1
|
Yavaş AK, Kalkan EŞ, Uzun ÖÜ, Gunduz M, Erel Ö. Investigation of the Oxidative Process by Measuring Total Antioxidant Capacity and Total Oxidant Capacity in Patients with Gaucher Disease. KLINISCHE PADIATRIE 2025. [PMID: 40324420 DOI: 10.1055/a-2515-2164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Gaucher disease is caused by mutations in the GBA1 gene, which encodes the β-glucocerebrosidase enzyme. The deficiency of this enzyme result in glucosylceramide and glucosylsphingosine accumulation, within lysosomes and resulted triggering inflammation and accumulating substrates affect multiple organ systems, causing progressive cellular damage. Evidence has shown that the accumulation of glucosylceramide in macrophages is associated with inflammatory processes, reactive oxygen species production and an imbalance between the pro-oxidants and the antioxidant reserve, resulting in oxidative stress and inflammation. The aim of this study was to compare the oxidative stress status between patients with Gaucher disease and healthy controls.Case-control study This study included 10 patients with Gaucher disease aged between 2-40 years, and 30 healthy controls. Total antioxidant capacity and total oxidant capacity parameters between these groups were compared. Although the total antioxidant capacity value of the case group was higher, it was not significant. The total oxidant capacity and oxidative stress index values were significantly higher in the patient group (p<0.05). Our study showed that oxidative stress increased in patients with Gaucher disease. The results of our study may guide the application of antioxidant treatment in Gaucher disease patients as a supportive treatment.
Collapse
Affiliation(s)
| | | | | | - Mehmet Gunduz
- Pediatric Metabolism, Ankara City Hospital, Cankaya, Turkey
| | - Özcan Erel
- Biochemistry, Ankara City Hospital, Cankaya, Turkey
- Biochemistry, Ministry of Health Ankara Bilkent City Hospital, Ankara, Turkey
| |
Collapse
|
2
|
Golabi M, Kazemi D, Chadeganipour AS, Fouladseresht H, Sullman MJM, Ghezelbash B, Dastgerdi AY, Eskandari N. The Role of Cobalamin in Multiple Sclerosis: An Update. Inflammation 2025; 48:485-500. [PMID: 38902541 DOI: 10.1007/s10753-024-02075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative condition that results in axonal and permanent damage to the central nervous system, necessitating healing owing to autoimmune reactions and persistent neuroinflammation. Antioxidant and anti-inflammatory drugs are essential for the management of oxidative stress and neuroinflammation. Additionally, multivitamin supplementation, particularly vitamin B12 (cobalamin), may be beneficial for neuronal protection. Although there is no documented connection between vitamin B12 deficiency and MS, researchers have explored its potential as a metabolic cause. This review highlights the therapeutic benefits of cobalamin (Cbl) in patients with MS.
Collapse
Affiliation(s)
- Marjan Golabi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Science, Isfahan, Iran
| | | | - Hamed Fouladseresht
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Behrooz Ghezelbash
- Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ava Yeganegi Dastgerdi
- Department of Cell and Molecular Biology, Falavarjan Branch, Islamic Azad University of Science, Isfahan, Iran
| | - Nahid Eskandari
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Esser AJ, Sastre S, Dinh TLJ, Tanner V, Wingert V, Klotz K, Jacobsen DW, Spiekerkoetter U, Schilling O, Zeida A, Radi R, Hannibal L. A Noncatalytic Cysteine Residue Modulates Cobalamin Reactivity in the Human B 12 Processing Enzyme CblC. Biochemistry 2025; 64:692-709. [PMID: 39862167 DOI: 10.1021/acs.biochem.4c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Human CblC catalyzes the indispensable processing of dietary vitamin B12 by the removal of its β-axial ligand and an either one- or two-electron reduction of its cobalt center to yield cob(II)alamin and cob(I)alamin, respectively. Human CblC possesses five cysteine residues of an unknown function. We hypothesized that Cys149, conserved in mammals, tunes the CblC reactivity. To test this, we recreated an evolutionary early variant of CblC, namely, Cys149Ser, as well as Cys149Ala. Surprisingly, substitution of Cys149 for serine or alanine led to faster observed rates of glutathione-driven dealkylation of MeCbl compared to wild-type CblC. The reaction yielded aquacobalamin and stoichiometric formation of S-methylglutathione as the demethylation products. Determination of end-point oxidized glutathione revealed significantly uncoupled electron transfer in both mutants compared with the wild type. Long incubation times revealed the conversion of aquacobalamin to cob(II)alamin in the presence of oxygen in mutants Cys149Ser and Cys149Ala but not in wild-type CblC, all without an effect on dealkylation rates. This finding is reminiscent of the catalytic behavior of CblC from Caenorhabditis elegans, wherein Cys149 is naturally substituted by Ser, and the reaction mechanism differs from that of human CblC precisely by the unusual stabilization of cob(II)alamin in the presence of oxygen. Thus, Cys149 tunes the catalytic activity of human CblC by minimizing uncoupled electron transfer that forms GSSG. This occurs at the expense of a slower observed rate constant for the demethylation of MeCbl. This adjustment is compatible with diminished needs for intracellular turnover of cobalamins and with life under increased oxygen concentration.
Collapse
Affiliation(s)
- Anna J Esser
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany
| | - Santiago Sastre
- Departamento de Biofísica, Facultad de Medicina, and Programa de Doctorado en Química, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Thien-Ly Julia Dinh
- Institute of Surgical Pathology, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany
| | - Viola Tanner
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany
| | - Victoria Wingert
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany
| | - Katharina Klotz
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany
| | - Donald W Jacobsen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau 79104, Germany
| |
Collapse
|
4
|
Krams C, Esser AJ, Klenzendorf M, Klotz K, Spiekerkoetter U, Jacobsen DW, Smith CA, Maggiolo AO, Hannibal L. The cobalamin processing enzyme of Trichoplax adhaerens. J Biol Chem 2025; 301:108089. [PMID: 39675711 PMCID: PMC11910325 DOI: 10.1016/j.jbc.2024.108089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/23/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
Cobalamin (Cbl) is an essential cofactor for methionine synthase and methylmalonyl-CoA mutase, but it must first undergo chemical processing for utilization in animals. In humans, this processing comprises β-axial ligand cleavage and Cbl reduction and is performed by the enzyme MMACHC (HsCblC). Although the functionality of CblC is well-understood in higher-order organisms, little is known about the evolutionary origin of these enzymes and the reactivity of CblCs in lower-order organisms with unique environmental and cellular conditions. Therefore, we investigated the CblC of Trichoplax adhaerens (TaCblC), a marine organism considered to be one of the earliest evolutionarily diverging and simplest living animals. The TaCblC sequence contained conserved residues important for Cbl processing in higher-order organisms. The predicted structure of TaCblC closely resembled known CblC structures and had features consistent with Cbl and cosubstrate binding capabilities. Recombinantly expressed TaCblC could bind and process several Cbl analogues using glutathione or NADH as cosubstrates, similarly to previously characterized CblCs, but with variable rates and dependencies on the presence of oxygen. Notably, TaCblC dealkylates methylcobalamin at a rate ca. 2-times higher than HsCblC, although this comes with a lower ratio of product to glutathione oxidation, suggesting higher unproductive electron transfer in the TaCblC system. This reflects differences in cellular conditions of the more ancient homologue, which lives in low oxygen levels and an environment of low Cbl bioavailability (∼2 pm in sea water).
Collapse
Affiliation(s)
- Caroline Krams
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Anna J Esser
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Melissa Klenzendorf
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Katharina Klotz
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Donald W Jacobsen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA; Department of Chemistry, Stanford University, Stanford, California, USA
| | - Ailiena O Maggiolo
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Dos Reis BG, Becker GS, Marchetti DP, Coelho DDM, Sitta A, Wajner M, Vargas CR. Evidence That Long-Term Treatment Prevents Tissue Oxidative Damage in Patients With Inherited Disorders of the Propionate Pathway. Am J Med Genet A 2025; 197:e63893. [PMID: 39360509 DOI: 10.1002/ajmg.a.63893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Propionic and methylmalonic acidemias (PAcidemia and MMAcidemia, respectively) are genetic disorders clinically characterized by metabolic decompensation associated with life-threatening encephalopathic episodes in the neonatal period. Adequate and rapid therapeutic management is essential for patients' survival and prognosis. In this study, a restricted protein diet associated with L-carnitine (LC) supplementation was shown to decrease mortality and morbidity in patients affected by these disorders probably by decreasing the accumulation of the major metabolites and therefore their toxicity. Since oxidative stress was proposed as a contributing mechanism of tissue damage in PAcidemia and MMAcidemia and LC has potent antioxidant properties, our objective in this work was to investigate the effects of a long-term therapy consisting of reduced protein intake associated with LC supplementation on oxidative damage markers in patients affected by these diseases. We measured urinary isoprostanes, di-tyrosine, and oxidized guanine species, which reflect oxidative damage to lipids, proteins, and DNA/RNA, respectively, as well as the concentrations of NO products (nitrate plus nitrite) in patients untreated or submitted to short-term or a long-term treatment. Results revealed significant increases of isoprostanes, di-tyrosine, and oxidized guanine species, as well as a moderate nonsignificant increase of NO levels in the untreated patients, relatively to controls. Furthermore, these altered markers were attenuated after short-term treatment and normalized after prolonged treatment. In conclusion, data from this work show for the first time that long-standing treatment of patients with disorders of the propionate pathway can protect against oxidative damage. However, it remains to be elucidated whether oxidative stress identified in this study directly correlates with the clinical conditions of the affected patients.
Collapse
Affiliation(s)
- Bianca Gomes Dos Reis
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | | | | | - Angela Sitta
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
6
|
Wu SC, Chen YJ, Su SH, Fang PH, Liu RW, Tsai HY, Chang YJ, Li HH, Li JC, Chen CH. Dysfunctional BCAA degradation triggers neuronal damage through disrupted AMPK-mitochondrial axis due to enhanced PP2Ac interaction. Commun Biol 2025; 8:105. [PMID: 39838082 PMCID: PMC11751115 DOI: 10.1038/s42003-025-07457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
Metabolic and neurological disorders commonly display dysfunctional branched-chain amino acid (BCAA) metabolism, though it is poorly understood how this leads to neurological damage. We investigated this by generating Drosophila mutants lacking BCAA-catabolic activity, resulting in elevated BCAA levels and neurological dysfunction, mimicking disease-relevant symptoms. Our findings reveal a reduction in neuronal AMP-activated protein kinase (AMPK) activity, which disrupts autophagy in mutant brain tissues, linking BCAA imbalance to brain dysfunction. Mechanistically, we show that excess BCAA-induced mitochondrial reactive oxygen species (ROS) triggered the binding of protein phosphatase 2 A catalytic subunit (PP2Ac) to AMPK, suppressing AMPK activity. This initiated a dysregulated feedback loop of AMPK-mitochondrial interactions, exacerbating mitochondrial dysfunction and oxidative neuronal damage. Our study identifies BCAA imbalance as a critical driver of neuronal damage through AMPK suppression and autophagy dysfunction, offering insights into metabolic-neuronal interactions in neurological diseases and potential therapeutic targets for BCAA-related neurological conditions.
Collapse
Affiliation(s)
- Shih-Cheng Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 10021, Taiwan.
| | - Yan-Jhen Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Shih-Han Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan
| | - Pai-Hsiang Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
| | - Rei-Wen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hui-Ying Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
| | - Yen-Jui Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan
| | - Hsing-Han Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jian-Chiuan Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan.
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, 350401, Taiwan.
| |
Collapse
|
7
|
Dos Reis BG, Becker GS, Marchetti DP, de Moura Coelho D, Sitta A, Wajner M, Vargas CR. Neurodegenerative biomarkers and inflammation in patients with propionic and methylmalonic acidemias: effect of L-carnitine treatment. Metab Brain Dis 2024; 40:6. [PMID: 39549096 DOI: 10.1007/s11011-024-01475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/02/2024] [Indexed: 11/18/2024]
Abstract
Propionic and methylmalonic acidemias (PAcidemia and MMAcidemia, respectively) are genetic disorders characterized by acute metabolic decompensation and neurological complications. L-carnitine (LC) is effective in reducing toxic metabolites that are related to the pathophysiology of these diseases. Therefore we investigated biomarkers of inflammation (cytokines and C-reactive protein (CRP)), neurodegeneration (BDNF, NCAM-1 and cathepsin-D) and biomolecules oxidation (sulfhydryl content and thiobarbituric acid-reactive species (TBARS)), as well as carnitine concentrations in untreated patients with PAcidemia and MMAcidemia, in patients under treatment with LC and a protein-restricted diet for until 2 years and in patients under the same treatment for more than 2 years. It was verified an increase of CRP, IL-6, IL-8, TNF-α, IL-10, NCAM-1 and cathepsin-D in untreated patients compared to controls. On the other hand, reduced levels of TNF-α, CRP, IL-10, NCAM-1 and cathepsin-D were found in plasma from treated patients, as well as increased concentrations of LC. Furthermore, oxidative biomarkers were increased in untreated patients and were normalized with the prolonged treatment with LC. In conclusion, this work shows, for the first time, that inflammatory and neurodegenerative peripheral biomarkers are increased in patients with PAcidemia and MMAcidemia and that treatment with LC is effective to protect against these alterations.
Collapse
Affiliation(s)
- Bianca Gomes Dos Reis
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, CEP 90035-003, RS, Porto Alegre, Brazil
| | - Graziela Schmitt Becker
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, CEP 90035-003, RS, Porto Alegre, Brazil
| | - Desirèe Padilha Marchetti
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, CEP 90035-003, RS, Porto Alegre, Brazil
| | - Daniella de Moura Coelho
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, CEP 90035-003, RS, Porto Alegre, Brazil
| | - Angela Sitta
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, CEP 90035-003, RS, Porto Alegre, Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, CEP 90035-003, RS, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, CEP 90035-003, RS, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Sidorina A, Catesini G, Sacchetti E, Rizzo C, Dionisi-Vici C. Propionic Acidemia, Methylmalonic Acidemia, and Cobalamin C Deficiency: Comparison of Untargeted Metabolomic Profiles. Metabolites 2024; 14:428. [PMID: 39195524 DOI: 10.3390/metabo14080428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Methylmalonic acidemia (MMA), propionic acidemia (PA), and cobalamin C deficiency (cblC) share a defect in propionic acid metabolism. In addition, cblC is also involved in the process of homocysteine remethylation. These three diseases produce various phenotypes and complex downstream metabolic effects. In this study, we used an untargeted metabolomics approach to investigate the biochemical differences and the possible connections among the pathophysiology of each disease. The significantly changed metabolites in the untargeted urine metabolomic profiles of 21 patients (seven MMA, seven PA, seven cblC) were identified through statistical analysis (p < 0.05; log2FC > |1|) and then used for annotation. Annotated features were associated with different metabolic pathways potentially involved in the disease's development. Comparative statistics showed markedly different metabolomic profiles between MMA, PA, and cblC, highlighting the characteristic species for each disease. The most affected pathways were related to the metabolism of organic acids (all diseases), amino acids (all diseases), and glycine and its conjugates (in PA); the transsulfuration pathway; oxidative processes; and neurosteroid hormones (in cblC). The untargeted metabolomics study highlighted the presence of significant differences between the three diseases, pointing to the most relevant contrast in the cblC profile compared to MMA and PA. Some new biomarkers were proposed for PA, while novel data regarding the alterations of steroid hormone profiles and biomarkers of oxidative stress were obtained for cblC disease. The elevation of neurosteroids in cblC may indicate a potential connection with the development of ocular and neuronal deterioration.
Collapse
Affiliation(s)
- Anna Sidorina
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Giulio Catesini
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Elisa Sacchetti
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Cristiano Rizzo
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| |
Collapse
|
9
|
Cao B, Xiao Y, Liu D. Associations of methylmalonic acid and depressive symptoms with mortality: a population-based study. Transl Psychiatry 2024; 14:297. [PMID: 39030164 PMCID: PMC11271623 DOI: 10.1038/s41398-024-03015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Methylmalonic acid (MMA), a biomarker of mitochondrial dysfunction, has been reported to be associated with depression in specific populations (i.e., older adults and postpartum women). Our study aimed to investigate to what extent MMA was associated with depressive symptoms and mortality in the general population, and assess whether depressive symptoms mediate the relationship between MMA and mortality. We analyzed cross-sectional data from 8343 participants from the US National Health and Nutrition Examination Survey. MMA was measured by liquid chromatography-tandem mass spectrometry, while depressive symptoms were measured by the Patient Health Questionnaire-9. Mortality data were obtained through linkage with National Death Index records. Linear regression models were performed to assess the association between MMA and depressive symptoms. The Cox proportional hazard regression model was utilized to assess the association of MMA and depressive symptoms with mortality. Mediation analysis was conducted within the counterfactual framework. In this general population, each SD (around 0.49 μmol/L) increase in MMA was associated with a 0.03 SD (approximately 0.15 score) increase in depressive symptoms (β = 0.033, 95% CI: 0.010, 0.055, p = 0.005). Notably, this association was more pronounced in men and participants over 60 years old. Higher levels of MMA and having more depressive symptoms were associated with a higher risk of mortality. However, depressive symptoms do not mediate the relationship between MMA and mortality. Elevated MMA levels were associated with depressive symptoms and an increased risk of mortality. These findings suggest that mitochondrial dysfunction may contribute to the multifactorial etiology of depression.
Collapse
Affiliation(s)
- Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, 400715, P. R. China
- National Demonstration Center for Experimental Psychology Education, Southwest University, Chongqing, 400715, P. R. China
| | - Yefei Xiao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, 400715, P. R. China
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
10
|
Zemniaçak ÂB, Ribeiro RT, Pinheiro CV, de Azevedo Cunha S, Tavares TQ, Castro ET, Leipnitz G, Wajner M, Amaral AU. In Vivo Intracerebral Administration of α-Ketoisocaproic Acid to Neonate Rats Disrupts Brain Redox Homeostasis and Promotes Neuronal Death, Glial Reactivity, and Myelination Injury. Mol Neurobiol 2024; 61:2496-2513. [PMID: 37910283 DOI: 10.1007/s12035-023-03718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Maple syrup urine disease (MSUD) is caused by severe deficiency of branched-chain α-keto acid dehydrogenase complex activity, resulting in tissue accumulation of branched-chain α-keto acids and amino acids, particularly α-ketoisocaproic acid (KIC) and leucine. Affected patients regularly manifest with acute episodes of encephalopathy including seizures, coma, and potentially fatal brain edema during the newborn period. The present work investigated the ex vivo effects of a single intracerebroventricular injection of KIC to neonate rats on redox homeostasis and neurochemical markers of neuronal viability (neuronal nuclear protein (NeuN)), astrogliosis (glial fibrillary acidic protein (GFAP)), and myelination (myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase)) in the cerebral cortex and striatum. KIC significantly disturbed redox homeostasis in these brain structures 6 h after injection, as observed by increased 2',7'-dichlorofluorescein oxidation (reactive oxygen species generation), malondialdehyde levels (lipid oxidative damage), and carbonyl formation (protein oxidative damage), besides impairing the antioxidant defenses (diminished levels of reduced glutathione and altered glutathione peroxidase, glutathione reductase, and superoxide dismutase activities) in both cerebral structures. Noteworthy, the antioxidants N-acetylcysteine and melatonin attenuated or normalized most of the KIC-induced effects on redox homeostasis. Furthermore, a reduction of NeuN, MBP, and CNPase, and an increase of GFAP levels were observed at postnatal day 15, suggesting neuronal loss, myelination injury, and astrocyte reactivity, respectively. Our data indicate that disruption of redox homeostasis, associated with neural damage caused by acute intracerebral accumulation of KIC in the neonatal period may contribute to the neuropathology characteristic of MSUD patients.
Collapse
Affiliation(s)
- Ângela Beatris Zemniaçak
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Vieira Pinheiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sâmela de Azevedo Cunha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tailine Quevedo Tavares
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ediandra Tissot Castro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Atenção Integral à Saúde, Universidade Regional Integrada do Alto Uruguai e das Missões, Avenida Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil.
| |
Collapse
|
11
|
Marchuk H, Wang Y, Ladd ZA, Chen X, Zhang GF. Pathophysiological mechanisms of complications associated with propionic acidemia. Pharmacol Ther 2023; 249:108501. [PMID: 37482098 PMCID: PMC10529999 DOI: 10.1016/j.pharmthera.2023.108501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Propionic acidemia (PA) is a genetic metabolic disorder caused by mutations in the mitochondrial enzyme, propionyl-CoA carboxylase (PCC), which is responsible for converting propionyl-CoA to methylmalonyl-CoA for further metabolism in the tricarboxylic acid cycle. When this process is disrupted, propionyl-CoA and its metabolites accumulate, leading to a variety of complications including life-threatening cardiac diseases and other metabolic strokes. While the clinical symptoms and diagnosis of PA are well established, the underlying pathophysiological mechanisms of PA-induced diseases are not fully understood. As a result, there are currently few effective therapies for PA beyond dietary restriction. This review focuses on the pathophysiological mechanisms of the various complications associated with PA, drawing on extensive research and clinical reports. Most research suggests that propionyl-CoA and its metabolites can impair mitochondrial energy metabolism and cause cellular damage by inducing oxidative stress. However, direct evidence from in vivo studies is still lacking. Additionally, elevated levels of ammonia can be toxic, although not all PA patients develop hyperammonemia. The discovery of pathophysiological mechanisms underlying various complications associated with PA can aid in the development of more effective therapeutic treatments. The consequences of elevated odd-chain fatty acids in lipid metabolism and potential gene expression changes mediated by histone propionylation also warrant further investigation.
Collapse
Affiliation(s)
- Hannah Marchuk
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - You Wang
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong 272067, China.; School of Basic Medicine, Jining Medical University, Shandong 272067, China
| | - Zachary Alec Ladd
- Surgical Research Lab, Department of Surgery, Cooper University Healthcare and Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Xiaoxin Chen
- Surgical Research Lab, Department of Surgery, Cooper University Healthcare and Cooper Medical School of Rowan University, Camden, NJ 08103, USA; Coriell Institute for Medical Research, Camden, NJ 08103, USA; MD Anderson Cancer Center at Cooper, Camden, NJ 08103, USA.
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, and Metabolism Nutrition, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Wu S, Chang W, Xie Z, Yao B, Wang X, Yang C. Association of Serum Vitamin B 12 and Circulating Methylmalonic Acid Levels with All-Cause and Cardiovascular Disease Mortality among Individuals with Chronic Kidney Disease. Nutrients 2023; 15:2980. [PMID: 37447305 DOI: 10.3390/nu15132980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
(1) Background: it is unclear whether serum vitamin B12 and circulating methylmalonic acid (MMA) are related with a poor prognosis among individuals with chronic kidney disease (CKD); (2) Methods: this prospective cohort study included 2589 individuals with CKD who participated in the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2004, and from 2011 to 2014, respectively. Hazard ratios (HRs) and 95% Cis for the associations of MMA and vitamin B12 levels with the risk of all-cause and cardiovascular disease (CVD) mortality were calculated using multivariable Cox proportional hazards regression models. Restricted cubic spline analyses were used to examine the non-linear association of MMA levels with all-cause and CVD mortality. (3) Results: among the 2589 participants, we identified 1192 all-cause deaths and 446 CVD deaths, respectively, with a median follow-up of 7.7 years. Compared with participants with MMA < 123 nmol/L, those with MMA ≥ 240 nmol/L had an increased all-cause and CVD mortality in the multivariable-adjusted model [HR (95% CI), 2.01 (1.54-2.62) and 1.76 (1.18-2.63), respectively]; (4) Conclusions: higher circulating MMA levels were found to be strongly associated with an elevated all-cause and CVD mortality among individuals with CKD, while serum vitamin B12 levels were not associated.
Collapse
Affiliation(s)
- Shiyi Wu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, China
| | - Wenling Chang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, China
| | - Zhihao Xie
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, China
| | - Boshuang Yao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, China
| | - Xiaoyu Wang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, China
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, China
| |
Collapse
|
13
|
Vardar Acar N, Özgül RK. The bridge between cell survival and cell death: reactive oxygen species-mediated cellular stress. EXCLI JOURNAL 2023; 22:520-555. [PMID: 37534225 PMCID: PMC10390897 DOI: 10.17179/excli2023-6221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 08/04/2023]
Abstract
As a requirement of aerobic metabolism, regulation of redox homeostasis is indispensable for the continuity of living homeostasis and life. Since the stability of the redox state is necessary for the maintenance of the biological functions of the cells, the balance between the pro-oxidants, especially ROS and the antioxidant capacity is kept in balance in the cells through antioxidant defense systems. The pleiotropic transcription factor, Nrf2, is the master regulator of the antioxidant defense system. Disruption of redox homeostasis leads to oxidative and reductive stress, bringing about multiple pathophysiological conditions. Oxidative stress characterized by high ROS levels causes oxidative damage to biomolecules and cell death, while reductive stress characterized by low ROS levels disrupt physiological cell functions. The fact that ROS, which were initially attributed as harmful products of aerobic metabolism, at the same time function as signal molecules at non-toxic levels and play a role in the adaptive response called mithormesis points out that ROS have a dose-dependent effect on cell fate determination. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Nese Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Riza Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
14
|
Maines E, Moretti M, Vitturi N, Gugelmo G, Fasan I, Lenzini L, Piccoli G, Gragnaniello V, Maiorana A, Soffiati M, Burlina A, Franceschi R. Understanding the Pathogenesis of Cardiac Complications in Patients with Propionic Acidemia and Exploring Therapeutic Alternatives for Those Who Are Not Eligible or Are Waiting for Liver Transplantation. Metabolites 2023; 13:563. [PMID: 37110221 PMCID: PMC10143878 DOI: 10.3390/metabo13040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The guidelines for the management of patients affected by propionic acidemia (PA) recommend standard cardiac therapy in the presence of cardiac complications. A recent revision questioned the impact of high doses of coenzyme Q10 on cardiac function in patients with cardiomyopathy (CM). Liver transplantation is a therapeutic option for several patients since it may stabilize or reverse CM. Both the patients waiting for liver transplantation and, even more, the ones not eligible for transplant programs urgently need therapies to improve cardiac function. To this aim, the identification of the pathogenetic mechanisms represents a key point. Aims: This review summarizes: (1) the current knowledge of the pathogenetic mechanisms underlying cardiac complications in PA and (2) the available and potential pharmacological options for the prevention or the treatment of cardiac complications in PA. To select articles, we searched the electronic database PubMed using the Mesh terms "propionic acidemia" OR "propionate" AND "cardiomyopathy" OR "Long QT syndrome". We selected 77 studies, enlightening 12 potential disease-specific or non-disease-specific pathogenetic mechanisms, namely: impaired substrate delivery to TCA cycle and TCA dysfunction, secondary mitochondrial electron transport chain dysfunction and oxidative stress, coenzyme Q10 deficiency, metabolic reprogramming, carnitine deficiency, cardiac excitation-contraction coupling alteration, genetics, epigenetics, microRNAs, micronutrients deficiencies, renin-angiotensin-aldosterone system activation, and increased sympathetic activation. We provide a critical discussion of the related therapeutic options. Current literature supports the involvement of multiple cellular pathways in cardiac complications of PA, indicating the growing complexity of their pathophysiology. Elucidating the mechanisms responsible for such abnormalities is essential to identify therapeutic strategies going beyond the correction of the enzymatic defect rather than engaging the dysregulated mechanisms. Although these approaches are not expected to be resolutive, they may improve the quality of life and slow the disease progression. Available pharmacological options are limited and tested in small cohorts. Indeed, a multicenter approach is mandatory to strengthen the efficacy of therapeutic options.
Collapse
Affiliation(s)
- Evelina Maines
- Division of Pediatrics, Santa Chiara General Hospital, APSS, 38122 Trento, Italy
| | - Michele Moretti
- Division of Cardiology, Santa Chiara General Hospital, APSS, 38122 Trento, Italy
| | - Nicola Vitturi
- Division of Metabolic Diseases, Department of Medicine-DIMED, University Hospital, 35128 Padova, Italy
| | - Giorgia Gugelmo
- Division of Clinical Nutrition, Department of Medicine-DIMED, University Hospital, 35128 Padova, Italy
| | - Ilaria Fasan
- Division of Clinical Nutrition, Department of Medicine-DIMED, University Hospital, 35128 Padova, Italy
| | - Livia Lenzini
- Emergency Medicine Unit, Department of Medicine-DIMED, University Hospital, 35128 Padova, Italy
| | - Giovanni Piccoli
- CIBIO, Department of Cellular, Computational and Integrative Biology, Italy & Dulbecco Telethon Institute, Università degli Studi di Trento, 38123 Trento, Italy
| | - Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women’s and Children’s Health, University Hospital, 35128 Padova, Italy
| | - Arianna Maiorana
- Division of Metabolism and Research Unit of Metabolic Biochemistry, Bambino Gesù Children’s Hospital-IRCCS, 00165 Rome, Italy
| | - Massimo Soffiati
- Division of Pediatrics, Santa Chiara General Hospital, APSS, 38122 Trento, Italy
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women’s and Children’s Health, University Hospital, 35128 Padova, Italy
| | - Roberto Franceschi
- Division of Pediatrics, Santa Chiara General Hospital, APSS, 38122 Trento, Italy
| |
Collapse
|
15
|
Czarnecka AM, Obara-Michlewska M, Wesół-Kucharska D, Greczan M, Kaczor M, Książyk J, Rokicki D, Zielińska M. S100B Protein but Not 3-Nitrotyrosine Positively Correlates with Plasma Ammonia in Patients with Inherited Hyperammonemias: A New Promising Diagnostic Tool? J Clin Med 2023; 12:jcm12062411. [PMID: 36983411 PMCID: PMC10056255 DOI: 10.3390/jcm12062411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Individuals with inherited hyperammonemias often present developmental and intellectual deficiencies which are likely to be exaggerated by hyperammonemia episodes in long-term outcomes. In order to find a new, systemic marker common to the course of congenital hyperammonemias, we decided to measure the plasma level of S100 calcium-binding protein B (S100B), which is associated with cerebral impairment. Further, we analyzed three mechanistically diverged but linked with oxidative-nitrosative stress biochemical parameters: 3-nitrotyrosine (3-NT), a measure of plasma proteins' nitration; advanced oxidation protein products (AOPP), a measure of protein oxidation; and glutathione peroxidase (GPx) activity, a measure of anti-oxidative enzymatic capacity. The plasma biomarkers listed above were determined for the first time in congenital hyperammonemia. Also, the level of pro- and anti-inflammatory mediators (i.e., IL-12, IL-6, IL-8, TNF-α, IL-1β, and IL-10) and chemokines (IP-10, MCP-1, MIG, and RANTES) were quantified. S100B was positively correlated with plasma ammonia level, while noticeable levels of circulating 3-NT in some of the patients' plasma did not correlate with ammonia concentration. Overall, the linear correlation between ammonia and S100B but not standard oxidative stress-related markers offers a unique perspective for the future identification and monitoring of neurological deficits risk-linked with hyperammonemia episodes in patients with inherited hyperammonemias. The S100B measure may support the development of therapeutic targets and clinical monitoring in these disorders.
Collapse
Affiliation(s)
- Anna Maria Czarnecka
- Department of Neurotoxicology, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Dorota Wesół-Kucharska
- Department of Pediatrics, Nutrition, and Metabolic Diseases, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Milena Greczan
- Department of Pediatrics, Nutrition, and Metabolic Diseases, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Magdalena Kaczor
- Department of Pediatrics, Nutrition, and Metabolic Diseases, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Janusz Książyk
- Department of Pediatrics, Nutrition, and Metabolic Diseases, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition, and Metabolic Diseases, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
16
|
Wang J, Tang Y, Liu Y, Cai W, Xu J. Correlations between circulating methylmalonic acid levels and all-cause and cause-specific mortality among patients with diabetes. Front Nutr 2022; 9:974938. [DOI: 10.3389/fnut.2022.974938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
AimsEvidence regarding serum methylmalonic acid (MMA) levels and mortality in individuals with diabetes is limited. This study aimed to evaluate the correlation between MMA and all-cause and cause-specific deaths in patients with diabetes.Materials and methodsThis is a population-based cohort study based on data from both the National Health and Nutrition Examination Survey (NHANES) and National Death Index from 1999 to 2014. We assessed the association of serum MMA concentrations with mortality using Cox proportional hazard models after adjusting for lifestyle, demographic factors, and comorbidities.ResultsAmong the 3,097 participants, 843 mortalities occurred during a median follow-up of 4.42 years. There were 242 deaths due to cardiovascular disease (CVD) and 131 cancer-associated deaths. After multivariate adjustment, elevated serum MMA levels were markedly correlated with a high risk of all-cause, CVD-, and cancer-related deaths. Each one-unit increase in the natural log-transformed MMA level correlated with increased risk of all-cause mortality (2.652 times), CVD mortality risk (3.153 times), and cancer-related mortality risk (4.514). Hazard ratios (95% confidence intervals [CIs]) after comparing participants with MMA < 120 and ≥250 nmol/L were 2.177 (1.421–3.336) for all-cause mortality, 3.560 (1.809–7.004) for CVD mortality, and 4.244 (1.537–11.721) for cancer mortality.ConclusionHigher serum MMA levels were significantly associated with higher all-cause, CVD, and cancer mortality. These findings suggest that maintaining lower MMA status may lower mortality risk in individuals with diabetes.
Collapse
|
17
|
Esser AJ, Mukherjee S, Dereven‘kov IA, Makarov SV, Jacobsen DW, Spiekerkoetter U, Hannibal L. Versatile Enzymology and Heterogeneous Phenotypes in Cobalamin Complementation Type C Disease. iScience 2022; 25:104981. [PMID: 36105582 PMCID: PMC9464900 DOI: 10.1016/j.isci.2022.104981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nutritional deficiency and genetic errors that impair the transport, absorption, and utilization of vitamin B12 (B12) lead to hematological and neurological manifestations. The cblC disease (cobalamin complementation type C) is an autosomal recessive disorder caused by mutations and epi-mutations in the MMACHC gene and the most common inborn error of B12 metabolism. Pathogenic mutations in MMACHC disrupt enzymatic processing of B12, an indispensable step before micronutrient utilization by the two B12-dependent enzymes methionine synthase (MS) and methylmalonyl-CoA mutase (MUT). As a result, patients with cblC disease exhibit plasma elevation of homocysteine (Hcy, substrate of MS) and methylmalonic acid (MMA, degradation product of methylmalonyl-CoA, substrate of MUT). The cblC disorder manifests early in childhood or in late adulthood with heterogeneous multi-organ involvement. This review covers current knowledge on the cblC disease, structure–function relationships of the MMACHC protein, the genotypic and phenotypic spectra in humans, experimental disease models, and promising therapies.
Collapse
|
18
|
Evaluation of dynamic thiol/disulfide homeostasis in hereditary tyrosinemia type 1 patients. Pediatr Res 2022; 92:474-479. [PMID: 34628487 DOI: 10.1038/s41390-021-01770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/29/2021] [Accepted: 08/08/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Despite successful treatment with nitisinone, the pathophysiology of long-term complications, including hepatocellular carcinoma and mental decline in tyrosinemia type 1 patients, is still obscure. Oxidative stress may play a role in these complications. While increased fumarylacetoacetate and maleylacetoacetate cause oxidative stress in the liver, increased tyrosine causes oxidative stress in the brain. The aim of this study is to evaluate dynamic thiol/disulfide homeostasis as an indicator of oxidative stress in late-diagnosed tyrosinemia type 1 patients. METHODS Twenty-four late-diagnosed (age of diagnosis; 14.43 ± 26.35 months) tyrosinemia type 1 patients (19 under nitisinone treatment and 5 with liver transplantation) and 25 healthy subjects were enrolled in the study. Serum native thiol, total thiol, and disulfide levels were measured, and disulfide/native, disulfide/total, and native thiol/total thiol ratios were calculated from these values. RESULTS No significant difference was observed in native, total, and disulfide thiol levels between the groups and no increase in disulfide/native, disulfide/total, and native/total thiol ratios was detected, despite significantly higher plasma tyrosine levels in the nitisinone-treated group. CONCLUSIONS We suggest that providing sufficient metabolic control with good compliance to nitisinone treatment can help to prevent oxidative stress in late-diagnosed tyrosinemia type 1 patients. IMPACT Despite successful nitisinone (NTBC) treatment, the underlying mechanisms of long-term complications in hereditary tyrosinemia type 1 (HT1), including hepatocellular carcinoma and mental decline, are still obscure. Oxidative stress may play a role in these complications. Thiol/disulfide homeostasis, which is an indicator of oxidative stress, is not disturbed in hereditary tyrosinemia patients under NTBC treatment, despite higher plasma tyrosine levels and patients who had liver transplantation. This is the first study evaluating dynamic thiol/disulfide homeostasis as an indicator of oxidative stress in late-diagnosed HT1 patients.
Collapse
|
19
|
Seminotti B, Brondani M, Ribeiro RT, Leipnitz G, Wajner M. Disturbance of Mitochondrial Dynamics, Endoplasmic Reticulum-Mitochondria Crosstalk, Redox Homeostasis, and Inflammatory Response in the Brain of Glutaryl-CoA Dehydrogenase-Deficient Mice: Neuroprotective Effects of Bezafibrate. Mol Neurobiol 2022; 59:4839-4853. [PMID: 35639256 DOI: 10.1007/s12035-022-02887-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
Abstract
Patients with glutaric aciduria type 1 (GA1), a neurometabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase (GCDH) activity, commonly manifest acute encephalopathy associated with severe striatum degeneration and progressive cortical and striatal injury whose pathogenesis is still poorly known. We evaluated redox homeostasis, inflammatory response, mitochondrial biogenesis and dynamics, endoplasmic reticulum (ER)-mitochondria crosstalk, and ER stress in the brain of GCDH-deficient (Gcdh-/-) and wild-type (Gcdh+/+) mice fed a high Lys chow, which better mimics the human neuropathology mainly characterized by striatal lesions. Increased lipid peroxidation and altered antioxidant defenses, including decreased concentrations of reduced glutathione and increased activities of superoxide dismutase, catalase, and glutathione transferase, were observed in the striatum and cerebral cortex of Gcdh-/- mice. Augmented Iba-1 staining was also found in the dorsal striatum and neocortex, whereas the nuclear content of NF-κB was increased, and the cytosolic content of IκBα decreased in the striatum of the mutant animals, indicating a pro-inflammatory response. Noteworthy, in vivo treatment with the pan-PPAR agonist bezafibrate normalized these alterations. It was also observed that the ER-mitochondria crosstalk proteins VDAC1 and IP3R were reduced, whereas the ER stress protein DDIT3 was augmented in Gcdh-/- striatum, signaling disturbances of these processes. Finally, DRP1 content was elevated in the striatum of Gcdh-/- mice, indicating activated mitochondrial fission. We presume that some of these novel pathomechanisms may be involved in GA1 neuropathology and that bezafibrate should be tested as a potential adjuvant therapy for GA1.
Collapse
Affiliation(s)
- Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Morgana Brondani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio 21111, Porto Alegre, RS, 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio 21111, Porto Alegre, RS, 90035-003, Brazil.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil.
| |
Collapse
|
20
|
Amaral AU, Wajner M. Pathophysiology of maple syrup urine disease: Focus on the neurotoxic role of the accumulated branched-chain amino acids and branched-chain α-keto acids. Neurochem Int 2022; 157:105360. [DOI: 10.1016/j.neuint.2022.105360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022]
|
21
|
Structural Study of the Complex of cblC Methylmalonic Aciduria and Homocystinuria-Related Protein MMACHC with Cyanocobalamin. CRYSTALS 2022. [DOI: 10.3390/cryst12040468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
MMACHC is an essential protein for the body to metabolise vitamin B12, and its deficiency will cause cblC-type methylmalonic aciduria and homocystinuria. MMACHC can interact with cyanocobalamin (a type of vitamin B12) cofactor and plays an important role in targeting cyanocobalamin to the enzyme of interest. In this paper, the GST-tag fusion-tagged MMACHC protein was successfully expressed by Escherichia coli (E. coli) low-temperature induction, and the high-purity MMACHC protein was successfully purified by affinity chromatography and gel filtration. Further, the crystal structure of MMACHC and cyanocobalamin complex was obtained with a resolution of 1.93 Å using X-ray diffraction. By analysing the complex structure of MMACHC and cyanocobalamin, we revealed the reasons for the diversity of MMACHC substrates and explained the reasons for the differences in disease conditions caused by different MMACHC site mutations. The acquisition of the complex structure of MMACHC and cyanocobalamin will play a significant role in promoting research on the metabolic pathway of vitamin B12.
Collapse
|
22
|
Hannibal L, Jacobsen DW. Intracellular processing of vitamin B 12 by MMACHC (CblC). VITAMINS AND HORMONES 2022; 119:275-298. [PMID: 35337623 DOI: 10.1016/bs.vh.2022.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vitamin B12 (cobalamin, Cbl, B12) is a water-soluble micronutrient synthesized exclusively by a group of microorganisms. Human beings are unable to make B12 and thus obtain the vitamin via intake of animal products, fermented plant-based foods or supplements. Vitamin B12 obtained from the diet comprises three major chemical forms, namely hydroxocobalamin (HOCbl), methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl). The most common form of B12 present in supplements is cyanocobalamin (CNCbl). Yet, these chemical forms cannot be utilized directly as they come, but instead, they undergo chemical processing by the MMACHC protein, also known as CblC. Processing of dietary B12 by CblC involves removal of the upper-axial ligand (beta-ligand) yielding the one-electron reduced intermediate cob(II)alamin. Newly formed cob(II)alamin undergoes trafficking and delivery to the two B12-dependent enzymes, cytosolic methionine synthase (MS) and mitochondrial methylmalonyl-CoA mutase (MUT). The catalytic cycles of MS and MUT incorporate cob(II)alamin as a precursor to regenerate the coenzyme forms MeCbl and AdoCbl, respectively. Mutations and epimutations in the MMACHC gene result in cblC disease, the most common inborn error of B12 metabolism, which manifests with combined homocystinuria and methylmalonic aciduria. Elevation of metabolites homocysteine and methylmalonic acid occurs because the lack of an active CblC blocks formation of the indispensable precursor cob(II)alamin that is necessary to activate MS and MUT. Thus, in patients with cblC disease, vitamin B12 is absorbed and present in circulation in normal to high concentrations, yet, cells are unable to make use of it. Mutations in seemingly unrelated genes that modify MMACHC gene expression also result in clinical phenotypes that resemble cblC disease. We review current knowledge on structural and functional aspects of intracellular processing of vitamin B12 by the versatile protein CblC, its partners and possible regulators.
Collapse
Affiliation(s)
- Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.
| | - Donald W Jacobsen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
23
|
Vardar Acar N, Dursun A, Aygün D, Gürses Cila HE, Lay İ, Gülbakan B, Özgül RK. An investigation of different intracellular parameters for Inborn Errors of Metabolism: Cellular stress, antioxidant response and autophagy. Free Radic Biol Med 2022; 179:190-199. [PMID: 34974126 DOI: 10.1016/j.freeradbiomed.2021.12.312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 11/24/2022]
Abstract
Oxidative stress is associated with various disease pathologies including Inborn Errors of Metabolism (IEMs), among the most important causes of childhood morbidity and mortality. At least as much as oxidative stress in cells, reductive stress poses a danger to the disruption of cell homeostasis. p62/SQSTM1, protects cells from stress by activation of Nrf2/Keap1 and autophagy pathways. In this study, we tested the role of cellular stress, mitochondrial dysfunction and autophagy via Nrf2/Keap1/p62 pathway in the pathophysiology of three main groups of IEMs. Our results showed that antioxidant and oxidant capacity alone would not be sufficient to reflect the true clinical picture of these diseases. ATP, ROS and mitochondrial membrane potantial (MMP) measurements demonstrated increased cellular stress and bioenergetic imbalance in methylmalonic acidemia (MMA), indicating mild mitochondrial dysfunction. In isovaleric acidemia (IVA), no major change was detected in ATP, ROS and MMP values. Propionic acidemia (PA), mitochondrial diseases (MIT) and mucopolysaccharidosis IV (MPS IV) might point out mitohormesis to cope with chronic reductive stress. Induction of Nrf2/Keap1/p62 pathway and increased expression of HMOX1 were detected in all IEMs. LC3B-II and p62 expression results indicated an impaired autophagic flux in MIT and MPS IV and an induction of autophagic flux in MMA, PA and IVA, but also partial expression of Beclin1, enables autophagy activation, was detected in all IEMs. We conclude that individual diagnosis and treatments are of great importance in IEMs. In addition, we assume that the application of therapeutic antioxidant or preventive treatments without determining the cellular stress status in IEMs may disrupt the sensitive oxidant-antioxidant balance in the cell, leading to the potential to further disrupt the clinical picture, especially in patients with reductive stress. To the best of our knowledge, this is the first study to simultaneously relate IEMs with cellular stress, mitochondrial dysfunction, and autophagy.
Collapse
Affiliation(s)
- Neşe Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ali Dursun
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Damla Aygün
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - H Esra Gürses Cila
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - İncilay Lay
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Basri Gülbakan
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
24
|
Liu Y, Yang L, Shuai R, Huang S, Zhang B, Han L, Sun K, Wu Y. Different Pattern of Cardiovascular Impairment in Methylmalonic Acidaemia Subtypes. Front Pediatr 2022; 10:810495. [PMID: 35281223 PMCID: PMC8904414 DOI: 10.3389/fped.2022.810495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/06/2022] [Indexed: 11/26/2022] Open
Abstract
Methylmalonic acidaemia (MMA) has been reported to be associated with cardiovascular involvement, especially for the combined type with homocystinuria. We have screened 80 control subjects and 99 MMA patients (23 isolated type and 76 combined type) using electrocardiograph and echocardiography. 32 cases (34%) of ECG changes were found including sinus tachycardia (n = 11), prolonged QTc interval (n = 1), I-degree atrioventricular block (n = 1), left axis deviation (n = 5) and T wave change (n = 14). By echocardiography, 8 cases of congenital heart disease were found in 4 combined MMA patients (5.3%) including ventricular septal defect (n = 2), atrial septal defect (n = 3), patent ductus arteriosus (n = 1) and coronary artery-pulmonary artery fistula (n =2). Pulmonary hypertension (n = 2) and hypertrophic cardiomyopathy (n = 1) in combined subtype were also noted. Moreover, echocardiographic parameters were analyzed by multiple regression to clarify the influence of different subtypes on cardiac function. It was found that the left ventricular mass index (LVMI) was significantly reduced only in combined subtype [R = -3.0, 95%CI (-5.4, -0.5), P = 0.017]. For left ventricle, the mitral E' velocity was significantly reduced [isolated type: R = -1.8, 95%CI (-3.3, -0.4), P = 0.016; combined type: R = -2.5, 95%CI (-3.5, -1.5), P < 0.001], the global longitudinal strain (GLS) was the same [isolated type: R = -1.4, 95%CI (-2.3, -0.4), P = 0.007; Combined type: R = -1.1, 95%CI (-1.8, -0.4), P = 0.001], suggesting weakened left ventricular diastolic and systolic functions in both subtypes. For right ventricle, only in combined subtype, the tricuspid E' velocity was significantly reduced [R = -1.4, 95%CI (-2.6, -0.2), P = 0.021], and the tricuspid annular plane systolic excursion (TAPSE) was the same [R = -1.3, 95%CI (-2.3, -0.3), P=0.013], suggesting impaired right ventricular systolic and diastolic function. In conclusion, isolated and combined types showed different pattern of cardiac dysfunction, specifically the former only affected the left ventricle while the latter affected both ventricles. And it is necessary to perform echocardiographic screening and follow up in both MMA subtypes.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruixue Shuai
- Department of Pediatrics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Suqiu Huang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bingyao Zhang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Genetic Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yurong Wu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Seminotti B, Grings M, Tucci P, Leipnitz G, Saso L. Nuclear Factor Erythroid-2-Related Factor 2 Signaling in the Neuropathophysiology of Inherited Metabolic Disorders. Front Cell Neurosci 2021; 15:785057. [PMID: 34955754 PMCID: PMC8693715 DOI: 10.3389/fncel.2021.785057] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 01/14/2023] Open
Abstract
Inherited metabolic disorders (IMDs) are rare genetic conditions that affect multiple organs, predominantly the central nervous system. Since treatment for a large number of IMDs is limited, there is an urgent need to find novel therapeutical targets. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor that has a key role in controlling the intracellular redox environment by regulating the expression of antioxidant enzymes and several important genes related to redox homeostasis. Considering that oxidative stress along with antioxidant system alterations is a mechanism involved in the neuropathophysiology of many IMDs, this review focuses on the current knowledge about Nrf2 signaling dysregulation observed in this group of disorders characterized by neurological dysfunction. We review here Nrf2 signaling alterations observed in X-linked adrenoleukodystrophy, glutaric acidemia type I, hyperhomocysteinemia, and Friedreich’s ataxia. Additionally, beneficial effects of different Nrf2 activators are shown, identifying a promising target for treatment of patients with these disorders. We expect that this article stimulates research into the investigation of Nrf2 pathway involvement in IMDs and the use of potential pharmacological modulators of this transcription factor to counteract oxidative stress and exert neuroprotection.
Collapse
Affiliation(s)
- Bianca Seminotti
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mateus Grings
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Guilhian Leipnitz
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
26
|
Lee BR, Paing MH, Sharma-Walia N. Cyclopentenone Prostaglandins: Biologically Active Lipid Mediators Targeting Inflammation. Front Physiol 2021; 12:640374. [PMID: 34335286 PMCID: PMC8320392 DOI: 10.3389/fphys.2021.640374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclopentenone prostaglandins (cyPGs) are biologically active lipid mediators, including PGA2, PGA1, PGJ2, and its metabolites. cyPGs are essential regulators of inflammation, cell proliferation, apoptosis, angiogenesis, cell migration, and stem cell activity. cyPGs biologically act on multiple cellular targets, including transcription factors and signal transduction pathways. cyPGs regulate the inflammatory response by interfering with NF-κB, AP-1, MAPK, and JAK/STAT signaling pathways via both a group of nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) dependent and PPAR-γ independent mechanisms. cyPGs promote the resolution of chronic inflammation associated with cancers and pathogen (bacterial, viral, and parasitic) infection. cyPGs exhibit potent effects on viral infections by repressing viral protein synthesis, altering viral protein glycosylation, inhibiting virus transmission, and reducing virus-induced inflammation. We summarize their anti-proliferative, pro-apoptotic, cytoprotective, antioxidant, anti-angiogenic, anti-inflammatory, pro-resolution, and anti-metastatic potential. These properties render them unique therapeutic value, especially in resolving inflammation and could be used in adjunct with other existing therapies. We also discuss other α, β -unsaturated carbonyl lipids and cyPGs like isoprostanes (IsoPs) compounds.
Collapse
|
27
|
Ray SK, Mukherjee S. Molecular and biochemical investigations of inborn errors of metabolism-altered redox homeostasis in branched-chain amino acid disorders, organic acidurias, and homocystinuria. Free Radic Res 2021; 55:627-640. [PMID: 33504220 DOI: 10.1080/10715762.2021.1877286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
India, resembling other developing nations, is confronting a hastening demographic switch to non-communicable diseases. Inborn errors of metabolism (IEM) constitute a varied heterogeneous group of disorders with variable clinical appearance, primarily in the pediatric populace. Congenital deformities and genetic disorders are significant for mortality throughout the world, and the Indian scenario is not very different. IEMs are a group of monogenic issues described by dysregulation of the metabolic networks that bring about development and homeostasis. Incipient evidence focuses on oxidative stress and mitochondrial dysfunction as significant contributors to the multiorgan modifications are detected in a few IEMs. The amassing of toxic metabolites in organic acidurias, respiratory chain, and fatty acid oxidation ailments inhibit mitochondrial enzymes and processes, bringing about elevated levels of reactive oxygen species (ROS). In different IEMs, as in homocystinuria, various sources of ROS have been suggested. In patients' samples along with cellular and experimental animal models, a few investigations have recognized substantial increments in ROS levels alongside diminishes in antioxidant defenses, relating with oxidative damage to proteins, lipids as well as DNA. Elevated ROS levels interrupt redox signaling pathways controlling biological processes such as cell development, differentiation, or apoptosis; however, few investigations explore these processes in IEMs. This review depicts the mitochondrial dysfunction, oxidative stress, redox signaling in branched-chain amino acid disorders, further organic acidurias, and homocystinuria, alongside the latest research investigating the proficiency of antioxidants in addition to mitochondria-targeted therapies as therapeutic components in these diseases.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Department of Applied Sciences, Indira Gandhi Technological and Medical Sciences University, Ziro, Arunachal , Pradesh, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
28
|
Alonso-Barroso E, Pérez B, Desviat LR, Richard E. Cardiomyocytes Derived from Induced Pluripotent Stem Cells as a Disease Model for Propionic Acidemia. Int J Mol Sci 2021; 22:ijms22031161. [PMID: 33503868 PMCID: PMC7865492 DOI: 10.3390/ijms22031161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Propionic acidemia (PA), one of the most frequent life-threatening organic acidemias, is caused by mutations in either the PCCA or PCCB genes encoding both subunits of the mitochondrial propionyl-CoA carboxylase (PCC) enzyme. Cardiac alterations (hypertrophy, dilated cardiomyopathy, long QT) are one of the major causes of mortality in patients surviving the neonatal period. To overcome limitations of current cellular models of PA, we generated induced pluripotent stem cells (iPSCs) from a PA patient with defects in the PCCA gene, and successfully differentiated them into cardiomyocytes. PCCA iPSC-derived cardiomyocytes exhibited reduced oxygen consumption, an accumulation of residual bodies and lipid droplets, and increased ribosomal biogenesis. Furthermore, we found increased protein levels of HERP, GRP78, GRP75, SIG-1R and MFN2, suggesting endoplasmic reticulum stress and calcium perturbations in these cells. We also analyzed a series of heart-enriched miRNAs previously found deregulated in the heart tissue of a PA murine model and confirmed their altered expression. Our novel results show that PA iPSC-cardiomyocytes represent a promising model for investigating the pathological mechanisms underlying PA cardiomyopathies, also serving as an ex vivo platform for therapeutic evaluation.
Collapse
Affiliation(s)
- Esmeralda Alonso-Barroso
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.A.-B.); (B.P.); (L.R.D.)
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, 28029 Madrid, Spain
| | - Belén Pérez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.A.-B.); (B.P.); (L.R.D.)
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, 28029 Madrid, Spain
| | - Lourdes Ruiz Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.A.-B.); (B.P.); (L.R.D.)
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, 28029 Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.A.-B.); (B.P.); (L.R.D.)
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
29
|
Simultaneous Determination of 5 Active Components of Periploca forrestii Schltr Extract in Rat Plasma by UPLC-MS and Its Application to Pharmacokinetic Studies in Normal and Adjuvant-Induced Arthritis Model Rats. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20981435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Periploca forrestii Schltr ( P. forrestii) is a herb used in traditional Chinese medicine for its anti-rheumatoid arthritis effect. The aim of this study was to compare the pharmacokinetic properties of the 5 active components of this plant: neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, isochlorogenic acid C, and periplocin between normal rats and adjuvant-induced arthritis model rats. After the intravenous administration (177.78 mg/kg) of P. forrestii extract, samples were analyzed by ultra-performance liquid chromatography-tandem mass spectrometry. Compared with normal rats, the area under the curve [(AUC)(0-t), AUC(0-∞)], mean residence time [(MRT)(0-t), MRT(0-∞)] of neochlorogenic acid-treated rats decreased significantly, and drug clearance (CL) and apparent volume of distribution (V) increased significantly; the V of chlorogenic acid-treated rats decreased significantly, and MRT(0-t) significantly increased; the AUC(0-t) and AUC(0-∞) of cryptochlorogenic acid-treated rats decreased significantly, and CL and V increased significantly; the AUC(0-t) and MRT(0-t) of isochlorogenic acid C-treated rats decreased significantly, and V increased significantly; the AUC(0-t) and AUC(0-∞) of periplocin-treated rats increased significantly, and MRT(0-t), MRT(0-∞), CL, and V decreased significantly in model rats. The disease condition of rheumatoid arthritis in rats had a significant effect on the in vivo pharmacokinetics of P. forrestii after the intravenous administration.
Collapse
|
30
|
Wajner M, Vargas CR, Amaral AU. Disruption of mitochondrial functions and oxidative stress contribute to neurologic dysfunction in organic acidurias. Arch Biochem Biophys 2020; 696:108646. [PMID: 33098870 DOI: 10.1016/j.abb.2020.108646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023]
Abstract
Organic acidurias (OADs) are inherited disorders of amino acid metabolism biochemically characterized by accumulation of short-chain carboxylic acids in tissues and biological fluids of the affected patients and clinically by predominant neurological manifestations. Some of these disorders are amenable to treatment, which significantly decreases mortality and morbidity, but it is still ineffective to prevent long-term neurologic and systemic complications. Although pathogenesis of OADs is still poorly established, recent human and animal data, such as lactic acidosis, mitochondrial morphological alterations, decreased activities of respiratory chain complexes and altered parameters of oxidative stress, found in tissues from patients and from genetic mice models with these diseases indicate that disruption of critical mitochondrial functions and oxidative stress play an important role in their pathophysiology. Furthermore, organic acids that accumulate in the most prevalent OADs were shown to compromise bioenergetics, by decreasing ATP synthesis, mitochondrial membrane potential, reducing equivalent content and calcium retention capacity, besides inducing mitochondrial swelling, reactive oxygen and nitrogen species generation and apoptosis. It is therefore presumed that secondary mitochondrial dysfunction and oxidative stress caused by major metabolites accumulating in OADs contribute to tissue damage in these pathologies.
Collapse
Affiliation(s)
- Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| |
Collapse
|
31
|
He R, Zhang H, Kang L, Li H, Shen M, Zhang Y, Mo R, Liu Y, Song J, Chen Z, Liu Y, Jin Y, Li M, Dong H, Zheng H, Li D, Qin J, Zhang H, Huang M, Liang D, Tian Y, Yao H, Yang Y. Analysis of 70 patients with hydrocephalus due to cobalamin C deficiency. Neurology 2020; 95:e3129-e3137. [PMID: 32943488 DOI: 10.1212/wnl.0000000000010912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/23/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To analyze the clinical characteristics of patients with hydrocephalus secondary to cobalamin C (cblC) deficiency and to discuss the optimal strategies for assessing and treating such patients by performing clinical and laboratory studies in 70 patients. METHODS A total of 1,211 patients were clinically diagnosed with methylmalonic acidemia (MMA) from 1998 to 2019. Among them, cblC deficiency was confirmed in 70 patients with hydrocephalus by brain imaging and biochemical and genetic analysis. RESULTS Of the 70 patients, 67 (95.7%) had early-onset MMA and homocystinuria. The patients typically had high blood propionylcarnitine and total homocysteine, low methionine, and methylmalonic aciduria. Signs of intracranial hypertension were relatively rare. We measured ventricular dilatation early in the disease by cranial ultrasound and MRI and/or CT. Eighteen different MMACHC mutations, including 4 novel mutations (c.427C>T, c.568insT, c.599G>A, and c.615C>A), were identified biallelically in all 70 patients. c.609G>A was the most frequent mutation, followed by c.658_660del, c.217C>T, and c.567dupT. Three cases were diagnosed by postmortem study. Metabolic therapy, including cobalamin injections supplemented with oral l-carnitine and betaine, was administered in the remaining 67 cases. A ventriculoperitoneal shunt was performed in 36 cases. During the follow-up, psychomotor development, nystagmus, impaired vision, and sunset eyes improved gradually. CONCLUSION Hydrocephalus is a severe condition with several different causes. In this study, ventriculomegaly was found in 70 patients with cblC deficiency. Early diagnosis, etiologic treatment, and prompt surgical intervention are crucial to improve the prognosis of patients.
Collapse
Affiliation(s)
- Ruxuan He
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Hongwu Zhang
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Lulu Kang
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Hui Li
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Ming Shen
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Yao Zhang
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Ruo Mo
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Yupeng Liu
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Jinqing Song
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Zhehui Chen
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Yi Liu
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Ying Jin
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Mengqiu Li
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Hui Dong
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Hong Zheng
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Dongxiao Li
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Jiong Qin
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Huifeng Zhang
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Min Huang
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Desheng Liang
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Yaping Tian
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China
| | - Hongxin Yao
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China.
| | - Yanling Yang
- From the Departments of Pediatrics (R.H., L.K., Y.Z., R.M., J.S., Z.C., Yi Liu, Y.J., M.L., H.D., Y.Y.) and Pediatric Surgery (H.Z., H.L., H.Y.), Peking University First Hospital; Translational Medicine Center (M.S., Y.T.), Chinese PLA General Hospital; Department of Pediatrics (Yupeng Liu, J.Q.), People's Hospital of Peking University, Beijing; Department of Pediatrics (H.Z.), First Affiliated Hospital of Henan University of Traditional Chinese Medicine; Department of Endocrinology and Genetic (D. Li), Henan Children's Hospital, Zhengzhou; Department of Pediatrics (H.Z.), Hebei Medical University Second Hospital, Shijiazhuang; Similan Clinic, (M.H.) Beijing; and School of Life Sciences (D. Liang), Central South University, Changsha, China.
| |
Collapse
|
32
|
Wang S, Liu Y, Liu J, Tian W, Zhang X, Cai H, Fang S, Yu B. Mitochondria-derived methylmalonic acid, a surrogate biomarker of mitochondrial dysfunction and oxidative stress, predicts all-cause and cardiovascular mortality in the general population. Redox Biol 2020; 37:101741. [PMID: 33035815 PMCID: PMC7554255 DOI: 10.1016/j.redox.2020.101741] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Inherited methylmalonic acidemia is characterized by mitochondrial dysfunction, oxidative stress, and damage of mitochondria-rich organs in children. It is unclear whether methylmalonic acid (MMA) is related to poor prognosis in adults. The study aims to investigate the associations of MMA with all-cause and cause-specific mortality in the general population. METHODS Overall, 23,437 adults from the US National Health and Nutrition Examination Survey (NHANES) were enrolled. NHANES 1999-2004 and 2011-2014 were separately used as primary and validation subsets (median follow-up 13.5 and 2.8 years, respectively). Circulating MMA was measured with gas chromatography/mass spectrophotometry. Hazard ratios (HR) were estimated using weighted Cox regression models. RESULTS During 163,632 person-years of follow-up in NHANES 1999-2004, 3019 deaths occurred. Compared with participants with MMA <120 nmol/L, those with MMA≥250 nmol/L had increased all-cause and cardiovascular mortality in the multivariable-adjusted model [HR(95%CI), 1.62 (1.43-1.84) and 1.66 (1.22-2.27), respectively]. The association was especially significant among participants with normal cobalamin. MMA remained an independent predictor of all-cause mortality occurring whether within 5-year, 5-10 years, or beyond 10-year of follow-up (each p for trend≤0.007). That association was repeatable in NHANES 2011-2014. Moreover, baseline MMA improved reclassification for 10-year mortality in patients with cardiovascular disease (net reclassification index 0.239, integrated discrimination improvement 0.022), overmatched established cardiovascular biomarkers C-reactive protein or homocysteine. CONCLUSIONS Circulating level of mitochondrial-derived MMA is strongly associated with elevated all-cause and cardiovascular mortality. Our results support MMA as a surrogate biomarker of mitochondrial dysfunction to predict poor prognosis in adults. The biological mechanisms under cardiovascular disease warrant further investigation.
Collapse
Affiliation(s)
- Shanjie Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yige Liu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Jinxin Liu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Wei Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Xiaoyuan Zhang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Hengxuan Cai
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Shaohong Fang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.
| | - Bo Yu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.
| |
Collapse
|
33
|
Sloan JL, Achilly NP, Arnold ML, Catlett JL, Blake T, Bishop K, Jones M, Harper U, English MA, Anderson S, Trivedi NS, Elkahloun A, Hoffmann V, Brooks BP, Sood R, Venditti CP. The vitamin B12 processing enzyme, mmachc, is essential for zebrafish survival, growth and retinal morphology. Hum Mol Genet 2020; 29:2109-2123. [PMID: 32186706 PMCID: PMC7399538 DOI: 10.1093/hmg/ddaa044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/10/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Cobalamin C (cblC) deficiency, the most common inborn error of intracellular cobalamin metabolism, is caused by mutations in MMACHC, a gene responsible for the processing and intracellular trafficking of vitamin B12. This recessive disorder is characterized by a failure to metabolize cobalamin into adenosyl- and methylcobalamin, which results in the biochemical perturbations of methylmalonic acidemia, hyperhomocysteinemia and hypomethioninemia caused by the impaired activity of the downstream enzymes, methylmalonyl-CoA mutase and methionine synthase. Cobalamin C deficiency can be accompanied by a wide spectrum of clinical manifestations, including progressive blindness, and, in mice, manifests with very early embryonic lethality. Because zebrafish harbor a full complement of cobalamin metabolic enzymes, we used genome editing to study the loss of mmachc function and to develop the first viable animal model of cblC deficiency. mmachc mutants survived the embryonic period but perished in early juvenile life. The mutants displayed the metabolic and clinical features of cblC deficiency including methylmalonic acidemia, severe growth retardation and lethality. Morphologic and metabolic parameters improved when the mutants were raised in water supplemented with small molecules used to treat patients, including hydroxocobalamin, methylcobalamin, methionine and betaine. Furthermore, mmachc mutants bred to express rod and/or cone fluorescent reporters, manifested a retinopathy and thin optic nerves (ON). Expression analysis using whole eye mRNA revealed the dysregulation of genes involved in phototransduction and cholesterol metabolism. Zebrafish with mmachc deficiency recapitulate the several of the phenotypic and biochemical features of the human disorder, including ocular pathology, and show a response to established treatments.
Collapse
Affiliation(s)
- Jennifer L Sloan
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892 USA
| | - Nathan P Achilly
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892 USA
| | - Madeline L Arnold
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892 USA
| | - Jerrel L Catlett
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892 USA
| | - Trevor Blake
- Zebrafish Core Facility, Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Kevin Bishop
- Zebrafish Core Facility, Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Marypat Jones
- Genomics Core, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Ursula Harper
- Genomics Core, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Milton A English
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, MD, 20892 USA
| | - Stacie Anderson
- Flow Cytometry, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Niraj S Trivedi
- Social Behavioral Research Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Abdel Elkahloun
- Microarray Core, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Victoria Hoffmann
- Diagnostic and Research Services Branch, Division of Veterinary Resources, Office of the Director, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Brian P Brooks
- Office of the Clinical Director, National Eye Institute, Bethesda, MD, 20892 USA
| | - Raman Sood
- Zebrafish Core Facility, Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892 USA
| | - Charles P Venditti
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892 USA
| |
Collapse
|
34
|
Van Hove JLK, Freehauf CL, Ficicioglu C, Pena LDM, Moreau KL, Henthorn TK, Christians U, Jiang H, Cowan TM, Young SP, Hite M, Friederich MW, Stabler SP, Spector EB, Kronquist KE, Thomas JA, Emmett P, Harrington MJ, Pyle L, Creadon-Swindell G, Wempe MF, MacLean KN. Biomarkers of oxidative stress, inflammation, and vascular dysfunction in inherited cystathionine β-synthase deficient homocystinuria and the impact of taurine treatment in a phase 1/2 human clinical trial. J Inherit Metab Dis 2019; 42:424-437. [PMID: 30873612 DOI: 10.1002/jimd.12085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/11/2019] [Indexed: 11/10/2022]
Abstract
STUDY OBJECTIVE A phase 1/2 clinical trial was performed in individuals with cystathionine β synthase (CBS) deficient homocystinuria with aims to: (a) assess pharmacokinetics and safety of taurine therapy, (b) evaluate oxidative stress, inflammation, and vascular function in CBS deficiency, and (c) evaluate the impact of short-term taurine treatment. METHODS Individuals with pyridoxine-nonresponsive CBS deficiency with homocysteine >50 μM, without inflammatory disorder or on antioxidant therapy were enrolled. Biomarkers of oxidative stress and inflammation, endothelial function (brachial artery flow-mediated dilation [FMD]), and disease-related metabolites obtained at baseline were compared to normal values. While maintaining current treatment, patients were treated with 75 mg/kg taurine twice daily, and treatment response assessed after 4 hours and 4 days. RESULTS Fourteen patients (8-35 years; 8 males, 6 females) were enrolled with baseline homocysteine levels 161 ± 67 μM. The study found high-dose taurine to be safe when excluding preexisting hypertriglyceridemia. Taurine pharmacokinetics showed a rapid peak level returning to near normal levels at 12 hours, but had slow accumulation and elevated predosing levels after 4 days of treatment. Only a single parameter of oxidative stress, 2,3-dinor-8-isoprostaglandin-F2α, was elevated at baseline, with no elevated inflammatory parameters, and no change in FMD values overall. Taurine had no effect on any of these parameters. However, the effect of taurine was strongly related to pretreatment FMD values; and taurine significantly improved FMD in the subset of individuals with pretreatment FMD values <10% and in individuals with homocysteine levels >125 μM, pertinent to endothelial function. CONCLUSION Taurine improves endothelial function in CBS-deficient homocystinuria in patients with preexisting reduced function.
Collapse
Affiliation(s)
- Johan L K Van Hove
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Cynthia L Freehauf
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Can Ficicioglu
- Division of Human Genetics, The Children's Hospital Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Loren D M Pena
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina
| | - Kerrie L Moreau
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
- Geriatric Research and Education Center, Denver Veterans Administration Medical Center, Aurora, Colorado
| | - Thomas K Henthorn
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado, Aurora, Colorado
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado, Aurora, Colorado
| | - Hua Jiang
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Tina M Cowan
- Department of Pathology, Stanford University, Stanford, California
| | - Sarah P Young
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina
| | - Michelle Hite
- Research Institute, Children's Hospital Colorado, Aurora, Colorado
| | - Marisa W Friederich
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Sally P Stabler
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Elaine B Spector
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Kathryn E Kronquist
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Janet A Thomas
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Peggy Emmett
- CTRC Core Laboratory, Children's Hospital Colorado, Aurora, Colorado
| | - Mary J Harrington
- CTRC Core Laboratory, Children's Hospital Colorado, Aurora, Colorado
| | - Laura Pyle
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, Colorado
| | | | - Michael F Wempe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado
| | - Kenneth N MacLean
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
35
|
|
36
|
Abstract
Objective The aims of this study were to describe the brain magnetic resonance imaging (MRI) features of methylmalonic aciduria and homocystinuria and to evaluate the additional value of 1H-MRS. Patients and Methods Twenty-eight children with methylmalonic aciduria and homocystinuria were included in this study. The control group included 21 healthy children. All the cases underwent MRI and 1H-MRS before treatment. We measured the N-acetylaspartate (NAA), choline (Cho), creatine (Cr), and myoinositol (mI) peaks in the basal ganglia regions. The NAA/Cr, Cho/Cr, mI/Cr, and NAA/Cho ratios were calculated. We also observed whether there were lactic acid peaks. Result We identified that NAA/Cr and NAA/Cho significantly decreased in the basal ganglia and that 3 patients showed lactate peaks, but other metabolites were not significantly altered. Hydrocephalus and diffuse supratentorial white matter edema were the primary MR findings; 7 patients had thinning of the corpus callosum, and 2 patients had subdural hematoma. Six patients showed normal brain MRI findings. Conclusions Methylmalonic aciduria and homocystinuria patients with metabolite changes in the basal ganglia demonstrate compromised neuronal integrity, and anerobic metabolism occurs in acute encephalopathic episodes. 1H-MRS is a useful tool for evaluating brain damage. Hydrocephalus and diffuse supratentorial white matter edema are the main MRI features.
Collapse
|
37
|
Altered Redox Homeostasis in Branched-Chain Amino Acid Disorders, Organic Acidurias, and Homocystinuria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1246069. [PMID: 29743968 PMCID: PMC5884027 DOI: 10.1155/2018/1246069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/26/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Inborn errors of metabolism (IEMs) are a group of monogenic disorders characterized by dysregulation of the metabolic networks that underlie development and homeostasis. Emerging evidence points to oxidative stress and mitochondrial dysfunction as major contributors to the multiorgan alterations observed in several IEMs. The accumulation of toxic metabolites in organic acidurias, respiratory chain, and fatty acid oxidation disorders inhibits mitochondrial enzymes and processes resulting in elevated levels of reactive oxygen species (ROS). In other IEMs, as in homocystinuria, different sources of ROS have been proposed. In patients' samples, as well as in cellular and animal models, several studies have identified significant increases in ROS levels along with decreases in antioxidant defences, correlating with oxidative damage to proteins, lipids, and DNA. Elevated ROS disturb redox-signaling pathways regulating biological processes such as cell growth, differentiation, or cell death; however, there are few studies investigating these processes in IEMs. In this review, we describe the published data on mitochondrial dysfunction, oxidative stress, and impaired redox signaling in branched-chain amino acid disorders, other organic acidurias, and homocystinuria, along with recent studies exploring the efficiency of antioxidants and mitochondria-targeted therapies as therapeutic compounds in these diseases.
Collapse
|
38
|
Oxidative stress in urea cycle disorders: Findings from clinical and basic research. Clin Chim Acta 2018; 477:121-126. [DOI: 10.1016/j.cca.2017.11.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022]
|
39
|
Hecker M, Wagner AH. Role of protein carbonylation in diabetes. J Inherit Metab Dis 2018; 41:29-38. [PMID: 29110177 DOI: 10.1007/s10545-017-0104-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 01/17/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by, among others, elevated blood glucose levels. Hyperglycaemia as well as enhanced levels of glucose-derived reactive metabolites contribute to the development of diabetic complications partly via increased generation of reactive oxygen species (ROS). ROS are not only part of signaling pathways themselves but also lead to carbonylation of particular amino acid side chains by direct metal-catalyzed oxidation. In addition, carbonyl groups can be introduced into proteins indirectly by non-oxidative covalent adduction of reactive carbonyl species generated by the oxidation of lipids or carbohydrates. Both direct and indirect carbonylation mechanisms may affect protein conformation, activity, and function. Herein we introduce the different mechanisms of the carbonylation reaction, discuss degradation mechanisms, and the fate of proteins modified this way and how the overall degree of carbonylation affects protein homeostasis and function differently. The role of protein carbonylation in metabolic control systems and cell signaling are also summarized. Finally, current diagnostic and antioxidant therapeutic options in diabetes are discussed.
Collapse
Affiliation(s)
- Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.
| |
Collapse
|
40
|
Chan W, Almasieh M, Catrinescu MM, Levin LA. Cobalamin-Associated Superoxide Scavenging in Neuronal Cells Is a Potential Mechanism for Vitamin B 12-Deprivation Optic Neuropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:160-172. [PMID: 29037851 PMCID: PMC5745528 DOI: 10.1016/j.ajpath.2017.08.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/31/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022]
Abstract
Chronic deficiency of vitamin B12 is the only nutritional deficiency definitively proved to cause optic neuropathy and loss of vision. The mechanism by which this occurs is unknown. Optic neuropathies are associated with death of retinal ganglion cells (RGCs), neurons that project their axons along the optic nerve to the brain. Injury to RGC axons causes a burst of intracellular superoxide, which then signals RGC apoptosis. Vitamin B12 (cobalamin) was recently shown to be a superoxide scavenger, with a rate constant similar to superoxide dismutase. Given that vitamin B12 deficiency causes an optic neuropathy through unknown mechanisms and that it is a potent superoxide scavenger, we tested whether cobalamin, a vitamin B12 vitamer, would be neuroprotective in vitro and in vivo. We found that cobalamin scavenged superoxide in neuronal cells in vitro treated with the reduction-oxidation cycling agent menadione. In vivo confocal scanning laser ophthalmoscopy demonstrated that optic nerve transection in Long-Evans rats increased superoxide levels in RGCs. The RGC superoxide burst was significantly reduced by intravitreal cobalamin and resulted in increased RGC survival. These data demonstrate that cobalamin may function as an endogenous neuroprotectant for RGCs through a superoxide-associated mechanism.
Collapse
Affiliation(s)
- Wesley Chan
- Maisonneuve-Rosemont Hospital Research Center and Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada
| | - Mohammadali Almasieh
- Maisonneuve-Rosemont Hospital Research Center and Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada; Department of Ophthalmology, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Maria-Magdalena Catrinescu
- Maisonneuve-Rosemont Hospital Research Center and Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada; Department of Ophthalmology, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Leonard A Levin
- Maisonneuve-Rosemont Hospital Research Center and Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada; Department of Ophthalmology, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
41
|
Rivera-Barahona A, Alonso-Barroso E, Pérez B, Murphy MP, Richard E, Desviat LR. Treatment with antioxidants ameliorates oxidative damage in a mouse model of propionic acidemia. Mol Genet Metab 2017; 122:43-50. [PMID: 28774709 DOI: 10.1016/j.ymgme.2017.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 12/16/2022]
Abstract
Oxidative stress contributes to the pathogenesis of propionic acidemia (PA), a life threatening disease caused by the deficiency of propionyl CoA-carboxylase, in the catabolic pathway of branched-chain amino acids, odd-number chain fatty acids and cholesterol. Patients develop multisystemic complications including seizures, extrapyramidal symptoms, basal ganglia deterioration, pancreatitis and cardiomyopathy. The accumulation of toxic metabolites results in mitochondrial dysfunction, increased reactive oxygen species and oxidative damage, all of which have been documented in patients' samples and in a hypomorphic mouse model. Here we set out to investigate whether treatment with a mitochondria-targeted antioxidant, MitoQ, or with the natural polyphenol resveratrol, which is reported to have antioxidant and mitochondrial activation properties, could ameliorate the altered redox status and its functional consequences in the PA mouse model. The results show that oral treatment with MitoQ or resveratrol decreases lipid peroxidation and the expression levels of DNA repair enzyme OGG1 in PA mouse liver, as well as inducing tissue-specific changes in the expression of antioxidant enzymes. Notably, treatment decreased the cardiac hypertrophy marker BNP that is found upregulated in the PA mouse heart. Overall, the results provide in vivo evidence to justify more in depth investigations of antioxidants as adjuvant therapy in PA.
Collapse
Affiliation(s)
- Ana Rivera-Barahona
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain
| | - Esmeralda Alonso-Barroso
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain
| | - Belén Pérez
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain
| | - Michael P Murphy
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, UK
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain.
| |
Collapse
|
42
|
Rivera-Barahona A, Fulgencio-Covián A, Pérez-Cerdá C, Ramos R, Barry MA, Ugarte M, Pérez B, Richard E, Desviat LR. Dysregulated miRNAs and their pathogenic implications for the neurometabolic disease propionic acidemia. Sci Rep 2017; 7:5727. [PMID: 28720782 PMCID: PMC5516006 DOI: 10.1038/s41598-017-06420-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022] Open
Abstract
miRNome expression profiling was performed in a mouse model of propionic acidemia (PA) and in patients’ plasma samples to investigate the role of miRNAs in the pathophysiology of the disease and to identify novel biomarkers and therapeutic targets. PA is a potentially lethal neurometabolic disease with patients developing neurological deficits and cardiomyopathy in the long-term, among other complications. In the PA mouse liver we identified 14 significantly dysregulated miRNAs. Three selected miRNAs, miR-34a-5p, miR-338-3p and miR-350, were found upregulated in brain and heart tissues. Predicted targets involved in apoptosis, stress-signaling and mitochondrial function, were inversely found down-regulated. Functional analysis with miRNA mimics in cellular models confirmed these findings. miRNA profiling in plasma samples from neonatal PA patients and age-matched control individuals identified a set of differentially expressed miRNAs, several were coincident with those identified in the PA mouse, among them miR-34a-5p and miR-338-3p. These two miRNAs were also found dysregulated in childhood and adult PA patients’ cohorts. Taken together, the results reveal miRNA signatures in PA useful to identify potential biomarkers, to refine the understanding of the molecular mechanisms of this rare disease and, eventually, to improve the management of patients.
Collapse
Affiliation(s)
- Ana Rivera-Barahona
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Alejandro Fulgencio-Covián
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Celia Pérez-Cerdá
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Ricardo Ramos
- Genomic Facility, Parque Científico de Madrid, Madrid, Spain
| | | | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Belén Pérez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain. .,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain. .,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain.
| |
Collapse
|
43
|
Bernheim S, Deschênes G, Schiff M, Cussenot I, Niel O. Antenatal nephromegaly and propionic acidemia: a case report. BMC Nephrol 2017; 18:110. [PMID: 28359305 PMCID: PMC5372311 DOI: 10.1186/s12882-017-0535-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 03/25/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Propionic acidemia (PA) is a rare but severe recessive autosomal disease, presenting with non specific signs in the first years of life. Prenatal diagnosis is invasive (amniocentesis) and limited to suspect cases. No screening test has been described, in particular no correlations between prenatal sonography and PA have been documented so far. CASE PRESENTATION We report the case of a boy with fetal bilateral nephromegaly and hyperechogenic kidneys, along with neonatal acute kidney injury; no etiology could be found in the first months of life. At 3 months of life, he presented with tachypnea and altered mental status, which lead to the diagnosis of PA. The renal ultrasound at 8 months of life, after a symptomatic treatment of PA had been initiated, showed a regression of the renal abnormalities. CONCLUSION This case describes PA as a novel cause of large and hyperechogenic kidneys in the antenatal period. It suggests that, when confronted to fetal nephromegaly, hyperechogenic kidneys and risk factors of metabolic disease such as consanguineous parents, PA should be considered, and a prenatal test should be proposed.
Collapse
Affiliation(s)
- Ségolène Bernheim
- Pediatric Nephrology Department, Robert Debré Hospital, 48 Boulevard Sérurier, 75019, Paris, France.
| | - Georges Deschênes
- Pediatric Nephrology Department, Robert Debré Hospital, 48 Boulevard Sérurier, 75019, Paris, France.,Paris Diderot University, Paris, France
| | - Manuel Schiff
- Metabolic Diseases Department, Robert Debré Hospital, 48 Boulevard Sérurier, 75019, Paris, France.,Paris Diderot University, Paris, France
| | - Isabelle Cussenot
- Radiology Department, Robert Debré Hospital, 48 Boulevard Sérurier, 75019, Paris, France
| | - Olivier Niel
- Pediatric Nephrology Department, Robert Debré Hospital, 48 Boulevard Sérurier, 75019, Paris, France.,Molecular Bases of Hereditary Kidney Diseases, Inserm U1163 - Sorbonne Paris Cité - Paris Descartes University, 24 boulevard du Montparnasse, 75015, Paris, France.,Paris Diderot University, Paris, France
| |
Collapse
|
44
|
de Oliveira MR, da Costa Ferreira G, Peres A, Bosco SMD. Carnosic Acid Suppresses the H 2O 2-Induced Mitochondria-Related Bioenergetics Disturbances and Redox Impairment in SH-SY5Y Cells: Role for Nrf2. Mol Neurobiol 2017; 55:968-979. [PMID: 28084591 DOI: 10.1007/s12035-016-0372-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/28/2016] [Indexed: 12/20/2022]
Abstract
The phenolic diterpene carnosic acid (CA, C20H28O4) exerts antioxidant, anti-inflammatory, anti-apoptotic, and anti-cancer effects in mammalian cells. CA activates the nuclear factor erythroid 2-related factor 2 (Nrf2), among other signaling pathways, and restores cell viability in several in vitro and in vivo experimental models. We have previously reported that CA affords mitochondrial protection against various chemical challenges. However, it was not clear yet whether CA would prevent chemically induced impairment of the tricarboxylic acid cycle (TCA) function in mammalian cells. In the present work, we found that a pretreatment of human neuroblastoma SH-SY5Y cells with CA at 1 μM for 12 h prevented the hydrogen peroxide (H2O2)-induced impairment of the TCA enzymes (aconitase, α-ketoglutarate dehydrogenase (α-KGDH), succinate dehydrogenase (SDH)) and abolished the inhibition of the complexes I and V and restored the levels of ATP by a mechanism associated with Nrf2. CA also exhibited antioxidant abilities by enhancing the levels of reduced glutathione (GSH) and decreasing the content oxidative stress markers (cellular 8-oxo-2'-deoxyguanosine (8-oxo-dG), and mitochondrial malondialdehyde (MDA), protein carbonyl, and 3-nitrotyrosine). Silencing of Nrf2 by small interfering RNA (siRNA) abrogated the protective effects elicited by CA in mitochondria of SH-SY5Y cells. Therefore, CA prevented the H2O2-triggered mitochondrial impairment by an Nrf2-dependent mechanism. The specific role of Nrf2 in ameliorating the function of TCA enzymes function needs further research.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Departamento de Química/ICET, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa , 2367 , Cuiaba, MT, 78060-900, Brazil.
| | - Gustavo da Costa Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alessandra Peres
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Centro de Pesquisa da Pós-Graduação, Centro Universitário Metodista IPA, Porto Alegre, RS, Brazil
| | | |
Collapse
|
45
|
Richard E, Brasil S, Leal F, Navarrete R, Vega A, Ecay MJ, Desviat LR, Pérez-Cerda C, Ugarte M, Merinero B, Pérez B. Isolated and Combined Remethylation Disorders. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409816685732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Eva Richard
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Sandra Brasil
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Fátima Leal
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Rosa Navarrete
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Ana Vega
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - María Jesús Ecay
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Lourdes R. Desviat
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Celia Pérez-Cerda
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Begoña Merinero
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- IdiPAZ, Madrid, Spain
| |
Collapse
|
46
|
Goldstein A, Vockley J. Clinical trials examining treatments for inborn errors of amino acid metabolism. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2017.1275565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amy Goldstein
- Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jerry Vockley
- Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Abstract
The three essential branched-chain amino acids (BCAAs), leucine, isoleucine and valine, share the first enzymatic steps in their metabolic pathways, including a reversible transamination followed by an irreversible oxidative decarboxylation to coenzyme-A derivatives. The respective oxidative pathways subsequently diverge and at the final steps yield acetyl- and/or propionyl-CoA that enter the Krebs cycle. Many disorders in these pathways are diagnosed through expanded newborn screening by tandem mass spectrometry. Maple syrup urine disease (MSUD) is the only disorder of the group that is associated with elevated body fluid levels of the BCAAs. Due to the irreversible oxidative decarboxylation step distal enzymatic blocks in the pathways do not result in the accumulation of amino acids, but rather to CoA-activated small carboxylic acids identified by gas chromatography mass spectrometry analysis of urine and are therefore classified as organic acidurias. Disorders in these pathways can present with a neonatal onset severe-, or chronic intermittent- or progressive forms. Metabolic instability and increased morbidity and mortality are shared between inborn errors in the BCAA pathways, while treatment options remain limited, comprised mainly of dietary management and in some cases solid organ transplantation.
Collapse
Affiliation(s)
- I Manoli
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - C P Venditti
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
48
|
Gallego-Villar L, Rivera-Barahona A, Cuevas-Martín C, Guenzel A, Pérez B, Barry MA, Murphy MP, Logan A, Gonzalez-Quintana A, Martín MA, Medina S, Gil-Izquierdo A, Cuezva JM, Richard E, Desviat LR. In vivo evidence of mitochondrial dysfunction and altered redox homeostasis in a genetic mouse model of propionic acidemia: Implications for the pathophysiology of this disorder. Free Radic Biol Med 2016; 96:1-12. [PMID: 27083476 DOI: 10.1016/j.freeradbiomed.2016.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 12/16/2022]
Abstract
Accumulation of toxic metabolites has been described to inhibit mitochondrial enzymes, thereby inducing oxidative stress in propionic acidemia (PA), an autosomal recessive metabolic disorder caused by the deficiency of mitochondrial propionyl-CoA carboxylase. PA patients exhibit neurological deficits and multiorgan complications including cardiomyopathy. To investigate the role of mitochondrial dysfunction in the development of these alterations we have used a hypomorphic mouse model of PA that mimics the biochemical and clinical hallmarks of the disease. We have studied the tissue-specific bioenergetic signature by Reverse Phase Protein Microarrays and analysed OXPHOS complex activities, mtDNA copy number, oxidative damage, superoxide anion and hydrogen peroxide levels. The results show decreased levels and/or activity of several OXPHOS complexes in different tissues of PA mice. An increase in mitochondrial mass and OXPHOS complexes was observed in brain, possibly reflecting a compensatory mechanism including metabolic reprogramming. mtDNA depletion was present in most tissues analysed. Antioxidant enzymes were also found altered. Lipid peroxidation was present along with an increase in hydrogen peroxide and superoxide anion production. These data support the hypothesis that oxidative damage may contribute to the pathophysiology of PA, opening new avenues in the identification of therapeutic targets and paving the way for in vivo evaluation of compounds targeting mitochondrial biogenesis or reactive oxygen species production.
Collapse
Affiliation(s)
- L Gallego-Villar
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain
| | - A Rivera-Barahona
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain
| | - C Cuevas-Martín
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | | | - B Pérez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain
| | | | - M P Murphy
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, UK
| | - A Logan
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, UK
| | - A Gonzalez-Quintana
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - M A Martín
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - S Medina
- Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo 25, 30100 Espinardo, Murcia, Spain
| | - A Gil-Izquierdo
- Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo 25, 30100 Espinardo, Murcia, Spain
| | - J M Cuezva
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - E Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain
| | - L R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.
| |
Collapse
|
49
|
Jacques CED, Donida B, Mescka CP, Rodrigues DGB, Marchetti DP, Bitencourt FH, Burin MG, de Souza CFM, Giugliani R, Vargas CR. Oxidative and nitrative stress and pro-inflammatory cytokines in Mucopolysaccharidosis type II patients: effect of long-term enzyme replacement therapy and relation with glycosaminoglycan accumulation. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1608-16. [PMID: 27251652 DOI: 10.1016/j.bbadis.2016.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/05/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022]
Abstract
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by a deficient activity of iduronate-2-sulfatase, leading to abnormal accumulation of glycosaminoglycans (GAG). The main treatment for MPS II is enzyme replacement therapy (ERT). Previous studies described potential benefits of six months of ERT against oxidative stress in patients. Thus, the aim of this study was to investigate oxidative, nitrative and inflammatory biomarkers in MPS II patients submitted to long term ERT. It were analyzed urine and blood samples from patients on ERT (mean time: 5.2years) and healthy controls. Patients presented increased levels of lipid peroxidation, assessed by urinary 15-F2t-isoprostane and plasmatic thiobarbituric acid-reactive substances. Concerning to protein damage, urinary di-tyrosine (di-Tyr) was increased in patients; however, sulfhydryl and carbonyl groups in plasma were not altered. It were also verified increased levels of urinary nitrate+nitrite and plasmatic nitric oxide (NO) in MPS II patients. Pro-inflammatory cytokines IL-1β and TNF-α were increased in treated patients. GAG levels were correlated to di-Tyr and nitrate+nitrite. Furthermore, IL-1β was positively correlated with TNF-α and NO. Contrastingly, we did not observed alterations in erythrocyte superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities, in reduced glutathione content and in the plasmatic antioxidant capacity. Although some parameters were still altered in MPS II patients, these results may suggest a protective role of long-term ERT against oxidative stress, especially upon oxidative damage to protein and enzymatic and non-enzymatic defenses. Moreover, the redox imbalance observed in treated patients seems to be GAG- and pro-inflammatory cytokine-related.
Collapse
Affiliation(s)
- Carlos Eduardo Diaz Jacques
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Bruna Donida
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, R. Ramiro Barcelos, 2600, CEP 90035-003 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Caroline P Mescka
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Daiane G B Rodrigues
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Desirèe P Marchetti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, R. Ramiro Barcelos, 2600, CEP 90035-003 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Fernanda H Bitencourt
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, UFRGS, Av. Bento Gonçalves, 9500, CEP 90650-001 Porto Alegre, RS, Brazil.
| | - Maira G Burin
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Carolina F M de Souza
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Roberto Giugliani
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, UFRGS, Av. Bento Gonçalves, 9500, CEP 90650-001 Porto Alegre, RS, Brazil.
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, R. Ramiro Barcelos, 2600, CEP 90035-003 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
50
|
Huemer M, Carvalho DR, Brum JM, Ünal Ö, Coskun T, Weisfeld-Adams JD, Schrager NL, Scholl-Bürgi S, Schlune A, Donner MG, Hersberger M, Gemperle C, Riesner B, Ulmer H, Häberle J, Karall D. Clinical phenotype, biochemical profile, and treatment in 19 patients with arginase 1 deficiency. J Inherit Metab Dis 2016; 39:331-340. [PMID: 27038030 DOI: 10.1007/s10545-016-9928-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Arginase 1 (ARG1) deficiency is a rare urea cycle disorder (UCD). This hypothesis-generating study explored clinical phenotypes, metabolic profiles, molecular genetics, and treatment approaches in a cohort of children and adults with ARG1 deficiency to add to our understanding of the underlying pathophysiology. METHODS Clinical data were retrieved retrospectively from physicians using a questionnaire survey. Plasma aminoacids, guanidinoacetate (GAA), parameters indicating oxidative stress and nitric oxide (NO) synthesis as well as asymmetric dimethylarginine (ADMA) were measured at a single study site. RESULTS Nineteen individuals with ARG1 deficiency and 19 matched controls were included in the study. In patients, paraparesis, cognitive impairment, and seizures were significantly associated suggesting a shared underlying pathophysiology. In patients plasma GAA exceeded normal ranges and plasma ADMA was significantly elevated. Compared to controls, nitrate was significantly higher, and the nitrite:nitrate ratio significantly lower in subjects with ARG1 deficiency suggesting an advantage for NO synthesis by inducible NO synthase (iNOS) over endothelial NOS (eNOS). Logistic regression revealed no significant impact of any of the biochemical parameters (including arginine, nitrates, ADMA, GAA, oxidative stress) or protein restriction on long-term outcome. CONCLUSION Three main hypotheses which must be evaluated in a hypothesis driven confirmatory study are delineated from this study: 1) clinical manifestations in ARG1 deficiency are not correlated with arginine, protein intake, ADMA, nitrates or oxidative stress. 2) GAA is elevated and may be a marker or an active part of the pathophysiology of ARG1 deficiency. 3) Perturbations of NO metabolism merit future attention in ARG1 deficiency.
Collapse
Affiliation(s)
- Martina Huemer
- Division of Metabolic Diseases and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
- Radiz - Rare Disease Initiative Zurich, University Zurich, Zurich, Switzerland.
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria.
| | - Daniel R Carvalho
- Genetic Unit, SARAH Network of Rehabilitation Hospital, Brasilia, Brazil
| | - Jaime M Brum
- Molecular Pathology Department, Rede Sarah de Hospitais de Reabilitação, Brasilia, Brazil
| | - Özlem Ünal
- Department of Paediatrics, Division of Paediatric Nutrition and Metabolism, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ankara Children's Hospital, Haematology-Oncology Research and Education Hospital, Ankara, Turkey
| | - Turgay Coskun
- Department of Paediatrics, Division of Paediatric Nutrition and Metabolism, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - James D Weisfeld-Adams
- Program for Inherited Metabolic Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nina L Schrager
- Program for Inherited Metabolic Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sabine Scholl-Bürgi
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Schlune
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Markus G Donner
- Department of Gastroenterology, Hepatology and Infectious diseases, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Claudio Gemperle
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Brunhilde Riesner
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Hanno Ulmer
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Häberle
- Division of Metabolic Diseases and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Radiz - Rare Disease Initiative Zurich, University Zurich, Zurich, Switzerland
| | - Daniela Karall
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|