1
|
Bu LK, Jia PP, Huo WB, Pei DS. Assessment of Probiotics' Impact on Neurodevelopmental and Behavioral Responses in Zebrafish Models: Implications for Autism Spectrum Disorder Therapy. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10335-y. [PMID: 39090455 DOI: 10.1007/s12602-024-10335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder; the prevalence of which has been on the rise with unknown causes. Alterations in the gut-brain axis have been widely recognized in ASD patients, and probiotics are considered to potentially benefit the rescuing of autism-like behaviors. However, the effectiveness and mechanisms of multiple probiotics on zebrafish models are still not clearly revealed. This study aims to use the germ-free (GF) and conventionally raised (CR) AB wild-type zebrafish and the mutant Tbr1b-/- and Katnal2-/- lines as human-linked ASD animal models to evaluate the effects of multiple probiotics on mitigating developmental and behavioral defects. Results showed that the addition of probiotics increased the basic important developmental indexes, such as body length, weight, and survival rate of treated zebrafish. Moreover, the Lactobacillus plantarum and Lactobacillus rhamnosus affected the behavior of CR zebrafish by increasing their mobility, lowering the GF zebrafish manic, and mitigating transgenic zebrafish abnormal behavior. Moreover, the expression levels of key genes related to gamma-aminobutyric acid (GABA), dopamine (DA), and serotonin (5-HT) as important neuropathways to influence the appearance and development of autism-related disorders, including gad1b, tph1a, htr3a, th, and slc6a3, were significantly activated by some of the probiotics' treatment at some extent. Taken together, this study indicates the beneficial effects of different probiotics, which may provide a novel understanding of probiotic function in related diseases' therapy.
Collapse
Affiliation(s)
- Ling-Kang Bu
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Wen-Bo Huo
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Miankai Biotechnology Research Institute Co., Ltd., Chongqing, 400025, China.
| |
Collapse
|
2
|
Philpott JD, Hovnanian KMR, Stefater-Richards M, Mehta NM, Martinez EE. The enteroendocrine axis and its effect on gastrointestinal function, nutrition, and inflammation. Curr Opin Crit Care 2024; 30:290-297. [PMID: 38872371 PMCID: PMC11295110 DOI: 10.1097/mcc.0000000000001175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
PURPOSE OF REVIEW Gastrointestinal (GI) dysfunction limits enteral nutrition (EN) delivery in critical illness and contributes to systemic inflammation. The enteroendocrine (EE) axis plays an integral role in this interface between nutrition, inflammation, and GI function in critical illness. In this review, we present an overview of the EE system with a focus on its role in GI inflammation and function. RECENT FINDINGS Enteroendocrine cells have been primarily described in their role in macronutrient digestion and absorption. Recent research has expanded on the diverse functions of EE cells including their ability to sense microbial peptides and metabolites and regulate immune function and inflammation. Therefore, EE cells may be both affected by and contribute to many pathophysiologic states and interventions of critical illness such as dysbiosis , inflammation, and alternative EN strategies. In this review, we present an overview of EE cells including their growing role in nonnutrient functions and integrate this understanding into relevant aspects of critical illness with a focus on EN. SUMMARY The EE system is key in maintaining GI homeostasis in critical illness, and how it is impacted and contributes to outcomes in the setting of dysbiosis , inflammation and different feeding strategies in critical illness should be considered.
Collapse
Affiliation(s)
- Jordan D. Philpott
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care, Boston Children’s Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Mass General for Children, Boston, Massachusetts, USA
| | - K. Marco Rodriguez Hovnanian
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care, Boston Children’s Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Mass General for Children, Boston, Massachusetts, USA
| | - Margaret Stefater-Richards
- Department of Medicine, Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nilesh M. Mehta
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Enid E. Martinez
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care, Boston Children’s Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Mass General for Children, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Gałęcka I, Całka J. Oral Exposure to Microplastics Affects the Neurochemical Plasticity of Reactive Neurons in the Porcine Jejunum. Nutrients 2024; 16:2268. [PMID: 39064711 PMCID: PMC11280339 DOI: 10.3390/nu16142268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Plastics are present in almost every aspect of our lives. Polyethylene terephthalate (PET) is commonly used in the food industry. Microparticles can contaminate food and drinks, posing a threat to consumers. The presented study aims to determine the effect of microparticles of PET on the population of neurons positive for selected neurotransmitters in the enteric nervous system of the jejunum and histological structure. An amount of 15 pigs were divided into three groups (control, receiving 0.1 g, and 1 g/day/animal orally). After 28 days, fragments of the jejunum were collected for immunofluorescence and histological examination. The obtained results show that histological changes (injury of the apical parts of the villi, accumulations of cellular debris and mucus, eosinophil infiltration, and hyperaemia) were more pronounced in pigs receiving a higher dose of microparticles. The effect on neuronal nitric oxide synthase-, and substance P-positive neurons, depends on the examined plexus and the dose of microparticles. An increase in the percentage of galanin-positive neurons and a decrease in cocaine and amphetamine-regulated transcript-, vesicular acetylcholine transporter-, and vasoactive intestinal peptide-positive neurons do not show such relationships. The present study shows that microparticles can potentially have neurotoxic and pro-inflammatory effects, but there is a need for further research to determine the mechanism of this process and possible further effects.
Collapse
Affiliation(s)
- Ismena Gałęcka
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
| |
Collapse
|
4
|
Gałęcka I, Szyryńska N, Całka J. Influence of polyethylene terephthalate (PET) microplastic on selected active substances in the intramural neurons of the porcine duodenum. Part Fibre Toxicol 2024; 21:5. [PMID: 38321545 PMCID: PMC10845528 DOI: 10.1186/s12989-024-00566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Currently, society and industry generate huge amounts of plastics worldwide. The ubiquity of microplastics is obvious, but its impact on the animal and human organism remains not fully understood. The digestive tract is one of the first barriers between pathogens and xenobiotics and a living organism. Its proper functioning is extremely important in order to maintain homeostasis. The aim of this study was to determine the effect of microplastic on enteric nervous system and histological structure of swine duodenum. The experiment was carried out on 15 sexually immature gilts, approximately 8 weeks old. The animals were randomly divided into 3 study groups (n = 5/group). The control group received empty gelatin capsules once a day for 28 days, the first research group received daily gelatin capsules with polyethylene terephthalate (PET) particles as a mixture of particles of various sizes (maximum particle size 300 µm) at a dose of 0.1 g/animal/day. The second study group received a dose ten times higher-1 g/animal/day. RESULTS A dose of 1 g/day/animal causes more changes in the enteric nervous system and in the histological structure of duodenum. Statistically significant differences in the expression of cocaine and amphetamine regulated transcript, galanin, neuronal nitric oxide synthase, substance P, vesicular acetylcholine transporter and vasoactive intestinal peptide between control and high dose group was noted. The histopathological changes were more frequently observed in the pigs receiving higher dose of PET. CONCLUSION Based on this study it may be assumed, that oral intake of microplastic might have potential negative influence on digestive tract, but it is dose-dependent.
Collapse
Affiliation(s)
- Ismena Gałęcka
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
- Deparment of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
| | - Natalia Szyryńska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Jarosław Całka
- Deparment of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| |
Collapse
|
5
|
Dicks LMT. Our Mental Health Is Determined by an Intrinsic Interplay between the Central Nervous System, Enteric Nerves, and Gut Microbiota. Int J Mol Sci 2023; 25:38. [PMID: 38203207 PMCID: PMC10778721 DOI: 10.3390/ijms25010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Bacteria in the gut microbiome play an intrinsic part in immune activation, intestinal permeability, enteric reflex, and entero-endocrine signaling. The gut microbiota communicates with the central nervous system (CNS) through the production of bile acids, short-chain fatty acids (SCFAs), glutamate (Glu), γ-aminobutyric acid (GABA), dopamine (DA), norepinephrine (NE), serotonin (5-HT), and histamine. A vast number of signals generated in the gastrointestinal tract (GIT) reach the brain via afferent fibers of the vagus nerve (VN). Signals from the CNS are returned to entero-epithelial cells (EES) via efferent VN fibers and communicate with 100 to 500 million neurons in the submucosa and myenteric plexus of the gut wall, which is referred to as the enteric nervous system (ENS). Intercommunications between the gut and CNS regulate mood, cognitive behavior, and neuropsychiatric disorders such as autism, depression, and schizophrenia. The modulation, development, and renewal of nerves in the ENS and changes in the gut microbiome alter the synthesis and degradation of neurotransmitters, ultimately influencing our mental health. The more we decipher the gut microbiome and understand its effect on neurotransmission, the closer we may get to developing novel therapeutic and psychobiotic compounds to improve cognitive functions and prevent mental disorders. In this review, the intricate control of entero-endocrine signaling and immune responses that keep the gut microbiome in a balanced state, and the influence that changing gut bacteria have on neuropsychiatric disorders, are discussed.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
6
|
Zhang D, Jia M, Wang C, Li Y, Ma C, Zhu G, Ma R, Wen D, Jia X, Xu G, Zhang X, Cong B. CCK2-receptor deficiency impairs immune balance by influencing CD4 + T cells development by inhibiting cortical-thymic-epithelial-cells. Exp Biol Med (Maywood) 2023; 248:1718-1731. [PMID: 37787155 PMCID: PMC10792431 DOI: 10.1177/15353702231198083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 10/04/2023] Open
Abstract
Immune balance is crucial for an organism's survival and is inseparable from the regulation of the nervous system. Accumulating evidence indicates that cholecystokinin (CCK) plays an important role in mediating the immune response through the activation of cholecystokinin receptors (CCKRs). However, it remains unclear whether CCKRs deficiency may impair immune balance. Here, we showed that CCK2R-deficient adult mice were immunocompromised and had an increased risk of shock and even death in an endotoxemia (ETM)/endotoxin shock (ES) model. In addition, in both adult and juvenile mice, CCK2R deficiency not only influenced the development of CD4 single-positive (SP) thymocytes in thymic positive selection but also decreased the population of CD3+ CD4+ T cells in the spleen. More importantly, CCK2R deficiency inhibited the expression of major histocompatibility complex class II (MHC II) and CD83 on cortical thymic epithelial cells (cTECs) in juvenile and adult mice. Overall, our study suggests that CCK2R is essential for maintaining CD4+ T cell development in the thymus and reveals that CCK2R plays an important role in maintaining immune balance.
Collapse
Affiliation(s)
- Dong Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050017, China
| | - Miaomiao Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Chuan Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingmin Li
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Guiyun Zhu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Rufei Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Di Wen
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Xianxian Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Guangming Xu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaojing Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| |
Collapse
|
7
|
Li C, Ma QY, Liu XQ, Li HD, Yu MJ, Xie SS, Ma WX, Chen Y, Wang JN, He RB, Bian HG, He Y, Gao L, Deng SS, Zang HM, Gong Q, Wen JG, Liu MM, Yang C, Chen HY, Li J, Lan HY, Jin J, Yao RS, Meng XM. Genetic and pharmacological inhibition of GRPR protects against acute kidney injury via attenuating renal inflammation and necroptosis. Mol Ther 2023; 31:2734-2754. [PMID: 37415332 PMCID: PMC10492025 DOI: 10.1016/j.ymthe.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
Gastrin-releasing peptide (GRP) binds to its receptor (GRP receptor [GRPR]) to regulate multiple biological processes, but the function of GRP/GRPR axis in acute kidney injury (AKI) remains unknown. In the present study, GRPR is highly expressed by tubular epithelial cells (TECs) in patients or mice with AKI, while histone deacetylase 8 may lead to the transcriptional activation of GRPR. Functionally, we uncovered that GRPR was pathogenic in AKI, as genetic deletion of GRPR was able to protect mice from cisplatin- and ischemia-induced AKI. This was further confirmed by specifically deleting the GRPR gene from TECs in GRPRFlox/Flox//KspCre mice. Mechanistically, we uncovered that GRPR was able to interact with Toll-like receptor 4 to activate STAT1 that bound the promoter of MLKL and CCL2 to induce TEC necroptosis, necroinflammation, and macrophages recruitment. This was further confirmed by overexpressing STAT1 to restore renal injury in GRPRFlox/Flox/KspCre mice. Concurrently, STAT1 induced GRP synthesis to enforce the GRP/GRPR/STAT1 positive feedback loop. Importantly, targeting GRPR by lentivirus-packaged small hairpin RNA or by treatment with a novel GRPR antagonist RH-1402 was able to inhibit cisplatin-induced AKI. In conclusion, GRPR is pathogenic in AKI and mediates AKI via the STAT1-dependent mechanism. Thus, targeting GRPR may be a novel therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qiu-Ying Ma
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, No. 100 Huaihai Road, Hefei 230012, China
| | - Xue-Qi Liu
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hai-di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Jun Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wen-Xian Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ruo-Bing He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - He-Ge Bian
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Li Gao
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Sheng-Song Deng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hong-Mei Zang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qian Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chen Yang
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Road, Zhanjiang 524001, China
| | - Hai-Yong Chen
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, The University of Hong Kong, Shenzhen 518009, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Liu Che Woo Institute of Innovative Medicine, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China.
| | - Ri-Sheng Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
8
|
Lebrun LJ, Dusuel A, Xolin M, Le Guern N, Grober J. Activation of TLRs Triggers GLP-1 Secretion in Mice. Int J Mol Sci 2023; 24:5333. [PMID: 36982420 PMCID: PMC10049702 DOI: 10.3390/ijms24065333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/14/2023] Open
Abstract
The gastrointestinal tract constitutes a large interface with the inner body and is a crucial barrier against gut microbiota and other pathogens. As soon as this barrier is damaged, pathogen-associated molecular patterns (PAMPs) are recognized by immune system receptors, including toll-like receptors (TLRs). Glucagon-like peptide 1 (GLP-1) is an incretin that was originally involved in glucose metabolism and recently shown to be rapidly and strongly induced by luminal lipopolysaccharides (LPS) through TLR4 activation. In order to investigate whether the activation of TLRs other than TLR4 also increases GLP-1 secretion, we used a polymicrobial infection model through cecal ligation puncture (CLP) in wild-type and TLR4-deficient mice. TLR pathways were assessed by intraperitoneal injection of specific TLR agonists in mice. Our results show that CLP induces GLP-1 secretion both in wild-type and TLR4-deficient mice. CLP and TLR agonists increase gut and systemic inflammation. Thus, the activation of different TLRs increases GLP-1 secretion. This study highlights for the first time that, in addition to an increased inflammatory status, CLP and TLR agonists also strongly induce total GLP-1 secretion. Microbial-induced GLP-1 secretion is therefore not only a TLR4/LPS-cascade.
Collapse
Affiliation(s)
- Lorène J. Lebrun
- INSERM LNC UMR1231, Université de Bourgogne, 21000 Dijon, France
- LipSTIC LabEx, 21000 Dijon, France
- Institut Agro Dijon, 21000 Dijon, France
| | - Alois Dusuel
- INSERM LNC UMR1231, Université de Bourgogne, 21000 Dijon, France
- LipSTIC LabEx, 21000 Dijon, France
| | - Marion Xolin
- INSERM LNC UMR1231, Université de Bourgogne, 21000 Dijon, France
- LipSTIC LabEx, 21000 Dijon, France
| | - Naig Le Guern
- INSERM LNC UMR1231, Université de Bourgogne, 21000 Dijon, France
- LipSTIC LabEx, 21000 Dijon, France
| | - Jacques Grober
- INSERM LNC UMR1231, Université de Bourgogne, 21000 Dijon, France
- LipSTIC LabEx, 21000 Dijon, France
- Institut Agro Dijon, 21000 Dijon, France
| |
Collapse
|
9
|
Jiao W, Liu L, Zeng Z, Li L, Chen J. Differences in gut microbes in captive pangolins and the effects of captive breeding. Front Microbiol 2022; 13:1053925. [PMID: 36560954 PMCID: PMC9763570 DOI: 10.3389/fmicb.2022.1053925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal microorganisms are crucial for health and have a significant impact on biological processes, such as metabolism, immunity, and neural regulation. Although pangolin are protected animals in China and listed as critically endangered (CR) level by The International Union for Conservation of Nature (IUCN), the population of wild pangolins has decreased sharply in recent decades. Captive breeding has been adopted to protect pangolins, but the survival is low due to gastrointestinal infections, diarrhea, and parasitic infections. Studies on intestinal microbes in pangolins may reveal the relationship between intestinal microorganisms and health and assist protection. To explore the relationship between intestinal microorganisms and pangolin health, blood parameters and intestinal microorganisms of 10 pangolins (two Manis pentadactyla and eight Manis javanica) were studied at the Shenzhen Wildlife Rescue Center. There is difference among adult Sunda pangolins (M. javanica), adult Chinese pangolins (M. pentadactyla) and sub-adult Sunda pangolins (M. javanica) in intestinal microbial composition, diversity and phenotypic diversity, which suggested that adult Sunda pangolins occupied more diversity and proportion of microbial species to resist environmental pressure than the others. Due to the captive breeding serum cortisol of pangolins was increased, and the intestinal microbial structure changed, which may affect immunity. This study provides a scientific basis for the rescue of pangolins through artificial breeding.
Collapse
Affiliation(s)
- Wenjing Jiao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China,*Correspondence: Wenjing Jiao
| | - Lina Liu
- Shenzhen Management Bureau of Natural Reserve, Guangdong, China
| | - Zhiliao Zeng
- Shenzhen Management Bureau of Natural Reserve, Guangdong, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China,Jinping Chen
| |
Collapse
|
10
|
Haque R, Das II, Sawant PB, Chadha NK, Sahoo L, Kumar R, Sundaray JK. Tenets in Microbial Endocrinology: A New Vista in Teleost Reproduction. Front Physiol 2022; 13:871045. [PMID: 36035477 PMCID: PMC9411670 DOI: 10.3389/fphys.2022.871045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Climate vulnerability and induced changes in physico-chemical properties of aquatic environment can bring impairment in metabolism, physiology and reproduction in teleost. Variation in environmental stimuli mainly acts on reproduction by interfering with steroidogenesis, gametogenesis and embryogenesis. The control on reproductive function in captivity is essential for the sustainability of aquaculture production. There are more than 3,000 teleost species across the globe having commercial importance; however, adequate quality and quantity of seed production have been the biggest bottleneck. Probiotics are widely used in aquaculture as a growth promoter, stress tolerance, pathogen inhibition, nutrient digestibility and metabolism, reproductive performance and gamete quality. As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, therefore it is considered to be a full-fledged endocrine organ. Researches on Gut-Brain-Gonad axis (GBG axis) and its importance on physiology and reproduction have already been highlighted for higher mammals; however, the study on fish physiology and reproduction is limited. While looking into the paucity of information, we have attempted to review the present status of microbiome and its interaction between the brain and gut. This review will address a process of the microbiome physiological mechanism involved in fish reproduction. The gut microbiota influences the BPG axis through a wide variety of compounds, including neuropeptides, neurotransmitter homologs and transmitters. Currently, research is being conducted to determine the precise process by which gut microbial composition influences brain function in fish. The gut-brain bidirectional interaction can influence brain biochemistry such as GABA, serotonin and tryptophan metabolites which play significant roles in CNS regulation. This review summarizes the fact, how microbes from gut, skin and other parts of the body influence fish reproduction through the Gut-Brain-Gonad axis.
Collapse
Affiliation(s)
- Ramjanul Haque
- Division of Aquaculture, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Ipsita Iswari Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | | | - Narinder Kumar Chadha
- Division of Aquaculture, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Lakshman Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Rajesh Kumar
- Aquaculture Production and Environment Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Jitendra Kumar Sundaray
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
- *Correspondence: Jitendra Kumar Sundaray,
| |
Collapse
|
11
|
Pergolizzi S, Alesci A, Centofanti A, Aragona M, Pallio S, Magaudda L, Cutroneo G, Lauriano ER. Role of Serotonin in the Maintenance of Inflammatory State in Crohn’s Disease. Biomedicines 2022; 10:biomedicines10040765. [PMID: 35453516 PMCID: PMC9030789 DOI: 10.3390/biomedicines10040765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Crohn’s disease (CD) is a chronic intestinal inflammation considered to be a major entity of inflammatory bowel diseases (IBDs), affecting different segments of the whole gastrointestinal tract. Peripheral serotonin (5-HT), a bioactive amine predominantly produced by gut enterochromaffin cells (ECs), is crucial in gastrointestinal functions, including motility, sensitivity, secretion, and the inflammatory response. These actions are mediated by a large family of serotonin receptors and specialized serotonin transporter (SERT) located on a variety of cell types in the gut. Several studies indicate that intestinal 5-HT signaling is altered in patients with inflammatory bowel disease. Paraformaldehyde-fixed intestinal tissues, obtained from fifteen patients with Crohn’s disease were analyzed by immunostaining for serotonin, Langerin/CD207, and alpha-Smooth Muscle Actin (α-SMA). As controls, unaffected (normal) intestinal specimens of seven individuals were investigated. This study aimed to show the expression of serotonin in dendritic cells (DCs) and myofibroblast which have been characterized with Langerin/CD207 and α-SMA, respectively; furthermore, for the first time, we have found the presence of serotonin in goblet cells. Our results show the correlation between different types of intestinal cells in the maintenance of the inflammatory state in CD linked to the recall of myofibroblasts.
Collapse
Affiliation(s)
- Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Correspondence: (S.P.); (A.A.); (A.C.)
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Correspondence: (S.P.); (A.A.); (A.C.)
| | - Antonio Centofanti
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, 98125 Messina, Italy; (L.M.); (G.C.)
- Correspondence: (S.P.); (A.A.); (A.C.)
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy;
| | - Socrate Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98147 Messina, Italy;
| | - Ludovico Magaudda
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, 98125 Messina, Italy; (L.M.); (G.C.)
| | - Giuseppina Cutroneo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, 98125 Messina, Italy; (L.M.); (G.C.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| |
Collapse
|
12
|
Tear film and ocular surface neuropeptides: Characteristics, synthesis, signaling and implications for ocular surface and systemic diseases. Exp Eye Res 2022; 218:108973. [PMID: 35149082 DOI: 10.1016/j.exer.2022.108973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 01/13/2023]
Abstract
Ocular surface neuropeptides are vital molecules primarily involved in maintaining ocular surface integrity and homeostasis. They also serve as communication channels between the nervous system and the immune system, maintaining the homeostasis of the ocular surface. Tear film and ocular surface neuropeptides have a role in disease often due to abnormalities in their synthesis (either high or low production), signaling through defective receptors, or both. This creates imbalances in otherwise normal physiological processes. They have been observed to be altered in many ocular surface and systemic diseases including dry eye disease, ocular allergy, keratoconus, LASIK-induced dry eye, pterygium, neurotrophic keratitis, corneal graft rejection, microbial keratitis, headaches and diabetes. This review examines the characteristics of neuropeptides, their synthesis and their signaling through G-protein coupled receptors. The review also explores the types of neuropeptides within the tears and ocular surface, and how they change in ocular and systemic diseases.
Collapse
|
13
|
Xu Z, Wei Y, Huang H, Guo S, Ye H. Immunomodulatory role of short neuropeptide F in the mud crab Scylla paramamosain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104260. [PMID: 34536467 DOI: 10.1016/j.dci.2021.104260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Short neuropeptide F (sNPF) is bioactive peptide secreted by neurons of invertebrates. It is one of the important pleiotropic neural molecules that is associated with a variety of physiological processes in invertebrates. However, little is known about the role of sNPF in the immune response. This study aimed to determine the distribution, localization, functional characteristics and signaling mechanisms of the sNPF gene and sNPF receptor (sNPF-R) gene in the mud crab Scylla paramamosain. Results of this study showed that Sp-sNPF and Sp-sNPF-R were widely expressed in neural tissue and other tissues including hemocytes. Further, in situ hybridization analysis revealed that Sp-sNPF and Sp-sNPF-R have specific localization in cerebral ganglion and hemocytes. It was also found that immune stimuli significantly induced Sp-sNPF expression in cerebral ganglion. The hemocyte-derived Sp-sNPF and Sp-sNPF-R were also efficiently activated upon immune stimulation. In vitro sNPF peptide administration enhanced phagocytic ability of hemocytes. However, this activity could be blocked through knockdown of sNPF-R-dsRNA or using adenylate cyclase inhibitors SQ 22536. The results of this study also demonstrated that the contents of signaling molecule adenylyl cyclase (AC), cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in hemocytes can be up-regulated after incubation with sNPF peptide. In addition, the results of in vivo experiments showed that sNPF increased concentration of nitric oxide (NO) and enhanced phagocytic potential in S. paramamosain. The sNPF also significantly induced the expression of immune-related molecules at the gene level in S. paramamosain. In conclusion, the findings of this study indicate that sNPF mediates hemocyte phagocytosis via sNPF-R receptor-coupled AC-cAMP-PKA pathway and influences the innate immune processes in S. paramamosain.
Collapse
Affiliation(s)
- Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yujie Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Songlin Guo
- College of Fisheries, Jimei University, Xiamen 361021, China
| | - Haihui Ye
- College of Fisheries, Jimei University, Xiamen 361021, China.
| |
Collapse
|
14
|
Munari FF, Sichero L, Carloni AC, Lacerda CF, Nunes EM, de Oliveira ATT, Scapulatempo-Neto C, da Silva SRM, Crema E, Adad SJ, Rodrigues MAM, Henry MACA, Guimarães DP, Reis RM, Villa LL, Longatto-Filho A. Frequency of Human Papillomavirus Detection in Chagasic Megaesophagus Associated or Not with Esophageal Squamous Cell Carcinoma. Pathobiology 2021; 89:29-37. [PMID: 34818254 DOI: 10.1159/000518697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chagasic megaesophagus (CM) as well as the presence of human papillomavirus (HPV) has been reported as etiological factors for esophageal squamous cell carcinoma (ESCC). OBJECTIVE We assessed the prevalence of HPV DNA in a series of ESCCs associated or not with CM. Data obtained were further correlated to the pathological and clinical data of affected individuals. METHODS A retrospective study was performed on 92 formalin-fixed and paraffin-embedded tissues collected from patients referred to 3 different hospitals in São Paulo, Brazil: Barretos Cancer Hospital, Barretos, São Paulo; Federal University of Triângulo Mineiro, Uberaba, Minas Gerais; and São Paulo State University, Botucatu, São Paulo. Cases were divided into 3 groups: (i) 24 patients with CM associated with ESCC (CM/ESCC); (ii) 37 patients with ESCC without CM (ESCC); and (iii) 31 patients with CM without ESCC (CM). Detection of HPV DNA was assessed in all samples by a genotyping assay combining multiplex polymerase chain reaction and bead-based Luminex technology. RESULTS We identified a high prevalence of high-risk HPV in patients in the CM group (12/31, 38.8%) and CM/ESCC (8/24, 33.3%), compared to individuals in the ESCC group (6/37, 16.3%). The individuals in the groups with cancer (ESCC and CM/ESCC) had a higher frequency of HPV-16 (4/9, 44.5% and 2/8, 25.0%). The other types of high-risk HPVs detected were HPV-31, 45, 51, 53, 56, 66, and 73. We also observed in some samples HPV coinfection by more than one viral type. Despite the high incidence of HPV, it did not show any association with the patient's clinical-pathological and molecular (TP53 mutation status) characteristics. CONCLUSION This is the first report of the presence of HPV DNA in CM associated with ESCC. HPV infection was more presence in megaesophagus lesions. Further studies are needed to confirm and better understand the role of persistent HPV infection in patients with CM.
Collapse
Affiliation(s)
| | - Laura Sichero
- Center for Translational Research in Oncology, Instituto do Cancer do Estado de Sao Paulo-ICESP, Cerqueira César, Brazil
| | | | - Croider Franco Lacerda
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Department of Digestive Surgery, Barretos Cancer Hospital, Barretos, Brazil
| | - Emily Montosa Nunes
- Center for Translational Research in Oncology, Instituto do Cancer do Estado de Sao Paulo-ICESP, Cerqueira César, Brazil
| | | | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Department of Pathology, Diagnosis of Biopsies and Surgical Specimens, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Eduardo Crema
- Department of Digestive Surgery and Pathology, Medical School, UFTM, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Sheila Jorge Adad
- Departament of Gastroenterology Surgery and Pathology, Medical School, UNESP, São Paulo State University, Botucatu, Brazil
| | | | | | - Denise Peixoto Guimarães
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Department of Endoscopy, Barretos Cancer Hospital, Barretos, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luisa Lina Villa
- Center for Translational Research in Oncology, Instituto do Cancer do Estado de Sao Paulo-ICESP, Cerqueira César, Brazil.,Department of Radiology and Oncology, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Adhemar Longatto-Filho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,Department of Radiology and Oncology, Medical School, University of São Paulo, Butanta, Brazil.,Medical Laboratory of Medical Investigation (LIM) 14, Department of Pathology, Medical School, University of São Paulo, Butanta, Brazil
| |
Collapse
|
15
|
Xu Z, Wei Y, Wang G, Ye H. B-type allatostatin regulates immune response of hemocytes in mud crab Scylla paramamosain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104050. [PMID: 33631272 DOI: 10.1016/j.dci.2021.104050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
B-type allatostatins (AST-B) are neuropeptides that have important physiological roles in arthropods, they have also been identified in a number of crustacean species. Recent research on neuroendocrine-immune (NEI) regulatory system in invertebrates has exploded, it reveals that the NEI network plays an indispensable role in optimizing the immune response and maintaining homeostasis. Herein, mud crab Scylla paramamosain provides a primitive and ancient model to study crosstalk between the neuroendocrine and immune systems. In this study, qRT-PCR analysis showed that the nervous system was the main production site for Sp-AST-B mRNA in S. paramamosain, while its receptor gene (Sp-AST-BR) mRNA could be detected in all the analyzed tissues including hemocytes. This reveals that AST-B might act as a pleiotropic neuropeptide. In situ hybridization further confirmed that granular cells of hemocyte subpopulations express Sp-AST-BR. Time-course analysis revealed that bacteria-analog LPS or virus-analog Poly (I:C) challenge significantly induced Sp-AST-B expression in the thoracic ganglion, and the expression of Sp-AST-BR in hemocytes were also positively changed. Furthermore, mud crabs treated with a synthetic AST-B peptide significantly increased the mRNA levels of AST-BR, nuclear factor-κB (NF-κB) transcription factor (Dorsal and Relish), pro-inflammatory cytokine (IL-16) and immune-effector molecules, and also dramatically enhanced the nitric oxide (NO) production and phagocytic activity in hemocytes. Meanwhile dsRNA-mediated knockdown of Sp-AST-B remarkably suppressed the NO concentrations, phagocytic activity and the expression of immune related genes, resulting in markedly impaired ability of crabs to inhibit bacterial proliferation in vivo. Combined, these data demonstrate that AST-B induced innate immune in the mud crab.
Collapse
Affiliation(s)
- Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yujie Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Guizhong Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Haihui Ye
- College of Fisheries, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
16
|
Impact of food-derived bioactive peptides on gut function and health. Food Res Int 2021; 147:110485. [PMID: 34399481 DOI: 10.1016/j.foodres.2021.110485] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022]
Abstract
The gastrointestinal tract (GIT) is the largest interface between our body and the environment. It is an organ system extending from the mouth to the anus and functions for food intake, digestion, transport and absorption of nutrients, meanwhile providing protection from environmental factors, like toxins, antigens, and pathogens. Diet is one of the leading factors modulating the function of the GIT. Bioactive peptides presenting naturally in food or derived from food proteins during digestion or processing have been revealed multifunctional in diverse biological processes, including maintaining gut health and function. This review summarizes the available evidence regarding the effects of food-derived bioactive peptides on gut function and health. Findings and insights from studies based on in vitro and animal models are discussed. The gastrointestinal mucosa maintains a delicate balance between immune tolerance to nutrients and harmful components, which is crucial for the digestive system's normal functions. Dietary bioactive peptides positively impact gastrointestinal homeostasis by modulating the barrier function, immune responses, and gut microbiota. However, there is limited clinical evidence on the safety and efficacy of bioactive peptides, much less on the applications of dietary peptides for the treatment or prevention of diseases related to the GIT. Further study is warranted to establish the applications of bioactive peptides in regulating gut health and function.
Collapse
|
17
|
Faniyi AA, Wijanarko KJ, Tollitt J, Worthington JJ. Helminth Sensing at the Intestinal Epithelial Barrier-A Taste of Things to Come. Front Immunol 2020; 11:1489. [PMID: 32849506 PMCID: PMC7409516 DOI: 10.3389/fimmu.2020.01489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Human intestinal helminth infection affects more than 1 billion people often in the world's most deprived communities. These parasites are one of the most prevalent neglected tropical diseases worldwide bringing huge morbidities to the host population. Effective treatments and vaccines for helminths are currently limited, and therefore, it is essential to understand the molecular sensors that the intestinal epithelium utilizes in detecting helminths and how the responding factors produced act as modulators of immunity. Defining the cellular and molecular mechanisms that enable helminth detection and expulsion will be critical in identifying potential therapeutic targets to alleviate disease. However, despite decades of research, we have only recently been able to identify the tuft cell as a key helminth sensor at the epithelial barrier. In this review, we will highlight the key intestinal epithelial chemosensory roles associated with the detection of intestinal helminths, summarizing the recent advances in tuft cell initiation of protective type 2 immunity. We will discuss other potential sensory roles of epithelial subsets and introduce enteroendocrine cells as potential key sensors of the microbial alterations that a helminth infection produces, which, given their direct communication to the nervous system via the recently described neuropod, have the potential to transfer the epithelial immune interface systemically.
Collapse
Affiliation(s)
- Aduragbemi A Faniyi
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.,Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kevin J Wijanarko
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.,Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - James Tollitt
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - John J Worthington
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
18
|
Xie Q, Chen X, Meng ZM, Huang XL, Zhang Q, Zhou JQ, Zhang L, He FQ, Zou YP, Gan HT. Glial-derived neurotrophic factor regulates enteric mast cells and ameliorates dextran sulfate sodium-induced experimental colitis. Int Immunopharmacol 2020; 85:106638. [PMID: 32470881 DOI: 10.1016/j.intimp.2020.106638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Although interactions between enteric glial cells (EGCs) and enteric mast cells have been demonstrated to play an important role in the pathogenesis of inflammatory bowel disease (IBD), the exact mechanisms by which EGCs regulate enteric mast cells are still unknown. The aims of this study were to investigate whether glial-derived neurotrophic factor (GDNF), which has been confirmed to be produced mostly by EGCs, might regulate enteric mast cells and ameliorate dextran sulfate sodium (DSS)-induced experimental colitis. METHODS Recombinant adenoviral vectors encoding GDNF (Ad-GDNF) were administered intracolonically in experimental colitis induced by DSS. The disease activity index and histological score were measured. The expression of tumour necrosis factor-α (TNF-α), interleukin-6 and myeloperoxidase (MPO) activity were measured by ELISA assay. The expression of trypsin and β-hexosaminidase were evaluated. GDNF specific receptor (GFR-α1/RET) was detected. The calcium reflux was tested by microplate reader. The expression p-JNK was analyzed by western blot assay. RESULTS GDNF resulted in a significant inhibition of the activation of enteric mast cells by down-regulating JNK signal pathway, lessening intracellular calcium influx, and then reducing the degranulation as well as the expression of pro-inflammatory cytokines via combing with its receptor (GFR-α1/RET) in mast cells, and these inhibitory effects were abrogated by treatment with neutralizing antibody against GDNF. Moreover, the administration of GDNF led to an amelioration of experimental colitis. CONCLUSIONS GDNF are able to regulate enteric mast cells and ameliorate experimental colitis. GDNF might be an important mediator of the cross-talk between EGCs and enteric mast cells, and GDNF might be a useful therapeutic drug for IBD.
Collapse
Affiliation(s)
- Qin Xie
- Department of Geriatric Medicine and Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; Chinese Academy of Sciences Sichuan Translational Medical Research Hospital, Chengdu 610072, China
| | - Xi Chen
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhang Min Meng
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiao Li Huang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiao Zhang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jin Qiu Zhou
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Zhang
- Department of Geriatric Medicine and Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fu Qian He
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yu Pei Zou
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hua Tian Gan
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
19
|
Mohanta L, Das BC, Patri M. Microbial communities modulating brain functioning and behaviors in zebrafish: A mechanistic approach. Microb Pathog 2020; 145:104251. [PMID: 32418919 DOI: 10.1016/j.micpath.2020.104251] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
Microbiota plays a vital role in maintaining their host's physiology, development, reproduction, immune system, nutrient metabolism, brain chemistry and its behavior. How the gut microbiota modulates the brain function altering cognitive and fundamental behavior patterns related to specific functional changes is unclear. Recent studies provide holistic approaches which show gut microbiota can greatly sway all aspects of physiology including gut-brain communication, brain function and behavior by establishing a bi-directional link between the gut and brain. Among these studies, to our knowledge, the present review focus on the new mechanistic basis that relates the microbiota of the intestine with diseases of the nervous system causing behavioral alteration in zebrafish (Danio rerio) during development. The current review on microbiota-gut-brain axis communication showed a high instability of the microbiome at early stage of development in zebrafish. Probiotics restore the composition of the gut microbiota by producing neuroactive compounds and introduce beneficial functions to gut microbial communities, resulting in amelioration of gut inflammation and other intestinal disease phenotypes. Therefore, the present review mainly highlights the mechanistic way of gut-brain function, including neuronal, hormonal, immunological signaling with production of bacterial metabolites. This study consider current knowledge that may enable us to increase our understanding to know how the gut microbiota establishes a connection with brain modulating the gut-brain signaling by alteration of the neurochemistry such as GABA and serotonin levels in brain to control host behavior. Further studies are needed to define the exact microbial and host mechanism in GI disease states and functional syndromes.
Collapse
Affiliation(s)
- Larica Mohanta
- Neurobiology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Bhaskar C Das
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine, Mount Sinai, Annenberg, 19-201, New York, USA
| | - Manorama Patri
- Neurobiology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, 753003, Odisha, India.
| |
Collapse
|
20
|
Yu Y, Yang W, Li Y, Cong Y. Enteroendocrine Cells: Sensing Gut Microbiota and Regulating Inflammatory Bowel Diseases. Inflamm Bowel Dis 2020; 26:11-20. [PMID: 31560044 PMCID: PMC7539793 DOI: 10.1093/ibd/izz217] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Host sensing in the gut microbiota has been crucial in the regulation of intestinal homeostasis. Although inflammatory bowel diseases (IBDs), multifactorial chronic inflammatory conditions of the gastrointestinal tract, have been associated with intestinal dysbiosis, the detailed interactions between host and gut microbiota are still not completely understood. Enteroendocrine cells (EECs) represent 1% of the intestinal epithelium. Accumulating evidence indicates that EECs are key sensors of gut microbiota and/or microbial metabolites. They can secrete cytokines and peptide hormones in response to microbiota, either in traditional endocrine regulation or by paracrine impact on proximal tissues and/or cells or via afferent nerve fibers. Enteroendocrine cells also play crucial roles in mucosal immunity, gut barrier function, visceral hyperalgesia, and gastrointestinal (GI) motility, thereby regulating several GI diseases, including IBD. In this review, we will focus on EECs in sensing microbiota, correlating enteroendocrine perturbations with IBD, and the underlying mechanisms.
Collapse
Affiliation(s)
- Yanbo Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, P.R. China
- Department of Microbiology and Immunology and Branch, Galveston, Texas, USA
| | - Wenjing Yang
- Department of Microbiology and Immunology and Branch, Galveston, Texas, USA
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Yingzi Cong
- Department of Microbiology and Immunology and Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
21
|
Effect of enzymatic hydrolysate of cottonseed protein supplementation on growth performance and intestinal health of nursery pigs in Thailand. Trop Anim Health Prod 2019; 52:425-433. [PMID: 31713705 DOI: 10.1007/s11250-019-02078-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
Abstract
This study investigated the effects of enzymatic hydrolysate of cottonseed protein (EHCP) supplementation on the growth performance and intestinal health of nursery pigs in Thailand. A total of 180 newly weaned piglets were randomly allocated to 3 groups with 6 replicates in each group and 10 piglets per replicate. Nursery pigs were fed three diets containing 0, 1%, and 1.5% EHCP for 28-63 days of age. The results indicated that 1% EHCP supplementation increased average daily feed intake (ADFI) and average daily gain (ADG) and decreased feed conversion rate (FCR) in the numerical, suggesting that appropriate EHCP supplementation could numerically improve growth performance of nursery pigs in Thailand. Moreover, 1% EHCP supplementation significantly decreased intestinal crypt depth and diarrhea incidence and increased intestinal villus height to crypt depth ratio and fecal consistency, suggesting that optimum EHCP supplementation could improve intestinal morphology and decreased diarrhea incidence of nursery pigs in Thailand. Furthermore, 1% EHCP supplementation significantly improved intestinal glutathione (GSH) level and superoxide dismutase (SOD) activity and indicated that optimal EHCP supplementation could improve intestinal antioxidant capacity of nursery pigs in Thailand. Optimum EHCP supplementation numerically increased growth, significantly decreased diarrhea incidence, significantly improved intestinal morphology and antioxidant capacity of nursery pig in Thailand.
Collapse
|
22
|
Jonscher R, Belkind-Gerson J. Concise Review: Cellular and Molecular Mechanisms of Postnatal Injury-Induced Enteric Neurogenesis. Stem Cells 2019; 37:1136-1143. [PMID: 31145813 DOI: 10.1002/stem.3045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/14/2019] [Indexed: 12/20/2022]
Abstract
Although still controversial, there is increasing agreement that postnatal neurogenesis occurs in the enteric nervous system (ENS) in response to injury. Following acute colitis, there is significant cell death of enteric neurons and evidence suggests that subsequent neural regeneration follows. An enteric neural stem/progenitor cell population with neurogenic potential has been identified in culture; in vivo, compensatory neurogenesis is driven by enteric glia and may also include de-differentiated Schwann cells. Recent evidence suggests that changes in the enteric microenvironment due to injury-associated increases in glial cell-derived neurotrophic factor (GDNF), serotonin (5-hydroxytryptamine [HT]), products from the gut microbiome, and possibly endocannabinoids may lead to the transdifferentiation of mature enteric glia and may reprogram recruited Schwann cells. Targeting neurogenic pathways presents a promising avenue toward the development of new and innovative treatments for acquired damage to the ENS. In this review, we discuss potential sources of newly generated adult enteric neurons, the involvement of GDNF, 5-HT, endocannabinoids, and lipopolysaccharide, as well as therapeutic applications of this evolving work. Stem Cells 2019;37:1136-1143.
Collapse
Affiliation(s)
- Raleigh Jonscher
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jaime Belkind-Gerson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.,Neurogastroenterology Program, Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
23
|
Guo L, Wu X, Zhang Y, Wang F, Li J, Zhu J. Protective effects of gastrin-releasing peptide receptor antagonist RC-3095 in an animal model of hepatic ischemia/reperfusion injury. Hepatol Res 2019; 49:247-255. [PMID: 30656798 DOI: 10.1111/hepr.13315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
AIM We aimed to evaluate effects of RC-3095 on mice with hepatic ischemia followed by reperfusion (I/R) injury and further explore the possible underlying mechanism. METHODS Mice were subjected to partial hepatic ischemia for 60 min followed by different durations of reperfusion. Levels of gastrin-releasing peptide (GRP) and GRP receptor (GRPR) in the blood and liver were detected by enzyme-linked immunosorbent assay (ELISA) or western blotting (WB) after 3, 6, 12, or 24 h of reperfusion. RC-3095 or normal saline (control) was given i.p. at the time of reperfusion. Expressions of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 in blood and liver samples were examined with ELISA. Neutrophil influx into the liver was assessed by flow cytometry and myeloperoxidase assay. Hematoxylin-eosin staining of the liver and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling assay were used to determine hepatic injury and hepatocellular necrosis. Activation of nuclear factor (NF)-κB and p38/extracellular regulated protein kinase (ERK) mitogen activated protein kinase (MAPK) was investigated with WB. RESULTS The expression of GRP was upregulated within 3 h after reperfusion and remained elevated for up to 24 h in the liver, whereas GRPR was also upregulated after 3 or 6 h of reperfusion, but returned to baseline levels within 24 h. RC-3095 significantly reduced the inflammatory hepatic injury, liver neutrophil accumulation, and hepatocellular apoptosis, probably by inhibiting activation of NF-κB or p38/ERK MAPK. CONCLUSION These findings supported that GRP-GRPR played an important role in hepatic I/R injury, and RC-3095 ameliorated liver damage by suppressing the inflammatory response and hepatocellular necrosis.
Collapse
Affiliation(s)
- Long Guo
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinwan Wu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zhang
- Department of Anesthesiology, Central Hospital of Jiading District, Shanghai, China
| | - Fang Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiali Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Mantelmacher FD, Zvibel I, Cohen K, Epshtein A, Pasmanik-Chor M, Vogl T, Kuperman Y, Weiss S, Drucker DJ, Varol C, Fishman S. GIP regulates inflammation and body weight by restraining myeloid-cell-derived S100A8/A9. Nat Metab 2019; 1:58-69. [PMID: 32694806 DOI: 10.1038/s42255-018-0001-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/01/2018] [Indexed: 12/25/2022]
Abstract
Enteroendocrine cells relay energy-derived signals to immune cells to signal states of nutrient abundance and control immunometabolism. Emerging data suggest that the gut-derived nutrient-induced incretin glucose-dependent insulinotropic polypeptide (GIP) operates at the interface of metabolism and inflammation. Here we show that high-fat diet (HFD)-fed mice with immune cell-targeted GIP receptor (GIPR) deficiency exhibit greater weight gain, insulin resistance, hepatic steatosis and significant myelopoiesis concomitantly with impaired energy expenditure and inguinal white adipose tissue (WAT) beiging. Expression of the S100 calcium-binding protein S100A8 was increased in the WAT of mice with immune cell-targeted GIPR deficiency and co-deletion of GIPR and the heterodimer S100A8/A9 in immune cells ameliorated the aggravated metabolic and inflammatory phenotype following a HFD. Specific GIPR deletion in myeloid cells identified this lineage as the target of GIP effects. Furthermore, GIP directly downregulated S100A8 expression in adipose tissue macrophages. Collectively, our results identify a myeloid-GIPR-S100A8/A9 signalling axis coupling nutrient signals to the control of inflammation and adaptive thermogenesis.
Collapse
Affiliation(s)
- Fernanda Dana Mantelmacher
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Isabel Zvibel
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Keren Cohen
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Alona Epshtein
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Shai Weiss
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Chen Varol
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sigal Fishman
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
25
|
Eissa N, Hussein H, Hendy GN, Bernstein CN, Ghia JE. Chromogranin-A and its derived peptides and their pharmacological effects during intestinal inflammation. Biochem Pharmacol 2018; 152:315-326. [PMID: 29656116 DOI: 10.1016/j.bcp.2018.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the largest endocrine organ that produces a broad range of active peptides. Mucosal changes during inflammation alter the distribution and products of enteroendocrine cells (EECs) that play a role in immune activation and regulation of gut homeostasis by mediating communication between the nervous, endocrine and immune systems. Patients with inflammatory bowel disease (IBD) typically have altered expression of chromogranin (CHG)-A (CHGA), a major soluble protein secreted by EECs that functions as a pro-hormone. CHGA gives rise to several bioactive peptides that have direct or indirect effects on intestinal inflammation. In IBD, CHGA and its derived peptides are correlated with the disease activity. In this review we describe the potential immunomodulatory roles of CHGA and its derived peptides and their clinical relevance during the progression of intestinal inflammation. Targeting CHGA and its derived peptides could be of benefit for the diagnosis and clinical management of IBD patients.
Collapse
Affiliation(s)
- Nour Eissa
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Hayam Hussein
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus, OH, USA
| | - Geoffrey N Hendy
- Metabolic Disorders and Complications, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University, Montréal, QC, Canada
| | - Charles N Bernstein
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada; Section of Gastroenterology, Department of Internal Medicine, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jean-Eric Ghia
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada; Section of Gastroenterology, Department of Internal Medicine, College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
26
|
Worthington JJ, Reimann F, Gribble FM. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol 2018; 11:3-20. [PMID: 28853441 DOI: 10.1038/mi.2017.73] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium must balance efficient absorption of nutrients with partitioning commensals and pathogens from the bodies' largest immune system. If this crucial barrier fails, inappropriate immune responses can result in inflammatory bowel disease or chronic infection. Enteroendocrine cells represent 1% of this epithelium and have classically been studied for their detection of nutrients and release of peptide hormones to mediate digestion. Intriguingly, enteroendocrine cells are the key sensors of microbial metabolites, can release cytokines in response to pathogen associated molecules and peptide hormone receptors are expressed on numerous intestinal immune cells; thus enteroendocrine cells are uniquely equipped to be crucial and novel orchestrators of intestinal inflammation. In this review, we introduce enteroendocrine chemosensory roles, summarize studies correlating enteroendocrine perturbations with intestinal inflammation and describe the mechanistic interactions by which enteroendocrine and mucosal immune cells interact during disease; highlighting this immunoendocrine axis as a key aspect of innate immunity.
Collapse
Affiliation(s)
- J J Worthington
- Lancaster University, Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster, Lancashire, UK
| | - F Reimann
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust/MRC Institute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| | - F M Gribble
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust/MRC Institute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
27
|
Sagarkar S, Mahajan S, Choudhary AG, Borkar CD, Kokare DM, Sakharkar AJ. Traumatic stress-induced persistent changes in DNA methylation regulate neuropeptide Y expression in rat jejunum. Neurogastroenterol Motil 2017; 29. [PMID: 28418087 DOI: 10.1111/nmo.13074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Stress-induced chronic neuropsychiatric conditions such as anxiety are often co-morbid with gastrointestinal malfunctions. While we find enduring anxiety-like symptoms following minimal traumatic brain injury (MTBI) in rats, gastrointestinal consequences of MTBI remain elusive. METHODS In this study, we examined the effects of MTBI on a major gut peptide, neuropeptide Y (NPY) and gut motility. DNA methylation was studied as a possible epigenetic mechanism operative in the regulation of NPY expression in the gut. KEY RESULTS Minimal traumatic brain injury reduced the gut motility 48 hours and 30 days after trauma. The expression of DNA methyltransferase isoforms (DNMT1, DNMT3a, and DNMT3b) was altered in the jejunum 48 hours and 30 days after MTBI. However, the mRNA levels of growth arrest and DNA damage 45 (GADD45) isoforms, GADD45a, and GADD45b, which are believed to be involved in active DNA demethylation, initially decreased at 48 hours but subsequently increased after 30 days of trauma. Similarly, DNA hypomethylation at the NPY promoter region in the jejunum was correlated with the increase in NPY mRNA and protein levels 30 days post-trauma. On the other hand, DNA hypomethylation at 48 hours was associated with a decline in NPY expression. Treatment with 5-azacytidine (5-AzaC), a DNMT inhibitor, retarded DNA methylation and restored the NPY mRNA levels in the jejunum of MTBI-induced rats. CONCLUSIONS & INFERENCES These results suggest that DNA demethylation could be operative as an epigenetic mechanism in the long-term regulation of NPY gene expression to alter the gut motility during traumatic stress.
Collapse
Affiliation(s)
- S Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - S Mahajan
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - A G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj, Nagpur University, Nagpur, India
| | - C D Borkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj, Nagpur University, Nagpur, India
| | - D M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj, Nagpur University, Nagpur, India
| | - A J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
28
|
Hattay P, Prusator DK, Tran L, Greenwood-Van Meerveld B. Psychological stress-induced colonic barrier dysfunction: Role of immune-mediated mechanisms. Neurogastroenterol Motil 2017; 29. [PMID: 28300333 DOI: 10.1111/nmo.13043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/09/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Evidence suggests that patients with irritable bowel syndrome (IBS) exhibit increases in gut permeability and alterations in tight junction (TJ) protein expression. Although psychological stress worsens IBS symptoms, the mechanisms by which stress enhances gut permeability and affects TJ protein expression remain to be determined. Here, we test the hypothesis that chronic intermittent psychological stress activates the release of proinflammatory cytokines to alter TJ proteins and promotes increased gut permeability. METHODS Male Fischer-344 rats were subjected to 1 hour of water avoidance stress (WAS) or SHAM stress per day for 7 days. Following the stress protocol, colonic permeability was measured via transepithelial electrical resistance (TEER) and macromolecular flux of horseradish peroxidase (HRP). In tissue isolated from rats exposed to the WAS or SHAM stress, TJ proteins claudin-2, junctional adhesion molecule-A (JAM-A) and zonula occluden-1 (ZO-1) were measured via Western blotting, histological appearance of the colonic segments was assessed via hematoxylin and eosin staining, and an inflammatory cytokine panel was quantified via quantitative reverse transcription-polymerase chain reaction. KEY RESULTS Repetitive daily exposure to WAS decreased the TEER, increased the macromolecular flux of HRP, and altered the expression of claudin-2, JAM-A and ZO-1 proteins within colonic tissue compared to SHAM controls. In the absence of a histologically defined inflammation, the cytokine profiles of WAS-treated animals revealed an increase in interleukin-1β and tumor necrosis factor (TNF)-α. Subsequent analysis revealed a significant positive correlation between TNF-α and expression of TJ protein claudin-2. CONCLUSIONS & INFERENCES Our findings suggest that chronic stress increases colonic permeability via sub-inflammatory cytokine-mediated remodeling of TJ protein expression.
Collapse
Affiliation(s)
- P Hattay
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - D K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - L Tran
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,VA Medical Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
29
|
LRRK2: An Emerging New Molecule in the Enteric Neuronal System That Quantitatively Regulates Neuronal Peptides and IgA in the Gut. Dig Dis Sci 2017; 62:903-912. [PMID: 28168579 DOI: 10.1007/s10620-017-4476-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/25/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Leucine-rich repeat kinase 2 (LRRK2) is a recently discovered molecule associated with familial and sporadic Parkinson's disease. It regulates many central neuronal functions such as cell proliferation, apoptosis, autophagy, and axonal extension. However, in contrast to the well-documented function of LRRK2 in central neurons, it is unclear whether LRRK2 is expressed in enteric neurons and affects the physiology of the gut. AIMS By examining LRRK2-KO mice, this study investigated whether enteric neurons express LRRK2 and whether intestinal neuronal peptides and IgA are quantitatively changed. METHODS Intestinal protein lysates and sections prepared from male C57BL/6 J mice were analyzed by Western blotting and immunostaining using anti-LRRK2 antibody, respectively. Intestinal neuronal peptide-mRNAs were quantified by real-time PCR in wild-type mice and LRRK2-KO mice. Intestinal IgA was quantified by ELISA. Lamina propria mononuclear cells (LPMCs) were analyzed by flow cytometry to evaluate the ratio of B1 to B2 B cells. RESULTS Western analysis and immunostaining revealed that LRRK2 is expressed in enteric neurons. The amounts of mRNA for vasoactive intestinal peptide, neuropeptide Y, and substance P were increased in LRRK2-KO mice accompanied by an increment of IgA. However, the intestinal B cell subpopulations were not altered in LRRK2-KO mice. CONCLUSIONS For the first time, we have revealed that LRRK2 is expressed in enteric neurons and related to quantitative alterations of neuronal peptide and IgA. Our study highlights the importance of LRRK2 in enteric neurons as well as central neurons.
Collapse
|
30
|
Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol Stress 2017; 7:124-136. [PMID: 29276734 PMCID: PMC5736941 DOI: 10.1016/j.ynstr.2017.03.001] [Citation(s) in RCA: 702] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/16/2017] [Accepted: 03/02/2017] [Indexed: 12/11/2022] Open
Abstract
The importance of the gut–brain axis in regulating stress-related responses has long been appreciated. More recently, the microbiota has emerged as a key player in the control of this axis, especially during conditions of stress provoked by real or perceived homeostatic challenge. Diet is one of the most important modifying factors of the microbiota-gut-brain axis. The routes of communication between the microbiota and brain are slowly being unravelled, and include the vagus nerve, gut hormone signaling, the immune system, tryptophan metabolism, and microbial metabolites such as short chain fatty acids. The importance of the early life gut microbiota in shaping later health outcomes also is emerging. Results from preclinical studies indicate that alterations of the early microbial composition by way of antibiotic exposure, lack of breastfeeding, birth by Caesarean section, infection, stress exposure, and other environmental influences - coupled with the influence of host genetics - can result in long-term modulation of stress-related physiology and behaviour. The gut microbiota has been implicated in a variety of stress-related conditions including anxiety, depression and irritable bowel syndrome, although this is largely based on animal studies or correlative analysis in patient populations. Additional research in humans is sorely needed to reveal the relative impact and causal contribution of the microbiome to stress-related disorders. In this regard, the concept of psychobiotics is being developed and refined to encompass methods of targeting the microbiota in order to positively impact mental health outcomes. At the 2016 Neurobiology of Stress Workshop in Newport Beach, CA, a group of experts presented the symposium “The Microbiome: Development, Stress, and Disease”. This report summarizes and builds upon some of the key concepts in that symposium within the context of how microbiota might influence the neurobiology of stress.
Collapse
Affiliation(s)
- Jane A Foster
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
|
32
|
Dave LA, Hayes M, Montoya CA, Rutherfurd SM, Moughan PJ. Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides. Peptides 2016; 76:30-44. [PMID: 26617077 DOI: 10.1016/j.peptides.2015.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/07/2015] [Accepted: 11/19/2015] [Indexed: 01/17/2023]
Abstract
It is well known that endogenous bioactive proteins and peptides play a substantial role in the body's first line of immunological defence, immune-regulation and normal body functioning. Further, the peptides derived from the luminal digestion of proteins are also important for body function. For example, within the peptide database BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) 12 endogenous antimicrobial and 64 angiotensin-I-converting enzyme (ACE-I) inhibitory peptides derived from human milk and plasma proteins are listed. The antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) lists over 111 human host-defence peptides. Several endogenous proteins are secreted in the gut and are subject to the same gastrointestinal digestion processes as food proteins derived from the diet. The human gut endogenous proteins (GEP) include mucins, serum albumin, digestive enzymes, hormones, and proteins from sloughed off epithelial cells and gut microbiota, and numerous other secreted proteins. To date, much work has been carried out regarding the health altering effects of food-derived bioactive peptides but little attention has been paid to the possibility that GEP may also be a source of bioactive peptides. In this review, we discuss the potential of GEP to constitute a gut cryptome from which bioactive peptides such as ACE-I inhibitory, renin inhibitory and antioxidant peptides may be derived.
Collapse
Affiliation(s)
- Lakshmi A Dave
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand; Teagasc, The Irish Agricultural and Food Development Authority, Food BioSciences Department, Ashtown, D 15 Dublin, Ireland
| | - Maria Hayes
- Teagasc, The Irish Agricultural and Food Development Authority, Food BioSciences Department, Ashtown, D 15 Dublin, Ireland
| | - Carlos A Montoya
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
| | - Shane M Rutherfurd
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.
| | - Paul J Moughan
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
33
|
Moloney RD, Johnson AC, O'Mahony SM, Dinan TG, Greenwood‐Van Meerveld B, Cryan JF. Stress and the Microbiota-Gut-Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome. CNS Neurosci Ther 2016; 22:102-17. [PMID: 26662472 PMCID: PMC6492884 DOI: 10.1111/cns.12490] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 02/06/2023] Open
Abstract
Visceral pain is a global term used to describe pain originating from the internal organs of the body, which affects a significant proportion of the population and is a common feature of functional gastrointestinal disorders (FGIDs) such as irritable bowel syndrome (IBS). While IBS is multifactorial, with no single etiology to completely explain the disorder, many patients also experience comorbid behavioral disorders, such as anxiety or depression; thus, IBS is described as a disorder of the gut-brain axis. Stress is implicated in the development and exacerbation of visceral pain disorders. Chronic stress can modify central pain circuitry, as well as change motility and permeability throughout the gastrointestinal (GI) tract. More recently, the role of the gut microbiota in the bidirectional communication along the gut-brain axis, and subsequent changes in behavior, has emerged. Thus, stress and the gut microbiota can interact through complementary or opposing factors to influence visceral nociceptive behaviors. This review will highlight the evidence by which stress and the gut microbiota interact in the regulation of visceral nociception. We will focus on the influence of stress on the microbiota and the mechanisms by which microbiota can affect the stress response and behavioral outcomes with an emphasis on visceral pain.
Collapse
Affiliation(s)
- Rachel D. Moloney
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Present address:
Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Anthony C. Johnson
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Siobhain M. O'Mahony
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| | - Timothy G. Dinan
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkCorkIreland
| | - Beverley Greenwood‐Van Meerveld
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
- V.A. Medical CenterOklahoma CityOKUSA
| | - John F. Cryan
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| |
Collapse
|
34
|
Abstract
Insulin is a key hormone controlling metabolic homeostasis. Loss or dysfunction of pancreatic β-cells lead to the release of insufficient insulin to cover the organism needs, promoting diabetes development. Since dietary nutrients influence the activity of β-cells, their inadequate intake, absorption and/or utilisation can be detrimental. This review will highlight the physiological and pathological effects of nutrients on insulin secretion and discuss the underlying mechanisms. Glucose uptake and metabolism in β-cells trigger insulin secretion. This effect of glucose is potentiated by amino acids and fatty acids, as well as by entero-endocrine hormones and neuropeptides released by the digestive tract in response to nutrients. Glucose controls also basal and compensatory β-cell proliferation and, along with fatty acids, regulates insulin biosynthesis. If in the short-term nutrients promote β-cell activities, chronic exposure to nutrients can be detrimental to β-cells and causes reduced insulin transcription, increased basal secretion and impaired insulin release in response to stimulatory glucose concentrations, with a consequent increase in diabetes risk. Likewise, suboptimal early-life nutrition (e.g. parental high-fat or low-protein diet) causes altered β-cell mass and function in adulthood. The mechanisms mediating nutrient-induced β-cell dysfunction include transcriptional, post-transcriptional and translational modifications of genes involved in insulin biosynthesis and secretion, carbohydrate and lipid metabolism, cell differentiation, proliferation and survival. Altered expression of these genes is partly caused by changes in non-coding RNA transcripts induced by unbalanced nutrient uptake. A better understanding of the mechanisms leading to β-cell dysfunction will be critical to improve treatment and find a cure for diabetes.
Collapse
|
35
|
The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease. Biochem Soc Trans 2015; 43:727-33. [PMID: 26551720 PMCID: PMC4613519 DOI: 10.1042/bst20150090] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 12/17/2022]
Abstract
The intestinal epithelium plays a crucial role in maintaining barrier function and immune homeostasis, a failure of which results in disease. This review focuses on the epithelial enteroendocrine cells and the crosstalk that exists with immune cells during inflammation. The intestinal epithelium represents one of our most important interfaces with the external environment. It must remain tightly balanced to allow nutrient absorption, but maintain barrier function and immune homoeostasis, a failure of which results in chronic infection or debilitating inflammatory bowel disease (IBD). The intestinal epithelium mainly consists of absorptive enterocytes and secretory goblet and Paneth cells and has recently come to light as being an essential modulator of immunity as opposed to a simple passive barrier. Each epithelial sub-type can produce specific immune modulating factors, driving innate immunity to pathogens as well as preventing autoimmunity. The enteroendocrine cells comprise just 1% of this epithelium, but collectively form the bodies’ largest endocrine system. The mechanisms of enteroendocrine cell peptide secretion during feeding, metabolism and nutrient absorption are well studied; but their potential interactions with the enriched numbers of surrounding immune cells remain largely unexplored. This review focuses on alterations in enteroendocrine cell number and peptide secretion during inflammation and disease, highlighting the few in depth studies which have attempted to dissect the immune driven mechanisms that drive these phenomena. Moreover, the emerging potential of enteroendocrine cells acting as innate sensors of intestinal perturbation and secreting peptides to directly orchestrate immune cell function will be proposed. In summary, the data generated from these studies have begun to unravel a complex cross-talk between immune and enteroendocrine cells, highlighting the emerging immunoendocrine axis as a potential target for therapeutic strategies for infections and inflammatory disorders of the intestine.
Collapse
|
36
|
The enteric nervous system neuropeptide, bombesin, reverses innate immune impairments during parenteral nutrition. Ann Surg 2015; 260:432-43; discussion 443-4. [PMID: 25115419 DOI: 10.1097/sla.0000000000000871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lack of enteral stimulation during parenteral nutrition (PN) impairs mucosal immunity. Bombesin (BBS), a gastrin-releasing peptide analogue, reverses PN-induced defects in acquired immunity. Paneth cells produce antimicrobial peptides (AMPs) of innate immunity for release after cholinergic stimulation. OBJECTIVE Determine if BBS restores AMPs and bactericidal function during PN. METHODS Intravenously cannulated male ICR mice were randomized to Chow, PN, or PN+BBS (15 μg 3 times daily, n = 7 per group) for 5 days. Ileum was analyzed for AMPs (Protein: sPLA2 by fluorescence, lysozyme and RegIII-γ by western andcryptdin-4 by ELISA; mRNA: all by RT-PCR). Cholinergic stimulated (100 μM bethanechol) ileal specimens assessed Pseudomonas bactericidal activity. Ileum (Chow: n = 7; PN: n = 9; PN+BBS: n = 8) was assessed for Escherichia coli invasion in ex-vivo culture. RESULTS PN significantly decreased most AMPs versus Chow while BBS maintained Chow levels (sPLA2: Chow: 107 + 14*, PN: 44.6 + 7.2, PN+BBS: 78.7 + 13.4* Fl/min/μL/total protein; Lysozyme: Chow: 63.9 + 11.9*, PN: 26.8 + 6.2; PN+BBS: 64.9 + 13.8* lysozyme/total protein; RegIII-γ: Chow: 51.5 + 10.0*, PN: 20.4 + 4.3, PN+BBS: 31.0 + 8.4 RegIII-γ/total protein; Cryptdin-4: Chow: 18.4 + 1.5*, PN: 12.7 + 1.6, PN+BBS: 26.1 + 2.4*† pg/mg [all *P < 0.05 vs PN and †P < 0.05 vs Chow]). Functionally, BBS prevented PN loss of bactericidal activity after cholinergic stimulation (Chow: 25.3 + 3.6*, PN: 13.0 + 3.2; PN+BBS: 27.0 + 4.7* percent bacterial killing, *P < 0.05 vs PN). BBS reduced bacterial invasion in unstimulated tissue barely missing significance (P = 0.06). CONCLUSIONS The enteric nervous system (ENS) controls AMP levels in Paneth cells during PN but mucosal protection by innate immunity requires both ENS and parasympathetic stimulation.
Collapse
|
37
|
Moloney RD, O'Mahony SM, Dinan TG, Cryan JF. Stress-induced visceral pain: toward animal models of irritable-bowel syndrome and associated comorbidities. Front Psychiatry 2015; 6:15. [PMID: 25762939 PMCID: PMC4329736 DOI: 10.3389/fpsyt.2015.00015] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. It is a hallmark of functional gastrointestinal disorders such as irritable-bowel syndrome (IBS). Currently, the treatment strategies targeting visceral pain are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here, we discuss the complex etiology of visceral pain reviewing our current understanding in the context of the role of stress, gender, gut microbiota alterations, and immune functioning. Furthermore, we review the role of glutamate, GABA, and epigenetic mechanisms as possible therapeutic strategies for the treatment of visceral pain for which there is an unmet medical need. Moreover, we discuss the most widely described rodent models used to model visceral pain in the preclinical setting. The theory behind, and application of, animal models is key for both the understanding of underlying mechanisms and design of future therapeutic interventions. Taken together, it is apparent that stress-induced visceral pain and its psychiatric comorbidities, as typified by IBS, has a multifaceted etiology. Moreover, treatment strategies still lag far behind when compared to other pain modalities. The development of novel, effective, and specific therapeutics for the treatment of visceral pain has never been more pertinent.
Collapse
Affiliation(s)
- Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland
| | - Siobhain M O'Mahony
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Psychiatry, University College Cork , Cork , Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| |
Collapse
|
38
|
Burnstock G, Boeynaems JM. Purinergic signalling and immune cells. Purinergic Signal 2014; 10:529-64. [PMID: 25352330 PMCID: PMC4272370 DOI: 10.1007/s11302-014-9427-2] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022] Open
Abstract
This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
39
|
Poole DP, Lee M, Tso P, Bunnett NW, Yo SJ, Lieu T, Shiu A, Wang JC, Nomura DK, Aponte GW. Feeding-dependent activation of enteric cells and sensory neurons by lymphatic fluid: evidence for a neurolymphocrine system. Am J Physiol Gastrointest Liver Physiol 2014; 306:G686-98. [PMID: 24578341 PMCID: PMC3989702 DOI: 10.1152/ajpgi.00433.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lymphatic fluid is a plasma filtrate that can be viewed as having biological activity through the passive accumulation of molecules from the interstitial fluid. The possibility that lymphatic fluid is part of an active self-contained signaling process that parallels the endocrine system, through the activation of G-protein coupled receptors (GPCR), has remained unexplored. We show that the GPCR lysophosphatidic acid 5 (LPA5) is found in sensory nerve fibers expressing calcitonin gene-related peptide (CGRP) that innervate the lumen of lymphatic lacteals and enteric nerves. Using LPA5 as a model for nutrient-responsive GPCRs present on sensory nerves, we demonstrate that dietary protein hydrolysate (peptone) can induce c-Fos expression in enterocytes and nerves that express LPA5. Mesenteric lymphatic fluid (MLF) mobilizes intracellular calcium in cell models expressing LPA5 upon feeding in a time- and dose-dependent manner. Primary cultured neurons of the dorsal root ganglia expressing CGRP are activated by MLF, which is enhanced upon LPA5 overexpression. Activation is independent of the known LPA5 agonists, lysophosphatidic acid and farnesyl pyrophosphate. These data bring forth a pathway for the direct stimulation of sensory nerves by luminal contents and interstitial fluid. Thus, by activating LPA5 on sensory nerves, MLF provides a means for known and yet to be identified constituents of the interstitial fluid to act as signals to comprise a "neurolymphocrine" system.
Collapse
Affiliation(s)
- Daniel P. Poole
- 1Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia; ,2Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia;
| | - Mike Lee
- 4Department of Pathology, Stanford University, Palo Alto, California;
| | - Patrick Tso
- 6Department of Pathobiology and Molecular Medicine, University of Cincinnati, Reading, Ohio
| | - Nigel W. Bunnett
- 1Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia; ,3Department of Pharmacology, The University of Melbourne, Parkville, Victoria, Australia;
| | - Sek Jin Yo
- 5Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, California;
| | - TinaMarie Lieu
- 1Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia;
| | - Amy Shiu
- 5Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, California;
| | - Jen-Chywan Wang
- 5Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, California;
| | - Daniel K. Nomura
- 5Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, California;
| | - Gregory W. Aponte
- 5Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, California;
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Enteral nutrition is recommended as a standard nutritional therapy in clinical settings. The rationale behind enteral nutrition may be decreased infectious morbidities compared with parenteral nutrition. However, the mechanism may not be well understood. RECENT FINDINGS Animal studies have revealed that enteral nutrition, compared with parenteral nutrition, preserves the gut-associated lymphoid tissue mass and function with well controlled gut cytokine milieu and intracellular signaling pathway, leading to the maintenance of intestinal and extraintestinal acquired mucosal immunity. Moreover, enteral nutrition can enhance the gut innate immunity by increasing the antimicrobial peptides, such as secretory phospholipase A2. More importantly, a recent clinical study demonstrated preoperative parenteral nutrition without enteral nutrition to decrease the number of T cells, IgA-producing cells, and mature dendritic cells in human terminal ileum, which are consistent with the data obtained from animal studies. Investigation of the mechanism has given us some surrogates of enteral nutrition during parenteral nutrition, such as glutamine, butyric acid, cytokines, and other mediators. However, to date, no surrogates can restore parenteral-nutrition-induced impairment of host defense completely. SUMMARY Because enteral nutrition is a practical way to preserve gut immunity, clinicians should make any efforts to shorten the period of enteral nutrition absence and increase the dose according to the degree of tolerance.
Collapse
|
41
|
Abstract
Bacterial colonisation of the gut plays a major role in postnatal development and maturation of key systems that have the capacity to influence central nervous system (CNS) programming and signaling, including the immune and endocrine systems. Individually, these systems have been implicated in the neuropathology of many CNS disorders and collectively they form an important bidirectional pathway of communication between the microbiota and the brain in health and disease. Regulation of the microbiome-brain-gut axis is essential for maintaining homeostasis, including that of the CNS. Moreover, there is now expanding evidence for the view that commensal organisms within the gut play a role in early programming and later responsivity of the stress system. Research has focused on how the microbiota communicates with the CNS and thereby influences brain function. The routes of this communication are not fully elucidated but include neural, humoral, immune and metabolic pathways. This view is underpinned by studies in germ-free animals and in animals exposed to pathogenic bacterial infections, probiotic agents or antibiotics which indicate a role for the gut microbiota in the regulation of mood, cognition, pain and obesity. Thus, the concept of a microbiome-brain-gut axis is emerging which suggests that modulation of the gut microflora may be a tractable strategy for developing novel therapeutics for complex stress-related CNS disorders where there is a huge unmet medical need.
Collapse
|
42
|
Costes LMM, Boeckxstaens GE, de Jonge WJ, Cailotto C. Neural networks in intestinal immunoregulation. Organogenesis 2013; 9:216-23. [PMID: 23867810 PMCID: PMC3896593 DOI: 10.4161/org.25646] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Key physiological functions of the intestine are governed by nerves and neurotransmitters. This complex control relies on two neuronal systems: an extrinsic innervation supplied by the two branches of the autonomic nervous system and an intrinsic innervation provided by the enteric nervous system. As a result of constant exposure to commensal and pathogenic microflora, the intestine developed a tightly regulated immune system. In this review, we cover the current knowledge on the interactions between the gut innervation and the intestinal immune system. The relations between extrinsic and intrinsic neuronal inputs are highlighted with regards to the intestinal immune response. Moreover, we discuss the latest findings on mechanisms underlying inflammatory neural reflexes and examine their relevance in the context of the intestinal inflammation. Finally, we discuss some of the recent data on the identification of the gut microbiota as an emerging player influencing the brain function.
Collapse
Affiliation(s)
- Léa M M Costes
- Department of Neurogastroenterology; Tytgat Institute for Liver and Intestinal Research; Academic Medical Center (AMC); Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
43
|
Gullo CE, Estofolete CF, Gil CD, Christiano AB, Netinho JG. [Digestive forms of Chagas disease and carcinogenesis: a study of association]. Rev Col Bras Cir 2012; 39:146-50. [PMID: 22664522 DOI: 10.1590/s0100-69912012000200011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/20/2011] [Indexed: 11/21/2022] Open
Abstract
The authors analyze the relation between gastrointestinal carcinogenesis and Chagas disease, based on detailed review of the literature. To this end, epidemiological, experimental and human material pathology description studies have been selected. The article discusses the possibility of protection being afforded by not fully known morphokinetic cellular, immune and neuroendocrine factors that would be secondary to plexus degeneration. Also aspects related to the parasite-host interaction from the viewpoint of epithelial modulation of colonic mucosa and its antitumor implications are presented. Finally, it exposes the pathophysiological mechanism of esophageal cancer development in patients with mega-organ. In conclusion, chagasic colopathy, especially the intrinsic neuronal damage, is a study model that can contribute to the understanding of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Caio Eduardo Gullo
- Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, BR
| | | | | | | | | |
Collapse
|
44
|
Petronilho F, Vuolo F, Galant LS, Constantino L, Tomasi CD, Giombelli VR, de Souza CT, da Silva S, Barbeiro DF, Soriano FG, Streck EL, Ritter C, Zanotto-Filho A, Pasquali MA, Gelain DP, Rybarczyk-Filho JL, Moreira JCF, Block NL, Roesler R, Schwartsmann G, Schally AV, Dal-Pizzol F. Gastrin-releasing peptide receptor antagonism induces protection from lethal sepsis: involvement of toll-like receptor 4 signaling. Mol Med 2012; 18:1209-19. [PMID: 22735756 DOI: 10.2119/molmed.2012.00083] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/19/2012] [Indexed: 11/06/2022] Open
Abstract
In sepsis, toll-like receptor (TLR)-4 modulates the migration of neutrophils to infectious foci, favoring bacteremia and mortality. In experimental sepsis, organ dysfunction and cytokines released by activated macrophages can be reduced by gastrin-releasing peptide (GRP) receptor (GRPR) antagonist RC-3095. Here we report a link between GRPR and TLR-4 in experimental models and in sepsis patients. RAW 264.7 culture cells were exposed to lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-α and RC-3095 (10 ng/mL). Male Wistar rats were subjected to cecal ligation and puncture (CLP), and RC-3095 was administered (3 mg/kg, subcutaneously); after 6 h, we removed the blood, bronchoalveolar lavage, peritoneal lavage and lung. Human patients with a clinical diagnosis of sepsis received a continuous infusion with RC-3095 (3 mg/kg, intravenous) over a period of 12 h, and plasma was collected before and after RC-3095 administration and, in a different set of patients with systemic inflammatory response syndrome (SIRS) or sepsis, GRP plasma levels were determined. RC-3095 inhibited TLR-4, extracellular-signal-related kinase (ERK)-1/2, Jun NH(2)-terminal kinase (JNK) and Akt and decreased activation of activator protein 1 (AP-1), nuclear factor (NF)-κB and interleukin (IL)-6 in macrophages stimulated by LPS. It also decreased IL-6 release from macrophages stimulated by TNF-α. RC-3095 treatment in CLP rats decreased lung TLR-4, reduced the migration of cells to the lung and reduced systemic cytokines and bacterial dissemination. Patients with sepsis and systemic inflammatory response syndrome have elevated plasma levels of GRP, which associates with clinical outcome in the sepsis patients. These findings highlight the role of GRPR signaling in sepsis outcome and the beneficial action of GRPR antagonists in controlling the inflammatory response in sepsis through a mechanism involving at least inhibition of TLR-4 signaling.
Collapse
Affiliation(s)
- Fabricia Petronilho
- Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Feng B, La JH, Schwartz ES, Gebhart GF. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Neural and neuro-immune mechanisms of visceral hypersensitivity in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1085-98. [PMID: 22403791 PMCID: PMC3362095 DOI: 10.1152/ajpgi.00542.2011] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Irritable bowel syndrome (IBS) is characterized as functional because a pathobiological cause is not readily apparent. Considerable evidence, however, documents that sensitizing proinflammatory and lipotoxic lipids, mast cells and their products, tryptases, enteroendocrine cells, and mononuclear phagocytes and their receptors are increased in tissues of IBS patients with colorectal hypersensitivity. It is also clear from recordings in animals of the colorectal afferent innervation that afferents exhibit long-term changes in models of persistent colorectal hypersensitivity. Such changes in afferent excitability and responses to mechanical stimuli are consistent with relief of discomfort and pain in IBS patients, including relief of referred abdominal hypersensitivity, upon intra-rectal instillation of local anesthetic. In the aggregate, these experimental outcomes establish the importance of afferent drive in IBS, consistent with a larger literature with respect to other chronic conditions in which pain is a principal complaint (e.g., neuropathic pain, painful bladder syndrome, fibromyalgia). Accordingly, colorectal afferents and the environment in which these receptive endings reside constitute the focus of this review. That environment includes understudied and incompletely understood contributions from immune-competent cells resident in and recruited into the colorectum. We close this review by highlighting deficiencies in existing knowledge and identifying several areas for further investigation, resolution of which we anticipate would significantly advance our understanding of neural and neuro-immune contributions to IBS pain and hypersensitivity.
Collapse
Affiliation(s)
- Bin Feng
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jun Ho La
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Erica S. Schwartz
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - G. F. Gebhart
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
46
|
Luyer MDP, Habes Q, Hak RV, Buurman W. Nutritional stimulation of the autonomic nervous system. World J Gastroenterol 2011; 17:3859-3863. [PMID: 22025873 PMCID: PMC3198014 DOI: 10.3748/wjg.v17.i34.3859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 06/21/2011] [Accepted: 06/28/2011] [Indexed: 02/06/2023] Open
Abstract
Disturbance of the inflammatory response in the gut is important in several clinical diseases ranging from inflammatory bowel disease to postoperative ileus. Several feedback mechanisms exist that control the inflammatory cascade and avoid collateral damage. In the gastrointestinal tract, it is of particular importance to control the immune response to maintain the balance that allows dietary uptake and utilization of nutrients on one hand, while preventing invasion of bacteria and toxins on the other hand. The process of digestion and absorption of nutrients requires a relative hyporesponsiveness of the immune cells in the gut to luminal contents which is not yet fully understood. Recently, the autonomic nervous system has been identified as an important pathway to control local and systemic inflammation and gut barrier integrity. Activation of the pathway is possible via electrical or via pharmacological interventions, but is also achieved in a physiological manner by ingestion of dietary lipids. Administration of dietary lipids has been shown to be very effective in reducing the inflammatory cascade and maintaining intestinal barrier integrity in several experimental studies. This beneficial effect of nutrition on the inflammatory response and intestinal barrier integrity opens new therapeutic opportunities for treatment of certain gastrointestinal disorders. Furthermore, this neural feedback mechanism provides more insight in the relative hyporesponsiveness of the immune cells in the gut. Here, we will discuss the regulatory function of the autonomic nervous system on the inflammatory response and gut barrier function and the potential benefit in a clinical setting.
Collapse
|
47
|
Moncayo R. Reflections on the theory of "silver bullet" octreotide tracers: implications for ligand-receptor interactions in the age of peptides, heterodimers, receptor mosaics, truncated receptors, and multifractal analysis. EJNMMI Res 2011; 1:9. [PMID: 22214590 PMCID: PMC3251005 DOI: 10.1186/2191-219x-1-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/26/2011] [Indexed: 12/25/2022] Open
Abstract
The classical attitude of Nuclear Medicine practitioners on matters of peptide-receptor interactions has maintained an intrinsic monogamic character since many years. New advances in the field of biochemistry and even in clinical Nuclear Medicine have challenged this type of thinking, which prompted me to work on this review. The central issue of this paper will be the use of somatostatin analogs, i.e., octreotide, in clinical imaging procedures as well as in relation to neuroendocirne tumors. Newly described characteristics of G-protein coupled receptors such as the formation of receptor mosaics will be discussed. A small section will enumerate the regulatory processes found in the cell membrane. Possible new interpretations, other than tumor detection, based on imaging procedures with somatostatin analogs will be presented. The readers will be taken to situations such as inflammation, nociception, mechanosensing, chemosensing, fibrosis, taste, and vascularity where somatostatin is involved. Thyroid-associated orbitopathy will be used as a model for the development of multi-agent therapeutics. The final graphical summary depicts the multifactorial properties of ligand binding.
Collapse
Affiliation(s)
- Roy Moncayo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
48
|
Selga E, Pérez-Cano FJ, Franch A, Ramírez-Santana C, Rivero M, Ciudad CJ, Castellote C, Noé V. Gene expression profiles in rat mesenteric lymph nodes upon supplementation with conjugated linoleic acid during gestation and suckling. BMC Genomics 2011; 12:182. [PMID: 21481241 PMCID: PMC3094308 DOI: 10.1186/1471-2164-12-182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 04/11/2011] [Indexed: 12/25/2022] Open
Abstract
Background Diet plays a role on the development of the immune system, and polyunsaturated fatty acids can modulate the expression of a variety of genes. Human milk contains conjugated linoleic acid (CLA), a fatty acid that seems to contribute to immune development. Indeed, recent studies carried out in our group in suckling animals have shown that the immune function is enhanced after feeding them with an 80:20 isomer mix composed of c9,t11 and t10,c12 CLA. However, little work has been done on the effects of CLA on gene expression, and even less regarding immune system development in early life. Results The expression profile of mesenteric lymph nodes from animals supplemented with CLA during gestation and suckling through dam's milk (Group A) or by oral gavage (Group B), supplemented just during suckling (Group C) and control animals (Group D) was determined with the aid of the specific GeneChip® Rat Genome 230 2.0 (Affymettrix). Bioinformatics analyses were performed using the GeneSpring GX software package v10.0.2 and lead to the identification of 89 genes differentially expressed in all three dietary approaches. Generation of a biological association network evidenced several genes, such as connective tissue growth factor (Ctgf), tissue inhibitor of metalloproteinase 1 (Timp1), galanin (Gal), synaptotagmin 1 (Syt1), growth factor receptor bound protein 2 (Grb2), actin gamma 2 (Actg2) and smooth muscle alpha actin (Acta2), as highly interconnected nodes of the resulting network. Gene underexpression was confirmed by Real-Time RT-PCR. Conclusions Ctgf, Timp1, Gal and Syt1, among others, are genes modulated by CLA supplementation that may have a role on mucosal immune responses in early life.
Collapse
Affiliation(s)
- Elisabet Selga
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kaleczyc J, Podlasz P, Winnicka A, Wasowicz W, Sienkiewicz W, Zmudzki J, Lakomy M. Characterization of Autonomic Nerve Markers and Lymphocyte Subsets in the Ileal Peyer’s Patch of Pigs Infected Experimentally with Brachyspira hyodysenteriae. J Comp Pathol 2010; 143:248-57. [DOI: 10.1016/j.jcpa.2010.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 02/22/2010] [Accepted: 04/02/2010] [Indexed: 11/28/2022]
|
50
|
Snoek SA, Verstege MI, Boeckxstaens GE, van den Wijngaard RM, de Jonge WJ. The enteric nervous system as a regulator of intestinal epithelial barrier function in health and disease. Expert Rev Gastroenterol Hepatol 2010; 4:637-51. [PMID: 20932148 DOI: 10.1586/egh.10.51] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The intestinal epithelia proliferate and differentiate along the crypt villus axis to constitute a barrier cell layer separating some 10¹³ potentially harmful bacteria from a sterile mucosal compartment. Strict regulatory mechanisms are required to maintain a balance between the appropriate uptake of luminal food components and proteins, while constraining the exposure of the mucosal compartment to luminal antigens and microbes. The enteric nervous system is increasingly recognized as such a regulatory housekeeper of the epithelial barrier integrity, in addition to its ascribed immunomodulatory potential. Inflammation affects both epithelial integrity and barrier function and, in turn, loss of barrier function perpetuates inflammatory conditions. The observation that inflammatory conditions affect enteric neurons may add to the dysregulated barrier function in chronic disease. Here, we review the current understanding of the regulatory role of the nervous system in the maintenance of barrier function in healthy state, or during pathological conditions of, for instance, stress-induced colitis, surgical trauma or inflammation. We will discuss the clinical potential for advances in understanding the role of the enteric nervous system in this important phenomenon.
Collapse
Affiliation(s)
- Susanne A Snoek
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|