular diseases in older adults.
Collapse
Affiliation(s)
- Shuang Han
- Department of Respiratory and Critical Care Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao 266042, Shandong Province, China
| | - Xiao Wu
- Department of Respiratory and Critical Care Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao 266042, Shandong Province, China.
| | - Xiufa Peng
- Medical Record Management Center, the Affiliated Hospital of Qingdao University, Qingdao 266042, Shandong Province, China
| | - Chunling Zhang
- Department of Respiratory and Critical Care Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao 266042, Shandong Province, China.
| |
Collapse
|
2
|
Kim S, Kim BH, Han K, Kong M, Song SJ. Association Between Three Atopic Triad and Retinal Vein Occlusion Risk: A Nationwide Population-Based Study. Ophthalmic Epidemiol 2024; 31:301-310. [PMID: 37899646 DOI: 10.1080/09286586.2023.2276193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023]
Abstract
PURPOSE To evaluate the association between three allergic diseases (allergic dermatitis, allergic rhinitis, and asthma) and the development of retinal vein occlusion (RVO), a major retinal disease that causes visual impairment. METHOD This study used data obtained from the Korean National Health Insurance Claims database between 2009 and 2018. The association between the three atopic triads (allergic dermatitis, allergic rhinitis, and asthma) and the occurrence of sight-threatening RVO, as determined by diagnostic and treatment codes, were analyzed. Multivariate adjusted Cox regression analysis was used to determine the hazard ratios (HRs) and 95% confidence intervals for RVO development in the presence of allergic disease. RESULTS In this population-based study, 2,160,195 (54.6%) individuals were male, 1,794,968 (45.4%) were female, and 620,938 (15.7%) were diagnosed with allergic diseases. Patients with either asthma or allergic rhinitis had a greater risk of RVO (adjusted hazard ratio (aHR) = 1.101, 95% confidence interval [CI] = 1.029-1.178 for asthma; aHR = 1.181, 95% CI = 1.147-1.215 for allergic rhinitis) compared to those without asthma or allergic rhinitis; however, patients with atopic dermatitis did not show a significant association with RVO (aHR = 1.071, 95% CI = 0.889-1.290), after adjusting for other risk factors. CONCLUSION Our study revealed that allergic rhinitis, asthma, and coexisting multiple allergic conditions were associated with an increased risk of RVO. Thus, it may be advisable to suggest an ophthalmological examination for patients with allergies due to the increased possibility of the occurrence of retinal vascular disease.
Collapse
Affiliation(s)
- Seongho Kim
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Bo Hee Kim
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Mingui Kong
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Su Jeong Song
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Biomedical Institute for Convergence (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
3
|
Choi HG, Kwon MJ, Kim JH, Kim SY, Kim JH, Park JY, Hwang YI, Jang SH. Association between asthma and cardiovascular diseases: A longitudinal follow-up study using a national health screening cohort. World Allergy Organ J 2024; 17:100907. [PMID: 38873616 PMCID: PMC11170141 DOI: 10.1016/j.waojou.2024.100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/14/2024] [Accepted: 04/16/2024] [Indexed: 06/15/2024] Open
Abstract
Background Asthma has been suggested to be a risk factor for cardiovascular diseases (CVDs), although the evidence supporting this relationship is inconclusive. This study aimed to explore the long-term associations between asthma and asthma exacerbations with the occurrence of cardiovascular diseases (CVDs) such as ischemic heart disease (IHD), heart failure (HF), and cerebral stroke, utilizing data from a nationwide cohort. Materials and methods This study utilized data from the Korean National Health Insurance Service-Health Screening Cohort database (2002-2015), including information on 111,316 asthma patients and an equal number of 1:1 matched control participants. A propensity score overlap-weighted Cox proportional hazards regression model was used to analyze the overlap-weighted hazard ratios (HRs) of asthma and exacerbated asthma for cardiovascular diseases (CVDs) within this cohort. Results During the follow-up period, the incidence rate (IR) of IHD per 1000 person-years (PYs) was 7.82 in patients with asthma and 5.79 in controls. The IR of HF was 2.53 in asthmatic patients and 1.36 in controls. After adjustment for covariates, asthmatic patients exhibited 1.27-fold and 1.56-fold higher HRs for IHD (95% confidence interval (CI) = 1.23-1.37, P < 0.001) and HF (95% CI = 1.36-1.63, P < 0.001) than the controls, respectively. In addition, there was an increased HR for IHD and HF in the asthma exacerbation group compared with the nonexacerbated asthma group (adjusted HR, 1.29, 95% CI = 1.24-1.34, P < 0.001 for IHD and aHR 1.68, 95% CI = 1.58-1.79, P < 0.001 for HF). However, the occurrence of stroke was decreased in asthmatic patients compared with controls (aHR = 0.96, 95% CI = 0.93-0.99, P = 0.008). Conclusions Adults with asthma are more likely to develop CVDs. Additionally, severe asthma exacerbations are significantly associated with an increased occurrence of CVDs.
Collapse
Affiliation(s)
- Hyo Geun Choi
- Suseo Seoul E.N.T. Clinic and MD Analytics, Seoul, South Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Ji Hee Kim
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - So Young Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Joo-Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Ji Young Park
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Yong Il Hwang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Seung Hun Jang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| |
Collapse
|
4
|
Poto R, Marone G, Galli SJ, Varricchi G. Mast cells: a novel therapeutic avenue for cardiovascular diseases? Cardiovasc Res 2024; 120:681-698. [PMID: 38630620 PMCID: PMC11135650 DOI: 10.1093/cvr/cvae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 04/19/2024] Open
Abstract
Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve, and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodelling, and fibrosis. Mast cells release preformed mediators (e.g. histamine, tryptase, and chymase) and de novo synthesized mediators (e.g. cysteinyl leukotriene C4 and prostaglandin D2), as well as cytokines and chemokines, which can activate different resident immune cells (e.g. macrophages) and structural cells (e.g. fibroblasts and endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared with mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| |
Collapse
|
5
|
Adrish M, Hanania NA. Asthma and cardiovascular disease: A bidirectional association? Respirology 2023; 28:217-219. [PMID: 36750439 DOI: 10.1111/resp.14468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023]
Abstract
See related article
Collapse
Affiliation(s)
- Muhammad Adrish
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Nicola A Hanania
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Shen Y, Li L, Chen W, Li Q, Xu Y, He F, Wang C, Tian Z, Chen Y, Yang Y. Apolipoprotein E negatively regulates allergic airway inflammation and remodeling in mice with OVA-induced chronic asthma. Int Immunopharmacol 2023; 116:109776. [PMID: 36731155 DOI: 10.1016/j.intimp.2023.109776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
Apolipoprotein E (ApoE) is a corticosteroid-unresponsive gene that negatively regulates ovalbumin (OVA) -induced allergic airway inflammation in mice with acute asthma. However, whether ApoE negatively regulates airway remodeling in mice with OVA-induced chronic asthma remains unknown. This study aimed to investigate the effects of ApoE on OVA-induced chronic asthma in a murine model. ApoE knockout (ApoE-/-) and wild-type (WT) mice were sensitized and challenged with OVA for 10 weeks to establish the chronic asthma model. Compared with WT mice, the results demonstrated that ApoE deficiency exacerbated OVA-induced airway inflammation, including elevated numbers of inflammatory cells in the blood and bronchoalveolar lavage fluid (BALF), as well as increased T helper type 2 (Th2) cells in lung tissue, Th2 cytokines in BALF, and total IgE levels in plasma. Importantly, ApoE deficiency aggravated OVA-induced airway remodeling, as evidenced by higher plasma transforming growth factor (TGF)-β1 levels, airway goblet cell hyperplasia, and collagen deposition compared with WT mice. These results revealed that ApoE deficiency aggravates airway remodeling and inflammation in mice with OVA-induced chronic allergic asthma.
Collapse
Affiliation(s)
- Yunqin Shen
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Lingjie Li
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Wushi Chen
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Qin Li
- Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| | - Yixuan Xu
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Fang He
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Caixia Wang
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Zezhong Tian
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Yanqiu Chen
- Department of Otolaryngology, Guangzhou Women and Children Medical Centre, Guangzhou, China
| | - Yan Yang
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China.
| |
Collapse
|
7
|
Fernández-Gallego N, Castillo-González R, Méndez-Barbero N, López-Sanz C, Obeso D, Villaseñor A, Escribese MM, López-Melgar B, Salamanca J, Benedicto-Buendía A, Jiménez-Borreguero LJ, Ibañez B, Sastre J, Belver MT, Vega F, Blanco C, Barber D, Sánchez-Madrid F, de la Fuente H, Martín P, Esteban V, Jiménez-Saiz R. The impact of type 2 immunity and allergic diseases in atherosclerosis. Allergy 2022; 77:3249-3266. [PMID: 35781885 DOI: 10.1111/all.15426] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Allergic diseases are allergen-induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 and IL-17).
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Pathology, Hospital 12 de Octubre, Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María M Escribese
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz López-Melgar
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Jorge Salamanca
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Amparo Benedicto-Buendía
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Luis Jesús Jiménez-Borreguero
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Borja Ibañez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Joaquín Sastre
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Belver
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Francisco Vega
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
- Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022; 21:2339-2364. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) includes inflammatory responses, matrix metalloproteinases (MMPs) degradation, VSMC apoptosis, oxidative stress, and angiogenesis, among which the inflammatory response plays a key role. At present, surgery is the only curing treatment, and no effective drug can delay AAA progression in clinical practice. Therefore, searching for a signaling pathway related to the immune-inflammatory response is an essential direction for developing drugs targeting AAA. Recent studies have confirmed that the PI3K family plays an important role in many inflammatory diseases and is involved in regulating various cellular functions, especially in the immune-inflammatory response. This review focuses on the role of each isoform of PI3K in each stage of AAA immune-inflammatory response, making available explorations for a deeper understanding of the mechanism of inflammation and immune response during the formation and development of AAA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Gao H, Wang L, Ren J, Liu Y, Liang S, Zhang B, Sun X. Interleukin 2 receptor subunit beta as a novel hub gene plays a potential role in the immune microenvironment of abdominal aortic aneurysms. Gene 2022; 827:146472. [PMID: 35381314 DOI: 10.1016/j.gene.2022.146472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is potentially life threatening and characterized by immune-inflammatory cell infiltration and extracellular matrix degradation. Currently, pharmacotherapy mainly aims to control risk factors without reversion of the dilated aorta. This study analyzed the immune-inflammatory response and identified the immune-related hub genes of AAA. METHOD Gene Expression Omnibus datasets (GSE57691, GSE47472 and GSE7084) were downloaded. After identification of GSE57691 differentially expressed genes (DEGs), weighted gene co-expression network analysis of the DEGs was performed. Through enrichment analysis of each module and screening in Immunology Database and Analysis Portal, immune-related hub genes were identified via protein-protein interaction (PPI) network construction and lasso regression. CIBERSORT was utilized to analyze AAA immune infiltration. The correlations between the immune-related hub genes and infiltrating immune cells were investigated. Receiver operating characteristic (ROC) curve analysis was performed to determine immune-related hub gene cutoff values, which were validated in GSE47472 and GSE7084. RESULT In GSE57691, 1,018 DEGs were identified. Five modules were identified in the co-expression network. The blue and green modules were found to be related to immune-inflammatory responses, and 61 immune-related genes were identified. PPI and lasso regression analyses identified FOS, IL-6 and IL2RB as AAA immune-related hub genes. CIBERSORT analysis indicated significantly increased infiltration of naive B cells, memory activated CD4 T cells, follicular helper T cells, monocytes and M1 macrophages and significantly decreased infiltration of M2 macrophages in AAA compared with normal samples. IL2RB was more strongly associated with immune infiltration in AAA than were FOS and IL6. The IL2RB area under the ROC curve (AUC) value was > 0.9 in both the training and validation set, demonstrating its strong, stable diagnostic value in AAA. CONCLUSION AAA and normal samples had different immune infiltration statuses. IL2RB was identified as an immune-related hub gene and a potential hub gene with significant diagnostic value in AAA.
Collapse
Affiliation(s)
- Haoyu Gao
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luchen Wang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Ren
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanxiang Liu
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shenghua Liang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Zhang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaogang Sun
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Guo J, Zhang Y, Liu T, Levy BD, Libby P, Shi GP. Allergic asthma is a risk factor for human cardiovascular diseases. NATURE CARDIOVASCULAR RESEARCH 2022; 1:417-430. [PMID: 39195946 DOI: 10.1038/s44161-022-00067-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/08/2022] [Indexed: 08/29/2024]
Abstract
Asthma is an allergic airway disease in which type 2-mediated inflammation has a pathogenic role. Cardiovascular diseases (CVDs) are type 1-dominant inflammatory diseases in which type 2 cytokines often have a protective role. However, clinical studies demonstrate that allergic asthma and associated allergies are essential risk factors for CVD, including coronary heart diseases, aortic diseases, peripheral arterial diseases, pulmonary embolism, right ventricular dysfunction, atrial fibrillation, cardiac hypertrophy and even hypertension. Mast cells, eosinophils, inflammatory cytokines and immunoglobulin (Ig)E accumulate in asthmatic lungs and in the injured heart and vasculature of patients with CVD. Clinical studies show that many anti-asthmatic therapies affect the risk of CVD. As such, allergic asthma and CVD may share common pathogenic mechanisms. Preclinical investigations indicate that anti-asthmatic drugs have therapeutic potential in certain CVDs. In this Review, we discuss how asthma and allied allergic conditions may contribute to the prevalence, incidence and progression of CVD and vice versa.
Collapse
Affiliation(s)
- Junli Guo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province & Key Laboratory of Emergency and Trauma of Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuanyuan Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province & Key Laboratory of Emergency and Trauma of Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tianxiao Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce D Levy
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Cardet JC, Bulkhi AA, Lockey RF. Nonrespiratory Comorbidities in Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2021; 9:3887-3897. [PMID: 34492402 PMCID: PMC8631133 DOI: 10.1016/j.jaip.2021.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022]
Abstract
Asthma is a chronic heterogeneous airway disease. Common comorbid conditions are often disproportionately present in severe asthma. Optimal care of patients with asthma requires the recognition and treatment of these comorbid conditions. This review outlines the pathophysiological mechanisms between nonrespiratory comorbid conditions and asthma and their effect on asthma outcomes. They include: type 2 diabetes mellitus, hypertension, atherosclerotic cardiovascular disease, adrenal and thyroid gland diseases, pregnancy, osteoporosis, adverse effects from medications, and mental health disorders. Studies indicate how poor glycemic control of type 2 diabetes mellitus is associated with not only greater health care utilization but poorer asthma outcomes. Also, a large health care claims database indicates that a substantial proportion of pregnant women have uncontrolled asthma and are prescribed suboptimal controller therapy. Additional data about these nonrespiratory comorbidities and medications known to benefit both nonrespiratory comorbidities and asthma are necessary.
Collapse
Affiliation(s)
- Juan Carlos Cardet
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Fla
| | - Adeeb A Bulkhi
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Fla; Department of Internal Medicine, College of Medicine, Umm Al Qura University, Makkah, Saudi Arabia
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Fla; Department of Internal Medicine, James A. Haley Veterans' Hospital, Tampa, Fla.
| |
Collapse
|
12
|
Nie H, Qiu J, Wen S, Zhou W. Combining Bioinformatics Techniques to Study the Key Immune-Related Genes in Abdominal Aortic Aneurysm. Front Genet 2020; 11:579215. [PMID: 33362847 PMCID: PMC7758434 DOI: 10.3389/fgene.2020.579215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
Approximately 13,000 people die of an abdominal aortic aneurysm (AAA) every year. This study aimed to identify the immune response-related genes that play important roles in AAA using bioinformatics approaches. We downloaded the GSE57691 and GSE98278 datasets related to AAA from the Gene Expression Omnibus database, which included 80 AAA and 10 normal vascular samples. CIBERSORT was used to analyze the samples and detect the infiltration of 22 types of immune cells and their differences and correlations. The principal component analysis showed significant differences in the infiltration of immune cells between normal vascular and AAA samples. High proportions of CD4+ T cells, activated mast cells, resting natural killer cells, and 12 other types of immune cells were found in normal vascular tissues, whereas high proportions of macrophages, CD8+ T cells, resting mast cells, and six other types of immune cells were found in AAA tissues. In the selected samples, we identified 39 upregulated (involved in growth factor activity, hormone receptor binding, and cytokine receptor activity) and 133 downregulated genes (involved in T cell activation, cell chemotaxis, and regulation of immune response mediators). The key differentially expressed immune response-related genes were screened using the STRING database and Cytoscape software. Two downregulated genes, PI3 and MAP2K1, and three upregulated genes, SSTR1, GPER1, and CCR10, were identified by constructing a protein-protein interaction network. Functional enrichment of the differentially expressed genes was analyzed, and the expression of the five key genes in AAA samples was verified using quantitative polymerase chain reaction, which revealed that MAP2K1 was downregulated in AAA, whereas SSTR1, GEPR1, and CCR10 were upregulated; there was no significant difference in PI3 expression. Our study shows that normal vascular and AAA samples can be distinguished via the infiltration of immune cells. Five genes, PI3, MAP2K1, SSTR1, GPER1, and CCR10, may play important roles in the development, diagnosis, and treatment of AAA.
Collapse
Affiliation(s)
- Han Nie
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiacong Qiu
- Divison of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Wen
- Xinjian District People's Hospital of Jiangxi Province, Jiangxi, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Varricchi G, Marone G, Kovanen PT. Cardiac Mast Cells: Underappreciated Immune Cells in Cardiovascular Homeostasis and Disease. Trends Immunol 2020; 41:734-746. [DOI: 10.1016/j.it.2020.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023]
|
14
|
Gurgone D, McShane L, McSharry C, Guzik TJ, Maffia P. Cytokines at the Interplay Between Asthma and Atherosclerosis? Front Pharmacol 2020; 11:166. [PMID: 32194407 PMCID: PMC7064545 DOI: 10.3389/fphar.2020.00166] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease (CVD) is an important comorbidity in a number of chronic inflammatory diseases. However, evidence in highly prevalent respiratory disease such as asthma are still limited. Epidemiological and clinical data are not univocal in supporting the hypothesis that asthma and CVD are linked and the mechanisms of this relationship remain poorly defined. In this review, we explore the relationship between asthma and cardiovascular disease, with a specific focus on cytokine contribution to vascular dysfunction and atherosclerosis. This is important in the context of recent evidence linking broad inflammatory signaling to cardiovascular events. However inflammatory regulation in asthma is different to the one typically observed in atherosclerosis. We focus on the contribution of cytokine networks encompassing IL-4, IL-6, IL-9, IL-17A, IL-33 but also IFN-γ and TNF-α to vascular dysfunction in atherosclerosis. In doing so we highlight areas of unmet need and possible therapeutic implications.
Collapse
Affiliation(s)
- Danila Gurgone
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Lucy McShane
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Charles McSharry
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Internal and Agricultural Medicine, Jagiellonian University College of Medicine, Kraków, Poland
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
15
|
Zhang Y, Wang Y, Zhou D, Zhang LS, Deng FX, Shu S, Wang LJ, Wu Y, Guo N, Zhou J, Yuan ZY. Angiotensin II deteriorates advanced atherosclerosis by promoting MerTK cleavage and impairing efferocytosis through the AT1R/ROS/p38 MAPK/ADAM17 pathway. Am J Physiol Cell Physiol 2019; 317:C776-C787. [PMID: 31390228 DOI: 10.1152/ajpcell.00145.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vulnerable plaques in advanced atherosclerosis have defective efferocytosis. The role of ANG II in the progression of atherosclerosis is not fully understood. Herein, we investigated the effects and the underlying mechanisms of ANG II on macrophage efferocytosis in advanced atherosclerosis. ANG II decreased the surface expression of Mer tyrosine kinase (MerTK) in macrophages through a disintegrin and metalloproteinase17 (ADAM17)-mediated shedding of the soluble form of MerTK (sMer) in the medium, which led to efferocytosis suppression. ANG II-activated ADAM17 required reactive oxygen species (ROS) and p38 MAPK phosphorylation. Selective angiotensin II type 1 receptor (AT1R) blocker losartan suppressed ROS production, and ROS scavenger N-acetyl-l-cysteine (NAC) prevented p38 MAPK phosphorylation. In addition, mutant MERTKΔ483-488was resistant to ANG II-induced MerTK shedding and efferocytosis suppression. The advanced atherosclerosis model that is characterized by larger necrotic cores, and less collagen content was established by feeding apolipoprotein E knockout (ApoE−/−) mice with a high-fat diet for 16 wk. NAC and losartan oral administration prevented atherosclerotic lesion progression. Meanwhile, the inefficient efferocytosis represented by decreased macrophage-associated apoptotic cells and decreased MerTK+CD68+double-positive macrophages in advanced atherosclerosis were prevented by losartan and NAC. Additionally, the serum levels of sMer were increased and positively correlated with the upregulated levels of ANG II in acute coronary syndrome (ACS) patients. In conclusion, ANG II promotes MerTK shedding via AT1R/ROS/p38 MAPK/ADAM17 pathway in macrophages, which led to defective efferocytosis and atherosclerosis progression. Defining the molecular mechanisms of defective efferocytosis may provide a promising prognosis and therapy for ACS patients.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Ying Wang
- Department of Critical Care Medicine, Xi’an No. 4 Hospital, Xi’an, China
| | - Dong Zhou
- Department of Cardiovascular Medicine, Hanzhong 3201 Hospital, Hanzhong, China
| | - Li-Sha Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Fu-Xue Deng
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Shan Shu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Li-Jun Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Yue Wu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Ning Guo
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Juan Zhou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Molecular Cardiology of Shannxi Province, Xi’an, China
| | - Zu-Yi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- Key Laboratory of Molecular Cardiology of Shannxi Province, Xi’an, China
| |
Collapse
|
16
|
Gao S, Wang C, Li W, Shu S, Zhou J, Yuan Z, Wang L. Allergic asthma aggravated atherosclerosis increases cholesterol biosynthesis and foam cell formation in apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2019; 519:861-867. [PMID: 31558320 DOI: 10.1016/j.bbrc.2019.09.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022]
Abstract
Several studies have demonstrated that allergic asthma can induce atherosclerosis formation in mice. Moreover, allergic asthma and atherosclerosis have been shown to be strongly associated with dyslipidemia. In this study, we investigated the underlying mechanism of allergic asthma-aggravated atherosclerosis-induced cholesterol metabolism disorder in asthmatic apoE-/- mice. We found that allergic asthma increased the expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) in the liver and CD36 in the aorta during the acute and advanced stages of atherosclerosis, respectively. These results indicate that cholesterol biosynthesis is increased during acute atherosclerosis and cholesterol uptake and foam cell formation is increased during advanced atherosclerosis. Simvastatin administration significantly ameliorated the aortic root lesion size of asthmatic mice and significantly decreased HMGCR and CD36 expression. However, the expression of the low-density lipoprotein receptor and ATP-binding cassette transporter A1 was markedly increased, indicating that the beneficial effect of statins in allergic asthma and coronary artery disease was mediated, at least in part, by decreasing cholesterol biosynthesis and foam cell formation. In conclusion, allergic asthma aggravates atherosclerosis by regulating cholesterol metabolism in apoE-/- mice. Allergic asthma selectively promotes cholesterol biosynthesis in acute atherosclerosis and increases foam cell formation in advanced atherosclerosis.
Collapse
Affiliation(s)
- Shanshan Gao
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Chen Wang
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Wenyuan Li
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Shan Shu
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Juan Zhou
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China; Key Laboratory of Molecular Cardiology, Shaanxi Province, China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China; Key Laboratory of Molecular Cardiology, Shaanxi Province, China; Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Lijun Wang
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China; Key Laboratory of Molecular Cardiology, Shaanxi Province, China.
| |
Collapse
|
17
|
Gao S, Deng Y, Wu J, Zhang L, Deng F, Zhou J, Yuan Z, Wang L. Eosinophils count in peripheral circulation is associated with coronary artery disease. Atherosclerosis 2019; 286:128-134. [PMID: 31154080 DOI: 10.1016/j.atherosclerosis.2019.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/24/2019] [Accepted: 05/26/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIMS Allergic asthma can accelerate atherosclerosis, a disease in which plaque is deposited onto arterial walls and that may lead to coronary artery disease (CAD). Eosinophils are the most important effector cells in allergic asthma and are likely to become novel biomarkers for risk stratification of patients with CAD, but the relationship between eosinophil count and CAD remains unclear. We aimed to evaluate this relationship and the use of eosinophils in predicting CAD. METHODS A total of 5287 patients who underwent coronary angiography were recruited. Their biochemical parameters, including eosinophil count, were measured and their correlation with the severity of coronary artery stenosis, as quantified by the Gensini score system, was evaluated. RESULTS The percentages of eosinophils in leukocytes (PELs) were lower in CAD patients (p < 0.001), and had a significant negative correlation with Gensini scores (r = -0.112, p < 0.001). PELs were also significantly lower in acute myocardial infarction patients (p < 0.001). After adjusting for baseline differences, low PELs remained strongly associated with severe CAD and acute coronary arterial thrombotic event. Receiver-operating characteristic curve analysis showed that combining PELs with traditional risk factors in predictive models for CAD severity (z = 4.470, p < 0.001) or acute coronary arterial thrombotic event (z = 9.435, p < 0.001) improved the predictive capabilities of those models. CONCLUSIONS PELs, at least in patients undergoing coronary angiography, may be strongly related to the subtype and severity of CAD and, therefore, eosinophil count may be an accurate and independent biomarker to predict CAD severity and acute coronary arterial thrombotic events.
Collapse
Affiliation(s)
- Shanshan Gao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, China
| | - Yangyang Deng
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, China
| | - Jun Wu
- Department of Neurology, Xi'an Gaoxin Hospital, China
| | - Lisha Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, China
| | - Fuxue Deng
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, China
| | - Juan Zhou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, China; Key Laboratory of Molecular Cardiology, Shannxi Province, China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China; Key Laboratory of Molecular Cardiology, Shannxi Province, China.
| | - Lijun Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, China; Key Laboratory of Molecular Cardiology, Shannxi Province, China.
| |
Collapse
|
18
|
Flow Cytometry-Based Characterization of Mast Cells in Human Atherosclerosis. Cells 2019; 8:cells8040334. [PMID: 30970663 PMCID: PMC6523866 DOI: 10.3390/cells8040334] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Abstract
The presence of mast cells in human atherosclerotic plaques has been associated with adverse cardiovascular events. Mast cell activation, through the classical antigen sensitized-IgE binding to their characteristic Fcε-receptor, causes the release of their cytoplasmic granules. These granules are filled with neutral proteases such as tryptase, but also with histamine and pro-inflammatory mediators. Mast cells accumulate in high numbers within human atherosclerotic tissue, particularly in the shoulder region of the plaque. These findings are largely based on immunohistochemistry, which does not allow for the extensive characterization of these mast cells and of the local mast cell activation mechanisms. In this study, we thus aimed to develop a new flow-cytometry based methodology in order to analyze mast cells in human atherosclerosis. We enzymatically digested 22 human plaque samples, collected after femoral and carotid endarterectomy surgery, after which we prepared a single cell suspension for flow cytometry. We were able to identify a specific mast cell population expressing both CD117 and the FcεR, and observed that most of the intraplaque mast cells were activated based on their CD63 protein expression. Furthermore, most of the activated mast cells had IgE fragments bound on their surface, while another fraction showed IgE-independent activation. In conclusion, we are able to distinguish a clear mast cell population in human atherosclerotic plaques, and this study establishes a strong relationship between the presence of IgE and the activation of mast cells in advanced atherosclerosis. Our data pave the way for potential therapeutic intervention through targeting IgE-mediated actions in human atherosclerosis.
Collapse
|
19
|
Gao S, Zhang W, Zhao Q, Zhou J, Wu Y, Liu Y, Yuan Z, Wang L. Curcumin ameliorates atherosclerosis in apolipoprotein E deficient asthmatic mice by regulating the balance of Th2/Treg cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:129-135. [PMID: 30599892 DOI: 10.1016/j.phymed.2018.09.194] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/31/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Allergic asthma and atherosclerosis represent different directions of inflammatory responses of CD4+ T cells, and allergic asthma accelerates atherosclerosis formation. Curcumin could ameliorate the progression of both atherosclerosis and allergic asthma. PURPOSE We aimed to investigate the roles of curcumin in asthma-accelerated atherosclerosis plaque formation, and the change of CD4+ T-cell subsets in this process. METHODS Six to eight-week-old apolipoprotein E-/- (apoE-/-) mice were sensitized and challenged by ovalbumin (OVA) to establish an allergic asthma model, and then received curcumin or vehicle treatment for 8 weeks. RESULTS The accelerated atherosclerosis was induced by allergic asthma accompanied by increased T helper cell (Th)2 and Th17 cells and decreased regulatory T cells (Tregs) in the spleen. After the 8-week treatment with curcumin, the lesion areas in the aortic root in asthmatic mice significantly improved, and the elevated Th2 and Th17 cells significantly decreased, but Tregs markedly increased. Although curcumin treatment markedly reduced the interleukin (IL)-4 and IL-13 in serum and spleen, the elevated IL-17A did not decrease. Moreover, Th1 cells showed no significant change between different groups. The mRNA expression levels of M1 macrophage-related inflammatory factors IL-6, iNOS and IL-1β were markedly elevated in the spleens of asthmatic mice, but significantly decreased after the 8-week treatment with curcumin. CONCLUSION Curcumin ameliorated the aggravation of atherosclerotic lesions and stabilised plaque by modulating the balance of Th2/Tregs in asthmatic apoE-/- mice.
Collapse
Affiliation(s)
- Shanshan Gao
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Weiping Zhang
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Qiang Zhao
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Juan Zhou
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China; Key Laboratory of Molecular Cardiology, Shaanxi Province, China
| | - Yue Wu
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China; Key Laboratory of Molecular Cardiology, Shaanxi Province, China
| | - Yan Liu
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China; Key Laboratory of Environment and Genes Related to Diseases, (Xi'an Jiaotong University), Ministry of Education, China; Key Laboratory of Molecular Cardiology, Shaanxi Province, China; Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Lijun Wang
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University, China; Key Laboratory of Molecular Cardiology, Shaanxi Province, China.
| |
Collapse
|
20
|
Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res 2018; 113:1009-1023. [PMID: 28838042 PMCID: PMC5852626 DOI: 10.1093/cvr/cvx108] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/05/2017] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue (AT) dysfunction, characterized by loss of its homeostatic functions, is a hallmark of non-communicable diseases. It is characterized by chronic low-grade inflammation and is observed in obesity, metabolic disorders such as insulin resistance and diabetes. While classically it has been identified by increased cytokine or chemokine expression, such as increased MCP-1, RANTES, IL-6, interferon (IFN) gamma or TNFα, mechanistically, immune cell infiltration is a prominent feature of the dysfunctional AT. These immune cells include M1 and M2 macrophages, effector and memory T cells, IL-10 producing FoxP3+ T regulatory cells, natural killer and NKT cells and granulocytes. Immune composition varies, depending on the stage and the type of pathology. Infiltrating immune cells not only produce cytokines but also metalloproteinases, reactive oxygen species, and chemokines that participate in tissue remodelling, cell signalling, and regulation of immunity. The presence of inflammatory cells in AT affects adjacent tissues and organs. In blood vessels, perivascular AT inflammation leads to vascular remodelling, superoxide production, endothelial dysfunction with loss of nitric oxide (NO) bioavailability, contributing to vascular disease, atherosclerosis, and plaque instability. Dysfunctional AT also releases adipokines such as leptin, resistin, and visfatin that promote metabolic dysfunction, alter systemic homeostasis, sympathetic outflow, glucose handling, and insulin sensitivity. Anti-inflammatory and protective adiponectin is reduced. AT may also serve as an important reservoir and possible site of activation in autoimmune-mediated and inflammatory diseases. Thus, reciprocal regulation between immune cell infiltration and AT dysfunction is a promising future therapeutic target.
Collapse
Affiliation(s)
- Tomasz J Guzik
- British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK.,Translational Medicine Laboratory, Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Dominik S Skiba
- British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK.,Translational Medicine Laboratory, Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Rhian M Touyz
- British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - David G Harrison
- British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK.,Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
21
|
Modulation of Immune-Inflammatory Responses in Abdominal Aortic Aneurysm: Emerging Molecular Targets. J Immunol Res 2018; 2018:7213760. [PMID: 29967801 PMCID: PMC6008668 DOI: 10.1155/2018/7213760] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/18/2018] [Accepted: 03/31/2018] [Indexed: 12/24/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), a deadly vascular disease in human, is a chronic degenerative process of the abdominal aorta. In this process, inflammatory responses and immune system work efficiently by inflammatory cell attraction, proinflammatory factor secretion and subsequently MMP upregulation. Previous studies have demonstrated various inflammatory cell types in AAA of human and animals. The majority of cells, such as macrophages, CD4+ T cells, and B cells, play an important role in the diseased aortic wall through phenotypic modulation. Furthermore, immunoglobulins also greatly affect the functions and differentiation of immune cells in AAA. Recent evidence suggests that innate immune system, especially Toll-like receptors, chemokine receptors, and complements are involved in the progression of AAAs. We discussed the innate immune system, inflammatory cells, immunoglobulins, immune-mediated mechanisms, and key cytokines in the pathogenesis of AAA and particularly emphasis on a further trend and application of these interventions. This current understanding may offer new insights into the role of inflammation and immune response in AAA.
Collapse
|
22
|
Tuleta I, Skowasch D, Aurich F, Eckstein N, Schueler R, Pizarro C, Schahab N, Nickenig G, Schaefer C, Pingel S. Asthma is associated with atherosclerotic artery changes. PLoS One 2017; 12:e0186820. [PMID: 29073174 PMCID: PMC5658104 DOI: 10.1371/journal.pone.0186820] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022] Open
Abstract
Asthma is a chronic airway inflammation with a potential systemic impact. Atherosclerosis is a chronic inflammatory artery disease. The aim of our study was to prove if there is a correlation between the occurrence of asthma and increased atherosclerotic vessel disorders. Vessel status was compared between mild-to-moderate, severe allergic asthma and matched controls. Measurements of artery stiffness were calculated by central pulse wave velocity, ultrasonographic strain imaging and ankle-brachial index. Atherosclerotic plaque burden was assessed by colour-coded duplex sonography. Additionally, analysis of cardiovascular and asthma blood markers was conducted. Arterial stiffness expressed as an increased central pulse wave velocity and decreased circumferential and radial strains as well as the prevalence of media sclerosis were significantly higher among asthma patients compared to controls. Atherosclerotic plaque burden was relevantly increased in asthma groups vs. controls (severe asthma: 43.1%, mild-to-moderate asthma: 25.0%, control: 14.3% of study participants). Except for the elevated IgE and fibrinogen concentrations as well as leukocyte number there were no relevant differences in the blood parameters between the groups. Allergic asthma is associated with distinct atherosclerotic artery changes compared to the respectively matched control collective. The severity of asthma correlates with more pronounced pathological vessel alternations.
Collapse
Affiliation(s)
- Izabela Tuleta
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
- * E-mail:
| | - Dirk Skowasch
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Florian Aurich
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Nicolas Eckstein
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Robert Schueler
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Carmen Pizarro
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Nadjib Schahab
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Christian Schaefer
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| | - Simon Pingel
- Department of Internal Medicine II–Cardiology, Pulmonology and Angiology, University of Bonn, Bonn, Germany
| |
Collapse
|
23
|
Zhao H, Song X, Yan L, Ren M, Cui X, Li Y, Gao R, Zhang W, Liu M, Liu B, Hu Y, Wang J. IgE induces hypotension in asthma mice by down-regulating vascular NCX1 expression through activating MiR-212-5p. Biochim Biophys Acta Mol Basis Dis 2017; 1864:189-196. [PMID: 28988887 DOI: 10.1016/j.bbadis.2017.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/20/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023]
Abstract
Immunoglobulin E (IgE) has been suggested as a risk factor for allergy-induced low blood pressure, which has not been well explained in molecular details. Our current study shows a novel mechanism involving IgE, FcɛR1, miRNA-212-5p (miR-212-5p), and sodium/calcium exchanger protein 1(NCX1) for asthma to induce hypotension. In arterial smooth muscle cells, IgE up-regulated miR212-5p via its receptor FcɛR1, which resulted in down-regulation of NCX1 that is a regulating factor for blood pressure. In mice, asthma induced hypotension by interfering vasoconstrictive function; knockout of FcɛR1 kept the asthmatic mice from developing hypotension; knock-down of miR-212-5p in asthmatic mice resulted in a significant restoration of blood pressure. In human, asthma and IgE were positively correlated with hypotension in cohort study on NIH epidemiological data. This study suggests a novel therapeutic target (miR-212-5p) for treatment of asthma-induced hypotension.
Collapse
Affiliation(s)
- Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Xiaomin Song
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Li Yan
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Meng Ren
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Xingxing Cui
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Yao Li
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Ran Gao
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Wei Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Marobian Liu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China
| | - Bin Liu
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing,China.
| |
Collapse
|
24
|
Nordlohne J, von Vietinghoff S. Interleukin 17A in atherosclerosis - Regulation and pathophysiologic effector function. Cytokine 2017; 122:154089. [PMID: 28663097 DOI: 10.1016/j.cyto.2017.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/01/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
This review summarizes the current data on the interleukin (IL)-17A pathway in experimental atherosclerosis and clinical data. IL-17A is a prominent cytokine for early T cell response produced by both innate and adaptive leukocytes. In atherosclerosis, increased total IL-17A levels and expression in CD4+ T helper and γδ T cells have been demonstrated. Cytokines including IL-6 and TGFβ that increase IL-17A expression are elevated. Many other factors such as lipids, glucose and sodium chloride concentrations as well as vitamins and arylhydrocarbon receptor agonists that promote IL-17A expression are closely associated with cardiovascular risk in the human population. In acute inflammation models, IL-17A mediates innate leukocyte recruitment of both neutrophils and monocytes. In atherosclerosis, IL-17A increased aortic macrophage and T cell infiltration in most models. Secondary recruitment effects via the endothelium and according to recent data also pericytes have been demonstrated. IL-17 receptor A is highly expressed on monocytes and direct effects have been reported as well. Beyond leukocyte accumulation, IL-17A may affect other factors of plaque formation such as endothelial function, and according to some reports, fibrous cap formation and vascular relaxation with an increase in blood pressure. Anti-IL-17A agents are now available for clinical use. Cardiovascular side effect profiles are benign at this point. IL-17A appears to be a differential regulator of atherosclerosis and its effects in mouse models suggest that its modulation may have contradictory effects on plaque size and possibly stability in different patient populations.
Collapse
Affiliation(s)
- Johannes Nordlohne
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Sibylle von Vietinghoff
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
25
|
Abstract
BACKGROUND Previous studies have demonstrated that asthma might be associated with an increase in cardiovascular disease (CVD) and death. However, this relationship differs by gender. OBJECTIVES To systematically evaluate the association of asthma on the incidence of CVD and death in cohort studies. DESIGN Fixed and random effects models were used to calculate risk estimates in a meta-analysis. Potential publication bias was calculated using a funnel plot, Begg's rank correlation test, and Egger's linear regression test. SEARCH STRATEGY We searched the PubMed and Embase databases for studies that examined the relationship between asthma and CVD or all-cause mortality. SELECTION CRITERIA Prospective and retrospective cohort studies. RESULTS Ten studies containing 406 426 participants were included. The summary relative risk (95% confi-dence interval, CI) for patients with asthma was 1.33 (95% CI: 1.15-1.53), for CVD in women, it was 1.55 (95% CI: 1.20-2.00), for CVD in men it was 1.20 (95% CI: 0.92-1.56), and for all-cause mortality in both genders it was 1.36 (95% CI: 1.01-1.83). These findings remained consistent after sensitivity analysis. CONCLUSION The results indicate that asthma was associated with an increased risk of CVD and all-cause mortality. SYSTEMATIC REVIEW REGISTRATION NUMBER Systematic review was not registered.
Collapse
Affiliation(s)
| | | | - Xiangjun Yang
- Dr. Xiangjun Yang,, NO. 188, Shizi Street, Suzhou, 215006, China, T: +86 5121810, , ORCID: http://orcid.org/0000-0001-7309-3111
| |
Collapse
|
26
|
Liu CL, Zhang JY, Shi GP. Interaction between allergic asthma and atherosclerosis. Transl Res 2016; 174:5-22. [PMID: 26608212 PMCID: PMC4826642 DOI: 10.1016/j.trsl.2015.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 12/15/2022]
Abstract
Prior studies have established an essential role of mast cells in allergic asthma and atherosclerosis. Mast cell deficiency or inactivation protects mice from allergen-induced airway hyper-responsiveness and diet-induced atherosclerosis, suggesting that mast cells share pathologic activities in both diseases. Allergic asthma and atherosclerosis are inflammatory diseases that contain similar sets of elevated numbers of inflammatory cells in addition to mast cells in the airway and arterial wall, such as macrophages, monocytes, T cells, eosinophils, and smooth muscle cells. Emerging evidence from experimental models and human studies points to a potential interaction between the 2 seemingly unrelated diseases. Patients or mice with allergic asthma have a high risk of developing atherosclerosis or vice versa, despite the fact that asthma is a T-helper (Th)2-oriented disease, whereas Th1 immunity promotes atherosclerosis. In addition to the preferred Th1/Th2 responses that may differentiate the 2 diseases, mast cells and many other inflammatory cells also contribute to their pathogenesis by more than just T cell immunity. Here, we summarize the different roles of airway and arterial wall inflammatory cells and vascular cells in asthma and atherosclerosis and propose an interaction between the 2 diseases, although limited investigations are available to delineate the molecular and cellular mechanisms by which 1 disease increases the risk of the other. Results from mouse allergic asthma and atherosclerosis models and from human population studies lead to the hypothesis that patients with atherosclerosis may benefit from antiasthmatic medications or that the therapeutic regimens targeting atherosclerosis may also alleviate allergic asthma.
Collapse
Affiliation(s)
- Cong-Lin Liu
- Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Jin-Ying Zhang
- Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guo-Ping Shi
- Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass.
| |
Collapse
|
27
|
Higher circulating levels of chemokines CXCL10, CCL20 and CCL22 in patients with ischemic heart disease. Cytokine 2016; 83:147-157. [PMID: 27152707 DOI: 10.1016/j.cyto.2016.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/01/2016] [Accepted: 04/13/2016] [Indexed: 01/22/2023]
Abstract
Recruitment of leukocytes is one of the earliest events in the pathogenesis of ischemic heart disease (IHD) and chemokines play an important role in the migration of these cells into the inflammation sites. The aim of this study was to evaluate the CXCL10, CCL20 and CCL22 levels and the single nucleotide polymorphisms (SNPs) rs4508917, rs6749704 and rs4359426 in chemokine genes in patients with IHD to clarify any association. A total of 300 patients with IHD as having acute myocardial infarction (AMI; n=100), stable angina (SA; n=100) or unstable angina (UA; n=100) and 100 healthy subjects as a control group were enrolled to study. Serum samples from all participants were tested for the CXCL10, CCL20 and CCL22 levels by using ELISA. The SNPs were determined by polymerase chain reaction-restriction length polymorphism (PCR-RFLP) method. The mean serum concentrations of CXCL10, CCL20 and CCL22 in AMI patients (395.97±21.20Pg/mL, 108.38±10.31Pg/mL and 1852.58±205.77Pg/mL), SA patients (405.48±27.36Pg/mL, 90.20±7.69Pg/mL and 2322.04±231.23Pg/mL) and UA patients (396.69±22.79Pg/mL, 141.87±18.10Pg/mL and 2754.89±211.70Pg/mL) were significantly higher than in the healthy group (179.38±8.85Pg/mL, 51.92±4.62Pg/mL and 451.82±23.76Pg/mL, respectively; P<0.001). Similarly, the serum levels of CXCL10, CCL20 and CCL22 in total IHD patients (399.38±13.77Pg/mL, 113.49±7.48Pg/mL and 2309.84±126.39Pg/mL, respectively) were also significantly higher as compared with healthy subjects (P<0.001). The serum levels of CCL20 and CCL22 in UA patients were significantly higher than those in SA and AMI patients, respectively (P<0.01 and P<0.003, respectively). The serum levels of CXCL10 and CCL20 in diabetic patients were significantly higher in comparison to non-diabetic patients (P<0.05 and P<0.02, respectively). The serum levels of CCL22 in dyslipidemic- and obese patients were also significantly higher in comparison with non-dyslipidemic- and non-obese patients, correspondingly (P<0.05 and P<0.01, respectively). There were no significant differences between men and women or between patients who treated with statin, aspirin, β-blockers or angiotensin converting enzyme (ACE) inhibitors and patients without mentioned treatment regarding the levels of chemokines. The frequency of the GG genotype at SNP rs4508917 in CXCL10 gene was higher, whereas the frequency of the AA genotype at SNP rs4359426 in CCL22 gene was lower in total patients with IHD as compared with healthy subjects (P<0.04 and P<0.002, respectively). These results showed that the higher levels of CXCL10, CCL20 and CCL22 were associated with IHD. The serum levels of chemokines may influence by the certain traditional risk factors of IHD and some studied SNPs, but did not influence by treatment and gender of patients.
Collapse
|
28
|
Liu CL, Wang Y, Liao M, Santos MM, Fernandes C, Sukhova GK, Zhang JY, Cheng X, Yang C, Huang X, Levy B, Libby P, Wu G, Shi GP. Allergic lung inflammation promotes atherosclerosis in apolipoprotein E-deficient mice. Transl Res 2016; 171:1-16. [PMID: 26898714 PMCID: PMC4833597 DOI: 10.1016/j.trsl.2016.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 12/21/2022]
Abstract
Inflammation drives asthma and atherosclerosis. Clinical studies suggest that asthmatic patients have a high risk of atherosclerosis. Yet this hypothesis remains uncertain, given that Th2 imbalance causes asthma whereas Th1 immunity promotes atherosclerosis. In this study, chronic allergic lung inflammation (ALI) was induced in mice by ovalbumin sensitization and challenge. Acute ALI was induced in mice by ovalbumin and aluminum sensitization and ovalbumin challenge. Atherosclerosis was produced in apolipoprotein E-deficient (Apoe(-/-)) mice with a Western diet. When chronic ALI and atherosclerosis were produced simultaneously, ALI increased atherosclerotic lesion size, lesion inflammatory cell content, elastin fragmentation, smooth muscle cell (SMC) loss, lesion cell proliferation, and apoptosis. Production of acute ALI before atherogenesis did not affect lesion size, but increased atherosclerotic lesion CD4(+) T cells, lesion SMC loss, angiogenesis, and apoptosis. Production of acute ALI after atherogenesis also did not change atherosclerotic lesion area, but increased lesion elastin fragmentation, cell proliferation, and apoptosis. In mice with chronic ALI and diet-induced atherosclerosis, daily inhalation of a mast cell inhibitor or corticosteroid significantly reduced atherosclerotic lesion T-cell and mast cell contents, SMC loss, angiogenesis, and cell proliferation and apoptosis, although these drugs did not affect lesion area, compared with those that received vehicle treatment. In conclusion, both chronic and acute ALI promote atherogenesis or aortic lesion pathology, regardless whether ALI occurred before, after, or at the same time as atherogenesis. Antiasthmatic medication can efficiently mitigate atherosclerotic lesion pathology.
Collapse
Affiliation(s)
- Cong-Lin Liu
- Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA
| | - Yi Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA; Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengyang Liao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Marcela M Santos
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA
| | - Cleverson Fernandes
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA
| | - Jin-Ying Zhang
- Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiang Cheng
- Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Chongzhe Yang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaozhu Huang
- Department of Medicine, University of California, San Francisco, Calif, USA
| | - Bruce Levy
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA
| | - Gongxiong Wu
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Mass, USA; Department of Cardiovascular, The Second Hospital Affiliated to Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease, Guangzhou 510182, Guangdong Province, China.
| | - Guo-Ping Shi
- Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA.
| |
Collapse
|
29
|
Liu CL, Wemmelund H, Wang Y, Liao M, Lindholt JS, Johnsen SP, Vestergaard H, Fernandes C, Sukhova GK, Cheng X, Zhang JY, Yang C, Huang X, Daugherty A, Levy BD, Libby P, Shi GP. Asthma Associates With Human Abdominal Aortic Aneurysm and Rupture. Arterioscler Thromb Vasc Biol 2016; 36:570-8. [PMID: 26868210 DOI: 10.1161/atvbaha.115.306497] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/21/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Both asthma and abdominal aortic aneurysms (AAA) involve inflammation. It remains unknown whether these diseases interact. APPROACH AND RESULTS Databases analyzed included Danish National Registry of Patients, a population-based nationwide case-control study included all patients with ruptured AAA and age- and sex-matched AAA controls without rupture in Denmark from 1996 to 2012; Viborg vascular trial, subgroup study of participants from the population-based randomized Viborg vascular screening trial. Patients with asthma were categorized by hospital diagnosis, bronchodilator use, and the recorded use of other anti-asthma prescription medications. Logistic regression models were fitted to determine whether asthma associated with the risk of ruptured AAA in Danish National Registry of Patients and an independent risk of having an AAA at screening in the Viborg vascular trial. From the Danish National Registry of Patients study, asthma diagnosed <1 year or 6 months before the index date increased the risk of AAA rupture before (odds ratio [OR]=1.60-2.12) and after (OR=1.51-2.06) adjusting for AAA comorbidities. Use of bronchodilators elevated the risk of AAA rupture from ever use to within 90 days from the index date, before (OR=1.10-1.37) and after (OR=1.10-1.31) adjustment. Patients prescribed anti-asthma drugs also showed an increased risk of rupture before (OR=1.12-1.79) and after (OR=1.09-1.48) the same adjustment. In Viborg vascular trial, anti-asthmatic medication use associated with increased risk of AAA before (OR=1.45) or after adjustment for smoking (OR=1.45) or other risk factors (OR=1.46). CONCLUSIONS Recent active asthma increased risk of AAA and ruptured AAA. These findings document and furnish novel links between airway disease and AAA, 2 common diseases that share inflammatory aspects.
Collapse
Affiliation(s)
- Cong-Lin Liu
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Holger Wemmelund
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Yi Wang
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Mengyang Liao
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Jes S Lindholt
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Søren P Johnsen
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Henrik Vestergaard
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Cleverson Fernandes
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Galina K Sukhova
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Xiang Cheng
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Jin-Ying Zhang
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Chongzhe Yang
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Xiaozhu Huang
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Alan Daugherty
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Bruce D Levy
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Peter Libby
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Guo-Ping Shi
- From the Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (C.L.L., J.Y.Z., G.P.S.); Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.L.L., Y.W., M.L., C.F., G.K.S., C.Y., B.D.L., P.L., G.P.S.); Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark (H.W.); Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.W.); Department of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.L., X.C.); Department of Cardiothoracic and Vascular Surgery, Elitary Research Centre of Individualized Medicine of Arterial Disease, Odense University Hospital, Odense, Denmark (J.S.L.); Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (H.W., S.P.J.); Section for Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark (H.V.); Department of Medicine, University of California, San Francisco (X.H.); and Departments of Physiology and Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.).
| |
Collapse
|
30
|
Ma X, Qiu R, Dang J, Li J, Hu Q, Shan S, Xin Q, Pan W, Bian X, Yuan Q, Long F, Liu N, Li Y, Gao F, Zou C, Gong Y, Liu Q. ORMDL3 contributes to the risk of atherosclerosis in Chinese Han population and mediates oxidized low-density lipoprotein-induced autophagy in endothelial cells. Sci Rep 2015; 5:17194. [PMID: 26603569 PMCID: PMC4658630 DOI: 10.1038/srep17194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/26/2015] [Indexed: 12/19/2022] Open
Abstract
ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) is a universally confirmed susceptibility gene for asthma and has recently emerged as a crucial modulator in lipid metabolism, inflammation and endoplasmic reticulum (ER) stress-the mechanisms also closely involved in atherosclerosis (AS). Here we first presented the evidence of two single nucleotide polymorphisms regulating ORMDL3 expression (rs7216389 and rs9303277) significantly associated with AS risk and the evidence of increased ORMDL3 expression in AS cases compared to controls, in Chinese Han population. Following the detection of its statistical correlation with AS, we further explored the functional relevance of ORMDL3 and hypothesized a potential role mediating autophagy as autophagy is activated upon modified lipid, inflammation and ER stress. Our results demonstrated that in endothelial cells oxidized low-density lipoprotein (ox-LDL) up-regulated ORMDL3 expression and knockdown of ORMDL3 alleviated not only ox-LDL-induced but also basal autophagy. BECN1 is essential for autophagy initiation and silencing of ORMDL3 suppressed ox-LDL-induced as well as basal BECN1 expression. In addition, deletion of ORMDL3 resulted in greater sensitivity to ox-LDL-induced cell death. Taken together, ORMDL3 might represent a causal gene mediating autophagy in endothelial cells in the pathogenesis of AS.
Collapse
Affiliation(s)
- Xiaochun Ma
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Cardiac Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Rongfang Qiu
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Jie Dang
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics and Cell Biology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jiangxia Li
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Qin Hu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shan Shan
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Qian Xin
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Wenying Pan
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xianli Bian
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Qianqian Yuan
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Feng Long
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Na Liu
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Yan Li
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Fei Gao
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Chengwei Zou
- Department of Cardiac Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yaoqin Gong
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Qiji Liu
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
31
|
|
32
|
Gao S, Zhou J, Liu N, Wang L, Gao Q, Wu Y, Zhao Q, Liu P, Wang S, Liu Y, Guo N, Shen Y, Wu Y, Yuan Z. Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13. J Mol Cell Cardiol 2015; 85:131-9. [DOI: 10.1016/j.yjmcc.2015.04.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/03/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
|
33
|
Chung MJ, Pandey RP, Choi JW, Sohng JK, Choi DJ, Park YI. Inhibitory effects of kaempferol-3-O-rhamnoside on ovalbumin-induced lung inflammation in a mouse model of allergic asthma. Int Immunopharmacol 2015; 25:302-10. [PMID: 25698556 DOI: 10.1016/j.intimp.2015.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/12/2015] [Accepted: 01/28/2015] [Indexed: 12/21/2022]
Abstract
The modification of natural flavonoid by glycosylation alters their physicochemical and pharmacokinetic properties, such as increased water solubility and stability, reduced toxicity, and sometimes enhanced or even new pharmacological activities. Kaempferol (KF), a plant flavonoid, and its glycosylated derivative, kaempferol-3-O-rhamnoside (K-3-rh), were evaluated and compared for their anti-inflammatory, anti-oxidant, and anti-asthmatic effects in an asthma model mouse. The results showed that K-3-rh fully maintained its anti-inflammatory and anti-asthmatic effects compared with KF in an asthma model mouse. Both KF and K-3-rh significantly reduced the elevated inflammatory cell numbers in the bronchoalveolar lavage fluid (BALF). KF and K-3-rh also significantly inhibited the increase in Th2 cytokines (IL-4, IL-5, and IL-13) and TNF-α protein levels through inhibition of the phosphorylation Akt and effectively suppressed eosinophilia in a mouse model of allergic asthma. The total immunoglobulin (Ig) E levels in the serum and BALF were also blocked by KF and K-3-rh to similar extents. K-3-rh exerts similar or even slightly higher inhibitory effects on Th2 cytokines and IgE production compared with KF, whereas K-3-rh was less effective at DPPH radical scavenging and the inhibition of ROS generation in inflammatory cells compared with KF. These results suggested that the K-3-rh, as well as KF, may also be a promising candidate for the development of health beneficial foods or therapeutic agents that can prevent or treat allergic asthma.
Collapse
Affiliation(s)
- Mi Ja Chung
- Department of Food Science and Nutrition, College of Health, Welfare and Education, Gwangju University, Gwangju 503-703, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asansi, Chungnam 336-708, Republic of Korea
| | - Ji Won Choi
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 420-743, Republic of Korea
| | - Jae Kyung Sohng
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asansi, Chungnam 336-708, Republic of Korea
| | - Doo Jin Choi
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 420-743, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 420-743, Republic of Korea.
| |
Collapse
|
34
|
von Moltke J, Locksley RM. I-L-C-2 it: type 2 immunity and group 2 innate lymphoid cells in homeostasis. Curr Opin Immunol 2014; 31:58-65. [PMID: 25458996 DOI: 10.1016/j.coi.2014.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/24/2014] [Accepted: 09/28/2014] [Indexed: 12/17/2022]
Abstract
Innate type 2 immune cells are activated in response to helminths, allergens, and certain types of proteases and particulates. Recently, innate type 2 immune pathways have also been implicated in protective host responses to homeostatic perturbations, such as metabolic dysfunction, atherosclerosis, and tissue injury. In this context, innate type 2 cytokines stimulate local tissues, recruit eosinophils, and alternatively activate macrophages to restore homeostasis. As the major source of innate interleukin (IL)-5 and IL-13, group 2 innate lymphoid cells are positioned to initiate and maintain homeostatic type 2 responses. The absence of exogenous stimuli in these processes implicates endogenous pathways in the activation of type 2 immunity and suggests an alternative evolutionary trajectory for type 2 immunity, apart from its role in response to helminths and allergens.
Collapse
Affiliation(s)
- Jakob von Moltke
- Departments of Microbiology and Immunology and Medicine, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Richard M Locksley
- Departments of Microbiology and Immunology and Medicine, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|