1
|
Schmitner N, Thumer S, Regele D, Mayer E, Bergerweiss I, Helker C, Stainier DYR, Meyer D, Kimmel RA. Conserved glucokinase regulation in zebrafish confirms therapeutic utility for pharmacologic modulation in diabetes. Commun Biol 2024; 7:1557. [PMID: 39580550 PMCID: PMC11585571 DOI: 10.1038/s42003-024-07264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
Glucokinase (GCK) is an essential enzyme for blood glucose homeostasis. Because of its importance in glucose metabolism, GCK is considered an attractive target for the development of antidiabetic drugs. However, a viable therapeutic agent has still to emerge, prompting efforts to improve understanding of the complex regulation and biological effects of GCK. Using the vertebrate organism zebrafish, an attractive model to study metabolic diseases and pharmacological responses, we dissected the complexities of gck regulation and unraveled effects of Gck modulation. We found that while gck expression in zebrafish islet cells is constitutive, gck expression in the liver is regulated by nutritional status, confirming similarity to the mammalian system. A combination of transgenic gck reporter lines and our diabetes model, the pdx1 mutant, allowed monitoring of gck expression under pathological conditions, revealing reduced gck expression and activity in the liver, which was unresponsive to nutrient stimulation, and decreased expression in the islet due to the reduced number of β-cells. Gck activation substantially ameliorated hyperglycemia in pdx1 mutants, without inducing oxidative stress responses in liver or islet. In-depth characterization of Gck activity and regulation at the cellular level in a whole-organism diabetes model clarifies its applicability as a drug target for therapies.
Collapse
Affiliation(s)
- Nicole Schmitner
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| | - Sophie Thumer
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Dominik Regele
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Elena Mayer
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Ines Bergerweiss
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Christian Helker
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Philipps-University Marburg, Marburg, Germany
| | | | - Dirk Meyer
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Rezaei N, Dormiani K, Kiani-Esfahani A, Mirdamadian S, Rahmani M, Jafarpour F, Nasr-Esfahani MH. Characterization and functional evaluation of goat PDX1 regulatory modules through comparative analysis of conserved interspecies homologs. Sci Rep 2024; 14:26755. [PMID: 39500950 PMCID: PMC11538457 DOI: 10.1038/s41598-024-77614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
PDX1 is a crucial transcription factor in pancreas development and mature β-cell function. However, the regulation of PDX1 expression in larger animals mirroring human pancreas morphogenesis and endocrine maturation remains poorly understood. Therefore, we conducted a comparative analysis to characterize regulatory regions of goat PDX1 gene and assessed their transcriptional activity by transient transfection of several transgenic EGFP constructs in β- and non-β cell lines. We recognized several highly conserved regions encompassing the promoter and cis-regulatory elements (Area I-IV) at 5' flanking sequence of the genes. Within the promoter, we identified that a key E-box and nearby CAAT element synergistically drive transcription, constituting the basal promoter of goat PDX1 gene. Furthermore, each recognized regulatory area separately enhances this basal promoter activity in β-cells compared to non-β cells; however, cooperatively, they exhibit a bifunctional regulatory effect on transcription. Additionally, the intact ~ 3 kb upstream region (Area I-III) functions as the most efficient reporter transgene in vitro and shows islet-specific expression in native rat pancreas. Together, our findings suggest that the regulation of goat PDX1 gene is governed by conserved regions similar to other mammals, while both structurally and functionally, these regions exhibit a closer resemblance to those found in humans.
Collapse
Affiliation(s)
- Naeimeh Rezaei
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Abbas Kiani-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Somayeh Mirdamadian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahmani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
3
|
Yang J, Liu Y, Wang M, Chen S, Miao Q, Liu Z, Zhang B, Deng G. Repair Effect of Umbilical Cord Mesenchymal Stem Cells Embedded in Hydrogel on Mouse Insulinoma 6 Cells Injured by Streptozotocin. Polymers (Basel) 2024; 16:1845. [PMID: 39000700 PMCID: PMC11244345 DOI: 10.3390/polym16131845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Umbilical cord mesenchymal stem cells (UC-MSCs) possess the capabilities of differentiation and immune modulation, which endow them with therapeutic potential in the treatment of type 2 diabetes mellitus (T2DM). In this study, to investigate the repair mechanism of UC-MSCs in hydrogel on pancreatic β-cells in diabetes, mouse insulinoma 6 (MIN-6) cells damaged by streptozotocin (STZ) in vitro were used in co-culture with UC-MSCs in hydrogel (UC-MSCs + hydrogel). It was found that UC-MSCs + hydrogel had a significant repair effect on injured MIN-6 cells, which was better than the use of UC-MSCs alone (without hydrogel). After repair, the expression of superoxide dismutase (SOD) and catalase (CAT) as well as the total antioxidant capacity (T-AOC) of the repaired MIN-6 cells were increased, effectively reducing the oxidative stress caused by STZ. In addition, UC-MSCs + hydrogel were able to curb the inflammatory response by promoting the expression of anti-inflammatory factor IL-10 and reducing inflammatory factor IL-1β. In addition, the expression of both nuclear antigen Ki67 for cell proliferation and insulin-related genes such as Pdx1 and MafA was increased in the repaired MIN-6 cells by UC-MSCs + hydrogel, suggesting that the repair effect promotes the proliferation of the injured MIN-6 cells. Compared with the use of UC-MSCs alone, UC-MSCs + hydrogel exhibit superior antioxidant stress resistance against injured MIN-6 cells, better proliferation effects and a longer survival time of UC-MSCs because the porous structure and hydrophilic properties of the hydrogel could affect the growth of cells and slow down their metabolic activities, resulting in a better repair effect on the injured MIN-6 cells.
Collapse
Affiliation(s)
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, China; (J.Y.); (M.W.); (S.C.); (Q.M.); (Z.L.); (B.Z.); (G.D.)
| | | | | | | | | | | | | |
Collapse
|
4
|
de Souza RB, Cabello PH, Rosado EL, Junior MC, de Medeiros Abreu G. What Do We Know about Neonatal Diabetes caused by PDX1 Mutations? Curr Diabetes Rev 2024; 21:e290124226471. [PMID: 38299270 DOI: 10.2174/0115733998265866231204070606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Neonatal diabetes mellitus (NDM) is characterized by severe hyperglycemia, usually diagnosed in the first few months of an individual's life. It is a genetic disease and one of the main forms of monogenic diabetes. Changes in different genes have already been associated with NDM, including changes in the gene PDX1. METHODS In this review, we intend to summarize all neonatal diabetes cases caused by PDX1 mutations reported in the literature. For this purpose, we searched keywords in the literature from PubMed and articles cited by the HGMD database. The search retrieved 84 articles, of which 41 had their full text accessed. After applying the study exclusion criteria, nine articles were included. RESULTS Of those articles, we detected thirteen cases of NDM associated with changes in PDX1; the majority in homozygous or compound heterozygous patients. Until now, variants in the PDX1 gene have been a rare cause of NDM; however, few studies have included the screening of this gene in the investigation of neonatal diabetes. CONCLUSION In this review, we reinforce the importance of the PDX1 gene inclusion in genetic NGS panels for molecular diagnosis of NDM, and systematic morphological and functional exams of the pancreas when NDM is present.
Collapse
Affiliation(s)
- Ritiele Bastos de Souza
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Pedro Hernán Cabello
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Genetics, School of Health Science, University of Grande Rio, Rio de Janeiro, Brazil
| | - Eliane Lopes Rosado
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mário Campos Junior
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gabriella de Medeiros Abreu
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Riaz F, Wei P, Pan F. PPARs at the crossroads of T cell differentiation and type 1 diabetes. Front Immunol 2023; 14:1292238. [PMID: 37928539 PMCID: PMC10623333 DOI: 10.3389/fimmu.2023.1292238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
T-cell-mediated autoimmune type 1 diabetes (T1D) is characterized by the immune-mediated destruction of pancreatic beta cells (β-cells). The increasing prevalence of T1D poses significant challenges to the healthcare system, particularly in countries with struggling economies. This review paper highlights the multifaceted roles of Peroxisome Proliferator-Activated Receptors (PPARs) in the context of T1D, shedding light on their potential as regulators of immune responses and β-cell biology. Recent research has elucidated the intricate interplay between CD4+ T cell subsets, such as Tregs and Th17, in developing autoimmune diseases like T1D. Th17 cells drive inflammation, while Tregs exert immunosuppressive functions, highlighting the delicate balance crucial for immune homeostasis. Immunotherapy has shown promise in reinstating self-tolerance and restricting the destruction of autoimmune responses, but further investigations are required to refine these therapeutic strategies. Intriguingly, PPARs, initially recognized for their role in lipid metabolism, have emerged as potent modulators of inflammation in autoimmune diseases, particularly in T1D. Although evidence suggests that PPARs affect the β-cell function, their influence on T-cell responses and their potential impact on T1D remains largely unexplored. It was noted that PPARα is involved in restricting the transcription of IL17A and enhancing the expression of Foxp3 by minimizing its proteasomal degradation. Thus, antagonizing PPARs may exert beneficial effects in regulating the differentiation of CD4+ T cells and preventing T1D. Therefore, this review advocates for comprehensive investigations to delineate the precise roles of PPARs in T1D pathogenesis, offering innovative therapeutic avenues that target both the immune system and pancreatic function. This review paper seeks to bridge the knowledge gap between PPARs, immune responses, and T1D, providing insights that may revolutionize the treatment landscape for this autoimmune disorder. Moreover, further studies involving PPAR agonists in non-obese diabetic (NOD) mice hold promise for developing novel T1D therapies.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Ping Wei
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
6
|
Yoo HS, Moss KO, Cockrum MA, Woo W, Napoli JL. Energy status regulates levels of the RAR/RXR ligand 9-cis-retinoic acid in mammalian tissues: Glucose reduces its synthesis in β-cells. J Biol Chem 2023; 299:105255. [PMID: 37714463 PMCID: PMC10582780 DOI: 10.1016/j.jbc.2023.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023] Open
Abstract
9-cis-retinoic acid (9cRA) binds retinoic acid receptors (RAR) and retinoid X receptors (RXR) with nanomolar affinities, in contrast to all-trans-retinoic acid (atRA), which binds only RAR with nanomolar affinities. RXR heterodimerize with type II nuclear receptors, including RAR, to regulate a vast gene array. Despite much effort, 9cRA has not been identified as an endogenous retinoid, other than in pancreas. By revising tissue analysis methods, 9cRA quantification by liquid chromatography-tandem mass spectrometry becomes possible in all mouse tissues analyzed. 9cRA occurs in concentrations similar to or greater than atRA. Fasting increases 9cRA in white and brown adipose, brain and pancreas, while increasing atRA in white adipose, liver and pancreas. 9cRA supports FoxO1 actions in pancreas β-cells and counteracts glucose actions that lead to glucotoxicity; in part by inducing Atg7 mRNA, which encodes the key enzyme essential for autophagy. Glucose suppresses 9cRA biosynthesis in the β-cell lines 832/13 and MIN6. Glucose reduces 9cRA biosynthesis in 832/13 cells by inhibiting Rdh5 transcription, unconnected to insulin, through cAMP and Akt, and inhibiting FoxO1. Through adapting tissue specifically to fasting, 9cRA would act independent of atRA. Widespread occurrence of 9cRA in vivo, and its self-sufficient adaptation to energy status, provides new perspectives into regulation of energy balance, attenuation of insulin and glucose actions, regulation of type II nuclear receptors, and retinoid biology.
Collapse
Affiliation(s)
- Hong Sik Yoo
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA
| | - Kristin Obrochta Moss
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA
| | - Michael A Cockrum
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA
| | - Wonsik Woo
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA
| | - Joseph L Napoli
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA.
| |
Collapse
|
7
|
Abarinov V, Levine JA, Churchill AJ, Hopwood B, Deiter CS, Guney MA, Wells KL, Schrunk JM, Guo Y, Hammelman J, Gifford DK, Magnuson MA, Wichterle H, Sussel L. Major β cell-specific functions of NKX2.2 are mediated via the NK2-specific domain. Genes Dev 2023; 37:490-504. [PMID: 37364986 PMCID: PMC10393193 DOI: 10.1101/gad.350569.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
The consolidation of unambiguous cell fate commitment relies on the ability of transcription factors (TFs) to exert tissue-specific regulation of complex genetic networks. However, the mechanisms by which TFs establish such precise control over gene expression have remained elusive-especially in instances in which a single TF operates in two or more discrete cellular systems. In this study, we demonstrate that β cell-specific functions of NKX2.2 are driven by the highly conserved NK2-specific domain (SD). Mutation of the endogenous NKX2.2 SD prevents the developmental progression of β cell precursors into mature, insulin-expressing β cells, resulting in overt neonatal diabetes. Within the adult β cell, the SD stimulates β cell performance through the activation and repression of a subset of NKX2.2-regulated transcripts critical for β cell function. These irregularities in β cell gene expression may be mediated via SD-contingent interactions with components of chromatin remodelers and the nuclear pore complex. However, in stark contrast to these pancreatic phenotypes, the SD is entirely dispensable for the development of NKX2.2-dependent cell types within the CNS. Together, these results reveal a previously undetermined mechanism through which NKX2.2 directs disparate transcriptional programs in the pancreas versus neuroepithelium.
Collapse
Affiliation(s)
- Vladimir Abarinov
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Joshua A Levine
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | - Angela J Churchill
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | - Bryce Hopwood
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Cailin S Deiter
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Michelle A Guney
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jessica M Schrunk
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Yuchun Guo
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jennifer Hammelman
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
- Department of Neurology, Columbia University, New York, New York 10032, USA
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - Lori Sussel
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA;
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
8
|
Xenakis JG, Douillet C, Bell TA, Hock P, Farrington J, Liu T, Murphy CEY, Saraswatula A, Shaw GD, Nativio G, Shi Q, Venkatratnam A, Zou F, Fry RC, Stýblo M, Pardo-Manuel de Villena F. An interaction of inorganic arsenic exposure with body weight and composition on type 2 diabetes indicators in Diversity Outbred mice. Mamm Genome 2022; 33:575-589. [PMID: 35819478 PMCID: PMC9761582 DOI: 10.1007/s00335-022-09957-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022]
Abstract
Type 2 diabetes (T2D) is a complex metabolic disorder with no cure and high morbidity. Exposure to inorganic arsenic (iAs), a ubiquitous environmental contaminant, is associated with increased T2D risk. Despite growing evidence linking iAs exposure to T2D, the factors underlying inter-individual differences in susceptibility remain unclear. This study examined the interaction between chronic iAs exposure and body composition in a cohort of 75 Diversity Outbred mice. The study design mimics that of an exposed human population where the genetic diversity of the mice provides the variation in response, in contrast to a design that includes untreated mice. Male mice were exposed to iAs in drinking water (100 ppb) for 26 weeks. Metabolic indicators used as diabetes surrogates included fasting blood glucose and plasma insulin (FBG, FPI), blood glucose and plasma insulin 15 min after glucose challenge (BG15, PI15), homeostatic model assessment for [Formula: see text]-cell function and insulin resistance (HOMA-B, HOMA-IR), and insulinogenic index. Body composition was determined using magnetic resonance imaging, and the concentrations of iAs and its methylated metabolites were measured in liver and urine. Associations between cumulative iAs consumption and FPI, PI15, HOMA-B, and HOMA-IR manifested as significant interactions between iAs and body weight/composition. Arsenic speciation analyses in liver and urine suggest little variation in the mice's ability to metabolize iAs. The observed interactions accord with current research aiming to disentangle the effects of multiple complex factors on T2D risk, highlighting the need for further research on iAs metabolism and its consequences in genetically diverse mouse strains.
Collapse
Affiliation(s)
- James G Xenakis
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy A Bell
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pablo Hock
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joseph Farrington
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tianyi Liu
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caroline E Y Murphy
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Avani Saraswatula
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ginger D Shaw
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gustavo Nativio
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Institute for Environmental Health Solutions, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Institute for Environmental Health Solutions, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
9
|
Usher ET, Showalter SA. Biophysical insights into glucose-dependent transcriptional regulation by PDX1. J Biol Chem 2022; 298:102623. [PMID: 36272648 PMCID: PMC9691942 DOI: 10.1016/j.jbc.2022.102623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
The pancreatic and duodenal homeobox 1 (PDX1) is a central regulator of glucose-dependent transcription of insulin in pancreatic β cells. PDX1 transcription factor activity is integral to the development and sustained health of the pancreas; accordingly, deciphering the complex network of cellular cues that lead to PDX1 activation or inactivation is an important step toward understanding the etiopathologies of pancreatic diseases and the development of novel therapeutics. Despite nearly 3 decades of research into PDX1 control of Insulin expression, the molecular mechanisms that dictate the function of PDX1 in response to glucose are still elusive. The transcriptional activation functions of PDX1 are regulated, in part, by its two intrinsically disordered regions, which pose a barrier to its structural and biophysical characterization. Indeed, many studies of PDX1 interactions, clinical mutations, and posttranslational modifications lack molecular level detail. Emerging methods for the quantitative study of intrinsically disordered regions and refined models for transactivation now enable us to validate and interrogate the biochemical and biophysical features of PDX1 that dictate its function. The goal of this review is to summarize existing PDX1 studies and, further, to generate a comprehensive resource for future studies of transcriptional control via PDX1.
Collapse
Affiliation(s)
- Emery T Usher
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
10
|
Zhong W, Lai Y, Xia ZS, Lin Y, Ni CY, Yu Z, Li JY, Yu T, Chen QK. Pancreatic-Like Cells Derived From Mouse Embryonic Stem Cells Are Regulated by Pdx1 Involving the Notch Pathway. Pancreas 2022; 51:330-337. [PMID: 35695761 DOI: 10.1097/mpa.0000000000002018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Embryonic stem cells (ESCs)-derived pancreatic precursor cells have great potential for pancreas repair. Expression of pancreatic duodenal homeobox 1 (Pdx1) in definitive endoderm (DE) cells is the premise that DE cells differentiate into pancreatic cells. To achieve the required number of Pdx1-expressing DE cells for cell transplantation therapy, a valid model must be established. Using this model, researchers investigated how Pdx1 regulates ESC differentiation into pancreatic cells. METHODS Tet-On inducible lentiviral vector encoding Pdx1 or mock vector was transduced into mouse ESC (ES-E14TG2a). The mouse ESCs were divided into 3 groups: control (ESC), mock vector (Pdx1 - -ESC), and vector encoding Pdx1 (Pdx1 + -ESC). All groups were separately cocultured with the DE cells sorted by immune beads containing CXCR-4 + (C-X-C chemokine receptor type-4) antibody. Doxycycline induced the expression of Pdx1 on the Pdx1 + -ESC cells. The markers of cell differentiation and Notch pathway were examined. RESULTS Significantly increased expression levels of Ptf1a, CK19, and amylase on day (d) 3 and d7, Neuro-D1 on d10 and d14, Pax6 and insulin on d14, as well as Notch1, Notch2, Hes1, and Hes5 on d3 and thereafter declined on d14 were observed in Pdx1 + -ESC group. CONCLUSIONS Pdx1 + -ESC could differentiate into pancreatic-like cells with involvement of the Notch pathway.
Collapse
Affiliation(s)
- Wa Zhong
- From the Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Yu Lai
- From the Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Zhong-Sheng Xia
- From the Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Ying Lin
- From the Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | | | - Zhong Yu
- From the Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Jie-Yao Li
- From the Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Tao Yu
- From the Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Qi-Kui Chen
- From the Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| |
Collapse
|
11
|
Cevik M, Caker S, Deliorman G, Cagatay P, Gunduz MK, Susleyici B. The effects of glipizide on DNA damage and nuclear transport in differentiated 3T3-L1 adipocytes. Mol Biol Rep 2022; 49:1151-1159. [PMID: 35013863 DOI: 10.1007/s11033-021-06942-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Despite commonly use for treatment of type II diabetes, possible effects of glipizide on nuclear transport and DNA damage in cells are unknown. Since clinical response of glipizide may change with aging, the aim of the study was to investigate the effect of glipizide by comparing mature and senescent adipocytes. METHODS AND RESULTS The effects of glipizide were investigated in 3T3-L1 adipocytes. Effective and lethal doses were determined by real-time monitoring iCELLigence system. Comet assay was performed to determine DNA damage and quantitative PCR was conducted to detect gene expression levels. RAN expressions were found to be up regulated in mature 180 µM glipizide treated adipocytes compared to control group (p < 0.05); whereas down regulated in senescent 180 µM glipizide treated adipocytes compared to their control adipocytes (p < 0.05). Olive Tail Moment values were significantly higher in mature 180 µM glipizide treated adipocytes (MTG) and senescent 180 µM glipizide treated adipocytes (STG) comparing their untreated controls (p < 0.001 and p < 0.001 respectively). Also class 5 comets that shows severe DNA damage were found to be higher in both MTG and STG groups than their controls (p < 0.001 and p < 0.001, respectively). OTM values were higher in STG than MTG (p < 0.001). CONCLUSIONS This is the first study that reports glipizide caused DNA damage increasing with senescence in adipocytes. As a response to glipizide treatment Ran gene expression increased in mature; and decreased in senescent adipocytes. Further studies are needed to reveal the effect of glipizide on DNA and nuclear interactions in molecular level.
Collapse
Affiliation(s)
- Mehtap Cevik
- Division of Biology, Department of Molecular Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Selen Caker
- Division of Biology, Department of Molecular Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Gokce Deliorman
- Department of Software Engineering, Faculty of Engineering and Architecture, Beykoz University, Istanbul, Turkey
| | - Penbe Cagatay
- Department of Medical Services and Technics, Vocational School of Health Service, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | | | - Belgin Susleyici
- Division of Biology, Department of Molecular Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey.
| |
Collapse
|
12
|
Schmitner N, Recheis C, Thönig J, Kimmel RA. Differential Responses of Neural Retina Progenitor Populations to Chronic Hyperglycemia. Cells 2021; 10:cells10113265. [PMID: 34831487 PMCID: PMC8622914 DOI: 10.3390/cells10113265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetic retinopathy is a frequent complication of longstanding diabetes, which comprises a complex interplay of microvascular abnormalities and neurodegeneration. Zebrafish harboring a homozygous mutation in the pancreatic transcription factor pdx1 display a diabetic phenotype with survival into adulthood, and are therefore uniquely suitable among zebrafish models for studying pathologies associated with persistent diabetic conditions. We have previously shown that, starting at three months of age, pdx1 mutants exhibit not only vascular but also neuro-retinal pathologies manifesting as photoreceptor dysfunction and loss, similar to human diabetic retinopathy. Here, we further characterize injury and regenerative responses and examine the effects on progenitor cell populations. Consistent with a negative impact of hyperglycemia on neurogenesis, stem cells of the ciliary marginal zone show an exacerbation of aging-related proliferative decline. In contrast to the robust Müller glial cell proliferation seen following acute retinal injury, the pdx1 mutant shows replenishment of both rod and cone photoreceptors from slow-cycling, neurod-expressing progenitors which first accumulate in the inner nuclear layer. Overall, we demonstrate a diabetic retinopathy model which shows pathological features of the human disease evolving alongside an ongoing restorative process that replaces lost photoreceptors, at the same time suggesting an unappreciated phenotypic continuum between multipotent and photoreceptor-committed progenitors.
Collapse
|
13
|
Mohan R, Jo S, Lockridge A, Ferrington DA, Murray K, Eschenlauer A, Bernal-Mizrachi E, Fujitani Y, Alejandro EU. OGT Regulates Mitochondrial Biogenesis and Function via Diabetes Susceptibility Gene Pdx1. Diabetes 2021; 70:2608-2625. [PMID: 34462257 PMCID: PMC8564412 DOI: 10.2337/db21-0468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022]
Abstract
O-GlcNAc transferase (OGT), a nutrient sensor sensitive to glucose flux, is highly expressed in the pancreas. However, the role of OGT in the mitochondria of β-cells is unexplored. In this study, we identified the role of OGT in mitochondrial function in β-cells. Constitutive deletion of OGT (βOGTKO) or inducible ablation in mature β-cells (iβOGTKO) causes distinct effects on mitochondrial morphology and function. Islets from βOGTKO, but not iβOGTKO, mice display swollen mitochondria, reduced glucose-stimulated oxygen consumption rate, ATP production, and glycolysis. Alleviating endoplasmic reticulum stress by genetic deletion of Chop did not rescue the mitochondrial dysfunction in βOGTKO mice. We identified altered islet proteome between βOGTKO and iβOGTKO mice. Pancreatic and duodenal homeobox 1 (Pdx1) was reduced in in βOGTKO islets. Pdx1 overexpression increased insulin content and improved mitochondrial morphology and function in βOGTKO islets. These data underscore the essential role of OGT in regulating β-cell mitochondrial morphology and bioenergetics. In conclusion, OGT couples nutrient signal and mitochondrial function to promote normal β-cell physiology.
Collapse
Affiliation(s)
- Ramkumar Mohan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Amber Lockridge
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, MN
| | - Kevin Murray
- University of Minnesota Informatics Institute, University of Minnesota Medical School, Minneapolis, MN
| | - Arthur Eschenlauer
- University of Minnesota Informatics Institute, University of Minnesota Medical School, Minneapolis, MN
| | - Ernesto Bernal-Mizrachi
- Miami VA Healthcare System, Miami, FL
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miami, FL
| | - Yoshio Fujitani
- Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
14
|
Kondratyeva L, Chernov I, Kopantzev E, Didych D, Kuzmich A, Alekseenko I, Kostrov S, Sverdlov E. Pancreatic Lineage Specifier PDX1 Increases Adhesion and Decreases Motility of Cancer Cells. Cancers (Basel) 2021; 13:cancers13174390. [PMID: 34503200 PMCID: PMC8430990 DOI: 10.3390/cancers13174390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Intercellular interactions involving adhesion factors are key operators in cancer progression. In particular, these factors are responsible for facilitating cell migration and metastasis. Strengthening of adhesion between tumor cells and surrounding cells or extracellular matrix (ECM), may provide a way to inhibit tumor cell migration. Recently, we demonstrated that PDX1 ectopic expression results in the reduction of pancreatic cancer line PANC-1 cell motility in vitro and in vivo, and we now provide experimental data confirming the hypothesis that suppression of migration may be related to the effect of PDX1 on cell adhesion. Cell migration analyses demonstrated decreased motility of pancreatic Colo357 and PANC-1 cell lines expressing PDX1. We observed decreased expression levels of genes associated with promoting cell migration and increased expression of genes negatively affecting cell motility. Expression of the EMT regulator genes was only mildly induced in cells expressing PDX1 during the simulation of the epithelial-mesenchymal transition (EMT) by the addition of TGFβ1 to the medium. PDX1-expressing cancer cell lines showed increased cell adhesion to collagen type I, fibronectin, and poly-lysine. We conclude that ectopic expression of PDX1 reduces the migration potential of cancer cells, by increasing the adhesive properties of cells and reducing the sensitivity to TGFβ1-induced EMT.
Collapse
Affiliation(s)
- Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (I.C.); (E.K.); (D.D.); (A.K.); (I.A.)
- Correspondence: (L.K.); (E.S.)
| | - Igor Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (I.C.); (E.K.); (D.D.); (A.K.); (I.A.)
| | - Eugene Kopantzev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (I.C.); (E.K.); (D.D.); (A.K.); (I.A.)
| | - Dmitry Didych
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (I.C.); (E.K.); (D.D.); (A.K.); (I.A.)
| | - Alexey Kuzmich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (I.C.); (E.K.); (D.D.); (A.K.); (I.A.)
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Ploshchad’ Akademika Kurchatova, 123182 Moscow, Russia;
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 117997 Moscow, Russia; (I.C.); (E.K.); (D.D.); (A.K.); (I.A.)
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Ploshchad’ Akademika Kurchatova, 123182 Moscow, Russia;
| | - Sergey Kostrov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Ploshchad’ Akademika Kurchatova, 123182 Moscow, Russia;
| | - Eugene Sverdlov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Ploshchad’ Akademika Kurchatova, 123182 Moscow, Russia;
- Correspondence: (L.K.); (E.S.)
| |
Collapse
|
15
|
Kulkarni A, Pineros AR, Walsh MA, Casimiro I, Ibrahim S, Hernandez-Perez M, Orr KS, Glenn L, Nadler JL, Morris MA, Tersey SA, Mirmira RG, Anderson RM. 12-Lipoxygenase governs the innate immune pathogenesis of islet inflammation and autoimmune diabetes. JCI Insight 2021; 6:e147812. [PMID: 34128835 PMCID: PMC8410073 DOI: 10.1172/jci.insight.147812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages and related myeloid cells are innate immune cells that participate in the early islet inflammation of type 1 diabetes (T1D). The enzyme 12-lipoxygenase (12-LOX) catalyzes the formation of proinflammatory eicosanoids, but its role and mechanisms in myeloid cells in the pathogenesis of islet inflammation have not been elucidated. Leveraging a model of islet inflammation in zebrafish, we show here that macrophages contribute significantly to the loss of β cells and the subsequent development of hyperglycemia. The depletion or inhibition of 12-LOX in this model resulted in reduced macrophage infiltration into islets and the preservation of β cell mass. In NOD mice, the deletion of the gene encoding 12-LOX in the myeloid lineage resulted in reduced insulitis with reductions in proinflammatory macrophages, a suppressed T cell response, preserved β cell mass, and almost complete protection from the development of T1D. 12-LOX depletion caused a defect in myeloid cell migration, a function required for immune surveillance and tissue injury responses. This effect on migration resulted from the loss of the chemokine receptor CXCR3. Transgenic expression of the gene encoding CXCR3 rescued the migratory defect in zebrafish 12-LOX morphants. Taken together, our results reveal a formative role for innate immune cells in the early pathogenesis of T1D and identify 12-LOX as an enzyme required to promote their prodiabetogenic phenotype in the context of autoimmunity.
Collapse
Affiliation(s)
- Abhishek Kulkarni
- Center for Diabetes and Metabolic Diseases and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Kolver Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Annie R Pineros
- Center for Diabetes and Metabolic Diseases and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Melissa A Walsh
- Kolver Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Isabel Casimiro
- Kolver Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Sara Ibrahim
- Center for Diabetes and Metabolic Diseases and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marimar Hernandez-Perez
- Center for Diabetes and Metabolic Diseases and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kara S Orr
- Center for Diabetes and Metabolic Diseases and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lindsey Glenn
- Department of Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Jerry L Nadler
- Department of Medicine, New York Medical College, Valhalla, New York, USA
| | - Margaret A Morris
- Department of Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Sarah A Tersey
- Kolver Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Raghavendra G Mirmira
- Kolver Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Ryan M Anderson
- Kolver Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
16
|
Liu J, Lang G, Shi J. Epigenetic Regulation of PDX-1 in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:431-442. [PMID: 33564250 PMCID: PMC7866918 DOI: 10.2147/dmso.s291932] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/16/2021] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia which is caused by insufficient insulin secretion or insulin resistance. Interaction of genetic, epigenetic and environmental factors plays a significant role in the development of T2DM. Several environmental factors including diet and lifestyle, as well as age have been associated with an increased risk for T2DM. It has been demonstrated that these environmental factors may affect global epigenetic status, and alter the expression of susceptible genes, thereby contributing to the pathogenesis of T2DM. In recent years, a growing body of molecular and genetic studies in diabetes have been focused on the ways to restore the numbers or function of β-cells in order to reverse a range of metabolic consequences of insulin deficiency. The pancreatic duodenal homeobox 1 (PDX-1) is a transcriptional factor that is essential for the development and function of islet cells. A number of studies have shown that there is a significant increase in the level of DNA methylation of PDX-1 resulting in reduced activity in T2DM islets. The decrease in PDX-1 activity may be a critical mediator causing dysregulation of pancreatic β cells in T2DM. This article reviews the epigenetic mechanisms of PDX-1 involved in T2DM, focusing on diabetes and DNA methylation, and discusses some potential strategies for the application of PDX-1 in the treatment of diabetes.
Collapse
Affiliation(s)
- Jiangman Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Guangping Lang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Correspondence: Jingshan Shi Tel +86-851-286-436-66Fax +86-851-286-423-03 Email
| |
Collapse
|
17
|
Lou B, Boger M, Bennewitz K, Sticht C, Kopf S, Morgenstern J, Fleming T, Hell R, Yuan Z, Nawroth PP, Kroll J. Elevated 4-hydroxynonenal induces hyperglycaemia via Aldh3a1 loss in zebrafish and associates with diabetes progression in humans. Redox Biol 2020; 37:101723. [PMID: 32980661 PMCID: PMC7519378 DOI: 10.1016/j.redox.2020.101723] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Increased methylglyoxal (MG) formation is associated with diabetes and its complications. In zebrafish, knockout of the main MG detoxifying system Glyoxalase 1, led to limited MG elevation but significantly elevated aldehyde dehydrogenases (ALDH) activity and aldh3a1 expression, suggesting the compensatory role of Aldh3a1 in diabetes. To evaluate the function of Aldh3a1 in glucose homeostasis and diabetes, aldh3a1−/− zebrafish mutants were generated using CRISPR-Cas9. Vasculature and pancreas morphology were analysed by zebrafish transgenic reporter lines. Corresponding reactive carbonyl species (RCS), glucose, transcriptome and metabolomics screenings were performed and ALDH activity was measured for further verification. Aldh3a1−/− zebrafish larvae displayed retinal vasodilatory alterations, impaired glucose homeostasis, which can be aggravated via pdx1 silencing induced hyperglycaemia. Unexpectedly, MG was not altered, but 4-hydroxynonenal (4-HNE), another prominent lipid peroxidation RCS exhibited high affinity with Aldh3a1, was increased in aldh3a1 mutants. 4-HNE was responsible for the retinal phenotype via pancreas disruption induced hyperglycaemia and can be rescued via l-Carnosine treatment. Furthermore, in type 2 diabetic patients, serum 4-HNE was increased and correlated with disease progression. Thus, our data suggest impaired 4-HNE detoxification and elevated 4-HNE concentration as biomarkers but also the possible inducers for diabetes, from genetic susceptibility to the pathological progression. Aldh3a1 mutant was generated using CRISPR/Cas9 and displayed impaired glucose homeostasis. Elevated 4-Hydroxynonenal (4-HNE) was responsible for hyperglycaemia in aldh3a1 mutants and was rescued by Carnosine. Patient serum 4-HNE level was correlated with HbA1c and fasting glucose. Impaired 4-HNE detoxification acts as possible inducers for diabetes, from genetic susceptibility to pathological progress.
Collapse
Affiliation(s)
- Bowen Lou
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710048, China
| | - Mike Boger
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- Center for Medical Research (ZMF), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Kopf
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Rüdiger Hell
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Zuyi Yuan
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710048, China
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
18
|
Khan F, Hodjat M, Rahimifard M, Nigjeh MN, Azizi M, Baeeri M, Bayrami Z, Gholami M, Hassani S, Abdollahi M. Assessment of arsenic-induced modifications in the DNA methylation of insulin-related genes in rat pancreatic islets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110802. [PMID: 32531573 DOI: 10.1016/j.ecoenv.2020.110802] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/11/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Extended exposure to inorganic arsenic through contaminated drinking water has been linked with increased incidence of diabetes mellitus. The most common exposure occurs through the consumption of contaminated drinking water mainly through geogenic sources of inorganic arsenic. Epigenetic modifications are important mechanisms through which environmental pollutants could exert their toxic effects. Bisulfite sequencing polymerase chain reaction method followed by Sanger sequencing was performed for DNA methylation analysis. Our results showed that sodium arsenite treatment significantly reduced insulin secretion in pancreatic islets. It was revealed that the methylation of glucose transporter 2 (Glut2) gene was changed at two cytosine-phosphate-guanine (CpG) sites (-1743, -1734) in the promoter region of the sodium arsenite-treated group comparing to the control. No changes were observed in the methylation status of peroxisome proliferator-activated receptor-gamma (PPARγ), pancreatic and duodenal homeobox 1 (Pdx1) and insulin 2 (Ins2) CpG sites in the targeted regions. Measuring the gene expression level showed increase in Glut2 expression, while the expression of insulin (INS) and Pdx1 were significantly affected by sodium arsenite treatment. This study revealed that exposure to sodium arsenite changed the DNA methylation pattern of Glut2, a key transporter of glucose entry into the pancreatic beta cells (β-cells). Our data suggested possible epigenetic-mediated toxicity mechanism for arsenite-induced β-cells dysfunction. Further studies are needed to dissect the precise epigenetic modulatory activity of sodium arsenite that affect the biogenesis of insulin.
Collapse
Affiliation(s)
- Fazlullah Khan
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mona Navaei Nigjeh
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Masoumeh Azizi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zahra Bayrami
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahdi Gholami
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
19
|
Pittala S, Levy I, De S, Kumar Pandey S, Melnikov N, Hyman T, Shoshan-Barmatz V. The VDAC1-based R-Tf-D-LP4 Peptide as a Potential Treatment for Diabetes Mellitus. Cells 2020; 9:E481. [PMID: 32093016 PMCID: PMC7072803 DOI: 10.3390/cells9020481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a metabolic disorder approaching epidemic proportions. Non-alcoholic fatty liver disease (NAFLD) regularly coexists with metabolic disorders, including type 2 diabetes, obesity, and cardiovascular disease. Recently, we demonstrated that the voltage-dependent anion channel 1 (VDAC1) is involved in NAFLD. VDAC1 is an outer mitochondria membrane protein that serves as a mitochondrial gatekeeper, controlling metabolic and energy homeostasis, as well as crosstalk between the mitochondria and the rest of the cell. It is also involved in mitochondria-mediated apoptosis. Here, we demonstrate that the VDAC1-based peptide, R-Tf-D-LP4, affects several parameters of a NAFLD mouse model in which administration of streptozotocin (STZ) and high-fat diet 32 (STZ/HFD-32) led to both type 2 diabetes (T2D) and NAFLD phenotypes. We focused on diabetes, showing that R-Tf-D-LP4 peptide treatment of STZ/HFD-32 fed mice restored the elevated blood glucose back to close to normal levels, and increased the number and average size of islets and their insulin content as compared to untreated controls. Similar results were obtained when staining the islets for glucose transporter type 2. In addition, the R-Tf-D-LP4 peptide decreased the elevated glucose levels in a mouse displaying obese, diabetic, and metabolic symptoms due to a mutation in the obese (ob) gene. To explore the cause of the peptide-induced improvement in the endocrine pancreas phenotype, we analyzed the expression levels of the proliferation marker, Ki-67, and found it to be increased in the islets of STZ/HFD-32 fed mice treated with the R-Tf-D-LP4 peptide. Moreover, peptide treatment of STZ/HFD-32 fed mice caused an increase in the expression of β-cell maturation and differentiation PDX1 transcription factor that enhances the expression of the insulin-encoding gene, and is essential for islet development, function, proliferation, and maintenance of glucose homeostasis in the pancreas. This increase occurred mainly in the β-cells, suggesting that the source of their increased number after R-Tf-D-LP4 peptide treatment was most likely due to β-cell proliferation. These results suggest that the VDAC1-based R-Tf-D-LP4 peptide has potential as a treatment for diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.P.); (I.L.); (S.D.); (S.K.P.); (N.M.); (T.H.)
| |
Collapse
|
20
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors with a key role in glucose and lipid metabolism. PPARs are expressed in many cell types including pancreatic beta cells and immune cells, where they regulate insulin secretion and T cell differentiation, respectively. Moreover, various PPAR agonists prevent diabetes in the non-obese diabetic (NOD) mouse model of type 1 diabetes. PPARs are thus of interest in type 1 diabetes (T1D) as they represent a novel approach targeting both the pancreas and the immune system. In this review, we examine the role of PPARs in immune responses and beta cell biology and their potential as targets for treatment of T1D.
Collapse
|
21
|
Sahebi L, Niknafs N, Dalili H, Amini E, Esmaeilnia T, Amoli M, Farrokhzad N. Iranian neonatal diabetes mellitus due to mutation in PDX1 gene: a case report. J Med Case Rep 2019; 13:258. [PMID: 31366392 PMCID: PMC6670147 DOI: 10.1186/s13256-019-2149-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/05/2019] [Indexed: 11/26/2022] Open
Abstract
Background Neonatal diabetes mellitus with hyperglycemia during the first 6 months of life is a rare disorder that can occur in all races and societies. Case presentation In this study, we introduced an Iranian (Persian) 65-day-old patient with neonatal diabetes mellitus with novel homozygous mutation in the pancreatic and duodenal homeobox 1, PDX1, gene, which is also known as IPF1 gene, located in exon 2. This case was a newborn boy born in Vali-Asr Hospital, Tehran; he was diagnosed as having hyperglycemia on 28th day. Genetic analysis detected a homozygous mutation on PDX1 gene on chromosome 13. It is a novel homozygous mutation in the PDX1 gene (NM_000209.3), p.Phe167Val. This mutation was confirmed by Sanger sequencing. There was no evidence of agenesis of the pancreas. Conclusions We reported a case of neonatal diabetes mellitus due to novel homozygous mutation in the PDX1 gene without exocrine pancreas manifestations. Electronic supplementary material The online version of this article (10.1186/s13256-019-2149-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leyla Sahebi
- Institute of Family Health , Breastfeeding Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Nikoo Niknafs
- Institute of Family Health , Breastfeeding Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Hosein Dalili
- Institute of Family Health , Breastfeeding Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Elahe Amini
- Institute of Family Health, Maternal-Fetal and Neonatal Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Tahereh Esmaeilnia
- Institute of Family Health, Maternal-Fetal and Neonatal Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Mahsa Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Farrokhzad
- Institute of Family Health, Maternal-Fetal and Neonatal Research Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
22
|
Pearson G, Soleimanpour SA. Visualization of Endogenous Mitophagy Complexes In Situ in Human Pancreatic Beta Cells Utilizing Proximity Ligation Assay. J Vis Exp 2019. [PMID: 31107439 DOI: 10.3791/59398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitophagy is an essential mitochondrial quality control pathway, which is crucial for pancreatic islet beta cell bioenergetics to fuel glucose-stimulated insulin release. Assessment of mitophagy is challenging and often requires genetic reporters or multiple complementary techniques not easily utilized in tissue samples, such as primary human pancreatic islets. Here we demonstrate a robust approach to visualize and quantify formation of key endogenous mitophagy complexes in primary human pancreatic islets. Utilizing the sensitive proximity ligation assay technique to detect interaction of the mitophagy regulators NRDP1 and USP8, we are able to specifically quantify formation of essential mitophagy complexes in situ. By coupling this approach to counterstaining for the transcription factor PDX1, we can quantify mitophagy complexes, and the factors that can impair mitophagy, specifically within beta cells. The methodology we describe overcomes the need for large quantities of cellular extracts required for other protein-protein interaction studies, such as immunoprecipitation (IP) or mass spectrometry, and is ideal for precious human islet samples generally not available in sufficient quantities for these approaches. Further, this methodology obviates the need for flow sorting techniques to purify beta cells from a heterogeneous islet population for downstream protein applications. Thus, we describe a valuable protocol for visualization of mitophagy highly compatible for use in heterogeneous and limited cell populations.
Collapse
Affiliation(s)
- Gemma Pearson
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor
| | - Scott A Soleimanpour
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor; VA Ann Arbor Healthcare System;
| |
Collapse
|
23
|
Boland BB, Brown C, Boland ML, Cann J, Sulikowski M, Hansen G, Grønlund RV, King W, Rondinone C, Trevaskis J, Rhodes CJ, Grimsby JS. Pancreatic β-Cell Rest Replenishes Insulin Secretory Capacity and Attenuates Diabetes in an Extreme Model of Obese Type 2 Diabetes. Diabetes 2019; 68:131-140. [PMID: 30305366 DOI: 10.2337/db18-0304] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/27/2018] [Indexed: 11/13/2022]
Abstract
The onset of common obesity-linked type 2 diabetes (T2D) is marked by exhaustive failure of pancreatic β-cell functional mass to compensate for insulin resistance and increased metabolic demand, leading to uncontrolled hyperglycemia. Here, the β-cell-deficient obese hyperglycemic/hyperinsulinemic KS db/db mouse model was used to assess consequential effects on β-cell functional recovery by lowering glucose homeostasis and/or improving insulin sensitivity after treatment with thiazolidinedione therapy or glucagon-like peptide 1 receptor agonism alone or in combination with sodium/glucose cotransporter 2 inhibition (SGLT-2i). SGLT-2i combination therapies improved glucose homeostasis, independent of changes in body weight, resulting in a synergistic increase in pancreatic insulin content marked by significant recovery of the β-cell mature insulin secretory population but with limited changes in β-cell mass and no indication of β-cell dedifferentiation. Restoration of β-cell insulin secretory capacity also restored biphasic insulin secretion. These data emphasize that by therapeutically alleviating the demand for insulin in vivo, irrespective of weight loss, endogenous β-cells recover significant function that can contribute to attenuating diabetes. Thus, this study provides evidence that alleviation of metabolic demand on the β-cell, rather than targeting the β-cell itself, could be effective in delaying the progression of T2D.
Collapse
Affiliation(s)
- Brandon B Boland
- Division of Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg, MD
- Gubra ApS, Hørsholm, Denmark
| | - Charles Brown
- Division of Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg, MD
| | - Michelle L Boland
- Division of Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg, MD
- Gubra ApS, Hørsholm, Denmark
| | - Jennifer Cann
- Division of Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg, MD
| | - Michal Sulikowski
- Division of Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg, MD
| | | | | | - Wanda King
- Division of Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg, MD
| | - Cristina Rondinone
- Division of Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg, MD
| | - James Trevaskis
- Division of Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg, MD
| | - Christopher J Rhodes
- Division of Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg, MD
| | - Joseph S Grimsby
- Division of Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg, MD
| |
Collapse
|
24
|
Cook EC, Sahu D, Bastidas M, Showalter SA. Solution Ensemble of the C-Terminal Domain from the Transcription Factor Pdx1 Resembles an Excluded Volume Polymer. J Phys Chem B 2018; 123:106-116. [PMID: 30525611 DOI: 10.1021/acs.jpcb.8b10051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pancreatic and duodenal homeobox 1 (Pdx1) is an essential pancreatic transcription factor. The C-terminal intrinsically disordered domain of Pdx1 (Pdx1-C) has a heavily biased amino acid composition; most notably, 18 of 83 residues are proline, including a hexaproline cluster near the middle of the chain. For these reasons, Pdx1-C is an attractive target for structure characterization, given the availability of suitable methods. To determine the solution ensembles of disordered proteins, we have developed a suite of 13C direct-detect NMR experiments that provide high spectral quality, even in the presence of strong proline enrichment. Here, we have extended our suite of NMR experiments to include four new pulse programs designed to record backbone residual dipolar couplings in a 13C,15N-CON detection format. Using our NMR strategy, in combination with small-angle X-ray scattering measurements and Monte Carlo simulations, we have determined that Pdx1-C is extended in solution, with a radius of gyration and internal scaling similar to that of an excluded volume polymer, and a subtle tendency toward a collapsed structure to the N-terminal side of the hexaproline sequence. This structure leaves Pdx1-C exposed for interactions with trans-regulatory co-factors that contribute with Pdx1 to transcription control in the cell.
Collapse
|
25
|
Li WC, Chen CY, Kao CW, Huang PC, Hsieh YT, Kuo TY, Chen TY, Chia HY, Juang JH. Porcine Neonatal Pancreatic Cell Clusters Maintain Their Multipotency in Culture and After Transplantation. Sci Rep 2018; 8:8212. [PMID: 29844347 PMCID: PMC5974285 DOI: 10.1038/s41598-018-26404-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/11/2018] [Indexed: 01/22/2023] Open
Abstract
Ductal epithelium is primarily detected in porcine neonatal pancreatic cell clusters (NPCCs) bearing grafts, suggesting that transplants might exhibit progenitor-like phenotypes. Here we found that soon after NPCC isolation, PDX1+/insulin− and SOX9+ pancreatic progenitor-like cells dramatically increased while dual-hormonal progenitor-like cells were routinely observed in NPCC culture. After transplantation (Tx), insulin+ cells increased and PDX1+ and SOX9+ cells gradually decreased in both non-diabetic (NDM) and streptozotocin-induced diabetic (DM) grafts over 2 months. Strikingly, a significantly higher percentage of insulin+ cells were detected in 9-day and 16-day, but not in 23-day, 30-day and 60-day grafts implying that hyperglycemia could only facilitate NPCC-derived β cells early post-Tx. A higher percentage of NPCC-derived β cells in early DM grafts was determined via an enhanced neogenic differentiation based on the detection of insulin+ cells budding out from PDX1+/SOX9+ epithelium. Interestingly, a drop in SOX9+ progenitor-like cells was detected 16 days post-Tx in DM grafts whilst PDX1+ cells do not show a significant difference until 60 days post-Tx between DM and NDM grafts, demonstrating that distinct progenitor-like populations fuel new β cells post-Tx. In conclusion, PDX1+/SOX9+ cells could be quickly activated after NPCC isolation, maintain their multipotency in culture and differentiate into new β cell post-Tx.
Collapse
Affiliation(s)
- Wan-Chun Li
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Yi Chen
- Division of Endocrinology and Metabolism and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chen-Wei Kao
- Division of Endocrinology and Metabolism and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Chun Huang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ta Hsieh
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Tz-Yu Kuo
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Tsai-Ying Chen
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Hao-Yuan Chia
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Jyuhn-Huarng Juang
- Division of Endocrinology and Metabolism and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
26
|
Kitamoto T, Sakurai K, Lee EY, Yokote K, Accili D, Miki T. Distinct roles of systemic and local actions of insulin on pancreatic β-cells. Metabolism 2018; 82:100-110. [PMID: 29320716 PMCID: PMC7391221 DOI: 10.1016/j.metabol.2017.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/16/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Pancreatic β-cell mass and function are critical in glucose homeostasis. Their regulatory mechanisms have been studied principally under experimental conditions of reduced β-cell numbers, such as β-cell ablation and partial pancreatectomy. In the present study, we generated an opposite mouse model with an excessive amount of ectopic β-cells, and analyzed its consequence on β-cell mass and survival. METHODS Mice underwent sub-renal transplantation (SRT) of pseudo-islets generated from a pancreatic β-cell line MIN6 or intra-pancreatic transplantation (IPT) of MIN6 cells, and morphological and functional changes of their endocrine pancreata were analyzed. Cellular fate of pancreatic β-cells after transplantation was traced using RipCre:Rosa26-tdTomato mice. By using MIN6 cells, we evaluated the roles of extracellular glucose, membrane potential, and insulin signaling on β-cell survival. RESULTS SRT mice developed severe, progressive hypoglycemia associated with marked reduction in insulin-positive (Ins+) cell mass and apparent increase in apoptotic Ins+ cells. In in vitro experiments of MIN6 cells, insulin signaling blockade potently induced cell death, suggesting that local insulin action is required for β-cell survival. In fact, IPT (i.e. transplantation close to endogenous β-cells) resulted in fewer apoptotic Ins+ cells compared with those induced by SRT. On the other hand, β-cell mass was decreased in proportion to the decrease in blood glucose levels in both SRT and IPT mice, suggesting a contribution of hypoglycemia induced by systemic hyperinsulinemia. CONCLUSION Insulin plays distinct roles in β-cell survival and β-cell mass regulation through its local and systemic actions on β-cells, respectively.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan; Department of Clinical Cell Biology and Medicine, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan; Division of Endocrinology, Department of Medicine, Columbia University, New York 10032, USA
| | - Kenichi Sakurai
- Center for Preventive Medical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Eun Young Lee
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Domenico Accili
- Division of Endocrinology, Department of Medicine, Columbia University, New York 10032, USA
| | - Takashi Miki
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
| |
Collapse
|
27
|
Affiliation(s)
- Aaron R Cox
- McNair Medical Institute and Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Jake A Kushner
- McNair Medical Institute and Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| |
Collapse
|
28
|
Metabolism and chromatin dynamics in health and disease. Mol Aspects Med 2017; 54:1-15. [DOI: 10.1016/j.mam.2016.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 01/04/2023]
|
29
|
Zhang B, Lai G, Wu J, Sun R, Xu R, Yang X, Qi Y, Zhao Y. 20-HETE attenuates the response of glucose-stimulated insulin secretion through the AKT/GSK-3β/Glut2 pathway. Endocrine 2016; 54:371-382. [PMID: 27568038 DOI: 10.1007/s12020-016-1031-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/20/2016] [Indexed: 12/29/2022]
Abstract
We previously generated cytochrome P450 4F2 (CYP4F2) transgenic mice that have high levels of 20-hydroxyeicosatetraenoic acid (20-HETE) production; these mice exhibit both hypertension and hyperglycemia without insulin resistance. Currently, it is unclear whether and how 20-HETE affects insulin secretion, thus resulting in hyperglycemia. In this study, we found that 20-HETE attenuated glucose-stimulated insulin secretion (GSIS) in CYP4F2 transgenic mice as well as in rat insulinoma INS-1E cells treated with 0.5 μM 20-HETE. HET0016, a selective inhibitor of 20-HETE synthesis, reversed the reduction in GSIS leading to a decrease in blood glucose in the transgenic mice. Furthermore, the expression of glucose transporter 2 (Glut2), Ser473 phosphorylation of protein kinase B (AKT), and Ser9 phosphorylation of glycogen synthase kinase-3β (GSK-3β) were decreased in CYP4F2 transgenic mice compared with wild-type mice. In vitro experiments in INS-1E cells revealed that 20-HETE activated the AKT/GSK-3β pathway and thereby decreased Glut2 expression by inhibiting activator protein 1 (AP-1). TWS119, a GSK-3β selective inhibitor, blocked the 20-HETE-mediated reduction in Glut2 expression. Therefore, we concluded that 20-HETE inhibition of Glut2 contributes to the reduction in GSIS, at least in part, through the AKT/GSK-3β/AP-1/Glut2 pathway.
Collapse
Affiliation(s)
- Bijun Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning, China
| | - Guangrui Lai
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingjing Wu
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning, China
| | - Ru Sun
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning, China
| | - Runhong Xu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning, China
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yafei Qi
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanyan Zhao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
30
|
Ardestani A, Maedler K. MST1: a promising therapeutic target to restore functional beta cell mass in diabetes. Diabetologia 2016; 59:1843-9. [PMID: 27053234 DOI: 10.1007/s00125-016-3892-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/23/2015] [Indexed: 12/31/2022]
Abstract
The loss of insulin-producing beta cells by apoptosis is a hallmark of all forms of diabetes mellitus. Strategies to prevent beta cell apoptosis and dysfunction are urgently needed to restore the insulin-producing cells and to prevent severe diabetes progression. We recently identified the serine/threonine kinase known as mammalian sterile 20-like kinase 1 (MST1) as a critical regulator of apoptotic beta cell death and dysfunction. MST1 activates several apoptotic signalling pathways, which further stimulate its own cleavage, leading to a vicious cycle of cell death. This led us to hypothesise that MST1 signalling is central to the initiation of beta cell death in diabetes. We found that MST1 is strongly activated in a diabetic beta cell and induces not only its death but also directly impairs insulin secretion through promoting proteasomal degradation of key beta cell transcription factor, pancreatic and duodenal homeobox 1 (PDX1), which is critical for insulin production.Pre-clinical studies in various animal models of diabetes have reported that MST1 deficiency remarkably restores normoglycaemia and beta cell function and prevents the development of diabetes. Importantly, MST1 deficiency can revert fully diabetic beta cells to a non-diabetic state. MST1 may serve as a target for the development of novel therapies for diabetes that trigger the cause of the disease, namely, the destruction of the beta cells. The major current focus of our investigation is to identify and test the efficacy of potent inhibitors of this death signalling pathway to protect beta cells against the effects of autoimmune attack in type 1 diabetes and to preserve beta cell mass and function in type 2 diabetes. This review summarises a presentation given at the 'Can we make a better beta cell?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Heiko Lickert and colleagues, DOI: 10.1007/s00125-016-3949-9 , and by Harry Heimberg and colleagues, DOI: 10.1007/s00125-016-3879-6 ) and a commentary by the Session Chair, Shanta Persaud (DOI: 10.1007/s00125-016-3870-2 ).
Collapse
Affiliation(s)
- Amin Ardestani
- Islet Biology Laboratory, Centre for Biomolecular Interactions Bremen, University of Bremen, Leobener Straße NW2, Room B2080, 28359, Bremen, Germany.
| | - Kathrin Maedler
- Islet Biology Laboratory, Centre for Biomolecular Interactions Bremen, University of Bremen, Leobener Straße NW2, Room B2080, 28359, Bremen, Germany.
| |
Collapse
|
31
|
Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells. Sci Rep 2016; 6:23960. [PMID: 27044861 PMCID: PMC4820710 DOI: 10.1038/srep23960] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/15/2016] [Indexed: 11/08/2022] Open
Abstract
The preadipocyte factor 1 (Pref-1) is involved in the proliferation and differentiation of various precursor cells. However, the intracellular signaling pathways that control these processes and the role of Pref-1 in the pancreas remain poorly understood. Here, we showed that Pref-1 induces insulin synthesis and secretion via two independent pathways. The overexpression of Pref-1 activated MAPK signaling, which induced nucleocytoplasmic translocation of FOXO1 and PDX1 and led to the differentiation of human pancreatic ductal cells into β-like cells and an increase in insulin synthesis. Concurrently, Pref-1 activated Akt signaling and facilitated insulin secretion. A proteomics analysis identified the Rab43 GTPase-activating protein as a downstream target of Akt. A serial activation of both proteins induced various granular protein syntheses which led to enhanced glucose-stimulated insulin secretion. In a pancreatectomised diabetic animal model, exogenous Pref-1 improved glucose homeostasis by accelerating pancreatic ductal and β-cell regeneration after injury. These data establish a novel role for Pref-1, opening the possibility of applying this molecule to the treatment of diabetes.
Collapse
|
32
|
|
33
|
Soleimanpour SA, Ferrari AM, Raum JC, Groff DN, Yang J, Kaufman BA, Stoffers DA. Diabetes Susceptibility Genes Pdx1 and Clec16a Function in a Pathway Regulating Mitophagy in β-Cells. Diabetes 2015; 64:3475-84. [PMID: 26085571 PMCID: PMC4587637 DOI: 10.2337/db15-0376] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/02/2015] [Indexed: 12/18/2022]
Abstract
Mitophagy is a critical regulator of mitochondrial quality control and is necessary for elimination of dysfunctional mitochondria to maintain cellular respiration. Here, we report that the homeodomain transcription factor Pdx1, a gene associated with both type 2 diabetes and monogenic diabetes of the young, regulates mitophagy in pancreatic β-cells. Loss of Pdx1 leads to abnormal mitochondrial morphology and function as well as impaired mitochondrial turnover. High-throughput expression microarray and chromatin occupancy analyses reveal that Pdx1 regulates the expression of Clec16a, a type 1 diabetes gene and itself a key mediator of mitophagy through regulation of the E3 ubiquitin ligase Nrdp1. Indeed, expression of Clec16a and Nrdp1 are both reduced in Pdx1 haploinsufficient islets, and reduction of Pdx1 impairs fusion of autophagosomes containing mitochondria to lysosomes during mitophagy. Importantly, restoration of Clec16a expression after Pdx1 loss of function restores mitochondrial trafficking during mitophagy and improves mitochondrial respiration and glucose-stimulated insulin release. Thus, Pdx1 orchestrates nuclear control of mitochondrial function in part by controlling mitophagy through Clec16a. The novel Pdx1-Clec16a-Nrdp1 pathway we describe provides a genetic basis for the pathogenesis of mitochondrial dysfunction in multiple forms of diabetes that could be targeted for future therapies to improve β-cell function.
Collapse
Affiliation(s)
- Scott A Soleimanpour
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Alana M Ferrari
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Institute for Diabetes, Obesity and Metabolism of the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jeffrey C Raum
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Institute for Diabetes, Obesity and Metabolism of the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - David N Groff
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Institute for Diabetes, Obesity and Metabolism of the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Juxiang Yang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Institute for Diabetes, Obesity and Metabolism of the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Brett A Kaufman
- Division of Cardiology, Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Doris A Stoffers
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Institute for Diabetes, Obesity and Metabolism of the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
34
|
Kimmel RA, Dobler S, Schmitner N, Walsen T, Freudenblum J, Meyer D. Diabetic pdx1-mutant zebrafish show conserved responses to nutrient overload and anti-glycemic treatment. Sci Rep 2015; 5:14241. [PMID: 26384018 PMCID: PMC4585597 DOI: 10.1038/srep14241] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/20/2015] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus is characterized by disrupted glucose homeostasis due to loss or dysfunction of insulin-producing beta cells. In this work, we characterize pancreatic islet development and function in zebrafish mutant for pdx1, a gene which in humans is linked to genetic forms of diabetes and is associated with increased susceptibility to Type 2 diabetes. Pdx1 mutant zebrafish have the key diabetic features of reduced beta cells, decreased insulin and elevated glucose. The hyperglycemia responds to pharmacologic anti-diabetic treatment and, as often seen in mammalian diabetes models, beta cells of pdx1 mutants show sensitivity to nutrient overload. This unique genetic model of diabetes provides a new tool for elucidating the mechanisms behind hyperglycemic pathologies and will allow the testing of novel therapeutic interventions in a model organism that is amenable to high-throughput approaches.
Collapse
Affiliation(s)
- Robin A. Kimmel
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Stefan Dobler
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Nicole Schmitner
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | | | - Julia Freudenblum
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
35
|
McKenna B, Guo M, Reynolds A, Hara M, Stein R. Dynamic recruitment of functionally distinct Swi/Snf chromatin remodeling complexes modulates Pdx1 activity in islet β cells. Cell Rep 2015; 10:2032-42. [PMID: 25801033 DOI: 10.1016/j.celrep.2015.02.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/21/2015] [Accepted: 02/23/2015] [Indexed: 02/03/2023] Open
Abstract
Pdx1 is a transcription factor of fundamental importance to pancreas formation and adult islet β cell function. However, little is known about the positive- and negative-acting coregulators recruited to mediate transcriptional control. Here, we isolated numerous Pdx1-interacting factors possessing a wide range of cellular functions linked with this protein, including, but not limited to, coregulators associated with transcriptional activation and repression, DNA damage response, and DNA replication. Because chromatin remodeling activities are essential to developmental lineage decisions and adult cell function, our analysis focused on investigating the influence of the Swi/Snf chromatin remodeler on Pdx1 action. The two mutually exclusive and indispensable Swi/Snf core ATPase subunits, Brg1 and Brm, distinctly affected target gene expression in β cells. Furthermore, physiological and pathophysiological conditions dynamically regulated Pdx1 binding to these Swi/Snf complexes in vivo. We discuss how context-dependent recruitment of coregulatory complexes by Pdx1 could impact pancreas cell development and adult islet β cell activity.
Collapse
Affiliation(s)
- Brian McKenna
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Albert Reynolds
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Manami Hara
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
36
|
Maganti AV, Maier B, Tersey SA, Sampley ML, Mosley AL, Özcan S, Pachaiyappan B, Woster PM, Hunter CS, Stein R, Mirmira RG. Transcriptional activity of the islet β cell factor Pdx1 is augmented by lysine methylation catalyzed by the methyltransferase Set7/9. J Biol Chem 2015; 290:9812-22. [PMID: 25713082 DOI: 10.1074/jbc.m114.616219] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/21/2022] Open
Abstract
The transcription factor Pdx1 is crucial to islet β cell function and regulates target genes in part through interaction with coregulatory factors. Set7/9 is a Lys methyltransferase that interacts with Pdx1. Here we tested the hypothesis that Lys methylation of Pdx1 by Set7/9 augments Pdx1 transcriptional activity. Using mass spectrometry and mutational analysis of purified proteins, we found that Set7/9 methylates the N-terminal residues Lys-123 and Lys-131 of Pdx1. Methylation of these residues occurred only in the context of intact, full-length Pdx1, suggesting a specific requirement of secondary and/or tertiary structural elements for catalysis by Set7/9. Immunoprecipitation assays and mass spectrometric analysis using β cells verified Lys methylation of endogenous Pdx1. Cell-based luciferase reporter assays using wild-type and mutant transgenes revealed a requirement of Pdx1 residue Lys-131, but not Lys-123, for transcriptional augmentation by Set7/9. Lys-131 was not required for high-affinity interactions with DNA in vitro, suggesting that its methylation likely enhances post-DNA binding events. To define the role of Set7/9 in β cell function, we generated mutant mice in which the gene encoding Set7/9 was conditionally deleted in β cells (Set(Δ)β). Set(Δ)β mice exhibited glucose intolerance similar to Pdx1-deficient mice, and their isolated islets showed impaired glucose-stimulated insulin secretion with reductions in expression of Pdx1 target genes. Our results suggest a previously unappreciated role for Set7/9-mediated methylation in the maintenance of Pdx1 activity and β cell function.
Collapse
Affiliation(s)
| | - Bernhard Maier
- Department of Pediatrics and the Herman B. Wells Center for Pediatric Research
| | - Sarah A Tersey
- Department of Pediatrics and the Herman B. Wells Center for Pediatric Research
| | - Megan L Sampley
- the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | | | - Sabire Özcan
- the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Boobalan Pachaiyappan
- the Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, and
| | - Patrick M Woster
- the Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, and
| | - Chad S Hunter
- the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Roland Stein
- the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Raghavendra G Mirmira
- From the Department of Cellular and Integrative Physiology, Department of Pediatrics and the Herman B. Wells Center for Pediatric Research, Department of Biochemistry and Molecular Biology, and Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202,
| |
Collapse
|
37
|
Translational implications of the β-cell epigenome in diabetes mellitus. Transl Res 2015; 165:91-101. [PMID: 24686035 PMCID: PMC4162854 DOI: 10.1016/j.trsl.2014.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a disorder of glucose homeostasis that affects more than 24 million Americans and 382 million individuals worldwide. Dysregulated insulin secretion from the pancreatic β cells plays a central role in the pathophysiology of all forms of diabetes mellitus. Therefore, an enhanced understanding of the pathways that contribute to β-cell failure is imperative. Epigenetics refers to heritable changes in DNA transcription that occur in the absence of changes to the linear DNA nucleotide sequence. Recent evidence suggests an expanding role of the β-cell epigenome in the regulation of metabolic health. The goal of this review is to discuss maladaptive changes in β-cell DNA methylation patterns and chromatin architecture, and their contribution to diabetes pathophysiology. Efforts to modulate the β-cell epigenome as a means to prevent, diagnose, and treat diabetes are also discussed.
Collapse
|
38
|
Nile DL, Brown AE, Kumaheri MA, Blair HR, Heggie A, Miwa S, Cree LM, Payne B, Chinnery PF, Brown L, Gunn DA, Walker M. Age-related mitochondrial DNA depletion and the impact on pancreatic Beta cell function. PLoS One 2014; 9:e115433. [PMID: 25532126 PMCID: PMC4274008 DOI: 10.1371/journal.pone.0115433] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/24/2014] [Indexed: 01/21/2023] Open
Abstract
Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes.
Collapse
Affiliation(s)
- Donna L. Nile
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Audrey E. Brown
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Meutia A. Kumaheri
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Helen R. Blair
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Alison Heggie
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Satomi Miwa
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, United Kingdom
| | - Lynsey M. Cree
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Brendan Payne
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Patrick F. Chinnery
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Louise Brown
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedford, MK44 1LQ, United Kingdom
| | - David A. Gunn
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedford, MK44 1LQ, United Kingdom
| | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Ediger BN, Du A, Liu J, Hunter CS, Walp ER, Schug J, Kaestner KH, Stein R, Stoffers DA, May CL. Islet-1 Is essential for pancreatic β-cell function. Diabetes 2014; 63:4206-17. [PMID: 25028525 PMCID: PMC4237994 DOI: 10.2337/db14-0096] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Islet-1 (Isl-1) is essential for the survival and ensuing differentiation of pancreatic endocrine progenitors. Isl-1 remains expressed in all adult pancreatic endocrine lineages; however, its specific function in the postnatal pancreas is unclear. Here we determine whether Isl-1 plays a distinct role in the postnatal β-cell by performing physiological and morphometric analyses of a tamoxifen-inducible, β-cell-specific Isl-1 loss-of-function mouse: Isl-1(L/L); Pdx1-CreER(Tm). Ablating Isl-1 in postnatal β-cells reduced glucose tolerance without significantly reducing β-cell mass or increasing β-cell apoptosis. Rather, islets from Isl-1(L/L); Pdx1-CreER(Tm) mice showed impaired insulin secretion. To identify direct targets of Isl-1, we integrated high-throughput gene expression and Isl-1 chromatin occupancy using islets from Isl-1(L/L); Pdx1-CreER(Tm) mice and βTC3 insulinoma cells, respectively. Ablating Isl-1 significantly affected the β-cell transcriptome, including known targets Insulin and MafA as well as novel targets Pdx1 and Slc2a2. Using chromatin immunoprecipitation sequencing and luciferase reporter assays, we found that Isl-1 directly occupies functional regulatory elements of Pdx1 and Slc2a2. Thus Isl-1 is essential for postnatal β-cell function, directly regulates Pdx1 and Slc2a2, and has a mature β-cell cistrome distinct from that of pancreatic endocrine progenitors.
Collapse
Affiliation(s)
- Benjamin N Ediger
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA Department of Medicine and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Aiping Du
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jingxuan Liu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Chad S Hunter
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN
| | - Erik R Walp
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN
| | - Doris A Stoffers
- Department of Medicine and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Catherine L May
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA Janssen Research & Development, Spring House, PA
| |
Collapse
|
40
|
Kang L, Dai C, Lustig ME, Bonner JS, Mayes WH, Mokshagundam S, James FD, Thompson CS, Lin CT, Perry CGR, Anderson EJ, Neufer PD, Wasserman DH, Powers AC. Heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion, but not insulin action, in high-fat-fed mice. Diabetes 2014; 63:3699-710. [PMID: 24947366 PMCID: PMC4207395 DOI: 10.2337/db13-1845] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Elevated reactive oxygen species (ROS) are linked to insulin resistance and islet dysfunction. Manganese superoxide dismutase (SOD2) is a primary defense against mitochondrial oxidative stress. To test the hypothesis that heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion (GSIS) and insulin action, wild-type (sod2(+/+)) and heterozygous knockout mice (sod2(+/-)) were fed a chow or high-fat (HF) diet, which accelerates ROS production. Hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI) clamps were performed to assess GSIS and insulin action in vivo. GSIS during HG clamps was equal in chow-fed sod2(+/-) and sod2(+/+) but was markedly decreased in HF-fed sod2(+/-). Remarkably, this impairment was not paralleled by reduced HG glucose infusion rate (GIR). Decreased GSIS in HF-fed sod2(+/-) was associated with increased ROS, such as superoxide ion. Surprisingly, insulin action determined by HI clamps did not differ between sod2(+/-) and sod2(+/+) of either diet. Since insulin action was unaffected, we hypothesized that the unchanged HG GIR in HF-fed sod2(+/-) was due to increased glucose effectiveness. Increased GLUT-1, hexokinase II, and phospho-AMPK protein in muscle of HF-fed sod2(+/-) support this hypothesis. We conclude that heterozygous SOD2 deletion in mice, a model that mimics SOD2 changes observed in diabetic humans, impairs GSIS in HF-fed mice without affecting insulin action.
Collapse
Affiliation(s)
- Li Kang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, U.K.
| | - Chunhua Dai
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, TN
| | - Mary E Lustig
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Jeffrey S Bonner
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Wesley H Mayes
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Shilpa Mokshagundam
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Freyja D James
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Courtney S Thompson
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, TN
| | - Chien-Te Lin
- East Carolina Diabetes and Obesity Institute and Departments of Physiology and Kinesiology, East Carolina University, Greenville, NC
| | - Christopher G R Perry
- East Carolina Diabetes and Obesity Institute and Departments of Physiology and Kinesiology, East Carolina University, Greenville, NC
| | - Ethan J Anderson
- East Carolina Diabetes and Obesity Institute and Departments of Physiology and Kinesiology, East Carolina University, Greenville, NC
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute and Departments of Physiology and Kinesiology, East Carolina University, Greenville, NC
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, TN Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| |
Collapse
|
41
|
Ghosal A, Sekar TV, Said HM. Biotin uptake by mouse and human pancreatic beta cells/islets: a regulated, lipopolysaccharide-sensitive carrier-mediated process. Am J Physiol Gastrointest Liver Physiol 2014; 307:G365-73. [PMID: 24904078 PMCID: PMC4121639 DOI: 10.1152/ajpgi.00157.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biotin is essential for the normal function of pancreatic beta cells. These cells obtain biotin from their surroundings via transport across their cell membrane. Little is known about the uptake mechanism involved, how it is regulated, and how it is affected by internal and external factors. We addressed these issues using the mouse-derived pancreatic beta-TC-6 cells and freshly isolated mouse and human primary pancreatic beta cells as models. The results showed biotin uptake by pancreatic beta-TC-6 cells occurs via a Na(+)-dependent, carrier-mediated process, that is sensitive to desthiobiotin, as well as to pantothenic acid and lipoate; the process is also saturable as a function of concentration (apparent Km = 22.24 ± 5.5 μM). These cells express the sodium-dependent multivitamin transporter (SMVT), whose knockdown (with doxycycline-inducible shRNA) led to a sever inhibition in biotin uptake. Similarly, uptake of biotin by mouse and human primary pancreatic islets is Na(+)-dependent and carrier-mediated, and both cell types express SMVT. Biotin uptake by pancreatic beta-TC-6 cells is also adaptively regulated (via transcriptional mechanism) by extracellular substrate level. Chronic treatment of pancreatic beta-TC-6 cells with bacterial lipopolysaccharides (LPS) leads to inhibition in biotin uptake. This inhibition is mediated via a Toll-Like receptor 4-mediated process and involves a decrease in membrane expression of SMVT. These findings show, for the first time, that pancreatic beta cells/islets take up biotin via a specific and regulated carrier-mediated process, and that the process is sensitive to the effect of LPS.
Collapse
Affiliation(s)
- Abhisek Ghosal
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Thillai V. Sekar
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Hamid M. Said
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
42
|
Insulin regulates carboxypeptidase E by modulating translation initiation scaffolding protein eIF4G1 in pancreatic β cells. Proc Natl Acad Sci U S A 2014; 111:E2319-28. [PMID: 24843127 DOI: 10.1073/pnas.1323066111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Insulin resistance, hyperinsulinemia, and hyperproinsulinemia occur early in the pathogenesis of type 2 diabetes (T2D). Elevated levels of proinsulin and proinsulin intermediates are markers of β-cell dysfunction and are strongly associated with development of T2D in humans. However, the mechanism(s) underlying β-cell dysfunction leading to hyperproinsulinemia is poorly understood. Here, we show that disruption of insulin receptor (IR) expression in β cells has a direct impact on the expression of the convertase enzyme carboxypeptidase E (CPE) by inhibition of the eukaryotic translation initiation factor 4 gamma 1 translation initiation complex scaffolding protein that is mediated by the key transcription factors pancreatic and duodenal homeobox 1 and sterol regulatory element-binding protein 1, together leading to poor proinsulin processing. Reexpression of IR or restoring CPE expression each independently reverses the phenotype. Our results reveal the identity of key players that establish a previously unknown link between insulin signaling, translation initiation, and proinsulin processing, and provide previously unidentified mechanistic insight into the development of hyperproinsulinemia in insulin-resistant states.
Collapse
|
43
|
Gatford KL, Kaur G, Falcão-Tebas F, Wadley GD, Wlodek ME, Laker RC, Ebeling PR, McConell GK. Exercise as an intervention to improve metabolic outcomes after intrauterine growth restriction. Am J Physiol Endocrinol Metab 2014; 306:E999-1012. [PMID: 24619880 DOI: 10.1152/ajpendo.00456.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Individuals born after intrauterine growth restriction (IUGR) are at an increased risk of developing diabetes in their adult life. IUGR impairs β-cell function and reduces β-cell mass, thereby diminishing insulin secretion. IUGR also induces insulin resistance, with impaired insulin signaling in muscle in adult humans who were small for gestational age (SGA) and in rodent models of IUGR. There is epidemiological evidence in humans that exercise in adults can reduce the risk of metabolic disease following IUGR. However, it is not clear whether adult IUGR individuals benefit to the same extent from exercise as do normal-birth-weight individuals, as our rat studies suggest less of a benefit in those born IUGR. Importantly, however, there is some evidence from studies in rats that exercise in early life might be able to reverse or reprogram the long-term metabolic effects of IUGR. Studies are needed to address gaps in current knowledge, including determining the mechanisms involved in the reprogramming effects of early exercise in rats, whether exercise early in life or in adulthood has similar beneficial metabolic effects in larger animal models in which insulin resistance develops after IUGR. Human studies are also needed to determine whether exercise training improves insulin secretion and insulin sensitivity to the same extent in IUGR adults as in control populations. Such investigations will have implications for customizing the recommended level and timing of exercise to improve metabolic health after IUGR.
Collapse
Affiliation(s)
- Kathryn L Gatford
- Robinson Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Soto C, Raya L, Juárez J, Pérez J, González I. Effect of Silymarin in Pdx-1 expression and the proliferation of pancreatic β-cells in a pancreatectomy model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:233-9. [PMID: 24176839 DOI: 10.1016/j.phymed.2013.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/27/2013] [Accepted: 09/19/2013] [Indexed: 06/02/2023]
Abstract
In type 1 Diabetes Mellitus (DM) there is a destruction of pancreatic β-cells (80-90%) at the time of detection, in DM type 2 these cells are decreased significantly. The Pdx1 transcription factor plays a central role in pancreatic development and in insulin gene expression. Previously, we have demonstrated that Silymarin recovers the normal morphology and endocrine function of damaged pancreatic tissue in alloxan induced diabetic rats. The aim of this study was to analyze the effect of Silymarin in Pdx1 gene expression and its repercussion on insulin gene expression and β-cell proliferation. 72 Wistar rats were partially pancreatectomized (60%) and divided into 12 groups. Six groups were treated daily with Silymarin (200mg/kg p.o.) for 3, 7, 14, 21, 42 and 63 day periods. Also, an unpancreatectomized control group was performed. At each time interval three animals from each group were administered BrdU 18 h before the sacrifice. Insulin and Pdx-1 gene expression were assessed by RT-PCR assay in total pancreatic RNA. β-Cell proliferation was determined by immunoperoxidase assay. In contrast to the animals that were only pancreatectomized, the Silymarin treatment induced an increase in both Pdx1 and insulin gene expression as well as β-cell proliferation in pancreatic tissue (control=2.6±0.28%; untreated=14.25±0.56%; treated=39.08±4.62%). Consequently, serum insulin levels rose (control=1.01±0.02 ng/ml; untreated=1.18±0.42 ng/ml; treated=4.58±0.58 ng/ml) and serum glucose levels decreased in these animals (control=6.2±0.01 mM; untreated=9.02±0.41 mM; treated=6.41±0.32 mM). These results suggest that Silymarin may induce the proliferation of insulin-producing cells.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Cell Differentiation
- Cell Proliferation
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Gene Expression/drug effects
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Insulin/blood
- Insulin/genetics
- Insulin/metabolism
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Male
- Silybum marianum/chemistry
- Pancreatectomy
- Phytotherapy
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- RNA/metabolism
- Rats
- Rats, Wistar
- Silymarin/pharmacology
- Silymarin/therapeutic use
- Trans-Activators/genetics
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- C Soto
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico.
| | - L Raya
- Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., Mexico
| | - J Juárez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico
| | - J Pérez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico
| | - I González
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico
| |
Collapse
|
45
|
Muscogiuri G, Salmon AB, Aguayo-Mazzucato C, Li M, Balas B, Guardado-Mendoza R, Giaccari A, Reddick RL, Reyna SM, Weir G, DeFronzo RA, Van Remmen H, Musi N. Genetic disruption of SOD1 gene causes glucose intolerance and impairs β-cell function. Diabetes 2013; 62:4201-7. [PMID: 24009256 PMCID: PMC3837066 DOI: 10.2337/db13-0314] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress has been associated with insulin resistance and type 2 diabetes. However, it is not clear whether oxidative damage is a cause or a consequence of the metabolic abnormalities present in diabetic subjects. The goal of this study was to determine whether inducing oxidative damage through genetic ablation of superoxide dismutase 1 (SOD1) leads to abnormalities in glucose homeostasis. We studied SOD1-null mice and wild-type (WT) littermates. Glucose tolerance was evaluated with intraperitoneal glucose tolerance tests. Peripheral and hepatic insulin sensitivity was quantitated with the euglycemic-hyperinsulinemic clamp. β-Cell function was determined with the hyperglycemic clamp and morphometric analysis of pancreatic islets. Genetic ablation of SOD1 caused glucose intolerance, which was associated with reduced in vivo β-cell insulin secretion and decreased β-cell volume. Peripheral and hepatic insulin sensitivity were not significantly altered in SOD1-null mice. High-fat diet caused glucose intolerance in WT mice but did not further worsen the glucose intolerance observed in standard chow-fed SOD1-null mice. Our findings suggest that oxidative stress per se does not play a major role in the pathogenesis of insulin resistance and demonstrate that oxidative stress caused by SOD1 ablation leads to glucose intolerance secondary to β-cell dysfunction.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | - Adam B. Salmon
- Barshop Institute for Longevity and Aging Studies, San Antonio, Texas
- Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas
| | | | - Mengyao Li
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | - Bogdan Balas
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | | | - Andrea Giaccari
- Division of Endocrinology and Metabolic Diseases, Università Cattolica del Sacro Cuore, Policlinico “A. Gemelli,” Rome, and Fondazione Don Gnocchi, Milan, Italy
| | - Robert L. Reddick
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Sara M. Reyna
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | - Gordon Weir
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts
| | - Ralph A. DeFronzo
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | - Holly Van Remmen
- Barshop Institute for Longevity and Aging Studies, San Antonio, Texas
- Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas
| | - Nicolas Musi
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
- Barshop Institute for Longevity and Aging Studies, San Antonio, Texas
- Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas
- Corresponding author: Nicolas Musi,
| |
Collapse
|
46
|
Yuan Y, Hartland K, Boskovic Z, Wang Y, Walpita D, Lysy PA, Zhong C, Young DW, Kim YK, Tolliday NJ, Sokal EM, Schreiber SL, Wagner BK. A small-molecule inducer of PDX1 expression identified by high-throughput screening. ACTA ACUST UNITED AC 2013; 20:1513-22. [PMID: 24290880 DOI: 10.1016/j.chembiol.2013.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/30/2013] [Accepted: 10/09/2013] [Indexed: 01/05/2023]
Abstract
Pancreatic and duodenal homeobox 1 (PDX1), a member of the homeodomain-containing transcription factor family, is a key transcription factor important for both pancreas development and mature β cell function. The ectopic overexpression of Pdx1, Neurog3, and MafA in mice reprograms acinar cells to insulin-producing cells. We developed a quantitative PCR-based gene expression assay to screen more than 60,000 compounds for expression of each of these genes in the human PANC-1 ductal carcinoma cell line. We identified BRD7552, which upregulated PDX1 expression in both primary human islets and ductal cells, and induced epigenetic changes in the PDX1 promoter consistent with transcriptional activation. Prolonged compound treatment induced both insulin mRNA and protein and also enhanced insulin expression induced by the three-gene combination. These results provide a proof of principle for identifying small molecules that induce expression of transcription factors to control cellular reprogramming.
Collapse
Affiliation(s)
- Yuan Yuan
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kate Hartland
- Chemical Biology Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Zarko Boskovic
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yikai Wang
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Deepika Walpita
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Philippe A Lysy
- Laboratory of Pediatric Hepatology and Cell Therapy, Catholic University of Leuven, Brussels 1200, Belgium
| | - Cheng Zhong
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Damian W Young
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Young-Kwon Kim
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Nicola J Tolliday
- Chemical Biology Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Etienne M Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Catholic University of Leuven, Brussels 1200, Belgium
| | - Stuart L Schreiber
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bridget K Wagner
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
47
|
Lleras RA, Smith RV, Adrien LR, Schlecht NF, Burk RD, Harris TM, Childs G, Prystowsky MB, Belbin TJ. Unique DNA methylation loci distinguish anatomic site and HPV status in head and neck squamous cell carcinoma. Clin Cancer Res 2013; 19:5444-55. [PMID: 23894057 DOI: 10.1158/1078-0432.ccr-12-3280] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE We have used a genome-wide approach to identify novel differentially methylated CpG dinucleotides that are seen in different anatomic sites of head and neck squamous cell carcinoma (HNSCC), as well as those that might be related to HPV status in the oropharynx. EXPERIMENTAL DESIGN We conducted genome-wide DNA methylation profiling of primary tumor samples and corresponding adjacent mucosa from 118 HNSCC patients undergoing treatment at Montefiore Medical Center, Bronx, NY, using the Illumina HumanMethylation27 beadchip. For each matched tissue set, we measured differentially methylated CpG loci using a change in methylation level (M-value). RESULTS When datasets were individually analyzed by anatomic site of the primary tumor, we identified 293 differentially methylated CpG loci in oral cavity squamous cell carcinoma (SCC), 219 differentially methylated CpG loci in laryngeal SCC, and 460 differentially methylated in oropharyngeal SCC. A subset of these differentially methylated CpG loci was common across all anatomic sites of HNSCC. Stratification by HPV status revealed a significantly higher number of differentially methylated CpG loci in HPV+ patients. CONCLUSION Novel epigenetic biomarkers derived from clinical HNSCC specimens can be used as molecular classifiers of this disease, revealing many new avenues of investigation for this disease.
Collapse
Affiliation(s)
- Roberto A Lleras
- Authors' Affiliations: Departments of Pathology; Epidemiology & Population Health; Pediatrics, Microbiology & Immunology; Obstetrics, Gynecology & Women's Health, Albert Einstein College of Medicine; and Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center, Medical Arts Pavilion, Bronx, New York
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Frantz EDC, Crespo-Mascarenhas C, Barreto-Vianna ARC, Aguila MB, Mandarim-de-Lacerda CA. Renin-angiotensin system blockers protect pancreatic islets against diet-induced obesity and insulin resistance in mice. PLoS One 2013; 8:e67192. [PMID: 23894285 PMCID: PMC3718820 DOI: 10.1371/journal.pone.0067192] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/15/2013] [Indexed: 12/29/2022] Open
Abstract
Background The associations between obesity, hypertension and diabetes are well established, and the renin-angiotensin system (RAS) may provide a link among them. The effect of RAS inhibition on type 2 diabetes is still unclear; however, RAS seems to play an important role in the regulation of the pancreas and glucose intolerance of mice fed high-fat (HF) diet. Methods C57BL/6 mice fed a HF diet (8 weeks) were treated with aliskiren (50 mg/kg/day), enalapril (30 mg/kg/day) or losartan (10 mg/kg/day) for 6 weeks, and the protective effects were extensively compared among groups by morphometry, stereological tools, immunostaining, Western blotting and hormonal analysis. Results All RAS inhibitors significantly attenuated the increased blood pressure in mice fed a HF diet. Treatment with enalapril, but not aliskiren or losartan, significantly attenuated body mass (BM) gain, glucose intolerance and insulin resistance, improved the alpha and beta cell mass and prevented the reduction of plasma adiponectin. Furthermore, enalapril treatment improved the protein expression of the pancreatic islet Pdx1, GLUT2, ACE2 and Mas receptors. Losartan treatment showed the greatest AT2R expression. Conclusion Our findings indicate that ACE inhibition with enalapril attenuated several of the deleterious effects of the HF diet. In summary, enalapril appears to be responsible for the normalization of islet morphology and function, of alpha and beta cell mass and of Pdx1 and GLUT2 expression. These protective effects of enalapril were attributed, primarily, to the reduction in body mass gain and food intake and the enhancement of the ACE2/Ang (1-7) /Mas receptor axis and adiponectin levels.
Collapse
Affiliation(s)
- Eliete Dalla Corte Frantz
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Crespo-Mascarenhas
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre Rodrigues C. Barreto-Vianna
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
49
|
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease. Diabetic vascular complications such as DN can progress despite subsequent glycemic control, suggesting a metabolic memory of previous exposure to hyperglycemia. Diabetes profoundly impacts transcription programs in target cells through activation of multiple signaling pathways and key transcription factors leading to aberrant expression of pathologic genes. Emerging evidence suggests that these factors associated with the pathophysiology of diabetic complications and metabolic memory also might be influenced by epigenetic mechanisms in chromatin such as DNA methylation, histone lysine acetylation, and methylation. Key histone modifications and the related histone methyltransferases and acetyltransferases have been implicated in the regulation of inflammatory and profibrotic genes in renal and vascular cells under diabetic conditions. Advances in epigenome profiling approaches have provided novel insights into the chromatin states and functional outcomes in target cells affected by diabetes. Because epigenetic changes are potentially reversible, they can provide a window of opportunity for the development of much-needed new therapies for DN in the future. In this review, we discuss recent developments in the field of epigenetics and their relevance to diabetic vascular complications and DN pathogenesis.
Collapse
Affiliation(s)
- Marpadga A. Reddy
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, CA 91010
| | - Jung Tak Park
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, CA 91010
| | - Rama Natarajan
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, CA 91010
| |
Collapse
|
50
|
Bastidas M, Showalter SA. Thermodynamic and structural determinants of differential Pdx1 binding to elements from the insulin and IAPP promoters. J Mol Biol 2013; 425:3360-77. [PMID: 23796517 DOI: 10.1016/j.jmb.2013.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
In adult mammals, the production of insulin and other peptide hormones, such as the islet amyloid polypeptide (IAPP), is limited to β-cells due to tissue-specific expression of a set of transcription factors, the best known of which is pancreatic duodenal homeobox protein 1 (Pdx1). Like many homeodomain transcription factors, Pdx1 binds to a core DNA recognition sequence containing the tetranucleotide 5'-TAAT-3'; its consensus recognition element is 5'-CTCTAAT(T/G)AG-3'. Currently, a complete thermodynamic profile of Pdx1 binding to near-consensus and native promoter sequences has not been established, obscuring the mechanism of target site selection by this critical transcription factor. Strikingly, while Pdx1 responsive elements in the human insulin promoter conform to the pentanucleotide 5'-CTAAT-3' sequence, the Pdx1 responsive elements in the human iapp promoter all contain a substitution to 5'-TTAAT-3'. The crystal structure of Pdx1 bound to the consensus nucleotide sequence does not explain how Pdx1 identifies this natural variation, if it does at all. Here we report a combination of isothermal calorimetric titrations, NMR spectroscopy, and extensive multi-microsecond molecular dynamics calculations of Pdx1 that define its interactions with a panel of natural promoter elements and consensus-derived sequences. Our results show a small preference of Pdx1 for a C base 5' relative to the core TAAT promoter element. Molecular mechanics calculations, corroborated by experimental NMR data, lead to a rational explanation for sequence discrimination at this position. Taken together, our results suggest a molecular mechanism for differential Pdx1 affinity to elements from the insulin and iapp promoter sequences.
Collapse
Affiliation(s)
- Monique Bastidas
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802, USA.
| | | |
Collapse
|