1
|
Beraza-Millor M, Rodríguez-Castejón J, Del Pozo-Rodríguez A, Rodríguez-Gascón A, Solinís MÁ. Systematic Review of Genetic Substrate Reduction Therapy in Lysosomal Storage Diseases: Opportunities, Challenges and Delivery Systems. BioDrugs 2024; 38:657-680. [PMID: 39177875 PMCID: PMC11358353 DOI: 10.1007/s40259-024-00674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Genetic substrate reduction therapy (gSRT), which involves the use of nucleic acids to downregulate the genes involved in the biosynthesis of storage substances, has been investigated in the treatment of lysosomal storage diseases (LSDs). OBJECTIVE To analyze the application of gSRT to the treatment of LSDs, identifying the silencing tools and delivery systems used, and the main challenges for its development and clinical translation, highlighting the contribution of nanotechnology to overcome them. METHODS A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines was performed. PubMed, Scopus, and Web of Science databases were used for searching terms related to LSDs and gene-silencing strategies and tools. RESULTS Fabry, Gaucher, and Pompe diseases and mucopolysaccharidoses I and III are the only LSDs for which gSRT has been studied, siRNA and lipid nanoparticles being the silencing strategy and the delivery system most frequently employed, respectively. Only in one recently published study was CRISPR/Cas9 applied to treat Fabry disease. Specific tissue targeting, availability of relevant cell and animal LSD models, and the rare disease condition are the main challenges with gSRT for the treatment of these diseases. Out of the 11 studies identified, only two gSRT studies were evaluated in animal models. CONCLUSIONS Nucleic acid therapies are expanding the clinical tools and therapies currently available for LSDs. Recent advances in CRISPR/Cas9 technology and the growing impact of nanotechnology are expected to boost the clinical translation of gSRT in the near future, and not only for LSDs.
Collapse
Affiliation(s)
- Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
2
|
Zhao Y, Zheng Q, Xie J. Exploration of Gene Therapy for Alport Syndrome. Biomedicines 2024; 12:1159. [PMID: 38927366 PMCID: PMC11200676 DOI: 10.3390/biomedicines12061159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Alport syndrome is a hereditary disease caused by mutations in the genes encoding the alpha 3, alpha 4, and alpha 5 chains of type IV collagen. It is characterized by hematuria, proteinuria, progressive renal dysfunction, hearing loss, and ocular abnormalities. The main network of type IV collagen in the glomerular basement membrane is composed of α3α4α5 heterotrimer. Mutations in these genes can lead to the replacement of this network by an immature network composed of the α1α1α2 heterotrimer. Unfortunately, this immature network is unable to provide normal physical support, resulting in hematuria, proteinuria, and progressive renal dysfunction. Current treatment options for Alport syndrome include angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, which aim to alleviate glomerular filtration pressure, reduce renal injury, and delay the progression of renal dysfunction. However, the effectiveness of these treatments is limited, highlighting the need for novel therapeutic strategies and medications to improve patient outcomes. Gene therapy, which involves the use of genetic material to prevent or treat diseases, holds promise for the treatment of Alport syndrome. This approach may involve the insertion or deletion of whole genes or gene fragments to restore or disrupt gene function or the editing of endogenous genes to correct genetic mutations and restore functional protein synthesis. Recombinant adeno-associated virus (rAAV) vectors have shown significant progress in kidney gene therapy, with several gene therapy drugs based on these vectors reaching clinical application. Despite the challenges posed by the structural characteristics of the kidney, the development of kidney gene therapy using rAAV vectors is making continuous progress. This article provides a review of the current achievements in gene therapy for Alport syndrome and discusses future research directions in this field.
Collapse
Affiliation(s)
- Yafei Zhao
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.Z.); (Q.Z.)
- Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qimin Zheng
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.Z.); (Q.Z.)
- Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingyuan Xie
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.Z.); (Q.Z.)
- Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Lopez-Gordo E, Chamberlain K, Riyad JM, Kohlbrenner E, Weber T. Natural Adeno-Associated Virus Serotypes and Engineered Adeno-Associated Virus Capsid Variants: Tropism Differences and Mechanistic Insights. Viruses 2024; 16:442. [PMID: 38543807 PMCID: PMC10975205 DOI: 10.3390/v16030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Today, adeno-associated virus (AAV)-based vectors are arguably the most promising in vivo gene delivery vehicles for durable therapeutic gene expression. Advances in molecular engineering, high-throughput screening platforms, and computational techniques have resulted in a toolbox of capsid variants with enhanced performance over parental serotypes. Despite their considerable promise and emerging clinical success, there are still obstacles hindering their broader use, including limited transduction capabilities, tissue/cell type-specific tropism and penetration into tissues through anatomical barriers, off-target tissue biodistribution, intracellular degradation, immune recognition, and a lack of translatability from preclinical models to clinical settings. Here, we first describe the transduction mechanisms of natural AAV serotypes and explore the current understanding of the systemic and cellular hurdles to efficient transduction. We then outline progress in developing designer AAV capsid variants, highlighting the seminal discoveries of variants which can transduce the central nervous system upon systemic administration, and, to a lesser extent, discuss the targeting of the peripheral nervous system, eye, ear, lung, liver, heart, and skeletal muscle, emphasizing their tissue and cell specificity and translational promise. In particular, we dive deeper into the molecular mechanisms behind their enhanced properties, with a focus on their engagement with host cell receptors previously inaccessible to natural AAV serotypes. Finally, we summarize the main findings of our review and discuss future directions.
Collapse
|
4
|
Li X, Le Y, Zhang Z, Nian X, Liu B, Yang X. Viral Vector-Based Gene Therapy. Int J Mol Sci 2023; 24:ijms24097736. [PMID: 37175441 PMCID: PMC10177981 DOI: 10.3390/ijms24097736] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Gene therapy is a technique involving the modification of an individual's genes for treating a particular disease. The key to effective gene therapy is an efficient carrier delivery system. Viral vectors that have been artificially modified to lose their pathogenicity are used widely as a delivery system, with the key advantages of their natural high transduction efficiency and stable expression. With decades of development, viral vector-based gene therapies have achieved promising clinical outcomes. Currently, the three key vector strategies are based on adeno-associated viruses, adenoviruses, and lentiviruses. However, certain challenges, such as immunotoxicity and "off-target", continue to exist. In the present review, the above three viral vectors are discussed along with their respective therapeutic applications. In addition, the major translational challenges encountered in viral vector-based gene therapies are summarized, and the possible strategies to address these challenges are also discussed.
Collapse
Affiliation(s)
- Xuedan Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Yang Le
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Zhegang Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Bo Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
5
|
Pinkert S, Dieringer B, Klopfleisch R, Savvatis K, Van Linthout S, Pryshliak M, Tschöpe C, Klingel K, Kurreck J, Beling A, Fechner H. Early Treatment of Coxsackievirus B3-Infected Animals With Soluble Coxsackievirus-Adenovirus Receptor Inhibits Development of Chronic Coxsackievirus B3 Cardiomyopathy. Circ Heart Fail 2019; 12:e005250. [PMID: 31718319 DOI: 10.1161/circheartfailure.119.005250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Coxsackie-B-viruses (CVB) are frequent causes of acute myocarditis and dilated cardiomyopathy, but an effective antiviral therapy is still not available. Previously, we and others have demonstrated that treatment with an engineered sCAR-Fc (soluble coxsackievirus-adenovirus receptor fused to the carboxyl-terminus of human IgG) efficiently neutralizes CVB3 and inhibits the development of cardiac dysfunction in mice with acute CVB3-induced myocarditis. In this study, we analyzed the potential of sCAR-Fc for treatment of chronic CVB3-induced myocarditis in an outbred NMRI mouse model. METHODS NMRI mice were infected with the CVB3 strain 31-1-93 and treated with a sCAR-Fc expressing adeno-associated virus 9 vector 1, 3, and 7 days after CVB3 infection. Chronic myocarditis was analyzed on day 28 after infection. RESULTS Initial investigations showed that NMRI mice develop pronounced chronic myocarditis between day 18 and day 28 after infection with the CVB3 strain 31-1-93. Chronic cardiac infection was characterized by inflammation and fibrosis as well as persistence of viral genomes in the heart tissue and by cardiac dysfunction. Treatment of NMRI mice resulted in a distinct reduction of cardiac inflammation and fibrosis and almost complete elimination of virus RNA from the heart by day 28 after infection. Moreover, hemodynamic measurement revealed improved cardiac contractility and diastolic relaxation in treated mice compared with mice treated with a control vector (mean±SD; maximal pressure, 81.9±9.2 versus 69.4±8.6 mm Hg, P=0.02; left ventricular ejection fraction, 68.9±8.5 versus 54.2±11.5%, P=0.02; dP/dtmax, 7275.2±1674 versus 4432.6±1107 mm Hg/s, P=0.004; dP/dtmin, -4046.9±776 versus -3146.3±642 mm Hg/s, P=0.046). The therapeutic potential of sCAR-Fc is limited, however, since postponed start of sCAR-Fc treatment either 3 or 7 days after infection could not attenuate myocardial injury. CONCLUSIONS Early therapeutic employment of sCAR-Fc, initiated at the beginning of the primary viremia, inhibits the development of chronic CVB3-induced myocarditis and improves the cardiac function to a level equivalent to that of uninfected animals.
Collapse
Affiliation(s)
- Sandra Pinkert
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Germany (S.P., A.B.).,Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., B.D., M.P., J.K., H.F.)
| | - Babette Dieringer
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., B.D., M.P., J.K., H.F.)
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Germany (R.K.)
| | - Konstantinos Savvatis
- Inherited Cardiovascular Diseases Unit, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (K.S.).,William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London (K.S.)
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Germany (S.V.L., C.T.)
| | - Markian Pryshliak
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., B.D., M.P., J.K., H.F.)
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Germany (S.V.L., C.T.)
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen, Germany (K.K.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., B.D., M.P., J.K., H.F.)
| | - Antje Beling
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany (A.B.)
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., B.D., M.P., J.K., H.F.)
| |
Collapse
|
6
|
Production of adeno-associated virus vectors for in vitro and in vivo applications. Sci Rep 2019; 9:13601. [PMID: 31537820 PMCID: PMC6753157 DOI: 10.1038/s41598-019-49624-w] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Delivering and expressing a gene of interest in cells or living animals has become a pivotal technique in biomedical research and gene therapy. Among viral delivery systems, adeno-associated viruses (AAVs) are relatively safe and demonstrate high gene transfer efficiency, low immunogenicity, stable long-term expression, and selective tissue tropism. Combined with modern gene technologies, such as cell-specific promoters, the Cre/lox system, and genome editing, AAVs represent a practical, rapid, and economical alternative to conditional knockout and transgenic mouse models. However, major obstacles remain for widespread AAV utilization, such as impractical purification strategies and low viral quantities. Here, we report an improved protocol to produce serotype-independent purified AAVs economically. Using a helper-free AAV system, we purified AAVs from HEK293T cell lysates and medium by polyethylene glycol precipitation with subsequent aqueous two-phase partitioning. Furthermore, we then implemented an iodixanol gradient purification, which resulted in preparations with purities adequate for in vivo use. Of note, we achieved titers of 1010-1011 viral genome copies per µl with a typical production volume of up to 1 ml while requiring five times less than the usual number of HEK293T cells used in standard protocols. For proof of concept, we verified in vivo transduction via Western blot, qPCR, luminescence, and immunohistochemistry. AAVs coding for glutaredoxin-1 (Glrx) shRNA successfully inhibited Glrx expression by ~66% in the liver and skeletal muscle. Our study provides an improved protocol for a more economical and efficient purified AAV preparation.
Collapse
|
7
|
Pouzolles M, Machado A, Guilbaud M, Irla M, Gailhac S, Barennes P, Cesana D, Calabria A, Benedicenti F, Sergé A, Raman I, Li QZ, Montini E, Klatzmann D, Adjali O, Taylor N, Zimmermann VS. Intrathymic adeno-associated virus gene transfer rapidly restores thymic function and long-term persistence of gene-corrected T cells. J Allergy Clin Immunol 2019; 145:679-697.e5. [PMID: 31513879 DOI: 10.1016/j.jaci.2019.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Patients with T-cell immunodeficiencies are generally treated with allogeneic hematopoietic stem cell transplantation, but alternatives are needed for patients without matched donors. An innovative intrathymic gene therapy approach that directly targets the thymus might improve outcomes. OBJECTIVE We sought to determine the efficacy of intrathymic adeno-associated virus (AAV) serotypes to transduce thymocyte subsets and correct the T-cell immunodeficiency in a zeta-associated protein of 70 kDa (ZAP-70)-deficient murine model. METHODS AAV serotypes were injected intrathymically into wild-type mice, and gene transfer efficiency was monitored. ZAP-70-/- mice were intrathymically injected with an AAV8 vector harboring the ZAP70 gene. Thymus structure, immunophenotyping, T-cell receptor clonotypes, T-cell function, immune responses to transgenes and autoantibodies, vector copy number, and integration were evaluated. RESULTS AAV8, AAV9, and AAV10 serotypes all transduced thymocyte subsets after in situ gene transfer, with transduction of up to 5% of cells. Intrathymic injection of an AAV8-ZAP-70 vector into ZAP-70-/- mice resulted in a rapid thymocyte differentiation associated with the development of a thymic medulla. Strikingly, medullary thymic epithelial cells expressing the autoimmune regulator were detected within 10 days of gene transfer, correlating with the presence of functional effector and regulatory T-cell subsets with diverse T-cell receptor clonotypes in the periphery. Although thymocyte reconstitution was transient, gene-corrected peripheral T cells harboring approximately 1 AAV genome per cell persisted for more than 40 weeks, and AAV vector integration was detected. CONCLUSIONS Intrathymic AAV-transduced progenitors promote a rapid restoration of the thymic architecture, with a single wave of thymopoiesis generating long-term peripheral T-cell function.
Collapse
Affiliation(s)
- Marie Pouzolles
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Alice Machado
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Mickaël Guilbaud
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Magali Irla
- Center of Immunology Marseille-Luminy (CIML), INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, France
| | - Sarah Gailhac
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Pierre Barennes
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Arnauld Sergé
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Indu Raman
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Quan-Zhen Li
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - David Klatzmann
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Oumeya Adjali
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France.
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France; Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md.
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
8
|
Abstract
During the past few decades, gene delivery using recombinant virus has made tremendous progress. With a higher than 80 % transduction efficiency, even in non-dividing cells, viral transduction has become the method of choice for efficient gene transfer into cardiomyocytes. However, in vitro gene delivery is dependent on a robust cell isolation protocol, as prolonged cultivation is needed to initiate gene expression and target specific cellular processes. This chapter describes some of the important steps that need to be considered for successful in vitro gene transfer into adult cardiomyocytes. Included are detailed protocols for isolating cells, maintaining rod shaped cardiomyocytes in culture over several days, and employing adenovirus for gene transduction.
Collapse
Affiliation(s)
- Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - David B Lipsett
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Ullevål, Kirkeveien 166, 0407, Oslo, Norway
- KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Ullevål, Kirkeveien 166, 0407, Oslo, Norway.
- KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway.
| |
Collapse
|
9
|
Katz MG, Fargnoli AS, Weber T, Hajjar RJ, Bridges CR. Use of Adeno-Associated Virus Vector for Cardiac Gene Delivery in Large-Animal Surgical Models of Heart Failure. HUM GENE THER CL DEV 2017; 28:157-164. [PMID: 28726495 DOI: 10.1089/humc.2017.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The advancement of gene therapy-based approaches to treat heart disease represents a need for clinically relevant animal models with characteristics equivalent to human pathologies. Rodent models of cardiac disease do not precisely reproduce heart failure phenotype and molecular defects. This has motivated researchers to use large animals whose heart size and physiological processes more similar and comparable to those of humans. Today, adeno-associated viruses (AAV)-based vectors are undoubtedly among the most promising DNA delivery vehicles. Here, AAV biology and technology are reviewed and discussed in the context of their use and efficacy for cardiac gene delivery in large-animal models of heart failure, using different surgical approaches. The remaining challenges and opportunities for the use of AAV-based vector delivery for gene therapy applications in the clinic are also highlighted.
Collapse
Affiliation(s)
- Michael G Katz
- Cardiovascular Research Center , Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anthony S Fargnoli
- Cardiovascular Research Center , Icahn School of Medicine at Mount Sinai, New York, New York
| | - Thomas Weber
- Cardiovascular Research Center , Icahn School of Medicine at Mount Sinai, New York, New York
| | - Roger J Hajjar
- Cardiovascular Research Center , Icahn School of Medicine at Mount Sinai, New York, New York
| | - Charles R Bridges
- Cardiovascular Research Center , Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
10
|
Bera A, Sen D. Promise of adeno-associated virus as a gene therapy vector for cardiovascular diseases. Heart Fail Rev 2017; 22:795-823. [DOI: 10.1007/s10741-017-9622-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Monteiro LM, Vasques-Nóvoa F, Ferreira L, Pinto-do-Ó P, Nascimento DS. Restoring heart function and electrical integrity: closing the circuit. NPJ Regen Med 2017; 2:9. [PMID: 29302345 PMCID: PMC5665620 DOI: 10.1038/s41536-017-0015-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/19/2017] [Accepted: 03/06/2017] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular diseases are the main cause of death in the world and are often associated with the occurrence of arrhythmias due to disruption of myocardial electrical integrity. Pathologies involving dysfunction of the specialized cardiac excitatory/conductive tissue are also common and constitute an added source of morbidity and mortality since current standard therapies withstand a great number of limitations. As electrical integrity is essential for a well-functioning heart, innovative strategies have been bioengineered to improve heart conduction and/or promote myocardial repair, based on: (1) gene and/or cell delivery; or (2) conductive biomaterials as tools for cardiac tissue engineering. Herein we aim to review the state-of-art in the area, while briefly describing the biological principles underlying the heart electrical/conduction system and how this system can be disrupted in heart disease. Suggestions regarding targets for future studies are also presented.
Collapse
Affiliation(s)
- Luís Miguel Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- CNC—Center for Neuroscience and Cell Biology, Universidade de Coimbra, Coimbra, Portugal
| | - Francisco Vasques-Nóvoa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lino Ferreira
- CNC—Center for Neuroscience and Cell Biology, Universidade de Coimbra, Coimbra, Portugal
| | - Perpétua Pinto-do-Ó
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diana Santos Nascimento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Ding J, Lin ZQ, Jiang JM, Seidman CE, Seidman JG, Pu WT, Wang DZ. Preparation of rAAV9 to Overexpress or Knockdown Genes in Mouse Hearts. J Vis Exp 2016. [PMID: 28060283 DOI: 10.3791/54787] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Controlling the expression or activity of specific genes through the myocardial delivery of genetic materials in murine models permits the investigation of gene functions. Their therapeutic potential in the heart can also be determined. There are limited approaches for in vivo molecular intervention in the mouse heart. Recombinant adeno-associated virus (rAAV)-based genome engineering has been utilized as an essential tool for in vivo cardiac gene manipulation. The specific advantages of this technology include high efficiency, high specificity, low genomic integration rate, minimal immunogenicity, and minimal pathogenicity. Here, a detailed procedure to construct, package, and purify the rAAV9 vectors is described. Subcutaneous injection of rAAV9 into neonatal pups results in robust expression or efficient knockdown of the gene(s) of interest in the mouse heart, but not in the liver and other tissues. Using the cardiac-specific TnnT2 promoter, high expression of GFP gene in the heart was obtained. Additionally, target mRNA was inhibited in the heart when a rAAV9-U6-shRNA was utilized. Working knowledge of rAAV9 technology may be useful for cardiovascular investigations.
Collapse
Affiliation(s)
- Jian Ding
- Department of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School;
| | - Zhi-Qiang Lin
- Department of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School
| | - Jian-Ming Jiang
- Department of Genetics, Harvard Medical School; Howard Hughes Medical Institute
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School; Howard Hughes Medical Institute
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School; Howard Hughes Medical Institute
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School;
| |
Collapse
|
13
|
Abstract
Heart failure is a significant burden to the global healthcare system and represents an underserved market for new pharmacologic strategies, especially therapies which can address root cause myocyte dysfunction. Modern drugs, surgeries, and state-of-the-art interventions are costly and do not improve survival outcome measures. Gene therapy is an attractive strategy, whereby selected gene targets and their associated regulatory mechanisms can be permanently managed therapeutically in a single treatment. This in theory could be sustainable for the patient's life. Despite the promise, however, gene therapy has numerous challenges that must be addressed together as a treatment plan comprising these key elements: myocyte physiologic target validation, gene target manipulation strategy, vector selection for the correct level of manipulation, and carefully utilizing an efficient delivery route that can be implemented in the clinic to efficiently transfer the therapy within safety limits. This chapter summarizes the key developments in cardiac gene therapy from the perspective of understanding each of these components of the treatment plan. The latest pharmacologic gene targets, gene therapy vectors, delivery routes, and strategies are reviewed.
Collapse
Affiliation(s)
- Anthony S Fargnoli
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Center, New York, NY, USA.
| | - Michael G Katz
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Center, New York, NY, USA
| | - Charles R Bridges
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Center, New York, NY, USA
| | - Roger J Hajjar
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Center, New York, NY, USA
| |
Collapse
|
14
|
Hastie E, Samulski RJ. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success--a personal perspective. Hum Gene Ther 2015; 26:257-65. [PMID: 25807962 DOI: 10.1089/hum.2015.025] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fifty years after the discovery of adeno-associated virus (AAV) and more than 30 years after the first gene transfer experiment was conducted, dozens of gene therapy clinical trials are in progress, one vector is approved for use in Europe, and breakthroughs in virus modification and disease modeling are paving the way for a revolution in the treatment of rare diseases, cancer, as well as HIV. This review will provide a historical perspective on the progression of AAV for gene therapy from discovery to the clinic, focusing on contributions from the Samulski lab regarding basic science and cloning of AAV, optimized large-scale production of vectors, preclinical large animal studies and safety data, vector modifications for improved efficacy, and successful clinical applications.
Collapse
Affiliation(s)
- Eric Hastie
- 1Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599-7352
| | - R Jude Samulski
- 1Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599-7352.,2Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7352
| |
Collapse
|
15
|
Katz MG, Fargnoli AS, Williams RD, Bridges CR. Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: current concepts and future applications. Hum Gene Ther 2014; 24:914-27. [PMID: 24164239 DOI: 10.1089/hum.2013.2517] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene therapy is one of the most promising fields for developing new treatments for the advanced stages of ischemic and monogenetic, particularly autosomal or X-linked recessive, cardiomyopathies. The remarkable ongoing efforts in advancing various targets have largely been inspired by the results that have been achieved in several notable gene therapy trials, such as the hemophilia B and Leber's congenital amaurosis. Rate-limiting problems preventing successful clinical application in the cardiac disease area, however, are primarily attributable to inefficient gene transfer, host responses, and the lack of sustainable therapeutic transgene expression. It is arguable that these problems are directly correlated with the choice of vector, dose level, and associated cardiac delivery approach as a whole treatment system. Essentially, a delicate balance exists in maximizing gene transfer required for efficacy while remaining within safety limits. Therefore, the development of safe, effective, and clinically applicable gene delivery techniques for selected nonviral and viral vectors will certainly be invaluable in obtaining future regulatory approvals. The choice of gene transfer vector, dose level, and the delivery system are likely to be critical determinants of therapeutic efficacy. It is here that the interactions between vector uptake and trafficking, delivery route means, and the host's physical limits must be considered synergistically for a successful treatment course.
Collapse
Affiliation(s)
- Michael G Katz
- Sanger Heart and Vascular Institute , Cannon Research Center, Carolinas HealthCare System, Charlotte, NC 28203
| | | | | | | |
Collapse
|
16
|
The road ahead: working towards effective clinical translation of myocardial gene therapies. Ther Deliv 2014; 5:39-51. [PMID: 24341816 DOI: 10.4155/tde.13.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During the last two decades the fields of molecular and cellular cardiology, and more recently molecular cardiac surgery, have developed rapidly. The concept of delivering cDNA encoding a therapeutic gene to cardiomyocytes using a vector system with substantial cardiac tropism, allowing for long-term expression of a therapeutic protein, has moved from hypothesis to bench to clinical application. However, the clinical results to date are still disappointing. The ideal gene transfer method should be explored in clinically relevant animal models of heart disease to evaluate the relative roles of specific molecular pathways in disease pathogenesis, helping to validate the potential targets for therapeutic intervention. Successful clinical cardiovascular gene therapy also requires the use of nonimmunogenic cardiotropic vectors capable of expressing the requisite amount of therapeutic protein in vivo and in situ. Depending on the desired application either regional or global myocardial gene delivery is required. Cardiac-specific delivery techniques incorporating mapping technologies for regional delivery and highly efficient methodologies for global delivery should improve the precision and specificity of gene transfer to the areas of interest and minimize collateral organ gene expression.
Collapse
|
17
|
Asokan A, Samulski RJ. An emerging adeno-associated viral vector pipeline for cardiac gene therapy. Hum Gene Ther 2013; 24:906-13. [PMID: 24164238 PMCID: PMC3815036 DOI: 10.1089/hum.2013.2515] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The naturally occurring adeno-associated virus (AAV) isolates display diverse tissue tropisms in different hosts. Robust cardiac transduction in particular has been reported for certain AAV strains. Successful applications of these AAV strains in preclinical and clinical settings with a focus on treating cardiovascular disease continue to be reported. At the same time, these studies have highlighted challenges such as cross-species variability in AAV tropism, transduction efficiency, and immunity. Continued progress in our understanding of AAV capsid structure and biology has provided the rationale for designing improved vectors that can possibly address these concerns. The current report provides an overview of cardiotropic AAV, existing gaps in our knowledge, and newly engineered AAV strains that are viable candidates for the cardiac gene therapy clinic.
Collapse
Affiliation(s)
- Aravind Asokan
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
| | - R. Jude Samulski
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
| |
Collapse
|
18
|
Pal SN, Kofidis T. Therapeutic potential of genes in cardiac repair. Expert Rev Cardiovasc Ther 2013; 11:1015-28. [PMID: 23945013 DOI: 10.1586/14779072.2013.814867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiovascular diseases remain the primary reason of premature death and contribute to a major percentage of global patient morbidity. Recent knowledge in the molecular mechanisms of myocardial complications have identified novel therapeutic targets along with the availability of vectors that offer the chance for designing gene therapy technique for protection and revival of the diseased heart functions. Gene transfer procedure into the myocardium is demonstrated through direct injection of plasmid DNA or through the coronary vasculature using the direct or indirect delivery of viral vectors. Direct DNA injection to the myocardium is reported to be of immense value in research studies that aims at understanding the activities of various elements in myocardium. It is also deemed vital for investigating the effect of the myocardial pathophysiology on expression of the foreign genes that are transferred. Gene therapies have been reported to heal cardiac pathologies such as myocardial ischemia, heart failure and inherited myopathies in several animal models. The results obtained from these animal studies have also encouraged a flurry of early clinical trials. This translational research has been triggered by an enhanced understanding of the biological mechanisms involved in tissue repair after ischemic injury. While safety concerns take utmost priority in these trials, several combinational therapies, various routes and dose of delivery are being tested before concrete optimization and complete potential of gene therapy is convincingly understood.
Collapse
Affiliation(s)
- Shripad N Pal
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
19
|
Gene transfer targeting mouse vestibule using adenovirus and adeno-associated virus vectors. Otol Neurotol 2012; 33:655-9. [PMID: 22525215 DOI: 10.1097/mao.0b013e31825368d1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS The present study assessed how to inject a gene into the mouse vestibule and which is the optimum gene to the mouse vestibule adenovirus (AdV) vector or adeno-associated virus (AAV) vector. BACKGROUND Loss of vestibular hair cell is seen in various balance disorder diseases. There have been some reports concerning gene delivery to the mouse vestibule in recent years. To effectively induce transgene expression at the vestibule, we assessed the efficiency of inoculating the mouse inner ear using various methods. METHODS We employed an AdV- and AAV-carrying green fluorescent protein using a semicircular canal approach (via a canalostomy) and round window approach. RESULTS AAV injection via canalostomy induced gene expression at the hair cells, supporting cells, and fibrocytes at the vestibular organs without auditory or balance dysfunction, suggesting it was the most suitable transfection method. This method is thus considered to be a promising strategy to prevent balance dysfunction. CONCLUSION AAV injection via canalostomy to the vestibule is the noninvasive and highly efficient transfection method, and this study may have the potential to repair balance disorders in human in the future.
Collapse
|
20
|
Eckhouse SR, Jones JA, Spinale FG. Gene targeting in ischemic heart disease and failure: translational and clinical studies. Biochem Pharmacol 2012; 85:1-11. [PMID: 22935384 DOI: 10.1016/j.bcp.2012.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/16/2012] [Accepted: 08/20/2012] [Indexed: 01/16/2023]
Abstract
Alternative and innovative targeted strategies hold relevance in improving the current treatments for ischemic heart disease (IHD). One potential treatment modality, gene targeting, may provide a unique alternative to current IHD therapies. The principal function of gene targeting in IHD is to augment the expression of an endogenous gene through amplification of an exogenous gene, delivered by a plasmid or a viral vector to enhance myocardial perfusion, and limit the long-term sequelae. The initial clinical studies of gene targeting in IHD were focused upon induction of angiogenic factors and the outcomes were equivocal. Nevertheless, significant advancements have been made in viral vectors, mode of delivery, and potentially relevant targets for IHD. Several of these advancements, particularly with a focus on translational large animal studies, are the focus of this review. The development of novel vectors with prolonged transduction efficiency and minimal inflammation, coupled with hybrid perfusion-mapping delivery devices, and improving the safety of vector use and efficacy of gene systems are but a few of the exciting progresses that are likely to proceed to clinical studies in the near future.
Collapse
Affiliation(s)
- Shaina R Eckhouse
- Division of Cardiothoracic Surgery, Medical University of South Carolina, SC, USA
| | | | | |
Collapse
|
21
|
Zhu X, McTiernan CF, Rajagopalan N, Shah H, Fischer D, Toyoda Y, Letts D, Bortinger J, Gibson G, Xiang W, McCurry K, Mathier M, Glorioso JC, London B. Immunosuppression decreases inflammation and increases AAV6-hSERCA2a-mediated SERCA2a expression. Hum Gene Ther 2012; 23:722-32. [PMID: 22482463 PMCID: PMC3404422 DOI: 10.1089/hum.2011.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 03/01/2012] [Indexed: 01/07/2023] Open
Abstract
The calcium pump SERCA2a (sarcoplasmic reticulum calcium ATPase 2a), which plays a central role in cardiac contraction, shows decreased expression in heart failure (HF). Increasing SERCA2a expression in HF models improves cardiac function. We used direct cardiac delivery of adeno-associated virus encoding human SERCA2a (AAV6-hSERCA2a) in HF and normal canine models to study safety, efficacy, and the effects of immunosuppression. Tachycardic-paced dogs received left ventricle (LV) wall injection of AAV6-hSERCA2a or solvent. Pacing continued postinjection for 2 or 6 weeks, until euthanasia. Tissue/serum samples were analyzed for hSERCA2a expression (Western blot) and immune responses (histology and AAV6-neutralizing antibodies). Nonpaced dogs received AAV6-hSERCA2a and were analyzed at 12 weeks; a parallel cohort received AAV-hSERCA2a and immunosuppression. AAV-mediated cardiac expression of hSERCA2a peaked at 2 weeks and then declined (to ~50%; p<0.03, 6 vs. 2 weeks). LV end diastolic and end systolic diameters decreased in 6-week dogs treated with AAV6-hSERCA2a (p<0.05) whereas LV diameters increased in control dogs. Dogs receiving AAV6-hSERCA2a developed neutralizing antibodies (titer ≥1:120) and cardiac cellular infiltration. Immunosuppression dramatically reduced immune responses (reduced inflammation and neutralizing antibody titers <1:20), and maintained hSERCA2a expression. Thus cardiac injection of AAV6-hSERCA2a promotes local hSERCA2a expression and improves cardiac function. However, the hSERCA2a protein level is reduced by host immune responses. Immunosuppression alleviates immune responses and sustains transgene expression, and may be an important adjuvant for clinical gene therapy trials.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Navin Rajagopalan
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Hemal Shah
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - David Fischer
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yoshiya Toyoda
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Dustin Letts
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jonathan Bortinger
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Gregory Gibson
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Wenyu Xiang
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Kenneth McCurry
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Michael Mathier
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Joseph C. Glorioso
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15213
| | - Barry London
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
22
|
Abstract
Twelve AAV serotypes have been described so far in human and nonhuman primate (NHP) populations while surprisingly high diversity of AAV sequences is detected in tissue biopsies. The analysis of these novel AAV sequences has indicated a rapid evolution of the viral genome both by accumulation of mutations and recombination. This chapter describes how this rich resource of naturally evolved sequences is used to derive gene transfer vectors with a wide array of activities depending on the nature of the cap gene used in the packaging system. AAV2-based recombinant genomes have been packaged in dozens of different capsid types, resulting in a wide array of "pseudotyped vectors" that constitute a rich resource for the development of gene therapy clinical trials. We describe a polymerase chain reaction-based molecular rescue method for novel AAV isolation that uses primers designed to recognize the highly conserved regions in known AAV isolates and generate amplicons across the hypervariable regions of novel AAV genomes present in the analyzed sample.
Collapse
|
23
|
Lin LH, Dragon DN, Jin J, Talman WT. Targeting neurons of rat nucleus tractus solitarii with the gene transfer vector adeno-associated virus type 2 to up-regulate neuronal nitric oxide synthase. Cell Mol Neurobiol 2011; 31:847-59. [PMID: 21431420 PMCID: PMC3146586 DOI: 10.1007/s10571-011-9674-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/05/2011] [Indexed: 01/27/2023]
Abstract
Adeno-associated virus (AAV) has distinct advantages over other viral vectors in delivering genes of interest to the brain. AAV mainly transfects neurons, produces no toxicity or inflammatory responses, and yields long-term transgene expression. In this study, we first tested the hypothesis that AAV serotype 2 (AAV2) selectively transfects neurons but not glial cells in the nucleus tractus solitarii (NTS) by examining expression of the reporter gene, enhanced green fluorescent protein (eGFP), in the rat NTS after unilateral microinjection of AAV2eGFP into NTS. Expression of eGFP was observed in 1-2 cells in the NTS 1 day after injection. The number of transduced cells and the intensity of eGFP fluorescence increased from day 1 to day 28 and decreased on day 60. The majority (92.9 ± 7.0%) of eGFP expressing NTS cells contained immunoreactivity for the neuronal marker, protein gene product 9.5, but not that for the glial marker, glial fibrillary acidic protein. We observed eGFP expressing neurons and fibers in the nodose ganglia (NG) both ipsilateral and contralateral to the injection. In addition, eGFP expressing fibers were present in both ipsilateral and contralateral nucleus ambiguus (NA), caudal ventrolateral medulla (CVLM) and rostral ventrolateral medulla (RVLM). Having established that AAV2 was able to transduce a gene into NTS neurons, we constructed AAV2 vectors that contained cDNA for neuronal nitric oxide synthase (nNOS) and examined nNOS expression in the rat NTS after injection of this vector into the area. Results from RT-PCR, Western analysis, and immunofluorescent histochemistry indicated that nNOS expression was elevated in rat NTS that had been injected with AAV2nNOS vectors. Therefore, we conclude that AAV2 is an effective viral vector in chronically transducing NTS neurons and that AAV2nNOS can be used as a specific gene transfer tool to study the role of nNOS in CNS neurons.
Collapse
Affiliation(s)
- Li-Hsien Lin
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
24
|
AAV vectors for cardiac gene transfer: experimental tools and clinical opportunities. Mol Ther 2011; 19:1582-90. [PMID: 21792180 DOI: 10.1038/mt.2011.124] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Since the first demonstration of in vivo gene transfer into myocardium there have been a series of advancements that have driven the evolution of cardiac gene delivery from an experimental tool into a therapy currently at the threshold of becoming a viable clinical option. Innovative methods have been established to address practical challenges related to tissue-type specificity, choice of delivery vehicle, potency of the delivered material, and delivery route. Most importantly for therapeutic purposes, these strategies are being thoroughly tested to ensure safety of the delivery system and the delivered genetic material. This review focuses on the development of recombinant adeno-associated virus (rAAV) as one of the most valuable cardiac gene transfer agents available today. Various forms of rAAV have been used to deliver "pre-event" cardiac protection and to temper the severity of hypertrophy, cardiac ischemia, or infarct size. Adeno-associated virus (AAV) vectors have also been functional delivery tools for cardiac gene expression knockdown studies and successfully improving the cardiac aspects of several metabolic and neuromuscular diseases. Viral capsid manipulations along with the development of tissue-specific and regulated promoters have greatly increased the utility of rAAV-mediated gene transfer. Important clinical studies are currently underway to evaluate AAV-based cardiac gene delivery in humans.
Collapse
|
25
|
Fargnoli AS, Katz MG, Yarnall C, Sumaroka MV, Stedman H, Rabinowitz JJ, Koch WJ, Bridges CR. A pharmacokinetic analysis of molecular cardiac surgery with recirculation mediated delivery of βARKct gene therapy: developing a quantitative definition of the therapeutic window. J Card Fail 2011; 17:691-9. [PMID: 21807332 DOI: 10.1016/j.cardfail.2011.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/03/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Two major problems for translating gene therapy for heart failure therapy are: safe and efficient delivery and the inability to establish a relationship between vector exposure and in vivo effects. We present a pharmacokinetics (PK) analysis of molecular cardiac surgery with recirculating delivery (MCARD) of scAAV6-βARKct. MCARD's stable cardiac specific delivery profile was exploited to determine vector exposure, half-life, and systemic clearance. METHODS AND RESULTS Five naive sheep underwent MCARD with 10(14) genome copies of scAAV6-βARKct. Blood samples were collected over the recirculation interval time of 20 minutes and evaluated with quantitative polymerase chain reaction (qPCR). C(t) curves were generated and expressed on a log scale. The exposure, half-life, and clearance curves were generated for analysis. qPCR and Western blots were used to determine biodistribution. Finally, all in vivo transduction data was plotted against MCARD's PK to determine if a relationship existed. Vector concentrations at each time point were (cardiac and systemic, respectively): 5 minutes: 9.16 ± 0.15 and 3.21 ± 0.38; 10 minutes: 8.81 ± 0.19 and 3.62 ± 0.37; 15 minutes: 8.75 ± 0.12 and 3.69 ± 0.31; and 20 minutes: 8.66 ± 0.22 and 3.95 ± 0.26; P < .00001. The half life of the vector was 2.66 ± 0.24 minutes. PK model data revealed that only 0.61 ± 0.43% of the original dose remained in the blood after delivery, and complete clearance from the system was achieved at 1 week. A PK transfer function revealed a positive correlation between exposure and in vivo transduction. Robust βARKct expression was found in all cardiac regions with none in the liver. CONCLUSION MCARD may offer a viable method to establish a relationship between vector exposure and in vivo transduction. Using this methodology, it may be possible to address a critical need for establishing an effective therapeutic window.
Collapse
Affiliation(s)
- Anthony S Fargnoli
- Department of Surgery, Division of Cardiovascular Surgery, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Prasad KMR, Smith RS, Xu Y, French BA. A single direct injection into the left ventricular wall of an adeno-associated virus 9 (AAV9) vector expressing extracellular superoxide dismutase from the cardiac troponin-T promoter protects mice against myocardial infarction. J Gene Med 2011; 13:333-41. [PMID: 21674736 PMCID: PMC3984922 DOI: 10.1002/jgm.1576] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Localized administration of a highly efficient gene delivery system in combination with a cardiac-selective promoter may provide a favorable biosafety profile in clinical applications such as coronary artery bypass graft surgery, where regions of myocardium can be readily injected to protect them against the potential threat of future ischemic events. METHODS Adeno-associated virus (AAV) vectors expressing luciferase or enhanced green fluorescent protein (eGFP) packaged into AAV serotypes 1, 2, 6, 8 and 9 were injected into the left ventricular (LV) wall of adult mice to determine the time course, magnitude and distribution of gene expression. An AAV9 vector expressing extracellular superoxide dismutase (EcSOD) from the cardiac troponin T (cTnT) promoter was then directly injected into the LV wall of adult mice. Myocardial infarction was induced 4 weeks after injection and infarct size was determined by triphenyltetrazolium chloride and phthalo blue staining. RESULTS Serotypes AAV 9, 8, 1 and 6 provided early onset of gene expression in the heart with minimal extra-cardiac gene expression. AAV9 provided the highest magnitude of gene expression. Immunostaining for eGFP showed expression spanning the anterior to posterior walls from the mid ventricle to the apex. A single direct injection of the AAV9 vector bearing EcSOD ( n = 5) decreased the mean infarct size by 50% compared to the eGFP control group (n = 8) (44 ± 7% versus 22 ± 5%; p = 0.04). CONCLUSIONS AAV serotype 9 is highly efficient for cardiac gene delivery, as evidenced by early onset and high-level gene expression. AAV9-mediated, cardiac selective overexpression of EcSOD from the cTnT promoter significantly reduced infarct size in mice.
Collapse
Affiliation(s)
- Konkal-Matt R Prasad
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | | | | | | |
Collapse
|
27
|
Alenzi FQ, Lotfy M, Tamimi WG, Wyse RKH. Review: Stem cells and gene therapy. ACTA ACUST UNITED AC 2011; 16:53-73. [PMID: 20858588 DOI: 10.1532/lh96.10010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both stem cell and gene therapy research are currently the focus of intense research in institutions and companies around the world. Both approaches hold great promise by offering radical new and successful ways of treating debilitating and incurable diseases effectively. Gene therapy is an approach to treat, cure, or ultimately prevent disease by changing the pattern of gene expression. It is mostly experimental, but a number of clinical human trials have already been conducted. Gene therapy can be targeted to somatic or germ cells; the most common vectors are viruses. Scientists manipulate the viral genome and thus introduce therapeutic genes to the target organ. Viruses, in this context, can cause adverse events such as toxicity, immune and inflammatory responses, as well as gene control and targeting issues. Alternative modalities being considered are complexes of DNA with lipids and proteins. Stem cells are primitive cells that have the capacity to self renew as well as to differentiate into 1 or more mature cell types. Pluripotent embryonic stem cells derived from the inner cell mass can develop into more than 200 different cells and differentiate into cells of the 3 germ cell layers. Because of their capacity of unlimited expansion and pluripotency, they are useful in regenerative medicine. Tissue or adult stem cells produce cells specific to the tissue in which they are found. They are relatively unspecialized and predetermined to give rise to specific cell types when they differentiate. The current review provides a summary of our current knowledge of stem cells and gene therapy as well as their clinical implications and related therapeutic options.
Collapse
Affiliation(s)
- Faris Q Alenzi
- College of Applied Medical Sciences, Al-Kharj University, Al-Kharj, Saudi Arabia.
| | | | | | | |
Collapse
|
28
|
Wang Y, Asakawa A, Inui A, Kosai KI. Leptin gene therapy in the fight against diabetes. Expert Opin Biol Ther 2011; 10:1405-14. [PMID: 20690892 DOI: 10.1517/14712598.2010.512286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IMPORTANCE OF THE FIELD The incidence of diabetes is increasing worldwide, yet current treatments are not always effective for all patient or disease types. AREAS COVERED IN THIS REVIEW Here, we summarize the biologic and clinical roles of leptin in diabetes, and discuss candidate viral vectors that may be employed in the clinical use of central leptin gene therapy for diabetes. WHAT THE READER WILL GAIN We discuss how studies on leptin, a regulator of the insulin-glucose axis, have significantly advanced our understanding of the roles of energy homeostasis and insulin resistance in the pathogeneses of metabolic syndrome and diabetes. Recent studies have demonstrated the long-term therapeutic effects of central leptin gene therapy in obesity and diabetes via decreased insulin resistance and increased glucose metabolism. Many of these studies have employed viral vectors, which afford high in vivo gene transduction efficiencies compared with non-viral vectors. TAKE HOME MESSAGE Adeno-associated viral vectors are particularly well suited for central leptin gene therapy owing to their low toxicity and ability to drive transgene expression for extended periods.
Collapse
Affiliation(s)
- Yuqing Wang
- Kagoshima University Graduate School of Medical and Dental Sciences, Department of Gene Therapy and Regenerative Medicine, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | | | | | | |
Collapse
|
29
|
Zincarelli C, Soltys S, Rengo G, Koch WJ, Rabinowitz JE. Comparative cardiac gene delivery of adeno-associated virus serotypes 1-9 reveals that AAV6 mediates the most efficient transduction in mouse heart. Clin Transl Sci 2010; 3:81-9. [PMID: 20590676 DOI: 10.1111/j.1752-8062.2010.00190.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Cardiac gene transfer is an attractive tool for developing novel heart disease treatments. Adeno-associated viral (AAV) vectors are widely used to mediate transgene expression in animal models and are being evaluated for human gene therapy. However, it is not clear which serotype displays the best cardiac tropism. Therefore, we curried out this study to directly compare AAV serotypes 1-9 heart transduction efficiency after indirect intracoronary injection. AAV-cytomegalovirus immediate early enhancer promoter (CMV)-luciferase serotypes 1-9 were injected in the left ventricular cavity of adult mice, after cross-clamping the ascending aorta and pulmonary artery. An imaging system was used to visualize luciferase expression at 3, 7, 21, 70, and 140 days postinjection. Echocardiography was performed to evaluate cardiac function on day 140. At the end of the study, luciferase enzyme activity and genome copies of the different AAV serotypes were assessed in several tissues and potential AAV immunogenicity was evaluated on heart sections by staining for macrophage and lymphocyte antigens. Among AAV serotypes 1-9, AAV6 showed the best capability of achieving high transduction levels in the myocardium in a tissue-specific manner, whereas the other serotypes had less cardiac transduction and more extracardiac expression, especially in the liver. Importantly, none of the serotypes tested with this marker gene affected cardiac function nor was associated with inflammation.
Collapse
Affiliation(s)
- Carmela Zincarelli
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
30
|
Katz MG, Swain JD, Tomasulo CE, Sumaroka M, Fargnoli A, Bridges CR. Current strategies for myocardial gene delivery. J Mol Cell Cardiol 2010; 50:766-76. [PMID: 20837022 DOI: 10.1016/j.yjmcc.2010.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
Abstract
Existing methods of cardiac gene delivery can be classified by the site of injection, interventional approach and type of cardiac circulation at the time of transfer. General criteria to assess the efficacy of a given delivery method include: global versus regional myocardial transduction, technical complexity and the pathophysiological effects associated with its use, delivery-related collateral expression and the delivery-associated inflammatory and immune response. Direct gene delivery (intramyocardial, endocardial, epicardial) may be useful for therapeutic angiogenesis and for focal arrhythmia therapy but with gene expression which is primarily limited to regions in close proximity to the injection site. An often unappreciated limitation of these techniques is that they are frequently associated with substantial systemic vector delivery. Percutaneous infusion of vector into the coronary arteries is minimally invasive and allows for transgene delivery to the whole myocardium. Unfortunately, efficiency of intracoronary delivery is highly variable and the short residence time of vector within the coronary circulation and significant collateral organ expression limit its clinical potential. Surgical techniques, including the incorporation of cardiopulmonary bypass with isolated cardiac recirculation, represent novel delivery strategies that may potentially overcome these limitations; yet, these techniques are complex with inherent morbidity that must be thoroughly evaluated before safe translation into clinical practice. Characteristics of the optimal technique for gene delivery include low morbidity, increased myocardial transcapillary gradient, extended vector residence time in the coronary circulation and exclusion of residual vector from the systemic circulation after delivery to minimize extracardiac expression and to mitigate a cellular immune response. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".
Collapse
Affiliation(s)
- Michael G Katz
- Department of Surgery, Division of Cardiovascular Surgery, The University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ulrich-Vinther M. Gene therapy methods in bone and joint disorders. ACTA ORTHOPAEDICA. SUPPLEMENTUM 2010. [DOI: 10.1080/17453690610046512] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Moreau A, Vicente R, Dubreil L, Adjali O, Podevin G, Jacquet C, Deschamps JY, Klatzmann D, Cherel Y, Taylor N, Moullier P, Zimmermann VS. Efficient intrathymic gene transfer following in situ administration of a rAAV serotype 8 vector in mice and nonhuman primates. Mol Ther 2009; 17:472-9. [PMID: 19088703 PMCID: PMC2835094 DOI: 10.1038/mt.2008.272] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 11/10/2008] [Indexed: 12/16/2022] Open
Abstract
The thymus is the primary site of T-cell development and plays a key role in the induction of self-tolerance. We previously showed that the intrathymic (i.t.) injection of a transgene-expressing lentiviral vector (LV) in mice can result in the correction of a T cell-specific genetic defect. Nevertheless, the efficiency of thymocyte transduction did not exceed 0.1-0.3% and we were unable to detect any thymus transduction in macaques. As such, we initiated studies to assess the capacity of recombinant adeno-associated virus (rAAV) vectors to transduce murine and primate thymic cells. In vivo administration of AAV serotype 2-derived single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors pseudotyped with capsid proteins of serotypes 1, 2, 4, 5, and 8 demonstrated that murine thymus transduction was significantly enhanced by scAAV2/8. Transgene expression was detected in 5% of thymocytes and, notably, transduced cells represented 1% of peripheral T lymphocytes. Moreover, i.t. administration of scAAV2/8 particles in macaques, by endoscopic-mediated guidance, resulted in significant gene transfer. Thus, in healthy animals, where thymic gene transfer does not provide a selective advantage, scAAV2/8 is a unique tool promoting the in situ transduction of thymocytes with the subsequent export of gene-modified lymphocytes to the periphery.
Collapse
Affiliation(s)
- Aurélie Moreau
- Institut National de la Santé et de la Recherche Médicale U649-Laboratoire de Thérapie Génique, CHU Hôtel-Dieu, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Xu T, Haering C, Lau CK, Obed A, Ma J, Doenecke A, Scherer MN, Schnitzbauer AA, Fan ST, Schlitt HJ, Tsui TY. Targeting of interleukin-10 is superior to cytotoxic T-lymphocyte associated antigen 4 with human immunoglobulin G1for the prevention of chronic allograft deterioration in organ transplantation. J Gene Med 2008; 10:1315-23. [DOI: 10.1002/jgm.1250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
34
|
Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM. Designing heart performance by gene transfer. Physiol Rev 2008; 88:1567-651. [PMID: 18923190 DOI: 10.1152/physrev.00039.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The birth of molecular cardiology can be traced to the development and implementation of high-fidelity genetic approaches for manipulating the heart. Recombinant viral vector-based technology offers a highly effective approach to genetically engineer cardiac muscle in vitro and in vivo. This review highlights discoveries made in cardiac muscle physiology through the use of targeted viral-mediated genetic modification. Here the history of cardiac gene transfer technology and the strengths and limitations of viral and nonviral vectors for gene delivery are reviewed. A comprehensive account is given of the application of gene transfer technology for studying key cardiac muscle targets including Ca(2+) handling, the sarcomere, the cytoskeleton, and signaling molecules and their posttranslational modifications. The primary objective of this review is to provide a thorough analysis of gene transfer studies for understanding cardiac physiology in health and disease. By comparing results obtained from gene transfer with those obtained from transgenesis and biophysical and biochemical methodologies, this review provides a global view of cardiac structure-function with an eye towards future areas of research. The data presented here serve as a basis for discovery of new therapeutic targets for remediation of acquired and inherited cardiac diseases.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kawase Y, Ly HQ, Prunier F, Lebeche D, Shi Y, Jin H, Hadri L, Yoneyama R, Hoshino K, Takewa Y, Sakata S, Peluso R, Zsebo K, Gwathmey JK, Tardif JC, Tanguay JF, Hajjar RJ. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol 2008; 51:1112-9. [PMID: 18342232 DOI: 10.1016/j.jacc.2007.12.014] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 12/05/2007] [Accepted: 12/10/2007] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The aim of this study was to examine the effects of sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a) gene transfer in a swine heart failure (HF) model. BACKGROUND Reduced expression and activity of SERCA2a have been documented in HF. Prior studies have reported the beneficial effects of short-term SERCA2a overexpression in rodent models. However, the effects of long-term expression of SERCA2a in pre-clinical large animal models are not known. METHODS Yorkshire-Landrace pigs were used (n = 16) to create volume overload by percutaneously severing chordae tendinae of the mitral apparatus with a bioptome to induce mitral regurgitation. At 2 months, pigs underwent intracoronary delivery of either recombinant adeno-associated virus type 1 (rAAV1) carrying SERCA2a under a cytomegalovirus promoter (rAAV1.SERCA2a) (n = 10; group 1) or saline (n = 6; group 2). RESULTS At 2 months, study animals were found to be in a compensated state of volume-overload HF (increased left ventricular internal diastolic and systolic diameters [LVIDd and LVIDs]). At 4 months, gene transfer resulted in: 1) positive left ventricular (LV) inotropic effects (adjusted peak left ventricular pressure rate of rise (dP/dt)max/P, 21.2 +/- 3.2 s(-1) group 1 vs. 15.5 +/- 3.0 s(-1) group 2; p < 0.01); 2) improvement in LV remodeling (% change in LVIDs -3.0 +/- 10% vs. +15 +/- 11%, respectively; p < 0.01). At follow-up, brain natriuretic peptide levels remained stable in group 1 after gene transfer, in contrast to rising levels in group 2. Further, cardiac SERCA2a expression was significantly decreased in group 2 whereas in group 1 it was restored to normal levels. There was no histopathological evidence of acute myocardial inflammation or necrosis. CONCLUSIONS Using a large-animal, volume-overload model of HF, we report that long-term overexpression of SERCA2a by in vivo rAAV1-mediated intracoronary gene transfer preserved systolic function, potentially prevented diastolic dysfunction, and improved ventricular remodeling.
Collapse
Affiliation(s)
- Yoshiaki Kawase
- Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Di Niro R, Sblattero D, Florian F, Stebel M, Zentilin L, Giacca M, Villanacci V, Galletti A, Not T, Ventura A, Marzari R. Anti-idiotypic response in mice expressing human autoantibodies. Mol Immunol 2007; 45:1782-91. [PMID: 17996305 DOI: 10.1016/j.molimm.2007.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 01/23/2023]
Abstract
Celiac disease is an autoimmune illness characterized by intestinal mucosal injury and malabsorption precipitated by dietary exposure to gluten of some cereals. The immune response is based on both cellular and humoral components, although the former seem to be more important in the pathogenesis. The autoantibody response is directed at the enzyme tissue transglutaminase, tTG or TG2, which possibly play a role in the onset of the disease. In this study we sought to develop an animal model in which to analyze the immunological regulation and significance of anti-TG2 antibodies, by expressing specific human single-chain antibody fragments in mice using adeno-associated virus vectors. Upon vector injection in the skeletal muscles, high and persistent systemic levels of anti-TG2 antibodies were obtained. Mice injected with vectors encoding antibodies also recognizing rodent TG2, also developed a strong anti-idiotypic response. This finding raises the question of whether an anti-idiotypic response to anti-TG2 antibodies is a factor associated with celiac disease.
Collapse
Affiliation(s)
- Roberto Di Niro
- Department of Biology, University of Trieste, Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Prasad KMR, Xu Y, Yang Z, Toufektsian MC, Berr SS, French BA. Topoisomerase Inhibition Accelerates Gene Expression after Adeno-associated Virus-mediated Gene Transfer to the Mammalian Heart. Mol Ther 2007; 15:764-771. [PMID: 28192703 DOI: 10.1038/sj.mt.6300071] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 10/26/2006] [Indexed: 01/29/2023] Open
Abstract
Utility of adeno-associated virus 2 (AAV2) vectors for cardiac gene therapy is limited by the prolonged lag phase before maximal gene expression. Topoisomerase inhibition can induce AAV2-mediated gene expression in vivo, but with variable success in different tissues. In this study, we demonstrate that topoisomerase inhibition can accelerate AAV2-mediated gene expression in the mouse heart. We used an AAV2 vector expressing firefly luciferase and monitored expression kinetics using non-invasive bioluminescence imaging. In the group receiving vector alone, cardiac luciferase activity was evident from week 2 onward and increased progressively to reach a steady plateau by 9 weeks postinjection. In the group receiving vector and camptothecine (CPT), luciferase expression was evident from days 2 to 4 onward and increased rapidly to reach a steady plateau by 3-4 weeks postinjection, nearly three times faster than in the absence of CPT (P<0.05). Southern blot analysis of AAV2 genomes in cardiac tissue showed rapid conversion of the AAV2 genome from its single-stranded to double-stranded form in CPT-treated mice. Non-invasive determinations of luciferase expression correlated well with in vitro luciferase assays. Direct injection of the AAV2 vector and long-term luciferase gene expression had no detectable effects on normal cardiac function as assessed by magnetic resonance imaging.
Collapse
Affiliation(s)
- Konkal-Matt R Prasad
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Yaqin Xu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Zequan Yang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | - Stuart S Berr
- Department of Radiology, University of Virginia, Charlottesville, Virginia, USA
| | - Brent A French
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA; Department of Radiology, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
38
|
Abstract
Heart failure associated with coronary artery disease is a major cause of morbidity and mortality. Recent developments in the understanding of the molecular mechanisms of heart failure have led to the identification of novel therapeutic targets which, combined with the availability of efficient gene delivery vectors, offer the opportunity for the design of gene therapies for protection of the myocardium. Viral-based therapies have been developed to treat polygenic and complex diseases such as myocardial ischaemia, hypertension, atherosclerosis and restenosis. Some of these experimental therapies are now undergoing clinical evaluation in patients with cardiovascular diseases. In this review we will focus on the latest advances in the field of gene therapy for treatment of heart failure and their clinical application.
Collapse
Affiliation(s)
- A S Pachori
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27701, USA.
| | | | | |
Collapse
|
39
|
Su H, Huang Y, Takagawa J, Barcena A, Arakawa-Hoyt J, Ye J, Grossman W, Kan YW. AAV serotype-1 mediates early onset of gene expression in mouse hearts and results in better therapeutic effect. Gene Ther 2006; 13:1495-502. [PMID: 16775632 DOI: 10.1038/sj.gt.3302787] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adeno-associated viral vectors (AAV) are attractive tool for gene therapy for coronary artery disease. However, gene expression in myocardium mediated by AAV serotype 2 (AAV2) does not peak until 4-6 weeks after gene transfer. This delayed gene expression may reduce its therapeutic potential for acute cardiac infarction. To determine whether earlier gene expression and better therapeutic effect could be achieved using a different serotype, CMV promoter driving the EPO gene (AAV-EPO) was packaged into AAV serotypes 1-5 capsids and injected into mouse myocardium. EPO expression was studied by measuring the hematocrits and EPO mRNA. After we found that AAV1 mediates the highest gene expression after 4 days of gene transduction, AAV-LacZ (CMV promoter driving LacZ gene expression) and MLCVEGF (hypoxia-inducible and cardiac-specific VEGF expression) were packaged into AAV1 and 2 capsids. LacZ expression was detected in AAV1-LacZ but not in AAV2-LacZ-injected hearts 1 day after vector injection. Compared to AAV2-MLCVEGF that mediated no significant VEGF expression, AAV1-MLCVEGF mediated 13.7-fold induction of VEGF expression in ischemic hearts 4 days after gene transduction and resulted in more neovasculatures, better cardiac function and less myocardial fibrosis. Thus, AAV1 mediates earlier and higher transgene expression in myocardium and better therapeutic effects.
Collapse
Affiliation(s)
- H Su
- Cardiovascular Research Institute, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhong L, Li W, Li Y, Zhao W, Wu J, Li B, Maina N, Bischof D, Qing K, Weigel-Kelley KA, Zolotukhin I, Warrington KH, Li X, Slayton WB, Yoder MC, Srivastava A. Evaluation of primitive murine hematopoietic stem and progenitor cell transduction in vitro and in vivo by recombinant adeno-associated virus vector serotypes 1 through 5. Hum Gene Ther 2006; 17:321-33. [PMID: 16544981 DOI: 10.1089/hum.2006.17.321] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Conflicting data exist on hematopoietic cell transduction by AAV serotype 2 (AAV2) vectors, and additional AAV serotype vectors have not been evaluated for their efficacy in hematopoietic stem/progenitor cell transduction. We evaluated the efficacy of conventional, single-stranded AAV serotype vectors 1 through 5 in primitive murine hematopoietic stem/progenitor cells in vitro as well as in vivo. In progenitor cell assays using Sca1+ c-kit+ Lin- hematopoietic cells, 9% of the colonies in cultures infected with AAV1 expressed the transgene. Coinfection of AAV1 with self-complementary AAV vectors carrying the gene for T cell protein tyrosine phosphatase (scAAV-TC-PTP) increased the transduction efficiency to 24%, indicating that viral secondstrand DNA synthesis is a rate-limiting step. This was further corroborated by the use of scAAV vectors, which bypass this requirement. In bone marrow transplantation studies involving lethally irradiated syngeneic mice, Sca1+ c-kit+ Lin- cells coinfected with AAV1 +/- scAAV-TC-PTP vectors led to transgene expression in 2 and 7.5% of peripheral blood (PB) cells, respectively, 6 months posttransplantation. In secondary transplantation experiments, 7% of PB cells and 3% of bone marrow (BM) cells expressed the transgene 6 months posttransplantation. Approximately 21% of BM-derived colonies harbored the proviral DNA sequences in integrated forms. These results document that AAV1 is thus far the most efficient vector in transducing primitive murine hematopoietic stem/progenitor cells. Further studies involving scAAV genomes and hematopoietic cell-specific promoters should further augment the transduction efficiency of AAV1 vectors, which should have implications in the optimal use of these vectors in hematopoietic stem cell gene therapy.
Collapse
Affiliation(s)
- Li Zhong
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhong L, Li W, Li Y, Zhao W, Wu J, Li B, Maina N, Bischof D, Qing K, Weigel-Kelley KA, Zolotukhin I, Warrington KH, Li X, Slayton WB, Yoder MC, Srivastava A. Evaluation of Primitive Murine Hematopoietic Stem and Progenitor Cell Transduction In Vitro and In Vivo by Recombinant Adeno-Associated Virus Vector Serotypes 1 Through 5. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
42
|
Zhong L, Li W, Li Y, Zhao W, Wu J, Li B, Maina N, Bischof D, Qing K, Weigel-Kelley KA, Zolotukhin I, Warrington KH, Li X, Slayton WB, Yoder MC, Srivastava A. Evaluation of Primitive Murine Hematopoietic Stem and Progenitor Cell Transduction In Vitro and In Vivo by Recombinant Adeno-Associated Virus Vector Serotypes 1 Through 5. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Kaspar BK, Roth DM, Lai NC, Drumm JD, Erickson DA, McKirnan MD, Hammond HK. Myocardial gene transfer and long-term expression following intracoronary delivery of adeno-associated virus. J Gene Med 2005; 7:316-24. [PMID: 15515115 DOI: 10.1002/jgm.665] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adeno-associated viral vectors (AAV) can direct long-term gene expression in post-mitotic cells. Previous studies have established that long-term cardiac gene transfer results from intramuscular injection into the heart. Cardiac gene transfer after direct intracoronary delivery of AAV in vivo, however, has been minimal in degree, and indirect intracoronary delivery, an approach used in an increasing number of studies, appears to be receiving more attention. To determine the utility of indirect intracoronary gene transfer of AAV, we used aortic and pulmonary artery cross clamping followed by proximal aortic injection of AAV encoding enhanced green fluorescent protein (AAV.EGFP) at 10(11) DNase resistant particles (drp; high-performance liquid chromatography (HPLC)-purified) per rat. Gene expression was quantified by fluorescent microscopy at four time points up to 1 year after vector delivery, revealing 20-32% transmural gene expression in the left ventricle at each time point. Histological analysis revealed little or no inflammatory response and levels of transgene expression were low in liver and undetectable in lung. In subsequent studies in pigs, direct intracoronary delivery into the left circumflex coronary artery of AAV.EGFP (2.64-5.28 x 10(13) drp; HPLC-purified) resulted in gene expression in 3 of 4 pigs 8 weeks following injection with no inflammatory response in the heart. PCR analysis confirmed AAV vector presence in the left circumflex perfusion bed. These data indicate that intracoronary delivery of AAV vector is associated with transgene expression in the heart, providing a means to obtain long-term expression of therapeutic genes.
Collapse
Affiliation(s)
- Brian K Kaspar
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Kawamoto S, Shi Q, Nitta Y, Miyazaki JI, Allen MD. Widespread and early myocardial gene expression by adeno-associated virus vector type 6 with a beta-actin hybrid promoter. Mol Ther 2005; 11:980-5. [PMID: 15922969 DOI: 10.1016/j.ymthe.2005.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 02/18/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022] Open
Abstract
Gene therapy for acute cardiac events such as myocardial infarction requires early gene expression over an entire region of myocardium, which has not been possible using adeno-associated virus (AAV) vectors to date. Here we demonstrate marked improvement in the distribution and rapidity of gene expression in myocardium using the AAV pseudotype 6 (AAV6) vector, compared to the standard serotype 2 (AAV2) vector. An alkaline phosphatase (AP) reporter construct driven by the chicken beta-actin promoter was packaged in either AAV6 or AAV2 capsids and delivered to rat hearts in vivo by direct injection. AP expression was evident in both AAV6 and AAV2 vector-treated hearts as early as 1 day after injection, but increased rapidly in AAV6 vector-treated hearts during the first 7 days. The amplitude of AP activity produced by the AAV6 vector was 5-fold greater than that produced by the equivalent AAV2 vector at both 3 and 7 days postinjection. Additionally, the AAV6 vector transduced a myocardial volume that was 10-fold larger than the AAV2 vector. These results indicate the significant potential of AAV6 serotype vectors for early gene expression and widespread regional transduction of myocardium, both auspicious results for in vivo applications in acute cardiac disease.
Collapse
Affiliation(s)
- Shunsuke Kawamoto
- The Hope Heart Program, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101-2795, USA
| | | | | | | | | |
Collapse
|
45
|
Woo YJ, Zhang JCL, Taylor MD, Cohen JE, Hsu VM, Sweeney HL. One year transgene expression with adeno-associated virus cardiac gene transfer. Int J Cardiol 2005; 100:421-6. [PMID: 15837086 DOI: 10.1016/j.ijcard.2004.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 09/01/2004] [Accepted: 09/04/2004] [Indexed: 10/25/2022]
Abstract
BACKGROUND Adeno-associated virus (AAV) has shown promise as a vector for cardiac gene transfer given its ability to stably integrate into the host genome and its lack of immune reactivity. This study examined the feasibility of AAV-mediated myocardial gene transfer in mice, the animal which, because of transgenic technology, has become the disease model of choice for cardiovascular research. METHODS AAV encoding the cytomegalovirus promoter driven LacZ reporter gene (10(7) LacZ-forming units per animal) or vehicle control was injected into the hearts of young adult C57Bl/6 mice by a transdiaphragmatic approach. At one, two, three, six, and twelve months post-injection, cardiac function was assessed by transthoracic echocardiography and hearts were assayed by X-gal histochemical staining. RESULTS Echocardiography revealed normal left ventricular function in both AAV and control groups at all time points. X-gal staining of cryostat sections of hearts revealed uniform LacZ expression at all time points. There were minimal signs of immunologic infiltration by hematoxylin and eosin staining. CONCLUSIONS AAV-mediated myocardial gene transfer by transdiaphragmatic injection can be conducted safely and results in long-term expression of the LacZ gene for at least one year without causing significant inflammatory response or adversely affecting LV systolic function.
Collapse
Affiliation(s)
- Y Joseph Woo
- University of Pennsylvania Department of Surgery, Philadelphia, PA 19104, United States.
| | | | | | | | | | | |
Collapse
|
46
|
Lynch CM. New prospects for cardiovascular gene therapy. Expert Opin Investig Drugs 2005; 6:1691-6. [PMID: 15989573 DOI: 10.1517/13543784.6.11.1691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cardiovascular gene therapy has been hampered by the lack of suitable gene delivery vectors for in vivo applications. Low transduction efficiencies, lack of persistent transgene expression and undesirable inflammatory and immune responses have limited the prospects for human gene therapy in the cardiovascular system. New prospects for cardiovascular gene therapy are a result of recent vector developments, in particular with the use of adeno-associated virus (AAV) based vectors in the heart and peripheral vasculature.
Collapse
Affiliation(s)
- C M Lynch
- Targeted Genetics Corp., 1100 Olive Way, Suite 100, Seattle, WA 98101, USA.
| |
Collapse
|
47
|
Zhong L, Li W, Yang Z, Qing K, Tan M, Hansen J, Li Y, Chen L, Chan RJ, Bischof D, Maina N, Weigel-Kelley KA, Zhao W, Larsen SH, Yoder MC, Shou W, Srivastava A. Impaired nuclear transport and uncoating limit recombinant adeno-associated virus 2 vector-mediated transduction of primary murine hematopoietic cells. Hum Gene Ther 2005; 15:1207-18. [PMID: 15684697 DOI: 10.1089/hum.2004.15.1207] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Controversies abound concerning hematopoietic stem cell transduction by recombinant adeno-associated virus 2 (AAV) vectors. For human hematopoietic cells, we have shown that this problem is related to the extent of expression of the cellular receptor for AAV. At least a small subset of murine hematopoietic cells, on the other hand, does express both the AAV receptor and the coreceptor, yet is transduced poorly. In the present study, we have found that approximately 85% of AAV genomes were present in the cytoplasmic fraction of primary murine c-Kit(+)Lin- hematopoietic cells. However, when mice were injected intraperitoneally with hydroxyurea before isolation of these cells, the extent to which AAV genomes were detected in the cytoplasmic fraction was reduced to approximately 40%, with a corresponding increase to approximately 60% in the nuclear fraction, indicating that hydroxyurea facilitated nuclear transport of AAV. It was apparent, nonetheless, that a significant fraction of the AAV genomes present in the nuclear fraction from cells obtained from hydroxyurea-treated mice was single stranded. We next tested whether the single-stranded AAV genomes were derived from virions that failed to undergo uncoating in the nucleus. A substantial fraction of the signal in the nuclear fraction of hematopoietic cells obtained from hydroxyurea-treated mice was also resistant to DNase I. That AAV particles were intact and biologically active was determined by successful transduction of 293 cells by virions recovered from murine hematopoietic cells 48 hr postinfection. Although hydroxyurea facilitated nuclear transport of AAV, most of the virions failed to undergo uncoating, thereby leading to only a partial improvement in viral second- strand DNA synthesis and transgene expression. A better understanding of the underlying mechanism of viral uncoating has implications in the optimal use of recombinant AAV vectors in hematopoietic stem cell gene therapy.
Collapse
Affiliation(s)
- Li Zhong
- Department of Microbiology and Immunology, Walther Oncology Center, Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Gene therapy-based treatment for myocardial ischemia is envisioned to involve multiple approaches. RECENT FINDINGS We discuss the various approaches and viral vectors available for this emerging field of cardioprotection by gene-based therapy. The prevention of arterial occlusion by the inhibition of clot formation or even atherosclerotic disease process is one approach. Another is the treatment of ischemia with genes that limit cardiac injury due to hypoxia. The molecular pathways that lead to cell damage and death are not yet fully understood. Thus, strides in the understanding of the disease process must be made. SUMMARY In spite of the lack of precise knowledge, delivery of certain genes has shown promise, and the development of various gene delivery techniques to the heart has shown progress.
Collapse
Affiliation(s)
- Paul L Hermonat
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205, USA.
| | | |
Collapse
|
49
|
Pachori AS, Melo LG, Zhang L, Loda M, Pratt RE, Dzau VJ. Potential for germ line transmission after intramyocardial gene delivery by adeno-associated virus. Biochem Biophys Res Commun 2004; 313:528-33. [PMID: 14697221 DOI: 10.1016/j.bbrc.2003.11.140] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intramyocardial injection of adeno-associated virus (AAV) has been shown to be an effective strategy for cardiac gene delivery. This approach leads to long-term gene expression in the heart, offering the possibility of chronic gene therapy. However, the long-term safety of this approach with regard to vector bio-distribution and extracardiac transgene expression has not been evaluated. To examine these issues, 8-week-old male Sprague-Dawley rats were injected intramyocardially with either 4x10(11) particles of AAV-2-lacZ or saline at five locations in the anterioposterior apical region of the left ventricle. Animals were sacrificed at 3 and 6 months after gene transfer, tissues were harvested and analyzed for lacZ expression by semi-quantitative RT-PCR and beta-galactosidase activity using X-gal staining. We observed high level of transgene expression in the myocardium at 3 months after gene transfer, which persisted up to 6 months of follow-up. Also, significantly we detected lacZ expression and beta-galactosidase activity in extracardiac tissues such as liver, kidney, and testes at 6 months. More significantly, late transgene expression was detected in cellular elements of the seminiferous tubule, including Sertoli cells and spermatogonia like cells. These data demonstrate the efficacy of AAV-2 delivery for long-term myocardial gene therapy, but raise concerns about the possibility of ectopic transgene expression and germ cell line infection.
Collapse
Affiliation(s)
- Alok S Pachori
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
50
|
Zhong L, Qing K, Si Y, Chen L, Tan M, Srivastava A. Heat-shock treatment-mediated increase in transduction by recombinant adeno-associated virus 2 vectors is independent of the cellular heat-shock protein 90. J Biol Chem 2004; 279:12714-23. [PMID: 14711833 PMCID: PMC1987378 DOI: 10.1074/jbc.m310548200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant adeno-associated virus 2 (AAV) vectors transduction efficiency varies greatly in different cell types. We have described that a cellular protein, FKBP52, in its phosphorylated form interacts with the D-sequence in the viral inverted terminal repeat, inhibits viral second strand DNA synthesis, and limits transgene expression. Here we investigated the role of cellular heat-shock protein 90 (HSP90) in AAV transduction because FKBP52 forms a complex with HSP90, and because heat-shock treatment augments AAV transduction efficiency. Heat-shock treatment of HeLa cells resulted in tyrosine dephosphorylation of FKBP52, led to stabilization of the FKBP52-HSP90 complex, and resulted in approximately 6-fold increase in AAV transduction. However, when HeLa cells were pre-treated with tyrphostin 23, a specific inhibitor of cellular epidermal growth factor receptor tyrosine kinase, which phosphorylates FKBP52 at tyrosine residues, heat-shock treatment resulted in a further 18-fold increase in AAV transduction. HSP90 was shown to be a part of the FKBP52-AAV D-sequence complex, but HSP90 by itself did not bind to the D-sequence. Geldanamycin treatment, which disrupts the HSP90-FKBP52 complex, resulted in >22-fold increase in AAV transduction in heat-shock-treated cells compared with heat shock alone. Deliberate overexpression of the human HSP90 gene resulted in a significant decrease in AAV-mediated transduction in tyrphostin 23-treated cells, whereas down-modulation of HSP90 levels led to a decrease in HSP90-FKBP52-AAV D-sequence complex formation, resulting in a significant increase in AAV transduction following pre-treatment with tyrphostin 23. These studies suggest that the observed increase in AAV transduction efficiency following heat-shock treatment is unlikely to be mediated by HSP90 alone and that increased levels of HSP90, in the absence of heat shock, facilitate binding of FKBP52 to the AAV D-sequence, thereby leading to inhibition of AAV-mediated transgene expression. These studies have implications in the optimal use of recombinant AAV vectors in human gene therapy.
Collapse
Affiliation(s)
- Li Zhong
- Department of Microbiology and Immunology, Walther Oncology Center, Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|